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Many sensor network applications require sensors’ locations to function correctly. Despite the
recent advances, location discovery for sensor networks in hostile environments has been mostly
overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile
environments. The security of location discovery can certainly be enhanced by authentication.
However, the possible node compromises and the fact that location determination uses certain
physical features (e.g., received signal strength) of radio signals make authentication not as effec-
tive as in traditional security applications. This paper presents two methods to tolerate malicious
attacks against range-based location discovery in sensor networks. The first method filters out
malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while
the second method tolerates malicious beacon signals by adopting an iteratively refined voting
scheme. Both methods can survive malicious attacks even if the attacks bypass authentication,
provided that the benign beacon signals constitute the majority of the beacon signals. This paper
also presents the implementation and experimental evaluation (through both field experiments
and simulation) of all the secure and resilient location estimation schemes that can be used on
the current generation of sensor platforms (e.g., MICA series of motes), including the techniques
proposed in this paper, in a network of MICAz motes. The experimental results demonstrate the
effectiveness of the proposed methods, and also give the secure and resilient location estimation
scheme most suitalbe for the current generation of sensor networks.

Categories and Subject Descriptors: C.Z01fnputer-Communication Networks]: General—Security and pro-
tection C.2.1 [Computer-Communication Networks]: Network Architecture and Design¥ireless communi-
cation

General Terms: Security, Design, Algorithms

Additional Key Words and Phrases: Sensor Networks, Security, Localization

This work is supported by the National Science FoundatiddRNunder grants CNS-0430223 and CNS-0430252.
A. Liu and Wang's work is supported by the US Army Researchd®ffARO) under Wang's staff research grant
W911NF-04-D-0003-0001.

A preliminary version of this paper appeared in mceedings of The Fourth International Symposium on
Information Processing in Sensor Networks (IPSN '05), pa#e— 106, April 2005

Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfpwoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on serversto redistribute to lists requires prior specific
permission and/or a fee.

© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol. , No., 20, Pages 1-36.



2 . Liu, et al.

1. INTRODUCTION

Recent technological advances have made it possible tdogedestributed sensor net-
works consisting of a large number of low-cost, low-powerd anulti-functional sensor
nodes that communicate in short distances through wirdildss [Akyildiz et al. 2002].
Such sensor networks are ideal candidates for a wide ranggptitations such as health
monitoring, data acquisition in hazardous environmenmtd,railitary operations. The de-
sirable features of distributed sensor networks havecittlamany researchers to develop
protocols and algorithms that can fulfill the requiremerfithese applications (e.g., [Perrig
et al. 2001; Hill et al. 2000; Gay et al. 2003; Niculescu andhN2001; Intanagonwiwat
et al. 2000; Newsome and Song 2003; Akyildiz et al. 2002]).

Sensors’ locations play a critical role in many sensor netvapplications. Not only do
applications such as environment monitoring and targeking require sensors’ location
information to fulfill their tasks, but several fundamern&hniques developed for wireless
sensor networks also require sensor nodes’ locations Xaongle, in geographical routing
protocols (e.g., GPSR [Karp and Kung 2000] and GEAR [Yu e2801]), sensor nodes
make routing decisions at least partially based on their amdhtheir neighbors’ locations.
As another example, in some data-centric storage apglitasuch as GHT [Ratnasamy
et al. 2002; Shenker et al. 2002], storage and retrievalrefaredata highly depend on sen-
sors’ locations. Indeed, many sensor network applicatiahsiot work without sensors’
location information.

A number of location discovery protocols (e.g., [Savvideale2001; Savvides et al.
2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Dghetral. 2001; Bulusu et al.
2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He e0&I3P have been proposed
for wireless sensor networks in recent years. These prist@t@re a common feature:
They all use some special nodes, caledcon(or anchoi) nodes which are assumed to
know their own locations (e.g., through GPS receivers oruahnonfiguration). These
protocols work in two stages. In the first stage, non-beaamtes receive radio signals
called beacon signalsrom the beacon nodes. The packet carried by a beacon signal,
which we call abeacon packetusually includes the location of the beacon node. The
non-beacon nodes then estimate certain measurementgi(stance between the beacon
and the non-beacon nodes) based on features of the beacafsgg.g., received signal
strength indicator (RSSI), time difference of arrival (T&)). We refer to such a measure-
ment and the location of the corresponding beacon nodectiolity as alocation refer-
ence In the second stage, a sensor node determines its owndoaaltien it has enough
number of location references from different beacon nofypical approach is to con-
sider the location references as constraints that a sepse‘silocation must satisfy, and
estimate it by finding a mathematical solution that satigfiese constraints with minimum
estimation error. Existing approaches either empémge-basednethods [Savvides et al.
2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasjmal Li 2002; Doherty
et al. 2001], which use the exact measurements obtainedge sine, orange-freeones
[Bulusu et al. 2000; Niculescu and Nath 2003b; Nagpal etG032He et al. 2003; Lazos
and Poovendran 2004], which only need the existences obbesgnals in stage one.

Despite the recent advances, location discovery for wiseensor networks imostile
environmentswhere there may be malicious attacks, has been mostlycmkertl. Many
existing location discovery protocols become vulnerabléhe presence of malicious at-
tacks. As illustrated in Figure 1, an attacker may providminect location reference by

ACM Journal Name, Vol. , No., 20.



Attack-Resistant Location Estimation in Sensor Networks . 3
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Fig. 1. Attacks against location discovery schemes

pretending to be valid beacon nodes (Figure 1(a)), commiognbeacon nodes (Figure
1(b)), or replaying the beacon packets that he/she intexdép different locations (Figure
1(c)). In either of the above cases, non-beacon nodes vidraéne their locations incor-
rectly. In either of these cases, non-beacon nodes wiltiahirte their locations incorrectly.

Without protection, an attacker may easily mislead the tlooaestimation at sensor
nodes and subvert the normal operation of sensor networke s€curity of location
discovery can certainly be enhanced by authenticationcifigaly, each beacon packet
should be authenticated with a cryptographic key only kntavthe sender and the intended
receivers, and a non-beacon node accepts a beacon signaltani the beacon packet car-
ried by the beacon signal can be authenticated. Howevéieatitation does not guarantee
the security of location discovery, either. An attacker rfage beacon packets with keys
learned through compromised nodes, or replay beacon signaicepted in different loca-
tions. Indeed, an attacker can introduce substantialitotastimation errors by forging or
replaying beacon packets. Thus, it is highly desirable e zaditional methods to protect
location discovery in sensor networks.

Several techniques has been developed recently to deatlveiteecurity problems of
location discovery in wireless sensor networks [Sastr.&2G03; Lazos and Poovendran
2004; Ray et al. 2003; Li et al. 2005; Capkun and Hubaux 20@2pk et al. 2005]. The
location verification technique proposed in [Sastry et 8D3 can be used to verify the
relative distance between a verifying node and a sensor. hbmieever, it does not provide
a solution to conduct secure location estimation at norcdreaodes. A robust location
detection is developed in [Ray et al. 2003] using the idea abnity voting. However, it
cannot be directly applied in resource constrained seretaranks due to its high compu-
tation and storage overheads. Similar to our attack-eegi$fiMSE techniques, a robust
statistical method is independently discovered in [Li et24l05] to achieve robustness
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4 . Liu, et al.

through Least Median of Squares.

SeRLoc [Lazos and Poovendran 2004] protects location dsgavith the help of sec-
tored antennae at beacon nodes. Similar to the voting-tsadeane proposed in this pa-
per, SeRLoc can tolerate malicious attacks by adoptingiibe of majority voting. SPINE
[Capkun and Hubaux 2005] is developed to protect locatisnaliery by using verifiable
multilateration. However, the distance bounding techegequired for verifiable multi-
lateration may not be available in sensor networks due tdliffieulties to (1) deal with
the external attacks in Ultrasound-based distance bogratfid (2) achieve nanosecond
processing and time measurements in Radio-based distanodibng. ROPE [Lazos et al.
2005] is developed by integrating SeRLoc and SPINE. Howatvstill requires nanosec-
ond processing and time measurements that are not dedoalte current generation of
sensor networks.

In this paper, we investigate two types of attack-residtagdtion estimation techniques
to tolerate the malicious attacks against range-basetidoodiscovery in wireless sensor
networks. The first technique, namattack-Resistant Minimum Mean Square Estimation
(ARMMSE) is based on the observation that malicious location rafag introduced by
attacks are intended to mislead a sensor node about itgdocahd thus are usually incon-
sistent with the benign ones. To exploit this observatiam,maethods identify malicious
location references by examining the inconsistency amocation references (indicated
by the mean square error of estimation) and defeats mati@ttacks by removing such
malicious data.

We develop three variations of the ARMMSE method to identifglicious location
referencesthe brute-force ARMMSE algorithrthe greedy ARMMSE algorithandthe
enhanced greedy ARMMSE algorithiithe brute-force algorithm tries every combination
of location references to identify the largest set of cdesislocation references. It in-
troduces high computation overhead at sensor nodes. Thdygadgorithm is developed
to reduce the computation overhead. It works in rounds ambves the most suspicious
location reference in each round. The enhanced greedyithigofurther improves the
performance of the greedy algorithm by adopting a more efitoivay to identify the most
suspicious location reference. We also develop an algorithincrementally perform the
MMSE computation in the enhanced greedy algorithm, whigmificantly reduces the
computation cost. The end result is an efficient and resibdgorithm that can defend
against malicious attacks aimed at location estimation.

Our second technique yating-based location estimationethod, quantizes the deploy-
ment field into a grid of cells and has each location referémote” on the cells in which
the node may reside. Moreover, we develop a method that slit@native refinement of
the “voting” results so that it can be executed in resourestained sensor nodes.

We have implemented the proposed schemes on TinyOS [Hill @080], and evalu-
ated the performance through both field experiments in aor&tef MICAz motes and
simulation. To provide a realistic model in the simulati@m the radio signal used for
distance measurement, we perform an extensive set of exgets with MICAz motes to
profile the channel characteristics. We compare all thelattasistant schemes that can be
implemented on the current sensor platforms (e.g., MICAtesiothrough experimental
evaluation, aiming at identifying the algorithm most shi&afor the current generation of
sensor networks. Our experiments indicate that (1) thestiyated schemes (including
both approaches proposed in this paper) can effectivelpverthe effect of malicious lo-
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cation references when the majority of location refereace®enign, and (2) among all the
algorithms that can be implemented on the current senstopiss, the enhanced greedy
ARMMSE algorithm has the least execution time while prowgla similar resiliency to
the other schemes.

The rest of the paper is organized as follows. Section 2 d&#siassumptions and
the threat model. Sections 3 and 4 present the ARMMSE lata&stimation and the
voting-based location estimation techniques, respdgti@ection 5 provides the security
analysis for the proposed schemes. Section 6 discussesitlaton methodology for our
experimental evaluation and presents the detailed evatustsults. Section 7 discusses
related work, and Section 8 concludes this paper.

2. ASSUMPTIONS AND THREAT MODEL

In this paper, we present two approaches to dealing withaioal attacks against location
discovery in wireless sensor networks. The first approaettisnded from the minimum
mean square estimation (MMSE). It uses the mean squareasr@t indicator to identify
and remove malicious location references. The second omgtsdn iteratively refined
voting scheme to tolerate malicious location referenceeduced by attackers.

Our techniques are purely based on a set of location refesefihe location references
may come from beacon nodes that are either single hop orpteutibps away, or from
those non-beacon nodes that already estimated theirdosatVe do not distinguish these
location references, though the effect of “error propamétimay affect the performance of
our techniques due to the estimation errors at non-beaadesnde consider such inves-
tigations as possible future work. Since our techniquey otilize the location references
from beacon nodes, there is no extra communication oveilihealved when compared to
the previous localization schemes.

We assume all beacon nodes are uniquely identified. In otbetsya non-beacon node
can identify the original sender of each beacon packet barséuke cryptographic key used
to authenticate the packet. This can be easily achievedaniiirwise key establishment
scheme [Eschenauer and Gligor 2002; Chan et al. 2003; Du 20@8] or a broadcast
authentication scheme [Perrig et al. 2001].

We assume each non-beacon node uses at most one locati@meefderived from the
beacon signals sent by each beacon node. As a result, evdéreécan node is compro-
mised, the attacker that has access to the compromised Renbaintroduce at most one
malicious location reference to a given non-beacon noderipeisonating the compro-
mised node.

For simplicity, we assume the distances measured from besignals (e.g., with RSSI
or TDoA [Savvides et al. 2001]) are used for location estiamat (Our techniques can
certainly be modified to accommodate other measuremenisasuangles.) For the sake
of presentation, we denote a location reference obtaired & beacon signal as a triple
(x,y,9), where(z, y) is the location of the beacon declared in the beacon paaket, &
the distance measured from its beacon signal.

We assume an attacker may change any field in a location nefet@rough, for ex-
ample, compromised nodes or wormhole attacks [Hu et al. R0O>ther words, it may
declare a wrong location in its beacon packets, or carefudipipulate the beacon signals
to affect the distance measurement by, for example, maatipglthe signal strength when
RSSI is used for distance measurement. We also assume lmuititicious beacon nodes
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6 . Liu, et al.

may collude together to make the malicious location refegsrappear to be “consistent”.
Our techniques can still defeat such colluding attacks ag &s the majority of location
references are benign.

An attacker may also launch physical attacks to change sgtscation after they finish
location estimation. (Indeed, other factors (e.g., windymlso change sensors’ locations.)
Such threats cannot be directly addressed by attackagsletation estimation. However,
we assume each sensor can perform location estimationdpeaily based on fresh loca-
tion references to mitigate such threats. An attacker msy @m the communication
channel to, for example, prevent the successful transomssid receiving of beacon sig-
nals. This is a common threat to all wireless networks. Harewe assume the attacker
cannot jam the communication channel continuously withaing detected and removed.

3. ATTACK-RESISTANT MINIMUM MEAN SQUARE ESTIMATION

Intuitively, a location reference introduced by a maligaitack is aimed at misleading a
sensor node about its location. Thus, it is usually “diffétérom benign location refer-
ences. When there are redundant location references,ithestehe some “inconsistency”
between the malicious location references and the benigs. ¢An attacker may still have
a location reference consistent with the benign ones aftenging both the location and
the distance values. However, such a location referenta@tijenerate significantly neg-
ative impact on location determination.) To take advantHgkis observation, we propose
to use the “inconsistency” among the location referencedentify the malicious ones,
and discard them before finally estimating the locationgaser nodes.

In this paper, we assume a sensor node uses an MMSE-baseadnjetty., [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2002ajiri and Li 2002; Do-
herty et al. 2001; Niculescu and Nath 2003b]) to estimatewts location. Thus, most
current range-based localization methods can be used higtbheichnique. To harness this
observation, we first estimate the sensor’s location whMIMSE-based method and then
assess if the estimated location could be derived from afsatresistent location refer-
ences. If yes, we accept the estimation result; otherwisedentify and remove the most
“inconsistent” location reference, and repeat the abovegss. This process may continue
until we find a set of consistent location references or ibisgossible to find such a set.

3.1 Checking the Consistency of Location References

We use the mean square ertdrof the distance measurements based on the estimated
location as an indicator of the degree of inconsistencgesail the MMSE-based methods
estimate a sensor node’s location by (approximately) mikiirg this mean square error.
Other indicators are possible but need further investigati

DEFINITION 1. Given a set of location referencés = {(z1,y1, 1), (x2,y2,2), ...,
(Tm,Ym,Om)} @nd a location(z, §) estimated based ofi, themean square error of this
location estimations

2= i (0 — V(@ —2i)? + (§ — 4:)?)?
=1 m .
Intuitively, the more inconsistent a set of location referes is, the greater the corre-
sponding mean square error should be. To gain further utachelieng, we performed an
experiment through simulation with the MMSE-based methofSavvides et al. 2001].
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Fig. 3. Mean square erra?. Unit of measurement fat-axis: meter

We assume the distance measurement error is uniformlytdistd between-e,, ., and
emaz- We used 9 honest beacon nodes and 1 malicious beacon nadyg @eployed in a
30m x 30m field. The node that estimates location is positioned at ¢mter of the field.
The malicious beacon node always declares a false locatatrist meters away from its
real location, where: is a parameter in our experiment.

Figures 2 and 3 show the location estimation error (i.e.dte&ance between a sensor’s
real location and the estimated location) and the mean sagraorc? whenz increases.
As these figures show, if a malicious beacon node increasdsthtion estimation error
by introducing greater errors, it also increases the meaarscerror? at the same time.
This further demonstrates that the mean square efriw potentially a good indicator of
inconsistent location references.

In this paper, we choose a simple, threshold-based methaetéomine if a set of loca-
tion references is consistent. Specifically, a set of locateference€ = {(x1,y1, 1),
(2,92, 02), ..., (Tm,ym,0m)} Obtained at a sensor noderisconsistent w.r.t. an MMSE-
based method the method gives an estimated locati@h ) such that the mean square
error of this location estimation

o= 3o SO P T Guy
=1
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8 . Liu, et al.

3.2 Determining Threshold 7

The determination of threshotddepends on the measurement error model, which can be
established before network deployment by, for exampleduaoting field experiments. We
assume that the threshold is stored on each sensor noddiJgeamovement of sensor
nodes (beacon or non-beacon nodes) does not have signifigaatt on this threshold,
since the measurement error model will not change significanmost cases. Moreover,
since such a model depends on the physical features of rigdials and the environments,

it is also difficult for an attacker to manipulate. Hence, wswane such model is available.
However, when the error model changes frequently and siginifiy, the performance of
our techniques may be affected. In this paper, we assume ¢asurement error model
will not change.

Note that the malicious beacon signals usually increasestiance of estimation. Thus,
having a lower bound (e.g., Cramer-Rao bound) is not enoaghd to filter malicious
beacon signals. In fact, the upper bound or the distributiotmne mean square error are
more desirable. In this paper, we study the distributiorhefmean square errof when
there are no malicious attacks, and use this informatiorlo thetermine the threshotd

Since there is no other error besides the distance measuotremer, a benign location
referencex;, y;, 0) obtained by a sensor node(at y) must satisfy:

60—V (@ —2:)?2+ (y—9:)? <e

wheree is the maximum distance measurement error.

All the localization techniques are aimed at estimatingcafimn as close to the sensor’s
real location as possible. Thus, we may assume the estintation is very close to
the real location when there are no attacks. Next, we denelistribution of the mean
square errot? using the real location as the estimated location, and coaripavith the
distribution obtained through simulation when there aoatmn estimation errors.

The measurement error of a benign location referénggy;, 4;) can be computed as
e; = 0; — \/(x —2;)% + (y — v:)?, where(z, y) is the real location of the sensor node.
Assuming the measurement errors introduced by differenigipeocation references are
independent, we can get the distribution of the mean squaoe through the following
Lemma.

LEMMA 1. Let{ey,...,e,} be a set of independent random variables, ando? be
the mean and the variance @f, respectively. If the estimated location of a sensor node is
its real location, the probability distribution af is

lim F[<2 < gg] =P

m— o0 g

wherey’ =37 i o' = /Y%, 07, and®(x) is the probability of a standard normal
random variable being less than

2
PROOF. Obviously, the mean square error can be computecfby > | . Thus,
the cumulative distribution function can be calculated by

m

F( Zefg

=1
ACM Journal Name, Vol. , No., 20.
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Since{e?,e3,--- , €2 } are independent, according to the central limit theoremhave

/

im PC < 0y~ o),

m— o0 o’ -

whereS,,, = > | €2. Thus, we have

=1 "%"

S —l,/ m§27‘u/
7n/l < 0/ )

= limy, oo P(Z27 < =2

= o(™)
O

Lemma 1 describes the probability distribution@fbased on a sensor’s real location.
Though it is different from the probability distribution ¢f based on a sensor’s estimated
location, it can be used to approximate such distributiom@st cases.

Let us further assume a simple model for measurement ewbese the measurement
error is evenly distributed betweere ande. Then the mean and the variance épiare 0
and%, respectively, and the mean and the variance foreér@reé and%, respectively.
Letc = =, we have

VBm(3c? — 1)
2 )

Figure 4 shows the probability distribution ot derived from Lemma 1 and the sim-
ulated results using sensors’ estimated locations. We eartteat when the number of
location references: is large (e.g.;mm = 9) the theoretical result derived from Lemma 1
is very close to the simulation results. However, whens small (e.g.,n = 4), there
are observable differences between the theoretical segntt the simulation. The reasons
are twofold. First, our theoretical analysis is based onctirgral limit theorem, which is
only an approximation of the distribution whemis a large number. Second, we used the
MMSE-based method proposed in [Savvides et al. 2001] inithelation, which estimates
a node’s location by onlgpproximatelyminimizing the mean square error. (Otherwise,
the value of? for benign location references should never exeéed

Figure 4 gives three hints about the choice of the thresholdrirst, when there are
enough number of benign location references, a threshetdtlean the maximum mea-

F(¢* < (ex€)?) = o
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10 . Liu, et al.

surement error is enough. For example, when= 9, = = 0.8¢ can guarantee the nine
benign location references are considered consistentigthprobability. Besides, a large
threshold may lead to the failure to filter out malicious lima references. Second, when
m is small (e.g. 4), the cumulative probability becomes ftadied flatter where > 0.8.
This means that setting a large thresholtbr smallm may not help much to guarantee
the consistency test for benign location references; agsté may give an attacker high
chance to survive the detection. Third, the threshold cebedoo small; otherwise, a set
of benign location references has high probability to beagheined as a non-consistent
reference set.

Based on the above observations, we propose to choose thefeal- with a hybrid
method. Specifically, when the number of location refersrisdarge (e.g., more than
8), we determine the value af based on Lemma 1. Specifically, we choose a value of
7 corresponding to a high cumulative probability (e.g., 0.8Jhen the number location
references is small, we perform simulation to derive theiaaistribution of the mean
square error, and then determine the value atcordingly. Since there are only a small
number of simulations to run, we believe this approach istpral.

3.3 ldentifying the Largest Consistent Set

Since the MMSE-based methods can deal with measuremerd better if there are more

benign location references, we should keep as many benigido references as possi-
ble when the malicious ones are removed. This implies weldiget the largest set of

consistent location references.

3.3.1 Brute-force Algorithm (BARMMSE)XGiven a set’ of n location references and
a thresholdr, a simple approach to computing the largest set-obnsistent location ref-
erences is to check all subsets(oivith ¢ location references aboutconsistency, wherée
starts fromn and drops until a subset df is found to ber-consistent or it is not possible
to find such a set. Thus, if the largest set of consistentilmtaeferences consists of
elements, a sensor node has to use the MMSE method atlleagt " ) + --- + ()
times to find out the right one. = 10 andm = 5, a node needs to perform the MMSE
method for at least 387 times. It is certainly not desirabldd such expensive operations
on resource constrained sensor nodes.

3.3.2 Greedy Algorithm (GARMMSE)Io reduce the computation on sensor nodes,
we may use a greedy algorithm, which is simple but suboptifibls greedy algorithm
works in rounds. It starts with the set of all location referes in the first round. In
each round, it first verifies if the current set of locatiorerehces is-consistent. If yes,
the algorithm outputs the estimated location and stopsio@gity, it may also output the
set of location references. Otherwise, it considers alstghof location references with
one fewer location reference, and chooses the subset witadkt mean square error as the
input to the next round. This algorithm continues until itéra set of-consistent location
references or when it is not possible to find such a set (hergetare only 3 remaining
location references).

The greedy algorithm significantly reduces the computafiowerhead in sensor nodes.
To continue the earlier example, a sensor node only needsrform MMSE operations
for about 50 times (instead of 387 times) using this algamitin general, a sensor node
needs to use a MMSE-based method for at miest+ (n—1)+---+4 =1+ w
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times.

However, as we mentioned, the greedy algorithm cannot gtegahat it can always
identify the largest consistent set. It is possible thatidgretocation references are re-
moved. In out earlier version of this paper [Liu et al. 20Q%e& note that this generates
a big impact on the accuracy of location estimation — esfigaidnen there are multiple
malicious location references. To deal with this problera,develop an enhanced greedy
algorithm in the following. The new algorithm is based on &itent approach to identi-
fying the most suspicious location reference from a setcdtion references.

3.3.3 Enhanced Greedy Algorithm (EARMMSH). the previous discussion, we only
consider the consistency of 3 or more location referenceduriher investigation also
reveals that two benign location references are usuallgsistent” with each other in the
sense that there exists at least one location in the depluyfietsl on which both location
references agree. Hence, when the majority of locatiorreates are benign, we can
usually find many location references that are consistetht asbenign location reference.
In addition, when a malicious location reference tries ®ate a larger location error, the
number of location references that are consistent with thécious one will decrease
quickly.

According to the above discussion, for each location refege we simply count the
number of location references that are consistent with [tdation reference. We call
this number thelegree of consisten@and use it to rank the suspiciousness of the location
references received at a particular non-beacon node. Thhesithe degree is, the more
likely that the corresponding location reference is malisi.

The consistency between two location references can bBegeds follows. For any
location referencéx, y, 9), the non-beacon node derives the area that it may residd base
on this location reference. This area can be representedihg aentered afx, y), with
the inner radiusnax{d — ¢, 0} and the outer radiu$+ ¢, wheree is the maximum distance
error. For the sake of presentation, we refer to such a ringralidate ring (centered)
at location (z,y). The non-beacon node then check whether the candidateafrig®
location references overlap each other. If yes, they arsismt; otherwise, they are not
consistent.

The algorithm to check whether the candidate rings of twation references =
(TayYa,0q) @NAL = (xp, ys, o) Overlap can be done efficiently in the following way.
Let d,, denote the distance betweén,, y,) and(xy,ys). Let rmax(z) andrmin(z)
denote the outer radius and the inner radius of the candidajeof location reference
x respectively. We can easily figure out that the candidatgsrof location references
and b will not overlap when either of the following three condit®is true: (1)d.,, >
rmaz(a) +rmaz(b), (2) dap + rmaz(a) < rmin(b) and (3)dqp + rmaz(b) < rmin(a).

Similar to the greedy algorithm, the enhanced algorithmdemtify the largest consis-
tent set starts with the set of all location references infiffsé round. In each round, it
verifies whether the current set of location referencesdsnsistent. If yes, the algorithm
outputs the estimated location and stops. Optionally, i aleo output the set of location
references. If not, it removes the location reference epading to the smallest degree
and use the remaining location references as the input togkieround. This algorithm
continues until it finds a set af-consistent location references or when it is not possible
to find such a set (i.e., there are only 3 remaining locatiferemces).

The enhanced algorithm not only improves the accuracy d@tion estimation in the
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presence of malicious attacks, but also reduces the cotimpuiaverhead significantly

since it can identify the most suspicious location refeeceiiciently and effectively. To

continue the earlier example, a non-beacon node only nequstorm MMSE operations

for 5times. In general, a non-beacon node needs to use a MdAS&d method for at most
n — 3 times.

3.4 Incremental Evaluation

ARMMSE uses the basic MMSE method in multiple rounds, witlertapping location
references across rounds. In this section, we develop aneeffiapproach for perform-
ing multi-round MMSE operations in such situations. We dai$ approaclincremental
MMSE It exploits the overlapping subsets of location refersnicedifferent rounds to
reduce unnecessary computation. We will see in our expetahevaluation that this
approach significantly reduces the computation time (and the energy) required by
ARMMSE.

In the following, we first give a brief introduction to the hl@a®MSE method proposed
in [Savvides et al. 2001], and then discuss the incremenk&SHE approach.

3.4.1 Basic MMSE MethodAssume a sensor node has obtained a set tdcation
references from the reachable beacon nofes, y1,d1), (22, y2,d2), - . ., (Tm, Ym, dm) }-
Suppose the estimated locatior{is y). Thus, the error of the measured distance between
the regular node and théh (1 < ¢ < m) beacon node can be expressed as the difference
between the measured distaagand the estimated distandg- \/(ir —x;)?+ (g — y:)2.

The basic MMSE method obtains the location estinfatg;) by minimizing the mean
square error (MSE)

2

MSE = %i N@ — @)+ (G- vi) —ds
i=1

To accommodate the limited computational power of curreniegation of sensor nodes
(e.g., MICAz motes), the basic MMSE method uses an apprdeiagproach to estimating
the location(z, §) [Savvides et al. 2001]. Specifically, the location estim@tg)) can be
calculated using equation (1) as follows:

b=(XTx)"'xTy, (1)

=[],

2(x1 — w2) 2(y1 — y2)

2(x1 —x3) 2(y1 —y3)
X = . . )

where

< 8

2(1‘1 - xm) 2(3/1 - ym)
ACM Journal Name, Vol. , No., 20.



Attack-Resistant Location Estimation in Sensor Networks . 13

and
xi—i—yi—di—x%—yg—i—dg
Ty +yy —di —x3 —y3 +d3

of +yi —di —ap, -y, + dy,

3.4.2 Incremental ARMMSEThe key to incremental ARMMSE is the careful ar-
rangement of the input of an earlier MMSE estimation to belssstiof input of a later
MMSE estimation. Given the partial results from a previomsnd, we only need to per-
form the computation related to the newly added data by ngutsie intermediate results
in the earlier calculation.

Suppose that the basic MMSE method has been performed lmtation references,
and that all intermediate matrices have been saved. For ly aelted location reference
(Tm+1, Ym+1, dm+1), We can reuse all previous calculations, and only run a fewced-
culations to complete the new MMSE estimation onsthe- 1 location reference.

Consider equation (2), which is a part of the basic MMSE cotamjion. (See Section
3.4.1.) The new computationis,  ; + y2,,, — d?,,, which is highlighted in equation
(2). Similarly, we highlight all the new calculations (inXed frame) in equations (2-8).

x1+y1 —di —x3 —y3 +d3

2 2 2 2 2 2
1 + yr — dl —Tm — Ym + dm

50% + y% - d% - ($3n+1 + y12n+1 - d$n+1)

2(z1 — x2) 2(y1 — y2)
2(z1 — x3) 2(y1 — y3)

2(z1 - Tm) 2(y1 - Ym)
‘ 2(x1 — Tmt1) ‘ ‘ 2(y1 — Ym+1) ‘

XTX _ air aiz (4)
a21 Q22
TN e 0
=2
a2 =az = 4 (21— @)1 — i) + | 4@~ Tmr1) (W1 — Y1) | (6)
=2

oz = 432 (= +[ 101~y @
1=2

QZ($1 — L;)y [Z — 1] +‘ 2($1 - l’m+1)y [m] ‘

23 — i)y li = 1+ 21 — ymsr)y [m]]

M

®)
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Fig. 5. The voting-based location estimation

By reusing intermediate results, we can avoid a large numi@dundant calculations,
thus speeding up schemes such as EARMMSE.

3.4.3 EARMMSE with Incremental Evaluatiotn EARMMSE, the location refer-
ences are ordered in terms of the number of other “intersgdibcation references. EAR-
MMSE starts with the entire set of location references, aradigally removes the most
suspicious location references based on the above ordéanrgcceptable location esti-
mation is derived.

To mostly efficiently use incremental ARMMSE, we perform BARISE in two rounds.
In the first round, we start with three location referencebwie highest degree of consis-
tency to perform location estimation. We then add a new ionatference with the next
highest degree of consistency, and complete the estimasiong incremental ARMMSE
method. We continue this process until all location refeesmare used. We save location
estimate and the corresponding minimum MSE for every stapghé second round, we
check the minimum MSE for the sets of location referencebéréverse order, similar to
the original EARMMSE method. However, no MMSE computatisméeeded due to the
saved results. The algorithm stops once we find a locatiomat& with a small enough
minimum MSE. This implementation allows us to use increraeARMMSE to perform
EARMMSE efficiently without unnecessary, redundant corafiah.

4. VOTING-BASED LOCATION ESTIMATION

In this approach, we have each location reference “voteherdcations at which the node
of concern may reside. To facilitate the voting process, uentjze the target field into a
grid of cells, and have each sensor node determine how litkslyn each cell based on each
location reference. We then select the cell(s) with the ésglote and use the “center” of
the cell(s) as the estimated location. To deal with the nesbconstraints on sensor nodes,
we further develop an iterative refinement scheme to rechecstorage overhead, improve
the accuracy of estimation, and make the voting schemeagffion resource constrained
sensor nodes.
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y A

(c) Limiting the examinations of cells

Fig. 6. Determine whether a ring overlaps with a cell

4.1 The Basic Scheme

After collecting a set of location references, a sensor shdeld determine the target field.
The node does so by first identifying the minimum rectange dovers all the locations
declared in the location references, and then extendisg#utangle byR,, whereR;, is
the maximum transmission range of a beacon signal. Thisxdgterectangle forms the
target field, which contains all possible locations for tkesor node. The sensor node
then divides this rectangle intd/ small squares (cells) with the same side lenbthas
illustrated in Figure 5. (The node may further extend thgetfield to have square cells.)
The node then keeps a voting state variable for each ceifligiset to 0.

At the beginning of this algorithm, the non-beacon node séeddentify the candidate
ring of each location reference. For example, in Figure & rithg centered at point A is a
candidate ring at A, which is derived from the location refere with the declared location
at A.

For each location referen¢e, y, 6), the sensor node identifies the cells that overlap with
the corresponding candidate ring, and increments thegyeotiniables for these cells by 1.
After the node processes all the location references, bsb®the cell(s) with the highest
vote, and uses its (their) geometric centroid as the estinatation of the sensor node.

4.2 Overlap of Candidate Rings and Cells

A critical problem in the voting-based approach is to detaanif a candidate ring overlaps
with a cell. We discuss how to determine this efficiently melo
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Suppose we need to check if the candidate ring at A overlagis tive cell shown in
Figure 6(a). Letd,in(A) andd,,q..(A) denote the minimum and maximum distances
from a pointin the cell to point A, respectively. We can ses the candidate ring does not
overlap with the cell only whed,,,;,,(A) > r, Or d ;e (A) < r;, wherer; = max{0,0 —

e} andr, = § + € are the inner and the outer radius of the candidate ringectsply.

To computed,,,;,, andd,,..., we divide the target field into 9 regions based on the cell,
as shown in Figure 6(b). Itis easy to see that given the ceftery candidate ring, we can
determine the region in which it falls with at most 6 companis between the coordinates
of the center and those of the corners of the cell. When theeceha candidate ring is in
region 1 (e.g., point A in Figure 6(b)), it can be shown that tfosest point in the cell to
A'is the upper left corner, and the farthest point in the celirf A is the lower right corner.
Thus,dmin(A) andd,,..(A) can be calculated accordingly. These two distances can be
computed similarly when the center of a candidate ring fatis regions 3, 7, and 9.

Consider point B in region 2. Assume the coordinate of poii® B 5, y5). We can see
thatd,,.n(B) = ys — y2. Computingd,....(B) is a little more complex. We first need to
checkifxg — x1 > x9 — xp. If yes, the farthest point in the cell from B must be the lower
left corner of the cell. Otherwise, the farthest point in tie#l from B should be the lower
right corner of the cell. Thus, we have

dmaz(B) = v/ (max{zp — 21,22 — 25})2 + (y5 — y1)>.

These two distances can be computed similarly when the rehsecandidate ring falls
into regions 4, 6, and 8.

Consider a point C in region 5. Obviouslj,;,(C) = 0 since point C itself is in the
cell. Assume the coordinate of point C(i8.,y.). The farthest point in the cell from C
must be one of its corners. Similarly to the above case fant@®i we may check which
point is farther away from C by checking — x; > x5 — z. andy. — y1 > y2 — y.. As a
result, we get

dmaz(C) = \/(max{xc — 21,22 — 2 })? + (max{t. — y1,92 — yc})>.

Based on the above discussion, we can determine if a cell aaddidate ring overlap
with at most 10 comparisons and a few arithmetic operatidagrove the correctness of
the above approach only involves elementary geometry,tamslis omitted.

For a given candidate ring, a sensor node does not have t& ali¢le cells for which
it maintains voting states. As shown in Figure 6(c), withgiencomputation, the node can
get the outer bounding box centered at A with side lergth+ ¢). The node only needs
to consider the cells that intersect with or fall inside thisx. Moreover, the node can get
the inside bounding box with simple computation, which isteeed at A with side length
V2(6 — €), and all the cells that fall into this box need not be checked.

4.3 lterative Refinement

The number of celld/ (or equivalently, the quantization sté)) is a critical parameter for
the voting-based algorithm. It has several implicatiorthoperformance of our approach.
First, the largeM is, the more state variables a sensor node has to keep, anithéhmnore
storage is required. Second, the valueléf(or L) determines the precision of location
estimation. The larged/ is, the smaller each cell will be. As a result, a sensor node ca
determine its location more precisely based on the ovetfidpeocells and the candidate
rings.
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However, due to the resource constraints on sensor nogsg,ahularity of the partition
is usually limited by the memory available for the votingtstaariables on the nodes. This
puts a hard limit on the accuracy of location estimation. ddrass this problem, we
propose ariterative refinemendf the above basic algorithm to achieve fine accuracy with
reduced storage overhead.

In this version, the number of cell¥/ is chosen according to the memory constraint in
a sensor node. After the first round of the algorithm, the modg find one or more cells
having the largest vote. To improve the accuracy of locagistimation, the sensor node
then identifies the smallest rectangle that contains altétis having the largest vote, and
performs the voting process again. For example, in Figuthéssame algorithm will be
performed in a rectangle which exactly includes the 4 celigrg 3 votes. Note thatin a
later iteration of the basic voting-based algorithm, a fmeareference does not have to be
used if it does not contribute to any of the cells with the leigttvote in the current iteration.

Due to a smaller rectangle to quantize in a later iteratiomstze of cells can be reduced,
resulting in a higher precision. Moreover, a malicious tarareference will most likely
be discarded, since its candidate ring usually does notagvevith those derived from
benign location references. For example, in Figure 5, tinelidate ring centered at point
D will not be used in the second iteration.

The iterative refinement process should terminate when igedegsrecision is reached
or the estimation cannot be refined. The former conditionbmatested by checking if the
side lengthL of each cell is less than a predefined threstflavhile the latter condition
can be determined by checking whetlieremains the same in two consecutive iterations.
The algorithm then stops and outputs the estimated locatiteined in the last iteration.
It is easy to see that the algorithm will fall into either oktle two cases, and thus will
alway terminate. In practice, we may set the desired pi@tisi O in order to get the best
precision.

5. SECURITY ANALYSIS

Both proposed techniques can usually remove the effecteofrtlilicious location refer-
ences from the final location estimation when there are menégh location references
than the malicious ones. Theorem 1 shows that when the myagdriocation references
are benign, the location estimation error of the attackstast MMSE is bounded if we
can successfully identify the largest consistent set. Heta defeat the attack-resistant
MMSE approach, the attacker has to distribute to a victimenmere malicious location
references than the benign ones, and control the declacatidas and the physical fea-
tures (e.g., signal strength) of beacon signals so that #iieious location references are
considered consistent.

LEMMA 2. Assume there arew benign location references andmalicious location
references in a-consistent set. The location estimation error from thiso§éocation ref-

erences using MMSE is no more thaR + , / mT*"T, whereR is the radio communication
range of a sensor node.

PROOF LetO = (z0,yo) denote the real location of the non-beacon node@he-
(x5, y,) denote the estimated location of the non-beacon node basatl location ref-

erences (including the malicious ones). Lét3| denote the distance betwednand B.
Thus, the location estimation error can be representé@6y|. Let{Ly,--- , L,,} denote
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the set of benign location references did,, 11, - - - , Lim+n } denote the set of malicious
location references.

Consider a particular benign location referentes= (z;,y;, ;). Since the communi-
cation range of sensor nodesis we havelOL;| < R. In addition,e; = ¢; — |O’L;| and
0; < R. Thus, we have

|OO/| S |OLZ| + |L10/| S R+51 — €5 S 2R— €;.

There are two different cases; > 0 ore; < 0. Whene; > 0, we have|OO’| < 2R.
Whene; < 0, we have|OO’| — 2R < —e;. Assume|OO’| > 2R, we havee? >
(|0O'| —2R)?. Since{L1, - - - , Ly1n} is T-consistent, we havg """ €2 < (m +n)72.
Therefore,

m(|OO/|—2R)2§Ze?§ e2 < (m+n)7r
i=1 i=1

Hence, we havé|O0’| — 2R)? < % Itimplies

00| < 2R+ /2"
m

According to the above analysis, we can conclude that themgnt in Lemma 2 is
true. O

m m—+n

THEOREM 1. Assume a non-beacon node receinedenign location references and
n malicious location references, whete > n. The location estimation error at this non-
beacon node using the attack-resistant MMSE scheme witrtite-force algorithm is no

more thare R + , / = if the thresholdr is set greater than the maximum distance error

—n

€, whereR is the radio communication range of a sensor node.

PROOF It is easy to know that the set of benign location references is always
consistent ifr > ¢. Thus, there are at least location references in the largest consistent
set. Assume there arelocation references in the largest consistent set, where m.
According to Lemma 2, we have

k
00| < 2R+ 4/ T <2R+,/ UL
k—n m-n
[l

Similarly, theorem 2 shows that when the majority of locatieferences are benign,
the location estimation error of the voting-based schenbeisided. Hence, to defeat the
voting-based approach, the attacker needs similar effortthat the cell containing the
attacker’s choice gets more votes than those containinggthsor’s real location.

THEOREM 2. When the majority of location references at a non-beacorerard be-
nign, the location estimation error at this non-beacon nadimg the voting-based scheme
is no more thar2R + /2L, whereL is the side length of the cell.

PROOF Assume the real location of the sensor nod@ is: (zo, yo) and the estimated
location of the sensor node using the voting-based schete4s (), y(,).

Since the candidate ring of a benign location referenceyswavers the real locatian
of the sensor node, the number of votes in the cell that cosais at leastn. Thus, the
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number of votes in the cell that contaif$is at leasin. Since the number of votes coming
from the malicious location references is at mastwe know that there is at least one
benign location reference whose candidate ring coversdhéhat containg)’. Assume
one of such benign location referencedjs= (x;, y;, 9;), we have

|LiOI| S R + \/§La
whereL is the side length of a cell. Therefore, we have
|00'| < |OL;| + |L;O') < 2R + V2L.
[l

An attacker has two ways to satisfy the above conditions (@eoto defeat our tech-
niques). First, the attacker may compromise beacon nodisham generate malicious
beacon signals. Since all beacon packets are authentieaigd sensor node uses at most
one location reference derived from the beacon signalstseatich beacon node, the at-
tacker needs to compromise more beacon nodes than the lrs@gan nodes from which
a target sensor node may receive beacon signals, besigdsliyacrafting the forged bea-
con signals.

Second, the attacker may launch wormhole attacks [Hu eD@B]or replay attacks)
to tunnel benign beacon signals from one area to anothehidrcase, the attacker does
not have to compromise any beacon node, though he/she haerttiriate the wormhole
attacks. This paper does not provide techniques to addresahwle attacks. However,
our methods can still tolerate wormhole attacks to a cedagree as long as the number
of malicious location references at a sensor node is lesgtieenumber of benign location
references. Moreover, in another related work [Liu et aD5t], we have developed an
approach for effectively detecting malicious beacon dgtransmitted through wormholes
on the current sensor platforms (with low quality clockshu§, the proposed techniques
in this paper and the complementary detection techniquékiinet al. 2005b] can be
integrated to effectively defend attacks against rangetbéocalization in wireless sensor
networks.

As discussed earlier, an attacker may also jam the comntioriaczhannel to, for exam-
ple, prevent the successful transmission and receivingatn signals. This is acommon
threat to all wireless networks. Thus, the approaches apéper require additional mech-
anisms to ensure that the attacker cannot jam the commiamcgttannel continuously
without being detected and removed.

Our techniques certainly have a limit. In an extreme casell the beacon nodes are
compromised, our techniques will fail. However, the prambtechniques offer a graceful
performance degradation as more malicious location reé@®are introduced. In contrast,
an attacker may introduce arbitrary location error withragk malicious location refer-
ence in the previous schemes. To further improve the sgafribcation discovery, other
complementary mechanisms (e.g., detection of malicioasdrenodes [Liu et al. 2005b],
anti-jamming techniques) should be used.

6. EXPERIMENTAL EVALUATION

We have given a preliminary experimental evaluation in theiminary version of this
paper [Liu et al. 2005a]. In this section, we present a thghoexperimental evaluation
to validate the new techniques proposed in this paper angamrexisting secure and
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resilient localization schemes that can be used on thertigemeration of sensor platforms
(e.g., MICAz and MICA2 motes). Our evaluation uses both oatdexperiments in a
testbed of MICAz motes and simulation evaluation using clehprofiles obtained from
the testbed. The schemes under evaluation include the ARM&Bemes, voting based
scheme, and Least Median of Squares (LMS) based locatimnagiin [Li et al. 2005].
There are several other secure and resilient localizatioerses, including SeRLoc [La-
zos and Poovendran 2005], SPINE [Capkun and Hubaux 2008]R@PE [Lazos et al.
2005]. However, SeRLoc requires directional antenna os@emodes, SPINE requires
nano-second scale time synchronization among nodes, afRER®hich is an integra-
tion of SeRLoc and SPINE, requires both directional anteamhnano-second scale time
synchronization. These requirements cannot be met on tlientwgeneration of sensor
platforms such as MICA series of motes. Thus, we cannotdectbem in this evaluation.

6.1 Evaluation Methodology

6.1.1 Evaluation Criteria. Key issues with localization service in wireless sensor net
works are resiliency and efficiency. For an unattended esesensor network, the best de-
fense against attacks is to build strong resiliency agaitastks, even when nodes are com-
promised. Given that a sensor node is severely constrainaath hardware resources and
battery power, it is extremely important to develop effitialyorithms. Under these key
requirements, we use four criteria to evaluate the secuteemilient localization schemes
under study.

First, we evaluate the algorithm implementation in termk€fM and RAM usage.
ROM is used to store the compiled code. The ROM size refleettotial non-volatile stor-
age that is needed to store the localization code. RAM ussftpets the runtime memory
requirement. Since both ROM and RAM are premier resourcesr@source constrained
sensor node (for example a MICAz mote has an Atmel ATmega 1@8sssor with 4KB
RAM and 128KB ROM), it is highly desirable for the localizai algorithm to have as
small a footprint as possible.

We next compare the execution time of the localization algors. Localization schemes
need to be implemented efficiently. A fast execution timegtates to a low energy con-
sumption, which extends the lifetime of a sensor node. Intiaad a sensor network usu-
ally needs to carry out specific applications. It is alwaysidéle to have network services
such as localization consume as few CPU cycles as possible.

The third, and the most important criteria is the resilien€wn algorithm against dif-
ferent levels of attacks. In this study, we assume that ngessechanges are cryptograph-
ically protected, and false injection of localization infeation is eliminated. Moreover,
we assume there are mechanisms that detect replayed &imalimessages, such as the
one proposed in [Liu et al. 2005b]. Thus, the focus is on tHmistness and resiliency
against malicious location references. Obviously the nmaaéicious location references,
the harder it is for the resilient algorithm to defend. Weleate the level of resiliency of
each localization algorithm in terms of localization a@my. We confirm (the theoretical
analysis in the previous section) experimentally that chesnes may tolerate close to half
of malicious location references.

In addition, to correlate the study on localization accyraee also investigate the suc-
cess rate of each scheme to detect and filter out malicioasidocreferences. When the
success rate is 100%, the location estimation error isysdig to the measurement error
caused by the radio channel. When the success rate is low, is@iicious location refer-
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ences are not filtered out. Their injected errors could §icanitly distort the final location
estimation.

6.1.2 Field Experiments using MICAz Mote®Ve perform a series of outdoor field ex-
periments using MICAz motes to compare the secure andeesibcalization schemes
discussed earlier. These field experiments offer an oppitytto observe their perfor-
mance in a realistic setting.

We implemented the ARMMSE and the voting-based schemessi@ na TinyOS. We
also implemented the LMS method based on matlab code obthinm the authors of [Li
et al. 2005]. We use the RSSI method to measure the distance this is the only option
for MICAz motes.

In the outdoor field experiments, we deploy 15 MICAz motes Giof@etx 60feet target
field, as shown in figure 7. We use up to 14 motes as beacon nodeplicate a dense
deployment. The beacon nodes broadcast location refereassages periodically. The
sensor node with ID O (in the middle of the field) is a repreatve of a non-beacon node
that needs its own location.

With this deployment setup, we perform experiments under &dtack scenarios. In
the first scenario, one randomly selected beacon node isgowoeti as being malicious,
which reports a faulty location refereneefeet away from its true location in a random
direction. In the second scenario, we randomly pick up foalicious beacon nodes. Each
malicious beacon node adds a random location offsetfeet from its true location. The
third scenario mimics node collusion. Four randomly selédteacon nodes collude with
each other and send out false but consistent location refese In this case, all malicious
beacon nodes report a falsified position shifieteet from its true location in the same
direction. In the fourth scenario, we experiment with a wagynumber of colluding nodes
ranging from 1 to 8 (out of 14 beacon nodes) to examine the ¢tnpa the estimated
location.

Under each attack scenario, we investigate the algoritlsitieecy in terms of localiza-
tion error and malicious location reference detection, ratel the algorithm efficiency in
terms of execution time. In the experiment we vary the empadted from10 to 150 feet
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with a 10 feet increment.

6.1.3 TOSSIM SimulationDue to the cost of conducting field experiments, we cannot
perform the evaluation with many different deploymentsiggifferent nodes. To under-
stand the performance in a wider variety of situations, wsoreto simulation through
TinyOS simulator TOSSIM [Levis et al. 2003]. TOSSIM is a di&te event simulator
that can be used to run TinyOS applications, aimed at progidifidelity simulation for
TinyOS applications by simulating system interrupts aredrtatwork at the bit level.

Profiling of MICAz Radio Channel: Carrying out a simulation faithfully to a real de-
ployment experiment requires that the simulator incorfgosansor characteristics such as
timing model and radio channel model. Currently, TOSSIMdoet provide a completely
true representation of a real network. For example, it de¢snodel the node variations
typically seen in low cost sensor nodes, nor does it incatgmeal world signal distortion
through reflection or attenuation. Since we use the RSSI| oddth obtain distance mea-
surement in the current performance evaluation study, weega to incorporate proper
radio channel characteristics in the simulation. Otheswthe simulation results could
significantly deviate from those obtained through field eipents.

We use a set of 30 MICAz motes to profile the channel charatiesifor the purpose
of RSSI-based distance measurement. Due to node and eméntdal variations, one ra-
dio channel between two nodes may differ from each otherfillrgper-radio channel
characteristics between each pair of sender and receiusefsl when there is a need to
correct/compensate per-channel errors. However, gdtimghannel profile between any
two nodes (a total of 30*29/2 possible pairs) would be coshihitive. So instead we seek
to obtain the average channel profile for the nodes. To olatanage channel profile, we
randomly draw 7 nodes from the pool of 30 node. We select ode Bas the receiver, and
use the rest 6 nodes as the transmitter and place them at 180280, 50, and 60 feet
away, respectively, from the receiver. From the transmitt®00 reference messages are
sent to each receiver. We use the received signal strendgthdasure” theknownnode
distance and obtain a total of 6 sets of 1,000 distance measunts at 10, 20, ..., 60 feet
distances, respectively. We then rotate the positionsebthenders, so that we have the
data for each node at each distance. We repeat the samenegpebi times, using a dif-
ferent batch of 7 nodes randomly drawn. To include the imp&biattery variations, we
use different batteries with voltage between 2.7V and 3Thése experiments give 30,000
distance measurement samples with different batterygedtand different pairs of nodes
at each of the 6 distances, providing us a fairly good avechganel profile. These results
are then incorporated into our simulation to mimic the cleicharacteristics.

We build a distance measurement error model based on the dlate. For each of the
above distances, we use the median RSSI as the referencevierican RSSI reading to
the given distance, and use interpolation for the otheadists. Based on this conversion
and the collected RSSI readings, we then build error digidbs for 10, 20, ..., and 60
feet. Figure 8 shows the distance measurement error modéhdse distances. The
error distributions for the other distances are calculatgdg interpolation based on these
distributions. In our simulation, distance measuremerdrerare generated based on the
error distributions in this model.

Simulation Setup: As discussed earlier, the simulation is aimed at evaludtisger-
formance of these secure and resilient localization sckenith different combinations
of deployments and distance measurement errors. In outaions, we adopt the same
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Fig. 8. Measured distance distribution using interpotatieethod

target field setting used in the field experiment. We run twe eésimulations. The first
set of simulation replicates the same layout of beacon nasl@sthe field test. In the sec-
ond set of simulations, a set of 14 beacon nodes are randaplgykd in the target field.
The non-beacon node, which needs to to be localized, is ¢hlaicthe center of the target
field. The beacon nodes broadcast localization messagexlisaily. The non-beacon
node estimates its distance from each beacon node. Theakstaeasurement error is
simulated with the channel profile we obtained through erpemts. In each of the sce-
narios discussed in Section 6.1.1, we run 1,000 rounds aflation in TOSSIM to obtain
the performance measures.

Given a maximum number of location references, all the sesenmder investigation
require a few parameters to be configured. These parametestsha set appropriately
to ensure a fair comparison. For the EARMMSE scheme, we setnsan square error
thresholdr = 0.8¢ as discussed earlier, wherés the maximum distance measurement
error. Based on the channel profiling results= 7.4 feet. Thus, we setr = 0.8¢ =
5.92 feet.

The critical parameter for the voting-based scheme is timetyau of cellsM in the grid
in each iteration. The cell number needs be the square ofegeanin our experiments. The
voting-based scheme is in general much slower than the EABEIMcheme, no matter
how we configuréV/. To ensure a fair comparison, we set the paramétén the voting-
based scheme in such a way that they consume a similar ambRAt\. As shown in
table I, we setM = 152 = 225 to match the RAM consumption in the EARMMSE
scheme. For further comparison, we also obtain the restiit\i = 100 besides\/ = 225
for the voting-based scheme.

Similar to the voting-based scheme, the LMS scheme [Li e2@05] is much slower
than the EARMMSE scheme. To ensure fair comparison, we setubset size = 4.
Moreover, we set the numbér of subsets to be examined in such a way that the LMS
scheme has the same average execution time as the votiad-betseme when the grid
size is100 and225, respectively. As shown in table I, LMS has a fixed RAM constiom
which is similar to the RAM consumption in the voting-basetieme.

6.2 Effectiveness of EARMMSE and Incremental Evaluation

In this subsection, we focus on the experimental evaluafd@ARMMSE and the incre-
mental evaluation of EARMMSE. As we will see in the evaluatiesults, these techniques

ACM Journal Name, Vol. , No., 20.



24 . Liu, et al.

‘*X*GARMMSE —A—EARMMSE —%—GARMMSE —A—EARMMSE

20 20

10 4 104

P ]
P al -

X = - ¢
0

Location estimation error (feet)
Location estimation error (feet)

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Location error created by malicious location references (feet) Location error created by malicious location references (feet)

(a) 1 malicious location reference (b) 4 non-colluding malicious location references
[ < GARMMSE —A— EARMMSE | [ ¢ GARMMSE —A— EARMMSE |
20 100
8 8
5 5
s §
T 104 KX T 10
£ £
g / g !__/ -
o 5
1(/
0 T T T T T T T T 1 T T T T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 0 1 2 3 4 5 6 7 8

Location error created by malicious location references (feet) Number of colluding malicious location references

(c) 4 colluding malicious location references (d) varying number of colluding malicious location
references (error created by malicious location refer-
ence is100 feet)

Fig. 9. Location estimation error for GARMMSE and EARMMSE

significantly outperformthe previous techniques propasdie preliminary version of this
paper [Liu et al. 2005a].

Figure 9 shows the location estimation errors of both GARMMM®d EARMMSE in
the four evaluation scenarios. As we can see in figure 9(ah &oproaches can effec-
tively defeat 1 malicious location reference. However,laa in figures 9(b) and 9(c),
GARMMSE cannot effectively bound the location error intueed by 4 colluding or non-
colluding malicious location references. (This result éhsistent with the preliminary
evaluation reported in [Liu et al. 2005a].) In contrast, EARSE can effectively defeat
both 4 non-colluding and 4 colluding malicious locationereinces. Figure 9(d) further
shows EARMMSE performs significantly better than GARMMSHaterating colluding
malicious location references. All the above results destrate that EARMMSE is much
more effective than GARMMSE in bounding location estimatirors.

We also perform experiments to confirm the effectiveness@kimental evaluation in
reducing the computational cost of EARMMSE. We use EARMMSkhtwith and with-
out incremental evaluation in the four evaluation scergarigigure 10 shows the timing
results. When there is only 1 malicious location referemmemental evaluation slightly
reduces the execution time, as shown in figure 10(a). Wher tire 4 colluding or non-
colluding malicious location references, incrementalgaton can reduce the execution
time by about 50%, as shown in figures 10(b) and 10(c). FigQ¢d)¥urther shows that
incremental evaluation reduces more as there are moredaulumalicious location ref-
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Fig. 10. Effectiveness of incremental evaluation

erences. Indeed, the more malicious location referenbheanbre execution time incre-
mental evaluation can save. When the number of colludingcioak location references
reaches 8, the execution time for EARMMSE starts to drops ihe point where EAR-
MMSE fails; there are more colluding malicious locationetefinces than the benign ones,
and the benign ones are considered “malicious” and removed.

The code sizes of GARMMSE and EARMMSE (with and without imaemtal evalua-
tion) are shown in table . EARMMSE does have more ROM siza tBARMMSE (442
bytes), and incremental evaluation further increases Rt and RAM sizes (282 bytes
and 148 bytes, respectively). However, the increases in ROMRAM sizes are still
affordable on current sensor platforms such as MICAz motes.

Due to the effectiveness of EARMMSE and incremental evadnatve will use EAR-
MMSE with incremental evaluation as the representativeRMMSE schemes in our later
comparison. By default, we assume an EARMMSE implementaticludes incremental
evaluation, unless specified otherwise.

6.3 Comparison of Alternative Approaches

We now compare the various approaches for attack-resiteation estimation accord-
ing to the evaluation methodology discussed in Sectionifcluding basic MMSE (as a
reference), EARMMSE (with incremental evaluation), vgtibased scheme, and the LMS
based approach [Li et al. 2005]. Our goal is to identify thieesne most suitable for the
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current generation of sensor platforms.

6.3.1 Code Size Comparisorlable | gives the code size of each localization algo-
rithm implementation. The code was compiled for MICAz, amBg that each scheme
handles up to 14 location references. These numbers waamebtusing thehecksize.pl
script provided in the TinyOS distribution. Note that the RAize does not include the
memory consumed by local variables on the stack. Since nesfipiler optimizes the
whole program by default, to compare the size of code fairg/disabled any optimization
of nesC compiler. From the table it is obvious that the votiaged scheme uses the most
ROM, while all schemes use a similar amount of RAM excepttientoting-based scheme
whenM = 100.

Table I. Code Size (up to 14 location references)

Scheme ROM (bytes) | RAM (bytes)

Basic MMSE 2,734 0
GARMMSE 4,422 100
EARMMSE (w/o inc. eval.) 4,864 100
EARMMSE 5,146 248
Voting (M=100) 7,074 100
\oting (M=225) 7,074 225
LMS 5,262 237

6.3.2 Results of Field Experiment&igures 11, 12, and 13 show the location estima-
tion error, the execution time, and the success rate of rergowalicious location refer-
ences for all schemes under study, respectively.

From figures 11(a), 11(b), and 11(c), we can see that alieasichemes under study
have bounded location estimation error under each attasiasio while the basic MMSE
scheme [Savvides et al. 2001] cannot tolerate even oneimaditocation reference. For
the basic MMSE method, the location estimation error ineesawith the increase of the
injected error. Although the three schemes use completfiérent approaches to defend
against malicious location references, the level of taleeg(in terms of localization error)
of each scheme to the injected error is fairly comparableutit first three attack scenar-
ios. In general (from Figures 11(a), 11(b), and 11(c)) theS 8¢heme provides a slightly
lower location estimation error in comparison to the votbased and the EARMMSE
schemes, but the performance results are fairly close.

Another interesting discovery is that the largest loca@stimation error happens when
the injected error is small (around 20 feet)! This phenonmearabe observed almost on
every scheme and under each attack scenario. Althougherdntiitive, this observation
can be explained. Attack-resistant localization scheygsally rely on outlier detection
or consistency check to remove malicious location refezstefore performing the final
location calculation. When the injected error is small gzsglly on the same scale or close
to the range of measurement error, these schemes are nid afflectively distinguish and
remove the malicious ones. This leads to the enlarged tastimation error.

To support our explanation, we investigate the effectiganef each scheme to filter
out malicious location references under different amowfiterror injection. For each
scheme under every scenario, we capture the number of maditncation references that
have been successfully identified in each round and cattiiat average detection rate
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Fig. 11. Location estimation error in field experiments

over 1,000 rounds. Figures 12(a), 12(b), and 12(c) show tbeability of successfully
removing malicious location references in our experiments

All three schemes fail to identify and remove malicious toma references when the
injected errors are smalk(70 feet). When the injected error is at 10 feet, no scheme is
able to identify and remove the malicious location refeemnd\evertheless, the injected
errors in such cases are very close to normal measuremens,eand do not introduce
significant errors into location estimation.

Figure 12(d) provides the results on the malicious locatiderence detection probabil-
ity when we have 4.8 malicious location references. Since the injected esd00 feet,
all schemes should be able to identify and remove the mabdiacation references when
the number of colluding ones is small{6). The Figure shows that the LMS scheme is
the first scheme to break down while the EARMMSE method prewithe best detection
rate which translates to the best resiliency in our expearme

We also evaluate the algorithm resiliency in terms of howymaalicious location refer-
ences a scheme can tolerate. Setting the injected erroftfe@f we experiment algorithm
resiliency by introducing 48 malicious location references out of a total of 14 ones: Fig
ure 11(d) displays the result of this study. It shows thatesllient schemes perform well
when we introduce up to 6 malicious location references. Witadf of them are malicious,
the EARMMSE method can still maintain an estimation errot @feet, while the voting-
based scheme and the LMS scheme fail. Obviously, when marehalf of the location
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Fig. 12. Success rate of removing malicious location refege in field experiments

references are malicious, none of the scheme would work fihee also shows that the
LMS scheme is sensitive to the selection of number of sulddewhen M is set to 13, the
LMS scheme begin to fail with only 4 malicious location refeces.

We next perform study on efficiency in terms of execution tilmong all the schemes
evaluated, both the LMS and the basic MMSE schemes have adikemlition time. The
execution time of the LMS scheme depends on the number obrasdbset{/) and size
of subset{). The EARMMSE and the voting-based schemes have a variabtine.

From Figure 13, we can see that the EARMMSE scheme has a mualesmunning
time (<0.1 seconds) in comparison to the voting-based scheme bMBescheme (around
1 second). The basic MMSE scheme has the shortest runnireg biot it provides no
resilience at all. Among all the resilient schemes evalliatee EARMMSE scheme is
about 10 times faster than the others.

From Figures 13(b) and 13(c), another observation is tleapdak computation time is
observed when low error is injected by the malicious locateferences. This is consis-
tent to our earlier discussion on localization error, whietaks when the injected errors
are small. The algorithms have a tough time trying to idgrtie malicious location refer-
ences.

6.3.3 Results of SimulationWe carry out two sets of simulations. The first set of
simulation duplicates the exact topology and attack séesas those in the field test,
which was described in Section 6.1.2. To make a fair compayithe same parameter
setup for each scheme is used. We also incorporate the dipaofile we obtained through
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Fig. 13. Execution time in field experiments

experiments into simulation.

The results of the first set of simulation are in general iast with those of the field
experiments. For space reasons, we do not include the pefme results for all sce-
narios. Figure 14(a) shows the location estimation errotttie attack scenario with 4
colluding nodes. The location estimation errors are in gariarger that those in the field
experiments. This is because the randomly generated déstagasurement errors are on
average larger than those encountered in the field expetsm@merall, the trend matches
the results in the field experiments very well. Except for llzsic MMSE method, all
resilient schemes have bounded location estimation errderueach attack scenario. In
addition, all three schemes under study have comparatigrpemnce in terms of location
estimation error under non-colluding and colluding atsack

The success rate of filtering malicious location referemsasother important criterion
we use to evaluate resiliency. Figure 14(b) provides resuit how successful of each
scheme can filter out malicious location references in thaldding node attack scenario.
Similar to the field experiments, we can observe that nonleeofdsilient schemes can deal
with small error injection well. When the injected error mall, a malicious location ref-
erence may successfully blend itself among the rest. Whesikent localization scheme
fails to filter out malicious location references, the ingeterror directly contributes to
location estimation error. For example, in Figure 14(apt@mn estimation errors peak in
the low range of the injected errors.
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Fig. 14. Simulation results using the field experiment dgplent

Topology may affect localization error potentially. (As @xtreme example, one cannot
use three beacon nodes in a co-linear layout to performitataln.) In the second set of
simulation, we investigate how each scheme performs witth@uinfluence of a particular
topology. To achieve that, for each round of experimentlthiocation references are ran-
domly positioned. We run a total of 1,000 rounds of experiteehhe location estimation
error and the success rate of filtering out malicious locatéderences are obtained using
the average of the 1,000 rounds of experiments.

Figure 15 and figure 16 show the location estimation errorthedate for successful
filtering, respectively.

By comparing Figure 14(a) with Figure 15(c), and Figure )4tth Figure 16(c), we
can observe that the results from the two sets of simulatiomsery similar to each other.
For example, under both sets of simulation, the worst perémice of malicious location
reference detection and filtering happen when the injeated is at 10 feet. This observa-
tion confirms that the topology we use in field experimentgypacal deployment scenario
and the topology of this deployment has not influenced mueHdbalization estimation
accuracy or the rate of successful filtering.

We make another observation from the two sets of simulatiévthough fairly com-
parable, the EARMMSE scheme provides a slightly betterltrésuerms of malicious
location reference detection and elimination over thenggthased and the LMS schemes,
as can be seen in both figure 14(b) and figure 16.

6.4 Discussion

In this experimental evaluation, we compared all existemge-based secure and resilient
localization schemes suitable for the current generati@ensor nodes, through simula-
tion and field experiments using MICAz motes as a test platfdrhese include the LMS
scheme, the EARMMSE scheme, and the voting-based schenfacilitate the simula-
tion study, we performed substantial experiments to prtfderadio characteristics, which
was incorporated in the simulation experiments.

Results from the field experiments generally matched weth whe two sets of sim-
ulations we performed. This confirms that the channel prefieincorporated into the
simulation has enabled us to capture the characteristittseeafadio channels effectively.
The first simulation confirms our field experiment resultslevtihe second set of simula-
tion using a random deployment of beacon nodes gives us acoigfidence results, since
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Fig. 15. Location estimation error in simulation (randoragament of beacon nodes)

it eliminates the potential influence from beacon node plead.

Both field test and simulation lead to the following conctuss: 1) The current class
of resilient algorithms that can be implemented on MICAz @satan provide reasonable
resiliency against malicious location references; thation errors are well bounded, and
these schemes can resist close to half of the location refesebeing malicious. 2) Re-
silient localization schemes can deal with large injectedrs effectively, but they have
a hard time identifying malicious location references whieminjected errors are small.
Nevertheless, when the injected errors are small, theyamealose to normal measure-
ment errors, and do not introduce significant error into thalfiocation estimation.

Based on our efficiency and resiliency criteria, we can amhelthat the EARMMSE
scheme has the shortest execution time while providing dasimesiliency to the other
schemes. Thus, itis well suited for wireless sensor netapptications running on current
resource constrained sensor platforms such as MICAz motes.

7. RELATED WORK

Many range-based localization schemes have been proparssatisor networks [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2003aajauri and Li 2002; Do-

herty et al. 2001]. Savvides et al. developed AHLOS protbesied on Time Difference
of Arrive [Savvides et al. 2001], which was extended in [Sdeg et al. 2002]. Doherty
et al. presented a localization scheme based on conngctivistraints and relative signal
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Fig. 16. Success rate of removing malicious location refege in simulation (random placement of beacon
nodes)

angles between neighbors [Doherty et al. 2001]. Angle ofvAhis used to develop lo-
calization scheme in [Niculescu and Nath 2003a] and [Nasgnd Li 2002]. Range-free
schemes are proposed to provide localization servicesiéoapplications with less preci-
sion requirements [Bulusu et al. 2000; Niculescu and Naf@8BpNagpal et al. 2003; He
et al. 2003]. Bulusu, Heidemann and Estrin proposed to estim sensor’s location as the
centroid of all locations in the received beacon signaldiyBu et al. 2000]. Niculescu and
Nath proposed to use the minimum hop count and the averageiz®fp estimate the dis-
tance between nodes and then determine sensor nodesblucatcordingly [Niculescu
and Nath 2003b]. None of these schemes will work properlyninere are malicious
attacks.

The location verification technique proposed in [Sastry.&@03] can verify the relative
distance between a verifying node and a sensor node. It dugsrovide a solution to
conduct secure location estimation at non-beacon noddsisipaper, we provide efficient
ways to estimate locations of sensor nodes securely. Th#idocverification technique is
complementary to our techniques since it can be used to entha security of distance
measurement between two nodes.

A robust location detection is developed in [Ray et al. 2003pwever, it cannot be
directly applied in sensor networks due to its high compomeand storage overheads. A
voting-based Cooperative Location Sensing (CLS) was mepdn [Fretzagias and Pa-
padopouli 2004]. However, CLS is designed for powerful rofkeg., PDAS), while our
scheme further uses iterative refinement to improve theopednce with small storage
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overhead. Therefore, our technique can be implemented>awlied efficiently on re-
source constrained sensor nodes.

Similar to our attack-resistant location estimation teghas, the following two tech-
nigues are independently discovered to tolerate maliciasks against location discov-
ery in wireless sensor networks. A robust statistical mestbat is similar to the attacker-
resistant MMSE scheme is discovered in [Li et al. 2005] toi@dh robustness through
Least Median of Squares. A secure range-independentzatialn scheme (SeRLoc) that
is similar to our voting-based scheme is discovered in [saaod Poovendran 2004] to
protect location discovery with the help of sectored ansenat beacon nodes. Compared
to these two studies, we provide more alternative ways &raté malicious attacks and
also include the real implementation and field experimentkis paper.

SPINE [Capkun and Hubaux 2005] is developed to protectiocatiscovery by using
verifiable multilateration. However, the distance bougdiechniques required for verifi-
able multilateration may not be available due to the diffieslto (1) deal with the external
replay attacks in Ultrasound-based distance boundingrathieve nanosecond process-
ing and time measurements in Radio-based distance bourRMBE [Lazos et al. 2005]
is developed by integrating SeRLoc and SPINE. Howevelillitstjuires nanosecond pro-
cessing and time measurements that are not desirable fouthent generation of sensor
networks. Compared with these two studies, we provide igales to tolerate malicious
attacks without the above constraints. Moreover, our psegdechniques can be easily
combined with most of existing localization techniques.

To further enhance the security of location discovery, afral technique is developed
to detect malicious beacon nodes that are providing maléctmeacon signals [Du et al.
2005; Liu et al. 2005b]. This detection technique can belyasimbined with our tech-
nigues. We consider it complementary to the techniquedsmptper.

In addition to secure location discovery, location privdicomes a more and more
interesting topic recently. Several techniques are deegloecently to protect the location
privacy in sensor networks [Ozturk et al. 2004; Kamat et @03].

Security in sensor networks has attracted a lot of atteritidhe past several years. To
provide practical key management, researchers have geal®ey pre-distribution tech-
nigues [Eschenauer and Gligor 2002; Chan et al. 2003; Du 208B]. To enable broad-
cast authentication, a protocol namedESLA has been explored to adapt to resource
constrained sensor networks [Perrig et al. 2001]. Secafisensor data has been studied
in [Przydatek et al. 2003; Hu and Evans 2003]. Attacks againging protocols in sensor
networks and possible counter measures were investigaféGrlof and Wagner 2003].
The research in this paper addresses another fundamectigitggroblem that has not
drawn enough attention.

8. CONCLUSION

In this paper, we developed several attack-resistant MM&&ed location estimation tech-
nigues and a voting-based location estimation techniqdeabwith attacks in localization
schemes. The final schemes, the EARMMSE scheme with incrtahesaluation and the
voting-based scheme are both effective. We also perforxgerenental evaluation of all
the secure and resilient location estimation schemes #rabe used on the current gen-
eration of sensor platforms, through both simulation and ggperiments with a network
of MICAz motes. Our evaluation indicated that the EARMMSHEeame with incremen-

ACM Journal Name, Vol. , No., 20.



34 . Liu, et al.

tal evaluation is most suitable for the current sensor ptats among all the alternative
approaches.
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