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CHAPTER 1

INTRODUCTION

1.1 Photo-Neutrons

In x-ray radiation therapy, the primary objective is to deliver x-rays to the volume

of a cancerous tumor, without exposing healthy tissue, thus killing the cancerous cells

while minimizing the damage done to the body. This objective is not always possible

due to scattering of the x-rays and other particles which takes place in the medical

linear accelerator (linac) and in the body itself.

Linacs use high frequency electromagnetic waves to accelerate electrons to energies

between 4 and 25 MVp [Facure et al., 2005]. Bremsstrahlung x-rays are produced

when these high energy electrons collide with the high Z nuclei of an x-ray target such

as tungsten, resulting in a spectrum of x-ray energies with the maximum energy equal

to the incident electron energy or peak accelerating voltage of the linac. The average

x-ray energy of the beam is about one-third of the maximum energy [Krane, 1988].

When x-rays with high enough energies, greater than approximately 7 MeV, collide

with high Z materials such as tungsten or lead that are found in the linac, target,

shielding, collimators or flattening filters, they can overcome the threshold energy

to produce neutrons. These neutrons are known as photo-neutrons since they came

from x-ray interaction with high Z nuclei. Neutrons, created through photo-neutron

production, have a wide range of energies. The notation given for photo-neutron

production is T(γ,n)R, meaning that an x-ray or other energetic photon, γ, collides

and interacts with a target nucleus, T, producing a neutron, n, and leaving behind

nucleus R. The representation of a photo-neutron interaction without concern for the

1



nuclei involved is given within the parentheses, (γ,n). Photo-neutrons are not only

produced within the linac’s head, but can also be produced in the patient’s body

[Paredes et al., 1999].

Since neutrons are uncharged, they do not interact with the electrons in tissue.

Instead, they can interact elastically with the hydrogen nuclei (protons) of the tissue

molecules causing the protons to recoil [IARC, 2000]. In tissue, 70 to 85% of the energy

in high energy (≥ 1 MeV) neutron interactions is transferred to recoil hydrogen nuclei

[NATO, 1996]. These recoiling nuclei (charged protons) are the source of ionizing

events. Low energy protons, with linear energy transfer (LET) up to ∼ 100 keV/µm

produced in neutron interactions, form densely ionizing tracks which are efficient in

producing biological damage in cells [IARC, 2000]. As the neutrons undergo elastic

collisions, they lose most of their energy and thermalize. Once thermalized, the

neutron can be captured or absorbed by a nucleus. This results in an unstable nucleus,

or compound nucleus that will rapidly decay, releasing more energy into the tissue.

Neutrons, because they do not possess a charge, can travel further in a medium

than charged particles of similar energy. This results in a high probability of neutrons

depositing dose in a non-targeted region of the body. For example, if a patient is being

treated for prostate cancer, a scattered neutron could deposit dose to the patient’s

lungs, heart, brain, or other vital organ despite the fact that none of these organs

receive direct x-ray radiation. Once inside the patient’s body neutrons can scatter

through multiple collisions with hydrogen nuclei. The average distance, or mean

free path, that the neutron can travel is dependent upon the neutron’s energy, the

interaction cross section, and the density of the material, and can vary from a fraction

of a cm to several tens of centimetres [IARC, 2000]. Although the absorbed dose

deposited through neutron-induced secondaries in the patient is clinically much too

low to induce any early radiation effects, it could lead to health problems, such as

secondary cancer, later in the patient’s life [IARC, 2000].
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1.2 Late Effects From Neutron Exposure

Photo-neutrons produced in the linac or within the patient’s body itself, can

produce biological damage, both in the region covered by the primary x-ray beam and

outside this treatment region. These neutrons can deposit unwanted dose randomly,

or stochastically, throughout the patient’s body. These effects usually take the form

of genetic changes (changes to DNA) which can ultimately manifest themselves as a

cancer. These stochastic effects tend to show up years after exposure. The probability

that cancer will occur is dependent upon the dose to a patient. The greater the dose

a patient receives the greater the probability of an effect. However, because stochastic

effects are random, it is not guaranteed that, due to unwanted neutron exposure, a

secondary cancer will occur. One must keep in mind that, because stochastic effects

can affect anyone, even those who have not received radiation above background

levels, a specific cancer cannot be traced back to a specific event or time. While it is

impossible to determine the cause of a specific cancer, it is possible to estimate the

probability that exposure to radiation will lead to cancer.

The International Agency on Research for Cancer (IARC) [IARC, 2000] has

conducted various studies involving a range of absorbed dose and dose rates over a

wide range of mean energy from many sources to determine the probability of stochastic

effects in mice, rats, rabbits, dogs, and rhesus monkeys. In one such study, involving

both x-rays and neutrons, Broerse et al. [1981], preformed full body irradiations on

rhesus monkeys. A total of 20 monkeys were irradiated with x-rays of doses of 2800-

8600 mGy, and 9 monkeys were irradiated with neutrons at doses of 2300-4400 mGy.

21 monkeys were part of the control group that was not irradiated. Monkeys exposed

to x-rays or neutrons experienced a significant increase in the incidence of malignant

tumours compared to the non-irradiated controls. 90% (8/9) of the neutron irradiated

animals died of complications resulting in malignant tumours compared to 50% (10/20)

of animals exposed to x-rays and 30% (7/21) of unexposed animals.
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The effect on patients from photo-neutron exposure during x-ray therapy is still

poorly understood. This is largely due to the challenges of measuring neutrons due

to their neutral charge and to the fact that neutrons are in a mixed radiation field.

Due in part to this complexity, the total absorbed dose from photo-neutrons from

clinical linear accelerators are not calculated during treatment planning. However,

studies have been performed, such as the IARC study mentioned above [IARC, 2000],

that show a strong correlation between neutron exposure and secondary cancers. This

makes it important to quantify the absorbed dose from neutrons, especially to healthy

tissue surrounding the treatment volume, during x-ray radiotherapy. In addition,

if neutron dose is deemed excessive, steps should be taken to minimize the dose

contribution to the patient from photo-neutrons.

1.3 Purpose and Intent

The professional literature available on photo-neutron production in medical linear

accelerators is limited. The aim of this present work is to measure the neutron

dose equivalent produced by x-ray beams of 6, 10, and 18 MVp, in air and also

in a polyethylene phantom. The experiment attempted to simulate actual patient

treatment with MVp x-rays.

The main type of radiation detector used in this work was CR-39 plastic nuclear

track detector (PNTD). CR-39 is an unique detector used to help quantify the neutron

dose. The advantages of using CR-39 PNTD over other detectors are: 1) it is small

enough to place anywhere inside a phantom to obtain measurements inside a body and

2) it is insensitive to x-rays thus making CR-39 PNTD an optimal choice in measuring

neutrons in a mixed radiation field dominated by energetic x-rays.

In this study, two sets of experiments were conducted to measure photo-neutron

production in medical linear accelerators. The first set of experiments measured

absorbed dose and dose equivalent from 1-20 MeV neutrons and used regular CR-
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39 PNTDs. The second experiment measured absorbed dose and dose equivalent

from neutrons with energies lower than 1 MeV and used CR-39 PNTD modified with

cadmium and 6Li, so called thermal and resonance neutron detectors or TRNDs, as

discussed further in Chapter 3.

The first part of this work provides a basic overview of radiation therapy, photo-

neutron production, and neutron interaction cross sections, along with properties of

CR-39 PNTDs, nuclear track formation and dosimetric quantities.
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CHAPTER 2

PHOTO-NEUTRONS

2.1 Radiotherapy

Radiation therapy, also known as radiotherapy, refers to the treatment of cancerous

cells by ionizing radiation. The goal of radiotherapy is to deliver a high dose of ionizing

radiation to the cancerous cells of a tumor, in order to kill those cells, while minimizing

the radiation delivered to healthy cells surrounding the tumor. Radiotherapy is one of

two the most reliable and effective treatments for cancer, with more than fifty percent

of cancer patients having received radiotherapy at some point in their treatment [Joiner

and van der Kogel, 2009]. Surgery is the other primary form of effective treatment

and has a great success rate when preformed at an earlier stage before cancer has

metastasized [Mukherjee, 2011]. In some locations on or within the body, such as

in the head, neck, lung, cervix, bladder, prostate, and skin, radiotherapy is a good

alternative to surgery due to its better long term control, fewer side effects, and better

cosmetic results [Joiner and van der Kogel, 2009]. In addition, radiotherapy helps

mitigate the severity of the effects of having cancer by reducing pain and helping the

overall morale of the patient.

Chemotherapy is another important treatment modality for cancer therapy in

which a mixture of chemicals (drugs) is used to kill rapidly dividing cells. Rapid cell

division is one property that distinguishes cancer cells from most normal cell types

[Cooper and Hausman, 2009]. Since chemotherapy cannot distinguish between rapidly

dividing cancerous cells and rapidly dividing healthy cells, chemotherapy harms both

cancerous and healthy cells. These healthy cells include those of the bone marrow,
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digestive tract, and hair follicles.

Table 2.1 shows the percent of patients receiving radiotherapy as a principal form

of treatment, as well as the percent of patients with all types of cancers who received

radiotherapy at some stage of treatment.

Table 2.1 Optimal radiotherapy utilization rate by cancer type. [Delaney

et al., 2005]

Proportion of all Proportion of patients Patients receiving radiotherapy

Tumour Type Cancers (%) receiving radiotherapy (%) (% of all cancers)

Breast 13 83 10.8

Lung 10 76 7.6

Melanoma 11 23 2.5

Prostate 12 60 7.2

Gynaecological 5 35 1.8

Colon 9 14 3.1

Rectum 5 61 3.1

Head and neck 4 78 3.1

Gall bladder 1 13 0.1

Liver 1 0 0.0

Oesophageal 1 80 0.8

Stomach 2 68 1.4

Pancreas 2 57 1.1

Lymphoma 4 65 2.6

Leukaemia 3 4 0.1

Myeloma 1 38 0.4

Central nervous system 2 92 1.8

Renal 3 27 0.8

Bladder 3 58 1.7

Testis 1 49 0.5

Thyroid 1 10 0.1

Unknown primary 4 61 2.4

Other 2 50 1.0

Total 100 - 52.3

Calculations by DeVita et al. and Souhami and Tobias [DeVita et al., 1979; Souhami

and Tobias, 1986; Tobias, 1996], who analysed data on the relative roles of the main

cancer treatment modalities from national cancer programs, suggest that surgery
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and/or radiotherapy are successful in roughly 40% of patient cases. 15% of these cases

are radiotherapy alone.

The cure rate from chemotherapy is about seven times smaller than that of

radiotherapy; with about 10 percent of patients having prolongation of life [Joiner

and van der Kogel, 2009]. Chemotherapy, as well as surgery, is often combined with

radiotherapy, depending on the severity of the cancer, tumor location, patient age,

and the development and general health of the patient.

2.2 Design of a Medical Linear Accelerator (Linac)

The medical linear accelerator (linac) uses high frequency electromagnetic waves to

accelerate electrons to high energies (4-25 MeV) through a linear accelerator waveguide.

Figure 2.1 shows a block diagram of a typical medical linac.

Figure 2.1 A block diagram of a typical medical linac, adapted from

[Khan, 2003].

A linac produces electrons from an electron gun situated at one end of the linear

accelerator waveguide. The acceleration of electrons is caused by pulsed microwaves

produced by a magnetron or klystron, and propagated down a waveguide system in
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the accelerator. In order for electrons to be accelerated efficiently, the magnetron or

klystron, electron gun, and wave guide system must be under vacuum.

2.2.1 Electron Gun

The source of electrons is an electron gun. At one end of the electron gun is

a cathode and at the other end an anode. The cathode is made out of a tungsten

filament which when heated boils off electrons. This process is called thermionic

emission. When high voltage is applied between the cathode and anode the electrons

emitted from the tungsten filament are accelerated in the direction of the anode. The

electron gun in linacs uses this process to produce a beam of ∼ 50 keV electrons.

The anode is situated at the opening of the accelerating waveguide, which allows the

electrons to travel through the anode and into the accelerator waveguide.

2.2.2 Magnetron/Klystron

Once inside the linac waveguide, the electromagnetic field of the pulsed microwaves

filling the waveguide’s cavities transfers its energy to the electrons causing them to

accelerate. This electromagnetic field in the form of microwave radiation is produced

by a Radio Frequency (RF) oscillator in the form of a magnetron or by a klystron

[Podgorsak, 2003].

The magnetron is a source of high power RF waves, while the klystron is an RF

power amplifier [Khan, 2003]. A RF driver or an RF oscillator which produces a low

power radio frequency needs to accompany the klystron.

2.2.3 Waveguide System

Waveguides are rectangular or cylindrical metallic structures used in the transmis-

sion of microwaves [Podgorsak, 2003]. In linacs, two waveguides are used: RF power

transmission waveguides, and accelerating waveguides. The RF power transmission
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waveguide transmits RF power from the magnetron or klystron to the accelerating

waveguide, which accelerates the electrons.

The accelerating waveguide is a cylindrical structure containing a series of disks

forming cavities with circular holes at the center and placed at equal distances along

the waveguide. The traveling wave structure and the standing wave structure are the

two types of accelerating waveguides used in linacs.

Traveling Wave Structure

In the traveling wave structure, a traveling wave is produced where the electric

field passes through the accelerator waveguide and the electrons “ride” the wave as

shown in Figure 2.2. The cavity geometry and the size of the hole separating the

cavities determine the speed of the wave in the waveguide. The first few cavities are

smaller and have larger holes. This allows the beam to be bunched and accelerated

to relativistic velocities. In the remainder of the accelerator, the energy continues

increasing the electron’s relativistic mass so that the cavities are uniform [Greene and

Williams, 1997].

Standing Wave Structure

In the standing wave structure, a standing wave is made by the superposition

of the forward traveling wave and its reflected image. The force experienced by the

electron is the same as that in the traveling wave structure, however, the field is zero

where there are nodes. If the cavities are tuned so that the electrons can cross one

whole cavity at a time, a constant acceleration can be applied.

The geometry of the traveling wave structure is inefficient when compared to

the standing wave structure, because only every second cavity contributes to the

acceleration of the electrons. However every other cavity can be moved to produce a

side couple design as shown in Figure 2.3. The microwaves will pass through all of the
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Figure 2.2 (a) A traveling wave accelerator. (b) A traveling wave

respresenting the axial electric field. E is the electric field strength and d

is the distance along the axis. Points A-D indicate positions of electrons

on the wave. [Greene and Williams, 1997]

cavities while the electrons pass only through the central ones.

Using this design, the microwave intensity is uniform across the entire length of

the accelerator waveguide. Due to this, the standing wave accelerator gives a higher

acceleration per unit length, leading to a shorter accelerator compared to the traveling

wave structure for a given maximum electron energy. However, as the power is uniform

down the waveguide, it requires a higher power microwave magnetron or klystron to

drive it for a given electron energy [Greene and Williams, 1997].

Electrons in both accelerator types experience forces during acceleration that

tend to cause divergence of the beam. Focus coils that run along the length of the

accelerator waveguide are added to prevent divergence of the beam. Steering coils

are also placed at the exit of the accelerating waveguide to make sure the beam is

traveling in the desired direction

The length of the accelerating waveguide depends on the final electron kinetic
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Figure 2.3 (a) A standing wave accelerator. (b) Standing waves, the

dotted line representing the field one half cycle after the field shown by

the solid line. (c) Side coupled cavities [Greene and Williams, 1997].
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energy and ranges from ∼ 30 cm at 4 MeV to ∼ 150 cm at 25 MeV [Podgorsak, 2003].

The electron beam exits the accelerator waveguide in the form of a pencil beam of

about 3 mm in diameter [Khan, 2003] and will not be completely monoenergetic.

2.2.4 Bending Magnets

The accelerating waveguide is usually mounted perpendicular to the treatment

head and the electron beam must be redirected. One method to accomplish this is to

use a uniform magnetic field. However, because the radius of curvature of the electron

in the magnetic field is dependent upon electron energy, the electrons will tend to

disperse given the distribution of electron energies.

To obtain an electron beam of uniform energy, a 270◦ magnetic bending system

is used (Figure 2.4). These bending magnets use shaped pole faces that produce a

magnetic field which grows in strength as the radial distance from the beam increases.

More energetic electrons penetrate further into the bending magnet’s field and are

then subjected to a stronger magnetic field resulting in a tighter radius of curvature

[Greene and Williams, 1997]. Collimators can be placed within the bending magnet’s

field as shown in Figure 2.4 to remove electrons that have higher or lower energies

than that desired. This will then create an electron beam of uniform energy passing

through the same point and moving in the same direction.

2.2.5 Treatment Head

The uniform electron beam is then passed to the treatment head of the linear

accelerator. The treatment head consists of a thick shell of high density shielding

material such as lead, tungsten, or lead-tungsten alloy [Khan, 2003]. It contains the

x-ray target, both fixed and movable collimators, scattering foils, and flattening filters.

Once inside the treatment head, the electron beam is converted to bremsstrahlung

x-rays by colliding with an x-ray target in the treatment head as shown in Figure 2.5.
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Figure 2.4 Diagram of a 270◦ bending magnet.

The x-ray target must be made out of a material with high atomic number and

high melting point. Tungsten, with a Z of 74 and a melting point of 3,370◦C is

conventionally used.

The electron energy is converted into a spectrum of x-ray energies with the

maximum energy equal to the incident electron energy. The average x-ray energy of

the beam is approximately one third of the maximum energy [Khan, 2003].

2.2.6 Primary Collimators

The x-rays produced are immediately collimated by the fixed primary collimator.

This collimator absorbs all but the x-rays traveling in the desired direction. The beam

is then subject to further modifications by a flattening filters, secondary collimators,

a mulitleaf collimator (MLC), and/or wedges, blocks, or compensators.
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Figure 2.5 Components of a treatment head from a typical medical

linear accelerator [Khan, 2003].
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2.2.7 Flattening Filters

When the electron beam collides with the tungsten target, the x-ray intensity is

peaked in the forward direction. This is because of the angular distribution of x-rays

produced by electrons in the megavoltage range [Khan, 2003]. To make the x-ray

beam intensity uniform across the field, a flattening filter is inserted in the beam.

Flattening filters are commonly made out of lead, however tungsten can also be used.

2.2.8 Secondary Collimators

Secondary collimation is used after the flattening filter. These collimators are

movable and consist of two pairs of lead or tungsten blocks (jaws). The purpose of

the jaws is to provide a rectangular opening from 0 x 0 cm to the maximum field size

as projected at a standard distance 100 cm from the x-ray source.

MLCs can also be used to provide direct shaping of the x-ray beam to match

the contour of the cancer tumor itself. An MLC is a collimation system made up of

individual “leaves” made out of high Z materials, usually tungsten, which can move

independently in and out of the x-ray beam. MLCs are now widely used and have

become a main component in beam shaping in external beam radiotherapy [Jeraj and

Vlado, 2004].

2.3 Cross Section

The probability of a particular outcome occurring from an interaction between

a particle and nucleus is defined by its interaction cross section, σ. Cross section

has dimensions of area with units of cm2. However, in nuclear physics cross sections

are often given in units of barns, b, where 1b = 10−24 cm2. Cross sections for most

nuclear interactions are on the order of 0.001 to 1000b. The cross section of a given

interaction is dependent on the incident particle’s energy. A general rule of thumb
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is that with increasing energy of the incident particle, the cross section will decrease

[Rinard, 1991].

2.4 Photo-Neutron Production

Photon interaction with matter can result in various outcomes. These different

outcomes can be classified according to the target with which the photon interacts,

such as electrons, atoms, or nuclei, and the type of event which takes place, i.e.

scattering or absorption. Table 2.2 shows some of the possible interactions that may

occur.

Table 2.2 Various categories of photon interactions [Hirayama, 2000].

Total

Scattering Absorption

Elastic Inelastic

Rayleigh Compton Photoelectric effect

Elastic Nuclear Inelastic nuclear Photonuclear reaction

Pair production

Photo-neutrons are produced through photonuclear reactions called photo-disintegration

[Khan, 2003]. Photo-disintegration occurs when a nucleus absorbs a high energy pho-

ton, leading the absorbing nucleus to undergo internal rearrangement and the ejection

of one or more subatomic particles, such as a protons, neutrons, or alpha particles.

This process is known as evaporation [NBS, 1982]. Most photo-neutrons (80-90 %) are

produced through the evaporation process following resonance in heavy nuclei [IAEA,

1979]. Evaporation neutrons are emitted isotropically and have average energies

ranging from 1-2 MeV [NCRP, 2005].

Photo-neutrons can also be emitted from a process called direct emission [NBS,

1982]. Direct emission is when a high energy particle e.g. photon, interacts directly with
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one or more individual nucleons (neutrons) inside a nucleus. Direct emission neutrons

have average energies of several MeVs. The angular distribution of direct neutrons

follows a sin2 θ distribution [NCRP, 2005]. Direct emission neutron production for

15-30 MeV x-rays interacting with heavier nuclei is ∼10-20 % [IAEA, 1979].

Photo-neutron production (γ,n) is dependent upon the photo-neutron cross section

and the binding energy. The binding energy of a nucleus is the difference in the total

energy of the bound system (the nucleus) and the combined energy of the separate

nucleons. In other words binding energy is the energy that must be added to a nucleus

to break it apart into its component nucleons [Serway et al., 2005]. The minimum

energy required to overcome the binding energy is called the threshold energy, Eth. In

photo-neutron production, the added energy obviously is in the form of an incident

x-ray photon. The photo-neutron threshold energies for a variety of elements and

isotopes are shown in Table 2.3. These elements and isotopes represent those that

make up the human body (12C, 14N, and 16O), air (14N, and 16O) and the treatment

head of the linac, (206Pb, 207Pb, 208Pb, and 186W).

Table 2.3 shows that photo-neutrons can be created with photon energies as low

as ∼7 MeV for higher Z materials such as tungsten and lead. Other elements such as

carbon, nitrogen, and oxygen require higher energies, ∼ 19, 11, 16 MeV, respectively,

to undergo (γ,n) interactions.

When a photo-neutron interaction occurs, one or more neutrons can be produced

depending upon the photon energy and the photo-neutron cross section. The total

photo-neutron cross section is the sum of σ(γ,n), σ(γ,2n), σ(γ,3n) ... etc:

∞∑
i=1

σ(γ, in). (2.1)

The photo-neutron cross section, (γ, in), for 12C, 14N, 16O, 206Pb, 207Pb, 208Pb,

and 186W are shown in Figures 2.6, and 2.7. These curves follow a Poision or Lorentz

distribution, where at higher energies the cross section will reach a peak or multiple
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Table 2.3 Threshold energies of different elements/isotopes for (γ,n),

(γ,2n), and (γ,3n) interactions [Berman, 1975].

(γ,n) (γ,2n) (γ,3n)

Element Threshold Threshold Threshold

(MeV) (MeV) (MeV)

12C 18.72 31.83 -

14N 10.56 - -

16O 15.72 - -

206Pb 8.05 14.79 23.02

207Pb 6.75 14.79 21.62

208Pb 7.31 22.24 22.24

186W 7.22 12.94 20.41

peaks. These peaks are called resonances and occur at photon energies where reactions

with the nuclei are enhanced. If the resonance peak is broad and the incident photon

energy is located near the resonance peak, the probability that a neutron will be

emitted is large.

In Figure 2.6, the cross sections for 206Pb, 207Pb, 208Pb, and 186W show photo-

neutron production beginning at x-ray energies above 8.05, 6.75, 7.31, 7.22 MeV,

respectively. The resonance peaks in 206Pb, 207Pb, 208Pb, and 186W start to form

around 10 MeV and continue until 18 MeV. The highest cross section values measured

are 531, 505, 518, and 406 b, respectively, and occur at photon energies between 12

and 16 MeV.

The cross section data for 12C, 14N, and 16O, in Figure 2.7, show that for these

three isotopes, neutron production begins at ∼18, ∼10, ∼15 MeV, respectively. As

the x-ray energy increases to about 22-26 MeV, a resonance peak is reached in all

three isotopes. The highest cross section values measured for 12C, 14N, and 16O are 7,
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Figure 2.6 Photo-neutron cross section of 186W, 206Pb, 207Pb, and 208Pb

found in the treatment head of the linac [Berman, 1975].

Figure 2.7 Photo-neutron cross section of 12C, 14N, and 16O found in

the air and the human body [Berman, 1975].
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15, and 9 b, respectively.

Once the interaction threshold is overcome, neutrons emerge with kinetic energies

which can be calculated by:

En = hν − Eth, (2.2)

and have velocities of:

vn =

(
2En
mn

) 1
2

, (2.3)

where En is the energy of the emitted neutron, Eth is the threshold energy, and mn

is the mass of the neutron. Table 2.4 shows the maximum energies of the emerging

neutron as determined by equation (2.2). One must remember that photo-neutrons

will have a broad range of energies and that Table 2.4 shows only the maximum energy

that the incident photo-neutron can possess.

Table 2.4 Maximum kinetic energies of photo-neutron, of (γ,n) interac-

tions, from energies of incident photons of 6, 10, 18, MeV.

Elements Photon Energy (MeV)

6 10 18

12C - - -

14N - - 7.44

16O - - 2.28

206Pb - 1.95 9.95

207Pb - 3.25 11.25

208Pb - 2.69 10.69

186W - 2.78 10.78

21



2.5 Neutron Interaction with Matter

As uncharged particles, neutrons are unaffected by the Coulomb barrier of nuclei

[Krane, 1988]. Most neutrons when traveling through matter do not interact with it

at all. Those neutron that do interact with matter will do so with the nuclei of the

atoms. In general, the cross section for neutron interactions increases as the neutron

energy decreases.

A neutron interaction with a nucleus can result in many different outcomes as

shown in Table 2.5. The possible results from a neutron interacting with different

materials can be classified into two major categories: scattering and absorption.

Table 2.5 Various categories of neutron interaction. [Rinard, 1991]

Total

Scattering Absorption

Elastic Electro-Magnetic

Inelastic Charged

Neutral

Fission

2.5.1 Scattering

A neutron reaction is written as X(n,b)Y where X is the target nuclei, n is the

projectile neutron, and Y and b are the reaction products [Krane, 1988]. If the

outgoing particle is a neutron and the target and reaction nuclei are the same, the

reaction is a scattering reaction. Scattering interactions are further divided into two

categories: elastic and inelastic. In elastic scattering, the incident neutron is scattered

by a target nucleus changing the direction and speed of the incident neutron. In this

process, the target nucleus remains intact and the total kinetic energy of the system

is conserved.
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In inelastic scattering, the kinetic energy of the neutron and target nucleus after

the collision is always less than the kinetic energy before the collision, therefore kinetic

energy is not conserved [Rinard, 1991]. This is due to target nucleus undergoing an

internal rearrangement which leaves it in an excited state. The excited nucleus will

de-excite through the emission of photons or other secondary particles, in what is

called an evaporation process (Figure 2.8). If the neutron energy is lower than the

energy required to elevate a nucleus into an excited state, inelastic scattering will not

occur.

2.5.2 Absorption

In the absorption process an indecent neutron is absorbed or captured by the

target nucleus and a compound nucleus is formed. This new compound nucleus will

usually decay into a lower energy state by emitting a variety of particles. These

particles can include gamma-rays due to the excitation of the nucleus, neutral particles

where one or more neutron is emitted, charged particles such as protons, deuterons,

alpha particles, and even fission fragments where the nucleus splits into two or more

fragments releasing a number of neutrons in the process [Rinard, 1991].

2.5.3 Target Fragmentation

Target fragmentation is the breaking up of target nucleus through interaction with

an incident neutron, proton or other subatomic particle. A target fragmentation event

can result in a number of different scenarios depending on the kinetic energy of the

incident neutron and the proximity of the interaction [Goldhaber and Heckman, 1978].

Figure 2.8 illustrates target fragmentation where in a neutron collides with a target

nucleus.

Target fragmentation can occur when a high energy neutron interacts with a

nucleus. The incident neutron interacts with individual nucleons within the target
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Figure 2.8 Diagram of the target fragmentation and evaporation pro-

cesses.

nucleus, kicking out protons, neutrons, α particles, and other heavy nuclei (Z ≥ 3)

in a process known as an intranuclear cascade [Benton, 2004]. The emission of these

nucleons is usually in the same direction as the incident neutron. After the nucleons

are kicked out of the target nucleus, the target nucleus, is in an unstable excited

state analogous to a compound nucleus [Benton, 2004]. This residual nucleus achieves

stability by evaporating neutrons, protons, and alpha particles. The emitted particles

due to evaporation are isotropic.

Each type of event mentioned above has its own cross section. These cross sections

are independent of one another making the total probability the sum of each individual

cross section [Rinard, 1991]. Table 2.6 shows the notation and a description for the

individual cross section of these various types of interactions.
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Table 2.6 Notations and descriptions for various cross sections [Rinard,

1991]

Notation Description

σt = Total cross section (σs + σa)

σs = Total scattering cross section (σel + σi)

σel or σn,n = Elastic scattering cross section

σi or σn,n′ = Inelastic scattering cross section

σa or σc = Absorption or capture cross section

σne = Non-elastic cross section (σt - σel)

σn,γ = Radiative capture cross section

σf or σn,f = Fission cross section

σn,p = (n,p) reaction cross section

2.6 Neutron Interactions with Tissue

The total cross section of neutron interactions with tissue depends on the individual

neutron interactions with each individual type of nucleus in tissue. The most common

nuclei in tissue are hydrogen, carbon, and oxygen. High energy neutrons interact with

carbon and oxygen nuclei in tissue through inelastic collisions and can result in the

release of alpha particles [Howell, 2010]. These alpha particles deposit their energy

into the tissue. Epithermal neutrons between the energies ∼10 keV and ∼1 MeV

interact elastically with the hydrogen nuclei. The energy transferred in this process

causes the proton to recoil while the incident neutron scatters off elastically, as shown

in Figure 2.9. Thermal neutrons interact with tissue through the absorption process

[Howell, 2010].

The most probable mechanism for neutrons to transfer energy to tissue is from

elastic scattering with the hydrogen nuclei of soft tissue [Howell, 2010]. The reasons

for this is that hydrogen is the most abundant element in tissue, hydrogen has a large
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neutron scattering cross section, and its mass is similar to that of a neutron causing

the neutron to transfer the majority of its energy during np collisions.

Figure 2.9 A schematic representation of neutron interaction with a

hydrogen nuclei, resulting in proton recoil [Howell, 2010].

The total cross section for incident neutrons on hydrogen, carbon, and oxygen

as a function of neutron energy is shown in Figure 2.10. Figure 2.10 shows that in

the range of 10−12 to 10−8 MeV, elastic interactions dominate and the cross section

decreases with increasing energy. In the energy range of 10−8 to 10−1 MeV, inelastic

interactions dominate and the cross section is fairly constant. The peaks at about

10−1 to 101 MeV for carbon and oxygen nuclei are resonance peaks. These resonance

peaks are the result of incident neutrons elevating the target nuclei into an excited

nuclear states. Hydrogen does not possess resonances, because it does not have an

excited nuclear state.

The total neutron cross section of hydrogen is nearly an order of magnitude greater

than that of carbon or oxygen as seen in Figure 2.10. For this reason, the hydrogen

content of a material will have a large effect on neutron interactions with the material.

Figure 2.11 shows the total neutron cross section for tissue (ICRU muscle) [ICRU,

1983] along with that for CR-39 PNTDs and Polyethylene. The total cross section

for these materials were calculated by using the neutron cross sections in Figure 2.10,

along with the atomic compositions of these materials listed in Table 2.7.

The average neutron cross sections in Figure 2.11 are very similar to each other
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Figure 2.10 The average total cross section for neutron interaction with

carbon, oxygen, and hydrogen as a function of incident neutron energy

[NNDC, 2013].

for all three materials listed. Polyethylene and ICRU muscle match the closest due

to their similar hydrogen content, demonstrating that a polyethylene phantom is a

good approximation of a human body. Figure 2.11 also shows that although there is

a slight difference in the neutron cross section for CR-39 and ICRU muscle at lower

neutron energies (< 10−1 MeV), CR-39 is a near-tissue equivalent material.

Table 2.7 The Atomic compositions in a percent of the materials used in

this study (Polyethylene, and CR-39) and of ICRU muscle [ICRU, 1983].

Atomic Percentages (%)

Content ICRU Muscle CR-39 Polyethylene

H 63.3 48.6 66.7

C 6.4 32.4 33.3

O 28.5 19.0 -

Other 1.8 - -
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Figure 2.11 The average total cross section for neutron interaction with

ICRU Muscle, Polyethylene, and CR-39 as a function of incident neutron

energy [NNDC, 2013].

2.6.1 Uncertainty in Neutron Dosimetry

According to the NCRP [NCRP, 1991] the uncertainty inherit in neutron dosimetry,

under ideal conditions is ± 35% with a 95% confidence level. The uncertainty in

actual field measurements may be greater due to scattering, directional dependence,

differences in neutron cross sections, as well as the efficiency and any intrinsic error in

the instrument [[NCRP, 1991; ICRP, 1982]]. Others have reported the uncertainty in

personnel neutron dosimetry to be as high as ± 50% [Sims and Killough, 1983; NRC,

1977; ANSI, 1976].
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CHAPTER 3

CR-39 PLASTIC NUCLEAR TRACK DETECTOR AND THERMAL

RESONANCE NEUTRON DETECTOR

3.1 Properties of CR-39 Plastic Nuclear Track Detector

CR-39 plastic nucelar track detector (PNTD) is an ideal detector for neutron

dosimetry. CR-39 or polyallyldiglycol carbonate (C12H18O7) is a thermoset crosslinked

polymer, whose chemical properties make it one of the most sensitive plastic nuclear

track detectors in terms of LET [Cartwright and Shirk, 1978; Cassou and Benton,

1978]. CR-39 is homogeneous, optically transparent and sensitive to charged particles

of LET∞H2O between 5 and 1500 keV/µm, including protons ≤ 10 MeV, α-particles

of energy ≤ 50 MeV and heavy ions of all energies. The chemical compositions of

CR-39 PNTD (C12H18O7) is similar to human tissue, so its response to neutrons is

similar to tissue.

Neutrons with energies between 1 and 20 MeV can be detected through recoil

protons produced in elastic interactions between neutrons and the hydrogen nuclei

of the polymer. Neutrons can also be detected in the PNTD through recoil heavy

ion tracks from non-elastic target fragmentation interactions with carbon and oxygen

nuclei.

CR-39 PNTD is an ideal detector for neutron dosimetry in x-ray radiotherapy

since it is insensitive to photons of all energies. Most other neutron detectors are

sensitive to x-rays. For these other detectors, when placed in a high flux x-ray field,

the signal from x-rays will overwhelm that produced by neutrons.

Unlike active detectors, no power is required for CR-39 PNTD operation and the
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analysis is done off-site. CR-39 PNTD is also not bulky and can be placed within a

phantom to measure different organ doses.

3.2 Track Formation In CR-39 Plastic Nuclear Track Detector

When a charged particle passes through a layer of CR-39 PNTD, it breaks many of

the molecular bonds of the polymer along its trajectory. This damaged path through

the bulk of the detector is known as a ‘latent damage trail.’ After exposure of the

CR-39 PNTD, it is brought back to the lab and is chemically etched in a NaOH

solution for a fixed amount of time. The NaOH solution will start dissolving the

material of the CR-39 PNTD, reacting more with the latent damage trial than with

the bulk of the material. The rate at which the alkaline solution attacks the latent

damage trail is referred to as the track etch rate, VT . The bulk etch rate, VG, is the

rate at which the alkaline solution attacks the bulk of the detector. The track etch

rate and bulk etch rate are illustrated in Figure 3.1. Both VT and VG are measured

in units of µm/hr. After the CR-39 PNTD has been etched, it is removed from the

NaOH solution, after which it can be viewed with an optical microscope. A conical pit,

the nuclear track, in the surface of the detector will be seen where the latent damage

trail was formed. The size of the elliptical opening of the conical pit is proportional

to the linear energy transfer (LET) of the particle which formed the latent damage

trail. The LET is the amount of energy transferred from the ionizing particle to the

material per unit path length [Benton, 2004].

The quantity of interest when measuring tracks in PNTDs is the reduced etch rate

ratio, VR. VR is a dimensionless quantity that relates the track etch rate, VT , to the

bulk etch rate, VG [Henke and Benton, 1971]:

VR ≡
VT
VG

. (3.1)

For etchable tracks to be seen, VT > VG:
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VT
VG

= VR > 1 .

The angle between the charged particle’s trajectory and the side of the conical

track is referred to as the cone angle, θ. The sine of θ is equal to the ratio of the bulk

etch rate, VG, to the track etch rate, VT :

sin θ =
VG
VT

=
1

VR
. (3.2)

The reduced etch rate ratio, VR, is proportional to the LET of the incident particle

that formed the track. Particles with large LET displace a larger number of electrons

when passing through the CR-39 PNTD than do lower LET particles. This will cause

a greater number of chemical bonds to break leading to larger latent damage trails.

Thus higher LET particles produce larger tracks. The cone angle, θ, is inversely

proportional to the LET. A particle of low LET produces a larger cone angle, θ, and

a shallower track than does a particle of larger LET.

Figure 3.1 Formation of a nuclear track through chemical etching.

[Benton, 2004]

31



3.2.1 Geometry of Nuclear Tracks

The appearance of the post etch nuclear track is that of a conical pit with a circular

or elliptical opening at the surface of the PNTD. By measuring the semi-major axis, a,

and semi-minor axis, b, at the surface of the PNTD, the LET of the charged particle

can be determined.

The semi-major axis, a, and the semi-minor axis, b, of the elliptical opening from

the conical track can be determined using three parameters: the bulk etch, B, the

cone angle, θ, and the dip angle, δ, which is the angle between the trajectory of the

particle and the surface of the track detector [Benton, 2004]:

a =
B cos θ

sin δ + sin θ
, (3.3)

b = B

√
sin δ − sin θ

sin δ + sin θ
. (3.4)

Using equations, (3.3), and (3.4), the cone angle θ can be found from a, b, and B by:

tan θ =
1− (b/B)2

2(a/B)
. (3.5)

Likewise, the dip angle δ can be found by:

tan δ =
1 + (b/B)2

2
√

(a/B)2 − (b/B)2
, (3.6)

or

tan δ =
(B/a)− tan θ√

1− (B/a)2 − 2(B/a) tan θ
. (3.7)

The reduced etch rate, VR, can be determined from a, b, and B:

VR =

√
1 +

4(a/B)2

[1− (b/B)2]2
. (3.8)
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3.2.2 Determining Bulk Etch

The bulk etch, B, is the amount of material etched away from the CR-39 PNTD’s

surface and is usually measured in units of µm. It can be derived by integrating the

bulk etch rate, VG, with respect to time:

B =

∫ t

to

VG dt . (3.9)

The bulk etch is determined from the difference in mass of the detector due to the

etching process:

B =
(m1 −m2)T2

2m2

(
1− PT2

2A

)
, (3.10)

where m1 refers to the mass before etching, m2 to the mass after etching, T2, to the

mean thickness after etching, P to the perimeter and A to the surface area of one side

of the detector [Henke et al., 1986].

3.3 Dosimetric Quantities

CR-39 PNTD, due to its tissue equivalence, has a clear advantage over many

other detectors used for dosimetric measurements. To acquire a tissue equivalent

absorbed dose measurement careful calibration and conversions need to be applied. As

mentioned previously, the analysis of CR-39 PNTD involves measuring the semi-major

axis and semi-minor axis of the etched track to calculate the LET of the charged

particle that formed it. In this experiment, the charged particles that formed tracks

were either proton recoils or target fragments produced in interactions with the incident

photo-neutrons. The measured LET values collectively form the LET spectrum. The

LET spectrum is used to calculate other dosimetric quantities such as absorbed dose

and dose equivalent.
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3.3.1 Fluence

From the International Commission on Radiation units and Measurement (ICRU)

Report No. 60 [ICRU, 1998], fluence, Φ, is defined as the total number of particles,

dN , that intersect a unit area dA.

Φ =
dN

dA
. (3.11)

For isotropic or nearly isotropic radiation fields a correction in fluence includes the

solid angle, Ω:

Φ =
d2N

dAdΩ
, (3.12)

and is given in units of cm−2 sr−1.

3.3.2 Absorbed Dose

Absorbed dose is the amount of energy absorbed per unit mass of a material as a

result of exposure to ionizing radiation:

D =
dE

dm
, (3.13)

and is measured in SI unit of Gray (Gy) where 1 Gy is 1 J/kg.

3.3.3 Linear Energy Transfer (LET)

CR-39 PNTD used in this research does not measure absorbed dose or dose

equivalent directly; rather it measures the linear energy transfer (LET) of individual

particle tracks. These LET values can then be used to calculate the absorbed dose.

LET is the measure of energy deposited per unit distance over the path of the charged

particle.
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LET =
dE

dl
. (3.14)

The SI unit of LET is J/m though in radiation therapy it is commonly expressed

in keV/µm. LET is closely related to both the mass stopping power and the linear

stopping power.

Linear stopping power is defined as the average energy loss of a charged particle

per unit path length:

S =
dE

dx
. (3.15)

There are three ways for energy to be lost by a charged particle traveling through a

material: atomic collisions, nuclear interactions, and radiative losses, i.e. bremsstrahlung.

The total linear stopping power can be written as:

S =

(
dE

dx

)
elec

+

(
dE

dx

)
nuc

+

(
dE

dx

)
rad

. (3.16)

Since both LET and linear stopping power are dependant on the density of the

material, mass stopping power which is independent of density is given by:

S

ρ
=

1

ρ

dE

dx
, (3.17)

where ρ is the mass density of the material. The SI units for mass stopping power is J

m2/kg. However it is more commonly expressed in units of MeV cm2/g.

In the ICRU report No. 60 [ICRU, 1998], the linear energy transfer passing through

a material, also known as the linear stopping power, L∆, for charged particles, is

denoted by:

L∆ =
dE∆

dx
, (3.18)

35



where dE∆ is the energy lost by a charged particle due to electronic collisions within a

distance dx, minus the sum of kinetic energies, from secondary electrons with kinetic

energies greater than ∆.

The subscript ∆ is usually given in units of eV and is often written as LET∆.

Using this notation, the unrestricted linear stopping power, S, is written as LET∞. It

is important to remember that the LET and the stopping power are dependant on

the material through which the charged particle travels. Thus the LET∞ of a given

charged particle of known kinetic energy will not be equal in two different materials.

The common notation to distinguish between material dependence, LET∆, is written

as LET∆material. For example, LET∞H2O, is the unrestricted linear stopping power

in water, whereas LET200CR-39 represents the restricted linear stopping power in

CR-39 PNTD which neglects the kinetic energies of secondary electrons greater than

200 eV.

3.4 Conversion From LET To Absorbed Dose and Dose Equivalent

Using the LET distribution of the incident radiation, absorbed dose can be deter-

mined. For a monoenergetic radiation beam [Benton, 2004]:

D =
1.602× 10−19ΦLET

ρ
, (3.19)

where the factor 1.06 × 10−19 converts keV to joules. In a mixed energy radiation

beam, equation (3.19) will include the individual contributions for each particular

fluence Φi of particles with LETi:

D =
1.602× 10−19

ρ

∑
i

ΦiLETi (3.20)

Identical absorbed doses of different types of radiation produce different amounts

of damage to biological systems [Hess and Eugster, 1949]. For example, the damage
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produced in a laboratory animal exposed to 1 Gy of α-particles is typically more

severe than the damage produced by a 1 Gy exposure of γ-rays. Because of this, the

International Commission on Radiobiological Protection (ICRP) has over the years

determined a number of different quantities based on weighting absorbed dose to

account for the varying LET of different types of radiation. Dose equivalent, H, is

defined as the product of absorbed dose, D, multiplied by an LET-dependent quality

factor, Q [ICRP, 1977]:

H = Q(LET )D(LET ). (3.21)

The SI unit of dose equivalent is the Sievert (Sv) where 1 Sv = 100 Rem (Rad

equivalent man).

The quality factor, Q, in the Annex A of ICRP publication No. 60 [ICRP, 1991]

has been defined as:

Q(LET ) =


1.0 LET < 10

0.32LET − 2.2 10 ≤ LET ≤ 100

300/
√
LET LET > 100 .

(3.22)

3.5 Determination of Absorbed Dose and Dose Equivalent in CR-39 PNTD

The derivation of fluence, dose, and dose equivalent, from isotropic radiation

incident on the surface of a CR-39 plastic nuclear track detector, can be found with

the aid of the diagram shown in Figure 3.2. The figure shows a sphere of radius,

r, that is centered at point, O, on the surface of the CR-39 PNTD layer. Using a

spherical coordinate system, the differential area dA on the surface of the sphere can

be shown as:

dA = 4πr2 sinφ dφ, (3.23)
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Figure 3.2 Geometry for solid angle calculation [Benton, 2004]

where φ is the polar angle. The factor 4π instead of 2π comes from the fact that, in

isotropic fields, particles can pass through from both below and above the area dA.

The dip angle, δ, is equal to π/2 - φ. Thus:

sinφ = cos
(π

2
− φ
)

= cos δ (3.24)

and

dAs = 4πr2 cos δdrdδ (3.25)

By definition, the differential solid angle, dΩ is:

dΩ =
~n · ~dA
r2

=
cosφdA

r2
, (3.26)

or
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dΩ =
sin δdA

r2
. (3.27)

Substituting equation (3.23) into equation (3.27) gives:

dΩ = 4π sin δ cos δdδ. (3.28)

Substituting equation (3.28) into equation (3.12) and rearranging the terms gives:

dN

dA
dN = Φ4π cos δ sin δdδ. (3.29)

From the assumption that the distribution of neutrons is isotropic, the LET spectrum

is not a function of δ and it can be integrated from δc to π/2, where δc is the critical

dip angle, the minimum angle at which tracks can be produced by particles of a given

LET [Benton, 2004]:

dN

dA

∫
dN = Φ4π

∫ π
2

δc

cos δ sin δdδ, (3.30)

dN

dA
= Φ2π sin2 δ|

π
2
δc
, (3.31)

and

dN

dA
= Φ2π

(
1− sin2 δc

)
. (3.32)

Since cos2 δ = 1− sin2 δ,

dN

dA
= Φ2π cos2 δc. (3.33)

Integrating this over the area, A, of the detector surface gives:

∫
dN = Φ2π cos2 δc

∫ A

0

dA, (3.34)
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N = Φ2πA cos2 δc, (3.35)

or solving for Φ:

Φ =
1

2πA cos2 δc
·N. (3.36)

Using equation (3.36), the differential LET fluence can be written [Benton, 2004]:

dΦ

dLET
=

1

2πA cos2 δc
· dN

dLET
(3.37)

The term 1/2πA cos2 δc is known as the weighting factor, w, and each given LET

value has a specific weighting factor depending on the critical dip angle [Benton, 2004].

Considering the ith track in a set of measured tracks, the LET and the weighting

factor can be written as LET (i) and W (i) respectively.

The differential LET fluence spectrum is found by summing each particle track of

a given LET interval and multiplying that value by the average weighting factor for

that particular interval:

Φ(i) = N(i)W (i), (3.38)

where the average weighting factor, W (i), is calculated by the average value of the

critical dip angle, δc, for a given LET interval. The units of the differential LET

fluence spectrum are n/cm2 sr. The integral LET fluence is calculated by summing

Φ(i) for LET (i) ≥ LET (x) where LET (x) is the LET value at which the integral

fluence is being determined:

Φ(LET (i) ≥ LET (x)) =
x∑

i=max

N(i)W (i), (3.39)

and its units are the same as the differential LET fluence.

Given equation (3.19), the differential LET dose spectrum is:
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D(i) =
4π × 1.602× 10−9

ρ
LET (i)N(i)W (i), (3.40)

and the integral LET dose spectrum is given by:

D(LET (i) ≥ LET (x)) =
4π × 1.602× 10−9

ρ

x∑
i=max

LET (i)N(i)W (i), (3.41)

where both differential LET dose spectrum and integral LET dose spectrum are given

in units of Gy. The factor 4π appears in both equations in order to correct for the

isotropy of incident particles.

Similarly, the differential dose equivalent and integral dose equivalent are given by:

H(i) =
4π × 1.602× 10−9

ρ
LET (i)N(i)Q(i)W (i) (3.42)

H(LET (i) ≥ LET (x)) =
4π × 1.602× 10−9

ρ

x∑
i=max

LET (i)N(i)Q(i)W (i), (3.43)

respectively and have units of Sv. Q(i) is the quality factor dependent on LET interval.

3.6 Thermal/Resonance Neutron Detectors (TRND)

CR-39 PNTDs are only sensitive to neutron energies in the range of 1-20 MeV. For

this reason, a neutron moderator with sensitivity to neutrons of energy < 1 MeV is

used in conjunction with CR-39 PNTD to detect low energy neutrons. This detector

is referred to as a thermal/resonance neutron detector (TRND).

A TRND consists of having two small squares (0.6 x 0.6 x 0.1) of 6LiF sandwiched

between layers of CR-39 PNTD. One of the 6LiF squares is completely covered with

thermal neutron absorber while the second is uncovered. In this experiment, cadmium

(Cd) is used as the thermal neutron absorber.

Since 6LiF has a high cross section (950 b at thermal energy) for low energy neutron

absorption and decays via the 6Li(n,T)α reaction, it serves as a radiator of alpha and
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T (3H) particles to the CR-39 PNTDs. These tracks from the α and T particles are

a measure of incident low energy neutron fluence during the exposure. The Cd foils

shield thermal neutrons. This allows the PNTD pair to distinguish between thermal

(< 0.025 eV) and resonance neutrons (0.025 eV - 1 MeV). The part of the CR-39

PNTD that is not covered with the 6LiF and/or Cd can be used to measure high

energy neutrons (1-20 MeV).

After exposure, the processed PNTDs contain latent tracks produced by the α and

T particles. These short-range stopping α particles from the 6LiF squares produce

distinctive tracks which can easily be discerned using an optical microscope. Chemical

processing of the TRNDs produces tracks which are large enough for easy detection

while retaining sufficient track detail needed for background discrimination [Benton

et al., 2001]. The track densities are manually counted using a 50 x optical microscope.

Backgrounds were counted in the detectors from control TRNDs.

Once the α-particle fluence has been measured, it is converted to neutron dose

equivalent (H) using the conversion factors of McDonald, shown in Figure 3.3 [Mc-

Donald et al., 1998]. It is important to note that for energies below 20 MeV, the

differences between the plotted conversion coefficient data points are small and can

be considered negligible when compared to the uncertainties in the estimated risk

resulting from exposure to neutrons [McDolland, Thomas, NCRP, US NRC, and ANS].

It can be seen from the figure that the largest differences for energies below 20 MeV

range from 10 to 30%.

The data was interpolated to include the energy range from 10−8 to 20 MeV with

increasing increments in log space. The average fluence to dose equivalent conversion

coefficients were calculated for high energy (1-20 MeV), epithermal (10 keV-1 MeV),

and thermal (<1 keV) neutron energies. These average values were found to be 419,

10, and 12 pSv cm2/n, respectively.

The CR-39 PNTD contained in the TRNDs was chemically etched and read out in
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the same way as the other CR-39 PNTDs used in this work, unless otherwise specified.

Figure 3.3 Plot of neutron fluence to dose equivalent conversion coeffi-

cients. Points are taken from the indicated documents. Continuous curves

are data from ICRP Publication 51 and NCRP Report 112 [McDonald

et al., 1998].
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CHAPTER 4

EXPERIMENTAL DESIGN AND SETUP

This chapter describes the preparation, exposure, and processing of the CR-39

PNTDs used in the photo-neutron experiment.

4.1 Preparation of the CR-39 PNTD and TRND

CR-39 PNTDs and TRNDs used in this experiment were arranged in pairs. Each

CR-39 PNTD was cut to dimensions of 4 x 4 cm on a milling machine using a 1/8

inch, 45 degree end mill. Latex gloves were worn while handling the CR-39 to prevent

oil and dirt getting on the CR-39 PNTD and TRNDs.

Figure 4.1 CR-39 PNTD measuring 4 x 4 cm with reference scale.

For each CR-39 PNTD and TRND pair, a descriptive identification was inscribed

with a diamond-tipped scriber on the lower left of the detector. The identification
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label contained the experiment name, the detector number, and a front/back identifier.

The first (front) CR-39 PNTD layer, in the pair, was identified by: PHN-01-I, while

the second (back) layer was inscribed with PHN-01-II. For the CR-39 TRNDs, the

identification labels PHN-TRN-01-I and PHN-TRN-01-II were used.

Figure 4.2 Assembly of the CR-39 PNTD pairs. Top: shows the two

CR-39 PNTDs with their placement of the mounting holes along with the

unique identifier. Bottom: shows the packaging of the CR-39 PNTDs

Each CR-39 PNTD and TRND also had mounting holes drilled into the upper

right and left corners of the detectors, about a centimeter from the edges, using a

small tabletop drill press. These holes allowed for the CR-39 PNTD and TRND layers

to be mounted in a custom made etching rack during chemical processing. Figure 4.1

shows a 4 x 4 cm CR-39 PNTD.

The CR-39 PNTDs were assembled as illustrated in Figure 4.2. An 8 µm layer of

Kim-foil (polycarbonate film), was placed between the pair of CR-39 PNTDs. The

layer of polycarbonate film allows for oxygen to diffuse into the latent damage trails

on the CR-39 PNTD surface during and after irradiation of the detectors. Figure 4.2

also shows the placement of the mounting holes, identification label, as well as the
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Figure 4.3 Assembly of the CR-39 TRND pairs. The top diagram

shows the back and front of the CR-39 TRNDs with their placement of

the mounting holes along with the unique identifier. The bottom diagram

shows the packaging of the CR-39 TRNDs

final assembly of the CR-39 PNTD pairs. Each CR-39 PNTD pair was wrapped in a

piece of paper and bound together with a small piece of adhesive tape. Each CR-39

PNTD pair was then labelled using the same naming convention. Using the example

above PHN-01-I and PHN-01-II would be bound together using the identifier PHN-01.

The CR-39 TRNDs were assembled differently than the CR-39 PNTDs. Two 0.6

cm x 0.6 cm x 0.1 cm 6LiF TLD chips were taped to one side of the CR-39 PNTD

about 1 cm from the side edges and 2 cm from the top and bottom of the PNTD

layer. Once the 6LiF TLD chips are taped to one side of the CR-39 PNTD another

was placed on top of the 6LiF TLD chips sandwiching them together. One of the 6LiF

TLD chips that was sandwiched between the CR-39 PNTDs was covered by a 1 cm

x 1 cm x 0.1 cm layer of metal cadmium (Cd), while the second was uncovered, as

shown in figure 4.3. Each CR-39 TRND was wrapped in a piece of paper and bound

together with a small piece of adhesive tape. After wrapped in paper, each CR-39
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TRND pair was labelled using the same naming convention.

4.2 Irradiations

The irradiations were preformed at Hillcrest Medical Center in Tulsa, OK, using

a Varian Clinac 23EX at 6 and 18 MVp beam, and a Varian Trilogy with a 10 MVp.

The field size of each beam was set to 15 x 15 cm2. CR-39 PNTDs and TRNDs were

irradiated in air and inside a polyethylene phantom. The phantom consisted of high

density polyethylene (0.96 gm/cm3) blocks each with dimensions of 20 x 20 cm2 and

thicknesses of either 5.0 cm or 2.5 cm. These blocks were placed in three columns

arranged in a way to create a rectangular box with dimensions 60 cm in length, 20 cm

in width and 20 cm in height. The surface of the phantom was placed at the height so

that the source to surface distance (SSD) was 100 cm. The beam was centered in the

middle of the first column block. Diagrams illustrating the placement of detectors in

air and in the phantom are shown in figure 4.4.

The detectors irradiated in air were centered perpendicular to the beam at distances

of 0, 20, 40 cm from the primary beam axis. The surface of the detectors was arranged

so that the SSD was 100 cm. In the polyethylene phantom the detectors were centered

perpendicular to the beam, but at depths of 0, 5, and 10 cm from the surface, in the

beam central axis at depths of 10 cm from the surface, and a distances of 20 and

40 cm from the beam central axis.
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Figure 4.4 The diagram on the left shows the schematics for the experiment in air for both PNTDs and TRNDs. The

diagram on the right shows the schematics for the experiment for both PNTDs and TRNDs.
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4.3 Processing of the Exposed CR-39 PNTD and TRND Pairs

After the CR-39 PNTDs and TRNDs were exposed to radiation, they were taken

back to the lab and disassembled. Latex gloves were worn to prevent dirt and oils

getting on the PNTDs and TRNDs. The CR-39 PNTDs and TRNDs were then

separated into two groups depending on the identifier as group I and group II. The

height, width, thickness, and mass of each CR-39 PNTD and TRND were measured

and recorded before they were chemically etched. This information was needed to

determine the bulk etch of the detectors after being chemically etched.

After the measurements were made, the CR-39 PNTDs were placed in a custom

made mounting rack using stainless steel wire and 0.5 cm spacers, as illustrated in

Figure 4.5. Each etching rack was then placed in a plastic container with one liter

of 6.25 N NaOH solution. These plastic containers were then placed in a Precision

Scientific shaking water bath operating at 50◦C. The mounting racks in the plastic

container were oriented so that the CR-39 PNTDs and TRNDs were parallel to the

direction of movement of the shaking water bath. An illustration of this process is

shown in Figure 4.6.

Figure 4.5 Mounting of CR-39 PNTDs and TRNDs on etching rack

The CR-39 PNTDs and TRNDs were etched for 36 hours. After etching the racks

49



were removed from the plastic container and rinsed with cold tap water. The CR-39

PNTDs were then disassembled from the etching rack and thoroughly rinsed with

deionized water. After rinsing, the detectors were hung inside a fume hood to dry at

room temperature for 24 hours.

Figure 4.6 Placement of etching racks in water bath

Post etch measurements of the thickness and mass were repeated for each CR-39

PNTD and TRND and the data recorded. The bulk etch, or thickness removed from

the detector surface by chemical etching, of the CR-39 PNTD and TRND layers was

determined using the bulk etch equation (3.10), as discussed in Section 3.2.2. For the

duration of 36 hours equation (3.10) yielded bulk etch values of around 10 µm.

4.4 Analysis of CR-39 PNTDs and TRNDs

Each CR-39 PNTD and TRND was read out using a SAMAICA (Scanning and

Measuring with Automatic Image Contour Analysis) nuclear track detector analy-

sis system. This system was manufactured by ELBEK-Bildanalyse GmbH, Siegen
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Germany, and was used to measure the semi-major, a, and semi-minor, b, axes of

all tracks within a given area on the CR-39 PNTD and TRND surface. Figure 4.7

shows a proton recoil tracks from CR-39 PNTDs (a) and alpha particle track from

the TRNDs (b).

Figure 4.7 The figure on the left (a) shows a photomicrograph of 18

MV beam, nuclear tracks in CR-39 PNTD with 50x magnification. The

insert shows the semi-major, a, and semi-minor, b, axes labelled on a

nuclear track. The figure on the right (b) shows a photomicrograph of 18

MV beam, alpha tracks in CR-39 TRND with 20x magnification.

The ELBEK system is comprised of a Leitz Orthoplan optical microscope equipped

with transmitted light illumination, a CCD camera, and a computer controlled trans-

lation stage. The hardware includes a standard personal computer equipped with a

video frame grabber card and running customized track analysis software for both the

analysis of video images and the measurement of nuclear tracks. The computer also

coordinates data acquisition, movement of the microscope stage, and storage of the

measured data. Figure 4.8 shows the ELBEK system used for scanning the CR-39

PNTDs and TRNDs.

During analysis of a CR-39 PNTD or TRND layer, the ELBEK computer moves

the translation stage to a predetermined set of coordinates and retrieves an image

from the CCD camera. The SAMAICA software will then allow the user to manually

fit ellipses to the openings of the nuclear tracks in the image. This gives the lengths
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Figure 4.8 The ELBEK automatic track detector analysis system used

in analyzing the CR-39 PNTDs for this study.

of the semi-major, a, and semi-minor, b, axes characterizing each track as discussed

in Chapter 3. Once an image is analysed and all the tracks within the image are

measured, the computer stores the data and moves the microscope stage to the next

position and the process is repeated.

Following the analysis of the CR-39 PNTDs and TRNDs, the data file generated

is processed by a custom written computer code designed specially for this project

to generate differential and integral LET spectra. The process of generating the

differential and integral LET spectra is as follows:

1. The reduced etch rate ratio, VR, is determined for each track based on its

measured semi-major, a, and semi-minor, b, axes and normalized by the bulk

etch, B, using equation (3.10).

2. The LET200CR-39 in keV/µm of each track is calculated based on the calibration

function, that relates VR to LET200CR-39 [Benton, 2004]:
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y = 2.127 + 0.9319x+ 0.3124x2 + 1.054x3 . (4.1)

3. The LET200CR-39 for each track is converted to LET∞H2O [Benton, 2004]:

log(LET∞H2O) = 0.1689 + 0.984 log(LET200CR−39) (4.2)

4. The dip angle cutoff, δc for each track is calculated based on an empirical fit of

δc and VR. This empirical fit was determined by E R Benton [Benton, 2004] and

given as:

δc = 0.0305 + 0.9872 sin−1

(
1

VR

)
. (4.3)

5. The track values are then sorted into a fixed number of equal bins of 1 keV/µm

width.

The use of binning the LET in fixed number of bins of 1 keV/µm allows for easy

background subtraction as measured in control CR-39 PNTDs and TRNDs detectors.

In this case the control CR-39 PNTDs and TRNDs detectors were made at the same

time as the other detectors. However, they were not exposed to any radiation from

the linacs.
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CHAPTER 5

RESULTS

5.1 Integral Fluence

The LET spectra for PNTDs irradiated in the 18, 10, and 6 MVp x-ray beams

were generated following the readout of the detectors. The integral and differential

LET fluence have been normalized by the absorbed dose of x-rays delivered. For all

three beams, 6, 10, and 18 MVp, a dose of 200 monitor units (MU) was delivered.

It was assumed, in this study, that 1 MU is equal to 1 cGy. The individual integral

and differential LET fluence spectra can be seen in appendix A and appendix B

respectively.

Figure 5.1 shows the integral fluence LET spectrum from secondary neutrons

measured in CR-39 PNTD from a 200 cGy 18 MVp x-ray exposure in air at varying

distances off-axis from the beam. The highest fluence of photo-neutrons was measured

to be ∼900 tracks/cm2Gyx at 0 cm off-axis to the beam. The fluence decreased to

∼400 and ∼100 tracks/cm2Gyx as the distance off-axis increased from 20 to 40 cm,

respectively. One reason for the decrease in fluence as the distance increased could

be due to the angular photo-neutron cross section. When a high energy photon

interacts with a high Z nucleus, a photo-neutron can be produced. The direction of

these photo-neutrons is dependent upon the energy of the x-ray [Sanchez-Doblado

et al., 2012]. Higher energy neutrons will have a smaller scattering angle so that

more neutrons will pass through and interact with a detector directly in the beam as

compared to detectors at 20 and 40 cm off-axis to the beam.

Figure 5.1 shows a greater abundance of lower LET tracks (< ∼100 keV/µm) to
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that of higher LET tracks (> ∼100 keV/µm) for all three detectors placed at 0, 20,

and 40 cm off-axis. This is due to the fact that neutron collisions taking place in

the detectors are predominantly with protons. As discussed previously in Chapter 2,

any tracks greater than ∼100 keV/µm come from target fragmentation of the heavier

nuclei in the detector. The LET spectra in detectors at 0 and 20 cm off-axis had

low contributions from high LET tracks, while the LET spectra measured at 40 cm

off-axis had no contribution from high LET tracks.

Figure 5.1 Integral LET Fluence spectra from neutrons measured in

the 18 MVp x-ray beam in air at 0 cm depth and at varying distances

off-axis to the beam.

Figure 5.2 shows the integral LET fluence for the 18 MVp x-ray beam in a phantom

at 0 cm off-axis to the beam and at varying depths of 0, 5, and 10 cm. The fluence

at the surface (0 cm depth) was ∼1000 tracks/cm2Gyx. This value is comparable

to the measurements made in air at the same position (0 cm off-axis, 0 cm depth)

shown in Figure 5.1. At depths of 5 and 10 cm the fluence decreased to ∼200 and

∼70 tracks/cm2Gyx, respectively. This is likely due to the attenuation of the neutrons
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Figure 5.2 Integral Fluence spectra from neutrons measured in the

18 MVp x-ray beam in a phantom at 0 cm off-axis and at varying depths.

with depth inside the phantom.

It can also be seen in Figure 5.2 that neutrons at all three depths of the phantom

make a greater contribution of high LET tracks compared to neutrons in air (Figure 5.1).

This increase in high LET tracks is due to the polyethylene phantom. There are

two reasons for why high LET tracks are more likely to occur in the presence of the

phantom than in air. The first is target fragmentation from the carbon atoms in the

polyethylene phantom. As described in Chapter 2, target fragmentation occurs when

an energetic nucleon, in this case a neutron, penetrates a heavy target nucleus, e.g.

carbon, which then ejects one or more nucleons or heavier fragments. The residual

nucleus is left in an unstable state and will de-excite through the evaporation of more

nucleons. The residual nucleus will then recoil in the opposite direction to that of the

evaporated nucleons. If the recoil nucleus were to enter the CR-39 PNTD it would

produce a high LET track.

Another reason for the greater contribution of high LET tracks in the phantom
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than in air could be due to the neutron absorption cross section from oxygen and

carbon nuclei in CR-39 PNTD. High energy neutrons can interact elastically with

carbon or a hydrogen nuclei in the polyethylene. These elastic interactions will cause

a fraction of the neutrons’ kinetic energy to be transferred to the hydrogen and carbon

nuclei, thereby moderating neutrons. The absorption cross section for oxygen and

carbon in the CR-39 PNTD increases as the neutron energy decreases. The absorption

of a neutron from a carbon or oxygen atom will cause the nucleus to be in an excited

state, which will then de-excite through an evaporation process causing the residual

nucleus to recoil and produce a high LET track.

Figure 5.3 Integral Fluence vs LET for 18 MVp x-ray beam in phantom

at 10 cm depths with varying distances off-axis.

Figure 5.3 shows the Integral LET fluence spectra measured in detectors exposed

in an 18 MVp x-ray beam in a phantom at a depth of 10 cm and at varying distances

off-axis. The highest measured fluence was ∼70 tracks/cm2Gyx at 0 cm off-axis and

this decreased to ∼40 and ∼20 tracks/cm2Gyx at distances of 10 and 20 cm off-axis,

respectively. The contributions from high LET tracks can also be seen in Figure 5.3
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and are due to the detectors being irradiated inside the phantom.

A comparison integral LET fluence spectra measured in those detectors that were

exposed in the phantom to those exposed in air is shown in Figure 5.4. Figure 5.4(a)

shows a comparison of spectra measured in the 18 MVp x-ray beam at 0 cm off-axis,

and 0 cm depth in phantom versus spectra measured in the 18 MVp x-ray beam at

0 cm off-axis in air. There is not a significant difference between the two integral LET

fluence spectra, since both detectors were located at 100 cm SSD and exposed under

the same conditions. The only difference is the contribution of high LET tracks in the

phantom that is not seen in air.

Figure 5.4(b) compares LET spectrum measured at 0 cm off-axis and 10 cm

depth in the phantom with that measured at of 0 cm off-axis in air. The spectrum

measured in air has a significantly larger fluence, ∼900 tracks/cm2Gyx, than that

measured in the phantom, ∼70 tracks/cm2Gyx. The lower fluence is due to the

greater attenuation of neutrons in the polyethylene phantom as compared to air. The

spectrum measured in the phantom also possesses a greater contribution from high

LET tracks. Figures 5.4 (c) and (d) also show the attenuation in neutron fluence,

as well as a greater contribution of high LET tracks, in the PNTDs at 10 cm in the

phantom compared to that in air.

5.2 Results from Plastic Nuclear Track Detectors

Table 5.1 lists the measured values from PNTDs in air for absorbed dose and

dose equivalent normalized to the given x-ray dose of 200 cGy for maximum x-ray

energies of 18, 10, and 6 MVp. Only the PNTD directly in the 6 MVp x-ray beam was

measured due to photo-neutron production occurring with x-ray energies greater that

∼7 MeV. The PNTD directly in the 6 MVp x-ray beam was measured to verify that

photo-neutron absorbed dose would be negligible compared to background.

As shown in Table 5.1, the measured values, of normalized absorbed dose, for the
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Figure 5.4 LET spectra measured by CR-39 PNTDs from an 18 MVp

x-ray beam in phantom vs air: (a) 0 cm depth, 0 cm off-axis in phantom

vs 0 cm off-axis in Air (b) 0 cm off-axis, 10 cm depth in phantom vs 0 cm

off-axis in air, (c) 20 cm off-axis, 10 cm depth in phantom vs 20 cm off-axis

in air, (d) 40 cm off-axis, 10 cm depth in phantom vs 40 cm off-axis in air.
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18 MVp x-ray beam are 495 ± 29 µGyn/Gyx for the detector directly in the beam (0

cm off-axis), 166 ± 12 µGyn/Gyx for the detector 20 cm off-axis to the beam, and

74 ± 6 µGyn/Gyx for the detector 40 cm off-axis. The normalized dose equivalent

measured from the same detectors was 5500 ± 420, 1398 ± 155, 845 ± 103 µSvn/Gyx,

respectively.

The majority of the dose deposited into the detectors are from neutrons created

directly in the beam. As mentioned previously, high energy neutrons created from

a high energy x-ray beam are highly directional [Sanchez-Doblado et al., 2012]. For

this reason there are more photo-neutrons along the beam axis than there are at a

distance 20 or 40 cm off-axis. The more photo-neutrons there are, within a given

spatial volume, the more interactions will occur with the material and the greater the

deposit of absorbed dose.

This trend is also seen in the detectors exposed to the 10 MVp x-ray beam. The

highest measured value of normalized absorbed dose was 10 ± 3 µGyn/Gyx from the

detector at 0 cm off-axis, 5 ± 2 µGyn/Gyx for the detector at 20 cm off-axis, and

3 ± 2 µGyn/Gyx from the detector at 40 cm off-axis. The measured values for dose

equivalent were 103 ± 46, 30 ± 38, and 30 ± 37 µSvn/Gyx, respectively. The detector

irradiated directly in the 6 MVp x-ray beam had measured values of 1 ± 2 µGyn/Gyx,

and 3 ± 36 µSvn/Gyx.

As mentioned in Chapter 2, the average x-ray energy produced from a medical

linear accelerator is about one third the maximum energy [Khan, 2003]. Since the

threshold x-ray energy to produce a photo-neutron is ∼7 MeV, the higher the maximum

energy of the x-rays produced by the linear accelerator, the more probable it is for a

photon to have energies above 7 MeV. The increase in the number of photo-neutrons

will lead to more neutron absorbed dose deposited in the detectors. This can be seen

in Table 5.1 comparing the detectors exposed at 0 cm off-axis for the 18, 10 and

6 MVp x-ray beams. The absorbed dose and the dose equivalent measured in these
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Table 5.1 Neutron absorbed dose and dose equivalent measured in CR-

39 PNTD and exposed to x-ray beams of different energy (6, 10, and

18 MVp) at three off-axis distances in air.

Maximum Distance Normalized Normalized

X-Ray Energy off-Axis Absorbed Dose Dose Equivalent

(MVp) (cm) (µGyn/Gyx) (µSvn/Gyx)

0 495±29 5500±420

18 20 166±12 1398±155

40 74±6 845±103

0 10±3 103±46

10 20 5±2 30±38

40 3±2 30±37

6 0 1±2 3±36

detectors were 495 ± 29, 10 ± 3, and 1 ± 2 µGyn/Gyx and 5500 ± 420, 1398 ± 155,

845 ± 103 µSvn/Gyx respectively. The 6 MVp x-ray beam measurement verified that

photo-neutrons are not produced by x-rays of energy less than ∼7 MeV.

Table 5.2 lists the values measured in a phantom of normalized absorbed dose

and dose equivalent for x-ray energies of 18, and 10 MVp. Detectors were exposed at

depths of 0, 5, and 10 cm from the upper surface of the phantom along the beam axis,

and also at a distances of 20 and 40 cm from the beam’s central axis at a depth of

10 cm from the surface. The PNTDs in the 6 MVp x-ray beam were not measured

due to photo-neutron production not occurring at energies less than ∼7 MeV.

For the PNTDs exposed in the 18 MVp x-ray beam, the values measured were

467 ± 28 µGyn/Gyx and 4307 ± 370 µSvn/Gyx in the detector directly in the beam

(0 cm off-axis at 0 cm depth), 131 ± 10 µGyn/Gyx and 1491 ± 146 µSvn/Gyx in the

detector at 0 cm off axis at 5 cm depth, and 46 ± 5 µGyn/Gyx and 550 ± 85 µSvn/Gyx

for the detector 0 cm off-axis and 10 cm depth.

Hydrogen is the best moderator of neutrons because the masses of the proton and
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Table 5.2 Neutron absorbed dose and dose equivalent measured in CR-

39 PNTD exposed to x-ray beams of different energy (10, and 18 MVp)

at varying depths and distances off-axis in the phantom.

Maximum Distance Normalized Normalized

X-Ray Energy off-Axis Depth Absorbed Dose Dose Equivalent

(MVp) (cm) (cm) (µGyn/Gyx) (µSvn/Gyx)

0 0 467±28 4307±370

0 5 131±10 1491±146

18 0 10 46±5 550±85

20 10 16±3 167±57

40 10 6±3 46±43

0 0 9±3 61±43

0 5 3±2 11±36

10 0 10 0.2±2 2±37

20 10 1±2 10±37

40 10 1±2 13±37

neutron are very similar to each other. Polyethylene, which has 2 hydrogen atoms for

every carbon atom, will moderate and/or scatter neutrons as they collide elastically

with protons. Due to the neutrons losing their energy and or scattering, they will

attenuate, resulting in a lower dose as the depth increases. The absorbed dose and dose

equivalent also decreased as the distance off-axis increased. The detectors exposed at

20 and 40 cm off-axis at 10 cm depth have measured values for absorbed dose and

dose equivalent of 16 ± 3 µGyn/Gyx and 167 ± 57 µSvn/Gyx for detectors exposed

at 20 cm off-axis, and 6 ± 3 µGyn/Gyx and 46 ± 43 µSvn/Gyx for detectors exposed

at 40 cm off-axis.

It is interesting to note that the two detectors that were directly in the beam

in exposures in air (Figure 5.1) and in the phantom (Figure 5.2) measured the

same values for absorbed dose within error bars: 495 ± 29 µGyn/Gyx in air and
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467 ± 28 µGyn/Gyx in the phantom. Both these detectors were located at 100 cm SSD

and exposed under the same conditions. The only difference is the PNTD in air was

placed on top of the treatment table, while the PNTD in the phantom was placed on

top of the polyethylene phantom.

Results from PNTDs exposed to the 10 MVp x-ray beam also show the same

trend as the PNTDs exposed to the 18 MVp x-ray beam. The highest dose was

measured in the PNTD directly in the beam with values of 9 ± 3 µGyn/Gyx and

61 ± 43 µSvn/Gyx. These values decreased to 3 ± 2 and 0.2 ± 2 µGyn/Gyx for

absorbed dose and 11 ± 36 and 2 ± 37 µSvn/Gyx for dose equivalent at 0 cm off-axis

and at 5 and 10 cm depths, respectively. For the PNTDs at 20 and 40 cm off-axis and

at 10 cm depth, the absorbed dose for both detectors was 1 ± 2 µGyn/Gyx. The dose

equivalent values were 10 ± 37 and 13 ± 37 µSvn/Gyx, respectively.

The absorbed dose measured in the detectors exposed directly in the 10 MVp x-ray

beam in air and in the phantom shows the same trend as that seen in the detectors

exposed in the same position in the 18 MVp x-ray beam. These values from the

10 MVp x-ray beam are 9 ± 3 µGyn/Gyx in the phantom and 10 ± 3 µGyn/Gyx in

air. Again, this is because both detectors were exposed at the same distance from the

source (100 cm SSD) and under the same conditions.

Table 5.3 shows the contribution from high LET (≥ 100 keV/µm) particle dose

equivalent to neutron absorbed dose and dose equivalent measured in CR-39 PNTD

exposed in air, as a percentage of the total normalized neutron absorbed dose and dose

equivalent. In measurements made in the 18 MVp x-ray beam, the highest contribution

of high LET tracks that contributed to neutron absorbed dose is 2 ± 14% at 0 cm

off-axis. At distances 20 and 40 cm off-axis, the contribution of high LET tracks to

the neutron absorbed dose is 1 ± 10% and 0%, respectively. For the measurements

made in the 10 MVp x-ray beam, only the detector directly in the beam registered

any contribution to neutron dose from high LET tracks: 1 ± 5%. As explained in
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Table 5.3 Contribution from High LET (≥100 keV) tracks to absorbed

dose and dose equivalent from neutrons measured in CR-39 PNTD exposed

to x-ray beams of different energy at three off-axis distances in air.

Percentage of

Maximum Distance Percentage of High LET Tracks

X-Ray Energy off-Axis High LET Tracks Normalized

(MVp) (cm) Normalized Dose Dose Equivalent

0 2±14 5±27

18 20 1±10 4±23

40 0 0

0 1±5 8±20

10 20 0 0

40 0 0

6 0 0 0

Chapter 2, target fragmentation is the production of short-range (<10 µm) secondary

particles having LET above that of the primary particle [Benton et al., 2011].

Table 5.4 shows the contribution from high LET tracks to neutron absorbed dose

and dose equivalent measured in CR-39 PNTD exposed in the phantom to 18 and

10 MVp x-ray beams. For the detectors exposed to the 18 MVp x-ray beam, the

highest percent contribution from high LET tracks to neutron absorbed dose was

measured at positions of 20 and 40 cm off-axis at a depth of 10 cm: 12 ± 18% and

10 ± 15%, respectively. For the detectors exposed at 0 cm off-axis and at depths 0,

5, and 10 cm, the percent contributions from high LET tracks to neutron absorbed

dose were: 3 ± 21%, 2 ± 15%, and 9 ± 29%, respectively. The percent contribution

from high LET tracks to neutron absorbed dose increased with increasing depth. By

comparing the percent contribution of high LET tracks to neutron absorbed dose

measured in an 18 MVp x-ray beam in the phantom (Table 5.4) to that measured in

air (Table 5.3), one can infer that high LET tracks due to target fragmentation have
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Table 5.4 Contribution from High LET tracks to neutron absorbed dose

and dose equivalent measured in CR-39 PNTDs exposed to x-ray beams of

18 and 10 MVp at varying depths and distances off-axis in the phantom.

Percentage of

Maximum Distance Percentage of High LET Tracks

X-Ray Energy off-Axis Depth High LET Tracks Normalized

(MVp) (cm) (cm) Normalized Dose Dose Equivalent

0 0 3±21 8±38

0 5 2±15 5±26

18 0 10 9±29 15±34

20 10 12±18 30±26

40 10 10±15 25±16

0 0 0 0

0 5 0 0

10 0 10 0 0

20 10 0 0

40 10 0 0
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a greater probability of occurring in the presence of the phantom than in air. No high

LET tracks were observed in the detectors exposed in the 10 MVp x-ray beam.

5.3 Results from Thermal Nuclear Track Detectors

Tables 5.5, 5.6, and 5.7 list the measured fluence and dose equivalent values from

TRNDs in air for x-ray beam energies of 18, 10, and 6 MVp. Fluence and dose

equivalent have been normalized by the absorbed dose of x-rays delivered. These

measurements include the contribution from thermal neutrons (≤ 0.025 eV), and

epithermal neutrons (∼0.025 to ∼1000 ev). High energy (1-20 MeV) neutron fluence

and dose equivalent, measured from them PNTDs in Section 5.2, are also included

along with the total dose equivalent from all neutron energies.

The fluence measured for epithermal and thermal neutrons from the TRNDs

have been converted to dose equivalent, using the conversion factors of McDonald

[McDonald et al., 1998; NCRP, 2005] as discussed in Chapter 2. For epithermal and

thermal neutrons, an average conversion factor of 10 and 12 pSv cm2/n, respectively

were used. High energy neutrons have a conversion factor of 419 pSv cm2/n. Due to

this big difference in conversion factors from high energy neutron to that of epithermal

and thermal neutrons, the dose equivalent from thermal and epithermal neutrons will

be low compared to that from high energy neutrons. In this experiment, epithermal

and thermal neutron made up less than 1 % of the total dose equivalent.

Table 5.5 shows the calculated values for dose equivalent from TRNDs exposed to

an 18 MVp x-ray beam at 0, 20, and 40 cm off-axis to the beam. The contribution

of epithermal and thermal neutrons from the TRNDs exposed at 0, 20, and 40 cm

off-axis are: 0.2 ± 0.1, 0.1 ± 0.1, and 0.1 ± 0.1 µSvn/Gyx, respectively. The highest

value measured is from the detector exposed directly in the beam. This is due to the

direction of the photo-neutrons being dependent upon the energy of the incident x-ray

beam. High energy x-rays will produce photo-neutrons with low emission angles. The
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Table 5.5 Neutron fluence and dose equivalent measured in CR-

39 TRNDs exposed to 18 MVp x-ray beams at three off-axis distances in

air.

Distance Classification Normalized Normalized

off-Axis of Neutron Fluence Dose Equivalent

(cm) Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 Thermal 7.6±0.4 0.2±0.1

0 Epithermal 1.5±0.1 0

0 High Energy 895.8±49.1 5500±420

Total 904.1±49.5 5500±420

20 Thermal 1.6±0.1 0.1±0.1

20 Epithermal 1.4±0.7 0

20 High Energy 383.8±23.6 1398±155

Total 386.8±24.4 1398±155

40 Thermal 3.5±0.2 0.1±0.1

40 Epithermal 0 0

40 High Energy 132.8±9.5 845±103

Total 136.3±9.7 845±103

67



energies of the photo-neutrons vary greatly and are dependent upon the photo-neutron

cross section as well as the incident x-ray energy. Since photo-neutrons are highly

directional the probability of thermal neutrons passing through and interacting with

the detector directly in the beam is greater than those interacting with detectors at

20 and 40 cm away off-axis to the beam.

Table 5.6 Neutron fluence and dose equivalent measured in CR-

39 TRNDs exposed 10 MVp to x-ray beam at three off-axis distances in

air.

Distance Classification Normalized Normalized

off-Axis of Neutron Fluence Dose Equivalent

(cm) Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 Thermal 1.2±0.2 0

0 Epithermal 0.4±0.1 0

0 High Energy 24.4±3.8 103.0±46.0

Total 26.0±4.0 103.0±46.0

20 Thermal 0.8±0.1 0

20 Epithermal 0.5±0.1 0

20 High Energy 12.3±3.0 30±38

Total 13.7±3.2 30±38

40 Thermal 0.2±0.1 0

40 Epithermal 0.4±0.1 0

40 High Energy 4.8±2.5 30±37

Total 5.46±2.6 30±37

Thermal and epithermal neutrons are created when high energy neutrons are

moderated due to elastic and inelastic collisions in the head of the linac, room walls,

table and other areas and objects in the treatment room. Since the TRNDs in air do

not have a high density medium in close proximity to moderate the neutrons, dose

equivalent from epithermal and thermal neutrons should be significantly lower than
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that from higher energy neutrons.

Results from the 10 MVp x-ray beam exposure show no contribution from epithermal

and thermal neutrons to the neutron dose equivalent. The reason for this is that fewer

photo-neutron are being created with the 10 MVp x-ray beam than in the 18 MVp

x-ray beam.

Table 5.7 Neutron fluence and dose equivalent measured in CR-

39 TRNDs exposed to a 6 MVp x-ray beam at three off-axis distances in

air.

Distance Classification Normalized Normalized

off-Axis of Neutron Fluence Dose Equivalent

(cm) Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 Thermal 0.7±0.1 0

0 Epithermal 0.8±0.1 0

0 High Energy 2.6±2.5 0

Total 4.0±2.7 0

20 Thermal 0.2±0.1 0

20 Epithermal 0.4±0.1 0

Total 0.6±0.1 0

40 Thermal 0 0

40 Epithermal 1.0±0.1 0

Total 1.0±0.1 0

For the 6 MVp x-ray beam, dose equivalent was calculated to be zero when taking

in account the background. This again verifies that photo-neutrons production does

not occur for x-ray energies less than 7 MeV.

Table 5.8 shows the values for dose equivalent from thermal and epithermal

neutrons, measured in the TRNDs exposed to an 18 MVp x-ray beam. The total

contribution from thermal and epithermal neutrons measured at 0 cm off-axis with

depths of 0, 5, and 10 cm are 3.0 ± 0.4, 9.2 ± 1.0, and 1.9 ± 0.5 µSvn/Gyx, respectively.
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Table 5.8 Neutron fluence and dose equivalent measured in CR-39 TRND

exposed to an 18 MVp x-ray beam at varying depths and distances off-axis

in the phantom.

Distance Classification Normalized Normalized

off-Axis Depth of Neutron Fluence Dose Equivalent

(cm) cm Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 0 Thermal 85.1±2.6 2.5±0.3

0 0 Epithermal 19.1±0.6 0.5±0.1

0 0 High Energy 1028.5±57.4 4307±370

Total 1132.7±60.5 4310±370

0 5 Thermal 264.7±79.4 7.6±0.8

0 5 Epithermal 66.3±19.9 1.6±0.2

0 5 High Energy 234.1±15.2 1491±146

Total 565.1±114.5 1500±147

0 10 Thermal 56.1±1.7 1.6±0.2

0 10 Epithermal 13.7±0.4 0.3±0.3

0 10 High Energy 71.7±6.7 550±85

Total 125.9±8.8 552±85

20 10 Thermal 39.6±1.2 1.1±0.1

20 10 Epithermal 39.7±1.2 1.0±0.1

20 10 High Energy 42.7±4.9 167±57

Total 122.0±7.3 169.1±57.2

40 10 Thermal 44.7±1.3 1.3±0.1

40 10 Epithermal 6.0±0.2 0.1±0.1

40 10 High Energy 19.7±3.5 46±43

Total 70.4±5.0 47.4±43.1
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The detector exposed at 0 cm off-axis and at a depth of 5 cm had the highest

measured value of dose equivalent from low energy neutrons. A reason for this is most

likely due to the polyethylene phantom. The high energy neutrons were moderated

through the polyethylene phantom which led to a larger fraction of high energy

neutrons being moderated down to thermal and epithermal energies.

For the TRNDs exposed outside the beam at 20 and 40 cm off-axis at a depth of

10 cm, the thermal and epithermal contributions to the neutron dose equivalent were

2.1 ± 0.2 µSvn/Gyx, and 1.4 ± 0.2 µSvn/Gyx respectively.

In Table 5.9 the measured values for neutron dose equivalent from epithermal and

thermal neutrons from detectors exposed to 10 MVp x-rays at 0 cm off-axis at depths

0, 5, and 10 cm were 0.1 ± 0.1, 0.1 ± 0.1, and 0 µSvn/Gyx, respectively. As depth

increased the neutron dose equivalent decreased. This was observed in those detectors

exposed at 20 and 40 cm off-axis at a depth of 10 cm. Those values are 0.1 ± 0.1,

and 0 µSvn/Gyx, respectively.

Table 5.10 shows the measured values for dose equivalent from thermal and

epithermal neutrons measured, in TRNDs exposed in 6 MVp x-ray beam. The neutron

dose equivalent was found to be zero within error bars again verifying the threshold

for photo-neutrons being about 7 MeV.
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Table 5.9 Neutron fluence and dose equivalent measured in CR-39 TRND

exposed to an 10 MVp x-ray beam at varying depths and distances off-axis

in the phantom.

Distance Classification Normalized Normalized

off-Axis Depth of Neutron Fluence Dose Equivalent

(cm) cm Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 0 Thermal 3.1±0.2 0.1±0.1

0 0 Epithermal 0.2±0.1 0

0 0 High Energy 21.5±3.6 61±43

Total 24.9±3.8 61±43

0 5 Thermal 2.7±0.2 0.1±0.1

0 5 Epithermal 0.2±0.1 0

0 5 High Energy 9.2±2.7 11±36

Total 12.1±3.0 11±36

0 10 Thermal 1.4±0.1 0

0 10 Epithermal 0 0

0 10 High Energy 0.6±2.5 2±37

Total 1.9±2.6 2±37

20 10 Thermal 1.9±0.2 0.1±0.1

20 10 Epithermal 0.1±0.1 0

20 10 High Energy 3.2±2.6 10±37

Total 5.28±3.0 10±37

40 10 Thermal 1.0±0.1 0

40 10 Epithermal 0.1±0.1 0

40 10 High Energy 2.2±2.6 13±37

Total 3.3±2.6 13±37
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Table 5.10 Neutron fluence and dose equivalent measured in CR-

39 TRND exposed to an 6 MVp x-ray beam at varying depths and distances

off-axis in the phantom.

Distance Classification Normalized Normalized

off-Axis Depth of Neutron Fluence Dose Equivalent

(cm) cm Type (103 cm−2 Gy−1) (µSvn/Gyx)

0 0 Thermal 0 0

0 0 Epithermal 0 0

Total 0 0

0 5 Thermal 0.3±0.1 0

0 5 Epithermal 0 0

Total 0.4±.1 0

0 10 Thermal 0 0

0 10 Epithermal 0.2±0.1 0

Total 0.2±0.1 0

20 10 Thermal 0 0

20 10 Epithermal 0.2±0.1 0

Total 0.2±0.1 0

40 10 Thermal 0 0

40 10 Epithermal 0.3±0.1 0

Total 0.3±0.1 0
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

This study’s primary objective was to measure absorbed dose and dose equivalent

from photo-neutrons produced by x-ray radiotherapy linear accelerators operating

at energies of 6, 10, and 18 MVp. For 6 and 18 MVp x-ray beams, a Varian Clinac

23EX was used, while a Varian Trilogy linac was used for a 10 MVp x-ray beam.

These x-ray energies were chosen to represent the higher and lower range of x-ray

energies commonly used in radiotherapy where photo-neutron production can occur.

The 6 MVp x-ray beam was included to verify that photo-neutron production does not

occur at x-ray energies below about 7 MeV. This study was carried out using CR-39

PNTDs for the measurement of high energy (> 1 MeV) neutrons and TRNDs for the

measurement of thermal and epithermal (< 1 MeV) neutrons. The measurements

were made with two experimental setups: in air and inside a polyethylene phantom.

The field size of each beam was 15 x 15 cm2 and the surface of either the phantom or

treatment table was set at 100 cm SSD.

In general, for both experimental setups (in air and in a phantom), the normalized

absorbed dose and dose equivalent from photo-neutrons produced by a medical linear

accelerator decreased with increasing distance off-axis and increasing depth from the

beam’s isocenter.

Table 6.1 lists the experimental results for maximum and minimum absorbed

dose and dose equivalent measurements of photo-neutrons in the phantom and

in air. In this study, the experimentally measured absorbed dose ranged from

6 ± 3 µGyn/Gyx to 495 ± 29 µGyn/Gyx for the 18 MVp x-ray beam, 0.2 ± 2 µGyn/Gyx

74



to 10 ± 3 µGyn/Gyx for the 10 MVp x-ray beam, and 0 µGyn/Gyx for the 6 MVp

x-ray beam.

Table 6.1 The maximum and minimum values for neutron absorbed dose and dose

equivalent measured in CR-39 PNTD and exposed in air and in a phantom to x-ray

beams of different energies (10 and 18 MVp).

Maximum Normalized Normalized

X-Ray Energy Absorbed Dose Dose Equivalent

MVp µGyn/Gyx µSvn/Gyx

Minimum Maximum Minimum maximum

18 6 ± 3 495 ± 29 47.4 ± 43.1 5500 ± 420

10 0.2 ± 2 10 ± 3 2 ± 37 103 ± 46

The dose equivalent measurements for this study ranged from 47.4± 43.1 µSvn/Gyx

to 5500± 420 µSvn/Gyx for the 18 MVp x-ray beam, 2± 37 µSvn/Gyx to 103± 46 µSvn/Gyx

for the 10 MVp x-ray beam and 0 µSvn/Gyx for the 6 MVp x-ray beam.

Those detectors that were exposed in air measured absorbed dose and dose equiv-

alent values higher than those detectors exposed inside the phantom. The higher

absorbed dose and dose equivalent in air suggest that photo-neutron fluxes are attenu-

ated as they propagate through the phantom.

Those detectors exposed inside of the phantom also measured a higher contribution

from high LET particles than those detectors exposed in air. This suggests that the

incident photo-neutrons are interacting with high-Z matter through non-elastic means

such as compound nucleus formation and target fragmentation.

Low energy (< 1 MeV) neutrons, as measured by the TRNDs, do not make an

appreciable contribution to the overall absorbed dose or dose equivalent. Low energy

neutrons in this study accounted for less than 1% of the dose equivalent.

Photo-neutrons are not produced at x-ray energies below about 7 MeV. As the

x-ray energy increases the rate of photo-neutron production also increases.
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This study suggests that the absorbed dose and dose equivalent from photo-neutrons

produced in a common medical linear accelerator operating at energies 10 and 18 MVp

range from 0.2 µGyn/Gyx and 2 µSvn/Gyx to 495 µGyn/Gyx and 5500 µSvn/Gyx,

respectively.

A comparison of the experimentally measured data for dose equivalent in this

study is made with published literature. There have been relatively few experiments or

Monte Carlo simulations quantifying photo-neutron absorbed dose or dose equivalent

from linacs published in professional literature [Liu et al., 1997; Zanini et al., 2004;

Ongaro et al., 2000]. Articles have been published measuring the photo-neutron

spectrum produced by medical linacs [Barquero et al., 2002; Facure et al., 2005;

Holeman et al., 1977; Howell et al., 2006; Howell et al., 2009; Naseri and Mesbahi,

2010; Kralik and Truek, 2004; Kralik et al., 2008; Reft et al., 2006], neutron-induced

activation in and around medical linacs [Fischer et al., 2006; McGinely and Landry,

1989; Howell et al., 2009], and estimates or measurements of photo-neutron fluence

from medical linacs [Howell et al., 2006; Kray et al., 2005; Mameli et al., 2008; Mesbai

et al., 2010; Mesbahi et al., 2011; Mesbahi, 2009; Howell et al., 2009; Naseri and

Mesbahi, 2010; Kralik and Truek, 2004; Kralik et al., 2008]. However, in all of

these cases it is difficult to know how to interpret the data in terms of damage from

photo-neutron exposure to living tissue either inside or outside the treatment volume.

Some papers quantify photo-neutron production in a medical linear accelerator

in terms of the dosimetric quantity of ambient dose equivalent, H∗(10) [Liu et al.,

1997] [Zanini et al., 2004] [Agosteo et al., 1993] [Howell et al., 2009] [Kralik et al.,

2008]. Ambient dose equivalent is the dose equivalent that would be produced by the

corresponding expanded and aligned field, in the 30 cm diameter ICRU sphere at a

depth of 10 cm on the radius opposing the direction of the aligned field [ICRU, 1993].

Because dose equivalent and ambient dose equivalent are two different quantities,

technically speaking, they should not be directly compared. However, according to
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a study from Halg et. al. where equivalent dose and ambient dose equivalent were

calculated using Monte Carlo radiation transport code FLUKA, for neutrons of energy

ranging from 10−7 to 103 MeV using 13 monoenergetic beams the values of these

two quantities are nearly the same [Halg et al., 2011]. Halg et.ãl. showed that the

largest difference between the equivalent dose and ambient dose equivalent is less

than 4%. Since this difference is much smaller than the uncertainty of individual

neutron dosimetric measurements (about 35-50%) [NCRP, 1991; NCRP, 2005; NRC,

1977; ANSI, 1976], neutron ambient dose equivalent can be considered practically

identical to equivalent dose [Halg et al., 2011]. In this study based on ICRP publication

60 [ICRP, 1991] an assumption is made that equivalent dose and dose equivalent are

practically interchangeable. The term ‘dose equivalent’ will be used to signify the

photo-neutron dose equivalent, equivalent dose, and ambient dose equivalent reported

in the literature.

6.1 Comparison with Published Data

Comparisons of the photo-neutron dose equivalent measured in this present work

with photo-neutron dose equivalent values reported in other literature are shown in

Tables, 6.2, 6.3, 6.4, and 6.5. These tables show the measured values of photo-neutron

dose equivalent from neutron sensitive detectors exposed to either 18 MVp x-rays or

10 MVp x-rays in air and/or in a phantom.

Since neutron dose equivalent varies between different linacs and radiation therapy

setups (field size, distance off-axis, depth, etc.), a direct comparison is often not strictly

valid. However, a comparison can be made to indicate that the photo-neutron dose

equivalent with varying setups is of a similar order.

Neutron sensitive detectors used in other experiments include superheated emulsion

detectors (bubble detectors), gold activation foils, polycarbonate films, thermolumi-

nescence detectors (TLDs), and CR-39 PNTDs processed by electrochemical etching
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(ECE).

It is important to note that CR-39 PNTD processed by ECE is a very different

method than that used in this research. The method of electrochemical etching is a

way to enlarge the nuclear tracks up to a size where they can be observed with the

naked eye [Najjar et al., 1978]. This method allows for easy viewing of the nuclear

tracks using an optical microscope with low magnification and the tracks can be easily

counted using an automated scanning system [Najjar et al., 1978].

In electrochemical etching an alternating voltage is applied between two electrodes

placed on either side of the detector during the etching process. The electric field

caused by the alternating voltage enhances the etching process to the latent damage

trail. Soon after the etching process, conical track begin to form. The electric field at

the tips of these tracks are much larger than the average field applied to the bulk of

the detector. These high electric fields at the tips of the tracks will cause a localized

electrical breakdown causing a tree or star like shape to form at the end of the etched

track, enhancing the size of each track [Tommasino and Armellini, 1973]. The electrical

breakdown, causing the tree or star like shape, will permanently distort the track

causing all information, including the LET of the track, to be lost. The ECE method

does not allow for energy discrimination between etched tracks [Fulvio et al., 2013].

Each detector mentioned above functions differently. However, the technique used

to measure neutron dose equivalent is roughly the same in all detectors in that the

neutron fluence measured in each detector is multiplied by a fluence to dose equivalent

conversion coefficient to obtain the dose equivalent.

The approach used in this work differs from the efforts mentioned above in that,

with CR-39 PNTD processed by standard (non-electrochemical) etching the size of

each individual track is proportional to the LET of the particle which formed the

track, allowing for the energy deposited by the incident photo-neutron to be measured

(Sections 3.4). By measuring track size of the recoil particles, the energy deposited by
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neutrons can be measured with a fair amount of accuracy [Benton, 2004; Zhou, 2012].

CR-39 PNTD is a polymer whose an elemental composition (C12H18O7) is a good

representation of human tissue. When neutrons transfer their energy to charged

particles through elastic or inelastic collisions in the CR-39 PNTD, absorbed dose and

dose equivalent in tissue can be measured.

Unlike PNTDs, the other neutron-sensitive detectors do not measure the energy

deposited by each neutron. The measured neutron fluence, is multiplied by a fluence

to dose equivalent or fluence to ambient dose equivalent conversion coefficient to

determine the photo-neutron dose equivalent or ambient dose equivalent. In using

this approach, it is assumed that all neutron interactions transfer the same average

energy to charged particles. Consequently, using a single conversion factor or multiple

conversion factors over a wide range of neutron energies to calculate dose equivalent

or ambient dose equivalent introduces large uncertainties.

The conversion coefficients themselves introduce limitations in the way they are

calculated. Neutron fluence to dose equivalent or ambient dose equivalent conversion

coefficients are calculated under a variety of conditions with various radiation transport

codes, in different phantoms, at different depths in a phantom and in different

irradiation geometries [McDonald et al., 1998]. The conversion factors associated with

each energy interval of the spectrum are obtained from the data set by logarithmic

interpolation [Sims and Killough, 1983]. The interpolated conversion factors, along

with the convolution of the neutron fluence, produces the spectrum averaged fluence to

dose equivalent factor [Sims and Killough, 1983]. Each different organization (ICRP,

ICRU, NCRP, etc.) uses different neutron cross sections along with their own methods

(Monte Carlo radiation transport code and interpolations) to determine the neutron

dose equivalent conversion coefficients as can be shown in Figure 3.3 [McDonald et al.,

1998].

The approach used in this work contains a number of advantages over the methods
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described above. One major advantage is that the LET of each recoil track produced

as the result of an incident neutron interaction, is measured directly and the LET of

the secondary particle produced is determined [Benton, 2004]. This method is model

independent since it does not rely on Monte Carlo-based fluence to dose equivalent

conversion coefficients.

As shown in Table 6.2, Jaradat and Biggs [Jaradat and Biggs, 2008] conducted a

study using a Varian 2100C/D linac with a 10 MVp x-ray beam. They calculated the

dose equivalent using bubble detectors for various field sizes between 0.3 x 0.3 cm2

and 40 x 40 cm2. The average dose equivalent was determined for the detectors placed

directly in the beam (0 cm off-axis) at 100 cm SSD. Jaradat and Biggs reported an

average neutron dose equivalent of 0.124 mSvn/Gyx. In the present study neutron

dose equivalent for a detector placed directly in the beam at 100 SSD exposed to

a 10 MVp x-ray beam of field size 15 x 15 cm2 is 0.103 mSvn/Gyx. Neutron dose

equivalent measured by Jaradat and Biggs differs by 20% with that measured in

this study. Taking into effect the large (∼35-50%) uncertainty [NCRP, 1991; NCRP,

2005; NRC, 1977; ANSI, 1976] in neutron dosimetry and differences in methods these

two values can be considered to agree with each other. The slight differences in these

values are also likely affected by to the different radiation therapy setups (field size)

and machines used in the two experiments.

Most published literature state that photo-neutron production does not begin until

x-ray energies exceed 10 MeV [Facure et al., 2005; Followill et al., 2003; Kralik et al.,

2008; Sanchez-Doblado et al., 2012; Barquero et al., 2005; Spurny et al., 1996; Takam

et al., 2001]. For this reason there is a lack of photo-neutron dose equivalent data for

10 MVp x-ray beams. However, as can be seen in Table 6.2 from measurements from

Jaradat and Biggs and this work, neutron dose equivalent in 10 MVp x-ray beams is

not negligible and further work should be conducted at this low energy.

Table 6.3 compares photo-neutron dose equivalent measurements from this work
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with dose equivalent measured from the published literature made in air to an 18 MVp

x-ray beam. Three other research groups have published photo-neutron dose equivalent

data for detectors exposed directly in the x-ray beam. Howell et al. [Howell et al., 2006]

and Jaradat and Biggs [Jaradat and Biggs, 2008] both measured the average photo-

neutron dose equivalent at varying field sizes, while Hashemi et al. [Hashemi et al.,

2008] measured the photo-neutron dose equivalent using a field size of 20 x 20 cm2.

Howell et al. and Jaradat and Biggs measured dose equivalent values of 3.13 and

3.5 mSvn/Gyx, respectively. Hashemi et al. measured 3.7 mSvn/Gyx. In this work, the

measured photo-neutron dose equivalent from the detector directly in a 15 x 15 cm2 x-

ray beam was 5.5 mSvn/Gyx. The neutron dose equivalent measured by Hashemi et al.,

Howell et al., and Jareadat and Biggs differs with this study by 33, 43, and 36%,

respectively. These values seem fairly comparable when taking into effect the high

uncertainties involved in neutron dosimetry, and may well reflect differences in methods

and exposure setups.

The neutron dose equivalent measured from the detector located at 20 cm off-axis

from isocenter, in this work, is 1.4 mSvn/Gyx. Other researchers have published

photo-neutron dose equivalent for detectors located about the same distance off-axis

to that of this work (± 10 cm). Hashemi et al. and Paredes et al. both used a field

size of 20 x 20 cm2. Hashemi et al. measured a photo-neutron dose equivalent of

2.4 mSvn/Gyx at 10 cm off-axis, 71% higher than this study, while Paredes et al.

measured 2.3 mSvn/Gyx at 30 cm off-axis, 64% higher than this study. Barquero et al.

measured the neutron dose equivalent at 25, 25, and 30 cm off-axis to isocenter of 0.64,

0.86, and 0.35 mSvn/Gyx, respectively, in a 40 x 40 cm2 x-ray beam. Neutron dose

equivalent measured by Barquero et al. differs by 54, 39, and 75% with that measured

in the current study. This again is probably due to differences in the method, setup,

and especially from varying the distances off-axis by ± 10 cm.

Howell et al. [Howell et al., 2009] measured the photo-neutron fluence using gold
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foil activation detectors located 40 cm off-axis in various linacs with a field size of

0 x 0 cm2. From the neutron fluence, Howell et al. calculated the ambient dose

equivalent using methods discussed in ICRP-21 and ICRP-74. Those results are

1.3, 0.55, 0.38 mSvn/Gyx for ICRP-21 conversion coefficients and 1.96, 0.84, and

0.52 mSvn/Gyx for ICRP-74 conversion coefficients. In this work, the measured photo-

neutron dose equivalent from the detector at 40 cm off-axis is 0.84 mSvn/Gyx. The

photo-neutron dose equivalent from the Varian 21EX linac in Howell et al. (1.9, and

1.3 mSvn/Gyx) differs with that in this research by factors of 2.3 and 1.5, respectively.

In Howell et al., the Varian 21EX linac measured the highest value for neutron dose

equivalent. The photo-neutron dose equivalent from the Precise linac measured using

ICRP-21 and ICRP-74 conversion coefficients was 0.55 and 0.84 mSvn/Gyx, respectively.

0.38 and 0.52 mSvn/Gyx was measured for the Oncor linac using ICRP-21 and ICRP-74

coefficients, respectively. The ICRP-21 coefficients (0.55 and 0.38 mSvn/Gyx) differed

from that of this study by 35 and 55%, respectively. The neutron dose equivalent

measured using ICRP-74 coefficients (0.84 and 0.52 mSvn/Gyx) seemed to agree well

with that of this study, differing by only 0, and 38%, respectively. From Howell et al. it

can be seen that using model-based conversion coefficients to determine dose equivalent

introduces large uncertainties. Measurements of LET spectra in CR-39 PNTD is again

model independent which bypasses these uncertainties resulting in more accurate

measurements.

Kralik et al. [Kralik et al., 2008] and Hashemi et al. [Hashemi et al., 2008] measured

the neutron dose equivalent at 50 cm off-axis from isocenter. Kralik et al. exposed their

detectors in field sizes of 10 x 10 cm2 and 20 x 20 cm2 and measured values of 0.22 and

0.21 mSvn/Gyx, respectively. Neither value agreed with this study’s results, differing

by 97%. Hashemi et al., using a 20 x 20 cm2 field size, measured 0.8 mSvn/Gyx, which

only differs by 5% with the this study’s measurements located at 40 cm off-axis from

isocenter.
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Table 6.4 shows a comparison between this work’s measurements from CR-

39 PNTDs in a phantom exposed to a 10 MVp x-ray beam with that of (d’Errico et al.

[d’Errico et al., 2001]) bubble detectors exposed to the same x-ray energy inside a

phantom. This study measured the neutron dose equivalent at 0 cm off-axis and 0 cm

depth to be 0.061 mSvn/Gyx, while 1.4 mSvn/Gyx was measured at 0 cm off-axis

and 1 cm depth by d’Errico et al., a disagreement of a factor of 23. For this study

the neutron dose equivalent measured from the detectors located at 0 cm off-axis and

at depths of 5 and 10 cm were 0.011 mSvn/Gyx, and 0.002 mSvn/Gyx, respectively.

d’Errico et al. measured significantly higher values for the neutron dose equivalent

at 0 cm off-axis and at a depths of 5 and 10 cm, 0.9 mSvn/Gyx and 0.6 mSvn/Gyx,

respectively. These values disagree with this study by a factor of 82 for the detectors

directly in the beam at a depth of 5 cm and a factor of 300 for the detectors directly

in the beam at a depth of 10 cm.

Table 6.5 compares photo-neutron dose equivalent from this work with dose

equivalent from d’Errico et al. [d’Errico et al., 1998] and dErrico et al. [d’Errico

et al., 2001]. All detectors were exposed in a phantom to an 18 MVp x-ray beam. In

this work the measured photo-neutron dose equivalent from the detector directly in a

15 x 15 cm2 x-ray beam is 4.3 mSvn/Gyx. The neutron dose equivalent measured by

d’Errico et al. (98) and d’Errico et al. (01) from the detectors in the same locations

differed from that of this study by 5% and 28%, respectively. The detectors located

at 0 cm off-axis at a depth of 5 cm, in this work, measured neutron dose equivalent to

be 1.5 mSvn/Gyx. d’Errico et al. (98) and d’Errico et al. (01) measured the neutron

dose equivalent from the detectors in the same locations to be 2.5 and 4.1 mSvn/Gyx,

respectively. These results are 67% and 173% higher than this study. The reason for

the discrepancy in these values could be due to the different radiation therapy setups

between the two experiments, as well as differences in methods.

For the detectors located 0 cm off-axis at a depth of 10 cm, the measured neu-
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tron dose equivalent for this work was 0.55 mSvn/Gyx. d’Errico et al. (98) and

d’Errico et al. (01) measured the neutron dose equivalent from the detectors in the

same locations to be 1.5 and 2.4 mSvn/Gyx, respectively. These results differ by 173%

and 336%, to the results measured in this study.

For the detector located 20 cm off-axis at a depth of 10 cm, the measured neutron

dose equivalent for this work was 0.17 mSvn/Gyx. d’Errico et al. (98) measured the

neutron dose equivalent from the detectors in the same locations to be 0.2 mSvn/Gyx,

an 18% difference compared to this work.

Table 6.6 shows the photo-neutron dose equivalent calculated by Monte Carlo

simulations. The simulations were preformed modeling a radiotherapy linac using

a 10 or 18 MVp x-ray beam in air at varying the distances off-axis. These values

are compared to the measured neutron dose equivalent values measured using CR-

39 PNTDs exposed to a 10 and 18 MVp x-ray beam at the same or comparable

distances off-axis in this study. The neutron dose equivalent measured from CR-

39 PNTD located directly in the 10 MVp x-ray beam was 0.103 mSvn/Gyx. Liu et al.

[Liu et al., 1997] used a Monte Carlo radiation transport codes EGS, and MORSE to

calculate the neutron dose equivalent of 0.02 mSvn/Gyx. Liu et al.’s result disagrees

with our study by a factor of 5.2. The results from Monte Carlo simulation depend on

the input data and parameters. Since these parameters are not specifically known, it

is hard to determine why these two values disagree.

The neutron dose equivalent measured from the CR-39 PNTD located directly in

the 18 MVp x-ray beam was 5.5 mSvn/Gyx. Liu et al. [Liu et al., 1997], Zanini et al.

[Zanini et al., 2004], and Ongaro et al. [Ongaro et al., 2000] calculated the neutron

dose equivalent from an 18 MVp x-ray beam in the same location to be 1.5, 2.35, and

4.8 mSvn/Gyx, respectively. The result in this study agree quite well with that of

Ongaro et al. (13%). Liu et al. and Zanini et al. do not agree so well with this study’s

result, differing by 73 and 57%, respectively.
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The neutron dose equivalent measured 20 cm off-axis in this study was 1.4 mSvn/Gyx.

Ongaro et al. calculated the neutron dose equivalent from an 18 MVp x-ray beam in

the same location to be 2.3 mSvn/Gyx, a difference of 64%. Again, since the results

from Monte Carlo simulations depend on the input data and parameters, it is difficult

to know how comparable these results should be.

6.2 Future Work

The results from this study and those in the published literature are all of a similar

order of magnitude, indicating broad agreement. The differences between this study’s

measurements of neutron dose equivalent compared to other study’s dose equivalent

measurements are due to many reasons. The major source of disagreement is likely the

different methods used to measure the dose equivalent produced by photo-neutrons.

Other sources of disagreement include differences in measurement/calculation loca-

tion, difference in setup especially field size, and difference between different model

radiotherapy lincas.

All studies mentioned show that photo-neutron production does occur in higher

energy linacs (> 10 MVp) and cannot be considered negligible. The photo-neutrons,

produced from high energy linacs impose a risk of secondary cancers induction. This

risk must be assessed and weighed against the benefits of radiotherapy. For this

reason it is important to accurately quantify the absorbed dose and corresponding

dose equivalent from secondary neutrons, especially to healthy tissue surrounding the

treatment volume, during x-ray radiotherapy

The need for additional data must be emphasized, particularly with respect to

different x-ray energies. This study only focused on the high and low end of x-ray

radiotherapy (18 and 10 MVp) and intermediate energies, such as a 15 MVp x-ray

beams would be particularly interesting to analyze.

Additional detector exposures are needed to completely analyze the photo-neutron
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absorbed dose and dose equivalent at different depths and different distances off-axis.

This study used a total of 3 detectors in air (0, 20, and 40 cm off-axis) and 5 detectors

in the phantom (0, 5, and 10 cm depth directly in the beam and 20 and 40 cm off-axis

at a depth of 10 cm). More detectors placed at various positions in air and in the

phantom will give a better understanding of photo-neutron attenuation.

Another important variable in measuring photo-neutron absorbed dose and dose

equivalent is field size. This study chose a field size of 15 x 15 cm2. However, to better

understand how field size affects the photo-neutron absorbed dose and dose equivalent,

additional data needs to be taken by varying the field size of the linac.

Additional data can be taken by comparing different model linacs. The design of

a linac’s head differs significantly between different manufactures and even among

different model linacs from the same manufacture. Measuring the photo-neutron

absorb dose and dose equivalent from different machines with the same x-ray energy

will provide important information.

Another aspect in helping to better quantify the absorbed dose and dose equivalent

from photo-neutrons is to improve statistics. This can be done by increasing the x-ray

dose (MUs) of the linac.

A significant contribution to help understand and measure the photo-neutron

absorbed dose and dose equivalent is to simulate the experiment using a Monte

Carlo radiation transport code while simultaneously making measurements of neutron

induced absorbed dose and dose equivalent for the identical machine and setup. Monte

Carlo simulations can have a high degree of precision and detail depending on the

accuracy of the input data, and parameters. However, it is important to note that

simulation should always be verified against the results from actual measurements

and not vice versa.
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APPENDIX A

Integral Fluence

Below are a list of figures showing the Integral Fluence vs LET∞H2O of each

PNTD. Each caption of the figure explains the exposure of each PNTD, (x-ray energy,

type, and position in cm (off-axis to beam, depth).

Figure A.1 18 MV Air (0,0)

Figure A.2 18 MV Air (20,0)

Figure A.3 18 MV Air (40,0)

Figure A.4 18 MV Phantom (0,0)

106



Figure A.5 18 MV Phantom (0,5)

Figure A.6 18 MV Phantom (0,10)

Figure A.7 18 MV Phantom (20,10)

Figure A.8 18 MV Phantom (40,10)

Figure A.9 10 MV Air (0,0)

Figure A.10 10 MV Air (20,0)
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Figure A.11 10 MV Air (40,0)

Figure A.12 10 MV Phantom (0,0)

Figure A.13 10 MV Phantom (0,5)

Figure A.14 10 MV Phantom (0,10)

Figure A.15 10 MV Phantom (20,10)

Figure A.16 10 MV Phantom (40,10)

Figure A.17 6 MV Air (0,0)
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APPENDIX B

Differential Fluence vs LET

Below are a list of figures showing the differential fluence vs LET∞H2O of each

PNTD. Each caption of the figure explains the exposure of each PNTD, (x-ray energy,

type, and position in cm (off-axis to beam, depth).

Figure B.1 18 MV Air (0,0)

Figure B.2 18 MV Air (20,0)

Figure B.3 18 MV Air (40,0)

Figure B.4 18 MV Phantom (0,0)
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Figure B.5 18 MV Phantom (0,5)

Figure B.6 18 MV Phantom (0,10)

Figure B.7 18 MV Phantom (20,10)

Figure B.8 18 MV Phantom (40,10)

Figure B.9 10 MV Air (0,0)

Figure B.10 10 MV Air (20,0)
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Figure B.11 10 MV Air (40,0)

Figure B.12 10 MV Phantom (0,0)

Figure B.13 10 MV Phantom (0,5)

Figure B.14 10 MV Phantom (0,10)

Figure B.15 10 MV Phantom (20,10)

Figure B.16 10 MV Phantom (40,10)

Figure B.17 6 MV Air (0,0)
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