
ANIMATED PRESENTATION OF SOME

GREEDY ALGORITHMS

By

YIYIN

Bachelor of Science
Xiamen University

Xiamen, P. R. China
1985

Master of Science
Xiamen University

Xiamen, China
1990

Doctor of Philosophy
Oklahoma State University

Stillwater, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1999

OKLAHOMA STATE UNIVERSITY

ANIMATED PRESENTATION OF SOME

GREEDY ALGORITHMS

Thesis Approved:

{J e t fogJ;
~ean of the Graduate College

11

ACKNOWLEDGMENTS

This project was really a pioneer work to me. Without the encouragement of my

adviser, Dr. Jacques LaFrance, I might have gi ven up a long time ago. Without his

guidance and help, I could not imagine that I would get any results with this program. I

appreciate has valuable teaching in three classes. I also appreciate the help and trust he

gave me when I was his teaching assistant.

I offer gratitude to Dr. George Hedrick for serving on my committee and

constantly providing encouragement. His expertise was very helpful. His critical reviews

of this project and countless personal conversations were very helpful to my program. I

really enjoy the time I sat in his classes and the time I was a Teaching Assistant under his

advice.

I also thank Dr. John Chandler for serving on my committee and providing critical

reviews of this manuscript. I appreciate his valuable teaching in the classroom.

I would also like to acknowledge the Department of Computer Science, without

which this work would have been impossible.

I extend personal thanks to my wife, Jianhong Guo, and our lovely daughter,

Jenny, for their patience and understanding of my absence while completing my degree.

Finally, I thank my mother, Sulan Yin, and father, Youde Zhang, for their

unconditional support not only during my education, but in my entire life.

iii

Chapter

1. INTRODUCTION

TABLE OF CONTENTS

Page

1

1.1 Background 1
1.2 Objectives 1

II. LITERATURE REVIEW 3

2.1 Algorithm animation 3
2.1.1 Definition 3
2.1.2 History of algorithm animation 3
2.1.3 Benefits of algorithm animation 6

2.2 Greedy algorithm 8
2.2.1 Introduction 8
2.2.2 Definition 8
2.2.3 Properties of greedy strategy 9
2.2.4 Minimum spanning trees . . 10

2.2.4.1 Kruskal's algorithm 12
2.2.4.2 Prim's algorithm 12

2.2.5 Shortest path algorithm 13
2.3 Java for animation 15

IlL DESIGN AND IMPLEMENTATION ISSUES 19

3.1 Significant programming techniques J9
3.2 Main elements of the project 21

3.2.1 Dijkstra's Algorithm - Path Package 22
3.2.2 Kruskal's Algorithm - Kruskal Package 29
3.2.3 Prim's Algorithm - Prim Package 38

3.3 Relationships of classes 44
3.3.1 Path Package 44
3.3.2 Kruskal Package 45
3.3.3 Prim Package 46

3.4 Description and analysis of data . 46
3.5 Animation approach 47
3.6 Major features of the project . . 49

IV

Chapter

IV. ENVIRONMENT AND PLATFORM .
4.1 Java development kit
4.2 World Wide Web (WWW) and Web browsers
4.3 Platform .

V. CONCLUSIONS AND FUTURE WORK
5.1 Conclusions
5.2 Future work

LITERATURE CITED

v

Page

51
51
52
53

55
55
56

58

LIST OF FIGURES

Figure

1. The difference between Kruskal's algorithm and Prim's algorithm

2. The start and final steps in computing the shortest path from A to D.

3. Descriptions of the Path class

4. Descriptions of the Options class in the Path package

5. Descriptions of the Slider class

6. Descriptions of the Instruction class in the Path package

7. Descriptions of the DocOptions class in the Path package

8. Descriptions of the DocText class in the Path package

9. Descriptions of the MyCanvas class

10. Descriptions of the MST class

11. Descriptions of the Instruction class in the Kruskal package

Page

11

14

23

24

25

25

26

26

27

30

31

12. Descriptions of the DocOptions class in the Kruskal package 32

13. Descriptions of the DocText class in the Kruskal package 32

14. Descriptions of the ColorChoice class 33

15. Descriptions of the Edge class in the Kruskal package 33

16. Descriptions of the Node class in the Kruskal pachage 34

17. Descriptions of the Graph class

vi

35

Figure Page

18. Descriptions of the MakeGraph class 35

19. Descriptions ofthe NodeLabel class 36

20. Descriptions of the Kruskal class 36

21. Descriptions of the Prim class,..,... 39

22. Descriptions of the Node class in the Prim package 40

23. Descriptions of the Edge class in the Prim package 41

24. Descriptions of the Instruction class in the Prim package 41

25. Descriptions of the DocOptions class in the Prim package

26. Descriptions of the DocText class in the Prim package

27. Descriptions of the Options class in the Pri m package

28. The relationships of classes in the Path package .

29. The relationships of classes in the Kruskal package

30. The relationships of classes in the Prim package .

vii

42

42

43

44

4S

46

I. INTRODUCTION

1.1 Background

Algorithm animation is the use of computer animation to show how algorithms for

computer programs work. Algorithm animation is a powerful tool for studying an

algorithm's behavior. It could be used in teaching computer science courses, in designing

and analyzing algorithms, in making technical drawings, and in documenting programs.

There have been continuous efforts to develop algorithm animation systems. The first

general-purpose system of algorithm animation was produced in the early 1980's. The

most recent work was to develop interactive animation of several types of binary search

trees using Java.

Some data structures have already been presented using animation at Oklahoma State

University. These include the B-tree, stack, queue, list, and binary search trees.

However, there has been little work done on interactive animation of greedy algorithms.

Java is a new object-oriented programming language. Java is one part of the

integrated set of systems that support World Wide Web (WWW) communication. Java

integrates with Hypertext Markup Language (HTML) through applets. Applets are

essential Java programs that the user's browser automatically downloads (as part of Web

page observation) and executes.

1.2 Objectives

This project develops an animation system to illustrate a group of greedy algorithms in

detail. The objective of the project is to develop an animated web page for teaching the

1

greedy algorithms interactively on the Internet by using the Java language. We want to

offer an integrated hypennedia learning environment for greedy algorithms. The system

animates the following greedy algorithms: Kruskal's algorithm and Prim's algorithm for

the minimum spanning tree problem, and Dijkstra's algorithm for the shortest path

problem.

The goals of this thesis are: 1) To provide a graphical user interface (Gill) to enable

the user to observe a graphical representation of the greedy algorithms. 2) To use event­

driven programming techniques to let the user to interact with the animation system at run

time.

This thesis contains five chapters. The second chapter describes the minimum

spanning tree problem and the shortest path problem and reviews the history of algorithm

animation and the Java language. The design and implementation are analyzed in chapter

m. The environment and platform for this project are described in chapter IV. Finally,

conclusions and suggestions for future work are included in chapter V.

2

n. LITERATURE REVIEW

2.1 Algorithm animation

Algorithm animation is a powerful tool for studying an algorithm's behavior. It could

be used in teaching computer science courses, in designing and analyzing algorithms, in

making technical drawings, and in documenting programs.

2.1.1 Definition

An algorithm is a computational procedure that takes some values as input and

produces some values as output. Thus an algorithm is regarded as a sequence of we])­

defined computational steps that transform the input into the output [1]. An algorithm is

guaranteed to halt eventuaUy.

Algorithm animation is the use of computer animation to show how algorithms for

computer programs work. Algorithm animation is one particular instance of software

visualization, which is the use of images, graphics and animation to illustrate computer

algorithms, programs and processes [2]. Algorithm animation is concerned with

demonstrating the behavior of a program or algorithm by visualizing the fundamental

operations of the program as it runs. Such displays are useful both for education and for

research in the design and analysis of algorithms.

2.1.2 History of algorithm animation

There have been continuous efforts to develop algorithm animation systems. The first

general-purpose systems of algorithm animation in the early 1980's used monochrome

3

displays. One of the early systems is BALSA, developed by Brown and others in the

middle 1980's [6]. BALSA was constrained by a lack of computational power for real­

time two-dimensional graphics [2]. As computational power has increased, so has the

sophistication of the graphical techniques used for animating algorithms.

BALSA-II is an improvement of BALSA and is a much more popular system [7]. It

has been used to supplement the teaching of computer programming. BALSA-II is a

standalone system based on a kernel running on Macintoshes. Views for new algorithms

are constructed in Pascal using an animation hbrary. The algorithm is also programmed

in Pascal. Synchronization between the algorithm and the view is achieved by adding

interesting events that trigger an action in the animation.

Brown has also completed a successor to BALSA-II called Zeus [8] in Digital's

Systems Research Center in Palo Alto, where he has investigated the use of color and

sound for algorithm animation [9]. Color was designed as an integral part of Zeus. The

Zeus system uses non-speech sound to convey the workings of algorithms. Zeus can run

on multiprocessor machines and has been used to animate a variety of algorithms for

teaching and research purposes.

In the late 1980's, Stasko [10] implemented a system called TANGO (short for

"Transition-based ANimation GeneratiOn") that can be used to create algorithm

animations. In newer versions of his system, the emphasis is on developing animations

with three-dimensional views of data. Direct manipulation programming techniques were

also integrated into the ani mation development [12] . TANGO provided an elegant

framework for specifying 2D animations {2]. At about the same time, Duisberg pursued

4

decoupling visualization from the program code so that visualizations can be specified

and modified more easily [11].

Another animation system is Anim developed by Bentley and Kernighan [13]. Anim

is used at Bell Labs, running under UNIX and X windows, to produce simple program

animations. Contrary to BALSA-II and TANGO, Anim is not interactive, but more like a

"Camcorder and VCR" [13]. Anim's advantages are due to the wide availability of the

underlying hardware and software and in its reliance on general purpose UNIX tools like

AWK. However, Anim also has disadvantages in that it is not interacti ve, its user

interrace is relatively crude, and it demands an experienced UNIX programmer to do

more than just run the movies.

In the early 1990's, Brown and Najork [2) at Digital's Systems Research Center

reported use of three-dimensional interactive graphics for algorithm animation. 3D

interactive graphics provides another level of expressiveness to the animations.

Most recently, Ierardi and Li at the University of Southern California (URL:

http://langevin.use.edu/BST/) have worked on a new algorithm animation system. Their

project "Animating Algorithm, I" (1997) developed interactive animation of several types

of binary search trees using Java. The algorithms implemented so far include: 1)

Standard binary search trees; 2) Splay trees use bottom-up splaying or Lop-down

splaying; 3) Red-black trees; 4) Randomized binary search trees.

There has been research on computer animation in the Computer Science Department

at Oklahoma State University since 1970's. In recent years, there have been several

studies on data structure animation. Arra [20] animated array, stack, queue, and linked

list structures using the C++ language. Kummetha [21] developed a level-linked R* tree

5

using X windows. Shen [22] studied AVL tree, B-tree, red-black tree, and splay tree

algorithms using the C language. Xu [23] visualized list, stack, and queue, using Lingo

scripting language. Harvick [24] presented animation for stack, linked list, queue, binary

tree, and AVL tree using DSA programming language. Lin [25] worked on B trees using

C++.

2.1.3 Benefits of algorithm animation

Animation is usually taken as a useful aid to learning, especially when the material to

be learned is difficult. Algorithm animation should help beginners in programming to

understand the algorithms. There are two main criteria to judge whether or not animation

assists learning: mastery of knowledge and time of learning (15].

1) Mastery of Knowledge

According to Byrne [15], learners who make and test predictions of what is going to

happen at each step of an algorithm learn more efficiently than learners who passively

take in the information. Here it seems logical that an animation might be of help as

Byrne states [15]: "A learner could certainly make predictions from a static

textual/graphic presentation of an algorithm, but perhaps the advantage of an animation is

that it will spontaneously encourage a learner to make the predictions without being

prompted and will provide the learner with rapid feedback about the accuracy of his or

her predictions."

Understanding is a process of building relations among new concepts and among new

concepts and old concepts, which is affected by background knowledge. Learners with

6

related background can relate the material to their knowledge, and make analogies or

abstractions so as to build up relations to the background knowledge within a shorter time

[16].

Animations can help the learning of knowledge for new learners. However, it seems

that algorithm animation is not so useful in assisting understanding for advanced learners

[15, 16]. One possible reason is that the advanced learners have been well prepared for

logical, procedural and abstract reasoning abilities that are needed in understanding

complex data structures and algorithms.

2) Learning Speed

On the other hand, animation should speed up the learning process of both beginners

and advanced learners.

Algorithms are very suitable for animation compared to other subjects, because the

usual underlying data structures can be easily represented in graphical form [15]. For

such data structures, operations can be illustrated by manipulations of the graphical

representations. When reading the pseudo-codes or text descriptions for an algorithm,

people usually construct a mental image of how a data structure changes. Sometimes

people prefer to make the mental image more concrete and thus more accessible in the

later stages of learning by drawing a picture. Therefore, text with figures is preferred for

learning algorithms. However, if exposed to figures only, people still make efforts to

imagine the transition between figures, interpolating the motion in-between. By using a

computerized algorithm animation, the mental animation is enhanced by an concrete one

[15]. Usually, the computerized animation is faster than the mental one, and more

7

importantly, the computerized one is absolutely accurate. So we can expect that

animation will speed learning.

The learner will possibly still perform a mental animation when a computerized

animation is shown. If this is the case, the learner is predicting the result of the animation

[15]. The prediction can be wrong. So the algorithm animation also plays a role of

automated tutor, validating or correcting the prediction with immediate feedback.

2.2 Greedy algorithm

2.2.1 Introduction

Many computing algorithms can be regarded as a finite series of guesses. In the

travelling salesman problem, for example, we try (guess) each possible tour in turn, then

determine its cost. When we have tried them all, we know which one is the optimum

(least cost) one. However, we must try them all before we can be certain that we know

which is the optimum one, leading to an D(n!) algorithm [3].

Intuitive strategies, such as building up the salesman's tour by adding the city that is

closest to the current city, can readily be shown to produce sub-optimal tours. This is an

example of a greedy strategy.

2.2.2 Definition

A greedy strategy is a heuristic for optimization. At each step of an algorithm, one of

several possible choices must be made. The greedy strategy makes the choice that is the

best at the moment [1]. Each step increases the size of the partial solution and is based on

local optimization: the choice selected is that which produces the largest immediate gain

8

L

while maintaining feasibility. Greedy algorithms are very efficient but generally are not

guaranteed to find globally optimal solutions to problems. However, a greedy strategy is

the best choice for certain problems.

2.2.3 Properties of greedy strategy

How can we tell if a greedy algorithm will solve a particular optimization problem?

There is no way in general, but there are two ingredients that are exhibited by most

problems that lead themselves to a greedy strategy: the greedy-choice property and

optimal substructure [1].

Greedy-choice property: a globally optimal solution can be arrived at by making a

locally optimal (greedy) choice. In a greedy algorithm, we make whatever choice seems

best at the moment and then solve the subproblems arising after the choice is made. The

choice made by a greedy algorithm may depend on choices so far, but it cannot depend on

any future choices or on the solutions to subproblems.

Optimal substructure: an optimal solution to the problem contains within it optimal

solutions to subproblems. This property is a key ingredient of assessing the applicability

of dynamic programming as well as a greedy algorithm.

There is a class of algorithms, the greedy algorithms, for which we can find a solution

by using only knowledge available at the time the next choice (or guess) must be made.

The greedy method is quite powerful and works well for a range of problems, including

the minimum spanning tree problem, the shortest path problem from a single source, and

Chvatal's greedy set-covering heuristic [1].

9

In this project, I will look at two common groups of greedy algorithms: the minimum

spanning tree algorithms and shortest path algorithms.

2.2.4 Minimum Spanning Trees

A spanning tree of a graph, G, is a set of 1"1-1 edges that connect all vertices of the

graph. A spanning tree of a graph is just a subgraph that contains all the vertices of the

graph and is a tree. A graph may have many spanning trees. Suppose the edges of the

graph have weights or lengths. The weight of a tree is just the sum of the weights of its

edges. The minimum spanning tree is the tree with the minimum total weight. There can

be more than one minimum spanning tree for each graph. Obviously, different trees

within a graph may have different weights [1].

In general, it is possible to construct multiple spanning trees for a graph, G. If a cost,

Cjj, is associated with each edge, eij =(Vj,Vj), then the minimum spanning tree is the set of

edges, Espan , fanning a spanning tree, such that:

C =sum(Cij Iall eij in Espan)

is a ffilmmum. A minimum spanning tree connects all the vertices and minimizes the

sum of the lengths of its edges for a connected, undirected graph with a positive length

associated with each edge [5].

There are two common algorithms for solving the minimum spanning tree problem:

Kruskal's algorithm and Prim's algorithm.

10

b

b

(a)

(c)

c

c

b

b

(b)

(d)

c

c

Figure 1. The difference between Kruskal's and Prim's Algorithms

Figure 1 intends to explain the minimum spanning tree (MST) for a graph, without

marking the weight of each edge. The thick lines indicate that these edges are part of the

MST. Figure 1-(a) shows a graph with the direct connections among vertices. Edge e(i,

g), represented by the only thick line, is the start edge. Figure l-(b) shows the MST for

the graph of Figure 1-(a). Figure 1-(c) and figure I-Cd) show an intennediate step for

Kruskal's algorithm and Prim's algorithm, respectively. We will explain these two

algorithms in the following sections.

11

2.2.4.1 Kruskal's Algorithm

KruskaI's algorithm was first presented by J.B. Kruskal in 1956 [5]. Kruskal's

algorithm is the easiest to understand and probably the best one for solving the problem

by hand. Kruskal's algorithm constructs a minimum spanning tree incrementally. For

graphs that are not dense (the number of edges « n2
), Kruskal's algorithm is more

efficient [1].

This algorithm creates a forest of trees at intennediate steps (Figure l-(c». Initially

the forest consists of n single node trees (and no edges). At each step, we add one (the

cheapest) edge so that it joins two trees together. If it were to fonn a cycle, it would

simply link two nodes that were already part of a single connected tree, so that this edge

would not be needed.

2.2.4.2 Prim's Algorithm:

Prim's algorithm was first presented by R.C. Prim in 1957 [5]. Rather than build a

subgraph one edge at a time as in Kruskal's algorithm, Prim's algorithm builds a single

tree (Figure I-(d», not a forest, one vertex at a time. Prim's algorithm adds the cheapest

edge that extends the tree to include a new vertex.

Prim's algorithm operates much like Dijkstra's algorithm for finding shortest paths in

a graph (see next section). Prim's algorithm has the property that the selected edges in

the setA always form a single tree. The key to implementing Prim's algorithm efficiently

is to make it easy to select a new edge to be added to the tree fonned by the edges in set A

[1] .

12

If a priority queue is implemented as a binary heap, the total time for both Kruskal's

algorithm and Prim's algorithm is O(IEllgIVI). If we use a Fibonacci heap to implement

the priority queue, the running time of Prim's algorithm improves to O(IEI + IVllglVl),

which is better if IVI is much smaller than lEI [1].

2.2.5 Shortest Path Algorithm

Single-source shortest-path algorithms are a family of algorithms that, given a directed

graph with weighted edges, find the shortest path from a designated vertex., called the

source, to all other vertices. The length of a path is defined to be the sum of the weights

of the edges along the path [5].

All single-source shortest-path algorithms have certain common features: first, they

assign a cost to each vertex., indicating the length of the shortest path found so far from

the source to this vertex. Initially, the cost will be infinite. Then they repeatedly choose

an edge e from vertex u to vertex v, test if it can lower the cost associated with v, that is,

if COST(v) > COST(u) + WEIGHT(e), and if so, indeed lower v's cost. Algorithms

differ in their choice of which edge to examine next [2].

Dijkstra's algorithm theoretically is the most efficient known algorithm without

constraints for the shortest path problem [1]. Dijkstra's algorithm solves the single­

source shortest path problem on a weighted, directed graph G = (V, E) for the case in

which all edge weights are nonnegative: w(u, v) ~ 0 for each edge (u, v) E E.

Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights

from the source s have already been determined [1]. That is, for all vertices v E S, we

13

have d[v] =O(s, v). The algorithm repeatedly select the vertex u E V-S with the

minimum shortest-path estimate, insert u into s, and relaxes all edges leaving V.

Because Dijkstra's algorithm always chooses the "lightest" or "closest" vertex in

unvisited vertices to insert into the set of visited vertices, we say that it uses a greedy

strategy.

To illustrate how the labeling algorithm works, look at the weighted, undirected graph

of Figure 2-(a). The weights in the graph can represent any cost function, e.g. distance.

For example, we want to find the shortest path from A to D. We start out by marking

7 C 7

2 <)
G 4 H G(5,E) 4 H(8,F)

(a) (b)

Figure 2. The start and final steps in computing the shortest path from A to D.

each of the nodes adjacent to A (the working node), relabeling each one with the distance

from A [27]. Whenever a node is relabeled. we also label it with the node from which the

probe was made, so we can reconstruct the final path later. After all the nodes adjacent to

the working node have been inspected and the tentati ve labels changed if possible. the

entire graph is searched for the tentatively labeled node with the smallest value. Figure 2-

(b) shows the result of the algorithm, with the chosen nodes filled.

14

Dijkstra's algorithm was first published by E.W. Dijkstra in 1959 [4]. It originally

used a linear array but contained no mention of a priority queue. Later version of

Dijkstra's algorithm implemented a priority queue as either a binary heap or a Fibonacci

heap.

If the priority queue is implemented as a linear array, the running time is O(IVI2 + lEI)

= O(IVI2
). If the priority queue is implemented as binary heap, the running time of

Dijkstra's algorithm is O«IVI + lEI) IglVI) =O(jEllgIVI), assuming all vertices aJ'e

reachable from the source. If the priority queue is implemented as Fibonacci heap, then

the running time of Dijkstra' s algorithm is O(IVllgIVI + lEI) [1].

Shortest-path problems are the most fundamental commonly encountered problems in

the study of communication within a network. A shortest-path algorithm is widely used

in many forms because it is relatively simple and easy to implement. Since repeated

determination of shortest paths in large networks often forms the core (and inner loop) of

many transportation planning and utilization packages [18], the search for faster and

faster shortest path procedures never ends.

2.3 Java for animation

Java is a new object-oriented programming language developed by Sun Microsystems.

Java makes it possible for program developers to create content that can be delivered to

and run by users on their own computers. With the delivery platform as the Web page,

Java software can support a variety of information tasks with true interactivity. Sun's

Java web site (http://java.sun.com/docslbooks/tutoriallgetStartediintro/definition.html)

currently says that "Java is a simple, robust, object-oriented, platform-independent multi-

15

threaded, dynamic general-purpose programming environment. It is best for creating

applets and applications for the Internet, intranets and any other complex distributed

networks." Java has many capabilities that can be used to create animations, multimedia

presentations, and further interactivity.

Java is one part of the integrated set of systems that support World Wide Web

(WWW) communication. Java integrates with Hypertext Markup Language (lITML)

through applets. Applets are Java programs that the user's browser automatically

downloads (as part of Web page observation) and executes. Java can run truly complex

Internet applications on server computers [19]. Because Java applications run on a server

computer, they can be fast and highly interactive. Because the resulting applications are

small, they come across the Internet as fast as most graphic files. With graphical input

and output possible through the applet displayed on the page, Java extends the Web into

higher levels of interacti vity. It is entirely possible that in the long run, the model of

people buying programs, installing them, and running them locally will be replaced by a

model in which people click on Web pages, get applets downloaded to do work for them,

possibly in conjunction with a remote server or database [27].

Java is a high-level programming language, similar to C, C++, and Modula-3, but it is

much simpler. All the unnecessary features of high-level programming languages are left

out. Java has implementations linking tightly with platform-native communication

libraries (in C or perhaps C++). These libraries do most of the difficult, speed-and­

memory-intensive work of communication [17]. The Java APls provide a convenient,

consistent wrapper for these various platforms so that if a networking application is

written in Java, it instantly works on any platform that supports the required Java APTs, or

16

runtime modules. The runtime module translates the bytecodes into machine instructions

for a particular computer.

There are some additional solid benefits to writing communicating applications using

Java [17]. Because Java is a nice dynamic, interpreted language, rapid prototyping of

applications is potentially easier than with C or C++.

In addition, Java provides some specific language features such as exceptions, which

can make communications programming easier.

Finally, the broader Java APIs provide a fairly consistent set of libraries for user

interface, file system, and so forth that work across platforms, and it's fairly easy to wrap

communications code quickly within a GUI-based testbed. Java provides a solid platform

for developing communicating applications [17].

Sun's Java web site (http://java.sun.com/docsfbooks/tutoriallgetStartedJintro/

changemyJife.html) states that a program written in Java is clearer and requires less effort

than many other languages. Java can help a programmer do the following:

• Get started quickly: Java is not only a powerful object-oriented language, but also

easy to learn, especially for programmers already familiar with C or C++.

• Write less code and develop programs faster: Comparisons of program metrics (class

counts, method counts, and so on) suggest that a program written in Java can be

smaller than the same program in C++. So program development time may be faster

than writing the same program in C++.

• Write better code: The Java language encourages good coding practices, and its

garbage collection helps avoid memory leaks. Java's object orientation, and its wide-

17

ranging, easily extendible API encourage reusing other people's tested code and

thereby introduces fewer bugs.

• Avoid platform dependencies with 100% Pure Java: Because pure Java programs are

compiled into machine-independent bytecodes, they run consistently on any Java

platform.

• Distribute software more easily: Applets can be easily upgraded from a central server.

Applets take advantage of the Java feature of allowing new classes to be loaded "on

the fly," without recompiling the entire program.

The disadvantage of the Java language is that it is slow when compared with C or

C++, because the Java compiler cannot compile source code to machine code. The users

must use the Java interpreter to interpret the bytecode every time when they want to run

the programs. In addition, the Java language is not very stable because it is so new. New

features are added to it so quickly that a program might be "too old" to be accepted by the

current compiler if it were written one year ago.

18

m. DESIGN AND IMPLEMENTATION ISSUES

This project develops an animation system to illustrate a group of greedy algorithms in

detail. The objective of the project is to develop an animated web page for teaching the

greedy algorithms interactively on the Internet by using the Java language. The system

animates the following greedy algorithms: KruskaJ's algorithm and Prim's algorithm for

the minimum spanning tree problem, and Dijkstra's algorithm for the shortest path

problem.

The animation system is made available on the Internet. The temporary WWW address

is: http://www.su.okstate.edu/students/yiyin/greedy.html. There are brief introductions

about the system. It has an easy to use interface that illustrates an algorithm through its

results. A user can choose one of the three algorithms to run. Target users are students

learning greedy algorithms for the first time. A user can run the animation system

remotely using common Java-compatible Web browsers such as Netscape. Internet

Explorer, or HotJava.

The system is interactive. It will accept parameters from the user at runtime and pass

them to the applets. With the interactive visualization, the user can change some

graphical parameters interactively at running time, and immediately see the resulting

structure produced by the algorithm under consideration.

3.1 Significant programming techniques

The animation system is written mostly in Java. A Java source file is created using a

plain text editor, vi under UNIX and NotePad under MS-Windows. Source codes are

19

saved and compiled with the Java development kit (JDK) by running the JAVAC

compiler program from the same directory. The compiler for JDK version 1.1.6 is used

to compile the Java programs in this project. The results of this compilation are Java

class files, which produce three applets.

The next step is to embed the applets into an lITML document for Web pages, which

is saved as greedy.htm!. All the files reside in the same directory. Because the applets

are embedded, it takes on all of the typical attributes of Java applets [19]. They exist

within a window, between <APPLET> and <JAPPLET>, as defined by the HTML code

and will be loaded/unloaded appropriately as the Web pages are loaded and unloaded

from the Web browser.

Event-driven programming is used to implement the project. A Java GUT is composed

of many Gill components. The GUI components generate events that indicate that

specific actions have occurred. Event-driven programming is a technique for constructing

software that operates in response to events as they occur [281. Synchronization between

the algorithm and the GUI is achieved by adding interesting events that trigger an action

in the algorithm animation. The following Java events are used in the project:

ActionEvent, KeyEvent, ItemEvent, AdjustmentEvent, MouseEvent, and

MouseMotionEvent.

Multiple threads are used for the project. A thread is a sequential flow of execution

through a program that occurs at the same time another sequential flow of execution is

processing the same program [28]. Threads are created by implementing the Runnable

interface and then implementing the run method. A background thread is calculating and

20

drawing the working node while the current thread displays the screen. The program

itself can split into multiple threads of execution that seem to run concurrently.

3.2 Main Elements of the Project

The entry point of the animation system is a Web page that is titled "Animation of

Greedy Algorithms". The animation system is made available on the Internet. The

temporary WWW address is: http://www.su.okstate.eduJstudents/yiyin/greedy.html.It

might eventually be integrated into Dr. LaFrance's home page (URL address:

http://a.cs.okstate.edu/-jacquesl).

The home page has a brief introduction to greedy algorithms. There are three choices

of greedy algorithms: Dijkstra's algorithm, Kruskal's algorithm, and Prim's algorithm.

Clicking on each hyperlink will lead to one web page corresponding to the respective

algorithm. Each algorithm web page has general information about that algorithm and

how to use the animation system. The most important element of the algorithm web page

is a hyperlink connecting to a Java applet that actually implements the animation of the

algorithm.

There are three Java packages: Path, Kruskal, and Prim, each containing Java classes

for animation of the corresponding algorithm. Although the animations of the three

algorithms have similar control panels of the Gills, the designs for the three algorithms

are different in order to research and compare different approaches to solve similar

problems. Also, the input data are provided differently for the three algorithms. We

explain the classes in each package in next section. We will explain the other aspects of

the packages later in this chapter.

21

3.2.1 Dijkstra's Algorithm - Path Package

Dijkstra's algorithm constructs a set S of vertices whose final shortest-path weights

from the source s have already been detennined. That is, for all vertices v E S, we have

d[v] =8(s, v). The algorithm repeatedly selects the vertex u E V-S with the minimum

shortest-path estimate, insert u into s, and relaxes all edges leaving V.

Following is the pseudo-code of Dijkstra's algorithm [I).

DIJKSTRA(G, W, S)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2Sf--O

3 Q f-- V[G]

4 while Q :;e 0

5 do u f-- EXTRACT-MIN(Q)

6 Sf--Su{u}

7 for each vertex v E Adj[u]

8 do RELAX(u, v, w)

Dijkstra's algorithm chooses edges as shown above. Line 1 perfonns the initialization

of d (a shortest-path estimate) and 7t (node's predecessor field) values, and line 2

initializes the set S to the empty set. Line 3 then initializes the priority queue Q to

contain all the vertices in V-S =V - 0 =V. Each time through the while loop of lines 4­

8, a vertex u is extracted from Q = V-S and inserted into set S. (the first time through this

loop, u = s) Vertex u, therefore, has the smallest shortest-path estimate of any vertex in

22

v-So Then, lines 7 - 8 relax (e.g. test whether we can improve the shortest path to v

found so far by going through u and, if so, updating d[v] and 1t[v]) each edge (u, v)

leaving U, thus updating the estimate d[v] and the predecessor 1t[v] if the shortest path to

v can be improved by going through u. Vertices are never inserted into Q after line 3 and

that each vertex is extracted from Q and inserted into S exactly once, so that the while

loop of lines 4 - 8 iterates exactly IVI times.

Following are the descriptions of classes in the Path package.

1. Path Class

This is the driving class (Figure 3) of the package. The animation of shortest path

problem is started here. This class initializes all of the variables and creates all of the

panels. It builds an applet by extending the Applet class. This applet defines the

graphical user interface (Gill) with which the user actually interacts.

Path class
extends Applet

Data:

MyCanvas myCanvas;
Options options;
Slider slider;
Instruction instruction;

Method:

void initO;
Insets getInsetsO;
void 10ckO;
void unlockO;
void paint(Graphics g);

Figure 3 Descriptions of the Path class.

23

2. Options Class

This is the control panel (Figure 4) on the right of the GUI. There are several buttons

for showing, running, and clearing the visualization of the algorithm. All the buttons are

event-listeners. When the user's mouse clicks on one button, the button listens to the

click and then takes corresponding actions.

Options class
extends Panel

implements ActionListener

Method:

Path parent;
Button bI, b2, b3;
Button b4, b5, b6 ;
boolean Locked;

Options(Path myparent);
void init();
void actionPerformed(ActionEvent evt);
void lock();
void unlockO;

Figure 4 Descriptions of the Options class in the Path package.

3. Slider Class

This is the control panel (Figure 5) on the left of the GUJ. There is a scroll bar for

adjusting the running speed of the animation. This class implements AdjustmentListener,

which will set the running speed of the algorithm according to the adjusted value of the

scroll bar.

24

Slider class
extends Panel

implements ActionListener, AdjustmentListener

Method:

static final int PAUSE,
VISlBLE, MINB, MAXB;
Path parent;
Button bI, b2, b3;
Scrollbar scroll;
boolean Locked;

Slider(Path myparent);
void initO;
void actionPerformed(ActionEvent evt);
adjustmentValueChanged
(AdjustmentEvent evt);
void 10ckO;
void unlockO;

Figure 5 Descriptions of the Slider class.

4. Instruction Class

This is the display panel (Figure 6) on the top of the GUI. It consists of two elements:

a choice box and a text area. When an item in the choice box is clicked, the

corresponding explanation is shown in the text area.

Data:

DocOptions docopt;
DocText doctext;

Instruction class
extends Panel

Method:

void initO;

Figure 6 Descriptions of the Instruction class in the Path package.

5. DocOptions Class

25

This panel (Figure 7) implements a choice box from which key words can be chosen

to show instructions in the text area of its parent, an object of Instruction Class.

DocOptions class
extends Panel

implements ItemListener

1Data:

Choice doc;
Instruction parent;

Method:

DocOptions(Instruction myparent);
void initO;
void itemStateChanged(ItemEvent evt);

Figure 7 Descriptions of the DocOptions class in the Path package.

6. DocText Class

DocText class
extends TextArea

Data: Method:

String drawnodes, rmvnodes;
String mvnodes, startnode, done;
String drawarrows, weight, some;
String nnvarrows, cleerset, none;
String runAlg, step, toclose;
String example, exitbutton, info;
String maxnodes, locked, doc;

DocTextO;
void showline(String str);

Figure 8 Descriptions of the DocText class in the Path package.

26

This is the text area (Figure 8) in the Instruction Class. The text area is used to

display instructions when a key word is chosen or the algorithm is running.

7. MyCanvas Class

MyCanvas class
extends Canvas

implements Runnable, KeyListener, MouseMotionListener, MouseListener

Method:

final int MAXNODES, MAX;
final int NODESIZE, DUKSTRA ;
final int NODERADIX;
Point node[], arrow[UJ;
Point startp[U], endp[][];
Point thispoint, oldpoint;
float dir_x[][], diCY[][];
boolean algedge[][], changed[];
Color colomode[J;
int weight[][], dist[], finaldist[];
int numchanged, neighbours, step;
int mindist, minnode, minstart,
minend;
int numnodes, emptyspots, hitnode;
int nodd, node2, startgraph;
Image offScreenimage;
Graphics offScreenGraphics;
Dimension offScreenSize;
Thread algrthm;
Path parent;

MyCanvas(Path myparent);
void 10ckO; void unlockO;
void startO; void initO;
void clearO; void resetO;
void runAIgO; void stepAIgO;
void stopO; void initAIgO;
void runO; void nextStepO;
void showExampleO;
void keyPressed(KeyEvent evt);
void keyReleased(KeyEvent evt);
void mousePressed(MouseEvent evt);
void mouseDragged(MouseEvent evt);
void mouseReleased(MouseEvent evt);
boolean nodeHit(int x, i.nt y, int dist);
boolean arrowHit(int x, int y, int dist);
void nodeDeleteO;
void changeWeight(int x, int y);
void arrowUpdate(int pI, int p2, int w);
synchronized void update(Graphics g);
void drawArrow(Graphics g, int i, int j);

Figure 9 Descriptions of the MyCanvas class.

This is the heart of the Path package. It actually implements Dijkstra' s algori thm

(Figure 9). The Runnable interface is implemented so that a thread will be created to

27

execute the algorithm. This canvas will listen to key events and mouse events in order to

add, delete, and move nodes. It can also take an action of change start node and weight of

an edge, according to which event occurs.

28

3.2.2 Kruskal's Algorithm - Kruskal Package

The algorithm manages a set A, a forest, that is always a subset of some minimum

spanning tree. At each step, an edge (u, v) is determined that can be added to A without

violating this invariant. The safe edge added to A is always a least-weight edge in the

graph that connects two distinct components.

Following is the pseudo-code of Kruskal's algorithm [1]:

KRUSKAL(O, w)

1 A <- 0

2 for each vertex v E V[O]

3 do MAKE-SET(v)

4 sort the edge of E by nondecreasing weight w

5 for each edge (u, v) E E, in order by nondecreasing weight

6 do if FIND-SET(u)"* FIND-SET(v)

7 then A f- A u {(u, v)}

8 union (u, v)

9 return A

Lines 1 - 3 initialize the set A to the empty set and create Ivl tree, one containing each

vertex. The edges in E are sorted into order by nondecreasing weight in line 4. The for

loop in lines 5 - 8 checks, for each edge (u, v), whether the endpoint u and v belong to the

same tree. If they do, then the edge (u, v) cannot be added to the forest without creating a

cycle, and the edge is discarded. Otherwise, the two vertices belong to different trees, and

29

the edge (u, v) is added to A in line 7, and the vertices in the two tree are finally merged

in line 8.

Following are the descriptions of classes in the Kruskal package.

1. MST Class

MST class
extends Applet

implements Runnable, ActionListener, IternListener, AdjustmentListener

Method:

static int MAX_WEIGlIT;
static int OP_COUNT; !

int CUrT_Size;
int nexcsize;
Panel disp, top, bot;
Button reset, step, run, clear;
TextField weighcfieJd, size_field,

edge_field, costjield, msCfield;
Scrollbar slider;
Graph G;
CheckboxGroup group;
Checkbox show, hide;
Thread thread;
Instruction instruction;
static final int MinYert, MaxYert;

void initO; void runAlgO;
void startO; void runO;
void clearO; void stopO;
Insets getInsetsO;
void update(Graphics g);
void paint(Graphics g);
void newProblem(int n);
void
adj ustmentYalueChanged(Adj ustment
Event e);
void actionPerformed(ActionEvent e);
void itemStateChanged(ItemEvent e);
static void CountOpO;

Figure 10 Descriptions of the MST class.

This is the main class (Figure 10) for the animation of Kruskal's algorithm. This

class initializes all of the variables and creates all of the panels for controlling

parameters and progressing Kruskal's algorithm.

30

2. Instruction Class

This is the display panel (Figure 11) on the top of the GUI. It consists of two

elements: a choice box and a text area. When an item in the choice box is clicked, the

corresponding explanation is shown in the text area.

Instruction class
extends Panel

Data:

DocOptions docopt;
DocText doctext;

.Method:

Instruction 0;

Figure 11 Descriptions of the Instruction class in the Kruskal package.

3. DocOptions Class

This panel implements a choice box (Figure 12) from which key words can be

chosen to show instructions in the text area of its parent, an object of Instruction Class.

31

-

DocOptions class
extends Panel

implements ItemListener

Method:

Choice doc;
Instruction parent;

DocOptions(lnstruction myparent);
void initO;
void itemStateChanged(ItemEvent evt);

Figure 12 Descriptions of the DocOptions class in the Kruskal package.

4. DocText Class

This is the text area (Figure 13) in the Instruction Class. The text area is used to

display instructions when a key word is chosen or the algorithm is running.

DocText class
extends TextArea

Data:

final String no_oCnoeds;
final String no_oCedges;
final String totaLweight;
final String rosCweight;

Method:

DocTextO;
void showline(String 8tr);

Figure 13 Descriptions of the DocText class in the Kruskal package.

32

5. ColorChoice Class

This class creates a set of 64 distinct colors (Figure 14). Each call to newColor

steps to the "next" color, and wraps around to the beginning again after generating all

64 colors.

ColorChoice

Data:

static int count;

Method:

static Color newColor();
static void reset();

1

Figure 14 Descriptions of the ColorChoice class.

6. Edge Class

Edge class

Node vI, v2;.
public int weight;
boolean marked;

I,
,

I

Method:

Edge(Node v1, Node v2, int weight);
void markO; void unmarkO;
void draw(Graphics g, Dimension dm,

boolean show_weight);

Figure 15 Descriptions of the Edge class in the Kruskal package.

33

The Edge class (Figure 15) encapsulates the notion of a weighted graph edge. It

provides a method for drawing the edge (with or without label) using two different

"styles", depending on whether the edge is marked or not. Marked edges indicate the

minimum spanning tree.

7. Node Class

The Node class (Figure 16) encapsulates the notion of a labeled node in a graph. A

node has both a spatial position (i.e. 2D coordinates) and a reference referred to as a

NodeLabel. The node class also has method to draw itself.

Node class

Data:

public double x, y;
NodeLabcl label;
static int VertRad;

Mathod:

Node(double x, double y);
NodeLabel getLabelO;
void setLabel(NodeLabellabel);
void draw(Graphics g, Dimension dim);
void resetO;

Figure 16 Descriptions of the Node class in the Kruskal package.

8. Graph Class

The Graph class (Figure 17) encapsulates a graph with weighted edges, where any

subgraphs can be marked and displayed differently. Its reset method unmarks all of the

edges and nodes.

34

Vector edges;
Vector vertices;

Graph class

Method:

GraphO;
int numEdgesO; int numNodesO;
Edge edge(int I); Node node(int I);
Vector getEdgesO; void resetO;
Node addNode(double x, double y);
void draw(Panel P, boolean
show_weights);

Figure 17 Descriptions of the Graph class.

9. MakeGraph Class

This class (Figure 18) generates an example for Kruskal's algorithm. The static grid

method generates a sparse graph that consists of an n x n grid of nodes, including lhe

edges.

MakeGraph class

IDaia Method:

static Graph grid(int n);

Figure 18 Descriptions of the MakeGraph class.

10. NodeLabel Class

35

This class (Figure 19) is used to create unique labels for nodes. Each instance of

NodeLabel contains a color and a size, which indicates how many nodes share this

label. The getRoot method follows parent pointers up the tree, while the union method

makes the tree containing node u point to this label.

NodeLabel class

Method:

public int size;
public Color color;
public NodeLabel parent;

NodeLabelO;
NodeLabel getRootO;
void union(Node u);

Fi gure 19 Descriptions of the NodeLabel class.

11. Kruskal Class

Kruskal class

Method:

public int myWeight, weight;
int nUID_edges, count;
public int num_nodes, mark_count;
Vector sortedge;

Figure 20 Descriptions of the Kruskal class.

36

void startUp(Graph G);
boolean stepO;

This is the class that implements Kruskal's algorithm (Figure 20). It is responsible

for sorting the edges (in linear time) and incrementally building the minimum spanning

tree.

37

3.2.3 Prim's Algorithm - Prim Package

Unlike Kruskal's algorithm, Prim's algorithm has the property that the edges in the

selected set always form a single tree. Prim's algorithm choose the cheapest edge that

extends the tree to include a new node.

Following is the pseudo-code for Prim's algorithm [1].

MST-PRIM

1 Q~ V[O]

2 for each u E Q

3 do key[u] ~ 0

4 key[r] ~ 0

5 1t[r] ~ Nll..

6 while Q # 0

7 do u~ EXTRACT-MIN(Q)

8 for each v E Adj[u]

9 do fi v E Q and w(u, v) < key[v]

10 then 1t[v] ~ u

11 key[v] ~ w(u, v)

Lines 1 - 4 initialize Q to contain all the vertices and set the key of each vertex to ce,

except for the root r, whose key is set to O. Line 5 initializes 1t[r] to Nll..., since the root r

has no parent. Throughout the algorithm, the set V-Q contains the vertices in the tree

38

being grown. Line 7 identifies a vertex U E Q incident on a light edge crossing the cut

(V-Q, Q). Removing u from the set Q adds it to the set V-Q of vertices in the tree. Lines

8 - 11 update the key and 1t fields of every vertex v adjacent to u but not in the tree.

1. Prim Class

Prim class
extends Applet

implements Runnable, ItemListener

Method:

int n, m, u, snode, iteration,
step;
int pre_s_first, pre_s_last;
boolean isdigraph;
Node v[J;
Edge e[];
TextField weighcfiel.d,
mst3ield;
Thread thread;
Graphics g;
Instruction instruction;
Options options;
Panel disp, left;

I CheckboxGroup group;
i Checkbox samplel,
sample2,

sample3;
public int pause;

void initO; void update(Graphics G);
void clearO; void stopO;
void stepAlgO; void runAIgO;
void startO; void runO;
void stepl0; void step20;
void step30; void step40;
void rdbO; void inicsubO;
void itemStateChanged(ltemEvent e);
void getlnput(String filename);
Insets getInsetsO;
input~raph(InputStream is);
append_pre_s(int i);
void remove_pre_s(int i);
int totalWeightO;
int calWeightO;
double weight(Node n, double x, double y);
void paintNode(Graphics g, Node n,
FontMetrics fm);
drawArrow(Graphics g, int xl, int y I, int
x2, int y2);
void paintEdge(Graphics g, Edge e,
FontMetrics fm);
void paint(Graphics graph);

Figure 21 Descriptions of the Prim class.

39

This is the driving class (Figure 21) for Prim's algorithm. This class initializes all of

the variables and creates all of the panels for controlling parameters and progressing

Prim's algorithm.

2. Node Class

This class (Figure 22) defines all of the variables necessary to identify a node. It is

actually similar to struct in C or C++. There is no method in the class.

Node class

Data:

int X, y, delta_plus, delta_minus;
int dist, prev, suce, pred;
int W, h, pw, dx, dy;
String name;

IMethod:

Figure 22 Descriptions of the Node class in the Prim package.

3. Edge Class

The Edge class (Figure 23) defines all of the variables necessary to identify an edge.

As the Node class mentioned above, there is no method implemented in this class.

40

Edge class

Method:

int mdd_plus, mdd_minus;
int delta_plus, delta_minus, len;
String name;

Figure 23 Descriptions of the Edge class in the Prim package.

4. Instruction Class

This is the display panel (Figure 24) on the top of the GUI. It consists of two

elements: a choice box and a text area. When an item in the choice box is clicked, the

corresponding explanation is shown in the text area.

Instruction class
extends Panel

Method:

DocOptions docopt;
DocText doctext;

Instruction 0;

Figure 24 Descriptions of the Instruction class in the Prim package.

41

5. DocOptions Class

This panel (Figure 25) implements a choice box from which key words can be

chosen to show instructions in the text area of its parent, an object of Instruction Class.

DocOptions class
extends Panel

implements ItemListener

Method:

Choice doc;
Instruction parent;

DocOptions{Instruction myparent);
void initO;
void itemStateChanged(ItemEvent evt);

Figure 25 Descriptions of the DocOptions class in the Prim package.

6. DocText Class

DocText class
extends TextArea

Method:

final String no_oCnoeds;
final String no_oCedges;
final String totaLweight;
final String mseweight;

DocTextO;
void showline(String str);

Figure 26 Descriptions of the DocText class in the Prim package.

42

This is the text area (Figure 26) in the Instruction Class. The text area is used to

display instructions when a key word is chosen or the algorithm is running.

7. Options Class

This is the control panel (Figure 27) on the right of the GUI. There are several

buttons for showing, running, and clearing the visualization of the algorithm. All the

buttons are event-listeners. When the user's mouse clicks on one button, the button

listens to the click and then takes corresponding actions.

Options class
extends Panel

implements ActionListener

Method:

Prim parent;
static final int PAUSE, MINBAR,

MAXBAR =5000;
Button bRun, bStep, bReset;
Button bClear, bExit;
boolean Locked=false;
Scrollbar slider;

Options(Prim myparent);
void initO;
void actionPerfonned(ActionEvent evt);
void
adj ustmentValueChanged(AdjustmentE
vent e);
void JockO; void unJockO;

Figure 27 Descriptions of the Options class in the Prim package.

43

3.3 Relationships of classes

The processing of classes in one of the three packages is based on communication

among their objects as outlined below.

3.3.1 Path package

Options class

Figure 28 The relationships of classes in the Path package.

Slider class

The Path class in the Path package (Figure 28) is the main method. The program is

started from this class. This class initializes all of the variables and creates all of the

panels for the OUI.

The Options class and Slider class provide the user with the control of the program.

The MyCanvas class show the visualization of Dijkstra's algorithm. The Instruction class

explains how to use the system and what happens step by step when the program is

runnmg.

44

---_....

3.3.2 Kruskal's Package

DocOptions class

Figure 29 The relationships of classes in the Kruskal package

The MST class is the driving class in the Kruskal package (Figure 29). The

subprogram for Kruskal's algorithm is started from this class. This class initializes all of

the variables and creates all of the panels.

The MakeGraph class initializes the GUI when it is first called by the MST class, then

the Kruskal class visualizes the progress of each step of Kruskal's algorithm by calling

the Graph class. The Graph class depends on the Node class and Edge class to draw

graphics on the screen when the program is running.

45

-

3.3.3 Prim package

DocText class

Figure 30 The relationships of classes in the Prim package.

The Prim class is the driving class in the Prim package (Figure 30). This class

initializes all of the variables and creates all of the panels for the Gill. This class also

visualizes the progress of each step of Prim's algorithm.

As in the other two subprograms, the Instruction class explains how to use the

subprogram and what happens step by step when the program is running. The Options

class provides the user with the control over the running of the program.

3.4 Description and analysis of input data

We have one default input data set for the Path package for Dijkstra's algorithm. The

data set has 10 nodes and 18 edges. The user chooses the default input data by clicking

the Example 1 button. The user can add or delete as many nodes as he wants. The user

can also build his own input data by clicking the Example 2 button and then adding nodes

and drawing edges. Clicking on the center display area will add one node onto the screen.

46

..

The first node added to the graphics will be the start node. Pressing down the etrl key

and clicking on a node will delete that node. A node can be moved to a new position by

pressing down the Shift key and clicking a node and then dragging it to the new position.

An edge can be added by clicking on an existing node and dragging it to another existing

node. The weight of an edge can be adjusted by moving the triangle on that edge. The

user has control over how to arrange the input data.

For the Kruskal package for Kruskal's algorithm, the input data are generated by a

method in the MST class. The input data ranges between 9 (3 x 3) to 100 (10 x 10)

nodes. Each node has a randomly chosen color. The user controls the size of input data

by adjusting the scrollbar on the right controlling panel. Then the user can display the

new input data set by clicking the reset button.

We have three input data files for the Prim package for Prim's algorithm. The input

data files are stored on the server computer. When the user chooses one of the three files

by clicking one of the choice boxes, the applet, which is running on the client computer,

will establish a remote connection to the server computer by initiating a URL object.

Then the corresponding data are transferred to the client computer. The new input data

wi II be displayed immediately after the user clicks one of the choice boxes.

3.5 Animation Approach

In a graphical user interrace (GUI), the display shows various graphical objects as

icons and input devices such as buttons and scroll bars. Using the keyboard or mouse, the

user can manipulate these objects directly on the screen at runtime. In this project,

graphical objects can be dragged, buttons can be pushed, and scroll bars can be scrolled.

47

-

With Gills, the user can directly interact with the objects on the display instead of

watching the animation passively.

In this project, the image objects are nodes that are represented by many identical

circles. These nodes are connected together by edges, with the edge weight printed

beside each one. Whenever an animating operation occurs, the program changes one

node or edge each time.

We basically achieve the animation by marking the next chosen node with a different

color. There are two major operations, marking the working nodes (and edges) and

marking the chosen node (and edges), to show the user how the algorithm progresses.

The roles for marking color are different for the three algorithm animations in order to

help the user distinguish the different algorithms.

In the animation for Dijkstra's algorithm, the start node is marked green and other

nodes are originally marked dark gray. While the algorithm progresses, the working

nodes and edges are marked red. Then the chosen node and edge are permanently marked

yellow. No distance is marked for a node when the applet is initiated. The distances

from the start node to the nodes are also shown for the working nodes.

In the animation for Kruskal's algorithm, the nodes are originally marked with 64

different colors, even though the difference between some close colors may not be

distinguishable by human eyes. An edge is marked red after it is included into one of the

forests. All of the nodes in a forest are changed to the same color. The color is decided

by the color of the first chosen node in this forest. Eventually all of the temporary forests

will merge into one forest, so the nodes will be marked the same color when the

algorithm finishes running.

48

,
"

For the animation of Prim's algorithm, the nodes are originally represented by a pink

circle with a gray filling color and the edges are marked gray. The working nodes and

edges are marked blue .. The chosen node is first filled with pink and then marked red.

The chosen edge is marked red.

3.6 Major features of the Project

The animation system includes the following features:

• Interactive. A high degree of interactivity is necessary to keep users interested and

improve their understanding of the fundamental concepts of an algorithm. Input data

is saved and loaded using files on the web server or interactively provided by the user

at remote computer. Users are able to select their own input. For novice users, on the

other hand, a predefined input data set should be offered. Users also are able to

interact with the system when an algorithm is running. In the system. controller

elements emphasizing the main steps invite the user to interact with the animation by

starting the next logical step of the algorithm.

• Adjustable time (speed). The user can control the speed of transitions in the

presented algorithm: they may be sudden or gradual. Hence the user can see the

changes to the data more clearly according to their learning speeds. The animation

system runs at a range of comfortable speed. It should be independent from hardware

and degrade gracefully if the system ran on slower hardware.

• Help is available for the system as a whole, for components on the user interface, and

for the common tenninology of greedy algorithms.

49

• Color used to convey information clearly. Color plays an important role on the

system. The progress of the running algorithm is mainly indicated by changing color.

Color is used for five distinct purposes: encoding the state of data structures, tying

views together, highlighting activity, emphasizing patterns, and making history

visible.

• Includes algorithm analysis. Statistics of the algorithm's behavior is included

wherever appropriate. Once an algorithm is run several times, it would be useful for

the student to be able to see how different options affect the operation of the

algorithms. These options are either parameters to the algorithms themselves, or

variations in the input to the algorithm. Statistics information is shown during the

execution of the animations. Visual comparisons between different similar

algorithms further deepens the understanding of the student.

50 t..

IV. ENVIRONMENT AND PLATFORM

This chapter contains a description of the environment and operating system that are

used for implementation the animation system of this project.

4.1 Java development kit

The Java development kit (JDK) contains the software and tools needed to compile,

debug, and run applets and applications written using the Java programming language.

The JDK provides a compiler that is necessary to compile all kinds of Java programs. It

also provides an interpreter to run Java applications. The JOK Applet Viewer or any

Java-compatible Web browsers can be used to run Java applets.

The Java programs in this project are compiled by the JOK version 1.1.6 compiler.

Applets that depend on any new 1.1.6 APls may not work on any browsers that support

only JOK 1.1.2 or earlier versions, such as Internet Explorer 3.0 and Netscape Navigator

4.02, or earlier versions.

10K version 1.1.6 was released on April 24, 1998. In JDKs prior to version 1.1.6,

field fileNameMap of java.net.URLConnection was public. Tn JDK 1.1.6 and later,

fileNameMap is private. Accessor and mutator methods getFileNameMap and

setFileNameMap have been added to java.net.URLConnection beginning in JDK 1.1.6.

Also, javaoio.File follows proper Windows conventions. Windows recognizes a distinct

working directory for each drive. A bare drive name refers to the working directory for

that drive.

51

i
~.

I..

4.2 World Wide Web (WWW) and Web browsers

The Internet is the collection of interconnected networks all over the world. Users on

the Internet can exchange electronic mail with each other, transfer files from computer to

computer that may be thousands of miles away, and access databases of information

remotely [27].

In its short history, the Internet has experienced exponential growth. Much of the

growth comes from connecting existing networks to the Internet. The glue that holds the

Internet together is the TCP/IP reference model and TCP/IP protocol stack.

In the early 1990s, the WWW (World Wide Web) made another revolution and

brought millions of new, nonacademic users to the Internet [27]. This application did not

change any of the underlying facilities but made them easier to use for nonacademic

people. Together with Web browsers such as the Mosaic viewer and Netscape Navigator,

the WWW made it possible for a site to set up a number of pages in infonnation

containing text, pictures, sound, and even video, with embedded links to other pages. By

clicking on a link, the user is suddenly transported to the page pointed to by the link.

The WWW is mostly used on the Internet, but they do not mean the same thing. The

Web refers to a body of information, an abstract space of knowledge, while the Internet

refers to the physical side of the global network [28]. The WWW uses the Internet to

transmit hypennedia documents between computer users internationally. It is possible to

use the WWW software without having to use the Internet. But Internet is necessary in

order to make fun use of and participate in the WWW.

Web software is designed based on a distributed client-server architecture. The

language that Web clients and servers use to communicate with each other is called the

52

.;,
I

I..

HyperText Markup Language (HfML). By embedding the markup commands within

each HfML file and standardizing them, it becomes possible for any Web browser to

read and refonnat any Web page [27]. HTML is widely praised for its ease of use. It

allows users to produce Web pages that include text, graphics, and pointers to other Web

pages. We have used HTML 3.0 to write the Web pages for this project.

Web pages must be viewed via Web browsers. The user should be able to view the

Web pages of this project using common Web browsers such as Netscape Navigator,

Internet Explorer, and HotJava. However, the user must use Navigator version 4.06,

Internet Explorer version 4, or higher version. Because only these new versions support

JDK 1.1.6, the new version of the Java language used to develop the programs in this

project.

4.3 Platfonn

The computer used for developing Java programs in this project is Sun Microsystems

Enterprise 3000. This machine is configured with two UltraSparc processors each

running at 256 MHz, and 256MB of main memory. It is running Sun's Solaris 2.5.1

(SunOS 2.5.1) operating system. The SoJaris 2.x is a fuJI 32-bit operating system based

on UNIX System V Release 4 (SYR4). It has extensive functionality in areas such as

symmetric multiprocessing (MP) with multithreads (MT), real-time functionality,

increased security, and improved system administration. The Solaris operating system is

one of the operating systems that has a Java compi ler for JDK 1.1.6.

The programs of this project have also been tested in Windows 98 operating system

with a Java compiler for JDK 1.1.6. If the programs are compiled and stored on a

53

,

,..,
!

Windows 98 operating system, the user can view the project locally using a common Web

browser, without having to connect to the Internet.

54

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an interactive animation of some greedy algorithms.

The project is delivered as a Web page that can be viewed over the Internet by a common

Web browser such as Netscape Navigator (4.06 or higher version), Internet Explorer. and

HotJava.

5.1 Conclusions

This project develops an animation system to illustrate a group of greedy algorithms in

detail. The animated web page can be used for teaching the greedy algorithms

interactively on the Internet. The system offers an integrated hypermedia learning

environment for greedy algorithms. The system animates the following greedy

algorithms: Kruskal's algorithm and Prim's algorithm for the minimum spanning tree

problem, and Dijkstra's algorithm for the shortest path problem.

The animation system is written mostly in Java. All the files reside in the same

directory. The applets are embedded in the Web pages and will be loaded and unloaded

appropriately as the Web pages are loaded and unloaded from the Web browser.

The animation system is made available on the Internet. The temporary WWW

address is: http://www.su.okstate.edu/students/yiyinigreedy.html. It has an easy to use

interface that illustrates an algorithm through its results. Target users are students

learning greedy algorithms for the first time. A user can run the animation system

remotely using common Java-compatible Web browsers such as Netscape, Internet

Explorer, or HotJava.

55 I..

The system is interactive. It will accept parameters from the user at runtime and pass

them to the applets. With the interactive visualization, the user can also change some

graphical parameters interactively at running time, and immediately see the resulting

structure produced by the algorithm under consideration.

5.2 Future Work

The following are some of the areas where future work on this application is

suggested:

1. Adding a third dimension for the graph. The third dimension can be used in many

ways, such as to represent an extra dimension in the data, to illustrate the passage of

time or the algorithm's progress for an aesthetic effect. The third dimension may also

be used to provide state information about an algorithm.

2. Using multiple views. It is generally more effective to illustrate an algorithm with

several different views than with a single monolithic view. The animation system

will use multiple views, each displaying a small number of aspects of the algorithm.

Each view is easy to comprehend in .solation, and the composition of several views is

more informative than the sum of their individual contributions.

3. Using accompanying sound to convey information more enjoyable. Then it will be a

truly multimedia system.

4. Providing a rewindable event history, which allows users to run algorithm traces

backwards, or step slowly through an algorithm's history. When animation is used to

explain an unfamiliar algorithm, it is helpful to present a static view of the history of

the algorithm and its data structure. It allows the user to become familiar with the

56 ,-

dynamic behavior of the algorithm at his own speed, and to focus on the crucial

events where significant changes happen, without paying too much attention to

repetitive events.

57

LITERATURE CITED

1. Gloor, P., Dynes, S., Lee, 1. Animated Algorithms: A Hypennedia Learning

Environment for Introduction to Algorithms. The MIT Press, Cambridge, Mass.

1993.

2. Brown, M.H., Najork, M.A. "Algorithm Animation Using 3D Interactive Graphics."

Technical Report 1lOa, DEC Systems Research Center. 1993.

3. Sedgewick, R. Algorithms. Addison-Wesley, Reading, Mass. 1988.

4. Dijkstra, E.W. "A note on two problems in connection with graphs." Numer. Math.

1: 269-271. 1959.

5. Moret, B.M.E., Shapiro, H.D. Algorithmsfrom P to NP. Benjamin/Cummings,

Redwood City, CA. 1991.

6. Brown, M.H.. R. Sedgewick, R. "A System for Algorithm Animation." ACM

Computer Graphics. 18(3): 177-186.1984.

7. Brown, M.H. "Exploring Algorithms Using Balsa-II." IEEE Computer (May 1988)

14-36. 1988.

8. Brown, M.H. "Zeus: A System for Algorithm Animation and Multi-View Editing."

Proceedings. 1991 IEEE Workshop on Visual Languages 4-9. 1991.

9. Brown, M.H., Hershberger, J. "Color and Sound in Algorithm Animation."

Technical Report 76a, DEC Systems Research Center. 1991.

10. Stasko, J.T. "Tango: A Framework and System for Algorithm Animation." IEEE

Computer (September 1990) 27-39. 1990.

58 I..

11. Duisberg, R.A. "Animated Graphical Interfaces." ACM SIG CHI 86 Conference on

Human Factors in Computing Systems. 131-136.1986.

12. Stasko, J.T. "Three-Dimensional Computation Visualization." Technical Report

GIT-GVU-92-20, Georgia Institute of Technology, Atlanta, GA. 1992.

13. Bentley, J.L., Kernighan, B.W. "A System for Algorithm Animation." Computing

Systems (Winter 1991) 4(1): 5-31. 1991.

14. Tufte, E.R. The Visual Display o/Quantitative Infonnation. Graphics Press,

Cheshire, Conn. 1983.

15. Byrne, M.D., Richard Catrambone, R., Stasko, J.T. "Do Algorithm Animations Aid

Learning?" Technical report GIT-GVU-96-18 (August, 1996), Georgia Institute of

Technology, GA. 1996.

16. Stasko, J.T., Lawrence, A. "Empirically Assessing Algorithm Animations as

Learning Aids." Chapter 28 in: Software Visualization: Programming As a

Multimedia Experience, John T. Stasko, John B. Domingue, Marc H. Brown, and

Blaine A. Price (eds.). The MIT Press, Cambridge, Mass. 1997.

17. Courtois, T. Java Networking and Communications. Prentice-Hall, Inc, Upper

Saddle River, NJ. 1998.

18. Deo, N. and Pang, C. "Shortest-path algorithm: tax.onomy and annotation."

Networks 14: 275-323. 1984.

19. Stanek, W. Web Publishing Unleashed. Sams.net Publishing, Indianapolis, IN. 1996.

20. Ana, S.K. Object-oriented Data Structure Animation. Unpublished Master's Thesis.

Oklahoma State University, 1992.

59 I..

21. Kummetha, V.C.S.R. A Level Linked R* tree Structure with an Application Using x­

window Graphical Interface. Unpublished Master's Thesis. Oklahoma State

University, 1993.

22. Shen, H.C. A Visual Aidfor the Learning of Tree-based Data Structures.

Unpublished Master's Thesis. Oklahoma State University, 1994.

23. Xu, C. Multimedia Visualization ofAbstract Data Type. Unpublished Master's

Thesis. Oklahoma State University, 1997.

24. Harvick, L.H. Rule Based Data Structure Animation. Unpublished Master's Thesis.

Oklahoma State University, 1997.

25. Lin, B.H. An Object-oriented Graphic User Interface for Visualization ofB-tree's

Animator. Unpublished Master's Thesis. Oklahoma State University, 1997.

26. Lewis, J., Loftus, W. Java Software solutions: Foundations of Program Design.

Addison-Wesley, Reading, Massachusetts, 1998.

27. Tanenbaum, A.S. Computer Networks. Prentice Hall PTR, Upper Saddle River, New

Jersey, 1996.

28. Pfaffenberger, B. Netscape Navigator: Surfing the Web and Explorinf? the Internet.

AP Professional, Chestnut H1Il, Massachusetts, 1995.

60

•

y
VITA

YI YIN

Candidate for the Degree of
Master of Science

Dissertation: ANIMATED PRESENTATION OF SOME GREEDY ALGORITHMS

Major field: Computer Science

Biographical:

Personal Data: Born in Guilin, Guangxi, P. R. China, July, 20,
1964, the son of Youde Zhang and Sulan Yin.

Education: Graduated 10th High school of Guilin, Guilin, Guangxi,
China, July 1981; received Bachelor of Science degree in
Botany from Xiamen University, Xiarnen, Fujian, China, July
1985; received Master of Science degree in Plant Ecology from
Xiamen University, Xiamen, Fujian, China, December 1990;
received Doctor of Philosophy degree in Plant Sciences from
Oklahoma State University, Stillwater, Oklahoma, May, 1998;
completed the requirements for the Master of Science degree at
Oklahoma State University in December, 1998.

Professional Experience: Teaching Assistant, Department of Biology, Guangxi
Nonnal University, China, August, 1985 to July, 1987; Research
Assistant, Department of Biology, Xiamen University, China, August,
1987 to December, 1990; Instructor, Department of Biology, Guangxi
Normal University, China, January, 1991 to July, 1993; Research
Assistant, Department of Botany, Oklahoma State University, August,
1993 to December, 1996; Teaching Assistant, Department of Botany,
Oklahoma State University, January, 1996 to December, 1997;
Teaching Assistant, Department of Computer Science, Oklahoma State
University, January, 1998 to December, 1998.

Professional Membership: Phyco]ogical Society of America, January, 1994 to
December, 1997; American Society of LimnoJogy and Oceanography,
January, 1994 to December, 1997.

\

