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CHAPTER I 

 

INTRODUCTION 

 

Spontaneous fluctuations (noise) underlie the most amazing and ubiquitous phenomena in 

both the physical and biological worlds. The observed random time record of noise can carry a 

large amount of information about a system and its interaction with the surrounding 

environment. Noise can limit the speed of information transfer and data manipulation; however, 

noise also can contain a treasure-chest of information about a particular system. Today’s noise 

research covers the most important fields including biology, biomedicine, materials, magnetism, 

devices, reliability, circuits, optics, nonlinear systems, nanotechnology, classical and quantum 

information, quantum computing, communications, wireless, economic fluctuations, etc. In this 

work, we study the low frequency noise and fluctuation phenomena in semiconductor devices, 

and more specifically, the metal oxide semiconductor field effect transistor (MOSFET), which is 

the building block of modern ultralarge scale integration (ULSI) electronic circuits.  

 
Figure 1: Schematic variation of SV with frequency, showing the key characteristics of 1/f noise at low frequencies, and thermal 
noise at high frequencies. 
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If a constant voltage is applied to a semiconductor device, a resistor or vacuum tube, the 

current will exhibit fluctuations. The spectral density will show a constant value at high 

frequencies, due to thermal and shot noise components. However, at low frequency, f, usually 

below approximately a few kilohertz, the noise typically is found to be proportional to 1/f α (with 

α in the range 0.8-1.4). This kind of noise is frequently called low frequency noise, flicker noise, 

pink noise, or 1/f noise. Figure 1 shows a typical noise spectrum in a MOS transistor, in which 

the power spectral density VS of the drain voltage is plotted as a function of frequency, 

emphasizing the dominance of 1/f noise at low frequencies and thermal (white) noise at higher 

frequencies.  Low-frequency noise or flicker noise has been found in an astonishing variety of 

systems. The study of fluctuations and low frequency noise, especially in metals and 

semiconductor devices, has been an active area of research for decades [1]-[7]. The motivations 

behind the study of low-frequency noise in semiconductor devices are four-fold: (1) Low 

frequency noise is an important parameter for analog and RF applications. For example, low 

frequency noise in MOS devices can be up-converted to oscillator phase noise, degrading system 

performance [8], [9]. It gains increasing importance in view of, e.g., system-on-chip applications, 

especially for highly scaled mixed signal and analog applications. A comprehensive knowledge 

of all dominant noise-generating sources in the device is thus crucial to achieving an optimized 

noise performance of analog/RF circuits.  (2) Despite decades of theoretical and experimental 

research work, the microscopic origins of 1/f noise are not well understood in most systems. (3) 

Extensive 1/f noise measurements have been done on MOS devices. Researchers have found that 

the variation of the 1/f noise of unirradiated transistors in the linear operation regime can 

correlate strongly with post-irradiation threshold voltage shifts due to oxide trap charge [10]-

[14]. No direct link is found with interface traps at room temperature and frequencies below ~ 10 
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kHz [15]. In comparative studies with radiation effects, it has been shown that the 1/f noise of 

MOS transistors correlates strongly with the density of oxygen vacancies in SiO2 [10]-[14]. The 

1/f noise of nMOS devices generally increases with increasing oxide-trap charge during 

irradiation and decreases with decreasing oxide-trap charge during postirradiation annealing. 

These observations have made 1/f noise a promising tool as a nondestructive test of MOS failure 

in a radiation environment where oxide trap charge buildup is the dominant failure mode. Thus, 

1/f noise can be used to help screen out devices that may not survive a radiation environment due 

to high oxide trap densities. This correlation also implies that the methods developed to reduce 

the amount of radiation-induced-charge trapping in MOS oxides could be applied to reduce the 

1/f noise of MOS devices, which can otherwise limit the performance of some analog circuits 

and low frequency amplifiers. (4) Low frequency noise measurements can be used as a 

characterization tool for the quality or long-term reliability of MOS devices [16]-[18]. It is well 

documented in the literature that increased 1/f noise in MOSFETs can be associated with some 

major oxide degradation and reliability mechanisms, including dielectric leakage, gate oxide 

breakdown, hot-carrier effects and bias temperature instabilities [19]-[38]. 

A microelectronics technology of emerging commercial interest is silicon-on-insulator 

(SOI). SOI structures consist of a film of single crystalline Si separated by a layer of SiO2 from 

the bulk substrate [39]-[41], thus electrically isolating the devices from the underlying silicon 

substrate and from each other. Historically, there have been three reasons for developing and 

using SOI. In earlier years, transient radiation hardness of SOI circuits was the main motivation 

for choosing these new substrates. Thin active Si films and the presence of the buried oxide 

greatly reduce the volume from which charges generated by ionizing radiation can be collected 

and minimize the impact of soft errors. Currently, performance enhancement motivates many 
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integrated circuit companies to use SOI wafers. The source and drain junction capacitance is 

almost entirely eliminated in SOI MOSFETs, while the capacitance through the thick buried 

oxide layer to the substrate is very small, so for the same supply voltage, digital logic circuits run 

faster in SOI than in bulk Si. Another advantage of SOI technology is the reduction or 

elimination of short channel effects [42], [43], especially for fully depleted SOI.  

SOI devices are susceptible to total ionizing dose-induced charges that can be trapped in 

the buried oxide layer (BOX). Trapped positive charges may invert the back channel and create a 

leakage path at the island/BOX interface that severely degrades performance [44]. Hence, it is 

important and necessary to understand the charge trapping effects and radiation response of SOI 

buried oxides. One purpose of this work is to study the charge trapping effects and radiation 

response of SOI buried oxides using sub-threshold current-voltage, back-gate constant voltage 

stressing, and low frequency noise measurements. The majority of work in the literature on low 

frequency noise is on traditional bulk MOSFETs and/or the top gates of SOI devices, with only a 

limited number of studies reported on SOI buried oxides [45]-[48]. Hence, in this work we 

investigate these SOI-specific noise mechanisms, for example, back-channel noise and 1/f noise 

in the double-gate (both top and back gate turned on) modes of operation. 

Many materials systems are currently being considered as potential replacements for SiO2 

as the gate dielectric material for sub-0.1 µm bulk and SOI CMOS technologies. Optimizing 

high-κ dielectrics for future generations of deep-submicrometer CMOS transistors remains a 

challenging field. Issues that remain to be solved are the stability of the threshold voltage and the 

significantly lower mobility compared with thermal SiO2 gate devices. These are related closely 

to the high density of traps that are often found in the bulk or at the interface of a high-κ 

dielectric gate stack. The charging and discharging of these traps can greatly affect the operation 



5 

of the transistors. The effects of radiation in high-κ devices are only beginning to be understood 

[49]-[50]. Also, only a few reports are available in the literature on the low frequency noise of 

transistors with a high-κ gate dielectric stack [51]. So, in this case study, we also have 

investigated the low frequency noise and radiation response of MOS transistors with 

Al2O3/SiOxNy/Si(100) gate dielectrics. 

This thesis is organized as follows. Chapter II introduces the basic mathematical 

background related to low frequency noise, the derivation of the Lorentzian spectrum for 

generation and recombination (GR) noise, and how 1/f noise can be constructed by the 

superposition of GR noise. Chapter III gives a brief overview of total dose radiation effects in 

microelectronic devices, followed by a description of the relationship between radiation effects 

and 1/f noise in MOSFETs. Increases in low frequency noise associated with long-term 

reliability degradation in previous studies are also discussed and compared to effects in irradiated 

devices. Chapter IV describes the experimental details for this project. Chapter V shows results 

on low frequency noise and radiation response of MOS transistors with Al2O3/SiOxNy/Si(100) 

gate dielectrics. Charge trapping effects and radiation effects in SOI buried oxides that have 

received silicon implantation are investigated in chapter VI. The charge trapping, radiation 

response, and bias instabilities of SOI MOSFET buried oxides are studied through low frequency 

noise and DC current voltage measurements. Also, the noise of fully-depleted SOI MOSFETs in 

double-gate mode operation and the back gate noise are investigated. Chapter VII provides the 

summary and conclusions of this work. 
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CHAPTER II 

 

LOW FREQUENCY NOISE THEORY 

 

This chapter contains background information about low frequency noise. A variety of 

models have been used to explain the 1/f noise in MOSFET devices. It has been generally 

accepted that the 1/f noise in the conduction channel of the device is associated with capture and 

emission of charge carriers from traps in the oxide, very near to the Si/SiO2 interface. Before we 

discuss the details of the noise in microelectronics, we first discuss some general properties of 

low-frequency noise. 

 

Mathematical Background 

A continuous valued random variable X  is completely specified by its probability 

density function (PDF) 

,0)( ≥xf X   ∫
∞

∞−
= 1)( dxxf X .     (2.1) 

 From the PDF one can calculate all the moments of the random variable. Among them 

the most important two for noise analysis are the mean 

∫
∞

∞−
= ,)( dxxxfX       (2.2) 

and the mean square 

∫
∞

∞−
= .)(22 dxxfxX       (2.3) 
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 The mean square is often interpreted as the average power of a signal X . The square root 

of this power (denoted as RMS) represents an equivalent constant signal with power equal to the 

average power of X . From the mean and mean square, we can calculate the variance of X  

,)( 222 XXX −=σ       (2.4) 

which is interpreted as the square distance of X  from its mean. When X  has zero mean, its 

variance is equal to the mean square. Variance is often used to estimate the noise power. 

 A random process ),(tX  ∞≤≤∞− t  is used to model a noise waveform. It is an infinite 

collection of random variables (noise samples) indexed by time t . For times ,.......,, 21 nttt  the 

samples )(),.......,(),( 21 ntXtXtX  are random variables. In noise analysis, it is often important to 

know the process mean )(tX  and the autocorrelation function )()()( tXtXtRX ττ +=+ . Many 

important noise processes are modeled as stationary random processes, i.e., processes with time 

invariant statistics. If both mean and autocorrelation function are time invariant, i.e., µ=)(tX  

and )(),( ττ XX RttR =+ , then )(tX  is a wide-sense stationary (WSS) process and its 

autocorrelation function has the following properties 

• )()0( 2 tXRX = , which has the interpretation of average process power. 

• )(τXR  is an even function, which means )()( ττ −= XX RR . 

In the time range Tt ≤≤0 , the Fourier Transform of )(tX  is 

∑
∞

∞−

= )exp()( tjtX nn ωα .     (2.5) 

where ∫ −=
T

nn dttjtX
T 0

)exp()(1 ωα . The power spectral density of )(tX  is defined as  

∗

∞→
= nnTX TfS αα2lim)( .     (2.6) 
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According to the Wiener-Khintchine theorem, the autocorrelation function and power spectral 

density function of a random variable )(tX  has the following relationship 

∫
∞

∞−
−= ττπτ dfjRfS XX )2exp()(2)(     (2.7) 

∫
∞

=
0

2cos)()( dfffSR XX τπτ .    (2.8) 

When 0=τ  in Eq. (2.8), we have 

∫
∞

=
0

2 .)()( dffStX X      (2.9) 

The physical meaning of the power spectral density is the mean square of the random variable in 

the unit frequency bandwidth. 

 In noise analysis it is often required to estimate the mean and the autocorrelation function 

of a stationary noise process. There are two approaches to estimate them: the ensemble average 

and the time average. In the ensemble average approach, a large number of identical systems are 

constructed. They are measured simultaneously to extract the statistics in which we are interested. 

Although very powerful in theoretical noise analysis, this approach is not well suited for noise 

measurements. This is simply because a large number of identical systems are not available in 

practical experiments. Instead, the time average approach is often used to analyze experimental 

noise data, as long as the noise process is stationary. More detailed analysis can be found in [52]-

[54]. 

 

Generation and Recombination Noise 

In semiconductor materials or devices, generation-recombination (GR) noise is due to 

fluctuations in the number of free carriers inside of a two terminal semiconductor device sample 

associated with random transitions of charge carriers between states in different energy bands 
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[54], [55]. Typical examples of transitions are between conduction band and localized levels in 

the energy gap, conduction and valence bands, etc. Therefore, GR noise is inherently due to 

fluctuations of carrier number, usually keeping charge neutrality of the total sample.   

As a simple model, assume there are N carriers in the device, with a generation rate g(N) 

and recombination rate r(N) . The fluctuations in the numbers of carriers is described by a 

differential equation of the form 

dN
dt

= g(N) − r(N) + ∆g(t) − ∆r(t).    (2.10) 

Here N = N0 + ∆N , where N0 is equilibrium number of carriers. We now expand g(N) and r(N) 

in a Taylor series and neglect the higher order terms: 

N
N
gNgNNgNg N ∆+=∆+=

0
)()()( 00 ∂

∂               (2.11) 

r(N) = r(N0 + ∆N) = r(N0) +
∂r
∂N N0

∆N .    (2.12) 

Substituting these two equations into Eq. (2.10), we can simplify it into 

d∆N
dt

= −
∆N(t)

τ
+ H(t) ,      (2.13) 

with g(N0) = r(N0). Here H(t)  is a random noise term and H(t) = ∆g(t) − ∆r(t), and τ  is defined 

as the lifetime of the carriers, 

1
τ

= ( dr
dN

−
dg
dN

) N0
.        (2.14) 

For 0 ≤ t ≤ T  we can expand H(t)  and ∆N(t) in a Fourier series 

H(t) = αn exp( jωnt)
n=−∞

∞

∑      (2.15) 

∆N(t) = βn exp( jωnt)
n=−∞

∞

∑      (2.16) 
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where ωn = 2πn /T  and n is an integer. Substituting Eq. (2.15) and (2.16) into Eq. (2.13) one 

finds 

βn =
αnτ

1+ jωnτ
 .     (2.17) 

 The power spectral density of H(t)  and ∆N(t) can be defined as 

SH ( f ) = lim
T →∞

2Tαnαn
∗         (2.18) 

∗

∞→∆ = nnTN TfS ββ2lim)( .     (2.19) 

Also since H(t)  is a white noise source, SH ( f ) = SH (0) . So from (2.17) to (2.19) we find 

SN ( f ) =
SH (0)τ

1+ τ 2ω 2 .      (2.20) 

∆N 2 = SN ( f )df =
SH (0)τ

40

∞∫      (2.21) 

Substituting (2.21) into (2.20), we can obtain the widely used expression for GR noise 

    22
2

1
4)(

ωτ
τ

+
∆= NfSN      (2.22) 

The spectrum of the fluctuations in Eq. (2.22) is of a Lorentzian type with two parameters; that 

is, the variance of number fluctuations and the characteristic time of charge carriers. Figure 2 

shows a typical noise curve of the current in a small device as a result of carrier interactions with 

a single trap center, which is of the Debye-Lorentzian spectrum shape. Figure 3 shows a discrete 

modulation of current level through a submicron MOSFET in the time domain [4]. This type of 

spectrum is called random-telegraph-signal (RTS) noise or popcorn noise. When the device is 

big enough, there usually are a large number of trapping centers with a distribution of 

characteristic times g(τ) . Any spectrum may be generated by postulating an appropriate 

distribution of the characteristic times within the sample. 
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Figure 2: A typical Debye-Lorentzian spectrum 

 

 

Figure 3: Typical RTS noise, showing discrete levels of channel current modulation due to the trapping and release of a single 
carrier [4]. 
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Low Frequency Noise in MOSFETs   

 A superposition of a large number of Lorentzian spectra might result in a 1/f spectrum 

[54], [55]. To investigate this problem we rewrite instead of Eq. (2.22) 

SN ( f ) = 4∆N 2 τg(τ)dτ
1+ τ 2ω 20

∞∫      (2.23) 

where the probability g(τ)dτ  is normalized by requiring  

g(τ)dτ =1
0

∞∫ .       (2.24) 

 In the particular case that 

g(τ)dτ =
dτ /τ

ln(τ1 /τ 0)
 for τ 0 ≤ τ ≤ τ1     (2.25) 

and g(τ)dτ = 0 otherwise, so that g(τ) is normalized, one obtains 

SN ( f ) =
2∆N 2

πf ln(τ1 /τ 0)
[tan−1(ωτ1) − tan−1(ωτ 0)],   (2.26) 

which corresponds to 

SN ( f ) =
4∆N 2τ1

ln(τ1 /τ 0)
  for ω <<

1
τ1

    (2.27a) 

SN ( f ) =
∆N 2

f ln(τ1 /τ 0)
  for 1

τ1

<< ω <<
1
τ 0

   (2.27b) 

SN ( f ) =
∆N 2 /τ 0

π 2 f 2 ln(τ1 /τ 0)
  for ω >>

1
τ 0

.   (2.27c) 

We thus see that the spectrum is white at very low frequencies, goes as 1/f 2 at very high 

frequencies, and varies as 1/f over a wide intermediate frequency range. A graphic representation 

of the discussion above is shown in Figure 4. In this figure, 11 Lorentzian spectra have been 

added, each with a time constant 10 times higher than the previous one. The resultant summation 

of the spectra gives a 1/f type spectrum. 
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Figure 4: 1/f noise power spectral density can be obtained as a weighted summation of Lorentzians. Here ten Lorentzian spectra 
have been added, each with a characteristic time constant ten times higher than the previous one. 

 

A variety of models have been proposed to explain 1/f noise in MOSFETs [56]-[65]. 

After much controversy, it is now widely accepted that the noise of MOSFETs is associated with 

capture and emission of charge carriers in the conducting channel from traps in the oxide, very 

near to the Si/SiO2 interface. Fluctuations in oxide-trap charge couple to the channel, both 

directly through fluctuations in the numbers of inversion layer charges, and indirectly through 

fluctuations in scattering associated with changes in trap occupancy. Data from narrow-channel 

MOSFETs confirm that both effects can be important [4]. In general, noise studies on n-channel 

MOSFETs tend to follow a number fluctuation model, at least to first order. In p-channel 

devices, noise is often attributed to both number and mobility fluctuations [10].  
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In experiments we measure the noise power spectral density of the drain-source voltage. 

The n-type MOSFET device is usually operated in the linear region in strong inversion, and the 

number fluctuation model gives [10]: 

2

2

)(
)(

tg

d
V VV

V
f
KfS

d −
= γ      (2.28) 

where K is a device-dependent noise level: 

)/ln( minmax
2

22
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ε
=      (2.29) 

 

 

 

 

 

 

 

 

 

 

 



15 

CHAPTER III 

 

LOW FREQUENCY NOISE, RADIATION EFFECTS, AND RELIABILITY 

 

Total Dose Radiation Effects  

Ionizing radiation is known to produce MOS component degradation and radiation 

damage in solid-state devices; this has been a major concern of space and military experts since 

the launch of the first Telstar satellite in the early 1960s. Radiation in the form of x-rays, 

energetic electrons, protons, and heavy ionized particles can significantly affect MOS devices. 

The sequence of events leading to ionizing radiation-induced damage is illustrated schematically 

in Figure 5 [66]. The primary effect directly related to the ionizing radiation is the generation of 

electron-hole pairs throughout the oxide. A percentage of the generated electrons and holes 

recombine immediately. The electric field in the oxide can separate the surviving carriers, 

accelerating electrons and holes in opposite directions. Electrons, which have a relatively high 

mobility in SiO2, drift to the gate and are swept out of the oxide in a picosecond or less for 

irradiations at typical device operating conditions. Holes, on the other hand, transport much more 

slowly through SiO2. Over a period of time the holes can migrate to the Si/SiO2 interface under 

positive bias, where they either recombine with the electrons injected from the silicon, or fall 

into relatively deep trap states, forming a positive oxide-trap charge. Large concentrations of 

oxide-trap charge can shift the threshold voltage of MOS devices and increase the leakage 

current of an integrated circuit. Hydrogen ions can be released as holes travel through the oxide 

or when they are trapped near the Si/SiO2 interface. The hydrogen ions can react with Si-H 

bonds at the Si/SiO2 interface to form interface traps. These effects tend to change the threshold 
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voltage of the transistor, decrease the mobility, or even cause the complete failure of the IC. 

More detailed descriptions of the total dose irradiation process can be found in [66]-[68].  

  

 
Figure 5: Band diagram of an nMOS device with a positive gate bias. Illustrated are the main processes for radiation-induced 
charge generation. After [66].  

 

We are particularly interested in the oxide trapped charge due to its close relationship 

with low frequency noise. A popular model of hole trapping and annealing was developed by 

Lelis et al., through a dipole model [69]-[71], as illustrated in Figure 6 [72]. Basically, a weak 

Si-Si bond (oxygen vacancy) in Figure 6(a) captures a positive charge (hole), the Si-Si bond is 

broken and the lattice relaxes into a planar configuration and a tetrahedral configuration [73], as 

seen in Figure 6(b). Lenahan and Dressendorfer first established the correlation of E′ centers, and 

oxygen vacancies, with radiation-induced trapped holes [74]. Oxide trapped charge can undergo 

a long-term annealing process as a function of time, temperature, and applied electric field 

through either tunneling or thermally activated processes. The transition process between Figure 



17 

6(b) and 6(c) describes the switched bias annealing first reported by Schwank et al. [75], which 

involves a compensation process instead of true annealing. The true annealing is observed as the 

transition from Figure 6(c) to 6(a) when the positive and negative structures bond again. 

 

Figure 6: Model of hole trapping, permanent annealing, and compensation processes. After[72]. 

 

 

Radiation Effects and Low Frequency Noise 

After irradiation, MOS device structures typically exhibit both an increase in the fixed 

charge density within the oxide and an increase in the interface trap concentration, resulting in a 

reduction of the transconductance and a change in the threshold voltage. Additionally, the low 

frequency noise generally increases [10]-[14], [76]-[78]. It has been found that the 1/f noise 

magnitude of unirradiated MOS transistors correlates with the radiation-induced-hole trapping 

efficiency of the oxide, suggesting the defect responsible for 1/f noise is linked to the E' center, 

or a direct precursor [15]. It was also found that 1/f noise has a strong correlation with oxide 
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trapped charge, but not usually with interface trap charge [10] [11], as shown in Figure 7, leading 

to the conclusion that oxide traps within a few nm of the Si-SiO2 interface, defined as border 

traps, are responsible for 1/f noise in MOS devices [14].  Here 22)( −−= dthgV VVVfSK
d

 is 

defined as the normalized excess 1/f noise. This normalization presumes that the 1/f noise is due 

primarily to carrier number fluctuations due to charge trapping and emission, a good assumption 

in this case, and most other noise experiments involving (especially n-channel) MOSFETs in the 

literature [10]. 

 

 

Figure 7: Top: threshold voltage shifts due to interface-trap charge (∆Vit) and oxide-trap charge (∆Vot) as functions of 
irradiation and annealing time for 3 µm long, 16 µm wide n-channel MOS transistors with ∼ 50 nm oxides. Bottom: normalized 
noise power through the same irradiation and annealing. After [11]. 

 

Evidence from density-functional theory and 1/f noise measurements as a function of 

temperature and irradiation has suggested that the 1/f noise of n-channel MOS devices is caused 
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by the capture and emission of electrons at oxygen vacancy defects near the Si/SiO2 interface 

[78], [79]. These processes likely are accompanied by significant SiO2 network relaxation, and 

share a lot of similarities with the processes described in the dipole model discussed earlier in the 

chapter, involving a simple oxygen vacancy-related defect in SiO2 that is either initially charged 

positively or neutral. In order for the trap centers to become a 1/f noise source, there should be a 

large number of traps available at suitable energy levels and/or locations. Border traps, located at 

suitable positions and energy levels, may lead to thermally activated trapping kinetics and 

account for the 1/f noise results [78], . 

 

Dutta-Horn Model and Energy Distribution 

The low frequency noise behavior of at least some n-channel MOS devices can be 

described quantitatively by the model of Dutta and Horn [1] [78], showing that 1/f noise of these 

devices is due to a random thermally-activated process having a broad distribution of energies 

relative to kT. The frequency and temperature dependence of the noise are related via 

)1
ln

),(ln(
)ln(

11),(
0

−
∂

∂
−=

T
TST ω

ωτ
ωα .     (3.1) 

Here the frequency exponent is defined as α = −
∂ lnS
∂ ln f

. The conditions for which Eq. (3.1) is 

valid [1] are:  

1. The noise is due to random processes with thermally activated characteristic times.  

2. The distribution of activation energies )( 0ED varies slowly over any interval, kTE ≅∆ . 

3. The attempt frequency 00 /1 τ=f is much larger than the frequency at which the noise is 

measured.  



20 

4. The total noise magnitude ∫
∞

≡
0

2 )( dffSV Vδ is independent of temperature.  

It is also presumed that no new defects are created or existing defects annealed during the 

noise measurements. If Eq. (3.1) is satisfied for the noise of a particular system, this indicates 

that the noise is due to a thermally activated process with a distribution of activation energies, as 

opposed to an alternative process – e.g., tunneling [1]-[3]. This success of this model in 

describing the correlated temperature and frequency dependence of the noise in some MOS 

devices allows the energy distributions of the defects in these devices to be estimated from noise 

measurements as a function of temperature via 

),()( 0 TS
Tk

ED
B

ωω
∝      (3.2) 

before and after irradiation, and after postirradiation annealing [78], as shown in Figure 8. The 

defect energy is related to the temperature and frequency through the simple expression 

)ln( 00 ωτTkE B−≈ . In Figure 8, TfSV /  at f = 1 Hz is plotted as a function of T (lower x -axis) 

and E0 (upper x -axis). It is found that irradiating an nMOS transistor increases its 1/f noise and 

annealing decreases it. After annealing, the energy distribution of the defects changes from 

preirradiation values. Also we can infer the distribution of activation energies )( 0ED from the 

temperature dependence of the noise magnitude. From Eq. (3.2) it is clear that the defect-energy 

distribution is proportional to TfSV / , and that the defect energy can be parameterized as a 

function of temperature through the expression )ln( 00 ωτTkE B−≈  [1] [2] [79]. Before 

irradiation, there are peaks in the energy distribution at ~0.3 eV and ~ 0.6 eV. After irradiation, 

there is instead a peak at ~0.45 eV and a dip near 0.55 eV. After annealing, there are peaks at ~ 

0.28 eV (although not as large as before irradiation), ~ 0.45 eV, and ~ 0.70 eV. 
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Figure 8: TfSV / as a function of T and 0E  for a 3 × 16 µm nMOS transistor with 32-nm oxides before irradiation, after 500-

krad (SiO2) irradiation at 6-V bias, and after 24 h of 0-V annealing at 473 K. The energy scale inferred from the Dutta-Horn 
model is on the upper x-axis. After[78]. 

 

Low Frequency Noise in Long-term Reliability Studies 

Not only has low-frequency noise been studied in the context of radiation effects, it also 

has been used extensively in the reliability study in MOSFETs for decades [16]-[18], mostly by 

studying the DC and noise characteristics degradation under high voltage stressing on the gate 

and/or drain. Stress-induced damage under channel hot-electron stress or Fowler-Nordheim 

stress can have similar effects to radiation-induced damage. The stress can cause an increase in 

the oxide-trap charge and an increase in the interface trap concentration. In most cases, a much 

stronger increase has been observed for low frequency noise compared with DC characteristics 

during device degradation. In this section, we will briefly discuss noise due to hot carrier 
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degradation, Fowler-Nordheim stressing, and thin gate oxide leakage and breakdown. The 

floating body-related noise overshoot is also covered for SOI devices. The sources of noise are 

also important for MOS device operation for long times in a radiation environment, and in some 

cases, may dominate over radiation-induced increases in noise. 

 

Hot-carrier Effects/Fowler-Nordheim Stress 

Hot-carrier effects (HCEs) and their consequences for transistor operation have been 

known and examined since the late 1970s [80]. HCEs lead to a gradual change in the drive 

current and threshold voltages, causing potential circuit failure. Extensive studies of the 

degradation of 1/f noise under various kinds of hot-carrier stresses [19]-[32] have been made and 

show that 

 

Figure 9: Degradation of drain-current noise power and peak linear transconductance under IBmax stress (VD = 2VG=7 V) as a 
function of stress time on n-channel MOSFET. After [29]. 
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Figure 10: Time-Dependent degradation behavior of a n-type MOSFET upon FN stress. After [28]. 

 

a much stronger increase has typically been observed for the noise compared with the threshold 

voltage or transconductance degradation. As shown in Figure 9, the peak linear transconductance 

of the regular oxide sample has a 10% change while the drain current noise change is one to two 

orders of magnitude larger [29]. This emphasizes the higher sensitivity of 1/f noise to oxide 

traps/degradation induced by hot-carrier stressing. 

A similar tendency was also found after Fowler-Nordheim stress [21] [28] [31] [32]. An 

example of relative 1/f noise and transconductance changes is shown in Figure 10 [28]. These are 

associated with oxide and interface traps created by the high-field stress in the oxide. 

 

Dielectric Leakage and Gate Breakdown 

Stress-induced leakage current (SILC), soft breakdown (SBD) and hard breakdown 

(HBD) are highly challenging reliability issues in thin gate oxide MOSFETs, especially when the 
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gate oxide thickness in submicron CMOS is below 5 nm. Noise in the quasi- or SBD regime of 

ultrathin oxides has drawn considerable attention [33]-[36]. Chen. et al. have characterized the 

low-frequency noise of 3.3-nm gate oxide nMOSFETs when the devices were subjected to a 

stress voltage of 5.5 V and encountered in the time evolution of SILC, SBD, and HBD [36], as 

presented in Figure 11. Figure 11 (a) depicts the gate current during stressing, showing the 

spontaneous changes at three critical points: the time to first SBD, the time to secondary SBD, 

and the time to HBD. Along with the sudden increase in gate current, it is found that the drain 

current noise power spectrum Sid (fresh) < Sid (SILC) < Sid (SBD) < Sid (HBD), as seen in Figure 

11 (b). The SILC-induced noise increase is due to the increase in number of traps with the stress, 

until a critical number triggering soft breakdown occurs when the traps constitute a percolation 

path. The Sid(SBD) originates from current fluctuations in the SBD percolation paths, as 

demonstrated by the gate current fluctuation following each SBD event and the Lorentzian 

spectrum for Sid(SBD) manifested by the noise curve in Figure 11 (b). After HBD, the noise 

spectrum does not change much and is insensitive to subsequent stressing, indicating a complete 

conductive path. 

 



25 

 

Figure 11: (a) Measured terminal currents versus stress time under constant voltage stressing. The constant voltage of VG = 5.5 
V is for Fowler-Nordheim (F-N) tunneling stress; (b) Measured drain current noise spectra (Sid) with VD = 0.1 V and VG = 1 V 
for several stress times. After [36]. 

 

Floating Body Related Noise Overshoot 

In partially depleted SOI nMOSFETs, when the drain voltage is high enough, the channel 

electrons can acquire sufficient energy in the high electric field zone near the drain to create 

electron-hole pairs, due to impact ionization. The generated electrons move rapidly into the 

channel and the drain, while the holes, which are majority carriers, move to the floating body, 

increasing the body potential and forward biasing the drain-body diode. The body potential 

increase manifests itself in an increase of the drain current; this is called “kink effect”, which is 

particularly important for partially depleted nMOSFET operated in saturation. It is well known 

that, along with the current-voltage kink, there is a strong increase in the low frequency noise 

[81]-[91], whereby the noise spectrum changes typically from 1/f noise to a Lorentzian shape.  
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Figure 12: Linear kink effect (LKE) (a) and LKE related noise contribution to the drain current noise power spectral density (b) 
observed in partially (at VBG = 0 V) depleted SOI n-MOSFETs. After [94]. 

 

In recent years, it has become clear that the use of an ultrathin gate dielectric in SOI 

MOSFETs gives rise to so-called gate-leakage induced floating body effects [93], which is a new 

class of floating body effects, which have a similar influence on device and analog/RF circuit 

operation as the classical impact-ionization related kink effect. It is found in partially depleted, 

fully depleted SOI devices with the back-gate biased into accumulation, and bulk MOSFETs at 

cryogenic temperatures [93]-[96]. Figure 12 shows that both the drain current and drain current 

noise show a strong increase at sufficiently large front-gate voltage. The main difference is that, 

for ultrathin gate oxides, electron valence-band (EVB) tunneling [93], [94], occurring for a 

sufficiently large front gate voltage, supplies the necessary majority carriers to forward bias the 

source-body junction and to induce a kink in the drain current. The main mechanism observed in 

this case can be simply interpreted as in the traditional kink-effect noise overshoot by 

considering the electrical field is vertical and the hole generation mechanism is related to valence 

band electron tunneling. 
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The results discussed in this chapter show that radiation exposure, high field stress, or 

other types of degradation mechanisms can increase MOS 1/f noise. Moreover, SOI devices can 

show responses that differ qualitatively from bulk MOSFETs. We now discuss work we have 

done to investigate the noise of advanced MOS structures – first for bulk devices with high-κ 

gate dielectrics in which large amounts of 1/f noise are associated with high defect levels, and 

then for SOI devices where back-gate noise and the noise of devices operated in double-gate 

mode are investigated. 



28 

CHAPTER IV 

 

EXPERIMENTAL DETAILS  

 

System Setup and Measurement Techniques 

Excess noise measurements were performed on n-channel MOSFET transistors in strong 

inversion in the linear region using the apparatus diagrammed in Figure 13. Both the gate and 

drain were D.C. biased using a HP model 4140B constant voltage source/picoammeter. The 

substrate and the source terminals were grounded during the noise measurements. An 80 kΩ 

resistor was used in series with the transistor channel to limit the current and control the bias 

point. The drain to source voltage noise was amplified by a Stanford Research SR560 low noise 

preamplifier in the 1 Hz to 1 kHz frequency range. The preamplifier gain was set at 1000 since 

dsv  can be as low as 10 nV and the fluctuation of the drain-source voltage is sometimes too 

small to measure directly, so we use a low-noise preamplifier to amplify the noise signal before 

feeding it into the signal analyzer and oscilloscope. The low-pass filtering frequency of the 

preamplifier was set to 0.3 Hz. For a measurement bandwidth of 1 kHz, the high-pass filtering 

frequency of the preamplifier was set to around 10 kHz. The output of the preamplifier was 

connected to an oscilloscope and to a HP 3562A dynamic signal analyzer. The oscilloscope was 

used so that the noise could be observed in real time; the spectral analyzer can convert the time 

domain signal to power spectral density spectrum in the frequency domain, as described in more 

detail in [78], [97].  
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Figure 13: 1/f noise measuring circuit diagram 

 

Aside from the noise contribution from the device under measurements, there are other 

noise sources from the equipment and its surroundings, such as the preamplifier, the voltage 

sources and the interference from the cables and the environment. In order to get an accurate 

measurement of 1/f noise from the MOSFET devices, we need to optimize the measurement 

circuit and suppress other noise sources in the system. We improved our noise measurement 

system in the following ways: 

1. Noise spikes can be introduced by the power supply, and are located at the frequency of 

60 Hz and its multiples. The 60 Hz pickup and its harmonics are hard to eliminate, but 

their effects can be reduced by operating some equipment such as the preamplifer in the 

battery mode. The spikes in the noise curves are ignored (via digital filtering) during the 

data analysis. 

2. Grounding is one of the primary ways of minimizing unwanted noise and pick-up. First 

of all, safety considerations require the chassis of electric equipment to be grounded; 



30 

otherwise, the chassis may charge up due to stray impedances or insulation breakdown. 

Secondly, signal grounds, which may or may not be at Earth potential and are normally 

defined as equipotential points that serve as a reference potential for a circuit or system, 

should be connected together in order to prevent interference and intercoupling (i.e., 

ground loops). Examples of signal grounds in our measurement circuit are the source of 

the MOSFET device and the guards of all the BNC cables. 

 

 

Figure 14: 1/f noise power spectral density for an unirradiated n-channel transistor with dimensions tOX = 48 nm, L = 3.5 µm 
and W = 2.3 µm; the second trace is the background noise. 

 

 Figure 14 shows a plot of a typical 1/f noise spectrum for an unirradiated bulk n-channel 

transistor. The figure shows two separated traces with the drain to source bias at 0 V, which is 

the background noise, and 100 mV. These two traces show raw data. The background noise was 

subtracted from the curves before data analysis to calculate the noise parameters. The large 

“spikes” at 60 Hz and its multiples are caused by the power line fundamental and higher 
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harmonics, and noise data at these frequencies were excluded from noise curve fitting and 

subsequent analysis. All the noise measurements in this work were performed while operating 

the samples in the linear regime in strong inversion; i.e., the channel current varies linearly with 

the drain bias. In this regime, electrical and device properties, such as electrical field, channel 

carrier density, and depletion length, are roughly constant along the channel. Background noise 

measurements were made at each gate bias with zero channel current. The background noise is 

mostly composed of preamplifier noise and thermal noise. All the low frequency noise data in 

the thesis show noise spectra after background noise subtraction if not otherwise pointed out.  

Irradiations were performed using an ARACOR Model 4100 10-keV X-ray irradiator. 

The choices of specific dose rate during irradiation did not significantly affect the results below.  

Bias instability measurements were carried out using an HP 4156B semiconductor 

parameter analyzer for applying the bias stress and measuring the I-V characteristics. The cycle 

of the bias stressing and I-V measurements was automated so that the intervals between the 

stress and I-V measurements could be minimized. Charge detrapping is minimized as a result. 

The contribution of interface traps to the threshold voltage shifts is generally negligible since the 

subthreshold I-V characteristics show very little additional stretchout after stress [98], [99].  

Current-voltage and low frequency noise measurements are automated in order to achieve 

higher efficiency and accuracy. There are a couple of reasons to computerize the measurements. 

First, the HP 3562A dynamic signal analyzer does not support data saving and printing, which 

prevents one from storing and further analyzing the data. Second, computerizing the systems, 

which involves programming instruments, enables remote-controlled measurements and 

automation in data acquisition, analysis, and visualization. Thirdly, during the stressing and 

current-voltage measurements, manual measurements cause long intervals between the stress and 
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subsequent I-V measurements and introduce inaccuracy. An example of the automation scripts is 

shown in the Appendix. 

  

Devices 

We investigated the total dose radiation response and low frequency noise of 

polycrystalline Si gate nMOS transistors with dielectric stacks consisting of an Al2O3 layer 

deposited on an interfacial oxynitride. These transistors were fabricated by IBM on n-type 

Si(100) wafers with a doping concentration of ~ 3×1017 cm-3. The interfacial oxynitride films 

were thermally grown on HF-last Si(100) resulting in ~ 10-15% of N incorporation. The physical 

thickness of the Al2O3 was 20 nm, and the oxynitride layer was ~ 0.7 nm. After deposition, the 

Al2O3 was given a high temperature anneal at 10000C, resulting in κ ~ 11 [100]. The relative 

dielectric constant of the oxynitride used here is ~ 5. The equivalent oxide thickness (EOT) of 

the stacked dielectric of these films is ~ 8 nm. 

We also studied three types of fully-depleted (FD), n-channel SOI devices that were 

processed in the same lot at Sandia National Laboratories, but with different types of buried 

oxide processing for the starting wafers. The cross-section of a typical device is plotted in Figure 

15. The devices have 12 nm thick gate oxides, 110 nm thick Si film, 170 nm thick buried oxides, 

and have length L = 0.6 µm and width W = 2.3 µm. Below we will show irradiation and noise 

results from wafers A, B and C from this lot; wafer A did not receive any Si implantation during 

processing, while wafers B and C received special process treatments (two different types of Si 

implantation at an energy of 130 keV to high fluence levels [101]) to introduce electron traps 

into the buried insulator. The implant conditions used for wafer C were expected to result in 

more electron traps than for wafer B. For this implant energy, the Si implant peaks in the buried 
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oxide and creates electron traps deep within the oxide and near the Si channel/buried oxide 

interface. These transistors were made in a full, standard IC process that includes numerous high 

temperature oxidations and anneals. 

 

 
Figure 15: Cross-section of a n-channel SOI MOSFET illustrating a poly-Si top gate, thin gate oxide, Si body, buried oxide and 
Si substrate as back gate. 

 

 

 

 

 

 

 

 

 

 

 

 



34 

CHAPTER V 

 

LOW FREQUENCY NOISE AND RADIATION EFFECTS IN MOS TRANSISTORS WITH 
Al2O3/SiOxNy/Si(100) GATE DIELECTRICS 

 

High gate (tunneling) leakage current and dielectric reliability issues may not permit the 

use of conventional SiO2 for complementary metal-oxide-semiconductor (CMOS) devices below 

~ 1 nm physical thickness [102]. Among alternative (high-κ) dielectrics under consideration as 

possible replacements for SiO2, alumina (Al2O3) is a strong candidate for a relatively short-term 

solution to this dilemma [103]-[105]. Hence, the performance and reliability of devices having 

Al2O3 gate dielectrics is of extreme interest. Moreover, the radiation response of devices is also a 

concern for electronics that will be used in space electronics systems.  

A key parameter that can affect the performance of analog and radio-frequency MOS 

devices is low-frequency excess noise [106], [107]. Moreover, low frequency noise 

measurements have also been used to characterize near-interfacial oxide (border) traps in 

transistors with thermal SiO2 [10], [108], [109], oxynitrides [110], [111], and some kinds of 

high-κ dielectrics [51]. We now describe the total dose radiation response and low frequency 

noise of polycrystalline Si gate nMOS transistors with dielectric stacks consisting of an Al2O3 

layer deposited on an interfacial oxynitride. 

The transistors were characterized using subthreshold current-voltage (I-V) and low 

frequency noise measurements. The irradiations were performed at a dose rate of ~ 1000 

rad(SiO2)/s using an ARACOR 10-keV x-ray source. The transistors were irradiated 

incrementally to a total dose of 3.03 Mrad(SiO2). The bias on the gate during the irradiation was 

2 V, i.e., a positive static electric field of approximately 1.0 MV/cm, with all other pins 



35 

grounded. After irradiation, the devices were annealed at 200˚C with all pins grounded. All 

irradiations, and all I-V and noise measurements were performed at room temperature. 

 

Figure 16: Pre-irradiation noise power spectral density for an unirradiated 10 µm x 100 µm transistor for Vgs-Vth=1, 1.4, 1.8, 
2.2 and 2.6 V, while Vds is maintained at a constant 100 mV. 

 

The drain voltage-noise power spectral density was measured as a function of Vds and Vgs 

in the linear region of transistor operation. Figure 16 shows a plot of 
dVS  versus frequency for 

varying Vgs with a constant Vds of 100 mV. The noise decreases with increasing Vgs. In Figure 17 

the noise power 
dVS is plotted as a function of Vds

2/(Vgs-Vth)2. The data can be described well by 

Eq. (2.28), as expected for noise due to number fluctuations [10].  
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Figure 17: log-log plot of the noise power spectral density versus Vds
2/(Vgs-Vth)2. 

 

In all cases, the frequency exponent α was 1.0 ± 0.1. The normalized 1/f noise power, K, 

can be found from the slope of a linear fit to the data in Figure 17.  

A semi-empirical expression has been developed to describe the correlation between the 

normalized noise power K and the density of border traps btD , as we rewrite Eq. (2.29) here: 

)/ln( minmax
2

22

ttLW
tkTDqK

ox

oxbt

ε
= . This is only a rough estimate of the effective trap density owing to the 

large number of approximations made in common trapping models of the noise [14], [15], but it 

is useful for comparing the noise of different devices. Here –q is the electronic charge; k is the 
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Boltzmann constant; T is the absolute temperature; oxt  is the oxide thickness; L is the channel 

length; W is the channel width; oxε is the dielectric constant of 2SiO ; and maxt and mint are the 

presumed “cutoff” times for the noise process [1], [2]. This expression was derived assuming 

that (1) defects with similar average, effective capture cross sections tσ are responsible for both 

1/f noise and radiation-induced-hole trapping, (2) the preirradiation noise VS  is proportional to 

the density of oxide traps, which is in turn proportional to totf σ/ , (3) oxide traps near the 

Si/SiO2 interface are distributed approximately uniformly in space and energy, and (4) carrier 

number fluctuations are the dominant cause of the noise.  

Rearranging Eq. (2.29) we have  
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2 ))(ln()( ε

τ
τ

= .      (5.1) 

It is possible to extract the density of border traps Dbt through low frequency noise measurements 

and compare the data from different devices. The device in Figure 17 has a normalized noise 

level K value of 3.4×10-11 V2, corresponding to a border trap density of 2.8×1012 cm-2 eV-1. It is 

interesting to note that the border trap density in the high-κ devices is more than an order of 

magnitude higher than is commonly seen in high quality thermal SiO2, but not surprising as there 

is a lot of efforts now to improve the fabrication and manufacturing of the high-κ devices. 

Figure 18 is a plot of the I-V characteristics of the device in Figure 16 as a function of 

irradiation dose and annealing. The I-V curves shift to the left with increasing dose, indicating a 

monotonic increase of net-positive oxide-trap charge in the gate insulator [98], [99]. Little 

change in I-V stretchout is observed, indicating that there is little increase in interface-trap 

density for these devices and irradiation conditions [49], [98], [99]. The curves shift back to the 

right after annealing, showing a decrease of net-positive oxide-trap charge. The increase in 
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leakage current with irradiation is associated with net positive oxide-trap charge buildup in the 

parasitic field oxide, and is not large enough to affect the noise measurements performed on 

these devices. 

 

Figure 18: Drain current at 5 V drain bias as a function of gate voltage for the device of Figure 16 before and after X-ray 
irradiation up to 3 Mrad (SiO2), and subsequent annealing at an electric field of 1 MV/cm. The enhanced leakage current after 
irradiation is likely due to radiation-induced trapped charge in the field isolation oxide. 
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Figure 19: Top: threshold-voltage shifts as functions of irradiation and annealing time for a 10 µm x 100 µm n-channel MOS 
transistor. Bottom: Noise power spectral density at f = 1 Hz through the same irradiation and annealing sequence. Vgs-Vth=2 V, 
and Vds=100 mV during the noise measurements. The radiation doses and annealing times are those used in Figure 18. 

 

Figure 19 is a summary of the radiation-induced changes in Vth and the low-frequency 

noise during and after irradiation. Values of Vgs were adjusted as a function of irradiation 

conditions to ensure that Vgs-Vth remained constant at 2 V for all noise measurements. In order to 

better compare the trapped charge in Al2O3 films with SiO2, we normalized the results of the 
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radiation response by estimating the effective charge-trapping efficiency of the oxide, fot, which 

is defined as the ratio of the net positive oxide-trap charge to the number of the electron-hole 

pairs (EHPs) created by ionizing radiation [10], [15], [49]: 

Dttfq
V

f
physeqyg

OXmg
ot κ

ε∆
−= .      (5.2) 

Here ∆Vmg is the midgap voltage shift, εOX is the dielectric constant of SiO2, κg is the 

number of electron-hole pairs (EHPs) generated per unit dose, fy is the charge yield, and D is the 

dose. Some assumptions about Al2O3 charge trapping properties are necessary to obtain first-

order estimates of the effective hole trapping efficiency, which is a measure of the inherent 

defect density of the layer that is independent of thickness, bias, etc. For charge yield (fy) we use 

0.45, which is similar to the value for SiO2 at the same electrical field [112], [113]. The κg used 

here is ~ 1.2 x 1013 cm-3rad-1 (SiO2). This value is inferred from the known value of SiO2 [15] 

scaled by the ratio of the band gap of SiO2 to the band gap of Al2O3(~ 6 eV [114]). For a total 

dose of 330 krad(SiO2), and with these assumptions, we estimate an effective trapping efficiency 

of ~ 40% for these devices and irradiation conditions, which is considerably higher than the net 

oxide charge-trapping efficiencies for radiation-hardened SiO2 reported in the literature [74], 

[49], [115]. However, this value is comparable to the trapping efficiency of Hf silicate films 

measured by Felix et al. [49]. 

In SiO2, a large hole trapping efficiency typically correlates strongly with large, 

preirradiation low-frequency noise. The response of these high-κ devices certainly is consistent 

with this trend. This suggests that low-frequency noise measurements may provide a sensitive, 

nondestructive probe of the radiation response of high-κ dielectrics. However, additional work 

on a broad range of materials will be required to establish whether this is true in general, or only 
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for some types of high-κ dielectrics. In any case, decreases in defect densities are required before 

high-κ dielectrics can be used effectively in MOS manufacturing. In the future, noise studies may 

help to identify processing conditions that minimize these defect densities. 
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CHAPTER VI 

 

CHARGE TRAPPING AND LOW FREQUENCY NOISE IN SOI BURIED OXIDES  

 

SOI structures impose an interesting challenge in terms of their low frequency noise. 

Besides the natural noise sources situated at the front Si/SiO2 interface, other sources can also 

play an important role, including back-gate and sidewall insulators. A limited number of studies 

have been reported on the back-channel low frequency noise of SOI MOSFETs [45]-[48]. We 

measured the back-channel noise of devices from three types of wafers and estimated border trap 

density in the buried oxides using the normalized noise power values. 

We also investigate the temperature dependence of the back-gate noise. We find strong 

evidence of thermally-activated charge exchange between the Si channel and defects in the near-

interfacial buried oxide. In this study, the Dutta-Horn noise model does not always describe SOI 

back gate noise as well as it describes gate-oxide noise in many bulk MOS devices. 

Silicon-on-Insulator (SOI) technologies have been developed for radiation-hardened 

applications and offer hardness advantages such as reduced transient radiation response and 

freedom from latch-up [44]. However, the thick buried oxide (BOX) imposes challenges for its 

use in total dose radiation environments due to the potential for radiation-induced charge 

trapping in the BOX [116], [117]. A method that has been proposed to reduce the net positive 

radiation-induced trapped charge in the BOX is ion implantation of SOI buried oxides with 

silicon [101], [118]-[121]. It has been reported that implantation of Al or Si at high dose into the 

buried oxide, and subsequent high temperature annealing, can create electron traps with a very 

large capture cross section which, when filled, compensate the trapped positive charge [118], 
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[119]. For example, Nicklaw et al. demonstrated the formation of Si nanocrystals in a buried 

oxide implanted with Si to a dose of 5 × 1017/cm2 and annealed at 1000°C [121]. In more recent 

work, Mrstik et al. showed the formation of Si clusters at the peak of the implant [120]. It has 

also been found that near-interface shallow electron traps are created by ion implantation, 

leading to large bias instabilities at the interface between the Si and the buried oxide [101]. 

Hence, the properties of buried oxides implanted with Si are of significant interest. 

Comparative studies of low frequency 1/f noise and radiation effects can provide great 

insight into the characteristics and impact of defects in the gate oxide [10]-[14]. In this work, we 

also examine charge trapping effects in buried oxides by performing subthreshold current-

voltage measurements and low frequency noise measurements on the back gates of irradiated and 

bias-stressed SOI devices. We find that SOI buried oxides implanted with Si ions show higher 

noise levels. Devices without Si implantation are found to exhibit greater increases in 1/f noise 

after irradiation than devices with Si implantation. Temperature dependence measurements show 

back-gate bias instabilities are caused by trapping and detrapping of electrons through a field-

induced tunneling process. 

An important aspect related to a fully depleted SOI MOSFET is the coupling effect 

between the front and the back gate, which makes the parameters of the front channel a function 

of the back-gate bias VBG. Low frequency noise is also investigated in the double-gate mode of 

device operation in this work. It is found that operating the SOI devices in double-gate mode can 

help to reduce the low frequency noise. 
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Back Channel Noise 

Back channel noise measurements were performed before and after irradiation. The 

excess drain voltage noise power spectral density (PSD) was measured with the devices operated 

in strong inversion in the linear regime. At this bias condition, the voltage PSD is described well 

by: 

2
)(

2

)( bgthbg

d
V VV

V
f
KS

d −
= α ,     (5.1) 

assuming that the dominant cause of the 1/f noise is fluctuation in the number of channel carriers 

[78], [97]. In all cases, the frequency exponent α was 1.0 ± 0.2. The normalized 1/f noise power, 

K, can be found from the slope of a linear fit to the noise spectrum. This is used as a figure of 

merit to compare noise magnitudes for devices measured under different bias conditions.  

Figure 20 shows typical 1/f noise spectra as a function of back gate bias for an 

unirradiated device from wafer B while the top gate is grounded together with the body and 

source. The figure shows seven separate traces with )( )(bgthbg VV −  varying from 4 V to 22 V at 

intervals of 3 V. The background noise, which is the noise contribution from the measurement 

system and thermal noise of the device, also was measured by keeping the same )( )(bgthbg VV −  and 

grounding all other pins, and subtracted from measurements at non-zero drain bias to calculate 

the excess (1/f) noise, 
dVS . As expected, the noise magnitude decreased with increasing back 

gate bias.  
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Figure 20: 1/f noise spectra, 
dVS , for an unirradiated n-channel SOI transistor from wafer B, with dimensions tOX (gate oxide 

thickenss) = 12 nm, tBOX (buried oxide thickness) = 170 nm, L =0.6 µm, W = 2.3 µm, (a) as a function of back gate bias while the 
drain bias is constant. Values of )(bgthbg VV −  are 4, 7, 10, 13, 16, 19, and 22 V, respectively; (b) as a function of drain bias while 

the back gate bias is constant. Values of dsV are 20, 50, 80, 110, 140, 170, 200, 250 mV, respectively. The spikes are the result of 

60-Hz pickup and are ignored in the fitting and analysis of the data. 

 

The noise magnitude as a function of the drain bias was also tested while the back gate 

bias was kept constant; as expected, the noise increases as 2
dsV . In Figure 21, the noise 

magnitude at Hzf 1= is plotted as a function of 2
)(

2 )/( −− bgthbgds VVV . The linear response (to within 

experimental error) agrees well with one’s expectations from Eq. (5.1), consistent with a simple 

number fluctuation model [12], [78], [122]. It also demonstrates we have strong enough coupling 

to the back channel to permit reliable noise measurements to be performed on these fully 

depleted devices.  
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Figure 21: 1/f noise power spectral density 
dVS  of the device in Figure 20 at Hzf 1= as a function of 22 )/( −

−− thbgbgds VVV . 

The device has dimensions tOX (gate oxide thickenss) = 12 nm, tBOX (buried oxide thickness) = 170 nm, L =0.6 µm, W = 2.3 µm. 
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Figure 22: (a) Back-gate noise spectra of SOI devices from wafers A, B, and C in the linear regimes in strong inversion with 
Vds=100 mV and Vbg-Vth(bg) = 8 V. The front gate was grounded during the back gate noise measurement. (b) Variation of 
normalized drain voltage noise power K versus (Vbg-Vth(bg))2 for devices from wafer A, B, and C. The devices have dimensions tOX 
(gate oxide thickenss) = 12 nm, tBOX (buried oxide thickness) = 170 nm, L =0.6 µm, W = 2.3 µm. 
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Figure 22(a) shows the drain voltage noise PSD comparison for a set of devices from wafers A, 

B, and C as a function of frequency at the same drain bias and effective back-gate bias Vbg – 

Vth(bg) = 8 V. For each noise spectrum, the normalized noise power K was acquired by linearly 

fitting the measured spectrum between 10 and 200 Hz, after correcting for background and zero 

current noise. Figure 22(b) shows the pre-irradiation back-gate normalized noise power for 

devices from wafers A, B, and C at Vds = 100 mV. The device from wafer A has the lowest back-

gate noise magnitude, while the one from wafer C has the largest back-gate noise. This increase 

in back-gate noise likely is associated with O vacancy-related defects, as often found for MOS 

noise [79], [123]-[125]. It is not surprising that Si implantation would increase the density of 

these kinds of defects. 

Front channels and back channel low frequency noise measurements were performed on 

devices from wafer A, B, and C and were used to calculate border trap density using Eq. (5.1). 

The front channel noise levels for devices from three different wafers are comparable to each 

other, indicating that the density of border traps at the front gate oxide is independent of the 

buried oxide processing conditions. From data obtained by other analytical techniques, like 

charge pumping or the subthreshold slope method, one expects the back-interface to be more 

defective, and therefore to be more noisy [128], [129].  However, this is not always observed 

[47], [48]. The border trap density of the front gate oxide and buried oxide for the control device 

from wafer A in this study also shows comparable values, as seen in Table 1.   

Table 1 also shows that the border trap density in the buried oxide of wafer C is ~ 

1.7×1012 cm-2 eV-1, much larger than is commonly seen in gate SiO2, while wafer A buried oxide 

border trap density is estimated at ~1.67×1010 cm-2 eV-1, indicating that silicon implantation 

causes a higher oxygen vacancy density.  
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Table 1: Summary of room-temperature noise data for different devices along with estimated border trap 
density data. Shown are equivalent oxide thickness (EOT), gate length (L) and width (W), normalized noise 
level (K), and estimated border trap density (Dbt). 
 

Device EOT 

(nm) 

L x W 

(µm)2 

K 

(V2) 

Dbt 

(cm-2 eV-1) 

SOI Wafer A 
Back Gate 

170 0.6 x2.3 7×10-8 1.67×1010 

SOI Wafer B 
Back Gate 

170 0.6 x2.3 3×10-7 7.2×1010 

SOI Wafer C 
Back Gate 

170 0.6 x2.3 7×10-6 1.7×1012 

SOI device 
Front Gate 

12 0.6 x2.3 4×10-10 1.9×1010 

 

 

Low Frequency Noise in Double-gate Mode 

SOI devices can also be operated in double-gate (DG) mode, in which the front and back 

gates of a FD transistor are simultaneously biased to form front and back inversion channels 

[130]-[132]. Figure 23 shows the noise PSD as a function of frequency at different back gate 

biases ranging from –10 V to +20 V. The front inversion channel was formed at Vfg = 4 V and 

Vth (front gate) = 1.1 V. The front-gate bias and the drain bias were kept constant during the 

noise measurements.  The noise level decreases with increasing back-gate bias from –10 V to 

+20 V, suggesting lower 1/f noise in the DG mode of operation. Qualitatively similar trends are 

also seen in UNIBOND SOI devices with thinner silicon films, as shown in Figure 24, as well as 

in short-channel SOI devices with thin silicon films [133]. 
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Figure 23: Log-log plots of the low frequency noise PSD of a wafer C device as a function of back-gate bias (Vbg= −10, 0, 5, 10, 
15, 20 V respectively), while the front-gate bias and drain biases were kept constant (Vfg= 4 V and Vds= 100 mV). The device has 
dimensions tOX (gate oxide thickenss) = 12 nm, tBOX (buried oxide thickness) = 170 nm, L =0.6 µm, W = 2.3 µm. 
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Figure 24: Log-log plots of the low frequency noise PSD of a UNIBOND device as a function of back-gate bias (Vbg= −10, 0, 10, 
20, 30, 40 V respectively), while the front-gate bias and drain biases were kept constant (Vfg= 1 V and Vds= 100 mV). The device 
has dimensions tOX (gate oxide thickenss) = 4.5 nm, tBOX (buried oxide thickness) = 400 nm, L =0.8 µm, W = 40 µm. 

 

It is worth noting that the transistors in this study have relatively thick silicon films and 

two well-defined channels form when the positive bias on each gate is sufficiently large [135]. 

As the back-gate bias changes from –10 V to 20 V, the front-gate threshold voltage is reduced, as 

expected [136]. The increase of (Vfg – Vth(fg)) causes the noise to decrease, consistent with the 

results on bulk MOSFETs [12].  In the DG mode of operation of SOI devices with ultrathin Si 

films (a few nanometers), the minority carriers flow in the middle of the film and experience less 

surface scattering. Hence the mobility, transconductance, and drive current are considerably 

improved [130]-[132]. Because noise is caused by the interaction between the channel carriers 

and near-interface oxide traps, it might be expected that the 1/f noise should also be improved in 
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ultrathin SOI devices. In any event, the 1/f noise in double-gate SOI MOSFETs is improved 

compared with their single-gate counterparts, regardless of the Si film thickness. This may help 

mitigate the increased noise associated with electron traps in the BOX in advanced FD SOI 

technologies. 

 

Radiation Effects 

As is the case with gate and field oxides, the radiation response of buried oxides has been 

found to be highly dependent on the fabrication process [138], [139]. Two common methods for 

fabrication SOI substrates are separation by implanted oxygen (SIMOX) and wafer bonding. 

Both wafer technologies requires high temperature anneals. It is well known that high 

temperature anneals cause oxygen to out-diffuse from the buried oxide, leaving behind numerous 

oxide defects [115], [134]. These defects can lead to enhanced radiation-induced charge 

trapping. On the other hand, one technique has been proposed to reduce the amount of net 

radiation-induced positive trapped charge in the buried oxides by implanting the BOX with 

silicon [118]-[120]. Devices from three different wafers were irradiated to 1 Mrad(SiO2) at a 

dose rate of 32 krad(SiO2)/min. Figure 25 shows the I-V characteristics for back-gate transistors 

from wafer A, B, and C irradiated to 1 Mrad(SiO2).  During the back gate I-V measurements, the 

front gate was grounded. The transistors were irradiated with X-rays with all the pins grounded. 

As shown in Figure 25, positive charge buildup in the buried oxides causes large negative shifts 

in the back-gate transistor I-V curves. As the radiation dose increases, the trapped charge in the 

buried oxides becomes large enough to cause an increase in the leakage current at zero back-gate 

bias. This leakage current can prevent the top-gate from being completely turned off. If it is large 

enough, it can cause parametric (and potentially functional) failure in integrated circuits. The 
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leakage currents at zero back-gate bias of the three devices from wafers A, B, and C after 1 Mrad 

(SiO2) irradiation are ~20 µA, ~0.2 µA and ~0.1 nA, respectively. It is clear that silicon 

implantation is very effective to reduce the leakage current caused by the radiation-induced 

positive charge buildup in the buried oxides. Also for both SIMOX and UNIBOND substrates, 

very little interface trap buildup has been observed for standard bias conditions and radiation 

levels. As can also been seen in the I-V curves in Figure 25, there is only very small stretchout 

due to interface traps in these devices from three wafers. 

Figure 26 shows back gate threshold voltage shifts as a function of irradiation dose for 

SOI devices with and without Si implantation. The back-gate threshold voltage shifts of the three 

devices from wafers A, B, and C after 1 Mrad (SiO2) irradiation are –8.5 V, –7.2 V, and –6.9 V, 

respectively. Devices from wafers B and C have relatively smaller shifts in the back gate 

threshold voltage, confirming the expected reduction in net positive oxide-trap charge in the 

BOX.   
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Figure 25: I-V characteristics for back-gate transistors from wafer A, B, and C irradiated to 1 Mrad(SiO2). The top gates were 
grounded during the back-gate I-V measurements. The transistors were irradiated with all the pins grounded. The intermediate 
irradiation doses are 50 krad, 100 krad, 200 krad, 500 krad, and 1 Mrad(SiO2). Wafer A received no Si implant in the buried 
oxide; Wafers B and C were implanted with Si to different doses at an energy of 130 keV. 
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Figure 26: Back-gate threshold voltage shifts measured for transistors fabricated using wafers A, B, C. The transistors were 
irradiated with all pins grounded. Wafer A received no Si implant in the buried oxide; Wafers B and C were implanted with Si to 
different doses at an energy of 130 keV. 

 

A plot of the noise power spectral density of a wafer C device at room temperature as a 

function of total dose is presented in Figure 27.  Here the drain bias was held at 100 mV and 

)( )(bgthbg VV −  at 4 V. As expected from previous work on the gate oxides of bulk MOS devices 

[10]-[11], [13], 
dVS increases with increasing total dose, and power-law frequency dependences 

are consistently observed for these devices. Compared to the results on the gate oxide of bulk 

MOS devices under positive gate bias [10]-[11], [13], the noise power does not increase as much 

with irradiation in this case. This likely is due to the fairly high defect density in these devices 
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due to the Si implantation before irradiation [101], making them less sensitive to changes with 

radiation-induced charge. 

 

 

Figure 27: 1/f noise power 
dVS  for a wafer C device as a function of total irradiation dose. 

 

Figure 28 also shows the effects of radiation exposure on the back-gate 1/f noise of the 

SOI transistors from three wafers. The wafer A transistors have the lowest noise before 

irradiation, but their noise increases the most after irradiation. Wafer C transistors have the 

highest pre-irradiation noise, but their noise level shows little change after irradiation [97]. 

Hence, the differences in noise levels among the devices with and without Si implantation of the 

BOX become less significant after irradiation. Again, this is probably due to the high defect 
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density caused by Si implantation, which makes the noise less sensitive to the radiation-induced 

trapped charge. 

 

 
Figure 28: Normalized drain voltage noise power K for the back-gate channels of the SOI transistors from wafers A, B, and C 
before and after 1 Mrad(SiO2) irradiation. 

 

Test of Dutta-Horn Model 

Back gate threshold voltages were measured as a function of temperature before noise 

measurement. We measured the drain current in the linear region as a function of applied back 

gate voltage with VVds 1.0= , and extrapolated or interpolated the threshold voltages from the I-V 

curve at each temperature before and after irradiation to ensure that )( bgthbg VV −  was held constant 
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during all noise versus temperature measurements to facilitate noise comparisons. The threshold 

voltage decreased with increasing temperature by ~ 4.4 mV/K over this temperature range, which 

is a somewhat stronger temperature dependence than that observed for bulk MOS devices [78]. 

Voltage noise power spectral densities were measured at intervals of 5 K between 85 K 

and 320 K with the drain biased at mVVd 100= . At each temperature, the noise was measured 

with gate bias VVV thbgbg 4)( =− − . Figure 29 shows typical noise versus frequency curves at 

different temperatures. At all temperatures at which we checked, 
dVS could be described well by 

Eq. (5.1). 

 

Figure 29: Log-log plots of the excess drain-voltage noise power spectral density 
VS , after correction for thermal and 

background noise, at T=85 K and T= 205 K after 2.08 Mrad(SiO2) irradiation. 

 

For data like those in Figure 29, we fit each excess noise curve in the frequency range 5 

Hz to 500 Hz to determine the frequency exponent α at each temperature for use in later 
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analysis. In Figure 29, at 85 K after 2.08 Mrad(SiO2) irradiation, HzVHzSV /1082.5)1( 29−×=  and 

α  = 1.55. The value of HzVHzSV /1031.9)1( 210−×= and α  = 1.19 at 205 K. This illustrates the 

range of variation in noise magnitude and frequency dependence observed as functions of 

temperature for these back-channel SOI devices. The spectral slope at low temperature is higher 

than typically observed for top-gate noise in SOI MOSFETs and bulk MOS noise [10]-[15], [78], 

as we will discuss further below. However, the results were consistent and repeatable for these 

devices, as we now demonstrate. 

 

Figure 30: The noise magnitude at 1 Hz versus temperature for a wafer C device after 10-keV X-ray irradiation to 2.08 Mrad 
(SiO2). 
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Figure 31: Frequency dependence of the noise versus temperature for the device of Figure 30 after 10 keV X-ray irradiation to 
2.8 Mrad(SiO2). 

 

In Figure 30, the voltage-noise power-spectral density at Hzf 1=  (the choice of specific 

frequency is not critical to the results) is plotted as a function of measurement temperature. The 

second trace is a repeated measurement for the same device and measuring conditions. As can be 

seen, the device response is unchanged by temperature cycling, to within experimental 

uncertainty. Also, there was no obvious annealing during noise measurement up to 320 K ( 

47ºC); but at higher temperatures, annealing of radiation damage would of course be expected 

[11], [13], [137]. Figure 31 shows the frequency dependence of the noise as a function of 

temperature for the same device as Figure 30. The frequency exponent α is in the range of 1.1-

1.64, with the higher values occurring at the lowest temperatures. 
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Figure 30 and Figure 31 clearly demonstrate a strong and qualitatively correlated 

temperature dependence of the noise. To determine whether the noise of the devices can be 

described quantitatively by the Dutta-Horn model, we applied Eq. (3.1) to try to predict )(Tα  

from the noise magnitude data, and compared the predictions with the measured noise. The 

results of the comparison are shown in Figure 32 for low frequency noise of the wafer C device 

after 2.08 Mrad(SiO2) irradiation. A value of sx 15
0 108.1 −≅τ was used in this comparison, which 

corresponds to a typical inverse-phonon frequency in the near-interfacial SiO2 [79], [140], [141]. 

The particular value assumed for the attempt to escape time did not strongly affect the analysis, 

because it appears in a logarithm in Eq. (3.1). It is found that a significant offset exists between 

measured and calculated )(Tα , as shown in Figure 32, and consistent with prior work on carbon 

resistors [142]. The largest difference between the prediction and experiment is observed at low 

temperature. The peak at ~ 125 K for the measured noise is similar in shape to the peak in 

predicted noise at a comparable temperature. However, such an offset is not observed for bulk Si 

MOS devices [78], nor as we now show, is it always observed for SOI back gate noise. 
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Figure 32: α as a function of T for a wafer C device after irradiation. [solid symbols for measured data, open symbols calculated 
from data shown in Figure 30 through Eq. (3.1)]. 

 

For an SOI nMOS device with the same feature size from wafer B, we performed noise 

measurements as a function of temperature before and after 1.04 Mrad(SiO2) unbiased 

irradiation. Figure 33 and Figure 34 show the temperature dependence of the noise magnitude 

and frequency exponent of these devices, having differently processed buried oxides. A strong 

temperature dependence of the noise is observed, with the noise magnitude showing a 

comparable level before and after irradiation. The prediction of the Dutta-Horn model is 

compared with the measured )(Tα  for the post-irradiation condition in Figure 35. The overall 

shape and magnitude of )(Tα  are generally reproduced very well by the Dutta-Horn model, 

consistent with what we have recently reported for bulk MOS devices both before and after 

irradiation [78]. These results show that sometimes one gets good quantitative agreement with 
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the Dutta-Horn model for SOI back-gate noise, and sometimes one does not, depending on 

specific device processing and experimental conditions. Both of these types of response have 

been observed for more than one device, and are repeatable for individual devices.  

 

Figure 33: The noise magnitude at 1 Hz versus temperature for wafer B SOI nMOS devices before and after 10-keV X-ray 
irradiation to 1.04 Mrad (SiO2). VVV thbgbg 4)( =− −

and mVVds 100= . 
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Figure 34: The frequency exponent α   versus temperature for wafer B devices before and after 10-keV X-ray irradiation to 1.04 
Mrad (SiO2). VVV thbgbg 4)( =− − and mVVds 100= . 
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Figure 35: α  as a function of T for the wafer B SOI nMOS device after irradiation [solid symbols for measured data, open 
symbols calculated from data shown in Figure 33 through Eq. (3.1)]. 

 

The differences in the responses of devices from wafers B and C are quite interesting and 

may indicate a mixture of noise sources in the wafer C devices that do not follow simple Dutta-

Horn defect kinetics. At present we do not know the reason for these differences. One noise 

mechanism that leads to a frequency exponent α  ~ 1.5 in some types of device geometries that 

could be consistent with the results we see is diffusion of a hydrogen-related species. For 

example, Scofield et al. have observed this type of noise in Nb films [143], [144] and 

Zimmerman et al. have studied it in detail in Pd and Pd0.8Si0.2 films [145], [146]. Material types 

and sample geometries differ in those studies from ours. However, it is interesting to note that 
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mobile protons are often observed in SOI buried oxides [147], [148], and the mobility of these 

protons can be affected by applied bias and radiation exposure [149], [150]. Indeed, some 

protons are sufficiently mobile that it has been suggested for different kinds of device structures 

that they might be suitable for use as nonvolatile memory devices [43], [44]. So it is possible that 

the wafer C devices include a much stronger diffusion noise component than the wafer B 

devices. However, this is presently speculation, and more work is required to determine whether 

this or another mechanism is responsible for the observed differences in results. 

 

Stress Instabilities 

For fully-depleted transistors the top and back gates are electrically coupled together and 

charge in the BOX will directly affect the top-gate transistor threshold voltage. Also, by varying 

the bias on either the top-gate transistor or the bottom of the wafer, electrons can tunnel in and 

out of the metastable electron traps changing the amount of trapped charge in the BOX pre-

irradiation. Figure 36 is a plot of pre-irradiation back-gate transistor I-V curves for process C 

taken with a) a +40 to –40 V back-gate transistor sweep, b) after applying a +50 V bias to the 

back-gate transistor for 5 minutes and sweeping the back-gate transistor from +40 to –40 V, and 

c) after applying a -50 V bias for 5 minutes to the back-gate transistor and sweeping the back-

gate transistor from -40 to +40 V. The direction of the shift is inconsistent with hole, proton, 

mobile ion, or electron transport through the buried oxide. It is consistent with electron tunneling 

from the silicon into metastable electron traps in the buried oxide. With a positive bias applied to 

the substrate (red curve), electrons in the channel region can tunnel into the electron traps 

making the oxide more negatively charged. This will increase the back-gate transistor threshold 

voltage. Conversely, with a negative bias applied to the substrate (green curve), holes in the 
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channel region can tunnel into the neutral traps making the oxide more positively charged. This 

will decrease the back-gate transistor threshold voltage (towards depletion). Thus, the creation of 

the electron traps by the hardening implant has produced a large bias-induced hysteresis in the 

I-V curves. 

Figure 37 shows threshold voltage shifts as a function of back-gate bias and stressing 

time for transistors from wafers A, B, and C. Here the devices were stressed with Vbg = 50 V for 

2000 s, then at Vbg = −50 V for 4900 s, and another stress cycle with different stress time [117], 

[118]. I-V curves were collected during stressing interruptions to extract threshold voltages. The 

back-gate was swept from +35 V to −35 V to collect the I-V curves after positive bias stressing, 

and from −35 V to 35 V after negative bias stressing. The effects of bias stressing are very 

different for these transistors. Wafer A device back-gate threshold voltages do not show any 

noticeable change. Wafer C device back-gate threshold voltages change as much as ± 10 V at 

these bias conditions.  
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Figure 36: Back-gate transistor I-V curves on a hardened, standard-geometry transistor fabricated using process B with a) a 
+40 to –40 V back-gate sweep, b) after applying a +50 V bias to the back gate for 5 min and sweeping the back gate from +40 to 
–40 V, and c) after applying a –50 V bias for 5 min to the back gate and sweeping the back gate from –40 to +40 V. 

 

Figure 37: Back-gate threshold voltage shifts of devices from wafers A, B, and C as a function of time and bias, at room 
temperature. 
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The threshold voltage shifts in Figure 37 are consistent with electron trapping and 

detrapping from shallow traps. Under positive back-gate stress bias, electrons in the back 

channel move into the buried oxide and are captured by the electron traps, making the BOX 

more negatively charged, hence a higher back-gate threshold voltage is observed. Under negative 

bias, electrons are detrapped and the BOX is more positively charged. This behavior is consistent 

with the type of charge compensation that is often exhibited by electron traps associated with 

trapped holes in SiO2 [10], [69]-[71], [75], [125]. 

 

 

Figure 38: Normalized drain voltage noise power K for back-gate SOI transistors from wafer C before stressing, after –50 V 
stress for 2000 s, and after +50 V stress on the back gate for 2000 s. All stresses and noise measurements are performed at room 
temperature. 

 

Figure 38 shows the comparison of normalized back-gate noise levels in a wafer C device 

before stress, after +50 V stressing on the back-gate for 2000 s, and after –50 V stressing for  
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Figure 39: (a) Back-gate threshold voltage shifts of a wafer C device as a function of stress time with different stress bias at ± 30 
V, ± 40 V and ± 50 V; (b) back-gate threshold voltage shifts as a function of stress voltage after 2000 s stressing at each voltage. 
The starting threshold voltage is kept the same. 

 

another 2000 s. The noise levels show little change after stressing, although the threshold voltage 

shifts can be as large as ± 8 V. This shows that changes in the charge states (filled or empty) of 
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the defects responsible for the back-gate threshold-voltage instabilities do not strongly affect the 

carrier interactions with the shallow defects very near the interface that lead to the noise. Hence, 

the defects causing the bias instabilities apparently are deeper in energy and/or further from the 

interface than the particular defects that cause the noise. However, their microstructures may be 

similar [79], [125]. 

Bias instabilities of a wafer C device were also tested as a function of stress magnitude. 

Figure 39(a) shows the threshold voltage shifts as a function of both back-gate bias and stress 

time for a wafer C device; Figure 39(b) shows the threshold voltage shifts as a function of the 

back-gate bias after 2000 s stressing at each voltage. The bias-induced threshold voltage shift is 

less than 2 V after 2000 s stressing at +35 V, while biasing at +60 V for 2000 s introduces a 

threshold voltage shift of more than 12 V. 

In Figure 40, the same stress cycling is repeated three times at ± 50 V before irradiation 

to 1 Mrad(SiO2) at 0 V. The threshold voltage shifts are strikingly repeatable, indicating the 

reversibility of the charge trapping/detrapping under stressing at different polarity. After 

irradiation, positive charge is trapped in the BOX, shifting the threshold voltage curve in Figure 

40 negatively. However, the radiation-induced trapped holes are stable under the electrical field 

during bias stressing. This likely is because the radiation-induced trapped holes are distributed 

through the buried oxide during the 0 V irradiation [44]-[120], so they do not interact strongly 

with the shallow electron traps near the interface that cause the bias instabilities. Hence, the bias 

instabilities observed here would continue to be observed after the device is irradiated. 
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Figure 40: Back-gate threshold voltage shifts of a wafer C device with the stress voltage at ±50 V. The cycling was repeated 
three times and once more after 1 Mrad (SiO2) irradiation at 0 V bias. The starting threshold voltage is kept the same. 

 

Figure 41 shows the effect of stress cycling on wafer C device back-gate threshold 

voltage shifts at different temperatures as a function of applied voltage stress. The shifts are 

essentially independent of temperature, suggesting that the charge exchange between the Si 

channel and the shallow electron traps responsible for the voltage instabilities occurs primarily 

due to tunneling [124], [125]. 
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Figure 41: Effect of temperature on the back-gate threshold voltage shifts of wafer C transistor under bias stressing. 
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CHAPTER VII 

 

CONCLUSION 

 

In summary, we have measured the low-frequency noise and radiation response of MOS 

transistors with Al2O3/SiOxNy/Si(100) gate dielectrics. We find that both the radiation-induced 

threshold-voltage shifts and the low-frequency noise are significantly larger than are typically 

observed for high-quality thermal SiO2 thin films of comparable thicknesses. The low-frequency 

noise of these high-κ devices can be described well with a number fluctuation model. 

Low frequency noise measurements were performed on the fully depleted SOI MOSFET 

buried oxides, and used to estimate the density of border traps in the buried oxides. It was shown 

that silicon implantation in the buried oxide increases the back-channel low frequency noise. Our 

measurements show that noise is improved in the double-gate mode of operation, which may 

benefit the performance of FD SOI devices in a radiation environment. 

We have shown that the back-gate 1/f noise of SOI MOS transistors is strongly 

temperature-activated, consistent with previous work on bulk MOSFETs. Noise measurements 

are consistent and repeatable for each type of device. The Dutta-Horn model describes the noise 

well for some devices we have measured, but not for all devices under all experimental 

conditions. Future work exploring the reasons for these differences should provide significant 

insight into the defects that cause back-gate 1/f noise in MOS devices. 

 Si ion implantation of the BOX of SOI transistors decreases the net oxide trap charge 

created during irradiation in the buried oxide. The noise in these wafers changes little compared 

to the control wafer without Si ion implantation after irradiation. Differences in the noise levels 
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of the implanted and unimplanted devices are reduced during irradiation exposure. Si 

implantation also creates shallow electron traps near the Si/SiO2 interface that can exchange 

charge with the back channel easily. The charge exchange responsible for bias instabilities in the 

implanted BOX is shown to be primarily due to tunneling.  
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APPENDIX 

 

A. Thermal Noise Measurement 

 

Thermal noise comes from the random thermal movements of the carriers in solids. It 

exists universally in all kinds of electronic devices. The magnitude of thermal noise is only 

dependent on the resistance and temperature, even without current or voltage applied. Nyquist’s 

theorem for the thermal noise of a resistance R at a temperature T leads to the following 

expression for the thermal noise power spectral density: 

SV = 4KTR .      (A.1) 

For a 1 MΩ resistor at room temperature, the power spectral density equals 1.66 ×10−14 (V 2 /Hz).  

 

Figure 42: 1 MΩ resistor's thermal noise from 0.3 Hz to 1 kHz 
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We have used this as a self-test and calibration of our noise measurement systems. We measured 

the thermal noise of the resistor in the frequency range of 1 Hz to 1000 Hz. The spectrum is 

shown in Figure 42. The thermal noise has the same level as what Eq. (A.1) expects. The big 

increase at low frequency is due to amplifier noise, which is ignored in the analysis. 
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B. Control Source Code Examples 

 

BASH is the shell, or command language interpreter that will appear in the GNU 

operating systems like Linux. It is also a fairly powerful programming language. A shell 

program, called a script, is an easy-to-use tool for building applications by “gluing” together 

systems calls, tools, utilities, and complied binaries. We use BASH shell to write scripts to 

control the measurement flow. Below is the example code written in BASH for the entire noise 

measurement flow. 

#!/bin/sh 
dir=/home/noise/measurement/SOI/W1-61/noise  # Directory to store data 
device=W3-85-T1N4      # Device under test 
vth=7.68       # Threshold voltage value 
for Vdrain in 0.1 
do 
echo "Device: $device" >>$dir/current 
echo "Vth=$vth, Vgs-Vth=2V, R=80.3Kohm,designed drain voltage=$Vdrain " >>$dir/current 
./voltb `echo "$vth+2" | bc`     # Apply bias on the back gate 
./volta 1       # Apply bias on the drain  
sleep 3 
VDS=`./multimeter1`    # Obtain the drain DC bias from the multimeter 
VA=`./voltage-convert 1 $VDS $Vdrain` # Calculate proper bias for  the designed bias point 
./volta $VA     #  Apply proper bias  
sleep 3 
A=`./multimeter1` 
echo "Va=$VA, Vdrain= $A" >>$dir/current # Record the bias values 
echo "      " >>$dir/current 
 
echo "Finishing applying bias, beginning counting 150:"  
#measure the noise 
 
#echo "Press return when the overloading light is off" 
#read a 
 
sleep 10 
./3562init 150 1000     # Signal analyzer start measuring 
./read >log     # Measurement done, save the data to computer 
cat log >$dir/$device-TG-$Vdrain-fg.dat 
echo "Finishing Fg noise measurement." 
#measure the background 
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./volta 0     # Keep the bias on the gate but ground the drain 
sleep 10 
./3562init 80 1000     # Do the background measurement. 
./read >log     # Save the background noise data 
cat log >$dir/$device-TG-$Vdrain-bg.dat  
echo "Finish the Bg noise measurement." 
#Lines below are used to do the data analysis and plot the noise curve using gnuplot  
cat $dir/$device-TG-$Vdrain-fg.dat | tail -802 >tmp/tmpdata-fg 
cat $dir/$device-TG-$Vdrain-bg.dat | tail -802 >tmp/tmpdata-bg 
./convert.pl >$dir/$device-TG-$Vdrain 
done 
cat >tmp/cmd << EOF 
set data style linespoints 
set logscale 
plot '$dir/$device-TG-$Vdrain' using 1:2 
EOF 
gnuplot -persist tmp/cmd 
rm tmp/tmpdata-fg 
rm tmp/tmpdata-bg 
rm tmp/cmd 
 

 

GPIB instruments are the most popular, worldwide standard for test and measurement 

systems. The National Instruments GPIB-ENET/100 Ethernet-to-GPIB controller and NI-488.2 

take advantage of the network connectivity in instrument control applications. Using the GPIB-

ENET/100 box, networked computers can communicate with and control IEEE 488.2 enabled 

equipment from anywhere on an Ethernet-based TCP/IP network. Codes were written in C 

language to send commands to each equipment item through GPIB-ENET controller. Most 

equipment in the system is connected to the GPIB controller, including HP 3562A dynamic 

signal analyzer, HP 4140 voltage source, HP 3478A digital multimeter, and the temperature 

controller. It turns out the codes share a lot of similarities, so only the commands specific to each 

instrument need be modified to suit our demands. The following script written in C is used to 

control the HP 3562A dynamic signal analyzer and is used as an example here to show how to 

send commands over GPIB bus. 
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#include"ugpib.h"     # User GPIB include file 
#include<stdio.h> 
#include<stdlib.h> 
#include<string.h> 
#include<unistd.h> 
#define PAD 22  # Define the GPIB primary address of the equipment under control 
#define SAD 0   # Define the GPIB secondary address of the equipment  
void wait(int ud) 
{ 
    int stat; 
    int status; 
 
    stat=0; 
    while((char)stat!='1') 
    { 
        send(ud,"smsd\n"); 
 ibrd(ud,&stat,3); 
 sleep(1); 
    } 
         
} 
 
int send(int ud,char *command) # Subroutine, used to send command or instruction 

# to the equipment 
{ 
    ibwrt(ud,command,strlen(command)); 
} 
 
int main(int argc, int *argv) 
{ 
    int id,rd,handle,ud; 
    short lnf; 
    char readbuf[100000],rsp; 
    char trace[100];     
    char avgstr[100],frsstr[100]; 
    int i,avg; 
    handle=ibfind("gpib0");   # Find the GPIB controller 
    ibpad(handle,0); 
    ibrsc(handle,1); 
    ibsic(handle); 
    ibsre(handle,1);    
    ud=ibdev(0, PAD, SAD, 13, 1, 0);       # Find the equipment with the specified primary address 
    send(ud,"RST\n");        # Reset the dynamic signal analyzer  
    strcpy(avgstr,"navg "); 
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    strcat(avgstr,argv[1]); 
    strcat(avgstr,"\n"); 
     
    strcpy(frsstr,"frs "); 
    strcat(frsstr,argv[2]); 
    strcat(frsstr," Hz\n"); 
     
//    printf("beginning measurement...\n"); 
    send(ud,"rst;lnrs\n");   # Set the analyzer in linear mode 
    send(ud,"clen 1000pts\n");   # Clear the buffer 
    send(ud,"pspc\n"); 
    send(ud,"ch1\n");    # Select Channel 1 
    send(ud,frsstr);    # Set the frequency range   
    send(ud,avgstr);    # Set the average number 
    send(ud,"stbl\n"); 
    send(ud,"yasc\n"); 
    send(ud,"ism 4\n"); 
    send(ud,"strt\n");    # Start the measurement 
    wait(ud); 
} 
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