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Abstract: Several species of Pythium and Globisporangium cause damping off of 

seedlings, seed rot, stem lesions, and root rot in greenhouse ornamental crops. Two 

hundred seven isolates from three greenhouses located in Long Island, New York, were 

collected from chrysanthemum plants in 2014 to identify the diversity of species present 

at these locations. Analysis of DNA sequences based on ITS region identified fifteen 

species of Globisporangium (n=4) and Pythium (n=11). Globisporangium irregulare, G. 

cryptoirregulare and P. aphanidermatum were the most common species found at the 

studied facilities. The G. irregulare s.l. complex (G. irregulare, G. cryptoirregulare) was 

the most prevalent species in 2014, which agrees with results of a previous study that 

analyzed samples collected over an eleven year period (2002 - 2013) from geranium and 

other spring season crops. The 2014 results showed the same predominant species in each 

greenhouse. Moderate to high genetic structure was found between greenhouse 

populations for each species of the G. irregulare complex. Allelic frequencies and 

distribution suggest local sources of inoculum as well as common sources of inoculum 

for Pythium diseases of chrysanthemum in the floricultural greenhouse operations 

studied. When the genetic composition of G. irregulare s.l. populations associated with 

geranium over different seasons and years (2009-2013) were compared, closely related 

genotypes occurred in the same location over different years, suggesting inoculum may 

have survived in greenhouse populations from year to year. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Pythium and Globisporangium are two sister genera of plant pathogenic oomycetes 

with ubiquitous distribution that are responsible for infecting diverse crops (Kirk et al. 

2001; Moorman 2004). More than 140 host species have been described and around 40 

more have been reported since 2000 (Kageyama 2014; Feng et al. 2015) . Soilborne 

pathogens in these two genera prob. Damping off and rot roots are the most common 

diseases in ornamental greenhouses, which limit production and cause crop losses 

(Agrios 2005; Daughtrey 2011).  

Traditionally the identification of Pythium species has been based on morphological 

characteristics. However, due to the similarity and intraspecific variation between close 

related species, morphological identification inaccuracies, have emerged (Garzón et al. 

2005a). Biochemical, molecular and phylogenetic criteria have been used for species 

identification to supplement the morphology based taxonomy (Martin 2000). 

Nevertheless, identification continues to be difficult because of cryptic morphology and 

the lack of sequence variation in genetic barcode loci between some species (Levesque 

and De Cock 2004; Garzón et al. 2007; Garrido 2014). 
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The ability to identify pathogens causing diseases is important to implement 

management strategies, particularly in greenhouse production where losses by Pythium 

are documented annually (Garzón et al. 2005b). Several studies have been performed to 

address this question, most of them on floriculture and ornamental crops (Daughtrey and 

Benson 2005; Lee et al. 2010; Garrido 2014; Castillo-Munera 2015). In these studies G. 

irregulare (formerly Pythium irregulare) along with P. aphanidermatum have been 

identified as the two most common and important pathogens in greenhouse production of 

ornamentals (Matsumoto et al. 2000; Daughtrey 2005; Garrido 2014). 

Proper identification of pathogens to the species level using DNA technologies 

provide valuable information for the improvement of disease control strategies and have 

also helped to monitor their presence in greenhouses (Kageyama 2014). This research 

was initiated to determine the temporal and host related diversity of Pythium and 

Globisporangium species present in floricultural greenhouses because of their impact and 

assess the population structure of the most prevalent pathogenic species to obtain insights 

about their movement and potential sources of inoculum.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

Taxonomy  

The genus Pythium was first described in 1858 by Pringsheim. Since then, several 

taxonomic descriptions have been reported, most of them based on the comparison of 

morphological characteristics among species (Van der Plaats-Niterink 1981; Paul and 

Masih 2000). The genus Pythium belongs to the Kingdom Chromista, phylum Oomycota, 

class Oomycetes, order Pythiales, and family Pythiaceae (Uzuhashi et al. 2010; Schroeder 

et al. 2013). 

Several studies have been performed to understand the evolutionary organization of 

the genus and clarify its taxonomy (Kamoun et al. 2015). The genus is considered 

difficult for species identification, based on morphology, because some of the 

identification characteristics are similar among different species or are not formed in 

culture (Levesque and De Cock 2004). Biochemical and molecular analysis have been 

used for species identification to supplement the morphological taxonomy (Martin 2000). 

Studies using 28S rRNA (Briard et al. 1995), ITS region (Matsumoto et al. 1999), the 

mitochondrial gene coxII (Martin 2000) and nuclear gene β-tubulin (Villa et al. 2006) 

have found that Pythium is a polyphyletic group, in which monophyletic clades are 
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formed that correspond to the morphology of the sporangium while other features are 

polyphyletic (Martin 2000; Levesque and De Cock 2004; Garrido 2014). 

Morphology complemented by phylogenetic analysis performed on two loci, LSU 

(large subunit) ribosomal DNA D1/D2 region and cytochrome oxidase II gene region, 

revealed the formation of five clades that reflects morphological variations in sporangia 

shape (Uzuhashi et al. 2010). Four new genera formerly included in Pythium sensu lato 

(s.l.) were described: Ovatisporangium, Elongisporangium, Globisporangium and 

Pilasporangium, and Pythium sensu stricto (s.s.). Pythium species were restricted to those 

with filamentous sporangium, while the genus Globisporangium includes species 

characterized by the production of globose sporangia (Uzuhashi et al. 2010). The 

recognition of the new four genera is still in flux, and some in the community prefer to 

follow the classical definition of Pythium (Ho et al. 2012;  Schroeder et al. 2013). 

However, the validity of the name Globisporangium was accepted and are using it in 

recent scientific reports (Dr. Gloria Abad, pers, com.; Mycobank). 

Biology  

Pythium and Globisporangium are two genera that include several soil-borne plant 

pathogenic species, with a wide host ranges. Several species are non-pathogenic and 

saprotrophs, some are mycoparasites; and at least one species is an animal pathogen 

(Daughtrey et al. 1995; Kammarnjesadakul et al. 2011; Schroeder et al. 2013). Reports 

have shown their potential of infecting seedlings and adult plants, usually through the 
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root of vegetables (Al‐Sa’di et al. 2008a), field crops (Nzungize et al. 2012) , trees 

(Lazreg et al. 2013;  Weiland et al. 2015), lawns, floriculture and ornamental crops, 

among others (Moorman 2002; Castillo-Munera 2015). 

Both genera are the causal agents of a diversity of so-called Pythium diseases 

including pre and post emergence root rots, blackleg of cuttings, damping-off of 

seedlings, seed diseases, etc. (Agrios 2005). Most species are non-host selective and the 

diseases they cause are favored by wet and often cool conditions. Some species like P. 

aphanidermatum and P. delicense, are more severe in warm temperatures. Under field 

and greenhouse conditions Pythium spp. represent a problematic pathogenic group 

because some species have the potential to kill emerging or newly emerged seedlings and 

reduce crop yield and quality (Schroeder et al. 2013). 

Reproduction 

Species are routinely identified based on the morphology of asexual and sexual 

structures. From those the shape of the sporangia and the ornamentation of the oogonium 

are key characters. Heterothallic and homothallic sexual reproduction, has been used as 

one of the characteristics for identification along with the origin of antheridium, number 

of spores by oogonium, zoospores production, etc. (Dick 1991;  Garrido 2014). Most of 

the species are homothallic, and just seven species have been reported as heterothallic 

(Van der Plaats-Niterink 1981). 
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Asexual reproduction occurs through sporangia. Sporangia germinates and produce 

hyphae or vesicles. Zoospores (asexual motile spores) are formed in the vesicles and once 

they are mature they are released into liquid environment, through which they can swim 

thanks to their flagella. Zoospores encyst on host surfaces then cyst germinates and a 

germinal tube infect host tissues (Allen et al. 2004). Zoospores are a way for disease 

spread in water since they are mobile swimming structures and have access to adjacent 

healthy plants. Mycelia harbored in soil and plant debris serve as a source of vegetative 

inoculum in species that produce a few zoospores (Agrios 2005; Yates 2016). 

The sexual structures, oogonium and antheridium, may be formed from the same or 

from two different hyphae. Most species are homothallic and self-fertile. The antheridium 

attaches to the oogonium, forms a fertilization tube and penetrates the oogonium. The 

nucleus of the antheridium is transferred to the egg cell within the oogonium. Both sexual 

structures fuse to form the diploid zygote. Oospores have a dormant phase, after which 

they germinate, producing a germ tube. The thick-walled oospore is resilient and can 

survive under adverse conditions, such as during periods of drought, and it can remain 

viable for a few years. Oospores and sporangia serve as primary inoculum, and their 

germination is determined by environmental conditions and temperature (Allen et al. 

2004; Agrios 2005; Nzungize et al. 2012). 
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Symptoms and management 

Pythium diseases can be diagnosed based on symptoms and pathogen isolation. On 

mature plants diagnosis is difficult because plants often remain asymptomatic until 

symptoms start to manifest after a period of plant stress (Schroeder et al. 2013). 

Symptoms usually are similar from one plant to another and include wilting, stunting, 

chlorosis, decayed roots, poor seed germination and emergence, resulting in reduction of 

crop quality (Daughtrey and Miller 2009). 

Examining crops regularly to look for signs and symptoms is a good practice but 

management strategies need to be more about prevention and eradication. Prevention 

starts with the use of disease free plant material or surface sterilized propagative 

materials. Sanitation should include discarding potential sources of inoculum (sterilizing 

pots and removing infected plant material). Eradication should include scouting and 

application of fungicide treatments and disposal of symptomatic plants (Agrios 2005; Al‐

Sa’di et al. 2008b; Garzón et al. 2011). Fungicides resistance to certain chemistries have 

been reported in some Pythium and Globisporangium species, particularly to mefenoxam 

and propamocarb (Moorman and Kim 2004). Fungicide resistance has been reported to 

have an effect on the genetic diversity of some species (Lee et al. 2010). 
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Pythium and Globisporangium in greenhouse floricultural crops 

Within the agricultural sector, growing flowers and ornamental plants has been one 

of the fastest growing area in the United States and has generated great economic 

benefits. On last year’s report, the floriculture production values showed an increase of 

four percent compared to 2014, with an estimated value of $4.37 billion in sales (USDA 

2016). 

It is common knowledge that the inoculum of the pathogen can be harbored in or on 

many potential sources including infected plant material, plant debris, soil, tools and 

equipment, potting mixtures, irrigation water, among others (Al‐Sa’di et al. 2008b). 

Diseases usually appear in areas with poor drainage, high soluble salts or where 

conditions favorable for pathogen development and spread occur (Schroeder et al. 2013). 

With little knowledge about the movement of inoculum, epidemiological studies are 

challenging in ornamentals because of the diversity of crops and multiple potential 

sources of inoculum (Garrido 2014). 

Increases in production of ornamental and floriculture crops have been accompanied 

with an increase in diseases caused by Pythium spp. and Globisporangium spp.; limiting 

factors for profitable production in greenhouses (Daughtrey 2011). Former studies show 

that the main species that affect floricultural crops are G. irregulare, P. aphanidermatum 

and members of Levesque et al. (2004) Pythium group F (Martin 2000; Levesque and De 
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Cock 2004). Of these, the predominant species are those belonging to the 

Globisporangium irregulare species complex (Moorman et al. 2002). 

Molecular phylogeny 

The identification and characterization of the species of Pythium and 

Globisporangium based on morphological characteristics is challenging due to the 

presence of cryptic species (Garzón et al. 2007). Internal transcript spacers (ITS) regions 

of the ribosomal DNA are widely used in phylogenetic studies thanks to the development 

of universal PCR primers (White et al. 1990) that amplify a highly variable region in all 

taxa (Levesque and De Cock 2004). The low level of sequence divergence among 

phylogenetically close species using the ITS region have boosted the use of other loci for 

phylogenetic analysis. Those include nuclear encoded genes, β-tubulin and LSU, as well 

as mitochondrial encoded genes as cytochrome oxidase I and II, including intergenic 

spacers. In oomycetes ITS and coxII gene are employed and recommended as DNA 

barcodes (Kageyama 2014). 

Matsumoto et al. (1999) used ITS sequences for the differentiation of isolates at 

species level and found a relationship based on the sporangium morphology. Similar 

results were found by Levesque and Cock (2004). Levesque and Cock (2004) proposed 

the existence of 11 clades (A-K), using species identified by Van der Plaats-Niterink 

(1981), within the Pythium genus. Villa et al. (2006), in the analysis of Pythium and 
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Phytophthora species based on three genomic regions (ITS rDNA, cytochrome oxidase II 

and beta-tubulin gene), showed that members of the clade K were closer to Phytophthora. 

Finally was proposed the creation of a new genera called Phytopythium (Bala et al. 2010; 

Kageyama 2014; De Cock et al. 2015). 

Globisporangium irregulare complex 

Globisporangium irregulare is a species complex with worldwide distribution and 

broad host range. The complex includes G. regulare, G. cylindrosporum, G. irregulare 

s.s. and G. cryptoirregulare (Spies et al. 2011). This is a challenging group for 

identification because of the variability in morphology and the high levels of intraspecific 

genetic diversity (Garzón et al. 2005a). Matsumoto et al. (1999) performed RAPC-PCR 

(random amplified polymorphic DNA) analyses and phylogenetic analysis of the ITS 

region and found the formation of four groups (I, II, III, IV) within the complex. Groups 

III and IV were not significant as plant pathogens and different from groups I and II. 

Levesque and Cock (2004), based on ITS sequences, proposed the existence of 11 clades 

(A-K) in the genus Pythium. According to this study, G. irregulare s.l. belongs to clade F 

and includes four paraphyletic clusters. Garzon et al (2005a, 2007), using AFLP 

fingerprinting and sequencing of the ITS region and the cox I-II mitochondrial region, 

found that the complex has undergone speciation process and supported the separation of 

groups I and II sensu Matsumoto et al (1999). Those groups were defined as G. 

irregulare sensu stricto and G. cryptoirregulare respectively, while groups III and IV 
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clustered closer to G. sylvaticum than to G. irregulare, and remain still unresolved. 

Garrido (2014) performed a multigene phylogeny and her findings were congruent with 

Matsumoto and Garzon supporting the formation of four clades, that represents at least 

two sister species. Genetic differentiation within the species complex was found and one 

of the clades, clade II, was consistent with G. cryptoirregulare described by Garzon et al 

(2007). The analysis allowed to differentiate G. irregulare from G. cryptoirregulare. The 

existence of hybrids among G. irregulare s.s. and G. cryptoirregulare has been suggested 

(Garzón et al. 2007; Lee and Moorman 2008). Spies et al. (2011) after the molecular 

analysis with nuclear genes (ITS and β-tubulin), mitochondrial regions (coxI and coxII) 

and isozymes, found evidence of aneuploidy and putative hybridization, however, the 

authors suggested that the complex be maintained as one species G. irregulare (Spies et 

al. 2011). 

Microsatellite based population genetics  

Single sequence repeats (SSRs) are a good markers to use for the analysis of 

intraspecific variation and genetic diversity (Schroeder et al. 2006). These neutral 

markers also called microsatellites, are short tandemly repeated nucleotide sequences 

used for genetic characterization studies. The main advantage of these markers are their 

high reproducibility and codominance (Abdel-Mawgood 2012).  
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Population genetic analyses are valuable for answering questions such as whether 

new organisms have been introduced to an area or have emerged from local populations 

and how populations are structured (Grünwald and Goss 2011; Hedrick 2011; Karlin 

2012; Milgroom 2015). Several studies have developed SSR markers for Pythium genetic 

analysis specifically, for species such as P. aphanidermatum, G. irregulare, G. 

cryptoirregulare (Lee and Moorman 2008) and P. helicoides (Zhou et al. 2009). In the 

study of P. aphanidermatum isolates from different greenhouses located in Pennsylvania 

using SSR markers a population structure was determined by location and fungicide 

resistance rather than by host (Lee et al. 2010). Population genetics analysis of 

Phytophthora ramorum, the causal agent of sudden oak death, have shown evidence of 

their introduction to U.S. at least three times via nursery trade (Parke and Grünwald 

2012). Examples like these provide evidence of the introduction of pathogens and the 

movement of inoculum highlighting the importance of this type of research. 
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CHAPTER III 
 

 

SPECIES DIVERSITY OF PYTHIUM AND GLOBISPORANGIUM SPECIES 

PRESENT IN ORNAMENTAL CROPS FROM LONG ISLAND, NEW YORK 

Introduction 

Pythium and Globisporangium species (Straminopila, Oomycota) are genetically 

diverse with great variation in virulence, host range and distribution (Adhikari et al. 

2013). Taxonomic descriptions in Pythiaceae family are based on morphological 

characteristics (Van der Plaats-Niterink 1981) and molecular criteria are now commonly 

used to supplement the taxonomy (Kamoun et al. 2015). 

In ornamental greenhouses, damping off and rot roots are the most common Pythium 

diseases. These diseases can limit the production of seedlings and become problematic 

since reservoirs of the pathogen can remain in soils, sediments, water sources, tools and 

residues from previous crops (Agrios 2005; Daughtrey and Miller 2009). While the 

flower industry continue its growth, growers of ornamental crops cannot afford the 

presence of diseased plants that represent economic losses (Daughtrey 2011). 

Research has been done to identify the diversity of species found in floricultural 

crops (Moorman et al. 2002; Garrido 2014; Castillo-Munera 2015). Garrido (2014) 

performed an analysis of species diversity from different greenhouses located at Long 
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Island N.Y. from various floricultural hosts. 22 Pythium species were identified including 

pathogenic and nonpathogenic species. The predominant species were G. irregulare 

complex, P. aphanidermatum and G. ultimum. A similar analysis was performed by 

Castillo-Munera (2015) to identify Pythium spp. associated with Michigan floriculture 

crops. G. irregulare, P. aphanidermatum and G. ultimum were again the most prevalent 

in a variety of crops. Both results are similar with what have been previously reported in 

Pennsylvania (Moorman et al. 2002). 

The identification of the species associated with greenhouses using molecular 

techniques has helped to clarify phylogenetic relationships in diverse groups. One of the 

firsts steps is to identify pathogens since effective practices relies on the accurate species 

identification and knowledge of the pathogen biology (Weiland et al. 2013). The 

objective of this study was to identify the species of Pythium and Globisporangium 

affecting chrysanthemum in different greenhouses in Long Island, NY using DNA 

sequencing of ITS region and determine the most prevalent pathogenic group affecting 

the studied facilities. 

Materials and Methods  

Isolates 

Two hundred seven isolates from Chrysanthemum plants were collected seasonally 

at three floricultural greenhouses located in Long Island, New York in 2014 

(Supplementary Table 1). Isolates were identified morphologically (Van der Plaats-

Niterink 1981) at Cornell University. Frozen mycelia for DNA purification were 
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provided by Margery Daughtrey (Cornell University’s Long Island Horticultural 

Research and Extension Center). 

DNA extraction  

Mycelia were kept frozen upon arrival and lyophilized. Lyophilized mycelia were 

used to isolate DNA using DNeasy® Plant Mini kit (Qiagen, Hilden, Germany). DNA 

extractions were performed from 40 mg of mycelium according to manufacturer's 

instructions. DNA quantity and quality were measured using NanoDrop ND-1000 

spectrophotometer (NanoDrop technologies, Wilmington, DE). 

DNA amplification and sequencing 

DNA sequence analysis of the internal transcribed spacer of the nuclear rDNA 

region (ITS) of all the isolates was performed. The ITS region was amplified using 

previously reported PCR conditions (Moorman et al. 2002; Garrido 2014) and primers 

ITS2 and ITS4, described in Table III-1. Amplification reactions were performed in 25 

µL reactions containing 1.25 µL of each 5µM primer, 2 µL of  25 ng/µL DNA, and 12.5 

µL of 2X GoTaq Green Master Mix (Promega, Madison, WI, USA). To check for the 

presence of PCR products, 5 uL of the PCR reaction mixture was loaded in 1% (Takara 

Bio) agarose gel, electrophoresed at 95 V for 1 hour, stained with ethidium bromide, 

visualized and photographed under UV illumination. PCR products were prepared for 

sequencing using the enzymatic purification kit ExoSAP-IT (USB Corporation, 

Cleveland), following the manufacturer’s instructions. Sequencing was performed using 

the same primers in the initial PCR step. Sequencing reactions products were run on a 
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ABI 3100 DNA sequencer (Applied Biosystems) at the Recombinant DNA and Protein 

Core Facility of Oklahoma State University. 

Table III-1. Primers used for PCR amplification and sequencing of the ITS region  

Locus 
Primer 

name 
Primer sequence (5’-3’) Ta (˚C) Reference 

Fragment 

length 

ITS 
ITS 1 

ITS 4 

TCC GTA GGT GAA CCT GCG G 

TCC TCC GCT TAT TGA TAT GC 59 
(White et al. 

1990) 
773-959 bp 

Ta = annealing temperature 

Identification  

Isolates identities were verified at species level comparing ITS sequences with 

sequences available at the National Center for Biotechnology Information (NCBI) 

nucleotide database using the tool BLASTn. Sense and antisense sequences were aligned, 

edited and assembled using Geneious 6.0.6 (Kearse et al. 2012) to create consensus 

sequences for each isolate. 

Results  

ITS DNA sequence analysis of 207 isolates from three greenhouses located in Long 

Island NY, collected in 2014 identified fifteen plant pathogenic and non-pathogenic 

species of two genera, Globisporangium (n=4) and Pythium (n=11) (Fig. III-1). The most 

abundant species associated at the three greenhouses were G. irregulare sensu lato (s.l.) 

(59.90%), P. aphanidermatum (13.5%) and G. ultimum (11.6%). In each greenhouse the 

Pythium and Globisporangium species community compositions was different, but in the 

three greenhouses the most prevalent species was G. irregulare s.l.  
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Figure III-1. Total number of Pythium and Globisporangium species identified with ITS 

region associated with Chrysanthemum greenhouses from Long Island, NY in 2014. P = 

Pythium; G = Globisporangium 

An update of the species diversity found at 8 different greenhouses in Long Island 

NY from isolates collected from 2002 to 2015 were performed. 29 species of Pythium 

(n=21), Globisporangium (n=8) were identified. The species recovered from the different 

greenhouses were diverse, but G. irregulare complex (58.94%) continued to be the most 

prevalent followed by P. aphanidermatum (8.16%) (Fig. III-2). 

Figure III-2. Total number of species of Pythium, Globisporangium species identified 

with ITS region associated with floricultural greenhouses from Long Island, NY collected 

by year. 
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Discussion 

Pythium and Globisporangium species are among the main diseases causal agents in 

ornamental crops, affecting seed germination, seedling development, and established 

plants’ aesthetics, causing important economic losses. In addition to pathogenic species, 

diverse non-pathogenic species can also be found in ornamental greenhouses, which do 

not require management. Since the application of disease management strategies is often 

decided based only on the presence of oospores in plant roots, unnecessary and costly 

treatments may be applied. Therefore, effective identification of each species has become 

a necessity to improve epidemiological studies and the implementation of better 

management strategies to control Pythium diseases (Daughtrey & Benson, 2005). 

The diversity of Pythium and Globisporangium species affecting chrysanthemum in 

three ornamental greenhouses located in Long Island New York, was conducted using a 

collection of isolates sampled in 2014. ITS region sequences identified G. irregulare s.l 

(59.9%) and P. aphanidermatum (13.5%) as the most common plant pathogenic species 

at those facilities. This two species were also found by Garrido (2014) in samples 

collected from 2002 to 2013 in Long Island NY. G. irregulare s.l continue to be the most 

predominant species causing disease to floricultural greenhouse crops, as has been 

reported in previous studies (Moorman et al. 2002; Garzón et al. 2005a; Daughtrey and 

Miller 2009). G. irregulare is characterized by their globose sporangia, their virulence at 

cooler temperatures and their high morphological and genetic diversity (Martin and 

Loper 1999; Adhikari et al. 2013). 
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The second most common species found, P. aphanidermatum, has been reported as  

a causal agent of root and basal-stem rots in garden mums (Yates 2016). This species is 

more aggressive as a pathogen compared to G. irregulare, and little is known about its 

population biology (Lee et al. 2010). The pathogen spread is favored by warm 

temperatures, making it an important issue in greenhouses (Parker 2001). 

The isolates used in this study came from a single host, Chrysanthemum. Moorman 

et al. (2002) found that Begonia, Chrysanthemum and Antirrhinum are commonly 

infected by G. irregulare and G. ultimum. The potential sources of inoculum for diseases 

of floricultural greenhouse crops are many: plant debris, soil, irrigation tools, water, etc. 

Additionally, the movement of workers and of equipment between greenhouses can 

facilitate the movement of the pathogen from one location to another (Al‐Sa’di et al. 

2008b). In general, disease management of Pythium diseases have been accomplished by 

practices like exclusion: discarding potential sources of inoculum, the use of disease free 

plant material, sterilized soil and prevention via sanitation (Agrios 2005; Garzón et al. 

2011). The presence of isolates of the same species in all three greenhouses suggest the 

possibility of common sources of inoculum. However, G. irregulare s.l. is a common soil 

inhabitant, therefore, further analysis are needed to determine if the inoculum for 

chrysanthemum infections at the studied facilities were local or introduced through 

infected propagative materials or infested potting materials.  

Sequences used for species identification purposes are known as DNA barcodes. ITS 

region is one of the recommended barcodes for identification of oomycetes (Robideau et 

al. 2011). It has been widely used because of the high sequence variability in the 
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intergenic spacers, which are flanked by highly conserved rDNA regions in oomycetes 

which allows the use of the same primers in a wide range of eukaryotic species 

(Tambong et al. 2006). Although ITS region can be useful to differentiate most Pythium 

and Globisporangium species, this barcode alone cannot resolve the closely related and 

cryptic species within the G. irregulare complex. No evident morphological differences 

between Gl. irregulare and Gl. cryptoirregulare have been reported. In order to 

discriminate closely related species a multilocus sequence typing (MLST) approach is 

required (Robideau et al. 2011). The discrimination among isolates of the G. irregulare 

complex and their population biology will be addressed in the next chapter. 
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CHAPTER IV 
 

 

PHYLOGENETIC ANALYSIS AND POPULATION STRUCTURE OF 

Globisporangium irregulare s.l FROM LONG ISLAND, NY GREENHOUSES IN 2014 

Introduction: 

Globisporangium irregulare s.l is a species complex that includes two cryptic 

species, G. cryptoirregulare and G. irregulare s.s (Garzón et al. 2005a; Garzón et al. 

2007). G. irregulare s.l have a worldwide distribution, a wide host range (Van der Plaats-

Niterink 1981; Matsumoto et al. 2000) and have been reported as one of the most 

common species in floricultural and ornamental crops (Moorman and Kim 2004; Garrido 

2014; Castillo-Munera 2015; Lookabaugh et al. 2015). 

SSR markers have been used to determine the population structure and distribution 

of Pythium species: G, irregulare s.s, G. cryptoirregulare, P. aphanidermatum and P. 

helicoides (Lee and Moorman 2008; Zhou et al. 2009); some of them transferable to 

additional species and in need of studies to address their informativeness. Mostly, the 

genetic structure of the genus have been based on culture collections with few isolates 

and isolates from different hosts and locations. However, little is known about the genetic 

population structure of Pythium species (Weiland et al. 2015). 
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In previous years Gl. irregulare s.l was found to be the most prevalent species in 

different greenhouses at Long Island NY, where diverse hosts were sampled, with 

predominance of geranium isolates. Phylogenetic analysis of the complex revealed the 

formation of four clades within the complex, supporting the separation of G. irregulare 

s.s. and G. cryptoirregulare. The isolates under study were grouped in four groups 

including G. irregulare s.s. and three clusters in G. cryptoirregulare. Garrido (2014) 

suggested that the pathogens had a local and remote origins, possibly introduced on 

infected plant material. Also, the existence of putative hybrids between G. 

cryptoirregulare and G. irregulare was detected, providing evidence of possible genetic 

exchange between the two species (Garrido 2014). In another study, Weiland et al. (2015) 

characterized three Pythium species, including G. irregulare s.s., from forest nurseries in 

the U.S, and found an intrinsic population structure explained by the prevalence of two 

lineages within the species and evidence of the movement of isolates between nurseries.  

Molecular sequencing has helped to clarify phylogenetic relationships of organisms. 

In the need to achieve adequate management and control of diseases caused by Pythium 

species, the first step is to make an accurate identification of the pathogen (Weiland et al. 

2013), a task that is challenging when closely related species are also morphologically 

cryptic. The two objectives of this study were to: i) perform a phylogenetic analysis of 

the G. irregulare s.l. isolates from three different Chrysanthemum greenhouses at NY 

collected in 2014 and ii) asses their population structure using SSRs markers.  
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Materials and Methods  

Isolates 

Isolates were identified by means of morphological criteria and sequencing of the 

internal transcribed spacer (ITS) region of the ribosomal DNA and cytochrome oxidase 

subunit II, including the cox I-II spacer. For the phylogenetic analysis, 58 isolates 

identified as G. irregulare s.l., based on DNA sequences of the ITS region, that 

represented the genetic diversity of the 2014 populations under study on were used. 

coxII gene sequencing 

The mitochondrial coxII gene, including the intergenic spacer and a partial coxI 

sequence, was amplified. Amplification was performed using the following PCR 

conditions: 2 min denaturation at 95ºC, 35 cycles of denaturation at 94ºC (1 min), 

annealing at 56.4ºC (1 min), and extension at 72ºC (1 min), 10 min final extension at 

72ºC (Martin 2000; Garrido 2014), and primers described in Table IV-1. Amplification 

reactions were prepared as previously described for ITS region.  PCR products were 

purified using ExoSap-IT, sequenced and compared with reference sequences at NCBI 

using BLAST as described in chapter III. 

Table IV-1. Primers used for PCR amplification and sequencing of coxII gene 

Locus 
Primer 

name 
Primer sequence (5’-3’) 

Ta 

(˚C) 
Reference 

Fragment 

length 

coxII 
FM 35 

FM 52 

CAG AAC CTT GGC AAT TAG G 

GTT GTG CTA ATT CCA TTC TAA 56.4 
(Martin 

2000) 
563 bp 
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Phylogenetic analyses  

Analyses were performed on DNA sequences of the ITS region and the coxII gene. 

Sequences were aligned and manually edited with MEGA 6.0. Only high quality 

sequences were included in posterior analyses. Reference sequences for G. irregulare and 

G. cryptoirregulare obtained from NCBI were included in the analysis, and the sequence 

of a Globisporangium sylvaticum reference isolate (OM121) was used as the outgroup 

species (Table IV-2). Poorly aligned positions of multiple sequence alignment datasets 

were excluded with Gblocks server (Castresana 2000). Phylogenetic trees were 

constructed by maximum likelihood (ML) methods in R v. 3.3.1 using the packages 

phangorn 2.0.4 and ape 3.5 (Paradis et al. 2004;  Schliep 2011). Bootstrapping was 

performed with 1000 replicates for ML trees with the two loci. Trees were visualized 

using FigTree version 1.4.3. Isolates were determined to be G. irregulare or G. 

cryptoirregulare based on their phylogenetic clustering with the reference isolates. 

Additionally, a SSR-based UPGMA tree was generated using Nei’s genetic distances, 

and a minimum spanning network (MSN) using Bruvo’s distances were used to compare 

clusters supported by SSR analysis with the nuclear and mitochondrial sequence based 

phylogenies. 

Table IV-2. Reference isolates and GenBank accession numbers for the ITS and coxII 

region used for the phylogenetic analysis 

Collection 

id. 
Species 

Gen Bank accession 

numbers Reference 

ITS coxII 
P50 G. cryptoirregulare AY907893.1 AY907918.1 (Garzón et al. 2005a) 

MAFF3055

72 

G. irregulare s.s. AB107999.1 DQ071384 (Matsumoto et al. 1999, Villa 

et al. 2006) 
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Collection 

id. 
Species 

Gen Bank accession 

numbers Reference 

ITS coxII 
325393 G. cryptoirregulare AY907901.1 AY907926.1 (Garzón et al. 2007) 

OM121 G. sylvaticum AJ233459 DQ071397 (Matsumoto et al. 2000, Villa 

et al. 2006) 

SSR genotyping and SSR allele scoring 

Eleven polymorphic G. irregulare and G. cryptoirregulare SSR markers developed 

by Lee and Moorman (2008) and standardized by Garrido (2014) were utilized to 

genotype isolates (Table IV-3). For all primer combinations the reaction conditions were 

the same, 20 µL reactions: 1 µL of each 5µM primer, 2 µL of 35 ng/µL DNA, and 10 µL 

of 2X GoTaq Colorless Master Mix. Forward primers were labeled with either 

fluorescent dyes 6-Fam, Ned or Pet (Applied Biosystems®, Thermo Fisher Scientific, 

Waltham, MA, USA). The PCR amplification program consisted of an initial denaturing 

step of 94ºC for 2 min, followed by 35 cycles of 94ºC for 30 s, annealing temperature 55 

- 60ºC (depending on the specific primer set) for 25 s, 72ºC for 1 min, and a final 

extension of 72ºC for 10 min. PCR products were diluted and pooled into a multiplex set 

of 3 SSRs according to their expected amplicon size and dye, to optimize genotyping cost 

and avoid overlapping fragments. PCR products were resolved by multiplexed capillary 

electrophoresis on an ABI 3730 DNA Analyser (Applied Biosystems) by loading 1 μL of 

the diluted PCR product, 9 μL Hi-Di™ formamide, and 0.4 μL GeneScan_500 LIZ® Size 

standard (Applied Biosystems). Electropherograms were inspected using Peak scanner v 

1.0 (Thermo Fisher Scientific) software and alleles were called using GeneMapper v.4.0 

(Thermo Fisher Scientific) software. A genotypic matrix was constructed and analyzed 

using GenALex 6.501 (Peakall and Smouse 2012).  
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Table IV-3. Loci, primer sequences, repeat motifs, dye and fragment sizes of 

polymorphic loci for G. irregulare and G. cryptoirregulare (Lee and Moorman 2008) 

Locus Target species Motif Dye Expected Size 

63108ACA1-67 G. irregulare (ACA)7 FAM 130 

63108CAA2-41 G. irregulare (CAA)10 NED 189 

63108AG3-90 G. irregulare (AG)28 FAM 115 

63108AG2-33 G. irregulare (AG)15 NED 214 

P50TC2-23 G. cryptoirregulare (TC)20 PET 121 

P50CT1-58 G. cryptoirregulare (CT)15 NED 177 

P50AC3-33 G. cryptoirregulare (AC)19 PET 225 

P50AG3-30 G. cryptoirregulare (AG)18 FAM 117 

P50GA3-20 G. cryptoirregulare (GA)13(GT)11 FAM 179 

P50GAA3-42 G. cryptoirregulare (GAA)10 PET 322 

P50TG2-93 G. cryptoirregulare (TG)18 PET 113 

Data analysis 

SSR data formatting and population genetic analyses were conducted using GenAlEx 

6.5 (Peakall and Smouse 2012) and R 3.3.1 (R Core Team 2013). SSR multilocus 

genotypes from a total of 120 G. irregulare s.l isolates were included in this study. The 

formatted genotypes were imported to R for use with Poppr 2.2.1 (Kamvar et al. 2014) 

and Adegenet 2.0.1 (Jombart 2008) packages. A clonal correction was done to include 

just one individual representative for each multilocus genotype observed to assess the 

genotypic diversity. Multilocus genotype data were stratified in population hierarchies 

(Greenhouse, Species and Mefenoxam test). The information about fungicide sensitivities 

were provided by Margery Daughtrey. Based on their power and utility (Grünwald et al. 

2003), the following genotypic diversity parameters were chosen: Shannon-Weiner 

diversity (H), the Stoddart and Taylor’s index (G), (Shannon 1949; Stoddart and Taylor 
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1988), and the genotypic richness was calculated as E5 (Pielou 1975; Ludwig and 

Reynolds 1988; Grünwald et al. 2003). 

For assessing population structure two methods were used: bootstrap analysis of 

Nei’s genetic distance with the unweighted pair group method with arithmetic means 

(UPGMA) algorithm, and minimum spanning networks (MSN) using Bruvo’s genetic 

distance for microsatellite loci (Bruvo et al. 2004; Kamvar et al. 2014). Statistical support 

for the branches was obtained using 1000 bootstrapped samples. 

Analysis of molecular variance (AMOVA) was performed to detect and compare 

population differentiation within and between the population hierarchical levels. 

Statistical significance of the F-statistics was assessed by randomization test with 9999 

permutations. 

Results 

Phylogenetic analysis 

ML trees based on DNA sequences of ITS region and coxII gene revealed the 

formation of two well supported branches. One branch comprises isolates from G. 

irregulare and other from G. cryptoirregulare, both with strong bootstrap support (Fig. IV-

1A and IV-1B). Comparison of the groupings formed with both trees were topologically 

similar. 



39 
 

 

Figure IV-1. ML trees showing the relationship of G. irregulare complex obtained by 

maximum likelihood analysis of DNA sequences of A. ITS region and B. coxII gene. 

The SSR based UPGMA tree revealed similar results. Two branches formed, one 

comprising G. irregulare isolates and the other comprising G. cryptoirregulare isolates 

(Fig IV-2). In the UPGMA tree, isolates (JG-44, HB-95 and HB-116) grouped with G. 

irregulare. Different results were found with the nuclear and mitochondrial sequence 

based phylogenies. 
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Figure IV-2. UPGMA tree of G. irregulare complex, based on genetic distance obtained 

with SSRs markers. 

In order to explore in detail this isolates a MSN was constructed. The MSN showed 

that the three isolates, JG-44, Hb-95, Hb-116, are in the middle of the G. cryptoirregulare 

and G. irregulare, sharing alleles with both species suggesting potential hybrids (Fig IV-

3).  
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BRUVO DISTANCE 

Fig IV-3. Minimum spanning network of isolates used for phylogenetic analysis. Nodes 

(circles) represent individual multilocus genotypes. The size of the circle is relative to the 

number of individuals represented in the data. Nodes more closely related have darker 

and thicker lines whereas nodes more distantly related have lighter and thinner lines. 

The groupings found with the phylogenetic trees, the UPGMA and MSN were used as 

reference to identify isolates of the rest of the sample for posterior analyses. 

Population genetic analysis of isolates of the G.irregulare complex from 

Chrysanthemum grown in floricultural greenhouses in Long Island, NY in 2014 

Genetic diversity  

In total, 111 multilocus genotypes (MLG) were detected among de 120 isolates. 

Most of MLG were unique and only 7 clonal lineages were found, with up to three 
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isolates each. Allelic and genotype diversity within loci revealed that the number of 

alleles varied from 5 to 27 microsatellite alleles per locus. P50AC3-33 had the highest 

number of alleles (n=27) with the highest Simpson diversity (0.92). Locus 63108CAA2-

41 and P50GAA3-42 has the most evenly distributed alleles (0.89) (Table IV-4).  

Table IV-4. Diversity statistics for all SSR loci investigated in the study (Lee and 

Moorman, 2008) 

Locus allele 1-D Hexp  Evenness 

P50AG3-30  26 0.89 0.90 0.70 

P50TG2-93  20 0.90 0.91 0.79 

P50CT1-58 9 0.83 0.84 0.87 

63108CAA2-41 5 0.68 0.68 0.89 

P50TC2-23 17 0.88 0.89 0.79 

P50GA3-20 13 0.76 0.77 0.68 

63108AG2-33  19 0.88 0.89 0.75 

63108ACA1-67 10 0.80 0.80 0.78 

63108AG3-90  15 0.75 0.75 0.59 

P50GAA3-42  6 0.73 0.74 0.89 

P50AC3-33 27 0.92 0.92 0.73 

mean  15.18 0.82 0.82 0.77 

Allele = Number of observed alleles; 1-D = Simpson index; Hexp = Nei’s 1978 gene diversity 

Genotypic diversity (either H or G) were higher in greenhouse A and in G. 

cryptoirregulare when data was analyzed by species. If all genotypes were equally 

abundant, G value would be the number of MLGs. Evenness (E5 = 0.945) and richness 

(eMLG = 10.9) were similar in all populations (by greenhouse and species). There were 

few genotypes that occurred more than two times, as expected from the high E5 (Table 

IV-5). 
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Table IV-5. Diversity statistics of G. irregulare s.l. populations in greenhouses A,B or C.  

Diversity was measured for each greenhouse, and by clade (each representing a species or 

lineage). 

Population N MLG eMLG H G E5 

A 80 73 10.8 4.25 65.31 0.933 

B 29 28 10.9 3.32 27.13 0.981 

C 11 10 10 2.27 9.31 0.955 

Total 120 111 10.9 4.67 101.41 0.945 

Clade N MLGs eMLGs H G E5 

G. cryptoirregulare 64 57 9.80 3.99 50.0 0.922 

G. irregulare 46 44 9.91 3.77 42.3 0.977 

Potential hybrids 10 10 10 2.30 10.0 1.000 

Total 120 111 9.93 4.67 101.4 0.945 

N = number of individuals observed; MLG = Number of multilocus genotypes observed; eMLG = the 

number of expected MLG at the smallest sample size ≥ 10 based on rarefaction; H = Shannon-Wiener 

Index of MLG diversity; G = Stoddart and Taylor’s Index of MLG diversity; E5 = Evenness. 

Population structure and differentiation 

When all isolates were displayed on the UPGMA the basal branches split the 120 

isolates into two subpopulation groups that corresponded G. cryptoirregulare and G. 

irregulare (Fig IV-4). Most of the isolates from greenhouse A were grouped in the G. 

cryptoirregulare branch. Most of the isolates from greenhouse B were grouped in the G. 

irregulare branch. Isolates from greenhouse C were grouped in both branches without a 

clear predominance of either of them. Looking in detail, there were some clades where 

the clear predominance of isolates from one lineage per greenhouse suggested local 

sources of inoculum, while closely related genotypes shared by isolates from different 

greenhouses suggested common sources of inoculum. 

MSN (Fig IV-5) revealed isolates clustering together according to phylogenetic 

relationships. Structure by location (greenhouse) was masked by phylogenetic 

relationships. MSN (Fig IV-5A) revealed similar results as the UPGMA. G. irregulare 

isolates were grouped together and separated from isolates identified as G. 
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cryptoirregulare, also the potential hybrids were located between the two species, showing 

that they are sharing alleles with both (Fig IV-B). MSN based on mefenoxam sensitivity 

revealed that most of the isolates grouped in G. irregulare were sensitive to mefenoxam 

while G. cryptoirregulare isolates were sensitive, resistant or intermediate. Some clades 

within this group had predominance of resistant isolates. No clonal genotypes were shared 

among greenhouses. 

 

Figure IV-4. UPGMA tree of G. irregulare complex, based on genetic distance obtained 

with SSRs markers. 
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Fig IV-5. Minimum spanning network based on B

 
Fig IV-5. Minimum spanning network based on Bruvo’s genetic distance. A. by 

greenhouses; B. by Species; C. by Fungicide resistance to mefenoxam. Nodes (circles) 

represent individual multilocus genotypes. The size of the circle is relative to the number 

of individuals represented in the data. Nodes more closely related have darker and thicker 

lines whereas nodes more distantly related have lighter and thinner lines. 

AMOVA revealed significant moderate genetic differentiation among greenhouse 

populations (FST = 0.101) without discrimination of phylogenetic clades, and significant 

high genetic differentiation when analysis were performed per location on each 

individual phylogenetic clade (G. irregulare s.s. and G. cryptoirregulare) (Table IV-6). 

This results shows the importance of perform the analysis separating the species within 

the complex to do not lose information. 

Table IV-6. Analysis of molecular variance (AMOVA) comparing G. irregulare s.l. 

isolates for two different hierarchies: by location (greenhouses) and by species. 

Level FST p 

G. irregulare s.l. (by location) 0.101 0.001* 

By species 0.289 0.001* 

G. irregulare (by location) 0.256 0.001* 

G. cryptoirregulare (by location) 0.138 0.002* 

Potential hybrids 0.038 0.170 
FST = fixation index. FST < 0.05 = low genetic differentiation; 0.05 to 0.15 = moderate; 0.15 to 0.25 = great; 

and, >0.25 = very great). p values were based on 999 permutations; * indicates significant differences. 
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Discussion 

The most common species previously reported in floricultural crops in Long Island 

NY. were G. irregulare s.l and P. aphanidermatum (Garrido 2014). The same pathogenic 

species have been found in other states (Moorman et al. 2002; Castillo-Munera 2015). In 

Chrysanthemum, G. irregulare have also been reported to cause disease (Yates 2016). In 

Pennsylvania, no spatial and temporal patterns were found over time in greenhouses, 

suggesting that the pathogen was likely introduced with planting material or growing media 

(Moorman et al. 2002; Daughtrey and Miller 2009). Garrido (2014) performed SSR 

analysis of G. irregulare s.l isolates from multiple hosts, with predominance of isolates 

from Pelargonium (geranium), and concluded that plant pathogenic isolates in the studied 

greenhouses were likely introduced by infected plant material and moved between 

greenhouses (Garrido 2014). 

In this study, the analysis of G. irregulare s.l, isolates support the genetic 

differentiation of G. cryptoirregulare and G. irregulare as previously reported (Garzón et 

al. 2007; Garrido 2014). This results were revealed by ITS and COXII sequences, and 

supported by SSR analysis, showing that this method is an alternative for the 

characterization of species of the G. irregulare complex. Potential hybrids found between 

G. irregulare and G. cryptoirregulare suggested that occasional genetic exchange was 

possible between species (Garrido 2014), which was confirmed by the findings of the 

current study. Interestingly, putative hybrids clustered in a separate clade. Further 

comparisons with Garrido 2014 data will be discussed in chapter V. 
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Analysis of genotypic diversity is an important part of genetic structure analysis of 

populations. Genotypic diversity is calculated from genotype frequencies (Grünwald et al. 

2003). In this study higher diversity values were observed, which could be caused in part 

by samples size differences between greenhouses. When data was analyzed by clades, G. 

cryptoirregulare was overall more diverse compared to G. irregulare s.s. Similar results 

were previously reported by Garzón et al. (2007). Genetic diversity is a source of variability 

of pathogenic strains in crop hosts and could be used to identify alleles controlling key 

pathogenicity traits (Bennett and Stone 2016).  

SSR based cluster analyses, UPGMA and MSN, performed for inference of population 

structure and lineage membership allowed to determine how isolates grouped together and 

helped to detect isolates that were misidentified based on morphology. An intrinsic genetic 

population structure was found due to phylogenetic discrimination of G. irregulare and G. 

cryptoirregulare. Significant genetic population structure was found by location and 

fungicide resistance (mefenoxam). Some lineages were shared among greenhouses. Those 

findings suggest potential common sources of inoculum, while lineages present in a single 

greenhouse suggest local sources of inoculum. In the case of the mefenoxam sensitivity, a 

higher number of resistant isolates were found in G. cryptoirregulare from the three 

different greenhouses. Studies, have shown that isolates of Pythium species with similar 

genetic backgrounds can show variation in their sensitivity to fungicides and that genetic 

variation can help to explain fungicide resistance (Al‐Sa'di et al. 2008; Al‐Sa’di et al. 

2008a; Garrido 2014).  
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All of the isolates in this study came from the same host (chrysanthemums) making 

just possible to analyze population differentiation by location, by fungicide sensitivity 

(MSN only), and by the species in the complex. Based on that, clades with potential local 

sources of inoculum were identified as well as clades showing potential common sources. 

The results showed that isolates may have been moved between the greenhouses; although 

no clonal genotypes were shared among greenhouses. Molecular characterization is a way 

to quantify variation, while population structure can provide insights regarding factors that 

contribute to the movement and distribution of pathogens (Schroeder et al. 2013). Studies 

analyzing the diversity of Pythium and Globisporangium populations can help to 

understand the epidemiology of the diseases they cause on plants. When a pathogen 

population is highly diversified, the management may be harder than when a population 

consist of clones, since high diversity may reflect multiple sources of inoculum which 

could be difficult to identify.  

Little is known about the movement and distribution of inoculum in greenhouses but 

it can be harbored in many potential sources including infected plant material, plant 

debris, soil, tools, equipment, potting mixtures, irrigation water, and also can be splashed 

around potting mixes and other substrates in greenhouses (Al‐Sa’di et al. 2008b). In the 

future growers should consider better management practices to reduce the risk of 

introduction of infected materials. In depth analysis of the diverse sources of inoculum 

should be examined in future studies. Additionally, since G. irregulare s.l. lineages were 

shared among the three greenhouses, further analysis is required to examine each group 

individually to further understand the relevant differences and similarities among these 

plant pathogens.  
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CHAPTER V 
 

 

POPULATION STRUCTURE OF Globisporangium irregulare s.l. FROM LONG 

ISLAND, NY GREENHOUSES: HOST COMPARISON Chrysanthemum vs. 

Pelargonium 

Introduction: 

Globisporangium irregulare s.l has been reported as one of the most common 

species in floricultural and ornamental crops (Moorman and Kim 2004; Garrido 2014; 

Castillo-Munera 2015; Lookabaugh et al. 2015). Phylogenetic analysis of the complex 

revealed the formation of four clades within the complex, supporting the separation of G. 

irregulare s.s. and G. cryptoirregulare.(Garzón et al. 2005a; Garrido 2014). Analysis of 

the population structure in Long Island NY with samples collected from 2009 to 2013, 

grouped the complex in four groups including G. irregulare s.s. and three clusters in G. 

cryptoirregulare (Garrido 2014). 

The population genetic analysis of samples from different locations and different 

years offers a reference frame for population analysis (Garzón et al. 2005b). 

Understanding the dynamics over time can help to find epidemiological patterns. The 

objectives of this study were to compare the clusters observed on Chrysanthemum in 

2014 to the clades identified by Garrido (2014), and compare the genetic composition of  
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G. irregulare s.l. populations associated to geranium over different seasons and years 

(2009-2013) on the same floricultural greenhouses studied by Garrido. 

Materials and Methods  

Identification of clusters 

Data formatting and population genetic analyses were conducted using R 3.3.1 (R 

Core Team 2013). Garrido (2014) genotypic matrix were used (Supplementary table 2) 

and imported to R for use with Poppr 2.2.1(Kamvar et al. 2014) and Adegenet 2.0.1 

(Jombart 2008) packages. Minimum spanning networks using Bruvo’s genetic distance 

for microsatellite loci (Bruvo et al. 2004;  Kamvar et al. 2014) were used to find grouping 

of 120 isolates from chrysanthemums using G. irregulare and G. cryptoirregulare (I, II 

and II) using eight isolates previously characterized by Garrido (2014) as reference 

isolates.  

Dynamics over time with focus on Geranium 

The multilocus genotype data set of isolates from Pelargonium spp. (geranium) from 

Garrido (2014) was stratified in population hierarchies (greenhouse, species and year). 

The genotypic diversity parameters used were: Shannon-Weiner diversity (H), the 

Stoddart and Taylor’s index (G) (Shannon 1949;  Stoddart and Taylor 1988), and the 

genotypic richness E5 (Pielou 1975; Ludwig and Reynolds 1988; Grünwald et al. 2003). 

Discriminant analysis of principal components (DAPC) were used to show temporal 

dynamics of isolates collected from 2009 to 2013. DAPC is a multivariate approach to 

clustering based on prior population information (Jombart et al. 2010). Minimum 
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spanning networks using Bruvo’s genetic distance for microsatellite loci (Bruvo et al. 

2004; Kamvar et al. 2014) were also used. 

Results 

Identification of clusters 

Figure V-1. UPGMA tree of G. irregulare complex, based on genetic distance obtained 

with SSRf markers and their clustering with Garrido (2014) groups. Color corresponds to 

greenhouses; Red = A; Green = B; Blue = C. 

When all isolates from chrysanthemums were displayed on the UPGMA the basal 

branches split the 120 isolates into two subpopulation groups that corresponded to G. 

cryptoirregulare and G. irregulare. Within G. cryptoirregulare, Garrido (2014) groups 

Gcrypto I and Gcrypto II were found. Garrido (2014) group G. irregulare s.s. grouped 

with G. irregulare isolates (Fig V-1). Gcrypto III reference isolates did not group within 
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any isolate cluster from chrysanthemum, but several G. cryptoirregulare isolates grouped 

close to the two Gcrypto III than to either of the other clades, with statistical support, 

therefore they are refered as GcryptoIII. 

 

Fig V-2. Minimum spanning network of isolates from chrysanthemums based on Bruvo’s 

genetic distance by species and intraspecific clades. Nodes (circles) represent individual 

multilocus genotypes. The size of the circle is relative to the number of individuals 

represented in the data. Nodes more closely related have darker and thicker lines whereas 

nodes more distantly related have lighter and thinner lines 

MSN (Fig V-2 and 3) revealed that the isolates from 2014 clustered with reference 

isolates of the groups found by Garrido. MSN (Fig V-2) revealed that from the four groups, 

isolates within two of them (G. irregulare s.s and Gcrypto II) seem to be closely related 

among them, which can be interpreted based on the thickness of the branches connecting 

the genotypes within each cluster, while the other two seems to have more distant 
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relationships. An interesting finding was that Gcrypto I reference isolates were grouped 

with the potential hybrids previously identified. The reference Gcrypto III isolates were 

close to a large G. cryptoirregulare clade, but their connection was not as close as that 

observed in the other clades. 

MSN (Fig V-3) based on the fungicide resistance to mefenoxam revealed that most of 

the isolates grouped in G. irregulare were sensitive to mefenoxam while G. 

cryptoirregulare included both sensitive and resistant isolates. All the isolates within G. 

crypto II were mefenoxam resistant. While the other three groups included isolates that 

were mefenoxam sensitive and intermediate resistant.  

Fig V-3. Minimum spanning network of isolates from chrysanthemums based on Bruvo’s 

genetic distance by species and interspecies clades, depicting in color differences in 

mefenoxam sensitivity. Nodes (circles) represent individual multilocus genotypes. The size 

of the circle is relative to the number of individuals represented in the data. Nodes more 

closely related have darker and thicker lines whereas nodes more distantly related have 

lighter and thinner lines. 
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Dynamics over time with focus on Geranium 

Genetic diversity was assessed by year. Unique multilocus genotypes (MLG) were 

found in datasets from Geranium plants with clonal lineages found with up to six isolates 

each. Genotypic diversity (either H or G) were higher in 2011 and 2012 probably due to 

big sample size. A lower E5 (0.770) value in 2011 was expected due to clones were 

found just in this year (Table V-1). 

Table V-1. Diversity statistics of G. irregulare s.l populations investigated in Garrido 

(2014) study  

Year N MLG eMLG H G E5 

2009 2 2 2 0.693 2 1 

2011 66 51 9.4 3.767 33.5 0.770 

2012 38 38 10 3.638 38 1 

2013 10 10 10 2.302 10 1 

Total 116 101 9.8 4.513 74.8 0.818 

N = number of individuals observed; MLG = Number of multilocus genotypes observed; eMLG = the 

number of expected MLG at the smallest sample size ≥ 10 based on rarefaction; H = Shannon-Wiener 

Index of MLG diversity; G = Stoddart and Taylor’s Index of MLG diversity; E5 = Evenness. 

DAPC clustering allowed to establish the proximities between populations inside the 

entire space (Fig V-4). Populations were defined by year. The results showed that the first 

discriminant component almost separated samples from 2009 from the 2011 population, 

but not enough samples were included from 2009. The second principal component 

showed that populations from 2012 and 2013 accumulated genetic changes that distanced 

them from the 2009 and 2011 populations. While the 2011 population was distinct from 

the 2012 and 2013 populations, the 2012 and 2013 populations shared several alleles and 

where closely related. The scatterplot shows the temporal changes in the population 

genetic composition.  
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Fig V-4. Scatterplot from discriminant analysis of principal components (DAPC) 

discriminating G. irregulare sl. isolates collected from diferent years in Geranium. 

Individuals are represented as dots. The center of each groups is indicated with crosses. 

MSN (Fig V-5) revealed that most of the genotypes were related between populations 

from 2012 and 2013 as was showed in the DAPC. Among isolates from geranium, clonal 

lineages were found in 2011, but not in the other years. In general terms some genotypic 

lineages were maintained through the years in the populations studied. 
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Fig V-5. Minimum spanning network based on Bruvo’s genetic distance by years. Nodes 

(circles) represent individual multilocus genotypes. The size of the circle is relative to the 

number of individuals represented in the data. Nodes more closely related have darker 

and thicker lines whereas nodes more distantly related have lighter and thinner lines 

MSN (Fig V-6) revealed that some clonal genotypes were shared between 

greenhouses but no particular lineages were associated to specific greenhouses probably 

they were randomly associated to geraniums. Also, was possible to found close related 

genotypes on the same location over different years, suggesting that inoculum may have 

survived in greenhouses populations from year to year. 
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Fig V-6. Minimum spanning network based on Bruvo’s genetic distance by greenhouses. 

Nodes (circles) represent individual multilocus genotypes. The size of the circle is 

relative to the number of individuals represented in the data. Nodes more closely related 

have darker and thicker edges lines whereas nodes more distantly related have lighter and 

thinner lines. 

MSN (Fig V-7) revealed that lineages in G. irregulare s.l. are shared among different 

hosts. An intrinsic genetic population structure was better explained by the phylogenetic 

relationships of the species in the complex and masked structure by location 

(greenhouses) (Fig V-7). Mostly unique MLG were found, with some clonal lineages in 

populations of isolates collected from geranium, same results were found in 

chrysanthemums. No closely related clusters were formed from geranium and 

chrysanthemum isolates as was expected.  
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Fig V-7. Minimum spanning network based on Nei’s genetic distance by Host. Nodes 

(circles) represent individual multilocus genotypes. The size of the circle is relative to the 

number of individuals represented in the data. Nodes more closely related have darker 

and thicker lines whereas nodes more distantly related have lighter and thinner lines. 

Discussion 

Garrido (2014) in her analysis of G. irregulare s.l isolates using SSR markers 

concluded that diseases caused by Pythium species in the greenhouses, she studied, were 

likely to be introduced by infected plant material and potentially by movement of materials 

between greenhouses or from common sources. It was also suggested that analysis of the 

population dynamics in greenhouses overtime could help to elucidate probable sources of 

inoculum. 

In this study, was analyzed the population structure of G. irregulare s.l samples 

collected in 2014 from three Chrysanthemum greenhouses, and independently analyzed 

data sets generated for isolates from Pelargonium by Garrido et al. (unpublished) from 
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2009 to 2013. Garrido (2014) in her analysis used isolates collected in different years and 

from different greenhouses at Long Island New York. None of the greenhouses were the 

same, neither the host analyzed. Thus, a correlation between her results with ours were 

difficult to address.  

Previous results have grouped G. irregulare complex in four groups including G. 

irregulare s.s. and three clusters in G. cryptoirregulare (Gcrypto I, II and III). Using 

isolates previously characterized as reference for this study, the four clades identified by 

Garrido (2014) among isolates from geranium were also found among isolates from 

chrysanthemums collected in 2014. Gcrypto II included mefenoxam resistant isolates in 

this study and also the one performed by Garrido. The 2014 Gcrypto I isolates are 

putative hybrids of G. irregulare s.s. and G. cryptoirregulare. 

In this part of the study was interesting to find that even when analysis were performed 

on populations from different host, geranium and chrysanthemum, and locations 

(greenhouses), over five years, similar results were found regarding representation of four 

clades of the G. irregulare s.l. species complex. Unique MLG were found, with some 

clonal lineages in populations of isolates collected from both hosts. Clades with potential 

local sources of inoculum were identified as well as clades showing potential common 

sources. The results shown that isolates have been moved among the greenhouses. Little is 

known about the movement and distribution of inoculum in greenhouses but it can be 

harbored in many potential sources (Al‐Sa’di et al. 2008b). Better practices to reduce the 

risk of introduction of infected material should be used.  
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Lineages in G. irregulare s.l. are shared among different greenhouses. An intrinsic 

genetic population structure was found by the phylogenetic relationships of G. irregulare 

and G. cryptoirregulare and masked structure by location. This results suggest that further 

analysis should study each phylogenetic group individually. 

Closely related genotypes on the same location (geranium) over different years were 

found, suggesting inoculum may have survived in local greenhouse populations from year 

to year. Investigate the genetics of populations at many loci can provide insights of the 

genetic variability and possible movement of genes among populations (Lee et al. 2010). 

This part of the study, with focus on geranium, showed that analyze the population 

dynamics of Globisporangium irregulare complex over time is important to determine if 

the pathogen are from a particular greenhouse, are moving through contaminated material 

or are surviving from year to year, later the information generated can help to design better 

management strategies. 
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APPENDICES 
 

Supplementary table 1. Pythium and Globisporangium isolates used in the identification 

and characterization of species present in floricultural crops from Long Island, New York 

in 2014.  

Isolate No. Morphology ID DNA ID (ITS) Mtest1 

JG-14-32 P. irregulare P. cryptoirregulare S 

JG-14-35 P. irregulare P. cryptoirregulare S 

JG-14-39 P. irregulare P. irregulare S 

JG-14-44 P. irregulare P. irregulare S 

JG-14-47 P. irregulare P. cryptoirregulare S 

JG-14-49 P. irregulare P. cryptoirregulare S 

JG-14-37 P. aphanidermatum P. aphanidermatum S 

JG-14-38 P. aphanidermatum P. aphanidermatum S 

JG-14-42 P. aphanidermatum P. aphanidermatum S 

JG-14-50 P. irregulare P. cryptoirregulare S 

JG-14-51 P. irregulare P. cryptoirregulare R 

JG-14-53 P. irregulare P. cryptoirregulare S 

JG-14-54 P. irregulare P. irregulare S 

JG-14-57 P. irregulare P. cryptoirregulare R 

JG-14-52 P. irregulare P. cryptoirregulare R 

JG-14-55 P. irregulare P. cryptoirregulare S 

JG-14-56 P. irregulare P. cryptoirregulare S 

JG-14-60 P. irregulare P. irregulare S 

JG-14-62 P. irregulare P. cryptoirregulare S 

JG-14-63 P.rost/seg/no Pyth P. ultimum S 

JG-14-65 P.spinosum? P. ultimum S 

JG-14-66 P. irregulare P. cryptoirregulare R 

JG-14-67 P. irregulare P. irregulare S 

JG-14-70 P. irregulare P. cryptoirregulare S 

JG-14-60 P.irregulare P. cryptoirregulare S 

JG-14-68 P.irregulare P. cryptoirregulare S 

JG-14-69 P.irregulare P. cryptoirregulare S 

JG-14-71 P.irregulare P. cryptoirregulare S 

JG-14-72 P.irregulare P. cryptoirregulare S 

JG-14-73 P.acanthicum Pythium sp. S 

JG-14-74 P.ultimum Pythium sp.  S 

JG-14-75 P. irregulare P. irregulare S 

JG-14-76 P. irregulare P. cryptoirregulare S 

JG-14-77 P. irregulare P. cryptoirregulare S 

JG-14-78 P.myriotylum/ P.irregulare? P. myriotylum S 

JG-14-79 P. irregulare P. cryptoirregulare S 

JG-14-80 P. irregulare P. irregulare S 

JG-14-93 P. irregulare P. cryptoirregulare S 
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Isolate No. Morphology ID DNA ID (ITS) Mtest1 

JG-14-95 P. irregulare P. irregulare S 

JG-14-85 P. irregulare P. cryptoirregulare S 

JG-14-97 P.irregulare P. cryptoirregulare S 

JG-14-83 P. irregulare P. cryptoirregulare R 

JG-14-70 P.irregulare P. irregulare S 

JG-14-82 P.irregulare P. cryptoirregulare S 

JG-14-87 P.irregulare P. irregulare S 

JG-14-91 P.irregulare P. irregulare S 

JG-14-98 P.irregulare P. irregulare S 

JG-14-81 P. irregulare P. irregulare S 

JG-14-99 P. irregulare P. cryptoirregulare R 

JG-14-74 P.ultimum P. irregulare S 

JG-14-103 P.irregulare P. irregulare S 

JG-14-104 P.irregulare P. irregulare S 

JG-14-102 P.myriotylum P. miryotilum S 

JG-14-114 P.myriotylum P. miryotilum S 

JG-14-90  P. irregulare P. irregulare S 

JG-14-84 P. irregulare P. irregulare S 

JG-14-89 P. irregulare P. irregulare S 

JG-14-106 P. irregulare P. cryptoirregulare S 

JG-14-110 P. irregulare P. cryptoirregulare R 

JG-14-112 P. irregulare P. irregulare S 

JG-14-116 P. irregulare P. irregulare S 

JG-14-121 P. irregulare P. cryptoirregulare S 

JG-14-122 P.myriotylum P.myriotylum S 

JG-14-124 P.irregulare P. cryptoirregulare S 

JG-14-109 P.irregulare P. cryptoirregulare R 

JG-14-107 P.irregulare P. cryptoirregulare S 

JG-14-108 P.irregulare P. cryptoirregulare S 

JG-14-115 P.myriotylum P. aphanidermatum S 

JG-14-130 P.irregulare P. cryptoirregulare S 

JG-14-131 P.irregulare P. cryptoirregulare S 

JG-14-133 P.irregulare P. cryptoirregulare R 

JG-14-127 P. irregulare P. cryptoirregulare R 

JG-14-129 P. irregulare P. irregulare S 

JG-14-135 P. irregulare P. irregulare S 

JG-14-136 P. irregulare P. irregulare S 

JG-14-137 P. irregulare P. cryptoirregulare S 

JG-14-138 P. irregulare P. spiculum S 

JG-14-141 P. irregulare P. irregulare S 

JG-14-143 P. irregulare P. cryptoirregulare S 

JG-14-142 ? Pythium rostratifingens S 

JG-14-149 P.irregulare P. cryptoirregulare R 

JG-14-151 ? Pytium sp. S 

JG-14-125 P. irregulare P. irrregulare S 

JG-14-126 P. irregulare P. cryptoirregulare S 
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Isolate No. Morphology ID DNA ID (ITS) Mtest1 

JG-14-150 P.? P. irrregulare S 

JG-14-157 P. irregulare P. cryptoirregulare I 

JG-14-158 P. irregulare P. cryptoirregulare S 

JG-14-160 P. irregulare P. cryptoirregulare S 

JG-14-161 P. irregulare P. cryptoirregulare S 

JG-14-166 P. irregulare P. irrregulare S 

JG-14-168 P. irregulare P. cryptoirregulare S 

JG-14-86 P.rost./seg P. rostratifingens S 

JG-14-88 P.rost./seg P. rostratifingens S 

JG-14-139 P.rost./seg Pythium sp. S 

JG-14-150 P.irregulare P. irrregulare S 

JG-14-153 P.irregulare P. cryptoirregulare S 

JG-14-156 P.irregulare P. irrregulare S 

JG-14-159 P.irregulare P. cryptoirregulare S 

JG-14-162 P.irregulare P. irrregulare S 

JG-14-163 P.irregulare P. cryptoirregulare R 

JG-14-164 P.irregulare P. cryptoirregulare R 

JG-14-168 ? P. cryptoirregulare S 

JG-14-46 P. aphanidermatum P. aphanidermatum S 

JG-14-125   P. ultimum S 

Hb-14-43 P. aphanidermatum P. aphanidermatum S 

Hb-14-45 P. irregulare P. cryptoirregulare S 

Hb-14-46 P. aphanidermatum P. aphanidermatum S 

Hb-14-48 P. irregulare P. irregulare S 

Hb-14-49 P. irregulare P. ultimum S 

Hb-14-51 P. aphanidermatum P. aphanidermatum S 

Hb-14-52 P. aphanidermatum P. aphanidermatum S 

Hb-14-53 P. aphanidermatum P. aphanidermatum S 

Hb-14-54 P. aphanidermatum P. aphanidermatum S 

Hb-14-55 P. aphanidermatum P. aphanidermatum S 

Hb-14-56 P. aphanidermatum P. aphanidermatum S 

Hb-14-41 P. aphanidermatum P. aphanidermatum S 

Hb-14-42 P. aphanidermatum P. aphanidermatum S 

Hb-14-44 P. irregulare P. ultimum S 

Hb-14-46 P. aphanidermatum P. aphanidermatum S 

Hb-14-50 P. irregulare P. irregulare S 

HB-14-57 P. irregulare P. cryptoirregulare R 

HB-14-58 P. irregulare P. ultimum S 

Hb-14-62 P. irregulare P. ultimum S 

Hb-14-64 P. irregulare P. ultimum S 

Hb-14-68 P. irregulare P. ultimum S 

Hb-14-69 P. irregulare P. sylvaticum S 

Hb-14-71 P. irregulare P. irregulare S 

Hb-14-72 P. irregulare P. ultimum S 

Hb-14-75 P. irregulare P. ultimum S 

Hb-14-77 P. irregulare P. cryptoirregulare S 
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Isolate No. Morphology ID DNA ID (ITS) Mtest1 

Hb-14-74 P. irregulare P. cryptoirregulare S 

Hb-14-80 P. irregulare P. irregulare S 

Hb-14-85 P. irregulare P. irregulare S 

Hb-14-86 P.irregulare P. irregulare S 

HB-14-88 P. irregulare P. cryptoirregulare R 

Hb-14-78 P. irregulare P. irregulare S 

Hb-14-81 P.irregulare P. ultimum S 

Hb-14-82 P.irregulare P. irregulare S 

Hb-14-87 P.irregulare P. ultimum S 

Hb-14-90 P.irregulare P. irregulare S 

Hb-14-91 P.irregulare P. irregulare S 

Hb-14-92 P.irregulare P. irregulare S 

Hb-14-95 P.irregulare P. irregulare S 

Hb-14-97 P.aphanidermatum P. aphanidermatum S 

Hb-14-89 P.irregulare P. ultimum S 

Hb-14-94 P.irregulare P. irregulare S 

Hb-14-96 P.irregulare P. irregulare S 

Hb-14-99 P. irregulare P. irregulare S 

Hb-14-100 P. irregulare P. irregulare S 

Hb-14-102 P. irregulare P. sylvaticum S 

Hb-14-110 P. irregulare P. cryptoirregulare R 

Hb-14-111 P. irregulare P. irregulare S 

Hb-14-101 ? P. dissotocum S 

Hb-14-104 P.irregulare P. cryptoirregulare R 

Hb-14-105 ? P. dissotocum S 

Hb-14-109 P.irregulare P. ultimum S 

Hb-14-114 ? P. ultimum S 

Hb-14-115 ? P. ultimum S 

Hb-14-116 P. irregulare P. irrregulare S 

Hb-14-118 P. irregulare P. irrregulare S 

Hb-14-120 ? P. ultimum S 

Hb-14-123 P. irregulare P. irrregulare S 

Hb-14-113 ? P. rostratifingens S 

Hb-14-103 P. rosr./ sygn Pythium sp. S 

Hb-14-107 P. rosr./ sygn Pythium sp. I 

Hb-14-117   P. diclinum S 

Hb-14-119   P. oopapillum S 

Hb-14-122 P. irregulare P. ultimum S 

Hb-14-124   P. ultimum S 

Hb-14-60 P. irregulare P. irregulare S 

Hb-14-63 P. irregulare P. ultimum S 

Hb-14-70 P. irregulare P. irregulare S 

Hb-14-98/A P. ultimum Pythium sp. S 

Hb-14-98/B   P. ultimum S 

HB-14-52   P. aphanidermatum S 

IA-14-01 P.myriotylum P. aphanidermatum S 
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Isolate No. Morphology ID DNA ID (ITS) Mtest1 

IA-14-06 P.myriotylum P. aphanidermatum S 

IA-14-02 P. irregulare P. cryptoirregulare R 

IA-14-07 P.myriotylum P. aphanidermatum S 

IA-14-05 P. irregulare P. irregulare R 

IA-14-08 P.myriotylum P. aphanidermatum S 

IA-14-03 P.irregulare P. irregulare S 

IA-14-11 P.myriotylum P. miryotilum S 

IA-14-14 P.myriotylum P. aphanidermatum S 

IA-14-16 P.myriotylum P. aphanidermatum S 

IA-14-10 P.myriotylum P. aphanidermatum S 

IA-14-17 P.myriotylum P. aphanidermatum S 

IA-14-18 P.irregulare P. cryptoirregulare R 

IA-14-20 P.irregulare P. cryptoirregulare R 

IA-14-21 P.irregulare P. cryptoirregulare R 

IA-14-22   P. ultimum S 

IA-14-23 P.lutarium P. orthogonon S 

IA-14-24 P. irregulare P. irregulare R 

IA-14-25 P. irregulare P. middletonii R 

IA-14-26 P.? P. cryptoirregulare S 

IA-14-28 P. irregulare P. cryptoirregulare R 

IA-14-32 P.aphanidermatum P. aphanidermatum S 

IA-14-34 P.cryptoirregulare P. ultimum S 

IA-14-35 P.myriotylum P. myriotylum S 

IA-14-12 P.lutarium P. catenulatum S 

IA-14-13 P.intermedium P. catenulatum S 

IA-14-27 P.irregulare P. irregulare R 

IA-14-29 P. P. middletonii S 

IA-14-36 P.irregulare P. cryptoirregulare R 

IA-14-23 P.lutarium P. orthogonon S 

IA-14-30 ? P. dissotocum I 

IA-14-19 P. aphanidermatum P. aphanidermatum S 
1Mtest: Fungicide resistant test to mefenoxam. S = Sensitive; R = Resistant; I = Intermediate  
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Supplementary table 2. Globisporangium irregulare s.l. isolates used in Garrido (2014) 

study. 

Code Strain name Molecular ID Year 

C20 JH-09-244 G. irregulare s.l. 2009 

C32 W-171 G. irregulare s.l. 2009 

C104 BB-11-128 G. irregulare s.l. 2011 

C60 BB-11-130 G. irregulare s.l. 2011 

C220 BB-11-134 G. irregulare s.l. 2011 

C259 EM-11- 36 G. irregulare s.l. 2011 

C231 EM-11- 37 G. irregulare s.l. 2011 

C230 EM-11- 38 G. irregulare s.l. 2011 

C240 EM-11- 39 G. irregulare s.l. 2011 

C244 EM-11- 40 G. irregulare s.l. 2011 

C248 EM-11- 43 G. irregulare s.l. 2011 

C256 EM-11- 44 G. irregulare s.l. 2011 

C258 EM-11- 45 G. irregulare s.l. 2011 

C257 EM-11- 46 G. irregulare s.l. 2011 

C260 EM-11- 47 G. irregulare s.l. 2011 

C261 EM-11- 48 G. irregulare s.l. 2011 

C44 JH-11-254 G. cryptoII 2011 

C54 JH-11-255 G. irregulare s.l. 2011 

C55 JH-11-256 G. cryptoII 2011 

C109 JH-11-270 G. irregulare s.l. 2011 

C117 JH-11-277 G. irregulare s.l. 2011 

C160 JH-11-281 G. irregulare s.l. 2011 

C152 JH-11-289 G. irregulare s.s. 2011 

C147 JH-11-290 G. irregulare s.l. 2011 

C149 JH-11-291 G. irregulare s.l. 2011 

C153 JH-11-292 G. irregulare s.l. 2011 

C156 JH-11-293 G. cryptoI 2011 

C186 JH-11-295 G. irregulare s.s. 2011 

C191 JH-11-311 G. irregulare s.l. 2011 

C192 JH-11-312 G. irregulare s.l. 2011 

C214 JH-11-315 G. irregulare s.l. 2011 

C201 JH-11-316 G. irregulare s.l. 2011 

C202 JH-11-317 G. irregulare s.l. 2011 

C203 JH-11-319 G. irregulare s.l. 2011 

C216 JH-11-321 G. irregulare s.l. 2011 

C205 JH-11-323 G. cryptoI 2011 

C206 JH-11-324 G. irregulare s.l. 2011 

C243 JH-11-328 G. irregulare s.l. 2011 

C241 JH-11-329 G. irregulare s.l. 2011 

C242 JH-11-331 G. irregulare s.l. 2011 

C232 JH-11-335 G. irregulare s.l. 2011 

C80 VB-11-104 G. irregulare s.l. 2011 

C82 VB-11-105 G. irregulare s.l. 2011 
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Code Strain name Molecular ID Year 

C83 VB-11-107 G. irregulare s.l. 2011 

C88 VB-11-108 G. irregulare s.l. 2011 

C84 VB-11-109 G. irregulare s.l. 2011 

C90 VB-11-111 G. irregulare s.l. 2011 

C105 VB-11-115 G. irregulare s.l. 2011 

C33 VB-11-116 G. irregulare s.l. 2011 

C34 VB-11-117 G. irregulare s.l. 2011 

C35 VB-11-118 G. irregulare s.l. 2011 

C121 VB-11-120 G. irregulare s.l. 2011 

C123 VB-11-121 G. irregulare s.l. 2011 

C64 VB-11-122 G. irregulare s.l. 2011 

C124 VB-11-123 G. irregulare s.l. 2011 

C65 VB-11-126 G. irregulare s.l. 2011 

C132 VB-11-129 G. irregulare s.l. 2011 

C140 VB-11-131 G. irregulare s.l. 2011 

C136 VB-11-133 G. irregulare s.l. 2011 

C135 VB-11-134 G. irregulare s.l. 2011 

C131 VB-11-137 G. cryptoIII 2011 

C162 VB-11-138 G. cryptoIII 2011 

C171 VB-11-140 G. irregulare s.l. 2011 

C264 VB-11-143 G. irregulare s.l. 2011 

C223 VB-11-144 G. irregulare s.l. 2011 

C247 VB-11-146 G. irregulare s.l. 2011 

C236 VB-11-147 G. irregulare s.l. 2011 

C254 VB-11-149 G. irregulare s.l. 2011 

C255 VB-11-150 G. irregulare s.l. 2011 

C267 BB-12-149 G. irregulare s.l. 2012 

C268 BB-12-150 G. irregulare s.l. 2012 

C269 BB-12-151 G. irregulare s.l. 2012 

C270 BB-12-152 G. irregulare s.l. 2012 

C272 BB-12-154 G. irregulare s.l. 2012 

C274 BB-12-156 G. irregulare s.l. 2012 

C275 BB-12-157 G. irregulare s.l. 2012 

C276 BB-12-158 G. irregulare s.l. 2012 

C277 BB-12-159 G. irregulare s.l. 2012 

C278 BB-12-160 G. irregulare s.l. 2012 

C279 BB-12-161 G. irregulare s.l. 2012 

C281 BB-12-163 G. irregulare s.l. 2012 

C283 BB-12-165 G. irregulare s.l. 2012 

C285 BB-12-167 G. irregulare s.l. 2012 

C286 BB-12-168 G. irregulare s.l. 2012 

C290 EM-12-52 G. irregulare s.l. 2012 

C293 EM-12-55 G. irregulare s.l. 2012 

C294 EM-12-56 G. irregulare s.l. 2012 

C300 EM-12-62 G. irregulare s.l. 2012 

C302 EM-12-64 G. irregulare s.l. 2012 
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Code Strain name Molecular ID Year 

C303 EM-12-65 G. irregulare s.l. 2012 

C304 EM-12-66 G. irregulare s.l. 2012 

C305 EM-12-67 G. irregulare s.l. 2012 

C306 EM-12-68 G. irregulare s.l. 2012 

C307 EM-12-69 G. irregulare s.l. 2012 

C308 EM-12-70 G. irregulare s.l. 2012 

C309 EM-12-71 G. irregulare s.l. 2012 

C310 EM-12-72 G. irregulare s.l. 2012 

C311 EM-12-73 G. irregulare s.l. 2012 

C325 VB-12-151 G. irregulare s.l. 2012 

C327 VB-12-153 G. irregulare s.l. 2012 

C328 VB-12-154 G. irregulare s.l. 2012 

C329 VB-12-155 G. irregulare s.l. 2012 

C331 VB-12-157 G. irregulare s.l. 2012 

C332 VB-12-158 G. irregulare s.l. 2012 

C333 VB-12-159 G. irregulare s.l. 2012 

C334 VB-12-160 G. irregulare s.l. 2012 

C336 VB-12-162 G. irregulare s.l. 2012 

C399 BB-13-184 G. irregulare s.l. 2013 

C400 BB-13-185 G. irregulare s.l. 2013 

C409 BB-13-186 G. irregulare s.l. 2013 

C401 BB-13-187 G. irregulare s.l. 2013 

C418 EM-13-100 G. irregulare s.l. 2013 

C414 EM-13-102 G. irregulare s.l. 2013 

C419 EM-13-103 G. irregulare s.l. 2013 

C415 EM-13-104 G. irregulare s.l. 2013 

C420 EM-13-105 G. irregulare s.l. 2013 

C422 EM-13-107 G. irregulare s.l. 2013 
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