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Preface

Since the beginnings of modern space exploration activities, the simultaneous
consideration of key mission objectives and options—including technical feasibility,
mission safety, and cost-efficiency aspects—has been essential. Space engineering
projects have required, inter alia, the analysis and optimization of trajectories,
fuel consumption, cargo handling, and other aspects of mission logistics, with
paramount consideration given to crew and environmental safety. The experimental
and commercial revenues expected from space activities such as the ones associated
with the International Space Station have given rise to further complex cost-benefit
analysis and risk analysis issues. The ambitious goals of future interplanetary
explorations—including manned missions—will also require advanced analysis,
model development, and optimization of the systems and resources involved.

While the necessary depth and quality of the decisions required by space
engineering projects has been increasing, we have also witnessed continuing
innovation regarding both theoretical advances and the development of ready-to-
use decision support tools for such applications. The results of scientific innovation
and algorithmic developments are supported and enhanced by today’s advanced
computational modeling and optimization environments. Since the earliest space
engineering applications, the solution of increasingly hard optimization problems
has become necessary. Until recent times, the common numerical optimization
approaches were essentially limited to handle certain continuous (linear or convex
nonlinear), linearly structured combinatorial or mixed integer-continuous opti-
mization problems. Recent advances in the area of optimization support also the
handling of (often more realistic) non-convex problem formulations. Additionally,
the consideration of integer decision variables in a more flexible nonlinear modeling
framework gives rise to often even harder (again, non-convex) combinatorial and
mixed integer-continuous nonlinear optimization problems. The solution of such
computational challenges is becoming gradually more viable as a direct result of
algorithmic advances and software development.

This edited book follows up on a well-received collection of topical studies;
consult Fasano and Pintér, Eds., Modeling and Optimization in Space Engineering,
Springer, 2013. This volume consists of 18 chapters written by domain experts

v



vi Preface

who offer in-depth discussions of mathematical modeling and algorithmic aspects
to solve a range of advanced space engineering applications. The topics discussed
in the book are briefly summarized below:

• Using Direct Transcription to Compute Optimal Low-Thrust Transfers Between
Libration Point Orbits, by Betts

• Practical Tentative Solutions for the Indirect Optimization of Spacecraft Trajec-
tories, by Colasurdo and Casalino

• Resource-Constrained Scheduling with Nonconstant Capacity and Non-regular
Activities, by Fasano

• Packing Problems in Space Solved by CPLEX: An Experimental Analysis, by
Gliozzi et al.

• Designing Complex Interplanetary Trajectories for the Global Trajectory Opti-
mization Competitions, by Izzo et al.

• Satellite Constellation Image Acquisition Problem: A Case Study, by Mal-
ladi et al.

• Reentry Test Vehicle Configuration Selection and Analysis, by Mooij
• Rigorous Global Optimization for Collision Risk Assessment on Perturbed

Orbits, by Morselli et al.
• Optimal Robust Design of Hybrid Rocket Engines, by Pastrone and Casalino
• Nonlinear Regression Analysis by Global Optimization Applied in Space Engi-

neering, by Pintér et al.
• Regression-Based Sensitivity Analysis and Robust Design, by Ridolfi and Mooij
• Low-Thrust Multi-Revolution Orbit Transfers, by Schäff
• Balance Layout Problems: Mathematical Modeling and Nonlinear Optimization,

by Stoyan et al.
• Pilot-Induced Oscillation Alleviation Through Anti-Windup-Based Approach,

by Tarbouriech et al.
• Modeling and Optimization of Hybrid Transfers to NEOs, by Topputo and

Massari
• Probabilistic Safety Analysis of the Collision Between Space Debris and a

Satellite with an Island Particle Algorithm, by Vergé et al.
• Flatness-Based Low-Thrust Trajectory Optimization for Spacecraft Proximity

Operations, by Yang et al.

Our book is primarily written for researchers and practitioners in the field
of space engineering. Since it offers an in-depth exposition of the mathematical
modeling, algorithmic, and numerical solution aspects of the topics covered, it will
be useful also for aerospace graduate and postgraduate students who wish to broaden
their horizon by studying real-world applications and challenges that they will meet
in their professional work. The contributed chapters are more focused on space
engineering practice than on theory: for the latter readers are referred, as needed,
to further (appropriately cited) literature. With this aspect in mind, researchers and

• Advanced Space Vehicle Design Taking into Account Multidisciplinary Cou-
plings and Mixed Epistemic/Aleatory Uncertainties, by Balesdent et al.



Preface vii

practitioners in mathematical systems modeling, operations research, mathematical
optimization, and optimal control will also benefit from the case studies presented.

The approaches discussed here can be extended also to other application areas
that are not related to space applications. Hence, the book can be also used as
a reference volume to assist researchers and practitioners in developing novel
applications. Readers will obtain a broad overview of some of the most challenging
space engineering operational scenarios of today and tomorrow: this aspect will
benefit managers in the aerospace field, as well as in other industrial sectors.

Turin, Italy Giorgio Fasano
Bethlehem, PA, USA János D. Pintér
April 2016
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Mathieu Balesdent, Loïc Brevault, Nathaniel B. Price, Sébastien Defoort,
Rodolphe Le Riche, Nam-Ho Kim, Raphael T. Haftka, and Nicolas Bérend

Abstract Space vehicle design is a complex process involving numerous disci-
plines such as aerodynamics, structure, propulsion and trajectory. These disciplines
are tightly coupled and may involve antagonistic objectives that require the use
of specific methodologies in order to assess trade-offs between the disciplines
and to obtain the global optimal configuration. Generally, there are two ways to
handle the system design. On the one hand, the design may be considered from a
disciplinary point of view (a.k.a. Disciplinary Design Optimization): the designer
of each discipline has to design its subsystem (e.g. engine) taking the interactions
between its discipline and the others (interdisciplinary couplings) into account. On
the other hand, the design may also be considered as a whole: the design team
addresses the global architecture of the space vehicle, taking all the disciplinary
design variables and constraints into account at the same time. This methodology
is known as Multidisciplinary Design Optimization (MDO) and requires specific
mathematical tools to handle the interdisciplinary coupling consistency.

In the first part of this chapter, we present the main classical techniques to
efficiently tackle the interdisciplinary coupling satisfaction problem. In particular,
an MDO decomposition strategy based on the “Stage-Wise decomposition for
Optimal Rocket Design” formulation is described. This method allows the design
process to be decentralized according to the different subsystems (e.g. launch
vehicle stages) and reduces the computational cost compared to classical MDO
methods.
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2 M. Balesdent et al.

Furthermore, when designing an innovative space vehicle including break-
through technologies (e.g. launch vehicle with new kind of propulsion, new
aerodynamics configuration), one has to cope with numerous uncertainties relative
to the involved technology models (epistemic uncertainties) and the effects of these
on the global design and on the interdisciplinary coupling satisfaction. Moreover,
aleatory uncertainties inherent to the physical phenomena occurring during the
space vehicle mission (e.g. solar fluxes, wind gusts) must also be considered
in order to accurately estimate the performance and reliability of the vehicle.
The combination of both epistemic and aleatory uncertainties requires dedicated
techniques to manage the computational cost induced by uncertainty handling.

The second part of this chapter is devoted to the handling of design process in the
presence of uncertainties. Firstly, we describe a design methodology that enables
to define the design rules (e.g. safety factors) taking both aleatory and epistemic
uncertainties into account. Secondly, we present new MDO methods that allow to
decompose the design process while maintaining the interdisciplinary functional
coupling relationships between the disciplines in the presence of uncertainties.

Keywords Multidisciplinary Design Optimization • Launch vehicle design •
Aleatory/epistemic uncertainties

Nomenclature

z Design variable vector

Y Input coupling variable vector

U Uncertain variable vector

f Objective function

g Inequality constraint vector

h Equality constraint vector

c Coupling function vector

„ Objective function uncertainty measure

K Inequality function uncertainty measure

E Expected value

� Standard deviation

� Joint Probability Density Function (PDF)

�Y Parameter vector of the uncertain coupling variables Y
Oy Polynomial Chaos Expansion based surrogate model of the coupling y

˛ Polynomial Chaos Expansion coefficient vector

J Interdisciplinary coupling constraint

s Safety margin

Om Low fidelity model
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1 Introduction

Aerospace vehicle designs are long term projects (often around 10 years) involving
important budgets and requiring a dedicated design organization. NASA and ESA
[63] stress the need to reduce the cost and to increase the effectiveness of space
missions and satellite launches. Improving the design process for aerospace vehicles
is essential to obtain low cost, high reliability, and effective launch capabilities
[12]. This design is a complex multidisciplinary optimization process: the objective
is to find the vehicle architecture and characteristics that provide the optimal
performance [34] while satisfying design requirements and ensuring a certain level
of reliability. The slightest mistake in the design process may induce economical,
material and human disastrous consequences (e.g. explosion of the Brazilian VLS
launch vehicle in 2002).

As a representative example of aerospace vehicles, the design of launch vehicles
involves several disciplines (e.g. propulsion, aerodynamics, trajectory, mass and
structure) and is customarily decomposed into interacting submodels (Fig. 1). Each
discipline may rely on computing-intensive simulations such as Finite Element
Analyses for the structure discipline or Computational Fluid Dynamics analyses
for the aerodynamics discipline. The aerospace vehicle performance estimation
which results from flight performance, safety, reliability and cost, requires coupled

A: Propulsion

B: Geometry and
mass budget

C: Structure

D: Aerodynamics

E: Trajectory

F: Performance
criteria

Fig. 1 Example of launch vehicle analysis process of interacting submodels

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .



4 M. Balesdent et al.

Fig. 2 DDO design process

Discipline
1

Discipline
2

Discipline
N

Discipline 
optimizer

Discipline 
optimizer

Discipline 
optimizer

disciplinary analyses. The different disciplines are a primary source of trade-offs
due to the antagonist disciplinary effects on launcher performance.

Two approaches to handle system design may be distinguished:

• Disciplinary Design Optimization (DDO). The designer of each discipline has
to design its subsystem (e.g. propulsion system) taking the interactions between
its discipline and the others (interdisciplinary couplings) into account through
specifications that can take the form of simulation parameters or optimization
constraints that will be updated at each iteration. The process generally consists
of loops between different disciplinary optimizations (Fig. 2). At each iteration
of this loop, each discipline is re-processed based on the updated data from
the previous discipline optimizations. This approach is particularly suited to the
design process of industrial companies which is often broken down according to
the different engineering team expertise. However, the difficulty of this approach
lies in the handling of other discipline interactions with the designed discipline
in the global optimization process.

• Multidisciplinary Design Optimization (MDO). MDO deals with the global
design problem as a whole by taking advantage of the inherent synergies and
couplings between the disciplines involved in the design process (Fig. 3) to
decrease the computational cost and/or to improve the quality of the optimal
design [53]. Unlike the sequential disciplinary optimizations, the interactions
between the disciplines are directly incorporated in the MDO methods [7].
However, the complexity of the problem is significantly increased by the
simultaneous handling of all the disciplines.



5

Fig. 3 Example of MDO
design process

In the next sections, these two approaches are discussed within the context
of Launch Vehicle Design (LVD). In Sect. 2, the main classical techniques to
efficiently tackle the interdisciplinary coupling satisfaction in MDO problems are
introduced. In particular, an MDO decomposition strategy based on the “Stage-Wise
decomposition for Optimal Rocket Design” (SWORD) is described. This method
allows the design process to be decentralized according to launch vehicle stages and
reduces the computational cost compared to classical MDO methods.

Then, in Sect. 3, the handling of uncertainty in the design process is discussed.
First, a methodology to define design rules (e.g. safety margins) taking epistemic
and aleatory uncertainties into account is described. Then, an approach allowing to
ensure multidisciplinary feasibility in the presence of uncertainty for space vehicle
design while reducing the computational cost is presented and compared to classical
uncertainty-based MDO methods.

2 MDO Decomposition Strategy for Launch Vehicle Design

In the aerospace industry, a new system follows a typical development process
involving several specific phases (Conceptual design, Preliminary design, Detailed
design, Manufacturing) [12] (Fig. 4). For an aerospace vehicle, the conceptual
design phase is decisive for the success of the whole design process. It has been
estimated that at least 80 % of the life-cycle cost of a vehicle is locked in by the
chosen concept during the conceptual phase [12]. The design space at this early
design phase is large since few characteristics of the system are fixed, and traditional
design approaches lead to freeze some system characteristics to focus only on

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .
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Fig. 4 Phases of design
process

alternatives selected by experts [62]. MDO techniques are useful for the conceptual
design phase since they are able to handle large design spaces in a multidisciplinary
environment. In [41], the authors mention that the global system performance can
be enhanced by using MDO at early design phases, and design cycle duration and
cost can be decreased.

To overcome the complexity induced by handling all the disciplines at the same
time in the system design process, various MDO formulations have been developed.
In the 90s, several surveys classed MDO formulations into two general types of
architectures: single-level methods [10, 21], and multi-level methods [3, 38]. Multi-
level approaches introduce disciplinary level optimizers in addition to the system-
level optimizer involved in single-level methods, in order to facilitate the MDO
process convergence.
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2.1 General MDO Formulation and Review of Main MDO
Approaches

A general single-level MDO problem can be formulated as follows [8]:

min f .z; y; x/ (1)

w:r:t: z; y; x

s:t: g.z; y; x/ � 0 (2)

h.z; y; x/ D 0 (3)

8.i; j/ 2 f1; : : : ;Ng2 i ¤ j; yij D cij.zi; y:i; xi/ (4)

8i 2 f1; : : : ;Ng; ri.zi; y:i; xi/ D 0 (5)

zmin � z � zmax (6)

All the variables and functions are described in the following. Three types of
variables are involved in a deterministic MDO problem:

• z is the design variable vector. The design variables evolve all along the optimiza-
tion process in order to find their optimal values with respect to the optimization
problem. Design variables may be shared between several disciplines (zsh) or
specific to the discipline i (Nzi). We note zi D fzsh; Nzig the input design variable
vector of the discipline i 2 f1; : : : ;Ng with N the number of disciplines and
z D SN

iD1 zi without duplication. Typical design variables involved in aerospace
vehicle design are stage diameters, pressures in the combustion chambers,
propellant masses, etc.

• In a multidisciplinary environment, the disciplines exchange coupling variables,
y (Fig. 5). The latter link the different disciplines to model the interactions
between them. cij.zi; y:i; xi/ is a coupling function used to compute the output
coupling variable vector which is calculated by discipline i and input to discipline
j. y:i refers to the vector of all the input coupling variables of discipline i and yij is
the input coupling variable vector which is input to discipline j and output from
discipline i. We note y D SN

iD1 y:i D SN
iD1 yi: without duplication. From the

design variables and the input coupling variables to the discipline i, the output

Fig. 5 Couplings between
the discipline i and the
discipline j

Discipline i Discipline j

zi zj

yji

yijcij(zi,yji,xi)

cji(zj,yij,xj)
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Aerodynamics
CFD

Structure
FEA

loads

Induced 
deformation

loads

Induced 
deformation

Fig. 6 Couplings between aerodynamics and structure disciplines

coupling variables are computed with the coupling function: ci:.zi; y:i; xi/ and
yi: D .yi1; : : : ; yiN/ is the vector of the outputs of discipline i and the input
coupling variable vector to all the other disciplines.

For example, the sizing discipline computes the launch vehicle dry mass
which is transferred to the trajectory discipline for a simulation of the launch
vehicle flight. Another example is the classical aero-structure analysis (Fig. 6)
[20, 24, 35]. For a launch vehicle, aero-structure analysis involves coupled
analyses between the aerodynamics discipline (which requires the launch vehicle
geometry and the deformations) and the structure discipline (which requires the
aerodynamics loads on the launch vehicle structure). For coupled systems, it
is important to keep in mind that their design involves goals which are often
conflicting with each other, for instance reducing weight may lead to higher
stresses and the global optimum is a compromise between all the different
disciplinary objectives.

• x is the state variable vector. Unlike z, the state variables are not independent
degrees of freedom but depend on the design variables, the coupling variables
y and the state equations characterized by the residuals r.�/. These variables
are often defined by implicit relations that require specific numerical methods
for solving complex industrial problems. For instance, the guidance law (e.g.
modeled by pitch angle interpolation with respect to a set of crossing points)
in the launch vehicle trajectory discipline has to be determined in order to
ensure payload injection into orbit. The guidance law is often the result of
an optimization problem minimizing the discrepancy between the target orbit
injection and the real orbit injection. In such a modeling, the pitch angle crossing
points are state variables x and the orbit discrepancy is the residual r.�/ to be
canceled. Sometimes, the coupling variables y can be a subset of state variables x.

In order to solve the MDO problem Eqs. (1)–(6), we are looking for:

• Inequality and equality constraint feasibility: the MDO solution has to satisfy
the inequality constraints imposed by g.�/ and the equality constraints imposed
by h.�/. These constraints are used to represent the requirements for the system in
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terms of targeted performance, safety, flexibility, etc. For example, a target orbit
altitude for a launch vehicle payload is an equality constraint to be satisfied.

• Individual disciplinary feasibility: the MDO solution has to ensure the dis-
ciplinary state equation satisfaction expressed by the residuals ri.�/. The latter
ri.�/ quantify the satisfaction of the state equations in discipline i. The state
variables xi are the roots of the state equations of discipline i. For instance, state
equations may be used to represent thermodynamics equilibrium between the
chemical components in rocket engine combustion. In the rest of the chapter, it is
assumed that the satisfaction of the disciplinary feasibility is directly ensured by
the disciplines (disciplinary analysis [8]), therefore, no more references to state
variables and residuals will be done, without loss of generality.

• Multidisciplinary feasibility: the MDO solution has to satisfy the interdisci-
plinary equality constraints between the input coupling variable vector y and the
output coupling variable vector c.�/ resulting from the discipline simulations.
The couplings between the disciplines i and j are said to be satisfied (also called
feasible or consistent) when the following interdisciplinary system of equations
is verified:

�
yij D cij.zi; y:i/
yji D cji.zj; y:j/

(7)

When all the couplings are satisfied, i.e. when Eqs. (7) are satisfied 8.i; j/ 2
f1; : : : ;Ng2 i ¤ j, the system is said to be multidisciplinary feasible. The
satisfaction of the interdisciplinary couplings is essential as it is a necessary
condition for the modeled system to be physically realistic. Indeed, in the aero-
structure example, if the aerodynamics discipline computes a load of 10 kPa, it is
necessary that the structure discipline uses as input 10 kPa and not another value
otherwise the aero-structure analysis is not consistent.

• Optimal MDO solution: f .�/ is the objective function (also called performance)
to be optimized. The objective function characterizes the system performance and
is a measure of its quality expressed with some metrics [e.g. launch vehicle life
cycle cost, Gross Lift-Off Weight (GLOW)]. Several performance measures may
be considered together by using multi-objective optimization. Multi-objective
optimization is not considered in this chapter, so that the interest reader may
consult [40].

In MDO, coupled and decoupled approaches may be distinguished to satisfy the
interdisciplinary couplings [10].

• Coupled approaches (Fig. 7) use a specific process, called MultiDisciplinary
Analysis (MDA), in order to satisfy the interdisciplinary couplings at each
iteration of the system-level optimization. MDA is an auxiliary process used
to find a numerical equilibrium between the disciplines by solving the system
of interdisciplinary equations [20]. MDA enables to find the numerical value
of the input coupling variables y in order to solve the system of equations
[Eqs. (7)]. MDA can be performed by using classical techniques such as Fixed

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .
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Discipline
1

Design variables: z

Optimizer

Discipline
2

Discipline
N

Multidisciplinary Design Analysis

f(z,y(z))
g(z,y(z))
h(z,y(z))

...

Coupling variables y

Coupling variables y

Fig. 7 Multidisciplinary Design Optimization, coupled approach

Fig. 8 Multidisciplinary
Design Optimization,
decoupled approach

Discipline
1

Design variables: z

Optimizer

Discipline
2

Discipline
N

c1. c2. cN.

f(z,y)
g(z,y)
h(z,y)
y..=c..(z,y..)

Calculation of f,g,h

Coupling variables: y

...

Point Iteration [8], or by an auxiliary optimization problem allowing to reduce the
discrepancy between the input coupling vector and the output coupling vector.

• Decoupled approaches (Fig. 8) aim at removing MDA and involve equality
constraints on the coupling variables in the MDO formulation at the system-level
Eq. (4) to ensure the interdisciplinary coupling satisfaction only for the optimal
design, and not at each MDO process iteration in z such as coupled approaches
do. These additional equality constraints are imposed between the input and the
output coupling variables in the MDO formulation at the same level as the system
constraints g.�/ and h.�/: 8.i; j/ 2 f1; : : : ;Ng2 i ¤ j; yij D cij.zi; y:i/. The basic
idea is to define the coupling variables y as optimization variables. Consequently,
the system-level optimizer has to control both the design variables and the input
coupling variables. Hence, the additional degrees of freedom introduced by
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Fig. 9 Classification of the main MDO formulations

expanding the optimization variable set handled by the system-level optimizer
are controlled by the coupling equality constraints. The equality constraints on
coupling variables may not be satisfied at each iteration but allow to guide the
search of optimal design.

Several MDO formulations have been proposed in literature to efficiently solve
general and specific engineering problems. Some articles [3, 8, 10, 15, 41] provide a
review of the different methods and compare them qualitatively and numerically on
MDO problem benchmarks [58, 61]. Classical MDO formulations may be classified
in four categories (Fig. 9) according to the coupled or decoupled and to the single-
level or multi-level approaches. The single-level vs. multi-level formulations are
differentiated by the number of optimizers. Single-level formulations have only one
system optimizer to solve the MDO problem whereas in multi-level formulations,
in addition to the system optimizer, discipline optimizers are introduced in order to
distribute the problem complexity over different dedicated discipline optimizations.
The four categories are:

• Single-level approaches with MDA: e.g. Multi Discipline Feasible (MDF) [10],
• Multi-level approaches with MDA: e.g. Concurrent SubSpace Optimization

(CSSO) [52], Bi-Level Integrated System Synthesis (BLISS) [54],
• Single-level approaches with equality constraints on the coupling variables: e.g.

Individual Discipline Feasible (IDF) [10], All At Once (AAO) [10],

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .
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• Multi-level approaches with equality constraints on the coupling variables: e.g.
Collaborative Optimization (CO) [13], Analytical Target Cascading (ATC) [4],
QuasiSeparable Decomposition (QSD) [29].

MDF is the most used method in literature [8]. MDF is a single-level opti-
mization formulation involving one system-level optimizer and a MDA to solve
the interdisciplinary coupling equations. CSSO and BLISS use MDA to ensure
coupling satisfaction but enable parallel discipline optimizations. AAO, ATC, CO,
IDF and QSD are fully decoupled formulations with satisfaction of the couplings
by incorporating additional variables and corresponding equality constraints. The
decoupled MDO formulations offer several advantages compared to MDF [8, 41]:

• Parallel analyses of the disciplines,
• Reduction of the number of calls to the computationally expensive discipline

codes (because MDA is removed),
• Improvement of the system optimization process convergence, however, most of

the time there is no proof that the convergence is to the same optimum,
• Distribution of the optimization problem complexity: discipline optimizers only

control local design variables and system-level optimizer only handles the shared
design variables between several disciplines and the coupling variables.

However, in order to be competitive with respect to MDF, decoupled MDO
formulations require an appropriate interdisciplinary coupling handling. Moreover,
these formulations involve more variables and more constraints. In [8], the authors
performed a detailed review of classical MDO formulations applied to LVD. This
study points out that LVD present particularities, notably the importance of the
trajectory discipline compared to the other disciplines. Exploiting these specificities
in an MDO formulation might improve the LVD process. Dedicated formulations for
LVD have been proposed such as the Stage-Wise decomposition for Optimal Rocket
Design (SWORD) [7]. The next section focuses on these dedicated formulations.

2.2 Stage-Wise decomposition for Optimal Rocket Design

2.2.1 Theoretical Formulations

In literature, the classical way to design a launch vehicle is to decompose the design
process according to the involved disciplines (propulsion, aerodynamics, sizing,
trajectory, etc.). The decomposition according to the disciplines has been coupled
with single-level methods (Individual Discipline Feasible, All At Once [18])
or multi-level methods (Collaborative Optimization [14], Concurrent SubSpace
Optimization [52], Bi-Level Integration Systems Synthesis [55], etc.). In these
methods, the trajectory is also optimized as a whole and is often considered as a
“black box” for the optimization. The SWORD formulations [7] allow to decompose
the LVD according to the different stages in order to improve the efficiency of the
MDO process. In these formulations, the subsystems are not the disciplines but
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Fig. 10 SWORD formulations (formulations 1,2,4 are parallel and formulation 3 is hierarchical)
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Time

First stage
trajectory
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Fig. 11 Third SWORD formulation

the different stage optimizations incorporating all the required disciplines involved
in the stage design. SWORD are multi-level decoupled MDO formulations [9].
Four different formulations have been proposed depending on the decomposition
process and the interdisciplinary coupling constraint handling (Fig. 10). This type
of decomposition is proposed in the context of LVD but is generalizable to systems
for which the system-level objective function can be decomposed into a sum of
subsystem contributions, as involved in the QSD formulation [29]. According to the
comparison of the methods on launch vehicle application cases implemented in [7],
the third formulation is the most efficient to solve MDO problems (with respect to
the number of discipline evaluations) due to its hierarchical decomposition of the
design process and only this formulation is detailed in the following for the sake
of conciseness (Fig. 11). For more details about the other SWORD formulations,
one may consult [9]. In SWORD, the objective function f .�/ is assumed to be
decomposed such as f .�/ D Pn

jD1 fj.�/ with n the number of stages. In practice,
the Gross Lift-Off Weight (GLOW) is often minimized in LVD process [8, 19] and
it can be decomposed as the sum of the stage masses and upper composite. The
MDO formulation of the LVD problem using SWORD is given by:

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .
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At the system-level:

min f .z; y/ (8)

w:r:t: zsh; y

s:t: g0.z; y/ � 0 (9)

8i 2 f1; : : : ; ng; gi
�
zsh; Nz�

i ; y
� � 0 (10)

8i 2 f1; : : : ; ng;hi
�
zsh; Nz�

i ; y
� D 0 (11)

8i; j 2 f1; : : : ; ng2i ¤ j; yij D cij.zsh; Nz�
i ; y:i/ (12)

zmin � z � zmax (13)

At the subsystem-level:
i D n
While i > 0

For the ith stage:
Given zsh; yiC1; : : : ; yn (for launch vehicle: the optimal masses of the stages iC1

to n):

min fi.zsh; Nzi; y/ (14)

w:r:t: Nzi

s:t: gi .zsh; Nzi; y/ � 0 (15)

hi .zsh; Nzi; y/ D 0 (16)

yi: D ci:.zsh; Nzi; y:i/ (17)

Nzimin � Nzi � Nzimax (18)

i i � 1
where Nz�

i is the optimal variable vector found by the ith subsystem optimizer. This
formulation allows to separately optimize each stage in a hierarchical process. The
last stage is optimized first and the first stage is optimized last. The result of
the previous optimization is passed to the next launch vehicle stage optimization
(Fig. 10). In order to decouple the different stage optimizations, the added coupling
variables y are the state vectors (position and velocity) at stage separations (to
ensure the consistency of the trajectory) and the estimation of the stage masses.
Furthermore, in order to ensure the trajectory consistency, additional constraints
concerning the reach of each stage separation point (and final orbit for the upper
stage) are involved at the subsystem-level. The different stage optimizations cannot
be performed in parallel which may be a drawback in terms of computational cost
when parallelization is possible. For more details on the SWORD formulations, see
[7]. In the following section, this formulation is applied to the design of a three-
stage-to-orbit launch vehicle [7] and is compared to MDF.
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D : diameter
Rm : mixture ratio
Pc : chamber pressure
Pe : nozzle exit pressure
T/W : thrust to weight ratio
Mp : propellant mass
u : control law
Cd : drag coefficient
Isp : specific impulse
M : total mass
nf : maximal load factor
Dne : nozzle exit diameter
GLOW : Gross Lift Off Weight
r : altitude
v : velocity
γ : flight path angle
α : angle of attack

Fig. 12 N2 chart for one stage

Table 1 Design variables for
the three stage LVD problem

Design variables Symbols

Stage diameters D1;D2;D3

Stage propellant masses Mp1;Mp2;Mp3

Stage mixture ratio Rm1;Rm2;Rm3

Stage chamber pressure Pc1;Pc2;Pc3
Stage nozzle exit pressure Pe1;Pe2;Pe3
Stage thrust to weight ratio TW1;TW2;TW3

Stage control law parameter vector u1;u2;u3

2.2.2 Application of SWORD to Launch Vehicle Design

Description of the Test Case

The proposed design problem consists in optimizing a three-stage-to-orbit expend-
able launch vehicle. The selected criterion is the GLOW minimization. The payload
mass is fixed at 4 metric tons. The target orbit is a 250 � 35;786 km Geostationary
Transfer Orbit (GTO). The considered disciplines are propulsion, aerodynamics,
mass budget, and trajectory (Fig. 12), using low fidelity models [7, 19, 33, 57]. The
considered design variables are summarized in Table 1. The constraints taken into
account are relative to the reach of the target orbit, the maximal angle of attack
during the trajectory, the geometry of the nozzle and the nozzle exit pressure. For
more details about the problem description, one can consult [6].

The considered design variables are the chamber pressures Pc, the nozzle
exit pressures Pe, the thrust to weight ratios TW, the propellant masses Mp, the
mixture ratios Rm, the stage diameters D and the control law u. All the stages
are cryogenic propulsion stages (LOX/LH2). The propulsion module consists in
computing the specific impulse (Isp) from Pc, Pe, Rm and TW. The aerodynamics
module computes the drag coefficient Cd from the geometry characteristics of the
launch vehicle. We use a zero-lift hypothesis in this test-case. The weight and
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sizing module is responsible for determining the dry mass of the different stages by
computing the masses of the launch vehicle elements (tanks, combustion chamber,
nozzle, pumps, pressurization system, etc.). Finally, the trajectory module consists
in defining some crossing points of the pitch angle (u) and optimizing them in order
to reach the orbit requirements and improving the objective function.

Results

At the system-level (including the MDF optimizer), a genetic algorithm with
100 individuals per generation is used (a penalization technique is used to take
the constraints into account). At the subsystem-level (only for SWORD), a SQP
algorithm is used. The optimization problem at the system-level is stopped after
10 h of run. Due to the stochastic nature of GA, this study has been performed
with ten random initializations and very large variation domains concerning the
design variables (global search). Statistics of the obtained results are detailed in
the following.

Figure 13 shows the evolution of the objective function (GLOW) with respect
to the computation time for only the feasible designs, for one representative
initialization. At the stopping time of the optimization process, SWORD allows to
obtain a better design than MDF, although it finds a worse first feasible design.
Moreover, MDF presents some difficulties in improving the objective function
(Fig. 14) while SWORD allows a decrease of the launch vehicle mass of 10 % in
mean. The relatively bad results obtained for the MDF can be explained by the
important number of optimization variables at the system-level that makes global
search very difficult and lead to relatively inconsistent results.
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Fig. 13 Comparison of SWORD and MDF. (a) Evolution of GLOW for one representative
initialization. (b) Boxplot of best and first feasible designs
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The best advantage of using a dedicated MDO formulation such as SWORD is to
benefit from the specificities of the design problem to solve, that allows in this case,
to reduce the search domain dimension at the system-level and to move the design
complexity from the system-level to the subsystem-level. Indeed, the analysis of
the problem dimension shows that the number of variables at the system-level can
be reduced threefold with using SWORD. Since the search domain dimension and
number of constraints are reduced, SWORD is more adapted to the exploratory
search than MDF and the dispersion of the obtained results is lower than MDF
(Fig. 13). This test-case illustrates the advantage to particularize classical MDO
methods to specific design problem in order to improve the design process, both
in terms of found results and robustness to initialization.

3 Introduction of Uncertainty in the Design Process

At the conceptual design stage, a designer often needs to discriminate among inno-
vative technologies that offer high performance but at a high risk, and established
technologies that offer lower performance but with less uncertainty. The early design
phases are characterized by the use of low fidelity analyses as well as by the lack of
knowledge about the future system design and performance. This lack of knowledge
in the models is reducible by increasing the model fidelity and is classified as
epistemic uncertainty; uncertainty due to variability is irreducible and classified as

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .



18 M. Balesdent et al.

aleatory uncertainty. The low fidelity analyses are employed due to the necessity to
evaluate a high number of system architectures to explore the design space. This
global exploration results in repeated discipline evaluations which are impossible to
perform at an affordable computational cost with high fidelity models. Moreover,
to increase the performance of the aerospace vehicles and to decrease their costs,
space agencies and industries introduce new technologies (new propellant mixture,
reusable rocket engines) and new architectures (reusable first stage for launch
vehicles) which present a high level of uncertainty in the early design phases.
If uncertainties are not taken into account at these phases, the detailed design phase
might reveal that the optimal design previously found violates specific requirements
and constraints. In this case, either the designers go back to the previous design
phase to find a set of design alternatives, or they perform design modifications at
the detailed design phase that could result in loss of performance. Both options
would lead to a loss of time and money due to the re-run of complex simulations.
Incorporating uncertainties in design methodologies for aerospace vehicle design
has thus become a necessity to offer improvements in terms of [62]:

• reduction of design cycle time, cost and risk,
• robustness of LVD to uncertainty along the development phase,
• increasing system performance while meeting the reliability requirements,
• robustness of the launch vehicle to aleatory events during a flight (e.g. wind gust).

In classical design processes, both epistemic and aleatory uncertainties are usu-
ally controlled by using safety margins and the design problem is deterministically
solved [34]. This may lead to over conservative or unreliable solutions depending on
the choice of the margins. When breakthrough technologies are used in the design
process (and no historic data are available), historically chosen margins may not
be appropriate and a specific process to determine them is required to improve
performance or restore safety. In the first part of this section, we detail a method to
select optimal design rules and margins. This method accounts for the uncertainty
reduction that occurs when refining the design models in later design phases.

Another way to take the uncertainty into account is to perform a probabilistic
design (i.e. reliability-based design optimization). In the MDO context, Uncertainty-
based Multidisciplinary Design Optimization (UMDO) aims at solving MDO
problems under uncertainty. UMDO methods are recent and still under development
and they have not reached sufficient maturity to efficiently estimate the final
system performance and reliability [60, 62]. Incorporating uncertainty in MDO
methodologies raises a number of challenges which need to be addressed. Being
able, in the early design phases, to design a multidisciplinary system taking
the interactions between the disciplines into account and to handle the inherent
uncertainties is often computationally prohibitive. For example, a straightforward
implementation of UMDO would consist in repeated sampling of the uncertain
parameters (Monte-Carlo simulations) and a MultiDisciplinary Analysis (MDA)
[solving Eqs. (7)] for each sample, therefore multiplying the already important cost
of MDO by the number of Monte-Carlo repetitions. In order to satisfy the designer
requirements, it is necessary to find the system architecture which is optimal in
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terms of system performance while ensuring the robustness and reliability of the
optimal system with respect to uncertainty. In the second part of this section, we
describe a method to handle interdisciplinary coupling satisfaction in the presence
of uncertainty and to decouple the design process.

3.1 Optimization of Design Rules and Safety Margins Taking
into Account Mixed Epistemic/Aleatory Uncertainties

At the initial design stage engineers must often rely on low fidelity models that
have high epistemic model uncertainty. It is important to make a distinction between
epistemic model uncertainty and aleatory parameter uncertainty. Model uncertainty
is defined as the discrepancy between the model and reality when the true model
inputs are known [36, 46]. The model uncertainty is classified as epistemic because
[22, 26]: (1) There is only a single true model, but it is unknown (2) The model
uncertainty is reducible by gaining more knowledge. Parameter uncertainty is
defined as uncertainty regarding the model inputs [36, 46]. In general, parameter
uncertainty may be either aleatory or epistemic. Here we classify the parameter
uncertainty as aleatory because [22, 26]: (1) It arises due to inherent or natural
variability (2) It is irreducible. For example, wind gusts and variations of material
properties are aleatory. While probability theory is generally accepted as the
appropriate method for modeling aleatory uncertainty, several alternative methods
have been proposed for modeling epistemic uncertainty [27]. In the proposed
method, both aleatory and epistemic uncertainties are modeled using probability
theory because this theory is well suited for representing model uncertainty.

When considering both aleatory parameter and epistemic model uncertainties,
the objective of the design process is to find a design that is reliable with respect to
the natural variability that will be experienced in service (i.e. aleatory parameter
uncertainty). The fidelity of the model has no impact on the true reliability of
the final design because the true reliability only depends on the true model and
the aleatory uncertainty. For example, if the same design is selected using two
different models, the designs still have the same true reliability regardless of the
fidelity of the models used in the design process. However, the model fidelity
determines the accuracy of the design reliability assessment which, in turns, affects
the ability to selecting good designs. Therefore, the designer must also compensate
for lack of knowledge regarding how well the low fidelity model agrees with reality
(i.e. epistemic model uncertainty). The epistemic model uncertainty and aleatory
parameter uncertainty are treated separately (see [31, 32, 47]) to distinguish between
the quantity of interest, the true probability of failure with respect to aleatory
parameter uncertainty, and the lack of knowledge regarding this quantity. The
separate treatment of aleatory and epistemic uncertainties results in a distribution of
probability of failure that is epistemic in nature (see Fig. 15). That is, the final design
will have a single true probability of failure with respect to aleatory parameter
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Fig. 15 The propagation of aleatory parameter uncertainty through a model with epistemic model
uncertainty results in a different distribution for each realization of epistemic model uncertainty
(represented here by colored output curves)

uncertainty, but it is unknown due to the epistemic model uncertainty introduced
by low fidelity modeling. When the epistemic model uncertainty is very high it
may force the designer to be overly conservative if, for example, the designer is
compensating for worst-case scenario epistemic model uncertainty. High epistemic
model uncertainty can also prevent the designer from making any decision if the
distribution of possible probability of failure spans the entire zero to one range.
The proposed method is an innovative approach to the challenges of design under
high epistemic model uncertainty when improved modeling will be available in the
future. For the sake of simplicity, this method is described in the context of single
discipline design but it can be generalized for MDO.

The proposed method [49] addresses the issue of high epistemic model uncer-
tainty by considering the anticipated uncertainty reduction from future high fidelity
modeling. This approach involves first a classical deterministic optimization with
uncertainty handled through safety factors, and secondly a probability analysis to
assess the reliability of the solution found. Based on these steps, the design rules and
safety factors are optimized in order to comply with the reliability specifications.
The use of safety margin based optimization is a necessary simplification to reduce
computational cost and it agrees well with current safety margin or safety-factor
based design regulations [1]. Because of the presence of epistemic uncertainty, this
method emulates the possible high fidelity model outcomes, considered as future
tests, in order to simulate the occurrence of redesign process. To determine the
necessity of redesigning, it is also convenient to formulate a test passing criterion in
terms of the safety margin calculated from the possible outcomes of simulated high
fidelity model (Fig. 16).The proposed approach is a bi-level optimization method
(Fig. 17): at the upper-level, the safety margins are optimized to provide the optimal
performance at the specified reliability requirements; at the lower-level, a complete
design and redesign process is involved and can be decomposed into the following
steps (Fig. 18):
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Fig. 16 Possible responses of high-fidelity model (left) and simulation of high-fidelity outcomes
(right)

Optimization of Safety margins

Simulation of Design Process
For i = 1, . . . , p realizations of epistemic model
uncertainty:

• Initial deterministic design optimization

• Simulated high fidelity evaluation

• Possible calibration

• Possible redesign optimization

• Reliability assessment

Safety Margins Design Statistics

Fig. 17 The safety margins that govern the deterministic design process are optimized by
maximizing the expected performance while satisfying probabilistic constraints on expected
reliability and probability of redesign (called the design statistics in the figure)
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Fig. 18 The deterministic
design process consists of a
design optimization, a test
(e.g. high fidelity evaluation),
and possible calibration and
redesign

Design
Optimization

Test

Redesign?

Final Design

Calibration

Design
Optimizationno

yes

1. Given safety margins, perform a deterministic design optimization: considering
safety-factor vector s, low fidelity model Om.�/, and conservative value of aleatory
uncertainty udet, the classical deterministic formulation of design problem is:

min f .z/ (19)

s:t: g.z;udet; Om.z;udet// � s � 0 (20)

zmin � z � zmax (21)

2. Simulate multiple possible outcomes of high fidelity model taking epistemic
error into account at the optimal solution given by the previous step, and perform
the test of redesign necessity (Fig. 16),

3. If the test calls for redesign,

(a) Calibrate the low fidelity models taking the possible high fidelity response
into account,

(b) Perform a deterministic redesign optimization with the calibrated low-
fidelity model,

4. Perform a probabilistic reliability assessment.

The safety margins that control the initial design, test passing criteria, and
possible redesign are optimized to maximize the expected design performance
while satisfying constraints on probability of redesign and expected reliability after
the test (see Fig. 17). The design process is carried out deterministically for each
realization of epistemic model uncertainty. The process of calculating the design
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statistics is basically a two-stage Monte-Carlo Simulation (MCS). The epistemic
model uncertainty is sampled in the outer-loop and the reliability with respect
to aleatory parameter uncertainty is calculated in the inner-loop. For each set of
safety margins, the two-stage MCS is performed to calculate the probability of
redesign, the expected design performance, and the expected probability of failure.
The proposed method can help designers find reasonable designs while working
under the burden of high epistemic model uncertainty. Furthermore, the method can
be used to explore interesting questions such as whether it is better to start with
a more conservative initial design and use redesign to improve performance if the
initial design is revealed to be too conservative, or to start with a less conservative
initial design and use redesign to restore safety if the initial design is revealed to be
unsafe [50].

The method does not require any evaluations of the high fidelity model, only that
the high fidelity evaluation and possible redesign may be performed in the future.
That is, if the test is passed in the future, then the reliability of the initial design is
verified to be acceptable. Similarly, alternative designs (i.e. redesigns) can be found
that are reliable conditional on the specific epistemic realizations (i.e. specific test
results) that will result in failing the future test (see Fig. 19). The test process can be
used to not only restore safety if the initial design is revealed to be unsafe, but also
to improve performance if the initial design is revealed to be overly conservative.
By using the future high fidelity evaluations, the design method can be considered
as the selection of multiple candidate designs instead of a single design solution.
The decision to keep the initial design or redesign will be made in the future. The
method considers the alternative design as a continuous epistemic random variable
and relies on only specifying the optimum safety margins for locating alternative
designs, rather than the explicit specification of discrete alternative designs. The
preference for passing the test and keeping the initial design is controlled by a
constraint on the probability of redesign in the upper-level optimization problem.

The core of the proposed method relies on the simulation of possible future test
results (i.e. future high fidelity evaluations of initial design). Not only is it necessary
to simulate the possible future high fidelity evaluations, but it is also necessary

Initial Design

Pass Test

Safe Design

Failed Design

Fail Test Redesign

Safe Design

Failed Design

Fig. 19 The final reliability (i.e. probability of a safe design) is conditional on passing or failing a
deterministic safety margin based test. Failing the test triggers a redesign process to restore safety
or improve design performance
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to update the distribution of epistemic model uncertainty conditional on specific
realizations. By repeating the updating process for many test results it is possible
to find alternative designs whose reliability is conditional on each test outcome.
The method used to update the distribution of epistemic model uncertainty must
account for the spatial correlations with respect to design variables. For example, it
is intuitively clear that the reduction in epistemic model uncertainty from a future
high fidelity evaluation is most dramatic in the immediate vicinity of the test location
but decreases as the design moves away from this location. In other words, if the
alternative design is dramatically different from the initial design that was tested,
then the test result might not be very useful in reducing model uncertainty regarding
the new design. Early work on simulating a future test and redesign relied on the
strong assumption that the model bias was a fixed but unknown constant across
the design space [42, 48, 59]. More recently, the method has been extended to
consider fluctuations in model uncertainty and spatial correlations through the use
of Gaussian Process (GP) models to represent the model uncertainty [49]. The
purpose of the GP model representation of model error is twofold: (1) The GP
model provides a mathematical formulation of the intuitive idea that the reduction
in the variance of the epistemic model uncertainty is greatest at the test location and
decreases with distance. (2) The GP model provides a probabilistic representation of
epistemic model uncertainty that allows for the propagation of mixed aleatory and
epistemic uncertainties. The second point is particularly important in the proposed
method because the variation of epistemic model uncertainty across the design space
can alter the functional relationship with respect to aleatory parameter inputs.

The proposed method can help designers find reasonable designs while working
under the burden of high epistemic model uncertainty. This method has been applied
in a structural design problem [48] and an aerospace vehicle design [51] which is
not described in this chapter for the sake of conciseness.

3.2 Uncertainty Multidisciplinary Design Optimization

Taking uncertainties in MDO into account leads to a Uncertainty-based MDO
(UMDO) research field [60]. As for deterministic MDO, several UMDO formu-
lations have been proposed in literature [23, 28, 39, 43] and the generic UMDO
problem can be formulated as follows:

min „ Œf .z;�Y ;U/� (22)

w:r:t: z;�Y

s:t: K Œg.z;�Y ;U/� � 0 (23)

8.i; j/ 2 f1; : : : ;Ng2 i ¤ j; �Yij D M
�
cij.zi;�Y :i;Ui/

�
for statistical�based approaches (24)

8.i; j/ 2 f1; : : : ;Ng2 i ¤ j �Yij D cij.zi;�Y :i;u
�

i / for MPP�based approaches (25)

zmin � z � zmax (26)
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Several differences exist between the UMDO and the MDO formulations and are
summarized in the following:

• U is the uncertain variable vector. Ui denotes the input uncertain variable vector
of the discipline i and U D SN

iD1 Ui without duplication. In this chapter, the
uncertain variables are modeled with the probability theory, with known input
distributions. Aleatory and epistemic uncertainties may be considered in the
UMDO problem and the proposed formulation as long as they may be modeled
with the probability formalism. For instance, wind gust during a rocket launch or
parameter uncertainties in the modeling of the nozzle fluid flow may be sources
of uncertainty. The design variables are assumed to be deterministic, and all the
uncertainties are represented by U. .�; ��;P�/ is the probability space with �
the sample space for U, �� the sigma-algebra, and P� the probability measure.
�.�/ is the joint Probability Density Function (PDF) of the uncertain variable
vector U and the realizations of U are noted u.

• Due to the presence of uncertainty, the coupling variable vector Y is also an
uncertain variable vector and therefore a function of U. Coupled formulations
derived from MDF have been proposed to handle interdisciplinary coupling
variables [34, 37, 45]. For each realization of the uncertain variables, a MDA
is solved in order to compute the coupling variables ensuring multidisciplinary
feasibility. However, the computational cost introduced by repeated MDA solv-
ing is too prohibitive for complex system design. In order to remove the
MDA, as in deterministic approaches, decoupled strategies have been devel-
oped [23, 28, 39, 43]. Because the input coupling variables are function of
the uncertainty, the decoupled optimization problem to solve has an infinite
dimension. Several methods focus on these types of problems such as calculus
of variations [44], optimal control [64] and shape optimization [56]. To avoid
to solve an infinite dimension problem, the classical approaches involve a
parameterization of the uncertain coupling variable modeling and the system-
level optimizer controls only a finite number of parameters (e.g. the statistical
moments, the parameters of the probability density function defining Y, etc.).
Two types of decoupled UMDO formulations exist in literature: the statistical-
based approaches or the Most Probable Point (MPP)-based approaches. The
statistical-based UMDO formulations [28, 39, 43] ensure the multidisciplinary
feasibility for the statistical moments M of the coupling variables (e.g. for the
expected value E of the coupling variables). The MPP-based UMDO formu-
lations [23] ensure the multidisciplinary feasibility only at the Most Probable
failure Point u� of the uncertain variables.
The existing UMDO formulations either rely on computationally expensive
MDA to rigorously ensure coupling satisfaction, or deal with incomplete cou-
pling conditions (coupling in terms of statistical moments, at the MPP, etc.).
The moment matching formulations are interesting since they preserve some
disciplinary autonomy via parallel subsystem-level uncertainty propagation and
optimizations. However, the interdisciplinary couplings are satisfied only in
terms of statistical moments (expected value, standard deviation or covariance
matrix) of the coupling variables.
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• „ is the uncertain objective function measure (e.g. the expected value, a weighted
sum of expected value and the standard deviation [11]).

Regarding the constraint functions, two main measures exist and can be
formulated as follows:

– the robust formulation: K Œg.z;�Y;U/� D E Œg.z;�Y;U/� C �� Œg.z;�Y ;U/�
with EŒg.�/� and �Œg.�/� the vectors of expected values and standard deviation
values of the constraint functions g and � 2 R

C.
– the reliability-based formulation: K Œg.z;�Y;U/� D ƒ Œg.z;�Y;U/ > 0� �ƒt

with ƒŒg.�/� the vector of the measures of uncertainty for the inequality
constraint function vector. The vector of the uncertainty measures of the
constraints have to be at most equal to ƒt [2]. As the uncertain variables are
modeled within the probability theory, we have for the component i of the
vector of failure probabilities:

Ki Œgi.z;�Y;U/� D PŒgi.z;�Y ;U/>0� � Pti D
Z

Ii

�.u/du � Pti (27)

with gi.�/ the ith component of the inequality constraint vector and Ii D fU 2
�jgi.z;�Y ;U/ > 0g.

3.2.1 Theoretical Approach for Interdisciplinary Coupling Satisfaction
in the Presence of Uncertainty

In order to avoid the repeated MDA used in MDF under uncertainty, decoupled
approaches aim at propagating uncertainty on decoupled disciplines allowing one to
evaluate them in parallel and to ensure coupling satisfaction by introducing equality
constraints in the UMDO formulation. However, two main challenges are faced to
decouple the design process:

• The handling of uncertain input coupling variable vector Y by the system-
level optimizer. Moreover, the uncertain variables are function and infinite-
dimensional problem are complex to solve.

• The handling of coupling equality constraints between the input coupling
variables Y and the output coupling variables computed by c.�/. Equality between
two uncertain variables corresponds to an equality between two functions which
is difficult to implement.

In order to understand these two challenges and the approaches described after-
wards, a focus on decoupled deterministic MDO formulation is necessary. Consider
two disciplines i and j and one scalar feedforward coupling yij and one scalar
feedback coupling yji as illustrated in Fig. 20. In deterministic decoupled MDO
approach, to remove the feedforward coupling, there is only one equality constraint
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Discipline i Discipline j

zi zj

yji

yijcij(zi,yji)

cji(zj,yij)

Discipline i Discipline j

zi zjyij

cij(zi,yji)

cji(zj,yij)

cij(zi,yji)yij=

yji cji(zj,yij)

Fig. 20 Two discipline coupling handling approaches

that has to be imposed at the system-level in the optimization formulation, Eq. (28),
between the input coupling variable yij and the output coupling variable cij.zi; yji/ :

yij D cij.zi; yji/ (28)

When introducing uncertainty, coupling satisfaction involves equality constraints
between uncertain variables. An uncertain variable is a function. Two uncertain
variables are equal, if and only if the two corresponding functions have the same
initial and final sets and the same mappings. To ensure coupling satisfaction
in realizations, an infinite number of equality constraints, Eq. (29), have to be
imposed, one for each realization of the uncertain variables:

8u 2 �; yij D cij.zi; yji;ui/ (29)

However, it is important to point out that even if the coupling variables are random
variables, for one realization u0 there is in general only one converged coupling
variable realization that satisfies yij0 D cij.zi; yji0 ;u0/ ensuring multidisciplinary
feasibility. Indeed, the disciplines are modeled with deterministic functions, all the
uncertainties arise in the discipline inputs.

Solving an optimization problem with an infinite number of constraints is a
challenging task. To overcome this issue, considering an UMDO problem of N
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disciplines, we propose to introduce a new integral form for the interdisciplinary
coupling constraint:

8.i; j/ 2 f1; : : : ;Ng2 i ¤ j; Jij D
Z

�

�
cij.zi; y:i;ui/ � yij

�2
�.u/du D 0 (30)

The integrals in Eq. (30) equal to zero if the input coupling variables are equal
to the output coupling variables for each realization of the uncertain variables
almost surely. The interdisciplinary coupling constraints Jij may be seen as the
integration of a loss function (the difference between the input and the output
coupling variables) over the entire sample space. If the new interdisciplinary
coupling constraints Eq. (30) are satisfied, therefore a mathematical equivalence
holds with the coupled approach because, as by using MDA, the couplings verify
the following system of equations:

8 u 2 �; 8.i; j/ 2 f1; : : : ;Ng2 i ¤ j;

�
yij D cij.zi; y:i;ui/

yji D cji.zj; y:j;ui/
(31)

In order to be able to decouple the disciplines, the system-level optimizer has to
control the input coupling variables Y. In the proposed formulations, the considered
scalar coupling variable yij is replaced by a surrogate model representing the
coupling functional relations:

yij ! Oyij
�
u;˛.ij/

�
(32)

The surrogate model Oyij
�
u;˛.ij/

�
, allows to model a functional representation

of the dependency between the uncertain variables U and the input coupling
variables. ˛.ij/ are the surrogate model parameters. In the proposed formulations,
each coupling variable that is removed is replaced by a surrogate model. The
metamodels are also functions, represented by parameters that may be used to
decouple the UMDO problem by letting the system-level optimizer have the
control on the surrogate model coefficients. Therefore, the infinite-dimensional
optimization problem is transformed into a q-dimensional optimization problem
with q the number of coefficients required to model all the removed coupling
variables.

We propose to model the coupling functional relations with Polynomial Chaos
Expansion (PCE) [25]. Indeed, this surrogate model has been successfully used to
analyze and propagate uncertainty [25]. PCE are particularly adapted to represent
the input coupling variables as they are dedicated to model functions that take as
input uncertain variables. The scalar coupling yij is modeled by:

Oyij
�
u;˛.ij/

� D
dPCEX

kD1
˛
.ij/
.k/ ‰k.u/ (33)
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where q D dPCE is the degree of PCE decomposition and ‰k is the basis of
orthogonal polynomials chosen in accordance to the input uncertainty distributions.

Note that the dependency between Oyij.�/ and z is not taken into account in the
surrogate model: Oyij.�/ is not a function of z, it is learned only for the specific value of
z which is the optimum of the problem. This interdisciplinary coupling satisfaction
for all the realizations of the uncertain variables enables to ensure that the system is
multidisciplinary feasible. The complex original infinite-dimensional problems are
transformed into a finite-dimensional problem and the mathematical equivalence
between coupled and decoupled formulations in terms of coupling satisfaction is
numerically ensured.

The PCE models of the coupling functional relations is built iteratively during
the system-level UMDO optimization. At the optimum, PCE models the coupling
functional relations as would MDA under uncertainty do (Fig. 21). A single-level
(Individual Discipline Feasible—Polynomial Chaos Expansion) and a multi-level
(Multi-level Hierarchical Optimization under Uncertainty) formulations have been
developed and are detailed in the following. The proposed approaches do not require
any computationally expensive MDA.

Discipline
1

Optimizer

Discipline
2

Discipline
N

c

ŷ.1 ŷ.2 ŷ.N

u

Surrogate models of
the functional

couplings

α Uncertainty simulation

Calculation of f,g
c2.

...

1.

Ξ[f(z,α,U)]
K[g(z,α,U)]
Jij

Design
variables z

PCE
coefficients

cN.

Fig. 21 IDF-PCE [16]
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Individual Discipline Feasible—Polynomial Chaos Expansion (IDF-PCE)

IDF-PCE is a single-level decoupled UMDO formulation [16] which can be
formulated as follows:

min „ Œ f .z;˛;U/� (34)

w:r:t: z;˛

s:t: K Œg.z;˛;U/� � 0 (35)

8.i; j/ 2 f1; : : : ;Ng2 i ¤ j;

Jij D
Z

�

�
cij
�
zi; Oy:i

�
u;˛.:i/

�
;ui
� � Oyij

�
u;˛.ij/

��2
�.u/du D 0 (36)

zmin � z � zmax (37)

with Jij the interdisciplinary constraint vector of discipline i and Oy:i
�
u;˛.:i/

�
the

PCEs of all the input coupling variables. The system-level optimizer controls the
design variables z and the PCE coefficients of the coupling variables ˛. The
dimension of the design space is therefore increased with respect to the coupled
approaches, by the number of parameters ˛. To ensure the multidisciplinary
feasibility at the optimum, equality constraints involving the generalization error
are imposed Eq. (36). The constraints have an integral form to ensure the coupling
satisfaction for all the possible realizations of the uncertain variables. If we have:
8.i; j/ 2 f1; : : : ;Ng2 8i ¤ j; Jij D 0, then the couplings are satisfied for all the
realizations u 2 � almost surely.

In practice, the multidimensional integrals associated to the statistical moments
(expectations, standard deviations), to the coupling constraints J or to the probability
of failure are difficult to compute. We use three techniques to estimate the statistical
moments and the coupling constraints (Crude Monte Carlo, quadrature rules and
decomposition of the output coupling variables over a PCE) and one to estimate
the probability of failure by Subset Sampling using Support Vector Machines.
Depending on the technique used to propagate uncertainty, this leads to three
variants of IDF-PCE. For more details concerning IDF-PCE, one can consult [16].

Multi-level Hierarchical Optimization Under Uncertainty (MHOU)

The aim of MHOU [17] is to ease the system-level optimization process by
introducing a subsystem-level optimization (Fig. 22). The formulation is inspired
from SWORD. MHOU is a semi-decoupled hierarchical method that removes all
the feedback interdisciplinary couplings in order to avoid the expensive disciplinary
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ŷ
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^
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Fig. 22 Multi-level hierarchical optimization under uncertainty (MHOU)

loops through MDA. The proposed approach relies on two levels of optimization
and on surrogate models in order to ensure, at the convergence of the system
optimization problem, the coupling functional relations between the disciplines. It
allows a hierarchical design process without any loops between the subsystems. As
for SWORD, this type of decomposition is proposed in the context of LVD, but it
may be generalized to other design problems.

The MHOU formulation is given by:

• At the system-level:

min
NX

kD1
„
�
fk.zsh; z�

k ;˛;U/
�

(38)

w:r:t: zsh;˛

s:t: K
�
g.zsh; z�

k ;˛;U/
� � 0 (39)

8.k; j/ 2 f1; : : : ;Ng2 j ¤ k; Jkj.zsh; z�
k ;˛/ D 0 (40)

8k 2 f1; : : : ;Ng; K �gk.zsh; z�
k ;˛;U/

� � 0 (41)
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• At the subsystem-level:
k D N
While k>0

Given yNk; : : : ; y.kC1/k

For the kth subsystem

min „ Œfk.zsh; zk;˛;U/� (42)

w:r:t: zk

s:t: K Œgk.zsh; zk;˛;U/� � 0 (43)

8j 2 f1; : : : ;Ng j ¤ k; Jkj D
Z

�

�
ckj
�
zsh; zk; Oy:k

�
u;˛.:k/

�
;uk
� � Oykj

�
u;˛.kj/

��2
�.u/du D 0 (44)

k k � 1
zk is the local design variable vector of discipline k and it belongs to the set Zk

and zsh is the shared design variable vector between several disciplines. z�
k is the

optimal design variables found by the subsystem-level optimizer. This formulation
allows one to optimize each subsystem separately in a hierarchical process. The
system-level optimizer handles zsh and the PCE coefficients ˛ of the feedback
coupling variables. The control of PCE coefficients at the system-level allows one
to remove the feedback couplings and to optimize the subsystems in sequence. The
surrogate models of the functional feedback couplings provide the required input
couplings to the different subsystems. The kth subsystem-level optimizer handles
zk and the corresponding problem aims at minimizing the subsystem contribution
to the system objective while satisfying the subsystem-level constraints K Œgk.�/�.
The interdisciplinary coupling constraint Eq. (44) ensures the couplings whatever
the realization of the uncertain variables. In MHOU formulation, Eq. (44) is only
considered for k ¤ N. This formulation is particularly suited for launch vehicle in
order to decompose the design process into the different stage optimizations. The
decreasing order of the discipline optimization, from N to 1 is more convenient for
a launch vehicle (the last stage is optimized first, then the intermediate stages and
the first one is optimized last), however, in general case any order may be adopted.
In practice, the disciplines are organized to have the minimal number of feedback
coupling variables in order to decrease the number of coupling variables controlled
at the system-level and therefore the complexity of the optimization problem.

3.2.2 Application for Launch Vehicle Design

Two test cases have been implemented to illustrate IDF-PCE and MHOU
formulations.
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- 1st stage propellant mass: Mp1
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- 1st stage Isp error
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Design variables

Uncertain variables

Outputs

Fig. 23 Design Structure Matrix for the two stage launch vehicle [16]

First Test Case: Comparison of IDF-PCE and MDF on a Two-Stage-to-Orbit
Launch Vehicle Design Problem

The first test case [16] consists in designing a two-stage-to-orbit launch vehicle
to inject a payload of 4000kg into a Geostationary Transfer Orbit from Kourou
(French Guyana). MDF and IDF-PCE are compared. The LVD process consists of
four disciplines: propulsion, mass budget and geometry design, aerodynamics and
trajectory, using low-fidelity models [19, 33, 57] (Fig. 23). The expected value of
the Gross Lift-Off Weight of the launch vehicle has to be minimized. The problem
involves design variables and is initialized at a given baseline (Table 2). Three
aleatory uncertain variables are present:

• Second stage dry mass error (mass and sizing discipline),
• First stage specific impulse error (propulsion discipline),
• Second stage thrust error (propulsion discipline).
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Table 2 Design variables for
the two stage launch vehicle

Design variables Symbols

Stage diameters D1;D2

Stage propellant masses Mp1;Mp2

First stage thrust T1
First stage mixture ratio OF1
Second stage engine derating coefficient Der

These errors are additional terms to the nominal value of specific impulse (Ispv10),
of dry mass (Me0) and thrust (T20).

One inequality constraint is considered. It is an output of the trajectory discipline
and corresponds to the probability of failure of the mission (taking into account
the altitude h, velocity v and flight path angle � of the injection point). This
probability of failure has to be lower than 5 � 10�2. A failure occurs when the
payload is injected outside a closed ball around the target injection point defined
in the rotating frame by: ht D 250 km, vt D 9:713 km/s and �t D 0ı. The radius
of the ball corresponds to the injection tolerances and is set to be at 1 % of the
target altitude, at 0.5 % of the target velocity and at 0:4ı for the target flight path
angle. The uncertainty propagation is performed with Crude Monte-Carlo (CMC).
A pattern search optimization algorithm [5] is used to solve both MDF and IDF-PCE
problems.

Results

Both MDF and IDF-PCE converge to the same optimum (163:7t), and the con-
straints are satisfied. The mean of the error between the input and the output load
factor (coupling variable) is of 0:1% in IDF-PCE. IDF-PCE converges 11 times
faster than MDF to the optimum as it does not require any MDA (Fig. 24). For the
optimal launch vehicle, the results of uncertainty propagation for trajectory altitude
are represented in Figs. 25 and 26.

Comparison Between MDO and UMDO Solutions

In order to stress the need of taking the uncertainties into account in the early
design phase, the deterministic MDO problem has been solved considering the
uncertainties fixed to their mean values [16]. The found optimum is 158:21t (5:5t
lower than the solution taking the uncertainty into account). The optimal nominal
(i.e. without uncertainty) trajectory altitude profile is represented in Fig. 27. For
the deterministic optimal launch vehicle, a propagation of uncertainty is performed
by CMC and MDA with the same uncertainties as considered in the UMDO
problem. In Fig. 28, the trajectory altitude is represented for CMC realizations of
the uncertain variables. The deterministic optimal launch vehicle is not robust to
the presence of uncertainty as the injection altitude is scattered between 200 and
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Fig. 26 Optimal trajectory altitude under uncertainty—IDF-PCE
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Fig. 27 Trajectory altitude for the deterministic optimal launch vehicle, no uncertainty
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Fig. 28 Uncertainty propagation—trajectory altitude—deterministic optimal launch vehicle

250 km due the lack of propellant to reach the injection point. Figure 25 highlights
the robustness of the UMDO found solution compared to the deterministic one.
The deterministic MDF and the MDF under uncertainty optimal launch vehicle
dimensions are represented in Fig. 29.

Second Test-Case: Comparison of IDF-PCE, MDF and MHOU on a Multi-stage
Sounding Rocket Design Problem

This LVD test case consists in designing a sounding rocket with two solid stages
to launch a payload of 800 kg from Kourou that has to reach at least an altitude of
300 km. Sounding rockets carry scientific experiments into space along a parabolic
trajectory. Their overall time in space is brief and the cost factor makes sounding
rockets an interesting alternative to heavier launch vehicles as they are sometimes
more appropriate to successfully carry out a scientific mission and are less complex
to design. Four disciplines are involved in the considered test case, the propulsion,
the mass budget and geometry design, the aerodynamics and the trajectory (Fig. 30)
[19, 33, 57]. The sounding rocket design is decomposed into two subsystems, one for
each stage (Table 3). MHOU enables a hierarchical design process decomposed into
two teams, one for each sounding rocket stage. On this test case, MDF, IDF-PCE
and MHOU are compared (Fig. 31).

The uncertain variables taken into account are the first stage combustion
regression rate coefficient N .3:99; 0:05/ in cm/s/MPa0:3 and the second stage dry
mass error N .0; 50/ in kg. The uncertainty on the combustion model through
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Fig. 29 Comparison of
optimal deterministic MDF
and MDF under uncertainty
launch vehicles
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the combustion regression rate results in uncertainty on the first stage thrust. The
mission has to ensure that the payload reaches at least an altitude of 300 km (with a
probability of failure of 3 � 10�2). CMA-ES optimization algorithm [30] is used
at the subsystem-level for MHOU. The same feasible baseline is considered as
initialization for the three methods. The baseline corresponds to the deterministic
optimal solution of the two stage sounding rocket problem (Figs. 32, 33, and 34)
found by a deterministic MDF approach. However, this solution is not robust to the
presence of uncertainty. Indeed, the deterministic optimal solution does not succeed
to reach with a probability of failure lower than 3 � 10�2 an altitude of 300 km, the
failure rate is around 70 %.
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Fig. 30 Design Structure Matrix for the two stage sounding rocket

Table 3 Design variables for
the two stage sounding rocket

Design variables Symbols

Stage diameters D1;D2

Stage propellant masses Mp1;Mp2

Stage nozzle expansion ratio �1; �2

Stage grain relative length RL1;RL2
Stage combustion depth W1;W2

Results

MHOU (6.68t) and IDF-PCE (6.88t) presents better characteristics in terms of
quality of objective function than MDF (7.07t) for a fixed discipline evaluation
budget (Fig. 31). MDF, IDF-PCE and MHOU solutions satisfy the constraints
especially the apogee altitude of 300 km as illustrated in Fig. 33 for MDF and
MHOU. Only 2.9 % of the trajectories do not reach the required apogee altitude.
MHOU ensures interdisciplinary coupling satisfaction for the feedback couplings
as illustrated by the comparison of the couplings found respectively by the coupled
approach and the decoupled approach for the optimal solution found by MHOU.
The same coupling satisfaction is found for IDF-PCE. The separation altitude and

Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings. . .



40 M. Balesdent et al.

0 1 2 3 4 5 6

x 106

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

Number of calls to the disciplines

E
(G

LO
W

)+
2σ

(G
LO

W
) 

 (
t)

Convergence curves (feasible designs)

MDF under uncertainty
MHOU
IDF−PCE

Fig. 31 Convergence curves with the points satisfying the constraints
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Fig. 32 Optimal sounding rocket altitude without uncertainty
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Fig. 33 Optimal sounding rocket altitude
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Fig. 34 Deterministic optimal sounding rocket altitude in the presence of uncertainty
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Fig. 35 Distribution of the
separation altitude for the
optimal MHOU solution—by
MDA
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Fig. 36 Distribution of the
separation altitude for the
optimal MHOU solution
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velocity distributions for the optimal MHOU found solution are similar by using
MDA or MHOU (Figs. 35, 36, 37, and 38). Moreover, the interdisciplinary coupling
error for the separation altitude and velocity are represented in Figs. 39 and 40.
The coupling error is always lower than 2 % and concentrated around 0–0.5 %.
The design space dimension for the system-level is increased from 10 for MDF
to 13 for MHOU, however it enables multi-level optimization where each stage
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Fig. 37 Distribution of the
separation velocity for the
optimal MHOU solution—by
MDA
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Fig. 38 Distribution of the
separation velocity for the
optimal MHOU solution
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subsystem handles its local design variables. For IDF-PCE, the dimension of the
system-level design space is 22. Thanks to the two levels of optimization, MHOU
allows to converge to a better optimum than IDF-PCE in this test case while enabling
decoupled design strategy and autonomy to each engineering team working on each
stage.
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Fig. 39 Distribution of the
altitude coupling error
MHOU
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Fig. 40 Distribution of the
velocity coupling error
MHOU
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4 Conclusion

This chapter describes several methods to handle multidisciplinary and uncertainty
aspects in the context of aerospace vehicle design process. Such processes are
complex and present some specificities (e.g. predominance of trajectory for LVD)
that stress the need to adapt existing MDO methods to exploit these latter and
improve the problem solving efficiency. A dedicated hierarchical MDO method



45

(SWORD) has been described in this chapter and compared to classical MDF on
a three-stage-to-orbit launch vehicle design problem. The results of this comparison
shown that such a dedicated MDO method allows to obtain a better optimum
with respect MDF with less computation time. In addition to the multidisciplinary
aspects, considering both epistemic and aleatory uncertainties in the design process
is primordial in order to assess the designed vehicle performance and to ensure
its reliability. For that purpose, a method allowing to bridge the gap between
classical deterministic optimization and full probabilistic optimization has been
described. The proposed bi-level optimization approach optimizes the safety factors
at the upper-level and perform a full design/redesign process at the lower-level,
providing for the designer with a set of optimal design rules satisfying the reliability
requirements without having overly conservative designs. In the third part of this
chapter, one single-level (IDF-PCE) and one multi-level (MHOU) formulations
have been proposed in order to solve MDO problems in the presence of uncertainty.
These methods allow to ensure the interdisciplinary functional coupling satisfaction
for all the realizations of the uncertain variables. These approaches have been
compared to MDF on two LVD problems and allow to obtain a better optimum
with a less computational cost than classical MDF.
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Using Direct Transcription to Compute Optimal
Low Thrust Transfers Between Libration Point
Orbits

John T. Betts

Abstract The direct transcription method has been used to solve many challenging
optimal control problems. One such example involves the calculation of a low thrust
orbit transfer between libration point orbits. The recent implementation of high
order discretization techniques is first described and then illustrated by computing
optimal low thrust trajectories between orbits about the L1 and L2 Earth-Moon
libration points.

Keywords Direct Transcription • Optimal Control • Low-thrust Transfer •
Lobatto Methods • Libration Point Orbits

1 The Optimal Control Problem

The primary focus of this paper is the presentation of efficient numerical methods to
solve the optimal control problem. The goal is to choose the control functions u.t/
to minimize the objective

F D
Z tF

tI

w Œy.t/;u.t/;p; t� dt (1)

subject to the state equations

Py D fŒy.t/;u.t/;p; t� (2)

and the boundary conditions

0 D  I Œy.tI/;u.tI/;p; tI � (3)

0 D  FŒy.tF/;u.tF/;p; tF�: (4)
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Denote the initial and final states by y.tI/ D yI and y.tF/ D yF respectively, with
corresponding notation for other quantities. Although the problem can be stated in
many equivalent formats, this Lagrange formulation is sufficiently general for our
purpose.

2 Transcription Method

All numerical results presented here were obtained using the SOS (Sparse Optimiza-
tion Suite) software. This implements a direct transcription method as described
in [3]. The fundamental idea of a transcription method is to introduce a discrete
approximation to the differential equations (2) in terms of the dynamic variables
y.t/, and u.t/ evaluated at the discrete times

tI D t1 < t2 < � � � < tM D tF; (5)

referred to as node, mesh, or grid points. In so doing the differential equation (2)
is transcribed into a set algebraic constraints, defined in terms of a finite set of
variables. Thus the optimal control problem is converted into a large nonlinear
programming (NLP) problem. In principle any nonlinear programming method can
be used to solve the discretized problem, but to do so the NLP must evaluate
both first and second derivatives of the relevant discretization equations. These
Jacobian and Hessian matrices are both large and sparse. To efficiently solve the
NLP it is critical to exploit a computational benefit that accrues from the matrix
sparsity itself. It is well known that the computational complexity for solving
a system of n dense linear equations is O.n3/. In contrast, for a sparse linear
system the cost is O.�n/, where � is a factor related to sparsity. The SOS software
has two nonlinear programming algorithms, a sparse Schur-complement sequential
quadratic programming (SQP) algorithm, and a primal-dual interior point (barrier)
algorithm. All numerical results presented use the SQP algorithm, and although we
will not discuss details of the underlying sparse nonlinear programming algorithm
the reader is referred to [3, Chaps. 1 and 2]. In fact since the computational expense
of the entire algorithm is dominated by the quantity O.�n/ the remaining discussion
will be focused on how to keep both � and n as small as possible.

To summarize, the transcription method has three fundamental steps:

Direct Transcription: Transcribe the optimal control problem into a nonlinear
programming (NLP) problem by discretization;

Sparse Nonlinear Program: Solve the sparse (SQP or Barrier) NLP
Mesh Refinement: Assess the accuracy of the approximation (i.e. the finite dimen-

sional problem), and if necessary refine the discretization, and then repeat
the optimization steps.
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3 Runge-Kutta Methods

Let us begin by introducing methods for discretization of the differential equations
(2). A popular family of one-step methods called S-stage Runge-Kutta [9] can be
defined as follows:

ykC1 D yk C hk

SX

jD1
ˇjfkj; (6)

where for 1 � j � S

ykj D yk C hk

SX

`D1
˛j`fk`; (7)

fkj D f
�
ykj;ukj; tkj

�
; (8)

ukj D u
�
tkj
�
; (9)

tkj D tk C hk	j (10)

hk D tkC1 � tk: (11)

S is referred to as the “stage,” and the intermediate values ykj called internal stages
and can be considered approximations to the solution at tkj. In these expressions,
f	j; ˇj; ˛j`g are known constants with 0 � 	1 � 	2 � � � � � 	S � 1. A convenient
way to define the coefficients is to use the Butcher array

	1 ˛11 : : : ˛1S
:::

:::
:::

	S ˛S1 : : : ˛SS

ˇ1 : : : ˇS

:

The schemes are called explicit if ˛j` D 0 for l � j and implicit otherwise. The
focus here is on a particular family of implicit Runge-Kutta (IRK) schemes called
Lobatto IIIA methods. The Lobatto IIIA family has the following properties:

• The methods are symmetric with 	1 D 0 and 	S D 1.
• The coefficients ˛1j D 0 and ˛Sj D ˇj for j D 1; : : : ; S.
• As such the internal variables yj1 and yjS for j D 1; : : : ; S as well as the implicit

constraints (7) can be analytically eliminated.
• The methods are collocation methods as described below. The variable and

constraint definitions introduced are consistent with the collocation conditions
given as Eqs. (5.71a) and (5.71b), in [1, p. 218].

• The method with S stages has (nonstiff) order � D 2S � 2.
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The numerical values of the Lobatto IIIA coefficients for S D 2; 3; 4; 5 are given in
the appendix.

Variable Phase Length
For many optimal control problems it is convenient to break the problem into phases
either for numerical purposes or to describe different physical processes. In general
the length of a phase is defined by tI and tF either of which can be an optimization
variable. Therefore let us define a second time transformation

t D tI C 
.tF � tI/ D tI C 
� (12)

where the phase length �
:D tF � tI and 0 � 
 � 1. Thus for �
k D .
kC1 � 
k/ we

have

hk D .
kC1 � 
k/.tF � tI/ D �
k� (13)

In light of the transformation (12)

y0 D dy
d

D dy

dt

dt

d

D � Py (14)

and so the original ODE (2) becomes

y0 D � fŒy.
/;u.
/; 
 � (15)

Collocation Methods
The Runge-Kutta scheme (6)–(10) is often motivated in another way. Suppose we
consider approximating the solution of the ODE (2) by a function z.t/. In what
follows it will be convenient denote component-wise operations using z.t/. As an
approximation, let us use a polynomial of degree S (order S C 1) over each step
tk � t � tkC1:

z.t/ D a0 C a1.t � tk/C � � � C aS.t � tk/
S: (16)

The coefficients .a0; a1; : : : ; aS/ are chosen such that the approximation matches at
the beginning of the step tk, that is,

z.tk/ D yk; (17)
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and has derivatives that match at the internal stage points (10)

dz.tkj/

dt
D f

�
ykj;ukj; tkj

� D fkj: (18)

Observe that within a particular step tk � t � tkC1 the parameter 0 � 	 � 1 defines
the local time parameterization t D tk C hk	 and so from (16) it follows that

z.t/ D a0 C a1hk	j C � � � C aShS
k	

S
j (19)

Similarly from (16)

dz.t/

dt
D a1 C � � � C aS�1.S � 1/.t � tk/

S�2 C aSS.t � tk/
S�1 (20)

and so substituting (10), (18) gives

fkj D a1 C � � � C aS�1.S � 1/hS�2
k 	S�2

j C aSShS�1
k 	S�1

j (21)

Moreover, it is demonstrated in Ref. [1, p. 219] that when the derivatives match
(cf. (18)) the function values ykj D zkj also match for 1 � j � S. Thus it follows
from (19) and (10) that

ykj D a0 C a1hk	j C � � � C aShS
k	

S
j (22)

The conditions (18) are called collocation conditions and the resulting method
is referred to as a collocation method. The Runge-Kutta scheme (6)–(10) is a
collocation method [1], and the solution produced by the method is a piecewise
polynomial.

The focus of a collocation method is on a polynomial representation for the
differential state variables. When the state is a polynomial of degree S over each
step tk � t � tkC1 it is natural to use a polynomial approximation of degree S � 1
for the algebraic variables u.t/ similar to (16)

v.t/ D b0 C b1.t � tk/C � � � C bS�1.t � tk/
S�1 (23)

for j D 0; : : : ; S � 1 and the coefficients .b0; b1; : : : ; bS�1/ are determined such that
the approximation matches at the intermediate points (10) for j D 1; : : : ; S

v.tkj/ D ukj: (24)
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3.1 Lobatto IIIA, S D 2

The simplest Lobatto IIIA method has two stages and is of order � D 2. It is
commonly referred to as the trapezoidal method (abbreviated TRP or LA2). The
nonlinear programming constraints, called defects, and the corresponding NLP
variables are as follows:

Defect Constraints

0 � �k D ykC1 � yk � �
k

2
Œ� fk C � fkC1� (25a)

Variables

xT D .: : : ; yk;uk; ykC1;ukC1; : : : ;p; tI ; tF; : : :/ (25b)

3.2 Lobatto IIIA, S D 3

There are three common forms when there are three stages all having order � D 4.
We abbreviate the primary form LA3.

Primary Form

Defect Constraints

0 D ykC1 � yk ��
k Œˇ1� fk C ˇ2� fk2 C ˇ3� fkC1� (26a)

0 D yk2 � yk ��
k Œ˛21� fk C ˛22� fk2 C ˛23� fkC1� (26b)

where

fk2 D f Œyk2;uk2; tk2� (26c)

tk2 D tk C hk	2 D tk C 1

2
hk (26d)

uk2 D u.tk2/ (26e)

Variables
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xT D .: : : ; yk;uk; yk2;uk2; ykC1;ukC1; : : : ;p; tI ; tF; : : :/ (26f)

Hermite-Simpson (Separated)

By solving (26a) for the quantity fk2 and then substituting the result into (26b) one
obtains the second form. The method is referred to as Hermite-Simpson (Separated)
or simply Separated Simpson and abbreviated HSS [3, Sect. 4.6.6].

Defect Constraints

0 D ykC1 � yk ��
k Œˇ1� fk C ˇ2� fk2 C ˇ3� fkC1� (27a)

0 D yk2 � 1
2
.yk C ykC1/ � �
k

8
.� fk � � fkC1/ (27b)

where the internal stage values and NLP variables are given by (26c)–(26f).

Hermite-Simpson (Compressed)

The third form is obtained by solving (27b) for the internal state yk2 and simply
using this to evaluate fk2. This eliminates the explicit internal stage constraints (26b)
and also the internal stage variables yk2. Referred to as Hermite-Simpson (Com-
pressed) or simply Compressed Simpson it is abbreviated HSC [3, Sect. 4.6.5]. This
form benefits from a smaller number of NLP variables and constraints, however at
the expense of matrix sparsity.

Defect Constraints

0 D ykC1 � yk ��
k Œˇ1� fk C ˇ2� fk2 C ˇ3� fkC1� (28a)

where

yk2 D 1

2
.yk C ykC1/C hk

8
.fk � fkC1/ (28b)

fk2 D f Œyk2;uk2; tk2� (28c)

tk2 D tk C hk	2 D tk C 1

2
hk (28d)

uk2 D u.tk2/ (28e)
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Variables

xT D .: : : ; yk;uk;uk2; ykC1;ukC1; : : : ;p; tI ; tF; : : :/ (28f)

3.3 Lobatto IIIA, S D 4

This sixth order scheme is abbreviated LA4.

Defect Constraints

0 D ykC1 � yk ��
k Œˇ1� fk C ˇ2� fk2 C ˇ3� fk3 C ˇ4� fkC1� (29a)

0 D yk2 � yk ��
k Œ˛21� fk C ˛22� fk2 C ˛23� fk3 C ˛24� fkC1� (29b)

0 D yk3 � yk ��
k Œ˛31� fk C ˛32� fk2 C ˛33� fk3 C ˛34� fkC1� (29c)

where

fk2 D f Œyk2;uk2; tk2� (29d)

tk2 D tk C hk	2 (29e)

uk2 D u.tk2/ (29f)

fk3 D f Œyk3;uk3; tk3� (29g)

tk3 D tk C hk	3 (29h)

uk3 D u.tk3/ (29i)

Variables

xT D .: : : ; yk;uk; yk2;uk2; yk3;uk3; ykC1;ukC1; : : : ;p; tI ; tF; : : :/ (29j)

3.4 Lobatto IIIA, S D 5

This eighth order scheme is abbreviated LA5.

Defect Constraints
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0 D ykC1 � yk ��
k Œˇ1� fk C ˇ2� fk2 C ˇ3� fk3 C ˇ4� fk4 C ˇ5� fkC1� (30a)

0 D yk2 � yk ��
k Œ˛21� fk C ˛22� fk2 C ˛23� fk3 C ˛24� fk4 C ˛25� fkC1� (30b)

0 D yk3 � yk ��
k Œ˛31� fk C ˛32� fk2 C ˛33� fk3 C ˛34� fk4 C ˛35� fkC1� (30c)

0 D yk4 � yk ��
k Œ˛41� fk C ˛42� fk2 C ˛43� fk3 C ˛44� fk4 C ˛45� fkC1� (30d)

where

fk2 D f Œyk2;uk2; tk2� (30e)

tk2 D tk C hk	2 (30f)

uk2 D u.tk2/ (30g)

fk3 D f Œyk3;uk3; tk3� (30h)

tk3 D tk C hk	3 (30i)

uk3 D u.tk3/ (30j)

fk4 D f Œyk4;uk4; tk4� (30k)

tk4 D tk C hk	4 (30l)

uk4 D u.tk4/ (30m)

Variables

xT D .: : : ; yk;uk; yk2;uk2; yk3;uk3; yk4;uk4; ykC1;ukC1; : : : ;p; tI ; tF; : : :/ (30n)

Quadrature Equations
The IRK methods have been introduced as a way to solve ODE’s. When treating
problems involving integral expressions such as

I D
Z tF

tI

wŒy.t/;u.t/; t�dt (31)

it is common to introduce new dynamic variables r.t/ and then solve the following
augmented system:

Py D fŒy.t/;u.t/; t� (32)

Pr D wŒy.t/;u.t/; t� (33)

in conjunction with the initial conditions
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r.tI/ D 0 (34)

and it then follows that

r.tF/ D I: (35)

If we apply a recursive scheme to the augmented system we can write

r.tF/ D rM D
M�1X

kD1
rkC1 � rk (36)

for the subset of dynamic variables in (33). It then follows from (25a), (26a), (29a),
and (30a) that

rkC1 � rk D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�
k Œˇ1�wk C ˇ2�wkC1� S D 2

�
k Œˇ1�wk C ˇ2�wk2 C ˇ3�wkC1� S D 3

�
k Œˇ1�wk C ˇ2�wk2 C ˇ3�wk3 C ˇ4�wkC1� S D 4

�
k Œˇ1�wk C ˇ2�wk2 C ˇ3�wk3 C ˇ4�wk4 C ˇ5�wkC1� S D 5
(37)

Now it is important to note that the dynamic variables r.t/ do not appear in
the functions w and so there is no need to introduce the values at the grid points
rk, and the internal stage points rk2; rk3; : : : when evaluating the integrands, i.e.
wk;wk2;wk3; ;wk4, etc.

4 Nonlinear Programming

The general nonlinear programming (NLP) problem can be stated as follows: Find
the n-vector xT D .x1; : : : ; xn/ to minimize the scalar objective function

F.x/ (38)

subject to the m constraints

cL � c.x/ � cU (39)

and the simple bounds
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xL � x � xU: (40)

Equality constraints can be imposed by setting cL D cU .
In the preceding section we outlined the quantities that must be treated as

constraints and variables when an ODE is approximated by discretization. So for
example, when using the trapezoidal method with M grid points, we must impose
the defect constraints (25a) k D 1; : : : ;M � 1. In the trapezoidal case the goal is to
choose the NLP variables (25b) to minimize the objective function and satisfy the
defect constraints (25a) as well as any boundary conditions. To solve the nonlinear
programming problem it is also necessary to compute the derivatives of the objective
and constraint functions. When a finite difference method is used to construct the
Jacobian, it is natural to identify the constraint functions as the quantities being
differentiated. In other words, if we define

q D
�

c
F

�

(41)

then we can use finite differences to compute

D D @q
@x
D
�

G
gT

�

(42)

where G is the constraint Jacobian and g is the objective gradient. The Hessian of the
Lagrangian HL can also be constructed using differencing techniques as described
in [3, Sect. 2.2].

However to exploit separability we write

�
c.x/
F.x/

�

D AxC Bq.x/: (43)

By isolating the linear terms Ax from the nonlinear terms Bq.x/, it is then easy to
demonstrate that for all of the Lobatto methods the elements of the vector q.x/ are
of the form



60 J.T. Betts

q.x/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

:::

� fk1

�wk1

� fk2

�wk2
:::

� fkS

�wkS
:::

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

:::

� fk

�wk

� fk2

�wk2
:::

� fkC1
�wkC1
:::

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(44)

The constant matrices A and B are defined by the method coefficients ˛j`, and ˇj. It
then follows that

�
G
gT

�

D AC BD (45)

where the finite difference matrix

D D @q
@x

(46)

involves the right hand side quantities at the grid points and internal stage points. In
particular these quantities are often sparse with a structure defined by the sparsity
template

T D struct

2

6
6
6
4

@f
@y

@g
@y

@w
@y

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

@f
@u

@g
@u

@w
@u

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

@f
@p

@g
@p

@w
@p

3

7
7
7
5

(47)

and consequently D can be computed very efficiently using sparse finite difference
techniques. In particular, when using sparse differencing the number of perturba-
tions is dictated by the number of index sets � , and for optimal control problems
� � n. For the low thrust problem below � D 6 and this value does not change
as the mesh size increases, even though the number of NLP variables n can become
very large. In short we use the same number of perturbations whether the grid is
coarse or fine!
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5 Mesh Refinement

There are two primary goals for the final step in a direct transcription method,
namely to

• decide whether the discrete solution is “accurate” enough, and
• if not do something about it.

To define “accuracy” in this context consider a single interval tk � t � tk C hk.
Suppose the NLP problem has produced a solution to the ODEs (2) so that,

y.tk C hk/ D y.tk/C
Z tkChk

tk

Pydt D y.tk/C
Z tkChk

tk

f Œy;u; t� dt: (48)

Unfortunately the expression for y.tk C hk/ involves the true value for both y and u
which are unknown. Consequently, we may consider the approximation

by.tk C hk/ � y.tk/C
Z tkChk

tk

f Œz.t/; v.t/; t� dt; (49)

or the alternative expression

ey.tk C hk/ � y.tk/C
Z tkChk

tk

f Œy.t/; v.t/; t� dt; (50)

Observe that the collocation solution z.t/ and v.t/ appears in the integrand of (49)
whereas (50) involves the real solution state y.t/ and the collocation control
approximation v.t/. In either case the “error” over the step is measured by the
difference y.tk C hk/ �by.tk C hk/ or y.tk C hk/ �ey.tk C hk/. Motivated by this
we define the absolute local error on a particular step by

�i;k D
ˇ
ˇ
ˇ
ˇ

Z tkC1

tk

Pzi.s/ � fi Œz.s/; v.s/; s� ds

ˇ
ˇ
ˇ
ˇ (51)

Notice that the arguments of the integrand use the collocation approximations (16)
and (23) for the state and control evaluated at intermediate points in the interval.
From this expression for the absolute error, we can define the relative local error by

�k 	 max
i

�i;k

.wi C 1/ ; (52)

where the scale weight wi D maxM
kD1

h
jQyi;kj; jPQyi;kj

i
defines the maximum value for

the ith state variable or its derivative over the M grid points in the phase. In the
SOS software implementation �k is computed in every interval tk � t � tk C hk by
evaluating �i;k using a high precision Romberg quadrature method with Richardson
extrapolation.
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There are many complicated and often conflicting factors that determine the
overall computational efficiency of the direct transcription algorithm. The cost of
solving a sparse linear system Ax D b is O.�n/, and typically the solution of
a nonlinear program will require many iterations each requiring the solution of a
sparse system. This suggests that the number of NLP variables n should be kept
small. However, the cost also depends on the sparsity � and consequently a small
dense formulation may actually be more costly than a large sparse formulation.
Furthermore, the number of NLP iterations is a function of the nonlinearity of the
differential equations, as well as the quality of the initial guess. It is often more
expensive to solve a small system of very nonlinear ODE’s, when compared to a
large system of linear ODE’s. Similarly a “good” initial guess for the NLP variables
may converge in one or two iterations regardless of the system nonlinearity. The
situation is also unclear when comparing different discretization methods. For
example, is it better to use two steps of a Lobatto two stage method, or a single
step of a Lobatto three stage method? The number of NLP variables n is the same
for both approaches. Since the two stage method is of order two and the three stage
method is of order four, a naive analysis would suggest that the fourth order method
is preferable. However, this conclusion ignores the impact of high order derivatives
in a nonlinear differential equation. In fact, it is often better to utilize a low order
scheme in regions with rapidly changing dynamics. Furthermore, when a “bad”
initial guess is used to begin the NLP a low order method can be more robust,
that is, converging to a solution in fewer iterations. The SOS software incorporates
a number of options that permit the user to tailor the algorithm to the physical
application. The basic mesh refinement procedure can be summarized as follows:

Mesh Refinement Algorithm

Estimate Discretization Error
Compute error �k for all intervals
Terminate if maxk �k � ı

Change Discretization Method or Stepsize
Change the discretization method (if possible), otherwise
Reduce the stepsize(s) hk by subdividing one or more

intervals

The goal of the mesh refinement algorithm is to reduce the local error (52) below
a user specified relative tolerance ı in all intervals. There are two mechanisms for
achieving this goal, namely changing the discretization method, or reducing the
stepsize hk. In SOS the user can specify a sequence of methods for each phase
in the problem description. For example suppose it is desirable to use a trapezoidal
method for the first two refinement iterations, followed by the Compressed Simpson
Method for the remaining iterations. This sequence is abbreviated as follows:

.TRP/;2I .HSC/;20:
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As a second option if the sequence is

.LA2/;�2I .LA3/;�4I .LA5/;�20

the Lobatto IIIA (two-stage) discretization will be used if until �k > 10
�2, followed

by the Lobatto IIIA (three-stage) method if �k > 10
�4, followed by the Lobatto IIIA

(five-stage) method if �k > 10�20. It is worth recalling that the mesh refinement
procedure occurs only after solving an NLP problem, and is terminated when the
solution is sufficiently accurate. Thus for the second example, suppose the first
refinement iteration using the LA2 discretization terminates with a discretization
error of �k D 0:5 � 10�4. The second and all subsequent refinement iterations will
utilize an LA5 method until converging, provided of course the requested accuracy
ı > 10�20.

If the discretization method is not changed on a particular refinement iteration,
the error can be reduced by subdividing one or more intervals in the current mesh.
In SOS there are three approaches. The default scheme described in [3, Sect. 4.7.4],
solves an integer programming problem in order to minimize the maximum error
over all intervals. A second approach attempts to distribute the error equally in
all intervals using inverse interpolation of the existing error distribution. When
solving delay-differential equations it is occasionally useful to use a simple bisection
scheme which is also available.

6 Optimal Low Thrust Transfers Between Libration
Point Orbits

6.1 Introduction

To illustrate the techniques discussed above let us consider an example which is
noteworthy in two respects. First we address a problem of ongoing practical interest.
Low thrust propulsion systems have been studied for many practical missions [4],
and in addition there are a number of missions that are either currently operating in
libration point orbits or proposed for the future. Secondly, this example represents
the real manifestation of a class of hypersensitive optimal control problems. A series
of investigations by Rao and Mease [10] demonstrate the solution is characterized
by an initial and terminal boundary layer region, separated by a long duration
equilibrium segment. The techniques they use are related to singular perturbation
methods and Example 4.4 [3, pp. 170–171] illustrates the solution of a “toy
problem” with this structure. The use of a high order Lobatto discretization was
investigated by Herman and Conway [8], however, their approach did not exploit
sparsity. Finally, because of periodic behavior and dynamic sensitivity there are
many local solutions. In short this example is both numerically challenging and
of great practical interest.
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6.2 Dynamic Model

A formulation of an optimal low thrust transfer between libration point orbits is
presented by Epenoy [7]. The dynamic model is based on the Planar Circular
Restricted Three Body Problem (PCR3BP) with Earth as one primary and the Moon
as the second. The equations of motion are constructed in a rotating reference frame,
in which the x-axis extends from the barycenter of the Earth-Moon system to the
Moon, and the y-axis completes the right hand coordinate frame. A set of non-
dimensional units is chosen such that the unit of distance is the distance between
the two primaries, the unit of mass is the sum of the primaries’ masses, and the unit
of time is such that the angular velocity of the primaries around their barycenter is
one. Thus the Moon has mass � and is fixed at the coordinates .1 � �; 0/ while the
Earth has mass .1��/ and is fixed at the coordinates .��; 0/. The mass parameter
is defined as

� D Mm

Me CMm
D 0:0121506683 (53)

where Me and Mm are the masses of the Earth and Moon respectively.
The equations of motion in the rotating frame are

Px D vx (54)

Py D vy (55)

Pvx D xC 2vy � .1 � �/.xC �/
r31

� �.xC � � 1/
r32

C u1 (56)

Pvy D y � 2vx � .1 � �/y
r31

� �y

r32
C u2 (57)

where dot denotes the non-dimensional time derivative relative to an observer in
the rotating frame. The position in the rotating frame is denoted by .x; y/ with
corresponding relative velocity .vx; vy/. The distances from the Earth and Moon
respectively are given by

r1 D
p
.xC �/2 C y2 (58)

r2 D
p
.xC � � 1/2 C y2 (59)

The dynamics are defined by the state vector zT D .x; y; vx; vy/ in the domain
t0 � t � tf where both the initial and final times are fixed. The control variables
uT D .u1; u2/ denote the spacecraft acceleration in the rotating frame. Thus the
dynamics (54)–(57) are given by

Pz D fŒz;u�: (60)
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The initial and terminal states are fixed by the following boundary conditions:

z.t0/ D �1.
0/ (61)

z.tf / D �2.
f / (62)

where the states on the Lyapunov orbits are denoted by �1.
0/ and �2.
f / respec-
tively. The Lyapunov states are computed by means of Lindstedt-Poincare approx-
imation as functions of the parameters 
0 and 
f . These non-dimensional times
determine the departure and arrival location. The goal is to minimize the energy
consumed during the transfer, i.e.

F D 1

2

Z tf

t0

uTu dt: (63)

For the PCR3BP it is also convenient to introduce a time scaling. In particular we
fix t0 D 0 and define

tF D 2 Tf

PM
(64)

where Tf is the duration of the transfer and PM D 27:321577 days is the orbital
period of the moon. Numerical results will be constructed for two cases, namely a
short transfer where Tf D 12 days, and a long transfer where Tf D 44 days. After
time scaling tF D 2:759659 for the short transfer and tF D 10:11874803 for the
long transfer.

6.3 Lyapunov Orbits

The libration points are defined in the rotating frame at L1 D .x1; 0/ and L2 D .x2; 0/
where x1 and x2 are roots of the nonlinear equations

0 D x1 � 1 � �
�C x1

C �

x1 � 1C � (65)

and

0 D x2 � 1 � �
�C x2

� �

x2 � 1C � (66)

respectively. For the particular case of interest with � given by (53) we have x1 D
0:83691471889320190 and x2 D 1:1556824834786137.
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Table 1 Lyapunov orbit around L1

Location 
0 x y

max x 0.000000000000000 0.8604642913942989 0.000000000000000

min y 0.6799402049577115 0.8460673759976699 �0.07126150424351556

min x 1.388012472385421 0.8203198878278488 0.000000000000000

max y 2.096084695912298 0.8460673739125611 0.07126150424351496

max x 2.776024944790721 0.8604642913942989 0.000000000000000

Table 2 Lyapunov orbit around L2

Location 
0 x y

max x 0.000000000000000 1.170863515501900 0.000000000000000

min y 0.8632085886843588 1.150862903956706 �0.04864318483502234

min x 1.692646170500000 1.137392572452755 0.000000000000000

max y 2.522083753145239 1.150862903981730 0.04864318483502232

max x 3.385292341000000 1.170863515501900 0.000000000000000

The specific Lyapunov orbits given in Epenoy [7] correspond to orbits around the
Earth-Moon libration points L1 and L2 with the same value for the Jacobi constant,
namely 3.178. FORTRAN code implementing the calculation of the functions
�1.
0/ and �2.
f / was graciously supplied by R. Epenoy. Tables 1 and 2 present
a summary of the extreme points in these orbits. Note also that the functions �1.
0/
and �2.
f / are periodic functions of the parameters 
0 and 
f respectively. Thus
�1.
0/ D �1.
0 C kT1/ where T1 D 2:776024944790721 for k D 0;˙1;˙2; : : :.
Similarly for the orbit around L2 we have �2.
f / D �2.
f C kT2/ where T2 D
3:385292341000000.

6.4 Adjoint Equations

For the sake of reference in what follows it is useful to define the adjoint equations.
The Hamiltonian is given by

H D F C �Tf D 1

2

�
u21 C u22

�C �1f1 C �2f2 C �3f3 C �4f4 (67)

and the adjoint equations are:

P�1 D �@H

@x
D ��3 @f3

@x
� �4 @f4

@x
D ��3 @f3

@x
� �4 @f4

@x
(68)

P�2 D �@H

@y
D ��3 @f3

@y
� �4 @f4

@y
D ��3 @f3

@y
� �4 @f4

@y
(69)
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P�3 D � @H

@vx
D ��1 @f1

@vx
� �4 @f4

@vx
D ��1 f1g � �4 f�2g D ��1 C 2�4 (70)

P�4 D � @H

@vy
D ��2 @f2

@vy
� �3 @f3

@vy
D ��2 f1g � �3 f2g D ��2 � 2�3 (71)

To evaluate these expressions first define:

@

@x

˚
r�3
1

	 D �3r�4
1

@r1
@x
D �3.xC �/

r51
(72)

@

@y

˚
r�3
1

	 D �3r�4
1

@r1
@y
D �3y

r51
(73)

@

@x

˚
r�3
2

	 D �3r�4
2

@r2
@x
D �3.xC � � 1/

r52
(74)

@

@y

˚
r�3
2

	 D �3r�4
2

@r2
@y
D �3y

r52
(75)

where

@r1
@x
D 1

2r1
Œ2.xC �/� D .xC �/

r1
(76)

@r2
@x
D 1

2r2
Œ2.xC � � 1/� D .xC � � 1/

r2
(77)

@r1
@y
D 1

2r1
Œ2y� D y

r1
(78)

@r2
@y
D 1

2r2
Œ2y� D y

r2
(79)

The derivatives needed to define the right hand sides of the adjoint equations are
then given by

@f3
@x
D 1 � @

@x

�
.1 � �/.xC �/

r31




� @

@x

�
�.xC � � 1/

r32




D 1 � d1 � d2 (80)

@f4
@x
D � @

@x

�
.1 � �/y

r31




� @

@x

�
�y

r32




D �d3 � d4 (81)

@f3
@y
D � @

@y

�
.1 � �/.xC �/

r31




� @

@y

�
�.xC � � 1/

r32




D �d5 � d6 (82)

@f4
@y
D 1 � @

@y

�
.1 � �/y

r31




� @

@y

�
�y

r32




D 1 � d7 � d8 (83)
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where the intermediate terms are defined as follows:

d1
:D @

@x

�
.1 � �/.xC �/

r31




D .1 � �/.xC �/ @
@x

˚
r�3
1

	C .1 � �/r�3
1 (84)

d2
:D @

@x

�
�.xC � � 1/

r32




D �.xC � � 1/ @
@x

˚
r�3
2

	C �r�3
2 (85)

d3
:D @

@x

�
.1 � �/y

r31




D .1 � �/y @
@x

˚
r�3
1

	
(86)

d4
:D @

@x

�
�y

r32




D �y
@

@x

˚
r�3
2

	
(87)

d5
:D @

@y

�
.1 � �/.xC �/

r31




D .1 � �/.xC �/ @
@y

˚
r�3
1

	
(88)

d6
:D @

@y

�
�.xC � � 1/

r32




D �.xC � � 1/ @
@y

˚
r�3
2

	
(89)

d7
:D @

@y

�
.1 � �/y

r31




D .1 � �/y @
@y

˚
r�3
1

	C .1 � �/r�3
1 (90)

d8
:D @

@y

�
�y

r32




D �y
@

@y

˚
r�3
2

	C �r�3
2 (91)

The optimal controls are defined by the optimality conditions

@H

@u1
D 0 D u1 C �3 (92)

@H

@u2
D 0 D u2 C �4 (93)

7 Numerical Results

7.1 Short Transfer

When modeling the dynamic behavior of the short transfer it is convenient to break
the problem into separate regions. The short transfer was modeled using two distinct
phases as defined in Table 3.

Table 3 Short transfer phase
structure

Phase Description Domain Free parameters

1 L1 departure 0 � t � t1 t.�/1 , 
0
2 L2 arrival t1 � t � tf t.C/

1 , tf , 
f
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The phase structure permits modeling two distinct portions of the overall
trajectory, namely departure from the L1 Lyapunov orbit, and arrival at the L2
Lyapunov orbit. The initial state given by the boundary condition (61) fixes the
beginning of phase 1. It is convenient to terminate phase 1 when the trajectory passes
below the moon in a posigrade direction, and so we require

x.t1/ D 1 � � (94)

y.t1/ � ymin (95)

vx.t1/ � 0 (96)

where ymin is a bound on the closest approach to the moon. For our results we choose
ymin D �0:04. To ensure continuity from phase to phase we impose the continuity
constraints

t.�/1 D t.C/1 (97)

zŒt.�/1 � D zŒt.C/1 � (98)

where conditions at the end of phase one are denoted by t.�/1 and the corresponding

conditions at the beginning of phase two are denoted by t.C/1 . At the end of phase
two we must also satisfy

tf � tF (99)

z.tf / D �2.
f / (100)

where tF D 2:759659. Note that in (99) the final time tf is treated as a free parameter
limited by the fixed upper bound tF. Treating the final time as free, yields more stable
intermediate iterates and the final optimal trajectory is achieved much more readily.
In particular it is expected that the inequality constraint (99) will be active at the
solution. It is also worth noting that formulating the problem using two phases is
done strictly for numerical purposes. In particular the constraints (94)–(96) prevent
intermediate trajectories that are unreasonable, and thus improve the robustness of
the algorithm.

The direct transcription method requires an initial guess for all free parameters
as well as the dynamic history for the state and control. For the short transfer we
guess

pT D .t1; tf ; 
0; 
f / D .tF=2; tF; 2:096084695912298; 2:522083753145239/
where the choice of 
0 and 
f correspond to the maximum values of y as given in
Tables 1 and 2. For quantities that change dynamically during phase one a guess that
linearly interpolates between the boundary values is given by

Œtk; x.tk/; y.tk/; vx.tk/; vy.tk/; u1.tk/; u2.tk/� D ˛kaT C ˇkbT k D 1; : : : ;M (101)
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Table 4 Mesh refinement summary–short transfer

k M Disc. m n nd NRHS Iter � Time (s)

1 (10,10) (LA2,LA2) 87 125 38 9119 28 6.4�10�3 0:6179

2 (10,10) (LA3,LA3) 159 233 74 58;474 69 3.1�10�3 1:289

3 (19,19) (LA3,LA3) 303 449 146 30;332 16 8.6�10�5 0:5749

4 (19,19) (LA4,LA4) 447 665 218 36;954 10 2.7�10�6 0:7068

5 (36,36) (LA4,LA4) 855 1277 422 32;430 3 4.9�10�8 0:4019

Total 72 167;309 3:591

for M grid points on the phase where

ˇk D k � 1
M � 1 ˛k D 1 � ˇk (102)

aT D Œ0; �T
1.
o/; 0; 0� bT D ŒtF=2; 1 � �;�R; vx.0/; 0; 0; 0�: (103)

We also make a guess for the radial distance from the moon as R D 0:1 in (103). On
the second phase we again use (101) but replace the boundary quantities (103) with

aT D ŒtF=2; 1 � �;�R; vx.tf /; 0; 0; 0� bT D ŒtF; �T
2 .
f /; 0; 0�: (104)

Using this information the solution was computed using SOS and Table 4
presents a summary of the algorithm behavior when using “(LA2),-2;(LA3),-
3;(LA4),-20” as a mesh refinement strategy. The first refinement iteration of the
algorithm began with M D 10 equi-distributed grid points in each phase and
the linear initial guess given by (101). Using an LA2 (trapezoidal) discretization
produced an NLP with m D 87 constraints, n D 125 variables, and nd D 38 degrees
of freedom. The solution required 28 NLP iterations, as well as (NRHS = 9119)
evaluations of the right hand side of the ODE. This NLP was solved in 0.6179 CPU
seconds, and resulted in a discretization error of � D 6:4 � 10�3. A second mesh
refinement iteration using 10 grid points in each phase with the LA3 discretization
reduced the relative error to � D 3:1 � 10�3. The LA3 method was used again
on the third refinement iteration, but with 19 grid points in each phase, distributed
by the default minimax scheme. Subsequently, two additional refinement iterations
were executed using the higher order LA4 (four stage Lobatto IIIA) discretization
in order to reduce the error below the requested tolerance of � D 1 � 10�7 which
corresponds to approximately eight significant figures in the solution variables. The
total CPU time on a desktop computer using an Intel I7 processor (3.06 Ghz), with
Linux operating system, and GNU Fortran compiler, was 3.591 s. A summary of the
optimal solution values for this case is given in Fig. 1, and it is worth noting that
t�1 ¤ tF=2 however, t�f D tF. Figures 2, 3, 4, 5, 6, 7 and 8 illustrate the optimal
solution history.
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Fig. 1 Optimal solution–short transfer ku.t/k
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Fig. 4 Short transfer y.t/

7.2 Long Transfer

In contrast to the short transfer, the long transfer is modeled using four distinct
phases as defined in Table 5. As before, the first phase models the departure from
the L1 orbit, and the last phase models the arrival at the L2 orbit. However, two
additional intermediate phases are introduced between the first and last phase to
accommodate two revolutions about the moon.
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Fig. 6 Short transfer vy.t/

As before, the initial state given by the boundary condition (61) fixes the
beginning of phase 1. However, since we are modeling two revolutions about the
moon, we terminate phases one, two, and three when the trajectory passes below the
moon in a posigrade direction, and so for j D 1; 2; 3 we require

x.tj/ D 1 � � (105)

y.tj/ � ymin (106)

vx.tj/ � 0: (107)
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Table 5 Long transfer phase
structure

Phase Description Domain Free parameters

1 L1 departure 0 � t � t1 t.�/1 , 
0
2 Lunar revolution 1 t1 � t � t2 t.C/

1 , t.�/2

3 Lunar revolution 2 t2 � t � t3 t.C/
2 , t.�/3

4 L2 arrival t3 � t � tf t.C/
3 , tf , 
f
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Continuity from phase to phase is insured by imposing the continuity constraints

t.�/j D t.C/j (108)

zŒt.�/j � D zŒt.C/j � (109)

for all three phases. At the end of phase four we must also satisfy

tf � tF (110)

z.tf / D �2.
f / (111)

where tF D 10:11874803. As before, formulating the problem using four phases
is done strictly for numerical purposes. In particular the constraints (105)–(107)
prevent intermediate trajectories that are unreasonable, and thus improve the
robustness of the algorithm.

Since the long transfer formulation has more phases, we must supply an initial
guess for all of the free parameters. Thus we guess

pT D .t1; t2; t3; tf ; 
0; 
f /

D .0:1tF; 0:5tF; 0:9tF; tF; 2:096084695912298; 2:522083753145239/ (112)

where the choice of 
0 and 
f correspond to the maximum values of y as given in
Tables 1 and 2. For quantities that change dynamically during phase one a guess
that linearly interpolates between the boundary values is given by (101) as defined
by the boundary values

aT D Œ0; �T
1 .
o/; 0; 0� bT D Œ0:1tF; 1 � �;�R; vx.0/; 0; 0; 0�: (113)

On the last phase we again use (101) but replace the boundary quantities (113) with

aT D Œ0:9tF; 1 � �;�R; vx.tf /; 0; 0; 0� bT D ŒtF; �T
2 .
f /; 0; 0�: (114)

While a simple linear guess of the dynamic history is acceptable on the first and
last phase, for the intermediate phases it is more reasonable to supply a trajectory
that circles the moon. Thus we supply a simple circle of radius R as a guess for the
second and third phase dynamic history. To be more specific on phase j the value of
a dynamic variable at grid point k is given by

�t D pj � pj�1 (115)

V D 2R

�t
(116)

tk D pj�1 C�t

�
k � 1
M � 1

�

(117)
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�k D �
2
C 2

�
k � 1
M � 1

�

(118)

x.tk/ D .1 � �/C R cos �k (119)

y.tk/ D R sin �k (120)

vx.tk/ D �V sin �k (121)

vy.tk/ D CV cos �k (122)

u1.tk/ D 0 (123)

u2.tk/ D 0 (124)

where j D 2; 3 and the number of grid points k D 1; : : : ;M. Note that for both phase
2 and phase 3, the value of �t is the same, since �t D p2 � p1 D 0:5tF � 0:1tF D
0:4tF D p3�p2. As before the radius guess is R D 0:1, and the number of grid points
on all phases for the first refinement iteration is M D 20. Using this information the
solution was computed using SOS and Table 6 presents a summary of the algorithm
behavior. For the first and last phase we use “ (LA2),-1;(LA3),-3;(LA4),-20”, and
for phases two and three we use “(LA3),-3;(LA4),-4;(LA5),-20”. Using an LA2
discretization in the first and last phase, and an LA3 discretization in the second
and third phase, produced an NLP with m D 482 constraints, n D 717 variables,
and nd D 235 degrees of freedom. This NLP was solved in 2.609 CPU seconds,
and resulted in a discretization error of � D 7:9 � 10�3. A second mesh refinement
iteration with an LA4 discretization in all phases and a grid point distribution of
.20; 20; 20; 20/ for phases 1 through 4 respectively reduced the relative error to
� D 5:7 � 10�4. Subsequently, three additional refinement iterations were executed
using the sixth order LA4 method in the first and last phase, and the eighth order LA5
method for phases two and three to reduce the error below the requested tolerance
of � D 1 � 10�7 which corresponds to approximately eight significant figures in
the solution variables. The total CPU time, was 18.112 s. A summary of the optimal
solution values for this case is given in Fig. 9. Figures 10, 11, 12, 13, 14, 15 and 16
illustrate the optimal solution history.

8 Computational Comparisons

When solving a complicated problem such as the low-thrust transfer between
libration points, there are often alternatives that can be utilized in an attempt
to improve robustness and/or efficiency. This section presents a few possible
alternatives for this example.
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Fig. 9 Optimal solution–long transfer ku.t/k

8.1 Spline Approximation

In order to evaluate the boundary condition (61) and (62) the results in the previous
section utilized a FORTRAN software implementation of a Lindstedt-Poincare
approximation. Since these quantities are each functions of the a single parameter it
is reasonable to consider the following B-spline approximations:

�1.
0/ 	
X

k

˛kBk.
0/ (125)

�2.
f / 	
X

k

˛kBk.
f / (126)

The coefficients that define the natural cubic B-spline can be computed by eval-
uating the Lindstedt-Poincare approximation over the parameter range and then
interpolating these values. Evaluation of this approximation can then be utilized
during the optimization process. Table 7 summarizes the reduction in overall CPU
time when B-spline approximations are used to evaluate the boundary conditions.
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Fig. 11 Long transfer x.t/

The time spent by the SOS algorithm is given in the first column, whereas the time
spent computing the problem functions, i.e. the ODE right hand sides fŒz;u� and
the boundary conditions �1.
0/ and �2.
f /, is summarized in the second column.
Clearly there is a significant reduction in the overall solution time for both the short
and long transfers when using a spline approximation.
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8.2 Mesh Refinement Strategy

The results presented for the short transfer in Sect. 7.1 and the long transfer in
Sect. 7.2 were obtained using a mesh refinement strategy that exploits the benefits of
the higher order Lobatto discretization. The standard default strategy used by SOS

is “(TRP),2;(HSC),20”, that is, the trapezoidal method on the first two refinement
iterations, followed by the compressed Simpson method on succeeding iterations.
Table 8 summarizes the difference between the “optimal” and “standard” strategy
for both cases. Observe that the optimal strategy requires fewer grid points, and



Using Direct Transcription to Compute Optimal Low Thrust Transfers. . . 81

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  2  4  6  8  10  12

v y

t

Fig. 14 Long transfer vy.t/

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  2  4  6  8  10  12

u1

t

Fig. 15 Long transfer u1.t/

less solution time when compared to the standard strategy, for both the short and
long transfers. Furthermore an additional refinement iteration was required for the
short transfer. It is also apparent that for the long transfer using a high order method
during phases 2 and 3 is particularly effective.

8.3 Indirect Collocation

It is well known that the optimal control problem (1)–(4) can be formulated as a
two-point boundary value problem. This approach is referred to as indirect because
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Table 7 Impact of spline boundary condition on CPU time

Problem SOS Algorithm (s) Problem functions (s) Total time (s)

Short transfer 1:54077 2:05368 3:59445

Short, spline BC 2:58261 0:326948 2:90956

Long transfer 14:5898 3:52747 18:1172

Long, spline BC 10:7704 0:409929 11:1803

Table 8 Impact of refinement strategy on efficiency

Problem, strategy Ref. Iter. M NRHS Total time (s)

Short, optimal 5 72 167;309 3:591

Short, standard 6 161 441;931 3:619

Long, optimal 5 210 1147;939 18:112

Long, standard 5 536 4;388;050 30:063

it entails both the problem dynamics as well as the optimality conditions. The
adjoint equations for this example are given in Sect. 6.4, and when combined with
the transversality conditions, a complete boundary value problem can be stated.
As an alternative, let us consider an approach that does not require computation of
the transversality conditions as suggested in reference [5], and illustrated in [2, 11].
In this formulation we consider a problem with the augmented set of differential
variables Œz.t/;�.t/� and minimize

F D 1

2

Z tf

t0

uT.�/u.�/ dt: (127)
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subject to the differential equations

Pz D fŒz;u.�/� (128)

P� D �@H

@z
(129)

where we define

u.t/ D u Œ�.t/� D
���3.t/
��4.t/

�

(130)

which follows from (92) and (93). As before the initial and terminal states are fixed
by the boundary conditions (61) and (62). The collocation method can be used
to solve this problem having only differential variables and no algebraic (control)
variables. In so doing the adjoint Eq. (129) can be viewed as simply a different way
to parameterize the control variables. Since the objective function (127) appears
directly there is no need to compute the transversality boundary conditions.

Unfortunately an indirect formulation suffers from a number of well known
drawbacks. First, one must derive the adjoint equations i.e. (67)–(93), and in general
this can be a rather daunting task! Secondly, an initial guess for the adjoint variables
must be provided in order to begin an iterative solution, and this can be very
challenging because the adjoint variables are not physical quantities. Even with
a reasonable guess for the adjoint variables, the numerical solution of the adjoint
equations can be very ill-conditioned! The sensitivity of the indirect method has
been recognized for some time. Computational experience with the technique in the
late 1960s is summarized by Bryson and Ho [6, p. 214]:

The main difficulty with these methods is getting started; i.e., finding a first estimate of the
unspecified conditions at one end that produces a solution reasonably close to the specified
conditions at the other end. The reason for this peculiar difficulty is the extremal solutions
are often very sensitive to small changes in the unspecified boundary conditions: : : : Since
the system equations and the Euler–Lagrange equations are coupled together, it is not
unusual for the numerical integration, with poorly guessed initial conditions, to produce
“wild” trajectories in the state space. These trajectories may be so wild that values of x.t/
and/or �.t/ exceed the numerical range of the computer!

These observations by Bryson and Ho reflect experience with the most common way
to treat an indirect formulation such as (127)–(129) referred to as indirect shooting.
For a shooting method, the differential equations are propagated using a standard
numerical integration algorithm. In so doing the number of free variables is small,
since the dynamic history is not discretized. Indeed, Epenoy [7] describes the steps
required to solve this example using a shooting method, and deal with the solution
sensitivity.

The reason for this particular difficulty serves to illustrate a fundamental
difference between the collocation and shooting methods. With a shooting method
the ordinary differential equations are numerically integrated, step by step from the
initial to final time. The steps are of the form

y.tk C hk/ D y.tk/C	yk C ek
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Table 9 Mesh refinement summary–indirect collocation, short transfer

k M Disc. m n nd NRHS Iter � Time (s)

1 71 LA3 1128 1130 2 11,533 5 3.4�10�6 0.4859

2 141 LA3 2248 2250 2 46,923 9 1.0�10�7 0.4459

3 146 LA3 2328 2330 2 22,985 2 7.9�10�8 0.1309

Total 146 81,441 1.0628

Table 10 Mesh refinement summary–indirect collocation, long transfer

k M Disc. m n nd NRHS Iter � Time (s)

1 168 HSC 1344 1346 2 90,033 5 3.0�10�6 0.6319

2 335 HSC 2680 2682 2 922,547 2 5.7�10�8 1.7567

Total 335 1,012,580 2.3886

where 	yk is an estimate of the change over a step of length hk, and ek is the error
in this approximation. Although the numerical integration algorithm will attempt
to keep kekk “small” rarely is the error exactly zero. Thus, after a series of steps,
the accumulated error in the solution can become large, i.e.

P
k kekk ! 1. When

this happens the system of ODE’s is considered unstable. In contrast, a collocation
method is not a serial process, because the entire dynamic history is altered by the
NLP iterations. Since the defect constraints over the entire domain are addressed
simultaneously, the collocation method can be viewed as global corrector iteration.
Finally, it is worth noting that since the Lobatto IIIA schemes are symmetric, there
is no particular advantage to integrating “forward” or “backwards.” In short, a
collocation method can deal with stability much more effectively than a shooting
algorithm. Furthermore, if a direct collocation solution is available, then estimates
for the adjoint variables can be computed from the NLP Lagrange multipliers [3,
Sect. 4.11].

Using the direct solution as an initial guess, the indirect collocation method was
used for both the short and long transfer examples. Tables 9 and 10 summarize the
mesh refinement history for these cases. The results for these two cases demonstrate
a number of points. Clearly the single phase indirect collocation formulation
converges quickly for both cases. Unfortunately, when a good initial guess is not
available, many of the issues of an indirect approach are not resolved by using
collocation. In particular, from a “bad” guess, the method may either converge to
a local solution or fail to converge at all.

9 Summary

This paper describes the implementation of a direct transcription method that
incorporates high order Lobatto discretization of the problem dynamics. The
technique is illustrated on a challenging low thrust orbit transfer example originally
studied by Epenoy [7]. In addition a number of computational alternatives are
discussed.
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Appendix: Lobatto IIIA Method Coefficients
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Tentative Solutions for Indirect Optimization
of Spacecraft Trajectories

Guido Colasurdo and Lorenzo Casalino

Abstract In this chapter, the problem of improving convergence and finding
suitable tentative solutions for the indirect optimization of spacecraft trajectories
is discussed. The application of theory of optimal control to spacecraft trajectories
transforms the optimal control problem into a multi-point boundary value problem,
which is usually solved by means of an iterative procedure. The convergence radius
of the problem may be small and convergence to the optimal solution is only
obtained if the tentative solution, which is used to start the procedure, is sufficiently
close to the optimum. The definition of a suitable solution is often the hardest part
of the solution procedure for the optimization problem. Several cases and examples
are presented in this chapter to illustrate the measures that could be adopted for the
most common difficulties, which may be found during the optimization of space
trajectories.

Keywords Trajectory optimization • Optimal control theory • Indirect methods

1 Introduction

Trajectory analysis and optimization is a fundamental task in the design of a
space mission. The trajectory directly influences the propellant consumption and
consequently the mass budget, which is in turn directly related to the mission
feasibility and costs. Trip time is an additional important factor, also related to the
flown trajectory. Final mass or payload maximization, and flight time minimization
are the problems that must be typically dealt with.

Most of the methods for the optimization of spacecraft trajectories can be
grouped into three main classes [2]. Direct methods transform the problem into a
parameter optimization (nonlinear programming) and solve it by means of gradient-
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based procedures. Indirect methods use the theory of optimal control to transform
the optimization problem into a boundary value problem (BVP), solved by means
of shooting procedures. Evolutionary algorithms, instead, exploit large populations
of solutions which evolve towards the global optimum according to specific rules
that mimic natural phenomena.

The indirect approach offers many advantages and has been widely applied in
the past to different problems concerning space trajectory optimization, mainly, but
not exclusively, when low-thrust maneuvers are analyzed. A non-exhaustive list of
examples comprises generic analysis of optimal trajectories [14, 18, 22, 23, 26] and
global low-thrust trade studies [28], interplanetary transfers [24, 25, 27], geocentric
transfers and Moon’s missions [17, 20], and ascent trajectories [15]. The most
important advantage of indirect methods is that they allow for an exact optimization
(in the limits of the dynamical model and the accuracy of numerical integration).
In addition, it is common opinion, even though not unanimous, that, at least for
low-thrust missions, the computational cost of indirect methods is typically lower
compared to direct methods, which require a very large number of parameters for an
accurate description of the trajectory (severe approximations are instead necessary
to genetic algorithms). Finally, the indirect approach provides useful theoretical
information on the problem which is dealt with.

Indirect optimization methods are the subject of this chapter; they are based
on the optimal control theory (OCT). The optimization problem is turned into a
multi-point boundary value problem by the introduction of adjoint variables. OCT
provides differential equations for the adjoint variables, algebraic equations for
the determination of the control variables during the trajectory (as a function of
state and adjoint variables at the same point), and a set of boundary conditions for
optimality. The arising problem is therefore characterized by boundary conditions
that must be fulfilled at initial, final and intermediate points (e.g., points where state
variables are constrained or exhibit discontinuities). Some of the initial values of
the state and adjoint variables are unknown and the values that allow satisfying the
boundary conditions are sought. A shooting procedure is commonly employed to
solve this kind of problems. Betts [2] highlights that the region of convergence for
a shooting algorithm may be quite small, as it is necessary to guess at values for
adjoint variables that may not have a clear physical meaning.

The BVP solution is made easier if the problem is formulated in a way that
mitigates the drawbacks of the indirect methods. The authors in the past developed
an approach [11] that makes the position of the problem and the derivation of the
optimal conditions general and easy, thus allowing for the application of the indirect
approach to very complex problems of spaceflight mechanics. Some enhancements
have been introduced also in the BVP formulation, to improve convergence of the
shooting procedure. However, the capability of achieving the numerical solution
is still dependent on the tentative solution, which is assumed in order to start
the procedure; methods to define suitable tentative solutions are presented in this
chapter. The application of OCT to a generic spacecraft trajectory is considered
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and the derivation of the optimal control law and conditions for optimality are first
summarized. The numerical procedure to obtain converged solutions is described;
examples are presented with the main aim of providing indications on strategies
capable of improving the numerical accuracy and finding the tentative solutions that
guarantee convergence to the optimal solution.

2 Optimal Control Problem

The indirect approach to optimization uses OCT, which is based on calculus of
variations; detailed presentation of OCT can be found in [3, 4, 18, 21]. The position
of the optimization problem, which is here described, has the most suitable form to
deal with the optimization of space trajectories and to exploit the capabilities of the
numerical procedure that has been selected to solve the BVP.

The system is described by a set of state variables x; differential equations rule
the evolution from the initial to the final state

dx
dt
D f.x;u; t/ (1)

They are functions of x, of the control variables u, and of the independent variable t
(usually but not necessarily, the time).

The trajectory between the initial and final point (external boundaries) is usefully
split into n arcs at the points (internal boundaries) where the state or control
variables are discontinuous or constraints are imposed. The jth arc starts at t.j�1/C
and ends at tj� , where the state variables are x.j�1/C and xj� , respectively (j� and
jC denote values just before and after point j).

Nonlinear constraints are imposed at both internal and external boundaries. These
boundary conditions are grouped into a vector  and written in the form

 .x.j�1/C ; xj� ; t.j�1/C ; tj�/ D 0 j D 1; : : : ; n (2)

Additional path constraints may hold along an entire arc; constraints may also
concern the control variables u.

Meyer formulation is preferred to define the optimization problem, which
searches for extremal values (maxima or minima) of a functional

J D '.x.j�1/C ; xj� ; t.j�1/C ; tj�/ j D 1; : : : ; n (3)

A necessary condition for optimality requires that the first variation of J is null for
any admissible variation along the path (ıx and ıu) and at boundary points (ıx.j�1/C ,
ıxj� , ıt.j�1/C and ıtj� ).
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Lagrange multipliers (constants 
 associated with boundary conditions and
adjoint variables � associated with the differential equations) are introduced and
a modified functional is defined

J� D ' C 
T C
X

j

Z tj�

t.j�1/
C

�T.f � Px/dt (4)

where the dot (P) denotes the time derivative.
The functionals J and J� coincide if all boundary conditions and differential

equations are satisfied. One can differentiate J� and obtain
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dt j D 1; : : : ; n (5)

where the Hamiltonian has been introduced

H D �T f (6)

Optimality requires ıJ� D 0 for any admissible variation. By nullifying the
coefficients of ıx and ıu one has the Euler-Lagrange equations for the adjoint
variables

d�

dt
D �

�
@H

@x

�T

(7)

and algebraic equations for the control variables

�
@H

@u

�T

D 0 (8)

A control variable may be subject to constraints (e.g., the thrust magnitude
varies between a minimum value, typically 0, and a maximum value Tmax). In these
cases, Eq. (8) might not provide the optimal control. However, in agreement with
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Pontryagin’s Maximum Principle (PMP) [3], the optimal control must maximize
H, given by Eq. (6). In particular, when the Hamiltonian is linear with respect to a
control variable (e.g., thrust magnitude), a bang-bang control arises, and the control
assumes either its maximum or minimum value, except for singular arcs [3, 6].

Finally, the boundary conditions for optimality are obtained by nullifying the
coefficients of ıx.j�1/C , ıxj� , ıt.j�1/C , ıtj� . One has

� �T
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D 0 j D 1; : : : ; n (9)
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Hj� C
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T @ 

@tj�
D 0 j D 1; : : : ; n (11)

�HjC C
@'

@tjC
C 
T @ 

@tjC
D 0 j D 0; : : : ; n � 1 (12)

The constant Lagrange multipliers are eliminated form Eqs. (9)–(12); the resulting
boundary conditions for optimality and the boundary conditions on the state
variables, given by Eq. (2), are collected in a single vector in the form

� .x.j�1/C ; xj� ;�.j�1/C ;�j� ; t.j�1/C ; tj�/ D 0 (13)

which, together with state and adjoint differential equations, defines a multi-point
boundary value problem (MPBVP).

Noticeable difficulties in the MPBVP solution arise when the relevant times
are unknown and the lengths of the integration intervals are free. A change of
independent variable is introduced [12] to overcome the indetermination of the
relevant times and fix the extremes of the integration intervals; in the jth phase, t
is replaced by

" D j � 1C t � tj�1
tj � tj�1

(14)

which assumes consecutive integer values at the boundaries. The differential
equation for the variable vector y (which collects state, x, and adjoint, �, variables,
and also unknown constant parameters) during phase j becomes

dy
d"
D .tj � tj�1/

dy
dt
D f0.y/ (15)

This peculiar position of the problem is also useful to handle problems involving
multiple satellites, as described in Sect. 5.
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3 Application to Space Trajectories Optimization

Preliminary analysis of spacecraft trajectories is typically carried out assuming a
point mass spacecraft under the influence of a single body. The two-body model
can also be used to deal with interplanetary trajectories, as the patched-conic
approximation is usually employed in preliminary analyses. An efficient approach
only analyzes the heliocentric legs; at the patch points with the planetocentric legs,
suitable boundary conditions take the maneuvers inside the planets’ spheres of
influence into account. Indirect methods are however capable of dealing with more
complex dynamical models, which consider, for instance, main body oblateness,
third-body perturbations, solar radiation pressure, aerodynamic forces. This indirect
approach has also been applied to trajectory optimization in the restricted three-
body problem [10]. The formulation of the trajectory optimization in the two-body
problem with the addition of a generic perturbation term ap, which is a function of
time and state variables, is given here.

The state of the spacecraft is described by position r, velocity v and mass m and
the state equations are

dr
dt
D v (16)

dv
dt
D gC T

m
C ap (17)

dm

dt
D �T

c
(18)

where T is the engine thrust and g is the gravitational acceleration (an inverse-
square gravity field g D ��r=r3 is typically assumed); the propellant mass-flow
rate is expressed by the ratio of the thrust magnitude to the constant effective exhaust
velocity c. This indirect method is also capable of treating variable c, i.e., propulsion
systems with adjustable specific impulse [7].

The Hamiltonian, defined by Eq. (6), is

H D �T
r vC �T

v .gC T=mC ap/ � �mT=c (19)

The thrust direction and its magnitude are typically the control variables, which must
maximize H in agreement with PMP [3]. The optimal thrust direction is therefore
parallel to the velocity adjoint vector �v, which is named primer vector [22]. The
switching function

SF D �v

m
� �m

c
(20)

is introduced, and Eq. (19) is rewritten as

H D �T
r vC �T

vgC TSF (21)
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The thrust magnitude assumes its maximum value when the switching function
SF is positive, whereas it is set to zero when SF is negative, again to maximize
the Hamiltonian. Singular arcs occur when SF remains zero during a finite time;
Eq. (21) is not sufficient to decide the optimal thrust magnitude (singular arcs are
here excluded; they may be required during atmospheric flight [6]).

The Euler-Lagrange equations for the adjoint variables, Eq. (7), provide [8]
�

d�r

dt

�T

D ��T
v

�
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@r

�

(22)

�
d�v
dt
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D ��T
r � �T
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@v

�

(23)

d�m

dt
D �vT

m2
� �T

v

�
@ap

@m

�

(24)

Equations (16)–(18) and (22)–(24) constitute the system of differential equations,
which is numerically integrated. The MPBVP is completed by Eq. (13), which
collects the constraints on the state variables, enforced by Eq. (2), and the boundary
conditions for optimality, derived from Eqs. (9)–(12). Some examples can be found
in [11].

A certain number of initial values of the state and adjoint variables are unknown;
several constant parameters, such as the relevant times tj, may also be unknown.
They are collected in vector p. An iterative procedure is used to determine the
unknowns that permit the fulfillment of Eq. (13). Tentative values are first assumed;
it is very important that these initial values are sufficiently close to the optimal
solution to guarantee convergence. The assumption of a suitable solution is a
fundamental step in the optimization procedure; details will be given in Sect. 5.

4 BVP Solution and Improvements of Numerical Accuracy

Variable normalization should be adopted. Convergence difficulties may arise when
the orders of magnitude of variables exhibit large differences. A proper scaling, for
instance to make the magnitude of all variables close to unit, allows for a much
easier convergence.

Once tentative values have been assigned to the unknowns p, the differential
equations are integrated and the errors � on the boundary conditions are found.
Newton’s method is used to bring the errors to zero. The unknowns are in turn varied
by a small amount (e.g., 10�6) to evaluate, according to a forward-finite-difference
scheme, the derivatives of the errors with respect to the unknowns. The correction
of the tentative values is thus obtained under a linear approximation

�p D �K

�
@�

@p

��1
p (25)
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where the relaxation factor K (between 0 and 1) reduces the theoretical correction.
The linearized approach is accurate only for small variations. Relaxation may be
required in the presence of large theoretical corrections (often typical of the first
iterations), and implemented by adopting K < 1. Either constant or variable K
(increasing towards 1 as the number of iterations grows) can be used.

4.1 Gradient Evaluation

An accurate gradient evaluation is usually required to obtain convergence. Under
this point of view, some techniques are very useful. If the problem is very
sensitive to the initial values (e.g., three-body problem, atmospheric flight), a
more precise analytical approach [12] may replace the one-sided finite-difference
scheme described above. The procedure is usually rather heavy in terms of both
analytical effort to derive the necessary equations, and time to program and debug
the numerical code; computational time also increases and this approach should be
used only when other techniques fail to provide convergence. The error gradient
matrix can be evaluated as

�
@�

@p

�

D
�
@�

@s

� �
@s
@p

�

(26)

where s D .y0; y1�; y1C; : : : ; yf / collects the values that state and adjoint variables
assume at relevant boundaries. The error gradient with respect to these values
Œ@�=@s� is obtained by analytical derivation. The derivative of s with respect to the
unknowns p contains the values assumed by the transition matrix Œ@y=@p� at the
same boundaries (" D 0; 1�; 1C; : : : ; f ). The transition matrix is in turn obtained
by integrating the homogeneous system
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(27)

The Jacobian matrix Œ@f0=@y� is obtained by analytical derivation.

4.2 Thrust Discontinuities

The integration strategy may greatly affect gradient-evaluation accuracy and there-
fore convergence, in particular when the control variables exhibit jumps; this is the
case of the thrust magnitude in space trajectory optimization, as it usually exhibits
a bang-bang control. During integration, the current value of the switching function
is often used to choose the thrust level. In such an instance, variable step integration
schemes (such as the Adams-Moulton variable-step, variable-order scheme used by
the authors) are preferable as the integration step is adjusted in correspondence of
the discontinuities to guarantee the required accuracy. A fixed-step integration may
introduce errors that affect the convergence process.
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Additional techniques may however be required to improve the numerical
accuracy, even though an intrinsically precise integration scheme is employed; to
this purpose, the trajectory is split into maximum-thrust arcs and coast arcs. The
number and order of the arcs, that is, the trajectory switching structure, is assigned
a priori, and the arc time-lengths are additional unknowns. The boundary conditions
for optimality state that the switching function SF must be null at the extremities of
each thrust arc. According to Eq. (20), one enforces

�vj

mj
� �mj

c
D 0 (28)

at each relevant boundary. These constraints are added to Eq. (13).
The numerical procedure provides the optimal solution that corresponds to the

assigned switching structure. This solution is eventually checked in the light of PMP,
by analyzing the switching function; if PMP is violated, coast or propelled arcs are
inserted or removed, according to the behavior of SF, to obtain an improved solution
(e.g., a coast arc is introduced when SF becomes negative during a propelled arc).
Smoothing techniques [1] are alternatively employed. However, they usually require
a very large computational effort, offsetting the advantages of indirect methods.

4.3 Multiple Shooting

Multiple shooting is an additional technique that can be used to improve con-
vergence. Trajectory problems are typically highly nonlinear and small variations
of a parameter may have very large effects on the boundary conditions. In this
case, Newton’s linearized method may not work. A multiple shooting approach
splits the trajectory into subarcs at specified points (e.g., planetary encounters).
The variables, which are necessary to start the integration in each new subarc, are
treated as additional problem unknowns. Proper boundary conditions are introduced
to guarantee the trajectory continuity at the arc junctions. In this way the influence
of the unknowns on the errors is reduced, at the expense of a larger number
of unknowns. Convergence is typically easier even though computational times
increase.

5 Techniques to Improve Convergence

Due to the intrinsic difficulty of trajectory optimization, convergence problems
may still persist after suitable techniques have been adopted to allow for a correct
gradient evaluation. In these cases, it is the user’s experience that guides and handles
the convergence process, as each problem may require its peculiar approach.
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A traditional method to find suitable tentative solutions is the homotopy con-
tinuation approach, which has been profitably applied to many problems of space
trajectory optimization [1, 5, 9, 13, 16, 19, 30]. Homotopy is based on the definition
of an auxiliary problem (with some sort of connection to the original one) whose
solution is known or can be easily found. The solution of the auxiliary problem is
used as starting guess and is gradually moved towards the solution of the original
optimal problem by constructing intermediate problems. For instance, a linear
combination of the performance indexes and boundary conditions of the original
and auxiliary problems can be used. Each intermediate problem is solved starting
from the solution of the previous step. This technique is usually very effective but
may be demanding from the computational point of view, as the solution of many
boundary value problems is required. A vast literature exists about homotopy; the
most common applications of this approach are for the transition from known or
easy-to-find solutions to the optimal one. For instance, from minimum-energy to
minimum-fuel problem [5, 19], from a simpler to a more detailed dynamical model
[9, 13] or from a known highly-constrained solution to the optimal one [16, 30].
Homotopy in conjunction with smoothing techniques has been proposed [1, 19] to
assess the switching times in bang-bang control problems. Discussion is here limited
to aspects related to search for the optimal switching structure.

One of the most critical issues for indirect optimization of a space trajectory
is often the definition of the switching structure. Techniques specifically tailored
for the problem at hand can greatly facilitate this task. A multi-revolution perigee
raising transfer to a high eccentricity orbit (HEO) with an accurate dynamical
model, which takes relevant perturbations (Earth oblateness and lunisolar gravity
perturbation) into account, can be used as an example to illustrate these techniques
[31–33]. A perigee raising maneuver is conveniently split between multiple apogee
passages, when perturbations are not considered. However, the relatively large effect
of Moon’s gravity may cause some apogee burn to increase and others to diminish or
even vanish, so that the switching structure cannot be assessed a priori. The duration
of the apogee burns is tailored to modify the orbital period with the purpose of
reaching favorable configurations (where the Moon contributes to the required orbit
changes) and avoid unfavorable ones (where the Moon acts against them). The initial
burns of the unperturbed solution vanish when it is convenient to shorten the mission
length, whereas they are enlarged (and the final burns vanish) when the mission
time-length must be increased.

The switching structure of the unperturbed problem is modified by the introduc-
tion of perturbations; it is advisable to consider a fraction Pf of the perturbation
that, according to a continuation approach, gradually increases from 0 to 1.
Failure to converge using the switching structure of the previous solution signals
a request for a modified structure, which can be easily determined by inspecting the
switching function of the last converged solution. This task is automatically done by
comparing the maximum value of the switching function during each burn arc and
removing the arc that presents the lowest values. An example of switching function
behavior for different perturbation fractions during a HEO transfer is shown in
Fig. 1, where the third apogee burn (A3) must be removed to obtain convergence
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Fig. 1 Spacecraft deployment in HEO: switching function history for different values of the
perturbation fraction Pf

for Pf > 0:6. It is interesting to note that the solution of the unperturbed problem
can also be easily obtained by means of a continuation technique, starting from
a minimum-time trajectory with a lower thrust level. As the thrust magnitude is
increased, coast arcs are introduced where required by PMP.

Besides the initial assumption of the switching structure, a guess at the location
of the arc extremities is necessary. The use of time as the independent variable
may prevent convergence when multiple revolutions are performed, because it is
often difficult to estimate the apogee passage times (which depend on the period
of previous revolutions and therefore on the amount of energy increase obtained
during the previous burns). Using longitude as the independent variable facilitates
the definition of a starting guess, since the burns are always in the proximity of
passages at the apsides and can therefore be easily estimated. As an example, Table 1
compares times and longitudes at the extremities of each burn and orbit insertion
for deployments to a given HEO, departing on different dates (P and A indicate
perigee and apogee burns, respectively). It is evident that times exhibit relevant
changes, whereas it is quite easy to guess at the corresponding longitudes which
assume similar values. In Table 1, the same values of time and longitude at both
extremes of a burn arc indicate that this arc (A3 or A1, for the early or late departure,
respectively) has vanished and a ballistic apogee passage is instead imposed.

The HEO deployment of a two-spacecraft formation is also useful to illustrate
how a smart position of the constraints can be effective to improve convergence.
In the case considered in [32], two satellites had to be inserted into the same orbit
with a 10-km distance in the apogee proximity. This constraint may be difficult to
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Table 1 Switching times and
longitudes for HEO
deployment starting on
different dates

Jan. 1, 2015 Jan. 15, 2015

Event Time (h) Long. (rad) Time (h) Long. (rad)

P1 start 84:4 10:73 84:3 10:75

P1 end 84:5 11:27 84:4 11:25

A1 start 125:7 14:13 126:5 14:14

A1 end 129:2 14:16 126:5 14:14

A2 start 212:4 20:41 211:7 20:42

A2 end 219:2 20:46 214:9 20:44

A3 start 311:8 26:70 299:9 26:69

A3 end 311:8 26:70 304:9 26:74

Arrival 408:2 33:00 397:8 33:00

handle, as relative distance depends on three state variables that define the spacecraft
position. The observation that the satellites share the same orbit suggests turning the
position constraint into a time constraint. The same point (i.e., the apogee) is chosen
as the final point for deployment of each satellite, but a time-delay (the ratio of the
required distance to the velocity at the final point) is imposed for the arrival of the
follower spacecraft. The same simple constraints enforce the required position and
velocity at apogee for both satellites.

In the case of a cooperative deployment, each satellite adopts a specific strategy
with the purpose of better splitting the phasing duty and reducing the overall pro-
pellant consumption. The motion of the satellites has to be evaluated and optimized
simultaneously; handling the engine switching times of both spacecraft can be a
major difficulty. The unique time-like variable " is able to handle differences in
time of the switching points, as shown in Fig. 2. The variable transformation allows
defining the switching structure of each spacecraft independently from the other,
since each of them has its own time scale. The number of thrust and coast arcs is, in
general, different for the two spacecraft. It is convenient to split the trajectory of both
satellites into the same number of arcs, by adding a suitable number of zero-length
arcs (e.g., the fifth and sixth arc of SAT2 in Fig. 2). This also permits the alignment
of perigee and apogee burns, simplifying the problem description and solution.

When the homotopic approach is not feasible or too demanding, specific
strategies should be devised for the particular problem that must be solved. In a
former work [11], the authors discussed and highlighted the benefits of trajectory
patching and of the use of optimal phasing solutions as starting guesses. Optimal
phasing trajectories, which assume the most favorable position of a relevant body
along its orbit, are useful when several bodies are concerned (e.g., planets that can
provide gravity assist) and can be extremely effective in finding suitable launch
windows for high-performance trajectories. The trajectory is split into simple legs,
that are first separately optimized and then patched together to provide a tentative
solution to optimize the complete trajectory, possibly using a multiple shooting
approach.
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Fig. 2 Two-spacecraft cooperative maneuver: alignment of thrust and coast arcs provided by
nondimensional time-like variable "

Evolutionary algorithms (EAs) may be an useful tool when used in conjunction
with direct and indirect methods. The authors employed an EA [29] to define
tentative solutions for their indirect method. A suitable choice of the performance
index (e.g., overall error on the boundary conditions, time of flight, propellant
consumption or a combination of them) can facilitate finding suitable sets of
tentative values, exploring different launch windows, and defining the switching
structure for the indirect optimization. In particular, when interplanetary transfers
are analyzed, one usually needs the mission opportunities (that is, all the local
optima that characterize this kind of transfers) and the Pareto front, in terms of
payload and trip-time. Finding each local optimum requires a suitable tentative
solution, and this task is often the hardest part of the optimization process. When
properly employed, an EA can provide a set of tentative solutions that allow
convergence to the maximum-payload missions that are present in the considered
time window. Figure 3 shows an example for an Earth-Mars transfer using solar
electric propulsion. A genetic algorithm was used to provide tentative solutions to
the indirect method, which in turn found six locally optimal trajectories (D1–D6).
Starting from these solutions, the Pareto front was determined by constraining the
trip time at different values. The final mass remains constant between D2 and D2’.
D3–D3’ and D4–D4’: these solutions only differ because of the addition of a final
coasting arc to attain the required time-length.

6 Final Remarks

This chapter presented an indirect procedure that is based on a multi-arc structure of
the trajectory. Derivation of the necessary conditions for optimality is quite simple
and can be applied to a very large number of different problems. The multi-arc
structure is useful to handle constraints and variable discontinuities, permitting the
optimization of complex trajectories, which present features such as staging and
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Fig. 3 Example of Pareto front for Earth-Mars transfer in an assigned time window

multiple gravity assists. Integration accuracy and precise determination of the error
gradients have a strong influence on the capability of attaining the optimal solution.
To this purpose, it is convenient a further split of the trajectory, permitting only a
constant thrust-level in any arc; thrust discontinuities occur at arc extremities.

Indirect optimization methods require a suitable tentative solution to start
the process and permit convergence to the optimal solution. According to the
proposed approach, also the switching structure, that is the sequence of coasting
and burn arcs together with the constraint positions, has to be a priori guessed.
The tentative solutions, which comprise arc time-lengths, are typically found by
means of a homotopic approach. Every problem has however its specific features
and appropriate strategies to get the optimal solution. Several examples have been
presented in this chapter and could provide useful suggestions to solve similar
problems.
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Resource-Constrained Scheduling
with Non-constant Capacity
and Non-regular Activities

Giorgio Fasano

Abstract This work is inspired by very challenging issues arising in space logistics.
The problem of scheduling a number of activities, in a given time elapse, optimizing
the resource exploitation is discussed. The available resources are not constant, as
well as the request, relative to each job. The mathematical aspects are illustrated,
providing a time-indexed MILP model. The case of a single resource is analysed
first. Extensions, including the multi-resource case and the presence of additional
conditions are considered. Possible applications are suggested and an in-depth
experimental analysis is reported.

Keywords Resource constrained project scheduling problem • Non-constant
resource capacity • Non-constant resource request • Irregular job/activity/cycle
profile • Multi-resource • Time-indexed scheduling • Mixed integer linear
programming • Global optimization

1 Introduction

This work is inspired by the logistic context in space activities. It is notorious that,
in this framework, the exploitation of the resources available (e.g. on orbit or on the
exploration surface) is usually an extremely challenging issue. Complex scheduling
problems arise, presenting the experts with the necessity of optimizing the sequenc-
ing of what is usually a significant number of jobs, requiring contemporarily the
utilization of different resources, such as, electrical power, data handling capacity
and crew time. As a further non-trivial difficulty, the operational cycles (jobs) are
frequently associated with an irregular activity, i.e. they are characterized by a
variable resource request profile. Similarly, the overall capacities of the relevant
resources vary. Figure 1 provides, as an illustrative example, the case of a single
(non-constant) resource and three different (non-constant) request cycle types.
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Fig. 1 Irregular cycles and non-constant resource

The specialist literature on scheduling is vast [1–4, 8, 15–21], covering several
specific problems and methodologies. This chapter focuses on a non-standard
resource constrained project scheduling problem (RCPSP). For the classical RCPSP
see [5–7, 10–12, 14, 22–27]. In the author’s previous work [9], an approxi-
mate MILP (Mixed Integer Linear Programming) time-continuous approach, was
proposed. A novel approximate MILP formulation of the problem, based on a
time-indexed approach, is discussed here. This latter option was motivated by the
efficiency of discretized models for scheduling problems [28]. As in the previous
work, the approach proposed in this chapter provides a global optimization (GO)
perspective on the problem in question. The discussed formulation is suitable for
tackling a number of different variants of the RCPSP, involving either single or
multiple resources and characterized by the specific objective functions adopted.

The remainder of the chapter is organized as follows. The first part of Sect. 2
provides an MILP model for the case of a single resource, namely electrical power
[8, 29, 30]. Afterwards, the presence of possible additional conditions is outlined
and an extended formulation, addressing the multi-resource scenario is introduced.
Sect. 3 is devoted to the computational study.

2 Time-Indexed Formulation

The problem considered in this section, concerns the electrical power consumption,
by a number of devices (e.g. payloads, in the case of the space framework), in a
pre-specified time period. Each device may be requested to execute a sequence
of cycles, of type 
 , between a given minimum and maximum limit, i.e. N
 and
N
 , respectively. Assuming, for the sake of simplicity, that the value associated
with each device cycle is the same (this assumption could be generalized by
introducing appropriate weights), the optimization objective consists of maximizing
the exploitation of the energy available during the entire time period [0, Tf ], where
Tf denotes the final time.
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Some additional conditions (e.g. of time-precedence), might be imposed on the
execution of the cycles (relevant examples shall be provided). The (electrical) power
available at each instant t 2 �

0;Tf
�

is represented by a given function of time
w(t) (e.g. step-wise or continuous, see Fig. 1). Similarly, each cycle type 
2T (T
indicates the set of all cycle types) is associated with a given function of time (cycle
type profile) w
 (t), defined (conventionally) over [0, D
 ], where D
 corresponds to
cycle type 
 duration. All activated cycles must obviously be entirely executed
within the given overall time period. This means that, denoting the initial instant
of cycle i of type 
 with t0
 i, 8
 , 8i t0
 i 2

�
0;Tf � D


�
(in the following I shall

indicate the generic set of cycle indices).
For each cycle of each type 
 , the binary variables �
 i 2 f0; 1g are introduced

with the following meaning:

�
 i D 1 if cycle i of type 
 is activated;
�
 i D 0 otherwise.

For each cycle i of type 
 , the function of time w
 i(t) is defined as follows:

8t 2 Œt0
 i; t0
 i C D
 � w
 i.t/ D w
 .t � t0
 i/ (1a)

8t … Œt0
 i; t0
 i C D
 � w
 i.t/ D 0 (1b)

More precisely, this means that each t0
 i 2
�
0;Tf � D


�
generates a specific w
 i(t),

belonging to the set of functions with compact support (such that 8t 2 �
0;Tf

�

w
 i.t/ � 0 and 8t … �0;Tf
�

w
 i.t/ D 0). In the following, only their restrictions
to the intervals [0, Tf ] will be considered.

The optimization task, in a normalized form, can be expressed as follows:

max
�
 i;t 0
 i2Œ0;Tf �D
 �

X


 2 T
i 2 I

TfZ

0

�
 iw
 i.t/dt

TfZ

0

w.t/dt

(2)

Here,

TfZ

0

w.t/dt D E represents the total energy available, while

DfZ

0

w
 .t/dt D E
 the

energy requested by each cycle of type 
 (therefore each integral

TfZ

0

�
 iw
 i.t/dt

appearing in (2) may simply be substituted with �
 iE
 ).
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It is assumed, without any loss of generality, that

8
2T;8i; j 2 I=i < j Œt0
 i; t0
 i C D
 � \
�
t0
 j; t0
 j C D


� D Ø (3)

Were parallel processes (for the same cycle types) indeed to be considered, it would
be sufficient to extend the set T appropriately.

For any selection
�
t011; : : : ; t0
 i; : : : ; t0jTjjIj

�
, where jTj and jIj represent the

cardinalities of T and I respectively, the following conditions are imposed upon
the corresponding functions of time w
 i(t):

8t 2 �0;Tf
� X


 2 T
i 2 I

�
 iw
 i.t/ � w.t/ (4)

If a minimum and a maximum limit are specified on the number of cycles, the
following constraints are added: 8
2T N
�

X

i2I

�
 i�N
 . (If a proper set of indices

I
 were defined for each cycle type, all variables �
 i outside the corresponding index
ranges could be eliminated from the model, together with the previous upper limit
conditions).

The continuous-time model outlined above, although quite simple to formulate,
is extremely difficult to solve by an exact approach. A very simple time-indexed
reformulation is therefore put forward hereinafter, in order to provide approximate
solutions, useful in practice. To this purpose, a discretization of the entire period
[0, Tf ] (from now on, it is assumed Tf 2 N) is carried out, by utilizing an appropriate
time unit, i.e.:

�
0;Tf

� D Œ0; 1� [ � � � [ Œ�; � C 1� [ � � � [ �Tf � 1;Tf
�
. The power

function associated with each corresponding sub-interval Œ�; � C 1� is now assumed
to be constant. This gives rise to an approximating step-function, whose values W�

are defined as follows:

8�=0 � � � Tf � 1 W� D min
t2Œ�;�C1�

w.t/ (5)

Analogously, the activity period associated with each cycle type is discretized. To
this purpose, each duration D
 is substituted with a new one, consisting of the
shortest integer interval D
 , in terms the above mentioned time unit, containing
D
 (i.e. D
 D dD
e). The sub-intervals [0, 1], : : : , Œ�; � C 1�, : : : , �D
 � 1;D


�

are subsequently associated to each D
 . Also in this case, for each cycle type, the
power consumption, corresponding to each sub-interval Œ�; � C 1�, is assumed to be
constant and the function w
 (t) is therefore approximated by a step-function, whose
values are now expressed as:

8
;8�=0 � � � D
 � 1 W
� D max
t2Œ�;�C1�

w
 .t/ (6)



Resource-Constrained Scheduling with Non-constant Capacity. . . 107

Remark 1 The adopted approximations for the functions w(t) and w
 (t) guarantee
that every solution of the discretized model is a feasible solution of the time-
continuous one.

For each cycle type 
 , the time limit Tf 
 D Tf � D
 is stated. It represents the
maximum time breakpoint at which such a cycle type can be activated, in order to
be entirely executed within the interval [0, Tf ]. The binary variables �
� 2 f0; 1g are
then defined, with the following meaning:

�
� D 1 if a cycle of type 
 is activated at instant �, such that 0 � � � Tf 
 ;
�
� D 0 otherwise.

A basic formulation of the approximated MILP model reads as follows. Firstly,
oobjective function (2) is transformed into:

max
X


 2 T
� � Tf 


E

E
�
� (7)

The constraints below are introduced:

8
;8�=0 � � � Tf 
 ;8�=� � � � � C D
 � 1

u
�� D W
��
� (8)

8�=0 � � � Tf � 1
X


 2 T
� � D
 C 1 � � � �

u
�� � W� (9)

8
2T;8�=0 � � � Tf 
 �
� C
X

�0 � �
�0 � � C D
 � 1

�
�0 � 1 (10)

8
2T N
 �
X

��Tf 


�
� � N
 (11)

The variables u
�� (defined a priori as continuous) express, through Eq. (8), the
power consumption associated with a cycle of type 
 , during the sub-interval
Œ� C �; � C � C 1�, if activated at instant � (in such a case the power consumption
equals W
� ). If no cycle of type 
 is activated at instant �, the relative variables u
��
are zero.

Inequalities (8) and (9) state that during each time sub-interval Œ�; � C 1� the
power request cannot exceed what is available. Conditions (10) prevent the (total or
partial) simultaneity of two (or more) cycles of the same type. The minimum and
maximum limits for each cycle type are respected in virtue of inequalities (11).
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As a first consideration, conditions (8) and (9) could be rewritten in a single one,
getting rid of the variables u
�� , i.e.:

8�=0 � � � Tf � 1
X


 2 T
� � D
 C 1 � � � �

W
��
� � W� (12)

Remark 2 Once (8) and (9) are substituted with (12), all the variables are of the
binary type only (binary integer programming, BIP, model).

Hereinafter, extensions of the basic discretized model shall be outlined, consider-
ing firstly the possibility of including additional conditions. Two relevant examples
are illustrated. The first refers to the case where the total number of cycles of type



0

is a multiple of the one of 
 00. This is expressed by the following equations:

X

��Tf 
0

�
 0� D R
 0
 00

X

��Tf 
00

�
 00� (13)

(R
 0
 002N). A second example contemplates the case where the execution of each
cycle of type 
 00 must be preceded by (at least) P
 0
 00 cycles of type 
 ’. It is
understood, in particular, that each activated 
 00-cycle can always be associated
(through an injective function) with a set of P
 0
 00 preceding 


0

-cycles and all these
sets are disjoint. The conditions below serve the scope:

8�=� � Tf 
 00 P
 0
 00

X

�00��
�
 00�00 �

X

�0���D
0

�
 0�0 (14)

As mentioned previously, the approach proposed in this work is extendible to the
cases where a number of different resources have to be allowed for. The relevant
formulation is briefly reported in the following. The symbolism adopted hitherto is
adapted to the extended context, in order to stress the analogies with the basic model.
To this purpose, the functions associated with the resources available, whose set is
denoted by R, are now simply indicated with wr(t), where r 2 R is the corresponding
index. With an obvious meaning of the symbols, the extended version of the basic
model is reformulated as follows, keeping inequalities (10) and (11) unaltered (and
corresponding to (17) and (18) below), i.e.:

max
X

r 2 R

 2 T
� � Tf�

Er


jRjEr
�
� (15)

8r 2 R;8
2T;8�=0 � � � Tf � 1
X


 2 T
� � D
 C 1 � � � �

Wr
��
� � Wr� (16)
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8
2T;8�=0 � � � Tf � 1 �
� C
X

�0 � �
�0 � � C D
 � 1

�
�0 � 1 (17)

8
2T N
 �
X

��Tf 


�
� � N
 (18)

Different versions of objective function (15) could also be conceived, if nec-
essary, introducing proper weights, depending on the relevance of each single
resource. Additional conditions such as those represented by constraints (13) and
(14) could moreover be introduced.

The basic MILP model, when expressed by (7), (10), (11) and (12), contains:

O
�jTjTf

�
binary variables �
� ;

O
�jTjTf

�
cycle non-simultaneity constraints;

O .2 jTj/ cycle minimum and maximum number constraints;
O(Tf ) power capacity constraints.

In the multiple-resource case, the relative number of capacity constrains
becomes:

O
�jRjTf

�
.

Remark 3 Differently from the usual indexed-packing-like formulations for
scheduling, in the models presented here, the generation of binary variables
depends solely on the time discretization adopted and the total number of cycle
types involved.

3 Applications and Computational Results

Time-indexed methods for scheduling problems are well known for their efficiency
both in terms of solution quality and computational time. This is essentially
due to the fact that their LP-relaxations provide, in general, strong bounds. The
corresponding matrix size/density, nonetheless, usually represents a major difficulty
and, as a consequence, the computer’s memory capacity often becomes the actual
stumbling block.

The approach proposed in this chapter is addressed to the previously discussed
non-standard scheduling problems, bearing in mind a ‘reasonable’ limitation for the
sizes of the instances to cope with. As a rule of thumb, problems with fewer than 250
sub-intervals (time units) and 35 cycle types, involving three different resources, are
expected to be solved quite easily, as well as equivalent instances, in terms of matrix
size.

Obviously, from a practical point of view, a large-scale problem could be
subdivided into a number of sub-problems, by partitioning the total time period
appropriately. Moreover, the author’s time-continuous model [9] may be utilized
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within a heuristic procedure, to refine the approximated solutions obtained with
the time-indexed approach. To this purpose, when a single resource is involved,
it is opportune to interpret each discretized cycle as if it were composed of a
number of components corresponding to successive sub-periods (whose duration
is not necessarily integer) having constant consumption (extensions to the multiple
resource case can be considered). Precedence constraints, deriving from the solution
found through the time-indexed model, are hence imposed. They assume the form
th
�tk� � Dh
CDk� , where th
 and tk� are the (time) coordinates (with respect to the
given time-resource reference frame) of the centers of components h and k of cycles

 and � respectively, while Dh
 and Dk� are the corresponding durations. This way,
further cycles can tentatively be added by following an overall hole-filling logic [9].

Analogies between some classes of scheduling and packing problems (e.g. [11])
are well known. Applications of the approach proposed in this chapter to two-
dimensional rectangular packing, when an MILP-based formulation is adopted (e.g.
[31]) are quite straightforward. Similarly to the above mentioned time-precedence
constraints, relative positions, derived from the discretized model, indeed, can be
imposed with respect to one of the axes, in order to solve the overall packing model.
This (heuristic) approach is expected to prove quite advantageous as a support
strategy to solve hybrid packing models (e.g. [32]).

Hereinafter, a significant number of tests concerning the class of non-standard
scheduling problems discussed in the previous section are reported. They are
grouped in the following sets: Basic, A, B, C, D, E, F and G. Additionally,
considering the analogies between scheduling and packing problems, a set
of two-dimensional rectangular packing instances from literature (Fekete and
Shepers, see www.or.deis.unibo.it/research_pages/ORinstances/ORinstances;
www.fe.up.pt/esicup) have been taken into account. These are denoted as FS.
The Basic test set is considered firstly. All other test sets (except for FS) have been
constructed as extensions of the Basic set. These test sets are introduced, in this
section, step by step.

All the case studies considered have been solved by utilizing IBM ILOG CPLEX
12.3 [13], supported by a personal computer, equipped with: Core 2 Duo P8600,
2.40 GHz processor; 1.93 GB RAM; MS Windows XP Professional, Service Pack 2.

3.1 Basic Test Set

In all tests of the Basic set, the (electrical) power is chosen (with reference to the
formulation of Sect. 2) as the only resource considered, with a constant capacity
of 25 (power) units. Fifty types of cycles have been defined. They are reported in
Table 1. For each cycle 
 , the term Kh
 � Lh
 is associated with its component h
(see above). Kh
 indicates the (constant) consumption and Lh
 the duration of the
corresponding sub-period, i.e. the number of sub-intervals covered by component h,
expressed in time units. It is understood that the duration of each sub-interval is one

http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances
http://www.fe.up.pt/esicup
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Table 1 Basic cycle characterization by their duration/power consumption

Cycle
type

Power consumption
(units)

Max. No.
of cycles

Cycle
type

Power consumption
(units)

Max. No.
of cycles

1 1,2,1 700 26 2 � 23 100

2 2,1,1 700 27 2 � 10,3 � 13 50

3 1,5,3 300 28 1,2 � 9,7 � 3,1 � 12 50

4 1 � 2,5,7,1 500 29 2 � 27 100

5 1,2,5 � 2,2 200 30 1 � 25,5 � 3,1 � 2 70

6 1,3,4,7,3 150 31 2 � 30 50

7 2,3 � 4,4 � 2 150 32 1 � 30 100

8 2,3 � 2,4 � 2,6,5 100 33 2 � 10,1 � 21 70

9 1,3,5 � 2,7 � 2,5 100 34 2 � 11,0,1 � 19 70

10 1 � 2,2,3,7,9 � 2,1 � 3 100 35 1 � 30,2 � 2 100

11 2 � 3,3 � 8 100 36 3 � 3,1 � 30 70

12 3 � 3,4 � 8 100 37 1 � 30,3 � 3 70

13 5 � 5,11 � 6 30 38 1 � 25,2 � 5,3 � 3 70

14 3 � 5,11 � 6,2 � 4 30 39 1 � 30,7,1 � 3 70

15 4 � 5,13 � 6,2 � 4 30 40 1 � 31,5 � 4 50

16 1 � 5,15 � 3,2 � 9 50 41 2,1 � 34 70

17 1 � 5,15 � 5,2 � 7 30 42 5,1 � 34 70

18 1 � 5,17 � 12 30 43 1 � 33,5 � 2 70

19 1 � 10,5 � 5,1 � 4 70 44 2 � 35,3 50

20 1 � 7,5 � 7,1 � 5 70 45 3 � 15,2 � 15,1 � 6 30

21 1 � 9,5 � 7,1 � 3 70 46 2 � 30,1 � 7 50

22 1 � 9,13 � 7,1 � 3 30 47 2 � 30,3 � 7 30

23 1 � 3,21 � 3,1 � 15 50 48 2 � 30,15,3 � 6 30

24 1 � 7,21 � 3,1 � 11 50 49 1 � 20,3 � 18 50

25 1 � 13,25 � 3,1 � 5 30 50 3 � 9,1 � 30 50

time unit and Lh
 is integer (KiLi is the energy requested by component h). In the
table, all the terms Kh
 � Lh
 of the same cycle are separated by a comma. If, for a
component h of a cycle 
 , the relative duration is one single time unit (i.e. Lh
 D 1),
the term Kh
 � Lh
 is substituted with Kh
 . If a component has zero consumption,
the corresponding term is denoted explicitly by 0 � Lh
 (or 0, if the duration of the
relative sub-period is one single time unit). An example of the notation adopted is
reported here below.

Cycle type 
 : K1
 ;K2
 � L2
 ; 0;K4
 � L4
 ;K5
 � L5
 .
This reads, for cycle type 
 , as follows:

• the cycle starts with one sub-interval (i.e. one time unit) with a (constant) power
consumption of K1
 units (component/sub-period 1);

• L2
 sub-intervals (i.e. L2
>1 time units) follow, with a (constant) power con-
sumption of K2
 units (component/sub-period 2);
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• one sub-interval (i.e. one time unit) follows with a (constant) zero power
consumption (component/sub-period 3);

• L4
 sub-intervals (i.e. L4
>1 time units) follow with a (constant) power consump-
tion of K4
 units (component/sub-period 4);

• L5
 sub-intervals (i.e. L5
>1 time units) follow with a (constant) power consump-
tion of K5
 units (component/sub-period 5);

• the cycle total duration is 1C L2
 C 1C L4
 C L5
 time units.

The 50 types of cycles reported in Table 1 are utilized in test sets A, B, C, D,
E and G. In test set G, where three generic resources are considered, the electrical
power is replaced by the first (generic) resource. In this case, the consumptions (per
cycle type) appearing in Table 1 are interpreted in terms of the first generic resource
units. This table also reports the maximum number of cycles admissible and these
limits shall hold for all test sets from A to G (including F).

Figures 2, 3, 4, 5, and 6 provide a graphical representation of the cycle types
considered. Each figure includes (in sequence) ten cycle types (some have been
shifted to the right, in order to make the picture clearer).

The Basic test set consists of 25 instances, corresponding to a total time elapse of
100 units (i.e. 100 sub-intervals). Table 2 reports their sequential number in the first
column. The second column indicates, for each test, the cycle types (from Table 1)
that are available. The third column of the table shows the minimum number of
cycles requested for each type. The last two columns report the results obtained, in
terms of solution quality and computational effort.

Fig. 2 Graphical representation of cycle types 1–10
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Fig. 3 Graphical representation of cycle types 11–20

Fig. 4 Graphical representation cycle types 21–30

Fig. 5 Graphical representation of cycle types 31–40

A stopping criterion is a time limit of 300 s and it was kept for all the tests
(A to G and FS) considered in this work. The last column shows the CPU time
(seconds) that was required, for each test, to reach the best solution found, in terms
of overall energy exploitation percentage. The same principle concerning the CPU
time consumption estimation was adopted for all tests (A to G and FS). The symbol
‘*’ indicates that in some tests, a memory capacity saturation had occurred before
the threshold of 300 s was reached. In the Basic test set, some additional conditions
(see Sect. 2) were introduced. They are detailed here below.
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Fig. 6 Graphical representation of cycle types 41–50

Table 2 Basic test set instances and performance results

Test Cycle type Min. no. of cycles Energy exploitation (%) CPU time (s)

1 1–10 1–10: >0 95.6 298
2 11–20 1–20: >0 84.27 8
3 1–10; 21–30 1–10: > 0; 21–30: >0 95.12 299
4 1–10; 31–40 1–10: > 0; 31–40: > 0 96.03 13*
5 1–10; 41–50 1–10: > 0; 41–50: >0 96.39 4*
6 1–30 1–30: >0 95.48 269
7 1–10; 21–40 1–10: >0; 21–40: >0 95.08 283
8 1–10; 31–50 1–10: >0; 31–50: >0 96.23 44*
9 11–40 11–40: >0 92.0 190
10 11–20; 31–50 11–20: >0; 31–50: >0 96.39 296
11 1–20; 31–40 1–20: >0; 31–40: >0 96.95 117
12 11–30; 41–50 11–30: >0; 41–50: >0 93.42 299
13 11–30; 41–50 41–50: >0 94.09 153
14 1–40 11–20: >0 97.26 114*
15 1–40 11–30: >0 95.72 180*
16 1–40 11–40: >0 96.11 292
17 11–50 11–20: >0 96.31 276
18 11–50 11–30: >0 91.2 143
19 11–50 11–40: >0 89.34 141
20 11–50 21–50: >0 91.59 299
21 1–50 11–20: >0 95.28 190
22 1–50 11–30: >0 94.81 144
23 1–50 11–40: >0 95.56 225
24 1–50 21–50: >0 95.4 287
25 1–50 1–10: >6; 11–20: >0 95.72 299
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Test 2:

• total No. of cycles of type 11D 9 times total No. of cycles of type 12
• total No. of cycles of type 13D 3 times total No. of cycles of type 14
• total No. of cycles of type 15D 2 times total No. of cycles of type 16

Test 7:

• each cycle of type 21 must be preceded by 19 cycles of type 1
• each cycle of type 22 must be preceded by 23 cycles of type 2
• each cycle of type 23 must be preceded by 11 cycles of type 3

Test 13:

• total No. of cycles of type 11D 8 times total No. of cycles of type 48
• total No. of cycles of type 12D 5 times total No. of cycles of type 49
• total No. of cycles of type 13D 3 times total No. of cycles of type 50

Test 21:

• each cycle of type 17 must be preceded by seven cycles of type 4
• each cycle of type 18 must be preceded by five cycles of type 5
• each cycle of type 19 must be preceded by five cycles of type 6
• each cycle of type 20 must be preceded by three cycles of type 7

Test 24:

• total No. of cycles of type 1D 17 times total No. of cycles of type 21
• total No. of cycles of type 2D 7 times total No. of cycles of type 26
• total No. of cycles of type 3D 3 times total No. of cycles of type 29

3.2 Test Sets A, B, C, D, E and F

Test set A, similarly to the Basic one, considers a constant power capacity of 25
units. It consists of subsets A1, A2, A3 and A4. Subset A1 coincides with the Basic
test set. Subsets A2, A3 and A4 differ from the Basic set only for the total time
availability. The following time periods have been considered:

• A1: [0,100] time units
• A2: [0,150] time units
• A3: [0,200] time units
• A4: [0,250] time units

Similarly, subsets B1, B2, B3, B4, : : : , F1, F2, F3 and F4 are defined over the
same time periods (i.e. [0,100], [0,150], [0,200] and [0,250] time units). Tests B,
C, D and E are derived from test set A by changing the power capacity only. Four
different power functions, not constant any longer, were hence introduced. They
are represented in Figs. 7, 8, 9 and 10 respectively (and reported in detail in the
Appendix).
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Fig. 7 Test set B power function

Fig. 8 Test set C power function

For test sets A, B, C, D and E, the constants W� (associated with the power step-
functions, see (5)) are integer, as well as Kh
 (representing, for each component h
of each cycle 
 , the power consumption, see Sect. 3.1). Test set F was purposely
introduced to consider the case where both W� and Kh
 may take, instead, any (non-
negative) real values. Test set F was obtained from test set B by adding/subtracting
fractional quantities, between 0 and 1, to/from the values corresponding both to the
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Fig. 9 Test set D power function

Fig. 10 Test set E power function

power function and the power consumption (see the Appendix for more details). It
is understood that for all test sets from A to F, all data relevant to the cycles (as
reported in Table 1) are considered, as well as the additional conditions introduced
in Sect. 3.1.

The relative computational results, in terms of energy exploitation percentage
and CPU time (seconds) are reported in Table 3. There, each test set (i.e. A, B, C,
D, E and F) is partitioned into the corresponding subsets of 25 tests each (i.e. A1,
A2, A3, A4, : : : , F1, F2, F3 and F4). For each subset, the average of the energy
exploitation percentage and CPU time (seconds) is reported.
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Table 3 Performance results of test sets A, B, C, D, E and F

Test
subset

Energy exploitation
(%) average

CPU
time (s)

Test
subset

Energy exploitation
(%) average

CPU
time (s)

A1 94.45 195 D1 93.98 204
A2 94.18 245 D2 93.87 259
A3 94.17 233 D3 93.07 196
A4 92.40 221 D4 91.70 219
B1 94.81 225 E1 93.33 245
B2 94.28 253 E2 91.99 254
B3 93.05 242 E3 91.51 194
B4 90.19 159 E4 89.63 217
C1 94.30 210 F1 92.07 201
C2 94.20 254 F2 91.31 220
C3 93.04 216 F3 88.94 186
C4 90.71 190 F4 87.73 168

Table 4 shows, for test subsets A4, B4, C4, D4, E4 and F4, the MILP model
matrix dimension, in terms of number of rows, non-zero elements and 0-1 variables
after the (MIP) pre-processing carried out by the solver.

3.3 Test Set G

This group of tests contains instances with three different resources each. It was
derived from the previous, by substituting the power function with a generic one
and adding resources 2 and 3. The power consumption values corresponding to each
cycle type (as reported in Table 1) were kept unaltered and associated with resource
1 (no longer necessarily representing the power), 2 and 3 (the same cycle profiles
were in fact assumed for the three resources). Three new functions were defined for
resource 1, 2 and 3, respectively. These are represented in Fig. 11 (relevant details
are reported in the Appendix).

As is gathered, when more than one resource is involved, their total exploitation
is generally expected to decrease markedly. The MILP model matrix, on the other
hand, increases significantly. The overall performance results obtained for subsets
G1, G2, G3 and G4 (corresponding, as in the previous cases, to the time periods
[0,100], [0,150], [0,200] and [0,250] time units) are summarized in Table 5.

For test G-16 (of subset G1), no solution was found within the time limit of 300 s.
This test has been excluded by the overall results reported in Table 5 (a solution with
75.94 % of total resource exploitation was found in 399 s). Table 6 shows, for test
subsets G4, the MILP model matrix dimension, in terms of number of rows, non-
zero elements and 0-1 variables after the (MIP) pre-processing carried out by the
solver.
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Table 4 Test subsets A4–F4 matrix size/density

Test A4–F4 No. of rows No. of (0-1) variables No. of non-zero elements

1 2664 2450 29; 010

2 2471 2342 72; 581

3 4741 4733 130; 388

4 4556 4643 161; 840

5 4470 4600 174; 796

6 6968 7094 202; 078

7 7004 6765 379; 560

8 6356 6788 307; 563

9 6433 6816 305; 470

10 6162 6691 350; 098

11 6782 7001 233; 448

12 6328 6784 314; 225

13 6331 6784 315; 448

14 8824 9282 327; 921

15 8834 9282 330; 202

16 8844 9282 332; 390

17 8204 8972 444; 881

18 8214 8972 447; 162

19 8224 8972 449; 350

20 8225 8972 449; 369

21 11,334 11,321 656; 327

22 10,624 11,427 473; 780

23 10,634 11,427 475; 968

24 10,637 11,427 477; 183

25 10,624 11,427 473; 954

Fig. 11 Test G set resource 1-2-3 functions
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Table 5 Test set G performance results

Test
subset

Total resource
exploitation (%)
average

CPU
time (s)

Test
subset

Total resource
exploitation (%)
average

CPU
time (s)

G1 77.33 255 G3 78.31 246
G2 78.74 257 G4 77.76 172

Table 6 Test subset G4 matrix size/density

Test G4 No. of rows No. of (0-1) variables No. of non-zero elements

1 3161 2453 48,080
2 2791 2269 122,564
3 4810 4377 206,294
4 5054 4643 301,253
5 4929 4579 325,577
6 6867 6647 327,873
7 7056 6432 560,047
8 6815 6767 578,457
9 6332 6380 532,318
10 6448 6581 651,557
11 7108 6912 422,764
12 6187 6316 552,270
13 6190 6316 553,809
14 8723 8835 574,177
15 8733 8835 576,100
16 8743 8835 578,288
17 8063 8504 803,308
18 8073 8504 805,231
19 8083 8504 807,419
20 8084 8504 807,506
21 11,129 10,853 1,012,594
22 10,483 10,959 851,183
23 10,493 10,959 853,371
24 10,496 10,959 854,654
25 10,483 10,959 851,715

In addition to test set G, a large-scale instance was considered, in order to probe
the applicability of the approach proposed, in terms of problem dimensions (a
further in-depth research effort could be devoted to investigate the practical limits
that are to be expected). This instance was derived from test G-100 (of subset G4).

The overall time period was quadrupled, giving rise to an overall elapse of
1000 sub-intervals (time units). Each resource profile was extended, by replicating
(three times) the corresponding function (defined originally over the period [0,250]
time units), as adopted for subset G4. A set of 75 cycle types was taken into
account. The first 50 coincided exactly with the ones reported in Table 1, while the
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remaining 25 were derived from the first 25 (of Table 1). The corresponding resource
consumption profiles were replicated, giving rise to cycles of double duration and
the original function duplicated (as if the corresponding cycle had been executed
twice, sequentially). No minimum-number conditions were imposed on the added
cycles. The relative maximum-number limits were the same adopted for cycle types
1–25 (of Table 1).

After the solver (MIP) pre-processing, the resulting instance included 65,798
rows, 68,265 binary variables and 6,211,136 non-zero elements. A solution utilizing
85.24 % of the overall resources available was found in 597 s.

3.4 Tests Extracted from Fekete’s and Shepers’ Set

The case studies reported in this Section refer to the sets ‘2D constrained
non-guillotine NGCUTFS, file ngcutfs1, provided by Fekete and Shepers
(see www.or.deis.unibo.it/research_pages/ORinstances/ORinstances; www.fe.up.pt/
esicup) that are expressed in terms of classical two-dimensional knapsack problems,
without rotations. These instances were hence interpreted in terms of scheduling
problems by considering one of the two axes as the temporal one. It has to be noticed
that in these cases, the solutions of the MILP model proposed in this chapter return
only the activation times of each job, i.e. only one of the two coordinates of the
corresponding rectangle in the packing problem. This means that the solution for
the scheduling problem is only a partial solution for the corresponding packing
instance (even if its feasibility is guaranteed). It is understood that, also in this case,
the activation times can be imposed, in order to provide a partial solution to the
corresponding (MILP) packing model.

In this set of tests, the target consisted of maximizing the total value of the items
loaded, as proposed by Fekete and Shepers. Table 7 shows the results obtained,
pointing out the area exploitation percentage and the CPU time (seconds). Also in
this case a limit of 300 CPU seconds was imposed (the symbol ‘*’ indicates, as
previously, that a memory capacity saturation occurred before the timeout).

4 Conclusions

This work is inspired by very challenging issues arising in space logistics, where,
quite often, the activity requested has to be carried out in extremely limited
conditions, both in terms of time and resource capacity. The necessity of optimizing
the scheduling of activities, subject to a number of tight constraints, is nonetheless
becoming, day after day, ever more demanding in several contexts apart from space.

http://www.or.deis.unibo.it/research_pages/ORinstances/ORinstances
http://www.fe.up.pt/esicup
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Table 7 Fekete and Shepers (ngcutfs1) test results

Test
Overall area
exploitation (%)

CPU
time (s) Test

Overall area
exploitation (%)

CPU
time (s)

ngcutfs1_61 98.56 9 (optimal
solution proven)

ngcutfs1_91 98.89 29

ngcutfs1_62 96.71 267 ngcutfs1_92 98.32 136
ngcutfs1_63 98.22 105 ngcutfs1_93 98.43 294
ngcutfs1_64 96.63 39* ngcutfs1_94 97.47 37
ngcutfs1_65 97.43 83 ngcutfs1_95 98.03 19
ngcutfs1_66 96.83 42 ngcutfs1_96 97.96 139
ngcutfs1_67 97.89 15 ngcutfs1_97 98.00 112
ngcutfs1_68 97.97 3* ngcutfs1_98 98.08 21*
ngcutfs1_69 98.14 83 ngcutfs1_99 97.68 91
ngcutfs1_70 97.57 111 ngcutfs1_100 97.81 80

The problem tackled in this chapter, addresses the cases where the resource
capacities, in a given time elapse, are not constant. The activities themselves
are characterized by non-constant resource request profiles. The case of a single
resource, identified with electrical power, is discussed firstly, pointing out the
relevant modelling aspects. An MILP formulation, based on a time-indexed approx-
imation approach is provided. Extensions of the basic model to multiple-resource
scenarios are discussed, as well as the introduction of additional conditions. Hints
on possible applications of the methodology adopted are put forward and an in-
depth experimental analysis is provided. The investigation of ad-hoc computational
strategies to solve the relevant models ever more efficiently might represent the
objective of future research.
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Appendix

Test Set F Power Consumption

Cycle
type

Power consumption
per sub-interval
(units)

Max. No.
of cycles

Cycle
type

Power consumption
per sub-interval
(units)

Max. No.
of cycles

1 0.5,1.4,0.9 700 26 1.9 � 23 100

2 1.3,0.4,0.3 700 27 1.7 � 10, 2.3 � 13 50

3 0.7, 4.6, 2.9 300 28 0.3, 1.6 � 9, 6.1 � 3,
0.5 � 12

50

4 0.3, 0.2, 4.4, 6.9, 0.8 500 29 0.3 � 9, 0.7 � 18 100

5 0.7, 1.7, 4.7, 4.2, 1.3 200 30 0.3 � 9, 0.9 � 16, 4.7 �
3, 0.3 � 2

70

6 0.5, 2.5, 3.7, 6.9, 2.2 150 31 1.1 � 30 50

7 1.7, 2.6, 2.8, 2.9, 2.2,
3.3, 3.1

150 32 0.4 � 9, 0.9 � 21 100

8 1.2, 2.2 � 2, 3.2 � 2,
5.2, 5, 4.2

100 33 1.9 � 10, 0.2 � 21 70

9 0.3, 2.7, 4.5, 4.4, 6.3,
6.6, 4.9

100 34 1.9 � 11, 0.9 � 19 70

10 0.9, 0.8, 1.0, 2.1, 6.2,
8.4, 8.6, 0.5, 0.6, 0.5

100 35 0.7 � 9, 0.9 � 21, 1.8 �
2

100

11 1.3 � 3, 2.6 � 8 100 36 2.8 � 3, 0.9 � 27, 0.2 �
3

70

12 2.7, 2.5, 2.7, 3.9, 3.8,
3.7, 3.0, 3.1, 3.3, 3.5,
3.7

100 37 0.7 � 9, 0.9 � 21, 2.8 �
3

70

13 4.1 � 5, 10.7 � 6 30 38 0.9 � 25, 1.9 � 5, 2.8 �
3

70

14 2.7 � 5, 10.2 � 6, 1.9
� 4

30 39 0.8 � 9, 0.7 � 3, 0.9 �
18, 6.9, 0.2 � 3

70

15 4.9 � 5, 13.7 � 6, 2.1
� 4

30 40 0.3 � 31, 4.1 � 4 50

16 1.3 � 5, 15.5 � 3, 2.7,
2.9 � 8

50 41 1.9, 0.8 � 8, 0.7 � 3,
0.9 � 23

70

17 1.9 � 2, 0.4 � 3, 14.7
� 5, 1.1 � 7

30 42 4.5, 0.9, 0.8 � 7, 0.9 �
26

70

18 0.3 � 5, 16.7 � 12 30 43 0.3 � 3, 0.2 � 5, 0.9 �
19, 0.6 � 6, 4.9 � 2

70

19 0.5 � 10, 4.9 � 5, 07 �
4

70 44 1.7 � 9, 1.8 � 3, 1.9 �
7, 1.7 � 11, 1.3 � 5, 2.9

50

(continued)
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Cycle
type

Power consumption
per sub-interval
(units)

Max. No.
of cycles

Cycle
type

Power consumption
per sub-interval
(units)

Max. No.
of cycles

20 0.1 � 7, 4.5 � 7, 0.7 �
5

70 45 2.8 � 9, 2.9 � 6, 1.9 �
8, 1.7 � 7, 0.6, 0.5, 0.4,
0.3, 0.2, 0.1

30

21 0.4 � 9, 4.3 � 7, 0.9 �
3

70 46 1.3, 1.7, 1.9, 1.1, 1.3,
1.2, 1.5, 1.7, 1.9, 1.3 �
8, 1.9 � 9, 1.7 � 4, 0.8
� 7

50

22 0.7 � 9, 12.9 � 7, 0.7
� 3

30 47 1.7, 1.8, 1.7, 1.8, 1.7,
1.8, 1.7, 1.8, 1.7, 1.3 �
5, 1.9 � 5, 1.7 � 2, 1.8,
1.9, 1.8, 1.9, 1.8, 1.9,
1.8, 1.9, 1.7, 2.1, 2.3,
2.5, 2.7, 2.9 � 3

30

23 0.3 � 3, 20.5 � 3, 0.3
� 15

50 48 1.5 � 4, 1.7 � 3, 1.2 �
2, 1.4, 1.5, 1.4, 1.5, 1.4,
1.5, 1.4, 1.5 � 2, 1.7 �
5, 1.9 � 7, 14.9, 2.1,
2.2, 2.3, 2.4, 2.5, 2.6

30

24 0.7 � 7, 20.3 � 3, 0.6
� 11

50 49 0.9 � 5, 0.5 � 4, 0.8 �
10, 0.7, 2.7 � 8, 2.3 �
6, 2.9 � 4

50

25 0.3 � 13, 24.7 � 3, 0.9
� 5

30 50 2.5 � 6, 2.9 � 3, 0.9 �
5, 0.5 � 3, 0.7 � 9, 0.9
� 5, 0.4 � 5, 0.9 � 3

50

Test set B Power Function

25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 45, 45, 45, 45, 45, 25, 25, 25, 25, 25, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 50, 50, 50, 30, 30, 30, 30, 30, 30, 30, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 35, 35, 35, 35, 35, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 45, 45, 45, 45, 45, 45, 45, 45, 45,
45, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35, 35, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50
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Test Set C Power Function

35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 45,
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 50, 50, 50, 50, 25, 25, 25, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 30, 30, 30, 30, 30,
50, 50, 50, 50, 50, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 30, 30, 30, 30, 30, 30, 30, 50, 50,
50, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35, 35, 25, 25, 25, 25, 25, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 50, 50, 50, 30, 30, 30, 30, 30, 30, 30, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 35, 35, 35, 35, 25, 25, 25, 25, 35, 35, 35, 35, 35, 35,
45, 45, 45, 45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 45, 45, 45, 45, 45, 45, 45, 45, 45,
45, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35, 35, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50

Test Set D Power Function

35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 45,
45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 50, 50, 50, 50, 45, 45, 45, 40, 40, 40,
35, 35, 35, 35, 35, 35, 35, 40, 40, 40, 45, 45, 45, 50, 50, 50, 50, 45, 45, 45, 40, 40,
40, 45, 45, 45, 40, 40, 40, 40, 40, 40, 35, 35, 35, 30, 30, 27, 27, 27, 27, 33, 33, 33,
40, 40, 40, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 37, 39, 41, 43, 45, 47, 49, 50, 50,
50, 49, 47, 45, 43, 41, 39, 37, 35, 33, 31, 35, 35, 35, 35, 35, 29, 27, 25, 25, 25, 30,
30, 30, 35, 35, 37, 37, 37, 35, 35, 39, 43, 50, 45, 40, 35, 30, 40, 43, 47, 50, 50, 50,
50, 50, 47, 45, 43, 41, 39, 37, 35, 31, 29, 27, 25, 30, 33, 35, 35, 37, 37, 37, 39, 41,
43, 45, 47, 49, 50, 50, 50, 50, 50, 47, 45, 43, 41, 39, 37, 35, 33, 31, 30, 29, 28, 27,
26, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 32, 33, 34, 35, 35, 37, 39,
41, 43, 45, 47, 49, 41, 37, 29, 27

Test Set E Power Function

25, 27, 29, 31, 33, 35, 35, 37, 39, 41, 43, 75, 75, 75, 75, 75, 25, 25, 25, 25, 25, 25,
25, 25, 75, 75, 75, 75, 75, 75, 75, 75, 75, 50, 50, 50, 50, 50, 45, 43, 41, 39, 37, 35,
25, 25, 25, 25, 25, 25, 25, 40, 40, 40, 40, 40, 70, 70, 70, 70, 70, 50, 50, 50, 50, 50,
50, 50, 45, 45, 45, 40, 40, 40, 37, 37, 37, 35, 35, 30, 30, 27, 27, 27, 27, 33, 33, 33,
40, 40, 40, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 37, 39, 41, 43, 45, 47, 49, 50, 53,
57, 59, 63, 67, 71, 75, 35, 35, 35, 31, 31, 35, 35, 35, 35, 35, 29, 27, 25, 25, 25, 30,
30, 30, 35, 35, 37, 37, 37, 35, 35, 39, 43, 70, 67, 65, 63, 61, 59, 57, 53, 50, 50, 50,
50, 50, 47, 45, 43, 41, 39, 37, 35, 31, 29, 27, 25, 30, 33, 35, 35, 37, 37, 37, 39, 41,
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43, 45, 47, 49, 75, 75, 75, 75, 75, 74, 74, 63, 63, 63, 63, 63, 59, 59, 59, 59, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 37, 39, 41, 43, 47, 49, 51, 53, 55, 61,
63, 67, 69, 71, 73, 75, 75, 75, 75

Test set F Power Function

25.2, 25.3, 25.5, 25.9, 25.8, 25.7, 25.4, 25.3, 25.5, 25.6, 25.8, 50.9, 50.1, 50.1, 50.2,
50.5, 50.7, 50.8, 50.9, 50.6, 50.5, 25.7, 25.8, 25.6, 25.5, 25.4, 25.7, 25.0, 25.1, 25.4,
25.7, 50.8, 50.9, 50.2, 50.3, 50.4, 50.6, 50.9, 50.6, 50.7, 50.3, 25.5, 25.2, 25.1, 25.4,
25.5, 25.9, 25.6, 25.7, 25.4, 25.7, 50.5, 50.6, 50.7, 50.6, 50.8, 50.9, 50.0, 50.1, 50.2,
50.4, 25.2, 25.5, 25.6, 25.8, 25.4, 25.6, 25.9, 25.0, 25.9, 25.9, 50.4, 50.5, 50.6, 50.7,
50.8, 50.2, 50.4, 50.9, 50.7, 50.8, 25.4, 25.2, 25.4, 25.5, 25.1, 25.3, 25.2, 25.3, 25.5,
25.7, 25.8, 25.9, 25.0, 25.2, 25.5, 25.7, 25.6, 25.3, 25.3, 25.4, 50.7, 50.9, 50.8, 50.0,
50.4, 50.2, 50.1, 50.3, 50.2, 50.5, 40.3, 40.2, 40.7, 40.8, 40.9, 40.2, 40.3, 40.7, 40.6,
40.9, 45.1, 45.3, 45.2, 45.6, 45.5, 25.8, 25.9, 25.9, 25.6, 25.7, 35.5, 35.6, 35.4, 35.3,
35.3, 35.1, 35.9, 35.1, 35.5, 35.3, 50.5, 50.6, 50.7, 30.6, 30.8, 30.9, 30.0, 30.3, 30.2,
30.5, 25.4, 25.6, 25.5, 25.8, 25.7, 25.1, 25.1, 25.2, 25.3, 25.4, 35.8, 35.7, 35.9, 35.4,
35.4, 25.5, 25.6, 25.9, 25.5, 25.9, 25.0, 25.7, 25.8, 25.9, 25.5, 25.6, 25.1, 25.3, 25.4,
25.8, 50.9, 50.4, 50.7, 50.2, 50.7, 50.9, 50.1, 50.3, 50.5, 50.8, 40.6, 40.9, 40.2, 40.6,
40.8, 40.4, 40.6, 40.1, 40.3, 40.2, 30.6, 30.7, 30.4, 30.5, 30.9, 30.0, 30.7, 30.8, 30.1,
30.3, 45.2, 45.4, 45.3, 45.7, 45.6, 45.9, 45.8, 45.1, 45.6, 45.3, 30.9, 30.8, 30.4, 30.1,
30.2, 30.5, 30.4, 30.5, 30.5, 30.7, 30.7, 30.7, 30.9, 30.0, 35.2, 35.4, 35.3, 35.5, 35.1,
50.6, 50.8, 50.5, 50.9, 50.0, 50.2, 50.4, 50.5, 50.6, 50.1, 50.8

Test Set G: Resource 1 Function

35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 25, 25, 25,
40, 40, 40, 40, 40, 40, 40, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 35, 35,
35, 35, 35, 35, 35, 27, 27, 27, 27, 27, 27, 39, 39, 39, 25, 25, 25, 25, 25, 43, 43, 43,
43, 43, 43, 25, 25, 25, 25, 25, 25, 25, 25, 25, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29

Test Set G: Resource 2 Function

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 23, 23, 23, 23, 23, 23, 23, 23, 29,
29, 29, 29, 29, 29, 29, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
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33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
11, 11, 11, 11, 11, 11, 11, 11, 27, 27, 27, 27, 27, 27, 27, 27, 25, 25, 25, 29, 29, 29,
29, 29, 29, 29, 29, 29, 21, 21, 21, 21, 21, 21, 21, 21, 21, 23, 23, 23, 23, 23, 23, 23,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11

Test Set G: Resource 3 Function

17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
23, 23, 23, 23, 23, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23,
23, 25, 25, 25, 25, 25, 19, 19, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 21, 21, 21, 21, 21, 21, 21
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Packing Problems in Space Solved by CPLEX:
An Experimental Analysis

Stefano Gliozzi, Alessandro Castellazzo, and Giorgio Fasano

Abstract Cargo loading of module and vehicles, as well as satellite/spacecraft
layout design, notoriously represent very challenging space engineering tasks,
deemed to become, day after day, ever more demanding in the perspective of
the upcoming exploration adventures. Extremely thought provoking packing opti-
mization problems have to be coped with, in the presence of intricate geometries,
operational conditions and, usually, very tight balancing requirements.

A modeling-based (as opposed to a pure algorithmic) approach has been the
object of a dedicated long lasting research, carried out by Thales Alenia Space. In
this chapter, an extension of the classical container loading problem is considered,
allowing for tetris-like items, (convex) non-rectangular domains, (non-prefixed)
separation planes and static balancing.

The relevant space engineering framework is illustrated firstly, contextualizing its
relationship with the more general subject of packing optimization and the topical
literature. The problem in question is stated, outlining the underlying mathematical
model in use (formulated in terms of Mixed Integer Linear Programming, MILP)
and the overall heuristic approach adopted to obtain efficient solutions in practice.
An extensive experimental analysis, based on the utilization of CPLEX, as the
MILP optimizer, represents the core of this work. Both the MILP model and the
related heuristic have been tested on a number of quite demanding case studies,
investigating effective MILP strategies up to obtaining satisfactory solutions from
a global-optimization point of view. The results shown well pave the way for a
promising further dedicated research.
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1 Introduction

This chapter relates to an extended research activity carried out, for more than two
decades, in the space engineering context and focused on the loading optimization
task, regarding, in particular, the so-called cargo accommodation of vehicles and
modules.

This undertaking is well known, in the specialist context, for being very
challenging, both at the design phase and at the further stages concerning the
spacecraft utilization. As is understood, the exploitation of the overall available
volume and/or mass capacity, as effectively as possible, in compliance with the
given mission profile, constitutes the ultimate objective.

Tight conditions usually have to be taken account of, in order to satisfy the
frequently very demanding attitude control specifications, relevant to the various
mission phases (e.g. launch, flight, on-orbit stay and re-entry). Well known examples
are represented by the (static and dynamic) balancing requirements imposed to the
whole spacecraft [20]. Mandatory requirements deriving from operational, human
factor and safety features, give rise to tricky accommodation rules, including,
for instance, the presence of forbidden zones, due to clearance and accessibility
necessities, inside the spacecraft, or part of it.

It is furthermore gathered that, although cargo items can often be realistically
approximated by single cuboids (i.e. rectangular) parallelepipeds of homogeneous
density, this is not always the case, especially when significant dimensions and quite
intricate geometrical forms are involved. In addition, the available bags and racks
may be characterized by curved surfaces (purposely shaped to exploit the spacecraft
structure, as, for instance, when it is cylindrical). Items can be assigned prefixed
positions and/or orientations, with respect to the predisposed container (e.g. a bag)
or facility (e.g. a rack). Different sectors are often present within the same rack,
as well as separation planes inside bags, conceived to make the contained load
easier to handle. Demanding balancing conditions are moreover often imposed also
at bag/rack level.

A notable example, in terms of cargo accommodation, was represented by the
Automated Transfer Vehicle (ATV, see [16]), utilized (between 2008 and 2014) for
five successful missions to support the International Space Station (ISS) logistics
(see [36]). Due to the very high complexity to cope with, a dedicated methodology
was conceived in a previous dedicated research [20]. The heuristic approach
thought up for this specific purpose consisted essentially of partitioning the whole
cargo accommodation issue into a number of more simple loading sub-problems
(at different levels, i.e.: system, rack and bag).



Packing Problems in Space Solved by CPLEX: An Experimental Analysis 131

Even more challenging cargo accommodation scenarios are expected for the
interplanetary missions of the near future. From a different perspective, a further
and by no means less demanding task, in terms of load optimization, concerns the
satellite(/spacecraft) layout design (e.g. [49, 50]). In this case, usually, a prefixed
number of devices (payloads/equipment) have to be located inside the available
volume, often taking advantage of appropriate support planes. Requirements of rel-
ative minimum/maximum distance between items frequently have to be respected,
in addition to predefined positioning/orientation rules. Specific balancing criteria
usually represent the optimization objectives.

From the methodological point of view, in any case, either cargo accommodation
or satellite layout jobs entail particular applications of the very general issue, arising
in a huge number of technical and scientific applications, of placing geometrical
‘objects’ inside ‘domains’ (interpreting these terms even with very abstract mean-
ings). This overall subject, usually referred to as ‘packing’, is the object of study
both by Operations Research (OR, e.g. [51]) and Computational Geometry (e.g.
[42]). Packing problems are notoriously well known for being NP-hard (e.g. [2,
26]). The topical literature is certainly vast (comprehensive overviews are provided,
for instance, by: Cagan et al. [5], Dyckhoff et al. [13], Ibaraki et al. [27]) and
covers a number of different classes, depending on the geometrical space considered
(e.g. two/three-dimensional), the typology of the objects involved (e.g. cuboids), the
domain shape (e.g. a sphere), the presence of additional conditions (e.g. balancing),
the availability either of a single or multiple domains, the optimization criteria
(if any).

In this overall context, a remarkable effort has traditionally been devoted to
studying the problem of loading (orthogonally) ‘small boxes’ into ‘big boxes’
(e.g.: [6, 22, 29, 35, 40]). Extended packing scenarios, allowing for more complex
(regular and irregular) items and domains, with possible additional conditions (such
as balancing), are nonetheless attracting the interest of an increasing number of
researchers (e.g.: [1, 3, 4, 8, 15, 17, 23, 32, 38, 43–46, 48, 52]). In order to cope with
overall conditions such as balancing (when expressed in terms of actual constraints),
a global optimization perspective seems to be preferable to different approaches,
essentially consisting of sequential algorithms (e.g. [34]). This leads, in particular,
to the adoption of a modeling philosophy, as opposed to a pure algorithmic one (e.g.:
[7, 9–11, 14, 24, 31, 33, 39, 41, 46–48]).

Cargo accommodation and satellite layout, due to the quite peculiar geometries
involved, as well as specific positioning rules and overall requirements (such as
balancing), typically give rise to a number of non-standard packing issues with
additional conditions. Approximations are often adopted to make the task tractable.
From this perspective, a general problem, quite useful in practice, consists of the
orthogonal placement of tetris-like items into a convex domain, with the objective
of maximizing the loaded volume (see below). This issue (with further additional
conditions, including balancing) occurred, for instance, in the above mentioned ATV
project, when treating the packing of items into bags. A modeling approach, based
on Mixed Integer Linear Programming (MILP, e.g. [30, 37]) has been studied in
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previous works [18, 19], including variants and extensions [21]. A brief description
of the general problem itself, as well its mathematical formulation, is nonetheless
recalled hereinafter for the reader’s convenience.

To this purpose, the preliminary definition below is given:

a tetris-like item is a set of rectangular parallelepipeds positioned orthogonally,
with respect to an (orthogonal) reference frame. This frame is called ‘local’ and
each parallelepiped is a ‘component’

(in this chapter, ‘tetris-like item’ will be simply referred to as ‘item’, when no
ambiguity occurs, and similarly, ‘rectangular parallelepipeds’ as ‘parallelepipeds’).
The general problem is stated as follows.

A set I of N items, together with a domain D, consisting of a (bounded) convex
polyhedron, is considered. This is associated with a given orthogonal reference
frame, indicated in the following as main. Items are picked (from I), in order to
maximize the loaded volume, considering the positioning rules here below:

• each local reference frame has to be positioned orthogonally, with respect to the
main one (orthogonality conditions);

• for each item, each component has to be contained within D (domain conditions);
• the components of different items cannot overlap (non-intersection conditions).

This problem, as a matter of fact, is an extension of the classical container
loading (e.g. [12]), allowing for tetris-like items (instead of solely box-shaped
objects) and a convex (in general non-box shaped) domain. As gathered, the so-
called static balancing condition is often imposed, requiring that the overall center
of mass has to stay within a subdomain D* (assumed to be convex) of D. It
is moreover understood, that D* may be given any location (even ‘asymmetric’)
inside the container. This situation occurred, for instance, with the above mentioned
ATV cargo accommodation problem. The static balancing restriction, at bag level,
had, actually, two different statements. In the case of (box-shaped) bags to be
loaded into racks, their center of mass was requested to be within a centered (box-
shaped) subdomain. The center of mass of (box-shaped) bags that had to be loaded
externally, on the rack front panel, had, instead, a different specification. This was
requested to stay within a box-shaped subdomain, adjacent to the side of the bag
in contact with the rack front panel. This rule was stated in order to reduce the bag
unbalancing towards the rack-front outside, as much as possible.

This chapter is an extension of a previous experimental study [25] focused on
a MILP-based heuristic procedure, aimed at solving the general packing prob-
lem (with possible additional conditions). Section 2 recalls the relevant (MILP)
mathematical model, as well as this heuristics briefly, referring the reader to the
quoted works for a detailed discussion. Section 3 reports recent advances in the
experimental analysis.
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Fig. 1 Heuristics overall
logic
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2 MILP Model and Heuristic Approach

The MILP model relevant to the general packing problem stated in Sect. 1 is
outlined hereinafter (referring the reader to [18, 19] for a detailed discussion, also
including additional conditions, such as static balancing). It is assumed that the
main orthogonal reference frame has origin O with axes wˇ , ˇ 2 f1; 2; 3g D B
and that the whole domain D is entirely contained inside its first octant. Similarly,
each local reference frame, associated with every item, is chosen so that all item
components lie within its first octant. Its origin coordinates, with respect to the
main reference frame, are denoted by oˇi. The set ˝ represents all the orthogonal
rotations, admissible for any local reference frame.

The set of components of an item i is denoted by Ci. For each item i, the set Ehi

of all vertices associated with each of its components h is defined. For each item i
and each possible orthogonal orientation ! 2 �, the following binary variables are
introduced:

�i 2 f0; 1g, with �i D 1 if item i is chosen; �i D 0 otherwise;
#!i 2 f0; 1g, with #!i D 1 if item i is chosen and it has the orthogonal orientation
! 2 �; #!i D 0 otherwise.

The orthogonality conditions can be expressed as follows:

8i 2 I
X

!2�
#!i D �i (1)

8ˇ 2 B;8i 2 I;8h 2 Ci;8� 2 Ehi

wˇ�hi D oˇi C
X

!2�
W!ˇ�hi#!i

(2)

Here wˇ�hi are the vertex coordinates of component h, with respect to the main
reference frame, relative to item i; W!ˇ�hi are the projections on the axes wˇ of the
coordinate differences between points � 2 Ehi and the origin of the local reference
frame, corresponding to orientation ! of item i.

The domain conditions are expressed as follows.

8ˇ 2 B;8i 2 I;8h 2 Ci;8� 2 Ehi

wˇ�hi D
X

�2V

Vˇ����hi (3)

8i 2 I;8h 2 Ci;8� 2 EhiX

�2V

���hi D �i (4)
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Here V is the set of vertices delimiting D, Vˇ� are their coordinates (with respect to
the main reference frame) and ���hi are non-negative variables. These conditions
correspond to the well-known necessary and sufficient conditions for a point to
belong to a convex domain.

The non-intersection conditions are represented by the constraints shown below:

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj

wˇ0hi � wˇ0kj � 1
2

X

!2�

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ


1 � �C

ˇhkij

�
(5a)

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj

wˇ0kj � wˇ0hi � 1
2

X

!2�

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ


1 � � �̌

hkij

�
(5b)

8i; j 2 I=i < j;8h 2 Ci;8k 2 CjX

ˇ2B


�C
ˇhkij C � �̌

hkij

�
� �i C �j � 1 (6)

Here the constants Dˇ are the sides of the parallelepiped, of minimum dimensions,
containing D; wˇ0hi and wˇ0kj are the center coordinates, with respect to the main
reference frame, of components h and k of items i and j respectively; L!ˇhi and L!ˇkj

are their side projections on the wˇ axes, corresponding to the orientation !; �C
ˇhkij

and � �̌
hkij 2 f0; 1g.

The maximization of the loaded volume is expressed as:

max
X

i2I;h2Ci

Vhi
X

˛2A

L˛hi

0

B
B
@

X

ˇ 2 B;
! 2 �

L!ˇhi#!i

1

C
C
A (7)

where Vhi represents the volume of component h of item i, L˛hi, ˛ 2 f1; 2; 3g D A,
are the sides of this component (objective function (7) is an efficient reformulation,
from the computational point of view, of max

X

i2I

Vi�i).

Although, usually, the mathematical model expressed by (1), (2), (3), (4), (5a),
(5b), (6), and (7) results in being more efficient than others available in the specialist
literature (e.g. [9]), large-scale instances can hardly ever be solved, tout court, by
general purpose (MILP) solvers. To this aim, an overall heuristic methodology [19],
based on the recursive use of the general MILP model, has been investigated, in
addition to previous non-rigorous procedures (also involving further mathematical
models, see [18]). Different versions of this overall approach can be defined by
introducing specific recursive logic or even MILP solution strategies. One, in
particular, is deemed to be the most promising, in accordance with the experimental
results available to date [25]. As discussed at a detailed level in the previous
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works quoted, the overall heuristic approach is based on the following modules:
Initialization, Packing, Item-exchange, Hole-filling.

The Initialization is aimed at providing a starting abstract configuration, i.e.
a set of relative positions (one for each pair of items) giving rise to a feasible
solution in any unbounded domain (see [18, 19]). An ad hoc LP-relaxation of
the general MILP model is employed for the purpose, (tentatively) including all
the N items available and a first approximate solution, ‘minimizing’ their total
overlapping, obtained. The corresponding abstract configuration is imposed to the
Packing module that, through the general MILP model, yields a non-approximate
solution maximizing the loaded volume (and rejecting some items if necessary).
Both Item-exchange and Hole-Filling modules (based, in this specific version, on
the general MILP model, with subsets of variables time after time fixed) are devoted
to the improvement, if possible, of the current Packing solution, providing upgraded
abstract configurations. The specific heuristic procedure here considered consists of
two macro-phases, i.e. main and incremental. The whole process follows the overall
logic illustrated in Fig. 1 (see [25] for more details).

3 Experimental Framework and Results

IBM ILOG CPLEX (see [28]) is the MILP optimizer. CPLEX carries out the
optimization process by a branch & cut (B&C) algorithm, including several general
purpose heuristics. It is also able to perform parallel optimization. Like most
of the optimizers available to date, CPLEX has a default strategy for the MILP
solution, which is flexible and adaptable to the model characteristics. Its level of
sophistication is so advanced that a number of ad hoc optimizer parameters, able
to outperform the default mode, can hardly be found. Moreover, the risk of ‘over
engineering’ the setting of the parameters, tuning them to a particular class of
instances, rather than to the model intrinsic characteristics, cannot be neglected.
Sometimes however, it can be useful to define a specific CPLEX optimization
strategy. This holds, in particular, when the solution search is somehow time-boxed,
and the proof of optimality is not necessary.

Quite a detailed study on a tailored use of CPLEX, in terms of MILP strategies,
aimed at solving both the general MILP model directly and the heuristic procedure
of Sect. 2, is reported in the quoted previous work [25]. Hereinafter, a novel and
extended experimental analysis is discussed.

Since Version 12.6.1, CPLEX is capable of solving MIP problems using a new
Distributed Parallel feature to split the B&C job among different cores on different
HW servers. This opens up to different usable parallelization strategies. Moreover,
the parallelization works:

(a) even over a TCP/IP network;
(b) without the need of any other Software installed;
(c) over heterogeneous cores;
(d) in a core-fault tolerant mode.
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This, in perspective, makes the parallel optimization a ‘low cost’ alternative for
difficult problems, allowing the consumption of idle space from several cores on a
network (see [28]).

This section considers first 100 non-trivial test cases for the classical container
loading problem, with additional balancing conditions. They are extracted from:
‘Three Dimensional Cutting and Packing Data Sets—THPACK 1–7 BR’ (Bischoff
and Ratcliff: http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-
group-on-cutting-and-packing). As is known, this test-bed consists of seven sets of
100 test cases each. Among these, a subset of those with an available number of
items between 100 and 200 were selected (a list of the selected test cases is reported
in Appendix).

Different test case configurations, in term of position of the domain center of
mass, have been analyzed: in 80 tests it was coincident with respect to the geometric
center of the domain and in 20 tests it was shifted close to one side (25 % of the
corresponding domain edge). The items mass has been varied according to two
probability distributions: the Gaussian and the Gamma.

The test campaign was performed using IBM CPLEX 12.6.2 as the optimizing
engine, and IBM EasyModeler as the model generator. More precisely, the MILP
solver available within CPLEX, statically linked to the CCC code generated by
EasyModeler, was adopted, using the open source Coin-OR OSI 0.105.3 library as
the interface between EasyModeler and the optimizer. The following computational
supports were, moreover, utilized:

• platform: Lenovo Thinkpad W520 Laptop. with an Intel(R) Core (TM) i7-
2620 M at 2.7 GHz clock frequency (two real core seen as four with Intel
Hyperthreading) and 8 GB Ram available;

• operating system: Windows(R) 7 Professional OS.

Preliminary experiments have shown that the usage of the distributed parallel
feature, using the cited heuristic, was advantageous, with respect to the default
CPLEX single CPU parallel behavior, which utilizes a multi-thread parallel B&C
implementation, even when using the cores of a single CPU. Therefore, all the
test cases described in this section have been solved using the CPLEX distributed
parallel capabilities. We have also carried out a minimal tuning of the CPLEX run
time parameters. The parameter tuning (Fig. 2) has been kept to a minimum, in
order to:

i. minimize the risk of over engineering strategy;
ii. to make it easier to capture the added value of the Parallel feature.

The distributed parallel algorithm is usually performed in two phases. During a
first ramp-up phase, the B&C is executed by each core, using a slightly different
strategy. After a certain (parametric) time of execution, the most promising strategy
among those applied, is selected, and executed in parallel by all the cores.

The CPLEX parameters are the same as those used in the previous work [25],
and only two parameters, related to the distributed parallel feature have been added:

http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing
http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing
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Fig. 2 CPLEX parameters selection for the heuristic solution

• CPX_PARAM_THREADS set to 1 allocates a single thread optimization for
each available core;

• CPX_PARAM_RAMPUPDURATION set to 2, implements a peculiar way of
using the parallelism, performing only the so called ‘ramp-up’ phase of the
Parallel B&C;

• the number of parallel processes was set to 3, leaving one of the four cores to the
master process.

The whole selected test cases were solved using the heuristics of Sect. 2, with a
maximum time limit of 1 h. The relevant results are summarized in Tables 1, 2, 3,
and 4. Figures 3, 4, 5, and 6 refer to case studies GC_18, NC_8, GS_7 and NS_1.

The 37 instances with Gamma-distributed items mass and center of mass in the
geometric center of the domain, had an average load factor of 83.98 % showing
also a very consistent behavior (the Load Factor Standard Deviation is 2.3, and the
minimum and maximum Load Factor are 77.35 and 88.14 % respectively). It also
has to be noted that none of these instances was stopped by the time limit. As a
comparison with the other tests described below, these look easier to solve.

The 43 instances with Gaussian-distributed item mass and center of mass in the
geometric center of the domain, had an average load factor of 81.40 % showing
somehow a less consistent behavior (the Load Factor Standard Deviation is slightly
higher: 4.17, and the minimum and maximum Load Factor, with values of 68.51 and
89.79 % respectively, represent a broader range). 22 out of 43 instances hit the time
limit.

The ten instances with Gamma-distributed item mass and center of mass shifted,
had an average load factor of 55.74 % (the Load Factor Standard Deviation is 5.0,
and the minimum and maximum Load Factor are 46.79 and 61.92 % respectively).
All the instances were stopped by the time limit.
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Table 1 Gamma-distributed item mass and center of mass in the geometric center of
the domain

Test name Instance items Loaded items Loading factor (%) Execution time

GC_1 102 84 81.44 00:39:36
GC_2 141 112 86.78 00:44:51
GC_3 116 82 81.40 00:10:01
GC_4 154 106 83.50 00:08:15
GC_5 120 72 81.66 00:04:18
GC_6 196 118 83.12 00:09:35
GC_7 187 114 77.35 00:41:18
GC_8 188 128 82.80 00:27:21
GC_9 174 117 83.01 00:12:39
GC_10 115 81 85.85 00:05:38
GC_11 135 90 83.21 00:08:08
GC_12 194 124 81.61 00:30:50
GC_13 100 72 88.14 00:06:04
GC_14 140 100 82.28 00:31:00
GC_15 169 114 80.24 00:29:33
GC_16 119 83 85.07 00:15:38
GC_17 151 95 83.50 00:14:33
GC_18 156 104 87.55 00:10:50
GC_19 123 97 87.83 00:14:03
GC_20 108 79 87.12 00:06:53
GC_21 138 103 84.74 00:14:11
GC_22 142 109 85.17 00:20:34
GC_23 122 83 84.35 00:11:38
GC_24 118 75 83.60 00:06:57
GC_25 171 126 82.72 00:27:14
GC_26 113 84 85.53 00:06:58
GC_27 155 105 84.23 00:24:53
GC_28 138 97 82.73 00:15:03
GC_29 108 82 87.29 00:07:00
GC_30 153 108 84.11 00:11:44
GC_31 116 76 82.15 00:06:18
GC_32 137 102 86.67 00:09:08
GC_33 100 74 85.48 00:05:53
GC_34 140 102 83.56 00:21:17
GC_35 127 81 85.02 00:08:02
GC_36 154 111 82.09 00:20:20
GC_37 145 99 84.30 00:10:39
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Table 2 Gaussian-distributed item mass and center of mass in the geometric center of
the domain

Test name Instance items Loaded items Loading factor (%) Execution time

NC_1 112 72 76.73 00:47:40
NC_2 197 121 86.16 01:04:10
NC_3 126 81 80.43 00:51:57
NC_4 155 105 80.46 00:34:22
NC_5 109 76 86.09 00:21:23
NC_6 166 103 82.25 00:46:22
NC_7 174 103 77.76 00:43:29
NC_8 112 92 89.79 00:38:07
NC_9 155 97 81.44 00:36:35
NC_10 141 84 77.90 00:18:36
NC_11 181 113 82.71 00:48:53
NC_12 114 81 87.03 00:47:08
NC_13 188 110 77.58 01:02:15
NC_14 140 86 68.51 01:00:12
NC_15 199 125 82.00 01:00:11
NC_16 161 101 84.69 01:03:41
NC_17 119 78 84.30 00:57:49
NC_18 110 77 88.20 00:43:51
NC_19 158 104 81.11 01:00:52
NC_20 117 71 77.57 01:01:51
NC_21 153 98 80.54 01:00:46
NC_22 178 112 73.25 01:01:00
NC_23 104 72 81.33 00:37:08
NC_24 115 81 86.36 00:55:00
NC_25 160 98 85.18 01:00:42
NC_26 108 74 81.86 01:04:04
NC_27 126 87 81.89 00:54:43
NC_28 129 94 82.55 01:00:05
NC_29 144 97 80.41 01:01:26
NC_30 122 78 80.53 01:03:55
NC_31 113 82 84.34 01:02:41
NC_32 152 89 75.98 01:03:36
NC_33 131 87 84.46 01:04:23
NC_34 156 89 81.65 01:01:51
NC_35 103 75 84.03 00:41:29
NC_36 129 99 85.03 01:00:09
NC_37 143 89 80.93 00:59:08
NC_38 172 90 72.45 01:03:30
NC_39 133 85 79.87 01:04:30
NC_40 149 77 76.89 01:02:40
NC_41 100 71 82.57 00:38:23
NC_42 129 76 81.66 01:00:39
NC_43 142 102 83.86 00:52:24
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Table 3 Gamma-distributed item mass and center of mass shifted

Test name Instance items Loaded items Loading factor (%) Execution time

GS_1 132 34 52.01 01:00:14
GS_2 122 60 57.61 01:00:35
GS_3 143 32 46.79 01:02:41
GS_4 126 64 60.08 01:00:14
GS_5 124 37 49.09 01:02:27
GS_6 141 45 53.44 01:00:15
GS_7 125 58 61.92 01:01:15
GS_8 128 41 59.62 01:02:50
GS_9 144 58 61.21 01:01:54
GS_10 143 52 54.66 01:04:10

Table 4 Gaussian-distributed item mass and center of mass shifted

Test name Instance items Loaded items Loading factor (%) Execution time

NS_1 138 52 55.79 01:03:14
NS_2 147 56 52.08 01:04:00
NS_3 128 42 52.74 01:00:45
NS_4 138 30 45.98 01:02:02
NS_5 138 51 53.12 01:00:37
NS_6 127 28 48.59 01:00:36
NS_7 149 39 53.78 01:01:07
NS_8 129 58 52.09 01:02:37
NS_9 135 57 46.88 01:01:05
NS_10 126 40 52.51 01:02:25

Fig. 3 Solution of test GC_18



142 S. Gliozzi et al.

Fig. 4 Solution of test NC_8

Fig. 5 Solution of test GS_7

Fig. 6 Solution of test NS_1

The ten instances with Gaussian-distributed item mass and center of mass shifted,
had an average load factor of 51.35 % showing also a very consistent behavior (the
Load Factor Standard Deviation is 3.0, and the minimum and maximum Load Factor
are 45.98 and 55.79 % respectively). All the instances were stopped by the time limit
(Table 4).
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Fig. 7 Tetris CPLEX
parameters

A further set of ten ‘fabricated’ case studies involving tetris-like items has been
considered. The overall problem still consists of maximizing the occupied volume of
a convex domain in the presence of balancing conditions. Table 5 reports the number
and the typology of objects considered for each test case. Table 6 summarizes the
relevant results, in terms of solutions obtained and computational performances.
Figures 8 and 9 refer to case studies T_3 and T_4 respectively.

These cases were solved using a direct solution process over the model formu-
lation, without splitting the instance with a heuristic process. For these tests, the
same Software configuration of EasyModeler and IBM CPLEX described above
was used. The HW platform was however different and slightly faster: a Lenovo
Thinkpad T440 Laptop. with an Intel(R) Core (TM) i5-4300U at 1.9 GHz clock
frequency (4 real core) and 8 GB Ram available.

A different strategy has been specified for the Tetris case (see Fig. 7). In particular
the usage of disjunctive cuts and probing has been enforced and a Branch & Cut
general strategy aimed at increasing the lower bound was chosen. The distributed
parallel was run without any ramp up, allowing all the parallel processes to operate
with the same strategy on the B&C Tree.

As with the previous tests, three cores were used for the parallel search while one
core was used for the master, and a 1-h time limit was set.

All test were solved within the 1-h time limit. A further run was done for test
T_3, relaxing the time limit with the aim of understanding how harder the instance
was. In fact it was solved after just over 90 min while the sum of the solution times
of the other nine instances was merely 35 min.
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Table 6 Summary of results for tetris-like item test set

Test
number Objects Parts

Load
factor (%) Constraints Variables Integers Time (s) Nodes

T_1 7 9 79.29 1166 1021 894 1 0
T_2 10 9 76.13 2815 2464 2267 77 1112
T_3* 7 9 71.90 3732 3232 3006 5429 54,850
T_4 8 3 92.86 1090 1021 900 71 3593
T_5 7 3 95.25 958 913 798 411 43,027
T_6 6 8 66.76 1790 1876 1200 59 3091
T_7 10 7 75.23 1741 1537 1386 205 68,329
T_8 22 3 78.81 3967 2989 2790 691 36,473
T_9 7 7 53.90 8392 7834 6342 551 8810
T_10 8 9 75.05 2545 2248 2058 9 0

*Solved using a 3-h time limit

Fig. 8 Solution of test T_3

Fig. 9 Solution of test T_4
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It is interesting also to note that two non-trivial instances (T_1 and T_10) were
solved to optimality during the pre-processing phase.

4 Conclusive Remarks

This work focuses on experimental aspects relevant to an extension of the container
loading problem, solved by a modeling-based heuristic approach. This is aimed at
coping with complex non-standard packing problems, involving tetris-like items,
non-box-shaped domains and additional conditions, such as balancing.

In this context we solved a set of 100 non-trivial test cases for the classical
container loading problem, with additional balancing conditions, using a heuristic
approach. We adopted a strategy based on the distributed parallel variant of B&C
algorithm, as it is implemented in IBM CPLEX V. 12.6.2 on a single 4 cores
machine. The quality of the results looks interesting, with an average load factor
higher than 80 % in the instances with the center of mass in the geometric center of
the domain.

We also tested the solution of a set of ten instances involving tetris-like items.
These instances were directly solved according to the distributed parallel approach,
without the usage of a heuristic. Also in this case, the results were encouraging,
and a possible follow up is the study of the behavior of the optimizer with a higher
degree of parallelism, on several distinct servers.

Acknowledgements We are very grateful to Jane Evans, for her accurate revision of the whole
text and the number of suggestions provided.

Appendix

A list of selected test cases and their correspondence within the ‘Three Dimensional
Cutting and Packing Data Sets - THPACK 1–7 BR’ is reported below.
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THPACK tests THPACK tests THPACK tests
Article
test name

Set
number

Test
case

Article
test name

Set
number

Test
case

Article
test name

Set
number

Test
case

GC_1 1 11 NC_1 1 1 GS_1 1 74

GC_2 1 43 NC_2 1 4 GS_2 1 98

GC_3 1 46 NC_3 1 7 GS_3 3 52

GC_4 1 99 NC_4 1 32 GS_4 3 87

GC_5 2 20 NC_5 1 41 GS_5 6 9

GC_6 2 30 NC_6 2 7 GS_6 6 33

GC_7 2 65 NC_7 2 10 GS_7 6 42

GC_8 2 76 NC_8 2 17 GS_8 6 85

GC_9 2 99 NC_9 2 50 GS_9 7 28

GC_10 3 2 NC_10 2 54 GS_10 7 54

GC_11 3 20 NC_11 2 56

GC_12 3 29 NC_12 2 58

GC_13 3 53 NC_13 2 76

GC_14 3 83 NC_14 2 88

GC_15 4 4 NC_15 3 13

GC_16 4 27 NC_16 3 30 NS_1 1 2

GC_17 4 30 NC_17 3 68 NS_2 1 6

GC_18 4 65 NC_18 3 99 NS_3 3 16

GC_19 4 85 NC_19 4 45 NS_4 3 72

GC_20 4 87 NC_20 4 73 NS_5 4 19

GC_21 5 2 NC_21 4 82 NS_6 4 29

GC_22 5 19 NC_22 4 88 NS_7 4 96

GC_23 5 37 NC_23 5 15 NS_8 5 5

GC_24 5 38 NC_24 5 58 NS_9 5 99

GC_25 5 45 NC_25 5 65 NS_10 6 59

GC_26 5 87 NC_26 5 66

GC_27 5 96 NC_27 5 86

GC_28 6 29 NC_28 6 1

GC_29 6 49 NC_29 6 10

GC_30 6 56 NC_30 6 12

GC_31 6 66 NC_31 6 34

GC_32 6 84 NC_32 6 35

GC_33 6 89 NC_33 6 38

GC_34 7 45 NC_34 6 65

GC_35 7 57 NC_35 6 68

GC_36 7 84 NC_36 7 2

GC_37 7 99 NC_37 7 11

NC_38 7 13

NC_39 7 21

NC_40 7 50

NC_41 7 61

NC_42 7 75

NC_43 7 78
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Designing Complex Interplanetary Trajectories
for the Global Trajectory Optimization
Competitions
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Abstract The design of interplanetary trajectories often involves a preliminary
search for options later refined/assembled into one final trajectory. It is this broad
search that, often being intractable, inspires the international event called Global
Trajectory Optimization Competition. In the first part of this chapter, we introduce
some fundamental problems of space flight mechanics, building blocks of any
attempt to participate successfully in these competitions, and we describe the use
of the open source software PyKEP to solve them. In the second part, we formulate
an instance of a multiple asteroid rendezvous problem, related to the 7th edition of
the competition, and we show step by step how to build a possible solution strategy.
In doing so, we introduce two new techniques useful in the design of this particular
mission type: the use of an asteroid phasing value and its surrogates and the efficient
computation of asteroid clusters. We show how the basic building blocks, sided
to these innovative ideas, allow designing an effective global search for possible
trajectories.
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1 Introduction

The design of interplanetary trajectories is a fundamental part of any future
endeavour for the exploration of our solar system and beyond. Be it a sample return
mission to Mars, the exploration of one of our gas giants, the first-time probing
of objects in the Kuiper Belt, an asteroid deflection mission or the removal of
dangerous orbiting debris, the complex interplay between the trajectory details and
the mission objectives is what ultimately defines the overall mission value. The
complexity and the diversity of interplanetary trajectories can be most immediately
appreciated by looking at some remarkable examples such as the SMART-1 [23]
transfer to Moon orbit, the Cassini tour of the Saturn system [27], or the Messenger
[21] interplanetary transfer to Mercury. Many interplanetary trajectories were
successfully flown by past spacecraft and even more were designed in the process
of learning how to best navigate around our solar system. An outstanding example
is that of the international event known as the Global Trajectory Optimization
Competition (GTOC). Initiated in 2006, and currently heading towards its 9th
edition, the GTOC is an event where, as the official web portal1 reports: the best
aerospace engineers and mathematicians world wide challenge themselves to solve
a “nearly-impossible” problem of interplanetary trajectory design. Providing a
valid solution to these problems is a rather complex endeavour requiring a solid
understanding of space-flight mechanics and a good dose of innovative thinking as
all of the problems have unique characteristics and thus require the development of
new methods and solution approaches built on top of available common knowledge.
In this paper, we summarize part of the necessary (but often not sufficient) basic
knowledge required to participate to these competitions and we report and discuss,
as an example, part of the solution strategy we employed to design our submission to
the 7th edition. We base the selection of techniques reported on past GTOC editions,
mainly focused on the preliminary design of low-thrust missions neglecting effects
of a third body gravitational attraction.

The paper is divided in two main sections as follows: in Sect. 2 we describe
fundamental problems that are often encountered during GTOCs. These include
space flight mechanics problems (Sect. 2.1), specific types of optimal control
problems (Sect. 2.2) and the efficient search of a computational tree (Sect. 2.3).
In the second part of the chapter (Sect. 3) we build a search strategy for multiple
asteroid rendezvous in the main belt. We formally define the problem making large
use of the 7th GTOC problem data in Sect. 3.1. We then describe a set of new
theoretical developments and their integration with the building blocks in a final
algorithm described in Sect. 3.4 able to search for multiple asteroid rendezvous
mission opportunities.

1http://sophia.estec.esa.int/gtoc_portal/.

http://sophia.estec.esa.int/gtoc_portal/
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2 Building Blocks

The design of a complex interplanetary mission is often made by (optimally)
assembling solutions to a number of smaller problems, rather than tackling the
problem as a whole. In this section, we introduce some of these basic “building
blocks,” and we show the reader how to solve them on a computer using the open
source code PyKEP [15].2 PyKEP is an open source software library developed and
maintained at the European Space Agency, which allows non-experts to perform
research on interplanetary trajectory optimization. We report rough estimates on the
CPU time employed to find solutions to these basic problems, assuming one single
thread of an Intel(R) Core(TM) i7-4600U CPU having the clock at 3.3 GHz and with
a cache of 4096 KB. Note that we use non dimensional units throughout the PyKEP
examples, but any set of consistent units would also be compatible with PyKEP.

2.1 Basic Space Flight Mechanics Problems

During the preliminary design of an interplanetary trajectory, and thus also in most
GTOC problems, the spacecraft motion is approximated by that of a variable mass
point, subject to the gravity attraction of one primary massive body with known
gravitational parameter �, and to the spacecraft thrust T. Denoting with r, v and m
the position vector, velocity vector and mass of the spacecraft, the initial value (IV)
problem describing its free motion in some inertial reference frame goes under the
name of Kepler’s problem (KP), mathematically defined as:

KP W
8
<

:

Rr D � �

r3
r

r.ts/ D rs

v.ts/ D vs

(1)

where ts is the starting time and rs; vs the initial conditions. The position and velocity
of a spacecraft at any time t is then obtained by propagating the above equations.
Numerical integration can be avoided in this well studied case by the use of the
Lagrange coefficients technique (see [2, 25] for implementation details). In PyKEP
the KP is solved as follows:

from PyKEP i m p o r t *
r s = [ 1 , 0 , 0 ] ; vs = [ 0 , 1 , 0 ] ; t = p i / 2 ; mu = 1
r f , v f = p r o p a g a t e _ l a g r a n g i a n ( r s , vs , t , mu)

2https://github.com/esa/pykep/.

https://github.com/esa/pykep/
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The CPU time requested by this operation is roughly constant across the whole
spectrum of possible inputs. Using the above mentioned hardware, we measured a
mean time of roughly 40�s per KP, corresponding to 250,000 KPs solved in 1 s.

The boundary value problem (BVP) associated with the free motion of our
spacecraft is, instead, known as Lambert’s Problem (LP) and is mathematically
described as follows:

LP W
8
<

:

Rr D � �

r3
r

r.ts/ D rs

r.tf / D rf

(2)

where ts is the starting time, tf the final time and rs; rf the boundary conditions.
The search for techniques to efficiently solve this problem has an interesting history
[16]. The LP always results in at least one solution (the zero-revolutions solution)
but, according to the value of tf � ts, may also result in several multi-revolutions
solutions (mostly appearing in couples). In PyKEP (Python version) the LP is solved
as follows:

from PyKEP i m p o r t *
r s = [ 1 , 0 , 0 ] ; r f = [ 0 , 1 , 0 ] ; t = 20 * p i / 2 ; mu = 1 ; mr = 5
l = l a m b e r t _ p r o b l e m ( r s , r f , t , mu , F a l s e , mr )
v1 = l . ge t _ v 1 ( ) [ 0 ]
v2 = l . ge t _ v 2 ( ) [ 0 ]

The CPU time requested by this operation depends on the number of existing
multiple revolution solutions. If we limit ourselves to mr D 0, that is to the
zero-revolutions case (which indeed is often the most important), the algorithm
implemented in PyKEP (Python version) can be considered to have constant
CPU time across all possible inputs [16]. Using the above mentioned hardware,
we measured a mean time of roughly 40�s/LP, corresponding to 250,000 zero
revolutions LPs solved in 1 s.

We then consider the spacecraft motion subject to a thrust force T constant in
the inertial frame. This problem is also called the constant thrust problem (CTP).
Since the spacecraft operates its propulsion system, some mass needs to be expelled
in order to obtain an effect on the spacecraft acceleration. The efficiency of such a
reaction process is described by the constant Isp, i.e. the propulsion specific impulse.
The corresponding initial value problem is:

CTP W

8
<̂

:̂

Rr D � �

r3
rC T

m

Pm D � T
Ispg0

r.ts/ D rs; v.ts/ D vs;m.ts/ D ms

(3)

where g0 is the Earth gravitational acceleration at sea level, typically set to 9:80665
[m/s2]. The technique we employ to efficiently solve this problem is a Taylor series
numerical propagator [19]. Other, more common, numerical propagators such as
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Runge-Kutta-Fehlberg would be significantly slower. In PyKEP (Python version)
the CTP is solved, to a relative and absolute precision of 10�12 (see [19] for the
definition of such errors in the context of Taylor propagation), as follows:

from PyKEP i m p o r t *
r s = [ 1 , 0 , 0 ] ; vs = [ 0 , 1 , 0 ] ; ms = 1 0 ; t = 2 * p i
T = [ 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ] ; mu = 1 ; v e f f = 1
r f , vf , mf = p r o p a g a t e _ t a y l o r ( r s , vs , ms , T , t , mu , v e f f , �12,

�12)

The CPU time requested by this operation depends linearly on the integration
time t. Assuming the data in the example above (corresponding to one revolution
along a circular orbit perturbed by a small thrust) and our reference thread
performance, the algorithm implemented in PyKEP is able to solve the problem
in roughly 230 ms, corresponding to 45,000 CTP solved in 1 s.

2.2 Optimal Control Problems

A fundamental aspect of interplanetary trajectory optimization problems where
the spacecraft is equipped with a low-thrust propulsion system is the capability
to solve Optimal Control Problems (OCPs) having the following mathematical
description [7]:

OCP W

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

find: T.t/ 2 F ; xs; ts; xf ; tf
to minimize: J D ˆ.xs; ts; xf ; tf /C

R tf
ts
L .T.t/; x.t/; t/dt

subject to:
Rr D �

r3
rC T.t/

m

Pm D � T.t/
Ispg0

g.xs; ts; xf ; tf / D 0
'.xs; ts; xf ; tf / � 0

(4)

where F is the functional space containing all piece-wise continuous functions,
g are equality constraints and ' are inequality constraints. We also introduced the
spacecraft state x D Œr; v;m� to shorten our notation. Note that the above problem,
and particularly some of its more complex variants, are still the subject of active
research. In most cases the objective J is one of (1) J D tf (time optimal control),
(2) J D mf (mass optimal control), (3) J D R tf

ts
T2.t/dt (quadratic control) or some

combination of the above.
We will here shortly describe our approach (i.e. a direct approach based on the

Sims-Flanagan transcription [24]) to solving the OCP as implemented in PyKEP,
with the understanding that different approaches may perform better in some
specific problems. Essentially, we divide the trajectory in 2n segments of constant
duration .tf � ts/=2n and we consider the thrust T.t/ as fixed along these segments in
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an inertial reference frame. The value of T fixed for each segment is denoted with Ti.
This allows the OCP to be transformed into an equivalent Non Linear Programming
problem (NLP) [20] having the following mathematical description:

NLP W

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

find: Ti 2 F; i D 1::2n; xs; ts; xf ; tf
to minimize: J D ˆ.xs; ts; xf ; tf /CP

R tiC1

ti
L .Ti; x.t/; t/dt

subject to: x� D xC
g.xs; ts; xf ; tf / D 0
'.xs; ts; xf ; tf / � 0

(5)

where F is a closed subset of R3, x� is the spacecraft state as found propagating
forward from xs along the first n segments, while xC is the spacecraft state as found
propagating backward from xf along the last n segments. The equality constraint
x� D xC is called mismatch constraint, while the requirement Ti 2 F is generally
transformed into an inequality constraint called throttle constraint and representing
a limit to the maximum thrust allowed by the spacecraft propulsion system.

As a fictitious example, we consider the transfer from Earth conditions to Mars
conditions of a spacecraft having ms D 4500 [kg] and Isp D 2500 [s]. The spacecraft
is equipped with a low-thrust propulsion system capable of thrusting at Tmax D 0:05
[N]. We consider the minimum time problem, thus the following formal description:

EM W

8
ˆ̂
<

ˆ̂
:

find: ts; tf ;mf ;Txi;Tyi;Tzi; i D 1::2n
to minimize: J D tf

subject to: x� D xC
.T2xi C T2yi C T2zi/

2 � T2max

(6)

where xs; xf are no longer in the decision vector as they are determined from ts and
tf computing the Earth and Mars ephemerides. In PyKEP, the two constraints of the
above EM problem are computed as follows, assuming the decision vector is known:

from PyKEP i m p o r t *
# Example D e c i s i o n Ve c t o r f o r 10 segmen t s
n_seg = 10
t s = epoch ( 0 , ’ mjd2000 ’ ) ; t f = epoch ( 3 5 0 , ’ mjd2000 ’ ) ; mf = 2400
t h r o t t l e s = [ 0 , 0 , 1 ] * n_seg
# Computing t h e p l a n e t s p o s i t i o n s and v e l o c i t y ( e p h e m e r i d e s )
e a r t h = p l a n e t . j p l _ l p ( ’ e a r t h ’ )
mars = p l a n e t . j p l _ l p ( ’ mars ’ )
# Computing t h e e q u a l i t y and i n e q u a l i t y c o n s t r a i n t s
s c = s i m s _ f l a n a g a n . s p a c e c r a f t ( 4 5 0 0 , 0 . 0 5 , 2500)
r s , vs = e a r t h . eph ( t s )
r f , v f = mars . eph ( t f )
xs = s i m s _ f l a n a g a n . s c _ s t a t e ( r s , vs , s c . mass )
x f = s i m s _ f l a n a g a n . s c _ s t a t e ( r f , vf , mf )
l e g = s i m s _ f l a n a g a n . l e g ( t s , xs , t h r o t t l e s , t f , xf , sc , MU_SUN)
ceq = l e g . m i s m a t c h _ c o n s t r a i n t s ( )
c i n e q = l e g . t h r o t t l e s _ c o n s t r a i n t s ( )
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The CPU time requested for computing these constraints is 2n times that
requested by the underlying CTP. Once equality, inequality constraints and the
objective function computations are available, they can be used by an NLP solver
to find the optimal solution. Widely spread solvers like IPOPT [26], SNOPT [12]
and WORHP [4] are an obvious choice and have indeed been successfully used in
connection to this type of NLPs and more in general in GTOCs and interplanetary
trajectory design.

2.3 Tree Searches

The various problems described in Sects. 2.1 and 2.2 can be used in the design of
interplanetary trajectories, such as those of the GTOC problems, as building blocks
of a more complex search strategy. Such a search strategy is often some form of
tree search, where each node represents a trajectory that can be incrementally built
towards the mission goal expanding one of its branches (e.g. adding a fly-by, a
rendezvous or, more generically, a trajectory leg). The exact detail of the nodes
definition and their possible branching must be carefully designed according to the
problem under consideration. A concrete example is given in a later section to clarify
such a process in one particular, selected case. For the time being, one may picture
each node as representing a partial trajectory and the branching as the process to
add one or more phases to such a trajectory. Branching involves the solution of one
or more sub-problems such as an LP, or an OCP, etc. and its complexity may vary
greatly. Due to the complexity of the search, it is often impossible to exhaustively
search the entire tree of possibilities. Simple text book implementations of breadth
first search (BFS) or depth first search (DFS) are exhaustive search-strategies that
will eventually branch out every possible node, which is most of the time never an
option due to the enormous tree size.

Consequently, one has to develop a strategy that explores only areas of the
tree that give best results while staying within a reasonable computational budget,
i.e. the number of sub-problems to be solved. The key aspect in the design of a tree
search strategy is then, given a set of active leaf nodes (i.e. partial trajectories), to
choose which one is worth branching and what branches are worth computing. Since
each node represents only a partial interplanetary trajectory, its value with respect
to the achievement of the final mission goal is not necessarily available. In a typical
example, at each node the remaining propellant mass rm and the remaining mission
time rt are known and, only in some cases, a partial objective value J measuring
the mission value achieved so far is available. Using this knowledge to decide what
node to branch next is, as mentioned, of paramount importance.

The text book implementation of DFS [8] can be improved by introducing a
pruning criterion preventing nodes to be further expanded. Such a criteria can make
use of rm, rt and, when available, J as well as of the information on the best full
trajectory found so far which will be available rather soon during the search since
the tree is searched in depth. The main problem with this approach is that its running
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Fig. 1 Different tree search strategies in comparison. Dotted nodes are yet to be explored. Crossed
out nodes are pruned and will not be branched. (a) Breadth-first-search (BFS). (b) Depth-first-
search (DFS). (c) Beam-search (BS)

time is very sensitive to the pruning criteria, but it cannot be estimated upfront. As
a consequence when a tree search starts one needs to wait for it to finish in order
to decide whether the pruning criteria was too strict or loose. During the 5th GTOC
this strategy was used [18] to explore the tree of Lambert’s solutions that would then
be converted into a low-thrust trajectory.

The text book implementation of BFS [8] can be improved by considering only a
fixed number of nodes for branching at each depth. The nodes are prioritized using
rm, rt and, when available, J. The resulting tree search is a standard tree search
called beam search (BS). A version of this tree search strategy was employed by
Jet Propulsion Laboratory in the design of their winning trajectory in the 5th GTOC
edition [22]. Figure 1 gives a schematic comparison of beam search with BFS and
DFS. A multi-objective version of beam search was also used during the 7th GTOC
by our team, resulting in a search strategy we called MOBS and that is described
in detail in a later section of this paper. An advantage of the BS/MOBS approach
is that the complexity to explore an additional tree depth is easily computed as the
complexity of the sub-problem to solve times the beam size. It is thus possible to
estimate rather accurately the running time of the search before starting it.

In some problems, it is not possible to make a fair selection among nodes having
equal depth in the tree. In fact, in most problems, the tree depth information is
not directly related to relevant physical phenomena and it is just an artifact of how
the problem under consideration is mapped into a tree search problem. A fairer
comparison can be made among nodes representing trajectories that have a similar
remaining mission time rt at disposal to achieve their objectives. A tree search based
on this simple idea, called Lazy Race Tree Search (LRTS) was used during the
6th GTOC and the resulting search strategy, employing self-adaptive differential
evolution in the trajectory branching, received the gold “Humies" award for human-
competitive results produced by genetic and evolutionary computation [17].

A different approach to tree searches, and one that is most popular between AI
practitioners as it proved to be able to deal with the vast combinatorial complexity
of board games such as the game Go [6], is the Monte Carlo Tree Search (MCTS).
An implementation of the MCTS paradigm in the design of complex interplanetary
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trajectories was recently studied in the context of purely ballistic trajectories and
fly-by sequences generation [14] suggesting that its use may be competitive with
beam search.

3 Example: Multiple-Asteroid Rendezvous Mission

In this section we define a multiple-asteroid rendezvous mission. We reuse large part
of the problem description released for the 7th edition of the GTOC and we describe
a possible solution strategy. Our focus is on showing how new innovative ideas
and design methods have to be developed and used aside the basic building
blocks to allow for an efficient search of design options in this particular case,
highlighting how the problem of “interplanetary trajectory design” is still far from
being automated in its most general case.

3.1 Problem Definition

Consider a spacecraft S having an initial mass m0 D ms C mp, where ms is the dry
mass and mp the propellant mass. The spacecraft has a propulsion system defined
by a maximum thrust 
M , and a specific impulse Isp. The maximum acceleration
allowed by the propulsion system is denoted by ˛M D 
M=ms. The set A contains
N possible target asteroids of which the ephemerides (e.g. position and velocity) at
each epoch t0 2 Œt0; t0� are known or computable. We want to perform a preliminary
search for possible multiple rendezvous missions allowing for the spacecraft to visit
the largest possible number of asteroids within a maximum mission duration tof
and allowing for a minimum stay time tw on each of its visited asteroids. A visit is
defined, mathematically, as a perfect match between the asteroid and the spacecraft
positions and velocities. We focus on the case where the cardinality N of the set
A (i.e. the number of possible target asteroids) is in the order of thousands and we
assume the spacecraft can be delivered on a chosen starting asteroid at a chosen
starting date.

This problem is relevant to the design of advanced asteroid belt exploration
missions, such as the one considered in the 7th edition of the Global Trajectory
Optimization Competition [5], advanced In Situ Resource Utilization (ISRU)
missions or future concepts such as the APIES concept [9], as well as to the design of
multiple active debris removal missions (in which case the set A contains orbiting
debris rather than asteroids). The asteroid belt scenario types are studied in depth
here, but the novel methods proposed are of more general significance. As data set,
we use the 16,256 asteroids from the main belt that were used during the GTOC7
competition (visualized in Fig. 2). The ephemerides of such asteroids are computed
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Fig. 2 Visualization of the orbits of 16,256 main belt asteroids considered for the GTOC7
problem. Going outward, the orbits of the Earth, Mars and Jupiter are also shown as reference

from the orbital parameters assuming perfectly Keplerian orbits. The actual orbital
parameters can be downloaded from the GTOC7 problem data at http://sophia.estec.
esa.int/gtoc_portal/. Each asteroid of such a data set is assigned a consecutive index,
so that one can write Aj, with j 2 Œ1; 16;256� to identify uniquely the asteroid.

3.2 Asteroid Phasing

A fundamental problem in a multiple rendezvous mission is that of assessing
which good transfer opportunities (target body, arrival epoch, arrival mass, etc.)
are presented to a spacecraft S. Since it is computationally demanding to define
and solve an optimal control problem (OCP) for each possible target body and
launch/arrival window, we introduce a new quantity, easily computed and related
to the cost of performing a given transfer: the phasing value, or asteroid phasing
value in our chosen context. When good transfer opportunities from As to Af exist
at some epoch we say that those two asteroids are well “phased” and their phasing
value will be small. Before introducing the formal definition of the phasing value,
it is worth noting immediately how such a notion depends also on the spacecraft S
and its propulsion system and not only on the starting and final body.

Assume the spacecraft S to be on the asteroid As at t0 and consider possible
Lambert problems (LP) to target the asteroid Af . Let the starting (ts) and final
(tf ) epochs vary freely in Œt0; t0 C TM� and consider the minimization of two final

http://sophia.estec.esa.int/gtoc_portal/
http://sophia.estec.esa.int/gtoc_portal/
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objectives �V and tf only for trajectories for which the thruster can actually
deliver the requested velocity increment, that is if �V � ˛M�T , where ˛M is
the maximum value for the thruster acceleration and �T D tf � ts. The �V is
computed from the solution of the LP as�V D �V1C�V2, where the two velocity
increments represent the departure and arrival relative velocities along the Lambert
solution. This results in the following two dimensional, two objectives, constrained
optimization problem:

find: ts; tf 2 Œt0; t0 C TM�

to minimize: f1 D �V; f2 D tf
subject to: �V � ˛M�T

ts < tf

(7)

The quality of its Pareto front is proposed as a quantitative measure for the notion
of phasing, henceforth referred to as phasing value and indicated with '.As;Af /,
shortened from '.As;Af ; t0;TM; ˛M/. Note that one of the two objectives is the
arrival epoch tf and not the total time of flight which is, in this case, not relevant, also
note that ts indicates the starting epoch of the Lambert transfer and is not necessarily
equal to t0. As an example, take As D A13155, t0 D 11;000 [MJD2000] and
�T D 365:25 [days] and solve the above problem for Af D A12538 and Af D A3418
and a value of ˛M D 0:375 10�4 [m/s2]. The resulting Pareto fronts (computed using
MOEA/D [28] and accounting for the constraints using a death penalty method [1])
are shown in Fig. 3 together with all the transfer orbits in the front. In this case, one
may state that A3418 is better phased, at t0, than A12538 with respect to A13155 (w.r.t.
TM and ˛M). This definition has a straight forward application to the planning of
multiple asteroid rendezvous missions as it allows to introduce a strict ordering over
the set of possible target asteroids. In other words, given As, t0 and �T and ˛M , one
can rank all the possible target asteroids with respect to ' and thus select the best
for a further more detailed analysis.

The formal definition of Pareto front quality remains to be introduced. For the
purpose of this work, the hypervolume [29] is used. In our simple two-dimensional
case the hypervolume can be quickly visualized as the area between the front and the
vertical and horizontal line passing through a reference point. In Fig. 3 (graphs on
the right) this is easily done as the reference point also corresponds to the maximum
values of the axes. When using the hypervolume as a quality indicator for Pareto
fronts, one must take care to select a reference point p�. We may use the following
reference point: p� D Œ�T
M=ms; t0 C �T�. This definition ensures that whenever
a feasible trajectory exists, its objectives are below the reference point. Note that
the hypervolume has, in our case, the dimensions of a length and that larger values
indicate better phasing values. In the example introduced, the computation of such
a metric returns ' D 1:1 [AU] for the case Af D A12538 and ' D 1:37 [AU] for
Af D A3418 indicating quantitatively that Af D A3418 is better phased.
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Fig. 3 Visual representation of the phasing value. Trajectories (left), Pareto front (right)

3.2.1 Phasing Indicators

The computation of the phasing value ' is done referring to its definition given by
Eq. (7). A multi-objective optimization problem is solved and the hypervolume of
the resulting Pareto front computed. While this procedure is fast in a single case,
whenever a large number of phasing values are to be computed it does require
significant computational resources. Since ' is ultimately used to rank transfer
opportunities, one may consider to compute different quantities and study their
correlation to the ground truth defined by '. Such an approach will only be valuable
if the new quantities, which we refer to as phasing indicators, are computed with
less computational cost with respect to ' and the derived ranks have a high degree
of correlation with those computed from '. Two different phasing indicators are
proposed and studied: the Euclidean indicator de and the orbital indicator do.

The Euclidean indicator is defined as de D jx2 � x1j, where x D Œr; v�,
and contains information on both the asteroids relative positions and their relative
velocities. The basic idea is that asteroids physically near to each other (and having
a small relative velocity) are likely to be good candidates for an orbital transfer. The
euclidean distance indicator can also be written as de D

pj�rj2 C j�vj2 where�r
and �v are the differences between the asteroid ephemerides. The main drawback
of this indicator is that it is unable to distinguish between a case where the relative
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velocity eventually brings the asteroids closer and a case (e.g. having an identical
jx2 � x1j) where the relative velocity tends to separate the asteroids.

A different indicator, which we call the orbital indicator, derives from the
following simple linear model of an orbital transfer. Consider three points P0;P1
and P undergoing a uniform rectilinear motion. These represent the two asteroids
and the spacecraft. Assume that the motion of the three points is determined by the
equations:

r0 D r00 C v0t
r1 D r10 C v1t
r D r00 C vt

At t D �T we let r D r1 and we compute v as 1
�T .r10 � r00/ C v1. The point P

(i.e. the spacecraft) is then moving, in �T , from P1 to P2. The necessary velocity
increments to match the asteroid velocities are then:

�V0 D 1
�T�rC�v

�V1 D 1
�T�r

(8)

The quantity do D
pj�V0j2 C j�V1j2 is here proposed as a phasing indicator. In

order to highlight that this indicator accounts for a linearized orbital geometry, we
refer to it as the orbital indicator. The great thing about the orbital indicator is that if
we associate in t0 each asteroid Ai to a vector defined as xi D Œ 1�T riCvi;

1
�T ri�, then

the orbital phasing indicator for the Ai, Aj transfer, is simply the euclidean distance
between the corresponding vectors xi, xj.

3.2.2 Phasing Indicators as Phasing Value Surrogates

Both phasing indicators introduced result in a fast ranking of transfer opportunities.
Assume to have t0,�T and As (i.e. S is sitting on an asteroid at t0) and to have to rank
all asteroids in A as to consider only the first k for a detailed computation of the
orbital transfer. If one is to use the euclidean indicator, this task is efficiently solved
by computing the k-nearest neighbours (k-NN) in A to As using x D Œr; v� (i.e. the
asteroids position and velocities at t0) to define the points in a six dimensional space.
In a similar way, if one is to use the orbital indicator, the same task is as efficiently
solved by computing the k-nearest neighbours using x D Œ 1

�T rC v; 1
�T r� to define

the points in a six dimensional space. In both cases, given the low dimensionality
of the k-NN problem, a k-d tree data structure [3] is an efficient choice to perform
the computation. The complexity to build a static k-d tree is O.N log N/, while the
k-NN query has complexity O.k log N/. One single k-NN computation including
the construction of the k-d tree, on our test case, takes on average 0.25 s, while the
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Fig. 4 Rank correlations of the proposed phasing indicators (average over 100 random cases)

computation of all the phasing values ' to then extract the best k targets, takes, on
average, 5 min (tests made on an Intel(R) Core(TM) i7-4600U CPU having the clock
at 3.3 GHz and with a cache of 4096 KB, exact implementation details available on-
line as part of PyKEP.phasing module).

Such a speed increase (three orders of magnitude) is only useful if the resulting
rankings are correlated. In Fig. 4 we show the rank correlations between the ground
truth rank, computed using ' and those resulting from the newly introduced phasing
indicators. The plot shows the average over 100 randomly selected t0 and As. The
value of the Kendall-tau coefficient is reported together with the number of false
negatives, that is the asteroids that are within the best k according to the ' value, but
are not within the k-NN computed using de or do.

The Kendall-tau coefficient is defined as 
 D nc�nd
.1=2k.k�1// , where nc is the number

of concordant pairs, whereas nd is the number of discordant pairs. A value of 
 D 1
corresponds two identical rankings, similarly a 
 D �1 corresponds to two perfectly
discordant rankings. In general, if the two rankings are uncorrelated, a value 
 D 0
is expected. The results show how both the new introduced quantities de and do

are directly correlated with the phasing value ' and thus can be used as surrogates
for the phasing value '. The orbital indicator outperforms the euclidean indicator
resulting in ranks better correlated with respect to the ground truth.
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3.3 Clustering Asteroids

Besides ranking possible transfer opportunities, the phasing value indicators de and
do can be useful to define a metric over the set of all asteroids A at each t0. Such a
metric can then be used to compute, for a given t0, asteroid clusters. Using the orbital
metric do as explained above, we define the points xi D Œ 1�T riC vi;

1
�T ri� and apply

clustering algorithms [13] directly on them. Large clusters of well-phased asteroids
are likely to result in good opportunities for a multiple asteroid rendezvous mission.
The clustering algorithm DBSCAN [11] is particularly suitable to find clusters in
this domain. The algorithm has two fundamental parameters: �, indicating the radius
of the ball that defines each point neighbourhood and mpts, defining the minimum
number of neighbours necessary to be part of a cluster core. According to DBSCAN,
an asteroid A belongs to a cluster C (i.e. a subset of A ) if it either has at least mpts

asteroids inside its � neighbourhood or at least one of its neighbours does. In the
first case A is said to be in the cluster core, otherwise it is labelled as a border point.
If the orbital metric is used, the � neighbourhood has an interesting interpretation.
Asteroids within the � neighbourhood of A will be reachable from A, according to
the simple linear trajectory transfer model, with a transfer requiring a �V � � and
a transfer time of T . In Fig. 5 a simple example visualizing a cluster, as defined by
DBSCAN, is shown. Asteroids that are not associated to any cluster are labelled as
outliers.

Consider now our data-set and a starting epoch in a 3 days resolution grid defined
in Œ7500; 12;000� [mjd2000]. At each epoch, one can run DBSCAN and compute all

Fig. 5 DBSCAN clustering illustration for a 2-D case and a naive metric. mpts D 3
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Fig. 6 Size of the largest cluster at epoch

asteroid clusters setting � D 1650 [m/s] and mpts D 5. The result is visualized in
Fig. 6 where, at each epoch, the size of the largest cluster found is reported as well as
the number of core asteroids in it. Such a graph is proposed as a tool to help selecting
the target area in the main belt and the time frame of a possible multiple rendezvous
mission. In this particular case, for example, one notes that around the MJD2000
10;500 a special conjunction happens and relatively large clusters appear, having a
size which is, on average, twice as much as clusters at other epochs. It comes then
naturally that if a spacecraft was to be operating in one of these big cluster, it would
have greater chances to find good transfer opportunities.

In Fig. 7 the actual clusters computed for t0 D 10;500 MJD2000 are visualized
together with some of the orbits of the main belt objects belonging to the data-set,
the Earth and Jupiter orbit. The big cluster found by DBSCAN is clearly visible. All
points in the cluster are guaranteed, in a first linear approximation, to be reachable
from neighbours with a convenient orbital transfer having �V � � D 1650 [m/s].
If they are core members of the cluster they are guaranteed to be reachable from at
least mpts other asteroids (mpts D 5 in our case). Asteroids belonging to a cluster at
t0 are unlikely to form a cluster at different epochs as their orbital movement will
tend to tear the cluster apart. Such an effect is directly proportional to � as small
values of � imply similar orbital parameters.

Asteroid clusters are defined at a given epoch t0 and, due to orbital motion they
may disperse more or less quickly. To show how, in this case, a cluster persists in
time for some years, in Fig. 8 the time evolution of a particular cluster is analyzed
over a 6-year time span. The cluster we analyze is the biggest one detected by
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Fig. 7 Visualization of all clusters found by DBSCAN at t0 D 10;614 MJD2000. The orbital
metric is used. CLusters show in different colors. The Earth and Mars orbits are also shown as
reference

Fig. 8 Time evolution of the orbital metric computed for a cluster detected at t0 D 10;600

[MJD2000]. All asteroid pairs are considered and an average over the best considered percentile is
reported
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DBSCAN and can be spotted in Fig. 7 as one big aggregate of points. A 6-year
window is defined being centered at the epoch t0 D 10;614 MJD2000 (when the
cluster is detected). The orbital metric do is then computed for all pairs of asteroids
in the cluster at each epoch in the defined window, and the minimum, the 10, 20
and 30 percentiles are reported. The plot shows how the cluster is resilient to being
disrupted, at least within the considered time window. Since the minimum of the
orbital metric do remains constantly low, at least two asteroids belonging to the
cluster are always connected by an extremely advantageous orbital transfer, further
more, while all the percentile plots present a minimum at the cluster epoch, they are
only mildly increasing away from the cluster point. Similar features can be observed
consistently for all clusters detected in the asteroid main belt.

3.4 Multi-Objective Beam-Search

Having developed the phasing value and asteroid clustering methods, we are now
ready to build a procedure to search for complete multiple asteroid rendezvous
missions. We approach the problem, as formally stated in Sect. 3.1, as a tree
search problem. An algorithm based on the beam-search strategy is proposed,
and its pseudo-code is shown as Algorithm 1. The algorithm, named MOBS, is
a Multi-Objective Beam Search that accepts as inputs a starting epoch t0 and a
starting asteroid A0 and searches for multiple rendezvous missions possible with the
available resources. In MOBS, the non dimensional remaining mass rm D m�ms

mp
and

the non dimensional remaining time rt D 1� t�t0
tof are considered as the two resources

available to the spacecraft. A node, representing a multiple-rendezvous trajectory,
is defined as a triplet containing a list of visited asteroids ŒA0;A1;A2; :::An�, and
the two remaining resources rt and rm. The key elements of the algorithm are the
Branch procedure and the Beam procedure. The Branch procedure is used to create
branches from any particular node, which is equivalent to compute new transfers to

Algorithm 1 MOBS algorithm
1: procedure MOBS(t0 2 Œt0; t0�;A0 2 A )
2: B D fŒŒA0�; 1; 1�g, best D ŒŒA0�; 1; 1� F Both resources are fully available at the beginning
3: while B ¤ ; do
4: L D ;
5: for each N 2 B do
6: L D L[ Branch(N ) F Branch() creates maximum BF new nodes
7: end for
8: best D UpdateBest(L )
9: B DBeam(L ) F Beam() selects maximum BS nodes

10: end while
11: return best
12: end procedure
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one or more asteroids, increasing the overall objective of visiting as many asteroids
as possible before the end of the mission. The Beam procedure is then used to select
the most promising trajectories to be branched.

3.4.1 Branch Procedure

The Branch procedure takes a node (that is a multiple rendezvous trajectory), selects
a maximum of BF (branching factor) possible asteroid targets and returns a list of
new nodes created adding one of the target asteroids to the list of visited asteroids
and updating rt and rm accordingly. The BF asteroids are selected among the ones
having the largest (i.e. best) phasing value. A phasing value surrogate is used to
speed up the computation, so that the BF asteroids will be the ones having the closest
distance in the orbital metric do. Bodies already belonging to the list of visited
asteroids are excluded as targets. The use of a k-d tree data structure makes the
k-NN (k D BF) computations very efficient as mentioned in Sect. 3.2.2. For each of
the target asteroids selected, the minimum arrival epoch optimal control problem is
then solved first. If a solution is found, t� being the earliest epoch the spacecraft can
reach the target asteroid, also fixed arrival time, minimum mass optimal transfers
are computed with tf D t� C idt, i D 1::`. For each feasible solution thus found,
one can then compute the remaining resources rt and rm and insert a new node to
the branched trajectory list. This branching procedure will return at most ` �BF new
trajectories visiting one more asteroid with respect to the parent node.

3.4.2 Beam Procedure

The Beam procedure takes a set of nodes and returns one of its subsets having at
maximum BS members. In other words, it selects from a list of multiple rendezvous
trajectories having equal depth, the most promising BS to be carried forward in the
search. This selection is crucial to the performance of the overall scheme and is
made introducing a node value r, computed for each node. The best BS nodes with
respect to this value are returned. A trajectory should be considered good when it
made clever use of the spacecraft’s available resources, thus both rm and rt should
be considered in defining the node value r. The first trivial choice would be to use
directly rm or rt as a definition for the node value. This way, trajectories having
spent a minimum amount of propellant, or time would be considered for further
expansion. Since the phasing value is used to branch nodes, trajectories in the list
already have been indirectly pre-selected with respect to a multi-objective criteria
(the phasing value is defined with respect to the hypervolume), thus such a trivial
choice would be less greedy than it appears and in fact, it works reasonably well
when one knows upfront that one of the two available resources is particularly
scarce. In the general case, though, a multi-objective aggregation of the two
objectives seems like a more promising option to directly select good candidate
trajectories. A number of options are thus proposed and summarized in Table 1 and
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Table 1 Node value
definitions

r1 D rm Best mass

r2 D rt Best time

r3 D 1
2
rm C 1

2
rt Average

r4 D rmrt
rmCrt

Soft min

r5 D min.rm; rt/ Hard min

r6 Pareto dominance

visualized in Fig. 9. A first direct approach is to consider a node value aggregating
the two resources into one number via the expression r D �mrm C �trt. The
weights �m and �t implicitly define a priority on the two resources. One could
thus consider them to be equal, in which case a simple average node rank is
defined. The average node rank allows for a node having one of the resources almost
completely depleted and the other fully available to rank equally to a node having
both resources consumed half-way, which does not seem as a good choice. This
suggests to introduce the soft min [18] case where the weights � are adaptively
modified according to how much a certain trajectory has used of a certain objective

via the expression �j D

1 � rj

rmCrt

�
. It is easy to recognize that this adaptive weight

scheme is equivalent to use r D rmrt
rmCrt

for ranking. One possible problem with the
soft min approach is that the weights, though adaptive, are still implicitly defining
the importance of the two resources (mass and time) in a somewhat arbitrary fashion.
A different approach is to use Pareto dominance concepts, where the top nodes
are determined through a combination of non-dominated sorting and usage of a
Crowded Comparison operator [10].

4 Experiments

We evaluate the overall performance of MOBS to search for multiple asteroid
rendezvous missions. We consider the GTOC7 data so that the asteroids are moving
along well defined Keplerian orbits. We also set a minimum waiting time on the
asteroid tw D 30 [days], an initial spacecraft mass m0 D 2000 [kg], an initial
propellant mass mp D 1200 [kg], a maximum thrust 
M D 0:3 [N] and a specific
impulse Isp D 3000 [s]. We consider a maximum total mission duration of tof D 6

[years] and a starting epoch t0 2 Œ7500; 12;000� [mjd2000]. These values create
a well defined instance of the multiple asteroid rendezvous problem defined in
Sect. 3.1.

Table 1 shows the node value estimates used to evaluate MOBS. For all
experiments we set BF to 10 and use the orbital metric for clustering as well as k-NN
search. Additionally, MOBS requires a starting epoch t0 and a starting asteroid A0.
We evaluate two different ways to provide such an initial condition:
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Fig. 9 Possible rankings for beam search: top 50 nodes at a given tree’s current depth, as
determined by the rating functions in Table 1. (a) r1: best mass, (b) r2: best time, (c) r6: Pareto
dominance, (d) r3: average, (e) r4: soft min, (f) r5: hard min

• sampling t0 uniformly from the launch window and choosing a random asteroid
A0 from the set of all 16,256 asteroids

• sampling t0 uniformly from the launch window; perform clustering at epoch t0
and select A0 from the core of the largest cluster.

For each initial condition and node value estimator r 2 fr1; r2; r4; r6g, we run 500
tree searches. A search results in a number of solutions of which we record the
longest sequence. Table 2 shows the percentage of MOBS runs that resulted in
a sequence of length at least 8; 9; : : : ; 14 asteroids. The total number of solutions
that reached a given length is reported in Fig. 10. On average, one full MOBS run
took 1 h so that the entire experimental campaign here reported, involving 4000
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Table 2 Multi-objective beam search (MOBS) performance

Node value �8 �9 �10 �11 �12 �13 �14

With cluster Mass 79:4 10:2 0:0 0:0 0:0 0.0 0.0

Time 95:0 95:0 87:2 57:6 23:2 3.8 0.0

Pareto 94:8 93:2 70:2 33:4 7:4 0.6 0.0

Soft min 95:0 94:8 83:0 47:2 10:0 0.6 0.0

Without cluster Mass 67:4 6:0 0:2 0:0 0:0 0.0 0.0

Time 93:6 92:6 86:0 49:0 12:2 0.6 0.0

Pareto 93:4 91:0 64:0 22:4 2:2 0.2 0.0

Soft min 93:6 92:8 79:0 35:2 5:4 0.2 0.0

Fig. 10 Number of sequences generated by 500 searches for each node value estimator. The
hatched part corresponds to the starting condition with clustering

tree searches, was run on a machine having 20 cores at 3.1 GHZ (40 parallel hyper-
threads) during a period of, roughly, 4 days. During the runs, an approximate number
of 30,000,000 OCPs are solved.

The maximum asteroid sequence length reported by participants of the GTOC7
as part of their final solutions was 13 (as reported during the GTOC7 workshop
hosted in Rome in May, 2015). It is still an open question whether a sequence of
length 14 exists, under the given settings, though it appears plausible. The proposed
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MOBS algorithm is able to find sequences of length 12 with ease and it does find,
in a small percentage of runs, longer sequences of asteroids to visit. MOBS never
returned, neither during the experiments nor during the original runs made within
the competition time-frame, a valid sequence of length 14.

Table 2 shows that the best node value estimator is time, while using mass
result in extremely poor performances. While difficult to know upfront, this implies
that the mission resources rm and rt are not evenly balanced: the spacecraft has
comparatively more propellant than mission time in order to achieve its goals.
Under different initial conditions, propellant could be a resource as scarce as time in
which case other indicators should deliver better trajectories by exploiting the multi-
objective trade-offs. The use of asteroid clustering greatly improves the chances
to find good opportunities, focusing the search in the most promising areas of the
asteroid belt at a given epoch.

We conclude this book chapter reporting, in Fig. 11, some visual information
on one of the missions designed by MOBS and visiting 13 asteroids. We show
the perihelion and aphelion for each of the asteroids visited overlapped to the
background population of asteroids considered. We also show the osculating
Keplerian elements during the entire mission as well as the spacecraft mass. The
mission operates in the outer part of the main belt, acquiring a minimum distance
of roughly 2.4 AUs and a maximum of 2.9 AUs. From the rapid increases and drops
of the osculating semi-major axis during the same asteroid to asteroid transfers, a
lot of thrust is used to cope with the non-perfect phasing. A control strategy that,
though clearly sub-optimal when considering a single leg alone, allows to visit a
greater number of asteroids when adopted to assemble the whole sequence.

5 Conclusions

The design of complex interplanetary trajectories is the subject of the Global
Trajectory Optimization Competitions. Participating in these events requires a
solid knowledge of basic astronomical problems such as the Kepler’s problem,
the Lambert’s problem, the perturbed Kepler’s problem, a certain familiarity with
optimal control theory and algorithms as well as the development of original and
innovative methods tailored for the particular problem to be solved. In the case of the
7th edition of this competition, the possibility to design multiple asteroid rendezvous
missions was part of the problem assigned. We have found that a phasing value,
defined as the hypervolume of the Pareto front of the multi-objective Lambert’s
transfer can be conveniently introduced and approximated using a surrogate orbital
indicator. The phasing value approximation can be used to rank possible transfer
opportunities and as a metric to define asteroid clusters in the main asteroid belt. We
use these ideas to assemble a multi-objective tree search able to consistently design,
in the GTOC7 data set, multiple rendezvous missions visiting up to 13 asteroids.
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Fig. 11 Visualization of a multiple asteroid rendezvous mission visiting 13 bodies. Top: Aphelion
and perihelion of the 13 asteroids visited in one of the mission designed by MOBS. The sequence
starts at the blue dot. Asteroids from the main-belt population are also shown as background for
reference. Bottom: some details of one of the trajectories found by MOBS. Each dot corresponds
to a departure or arrival at one of the asteroids. Orbital parameters are the Keplerian osculating
parameters
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Satellite Constellation Image Acquisition
Problem: A Case Study

Krishna Teja Malladi, Snezana Mitrovic Minic, Daniel Karapetyan, and
Abraham P. Punnen

Abstract This chapter deals with the image acquisition scheduling of Earth
observing satellites that revolve around the Earth in specific orbits and take images
of prescribed areas requested by the clients. Often a satellite cannot acquire the
images of a requested area in a single pass and it is necessary to divide the area into
multiple strips each of which can be acquired in one satellite pass. Each satellite
might have several image acquisition opportunities for each strip as the satellites can
take images using different incidence angles. Then the Satellite Image Acquisition
Scheduling Problem (SIASP) is to select the opportunities to acquire as many
images as possible, without repetition, within a planning horizon while considering
the image priorities and energy constraints. The proposed SIASP model employs
a piecewise linear objective function to favor completion of an image acquisition
request over partial acquisition of many requests. Extensive experimental study
has been carried out using realistic randomly generated instances based on the
forecasted statistics provided by MDA, Richmond, Canada. These experiments are
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intended as a preliminary investigation of the image acquisition scheduling for
the Canadian RADARSAT Constellation Mission (RCM), a constellation of three
satellites to be launched in 2018.

Keywords Clique • Satellite Image Acquisition Scheduling • Integer
programming • Heuristic

1 Introduction

In this chapter we describe the Satellite Image Acquisition Scheduling Problem
(SIASP) based on a case study of the Canadian RADARSAT Constellation Mission
(RCM). We model SIASP as an optimization problem on a graph seeking a clique
that maximizes a special objective function. We call this problem Cluster Restricted
Maximum Weight Clique Problem (CRCP) [12] to reflect the fact that the graph
is clustered and its structure affects the objective function. Although SIASP is
closely related to the well known Maximum Clique Problem, it needs new solution
approaches which we describe in this chapter.

Let G D .V;E/, where V D f1; 2; : : : ; ng is the node set and E is the edge set.
Each node i 2 V has an associated weight wi. A clique is a complete subgraph in
the given graph. For a clique Q of the graph G, the weight of the clique is defined
by
P

i2Q wi. The Maximum Weight Clique Problem (MWCP) deals with finding the
clique with the maximum weight [3]. The Maximum Clique Problem (MCP) deals
with finding the clique of the maximum size (with the maximum number of nodes).
Thus, if wi D 1 for all nodes i 2 V , MWCP reduces to MCP.

For an illustration, consider a graph with five nodes and corresponding node
weights as shown in Fig. 1. In the given graph, w1 D 4;w2 D 5;w3 D 6;w4 D 9

and w5 D 10. The maximum weight clique in this graph is f4; 5g with the weight
of the clique equal to 19, whereas the maximum clique is f1; 2; 3g with clique size
equal to three.

SIASP deals with scheduling acquisition of images of regions on the Earth as
requested by customers. This image acquisition mission is carried out by Earth
observing satellites which generally orbit the Earth at low altitudes. The satellites
in our case study use Synthetic Aperture RADAR (SAR) which allows acquisition
of images of the Earth surface under any weather conditions and at any time of day.
An example of a SAR satellite is given in Fig. 2.

Fig. 1 Example of MCP and
MWCP
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Fig. 2 Orbit characteristics of RADARSAT-2, a Canadian Earth observing satellite, provided by
MDA. Canadian Space Agency, 2015. All Rights Reserved. RADARSAT-2 and RCM are official
marks of the Canadian Space Agency. Retrieved from www.asc-csa.gc.ca/eng/satellites/radarsat2/
description.asp

The Canadian RADARSAT Constellation Mission (RCM) consists of three
identical satellites. Each satellite can acquire images of areas which are located to
the right of its ground track. The altitude of each satellite orbit is around 600 km.
Each satellite takes about 96 min to complete one revolution around the Earth and
has the capability to perform 12 min on average of imaging per orbit. The RCM
would be able to cover on average 95% of the world’s surface daily. It is planned to
launch these satellites in 2018. Each of these satellites has an estimated lifetime of
7 years.

Figure 3 shows various characteristics of the RCM satellites. Six different beam
modes (out of ten available) along with the areas that can be covered by these
modes have been indicated. Low resolution modes can acquire wider areas (swaths)
whereas high resolution modes can only acquire more narrow areas (swaths). Within
a given beam mode, there are different beam positions (sub-modes) that have
particular incidence angles. (The incidence angle is the angle between the line
joining the satellite and the Earth, orthogonal to the Earth surface, and the line
joining the satellite and the area (swath) to be imaged.) Different incidence angles
for higher resolution modes allow imaging along different swaths (as shown in
Fig. 3). For example, for Very High Resolution 3 m mode, shown in red, six different
swaths are shown and they correspond to different incidence angles. The satellite
velocity vector represents the satellite’s trajectory.

There has been a substantial amount of research work done on SIASP. In 1996,
Bensana et al. [1] showed that SIASP is NP-hard. They proposed solutions and
approaches, including a branch and bound based exact algorithm and heuristics

www.asc-csa.gc.ca/eng/satellites/radarsat2/description.asp
www.asc-csa.gc.ca/eng/satellites/radarsat2/description.asp
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Fig. 3 Characteristics of RCM. Canadian Space Agency, 2014. All Rights Reserved.
RADARSAT-2 and RCM are official marks of the Canadian Space Agency. Retrieved from www.
asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp

based on greedy algorithm and tabu search. They also compared their results with
the solutions obtained by solving an integer programming formulation using the
general purpose solver CPLEX. In 1997, Gabrel et al. [6] studied the problem
of scheduling image acquisition by a low altitude satellite. They considered
acquisition scheduling for a non-agile satellite, proposed a graph-theoretic model
for the problem and suggested solution approaches that exploit the structure of
the model. In 2002, Lemaître et al. [8] presented several algorithms to solve the
Earth observation selecting and scheduling problem for agile satellites as a part
of the French PLEIADES project. They provided a complete problem description
and proposed a greedy algorithm, a dynamic programming algorithm, a constraint
programming approach and a local search method to solve the problem. They
considered a simplified version of the problem where their planning horizon was
a single track or half orbit of the satellite. Cordeau and Laporte [4] proposed a
tabu search heuristic to maximize the value of the Earth observation satellite orbit
in 2005. In 2007, Bianchessi et al. [2] proposed a tabu search algorithm for a
constellation of agile satellites. In 2011, Wang et al. [16] developed a priority-
based heuristic for a Chinese satellite constellation which incorporated both image
acquisition and downlink scheduling problems. In 2009, Li et al. studied image
acquisition scheduling for a satellite constellation [9]. Their solution approach had
two phases where in the first phase several tasks were assigned to each satellite
of the constellation and in the second phase, a scheduling problem was solved for
each satellite separately. In 2012, Tangpattanakul et al. [13] proposed a random-key
genetic algorithm for the satellite image acquisition scheduling problem formulated

www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
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as a multi-objective optimization problem. Their formulation has two objective
functions, one is to maximize the total profit and the other one is to minimize the
difference between profits of different users in order to ensure fairness among users.
The problem that deals with scheduling the downlinks of images from satellites to
the ground stations is called Satellite Downlink Scheduling Problem (SDSP). There
is a substantial amount of literature on SDSP, see [7].

In this chapter, we describe the SIASP model for RCM and propose several
data pre-processing strategies to improve the system’s efficiency. The chapter is
organized as follows. Section 2 describes SIASP and its constraints. Section 3
describes a mathematical formulation of the problem. Section 4 introduces graph
models of SIASP. Section 5 describes how we generated realistic random test
instances. Section 6 describes several pre-processing procedures. Section 7 gives
the computational results. Finally, Sect. 8 provides the conclusions of the work.

2 SIASP

We are given a set of image acquisition orders for 1 year. Each order is a set of image
acquisition requests, where each request corresponds to a set of Areas of Interest
(AOI) on the ground whose images are to be taken. The following information is
provided about each order:

• Relative priority defines the priority of the request.
• Season of the year during which the request is active.
• Revisit frequency defines the frequency with which the satellite constellation

revisits a particular AOI. The time window within which the image of the region
has to be acquired is defined by this revisit frequency.

• AOI size is a measure of the area of the region which is to be acquired.
• Beam mode specifies the resolution in which the image of the region has to be

acquired.

Relative priority of an order is a number between 1 and 9, 1 being the lowest and
9 being the highest. Images of some AOIs are required only during certain seasons.
RCM plans to provide complete coverage of Canada’s land and oceans, offering
a daily revisit. Revisit frequency of a request could be daily, weekly, bi-weekly,
monthly, half-yearly and yearly and it may define the time window of the associated
requests. For example, a request with daily revisit frequency has to be acquired
completely within 1 day. The area of the region to be imaged could be as small as
2500 km2 to as large as 11,400,000 km2.

Each image acquisition request has a set of AOIs whose images are to be
acquired. We call each such region a target. A target to be imaged may be too large to
be acquired in one pass of a satellite. Such large targets are called polygon targets.
Targets that can be acquired within one pass of a satellite are called spot targets.
Since a polygon target cannot be acquired in one pass, it has to be divided into
several strips. The width of each strip depends on the resolution defined in the image
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acquisition order. For a given resolution, the width of each strip is fixed. A spot target
has one strip. Thus, each region may have one or several strips associated with it.

The satellites can acquire images of the regions that are to the right of their
trajectories. For different beam modes, the images can be acquired with different
incidence angles (see Fig. 3).

The actual strip image acquisition time and the duration of acquisition depend
on the satellite’s revolution around the Earth. Each time interval when an image of
a strip can be acquired is called an opportunity. Each opportunity has a duration
and an angle of incidence associated with it. The duration of an opportunity is
equal to the time required to acquire the corresponding strip (i.e. the time that it
takes the satellite to fly over the corresponding region of the Earth surface). Thus,
all the opportunities corresponding to the same strip have the same duration. The
constellation may have several opportunities to acquire the image of a strip within
the planning horizon. Due to the freedom in the angle of incidence of the satellite,
one strip may have opportunities in several consecutive orbits of a satellite. Since
the satellites are non-agile, each strip has at most one opportunity per orbit of
each satellite. The goal of SIASP is then to select a set of opportunities out of all
opportunities that satisfy the constraints of the problem.

2.1 Constraints

The following are the constraints involved in the problem:

1. Each AOI has to be acquired within the request time window.
2. The image must meet the beam mode requirements stated in the order.
3. Each strip of AOI has to be acquired at most once.
4. It takes a constant amount of time, ı, for a satellite to switch between beam

modes.
5. During one orbit, a satellite can acquire images for 12 min on average but not

exceeding 20 min in any single revolution.
6. Each satellite can take only one image acquisition opportunity at a time.

Each strip has a finite number of opportunities for its image acquisition. The
goal of SIASP is to select a subset from the set of all opportunities that satisfy the
above mentioned constraints that maximizes the quality of the solution. Details of
the objective function are given in Sect. 3.2.

3 Mathematical Modeling of the Problem

For simplicity, we assume that each AOI is represented by a single target. The same
formulation can be used for the case where requests may have several targets.
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3.1 Notations

The following notations are used for formulating this problem as an Integer
Program.

• H is the planning horizon for the problem.
• � is the set of all satellites.
• R is the set of all image acquisition requests.
• Sr is the set of all strips for the request r 2 R.
• Aj is the area of a strip j 2 Sr.
• Ar is the total area of a request r, i.e. Ar DPj2Sr

Aj.
•  0

r is the total area of strips Sr already acquired before the current planning
horizon.

• S DSr2R Sr is the set of all strips.
• Pj is the set of all opportunities when a strip j 2 Sr can be acquired within the

current planning horizon.
• P is the set of all image acquisition opportunities within the current planning

horizon. Thus, P DSj2S Pj.
• Pr is the set of all image acquisition opportunities for all the strips of a request r

within the current planning horizon. Thus, Pr DSj2Sr
Pj.

• si is the starting time of the image acquisition opportunity i 2 P.
• � is the time required for a satellite to orbit around the Earth. This time is a

constant for all the satellites in the Constellation. We define one revolution as a
time interval of duration �. Starting from time t D 0, the interval Œ0; �� is the first
revolution, the interval Œ�; 2�� is the second revolution and so on. Thus the kth
revolution is the interval Œ.k � 1/�; k��.

• Tk is the set of all opportunities that start within the kth revolution: Tk D fi 2 P W
.k � 1/� � si < k�g.

• � is the number of revolutions of each satellite in a planning horizon. � can be
obtained from H.

• Ts is the set of all opportunities of image acquisition for the satellite s 2 � within
the planning horizon H.

• C is the set of ordered pairs .u; v/where u and v are two conflicting opportunities.
Opportunities u and v are called conflicting if acquiring both u and v by the
same satellite is infeasible. We describe the procedure to construct this set C in
Sect. 3.2.

• T1 is the peak acquisition time allowed for a satellite during a revolution.
T1 D 20min in our case study.

• T2 is the average acquisition time allowed for a satellite per revolution.
T2 D 12min in our case study.

• di is the duration of opportunity i 2 P, i.e. the time required to acquire
corresponding image.

• xi is a decision variable such that xi D 1 if opportunity i is used and 0 otherwise.
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3.2 Integer Programming Formulation

In this section, we present the image acquisition problem as an integer programming
model. The planning horizon is H. Thus the number of revolutions, �, in this
formulation range from 1 to dH

�
e.

Maximize
X

r2R

cr

subject to
X

i2Tk\Ts

di � xi � T1 8 k and 8 s 2 �;

X

i2Ts

di � xi � � � T2 8 s 2 �;
X

i2Pj

xi � 1 8 j 2 Sr and r 2 R;

xi C xj � 1 8 .i; j/ 2 C;

xi 2 f0; 1g 8 i 2 P:

In the above formulation, cr, r 2 R, reflects the importance of a request r. Let
r be the maximum total area of request r that can theoretically be acquired by the
end of the current planning horizon, i.e. r D r

0 CPl2Pr Aj � xl, where l 2 Pj and
j 2 Sr and r

0 is the area of the request that has been acquired till the end of the
previous planning horizon. Then we calculate cr as cr D pr � f .r

Ar /, where pr is the
priority of r and f .r

Ar / accounts for the progress of acquiring images of all the strips
of request r.

By adjusting the shape of the function f .x/ we can achieve special effects. If f .x/
is a monotonically increasing convex function (see Fig. 4 for example), it encourages
completion of requests which have been partially acquired during previous planning
horizons instead of starting acquisition of completely new requests. This way we
can avoid situation when many requests are partially fulfilled but only a few are
completed. Similar approach has been used in the objective function in [4, 8, 16].
In what follows we call such functions f1.x/.

In a situation where we have some requests whose start time and end time lie
within the current planning horizon and we wish to acquire the strips of these
requests only if we could acquire them completely, we could use a different function
f2.x/ as shown in Fig. 5. Such cases arise when we do not want to acquire images
partially. The break point of f2.x/ depends on the request for which this kind of
function is considered. For such request r, the break point in f2.

r
Ar / is 1 � .At=Ar/

where t 2 Sr is the strip which has maximum area out of all the strips in Sr.
Linearization of piecewise linear functions has been considered by several

studies in the literature [10, 11, 14, 15, 17]. The following paragraphs describe two
different ways to embed a piecewise linear function f1.x/ shown in Fig. 4 into an
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Fig. 4 f1.x/: piecewise linear
function used in the objective
function of SIASP
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Fig. 5 f2.x/: piecewise linear
function used in the objective
function of SIASP
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integer linear program, one using the big-M method [10] and the other using special
ordered set constraints of type 2 [17]. Similar approaches can be applied for f2.x/
shown in Fig. 5. Let y denote the value of the function f1.x/.
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The first approach using the big-M method is as follows:

Maximize y

subject to z1 > x � 0:4;
z2 > x � 0:8;
z1 C z2 � x

0:4
;

y � 0:25xC z1 �M C z2 �M;
y � 0:75x � 0:2C .1 � z1/ �M C z2 �M;
y � 3x � 2C .1 � z1/ �M C .1 � z2/ �M;
0 � x; y � 1;
z1; z2 2 f0; 1g:

In the above formulation, M is a large constant, and z1 and z2 are binary variables
which act as indicators to which piece of the piecewise linear function the current
value of x belongs to. For x 2 Œ0; 0:4/, .z1; z2/ D .0; 0/. For x 2 Œ0:4; 0:8/, .z1; z2/ D
.1; 0/ and for x 2 Œ0:8; 1�, .z1; z2/ D .1; 1/. The values of z1 and z2 will be governed
by the constraints z1 > x � 0:4, z2 > x � 0:8 and z1 C z2 � x

0:4
. y D 0:25x,

y D 0:75x�0:2 and y D 3x�2 are the equations of the three parts of f2.x/. In order to
avoid the strict inequalities in the first two constraints, we can introduce a very small
constant m as z1 � x�0:4Cm and z2 > x�0:8Cm. These strict inequalities are to be
avoided in the formulation to ensure that the integer program has an optimal solution
at an extreme point of the feasible region. Presence of these strict inequalities may
lead to a situation where we can approach the optimal solution but cannot find it
exactly. It is due to this reason that CPLEX requires that none of the constraints of
the problem be strict inequalities.

The second approach to model f1.x/ as linear constraints using special order
subset type 2 constraints is as follows:

y D 0:1x1 C 0:4x2 C x3;

x D 0:4x1 C 0:8x2 C x3;

xi � pi; i D 1; 2; 3;
p1 C p2 C p3 � 2;
p1 C p3 � 1;
0 � x; y � 1;
p1; p2; p3 2 f0; 1g;
0 � x1; x2; x3 � 1:
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In this model, since x is continuous, xi is also continuous for i D 1; 2; 3. The
value of the piecewise linear function y is defined as y D 0:1x1 C 0:4x2 C x3
where the coefficients are the break points of the function. This definition of y may
not calculate the correct values of the piecewise linear function. To ensure correct
calculations we need to restrict that at most two xi can be non-zero and these two xi

must be adjacent. This is achieved by the introduction of binary variables p1; p2 and
p3. This way, any value of x between 0 and 1 can be obtained from specific values of
x1, x2 and x3 and the corresponding f1.x/ can be found from 0:1x1 C 0:4x2 C x3.
We observed in our preliminary experiments that this formulation converged to
an optimal solution quicker than the one with the big-M. Similar results on the
poor convergence of the big-M method have been stated in [15]. Thus, we use
the formulation with special order subset type 2 constraints in our computational
experiments.

Recall that the set C contains ordered pairs .i; j/, where i; j 2 P conflict with each
other. Two opportunities i and j conflict with each other when they have different
beam modes or different angles of incidence and do not have enough time gap for
the setup between them, i.e. sj � .siC di/ < ı. If .i; j/ 2 C then at most one of i and
j can be acquired.

4 Graph Models of SIASP

A SIASP instance can be represented in a graph form such that a feasible solution
is either a path or a clique in that graph, depending on the model used. In both
these models, we assume the energy constraints of the problem are relaxed. Let
fr1; r2; : : : ; rng be the set of all opportunities of a SIASP problem instance. Let
each opportunity ri have a weight ai and a time of possible acquisition ti associated
with it.

If the objective function is to maximize the sum of weights of all acquired
opportunities, this problem can be modeled as a problem of finding the longest
path in a directed acyclic graph G.V;E/. Let there be n vertices fv1; v2; : : : ; vng
in the graph, where a vertex vi represents an opportunity ri. Two opportunities ri

and rj are compatible if both ri and rj can be acquired by the constellation during
the same planning horizon. Let there be a directed edge .vi; vj/ from vi to vj if
ti � tj for the compatible opportunities ri and rj. A graph constructed this way is
acyclic and directed. Any path in G is a set of compatible opportunities. Thus any
feasible solution to SIASP corresponds to a path in G. But some paths in the graph
G may not correspond to a feasible solution to SIASP. This situation occurs when
two opportunities of the same strip are compatible and the nodes representing these
opportunities appear in one path. In such solutions, the acquisition of the same strip
is repeated. Thus, certain paths in G, in which opportunities of the same strip are
not repeated, correspond to feasible solutions of SIASP. Paths in G which obey an
ordering of nodes can be proved to be feasible to SIASP. Thus, by constructing the
edges of G which obey an ordering of the nodes, one may solve SIASP by solving
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the longest path problem in G. Due to the restriction in the ordering of nodes, SIASP
may not be solved optimally using this model but good solutions can be obtained
faster because solving the longest path problem in a directed acyclic graph can be
done in polynomial time [5]. This model of SIASP is described in [8].

SIASP can also be modeled as a clique problem in a graph G D .V;E/,
where V D fv1; v2; : : : ; vng and each node vi represents an opportunity ri. For two
compatible opportunities ri and rj, let there be an edge .vi; vi/ in the graph. There
will be no edge between two nodes representing the opportunities of the same strip
and there will be no loops in the graph. In the graph thus constructed, any clique
represents a feasible solution to SIASP. All the opportunities of the same region
can be clustered together and this will create a partition of the nodes. An optimal
solution to SIASP would be a clique that maximizes the weight function as defined
in the objective function of SIASP. We call this problem of finding a clique that
maximizes f .r

Ar / the Cluster Restricted Maximum Weight Clique Problem (CRCP)
and it is described in [12].

Our computational experiments have shown that the constraints for average
acquisition and maximum acquisition times are not tight. The actual average and
maximum acquisition times are less than 12 and 20min, respectively. Thus, relaxing
these constraints does not affect the final solution. Thus, by solving CRCP on a
graph, we can solve SIASP and vice versa. Several solution strategies for solving
CRCP are described in [12].

The remainder of this chapter solves SIASP using the approach described in
Sect. 3.

5 Test Instances Generator

The north-south and east-west positions of a point on the Earth’s surface are
generally defined by latitudes and longitudes, respectively. Assuming Earth to be
a perfect sphere, we use spherical co-ordinates to define the position of points on
the Earth. Since the radius of the Earth is assumed to be a constant, we need only
two co-ordinates to define a point. Let the equatorial plane be depicted by the xy
plane and let the axis from the center of the Earth to the north pole be the z axis.
Let � be the angle made by the projection of the position vector of a point on the
xy plane with the x axis and � be the angle made by its position vector with the z
axis. Thus, a point can be uniquely defined by the pair .�; �/, where � 2 Œ0ı; 360ı/
and � 2 Œ0ı; 180ı/. For a point in the western hemisphere � 2 Œ180ı; 360ı/ and
for a point in eastern hemisphere � 2 Œ0ı; 180ı/. � 2 Œ0ı; 90ı/ represents a point
in the northern hemisphere and � 2 Œ90ı; 180ı/ represents a point in the southern
hemisphere. This way, for a given latitude-longitude of any point, we can find the
corresponding .�; �/ and vice versa.
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5.1 Data

Each image acquisition request has a set of targets on the ground to be imaged. The
center of a target is defined by .�; �/ at its center. Each target is assumed to be a
region encapsulated by a pair of latitudes and longitudes. For each request we define
the following attributes:

• A set of targets of the request.
• Area which is the total of the areas of all the targets (entire AOI) of the request.
• Time window during which the image acquisition has to be done.
• Priority between 1 (least important) to 9 (most important).
• Beam which represents the resolution in which the image has to be acquired.

We define each target by the .�; �/ at its center and call them �center and �center.
For a given center and area of a request, we can calculate the values of the � and
� of its vertices. The calculations involved in finding these values of � and � are
shown in Sect. 5.2. As we have described earlier, each target has one or more strips
associated with it. Each target is defined by the following attributes:

• Center of the target defined by .CenterTheta;CenterPhi/.
• Area of the target.
• A set of strips of the target.

Each strip is defined by the � and � that bound the strip. Depending upon the
satellite’s orbit, the time and duration when a satellite can acquire the image of a
particular strip can be computed. Each time interval when an image of a strip can be
acquired is called an opportunity. Each strip is defined by the following attributes:

• The pairs of � and � which bound the strip.
• A set of opportunities for acquisition of the strip.

Each strip image acquisition opportunity has specific start and end times. The
duration of an opportunity is equal to the time required by the satellite to acquire
the image of the strip. Each opportunity has the following attributes:

• Satellite which has this opportunity of acquisition.
• Start time of the opportunity.
• End time of the opportunity.

5.2 Instance Generation

We are given a set of image acquisition orders for 1 year. Each order specifies
the area of interest (AOI) or region, relative priority, season of the year, revisit
frequency, area of the AOI and the beam requirements. We consider each revisit
of the AOI to be an image acquisition request. The time window of a request is
defined by its revisit frequency. For example, if the revisit frequency of a region
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is 1 week, then the time window within which the image has to be acquired is 1
week. About 66% of the requests are within Canada. In the following paragraphs,
we describe the procedure adopted to define the AOIs and targets from the center
and the area size of the AOI. We make use of several formulas using spherical co-
ordinates. The requests and AOIs are randomly generated from the statistical data
we obtained. The exact position of the AOIs of each request were not provided due
to confidentiality of information.

Depending on the shape of a AOI, we divide it into several targets. The AOIs
comprised of several disconnected regions are considered to be a set of distinct
targets. Thus, each AOI has a set of targets. Each target is identified by its center
and area. If r is the radius of the Earth, �top, �bottom, �left and �right are the � and �
that bound the target and 	 D �left � �right, then the area A of the target is given
by the formula A D r2Œcos.�top/ � cos.�bottom/� � 	 � 180


. Since �center is defined

for each target, by using ı D �bottom � �top, we can calculate the values of the �top

and �bottom using the formulas �top D �center � ı=2 and �bottom D �center C ı=2.
To find the value of ı, we need to know the vertical length of the target. In order
to ensure that the difference between the length and width of the target is not very
large, we assume that the length of the target is

p
A. Thus, by using the formula

r � ı � 
180
DpA we can find the value of ı and thus the values of �top and �bottom.

Since A D r2Œcos.�top/ � cos.�bottom/� � 	 � 180


and the only unknown value in
this formula now is 	, we can find the value of 	. Using this value of 	, �left D
�center C 	=2 and �right D �center � 	=2 can be calculated.

For requests to the extreme north or south, �top or �bottom may go beyond the
interval Œ0ı; 180ı�. In such cases we fix the �top to 180ı if calculated �top > 180ı
and we fix �bottom to 0ı if the calculated �bottom < 0. We also ensure that �left and
�right of each request lies within the interval Œ0ı; 360ı�, i:e:, if the calculated �left

and �right are out of the interval Œ0ı; 360ı�, we assign to them their equivalent values
within the interval. This way, for a given target and its area, we can approximately
find the corners of the target border. In the future, if the corners of each target are
specified, we can use those values directly.

For each request given in the orders, we generate the center of the region
randomly such that 2=3rd of the requests are within Canada. We also make sure
that each day there is a request for the water bodies around Canada.

Each target may have one or more strips. Each strip can be considered as a spot
target. Thus, a strip also has �left, �right, �top and �bottom. The �top and �bottom of the
strips of a target are the same as those of the target. The distance between points
.�1; �/ and .�2; �/, given by r � sin.�/ � j�1 � �2j � 

180
, depends on �. Thus for a

target, we select a �ı where r � sin.�ı/ � j�left � �rightj � 
180

is maximum, where
�ı 2 Œ�top; �bottom� and divide the target along this �ı. If wb is the width of each
image as defined by the beam b and if wm D r � sin.�ı/ � j�left � �rightj � 

180
, then

the number of strips into which the request is divided is
l

wm
wb

m
. This way by dividing

along �ı, we make sure that the strips generated completely cover the target. If the
target can be acquired in one pass, then we assume that it has one strip. Thus, each
target is a set of strips and these strips cover the complete area of the target.
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Each of the three satellites orbits the Earth in 96 min. These satellites follow near-
polar orbits. The satellites have a certain angle of inclination with the longitudes
(yaw angle). For simplicity, we assume that this angle on inclination is 0. It means
that the satellites orbit the Earth along the longitudes. This is an approximation to
the actual trajectory of the satellites. We assume that each orbit of the satellite is
divided into two halves, the first half is along a longitude � and the other half is
along the longitude .180 C �/ mod 360. The path of the satellite from the North
pole to the South pole is called descending pass and that from the South pole to the
North pole is called ascending pass. For uniformity, we assume that an orbit of a
satellite has its descent followed by its ascent. The � along the descent is called the
�descent and along the ascent is called the �ascent. The difference between the �descent

of two consecutive orbits of a satellite is constant. The satellites are looking right
within a visibility range, i.e. they can only acquire the strips that are located to the
right of the satellites ground track at a distance not greater than its visibility range.
It takes a constant amount of time for the satellite to change the incidence angle.
The strips of targets must be parallel to the satellites ground track and this is how
we generated them.

Each strip has at most one image acquisition opportunity during an orbit of a
satellite. Since we know the initial position of the satellites at the beginning of the
planning horizon, we can predict their position as a function of time and the details
of the orbits such as the number of the orbit, start time of the orbit, �descent and
�ascent. With this information, we can compute the opportunities when a strip can be
acquired. Let Tı be the time taken by a satellite to complete one orbit around the
Earth. Let a strip s be acquired during orbit k of the planning horizon and let ˛ be
the difference between �descent of two consecutive orbits of a satellite. If s is acquired
during the descent of the orbit, then BeginTime.s/ D .k � 1/Tı C . �top

360
/Tı. If s is

acquired during the ascent, then BeginTime.s/ D .k � 1
2
/Tı C . 180��bottom.s/

360
/Tı.

6 Preprocessing the Instances

In Sect. 5, we discussed a method to divide the polygon targets into strips. Those
strips have their vertical length equal to the vertical length of the polygon target.
The width of each strip is equal to the width as defined by the beam mode, except
for the last strip whose width might be smaller. Let wb be the maximum width of
an image that can be acquired with beam b. Thus, for a request with k strips along
a latitude � and with a requirement of beam b, the width of the first k � 1 strips is
equal to wb and the width of the last strips is at most wb. We call strips generated
this way large strips. From now on, we will represent these large strips as simple
requests, instead of the regions enclosed by a pair of latitudes and longitudes. This
situation is explained in Fig. 6 where a polygon target is divided into four strips. In
Fig. 6, the widths of s1; s2 and s3 are equal to wb along the � of division. The width
of s4 along the � of division is at most wb. If ws4 is the width of s4, then the width
of the target along the � of division is equal to 3 � wb C ws4 .
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Fig. 6 A polygon target
divided into strips

s1s2s3s4

The division of large requests into large strips may not be an optimal way of
generating the strips. In case of a conflict between two large strips for the satellite
resources, according to the constraints of the problem, only one of them can be
acquired and the other has to be dropped. In these situations, it would be reasonable
to cut these large strips into smaller ones. Let two strips s1 and s2 be bounded by
.�1; �1; �2; �2/ and .�3; �3; �4; �4/ respectively. If �1; �2; �3; �4 are such that both
these strips are visible to the satellite during the same orbit, both during the ascent or
both during the descent, then the corresponding opportunities of these strips conflict
if �1 � �3 � �2. Two such situations where conflicts between opportunities arise
are shown in Fig. 7. In such a case, we will cut the strips into shorter ones, at the �
of the intersection. These divisions are depicted in Fig. 8. We will call these strips
obtained from this procedure small strips. Now, with 66 % of the image acquisition
requests within Canada, there are high chances of conflicts between many strips.
For each of such conflicts, if we divide the large strips into small ones, we may end
up in a situation where we have a very large number of very small strips. In order to
avoid this situation, we make sure that we divide two conflicting large strips s1 and
s2 into small strips only if the length of both strips is at least 100 km. By dividing
these strips into small strips as shown in Fig. 8, the satellite may be able to acquire a
larger total area than before. In Fig. 8, we can see that there is still a conflict between
two strips, but these conflicting strips are smaller in length than before.

The satellites are right-looking, i.e. a satellite can acquire images only of strips
that are to the right of its tracks. Even if only a fraction of the strip is to the left of the
satellite, it cannot be acquired. To handle that, it is reasonable to divide such a strip
into two narrow strips so that one of them lies entirely to the right of the satellite’s
track and the other one entirely to the left. Let �ı be the � of the satellite’s orbit and
�1 and �2 be the left and right boundaries of the strip. The situation described above
arises if the longitude corresponding to �ı lies between those corresponding to �1
and �2. We then divide this strip into new narrow strips s1 and s2 whose left and
right boundaries are .�1; �ı/ and .�ı; �2/, respectively. We call such strips narrow
strips (see Fig. 9). If we keep on dividing strips in this manner, we may end up in a
situation where many strips will be created with narrow strips. Under this situation,
even if we acquire large number strips, the total area of the regions acquired may
remain small. To avoid this situation, we must control the number of narrow strips
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Fig. 7 Two situations where two strips will conflict with each other
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Fig. 8 Two situations where the large strips are cut into small ones

created. For a beam b, if wb is the maximum width of an image possible using the
beam b, then we will divide a strip into narrower strips only if the new strip created
entirely to the right of the track has width at least 3

4
wb.

7 Computational Study

We conducted a series of experiments in order to evaluate our various strategies of
splitting the large strips and modeling the piecewise linear function. The piecewise
linear function used for each request in the objective function is shown in Fig. 4.
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Fig. 9 Division of a wide
strip into narrow strips if the
strip is not completely to the
right of the satellite’s ground
track. The dark arrow shows
the satellite’s ground track.
After the division we get two
new strips

Table 1 The number of acquired strips and average and maximum acquisition
times (in minutes) for the instances with large strips, narrow strips and small strips

Large strips Narrow strips Small strips
# day S.No. Avg. Max. S.No. Avg. Max. S.No. Avg. Max.

50 354 7.38 15 417 7.56 15.16 2045 10.16 17.34

100 381 8.24 14.36 438 8.31 13.6 2129 10.4 15.47

150 360 7.47 15.2 413 7.69 15.4 1995 9.46 16.62

200 344 7.28 14.8 398 7.57 13.9 1982 9.23 15.87

250 355 7.57 16.0 402 6.76 14.3 1862 9.65 18.23

300 336 8.3 12.9 385 8.6 13.7 1838 11.04 15.79

350 314 7.99 13.4 365 8.12 14 1751 11.01 16.31

Table 1 shows the results obtained from CPLEX for 7 test instances, each instance
corresponding to 1 day of year. In each instance we considered all the requests
whose time window overlaps with the day that is being considered. The number of
image acquisition requests are around 400 in each instance. The results are provided
for instances generated with large, small and narrow strips. We report the number
of strips that are acquired in each problem instance and the average and maximum
acquisition times of the satellites in each of the three cases. There are around 1250
strips in instances with large strips, around 1600 strips in instances with narrow
strips and around 9500 strips in instances with small strips. Each strip has 4–5 image
acquisition opportunities on average. The average and maximum acquisition times
are in minutes. It can be observed that the utilisation of satellites resources is highest
if small strips are used and lowest if large strips are used. Each instance is solved to
optimality within few seconds of running time. Instances with large strips were of
the smaller size and for them CPU time to reach optimality was less than a second,
whereas the instances with small strips were of larger size and took around 10 s to
reach optimality.

In Table 2, we report the number and total area of requests that are completely
acquired (in km2) out of those requests that have their deadline on the given day. We
report the results for the instances with large, narrow and small strips. Except for
the day 250, it can be observed that the total area acquired is larger with small strips
as compared to the other two strategies. However, the number of requests that are



Satellite Constellation Image Acquisition Problem: A Case Study 195

Table 2 The number of requests that are completely acquired out of all the
requests whose deadline is the given day and the total area acquired of these
requests for the instances with large, narrow and small strips

Large strips Narrow strips Small strips
# day R.No. Total area R.No. Total area R.No. Total area

50 58 14,640,986 54 14,183,614 65 14,955,658

100 62 13,647,071 58 14,351,111 72 16,109,986

150 62 13,329,081 61 13,362,688 72 13,434,589

200 43 14,540,530 40 14,705,978 50 15,276,139

250 36 13,452,578 34 13,467,191 49 13,321,412

300 45 11,040,703 45 11,075,610 53 11,549,353

350 45 11,009,681 39 11,096,491 49 11,466,283

Total area is measured in km2

Table 3 Table showing the
number of strips acquired, the
average and maximum
acquisition times of the
satellites, CPLEX run time in
seconds for the instances with
both narrow and small strips

Narrow and small strips
# day S.No. Avg. Max. Run time (s)

50 2190 10.49 16.66 63

100 2330 10.87 16.27 21.6

150 2096 9.71 15.94 16

200 2104 9.57 16.69 14

250 2040 10.23 18.19 505.5

300 1912 10.81 16.08 73.1

350 1910 11.38 16.64 14.3

completely acquired is greater with small strips than with the other two strategies.
This shows that our model favors the complete acquisition of requests over partial
acquisition of several requests. It can also be observed that even though the total
number of completely acquired requests using narrow strips does not increase as
compared to using large strips, total area acquired increases in most of the instances.

Table 3 shows the number of strips acquired, average acquisition times and
maximum acquisition times of the satellites for instances where the strips are both
small and narrow. We can see that the average acquisition times for the satellites is
more in this case than with large, narrow or small strips. Except for the day 300,
the total area of acquisition is greater with both small and narrow strips than only
with small strips, while the total number of completely acquired requests remain
almost the same with both the strategies. This means that the satellite resources are
used more efficiently with both narrow and small strips. The total number of strips
generated in each instance roughly range between 11; 000 and 13; 000 and the total
number of opportunities lie in between 35; 000 and 50; 000. With around 66% of the
requests lying in Canada, the number of conflicts in opportunities are in the order of
around 90; 000 conflicts per problem instance.

Table 4 shows the number of completely acquired requests that end on the given
day and the total acquired area of requests that end on the given day for the instances
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Table 4 The total area and the number of requests that are completely acquired out
of all the requests whose deadline is the given day. We show four different lengths of
planning horizons for each day. For example, the 4 Day Plan for Day 50 begins on day
47 and ends on day 50. Total area is measured in km2

1 Day Plan 2 Day Plan 3 Day Plan 4 Day Plan
Day R.No. Total area R.No. Total area R.No. Total area R.No. Total area

50 60 14,994,647 59 16,235,955 58 17,163,090 56 18,568,120

100 72 16,157,898 64 19,885,732 59 21,039,840 66 21,446,711

150 73 13,491,978 73 14,684,035 76 14,879,687 76 14,913,424

200 50 15,344,293 51 17,136,993 55 17,763,900 55 18,044,350

250 45 13,629,296 48 15,611,762 49 16,105,064 48 16,570,289

300 50 11,471,757 55 12,546,429 50 13,156,272 52 13,698,709

350 46 11,640,585 53 12,474,465 56 12,931,489 49 13,628,414

with small and narrow strips. We show the results for planning horizons of length
1, 2, 3 and 4 days. For a planning horizon of length d and a given day d0, we
sequentially solve the problem from day d0 � d C 1 till day d0. It can be seen that
as the length of the planning horizon increases, the total acquired area of requests
that end on the given day increases considerably while the number of requests that
are completely acquired remains almost the same. Instances with 4-day planning
horizon were solved to optimality within 20min of running time.

8 Conclusions

In this work, we studied the image acquisition scheduling problem for satellite
constellations. An integer programming model was presented and solved using
a commercial MIP solver. We conducted computational experiments for the case
study of the Canadian RADARSAT Constellation Mission (RCM). We suggested
several pre-processing techniques that increased the efficiency of the system. We
also proposed two piece-wise linear objective functions to model the preference for
the completion of already partially served requests. These objective functions have
potential to increase the possibility of fully serving even the large-area requests of
higher priority—a desirable capability in the satellite industry. The results of the
computational study on pseudo-real-world instances were encouraging achieving
the 1-day image acquisition schedules within several minutes and achieving the 4-
day image acquisition schedules within 20min for around 400 requests and 1000
requests, respectively, with tens of thousands of strips and opportunities.
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Re-entry Test Vehicle Configuration Selection
and Analysis

Erwin Mooij

Abstract A small and low-cost re-entry vehicle can be a good means for doing
hypersonic research, testing new heat-resistant materials, and qualifying newly
developed subsystems in a realistic environment. To establish the optimal vehicle
shape a response-surface methodology using design-of-experiments techniques is
proposed. With these techniques the effects of changing several geometric design
parameters in an ‘all-at-the-same-time’ approach can be studied, instead of the
more traditional ‘one-at-a-time’ approach. Each of the design iterations includes
an aerodynamic analysis based on the Modified Newtonian method and a three-
degrees-of-freedom trajectory analysis. Generating response surfaces for each of
the performance indices and optimising them with a multi-objective optimisation
method, a set of geometric parameters is found that gives the best alternative for
each of the performance indices. Two fundamentally different vehicle shapes are
considered, i.e., one based on a trapezoidal cross section and a sharp, water-
cooled nose, for an increased lift-to-drag ratio, and one being a blunted bi-cone
that is simple to manufacture, has good stability properties and good potentials for
various aerodynamic and material experiments. The developed methodology leads
to significant insight in the design space and provides sub-optimal vehicle shapes at
a limited computational cost. It may serve as a good starting point for more detailed
analysis of a sub-region of the original design space.

Keywords Computer-supported design • Design of experiments • Re-entry
systems • Conceptual design • Vehicle-shape optimization

1 Introduction

For the development of reusable launchers, new technology has to be developed
and tested in a hypersonic environment that cannot be reproduced in ground-based
facilities. Not only is it impossible to simultaneously obtain all conditions occurring
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during a hypersonic flight in these facilities, but also the measurement times are
very short, typically in the order of milliseconds. Small re-entry vehicles can fulfill
the need of hypersonic experiments supporting this technology development. Such
experiments concern aerodynamic phenomena to expand the hypersonic database
for verification of software, material tests in the chemically reactive hypersonic flow,
tests of instrumentation, new guidance, navigation, and control (GNC) concepts and
many other urgent experiments and tests.

Flight experiments in the hypersonic regime have an ongoing interest. Typical
examples are the German Sharp Edge Flight Experiment (SHEFEX) missions
[21, 29], ESA’s Intermediate eXperimental Vehicle (IXV) [20], and DARPA’s
Hypersonic Test Vehicles (HTV-2) [28]. In the conceptual design phase, to establish
the best aerodynamic shape of these vehicles that meets all the requirements, a trade-
off between several concepts is needed.1 To accurately model each aspect and to
do a full-blown numerical optimization is at that early stage of the project not a
wise step to take, considering the time and money involved. What one wants to
do is a quick screening of a limited number of options to see in what direction
the design should go, such that design efforts can be concentrated. Of course, when
the screening process shows that due to non-linearities in the system’s behaviour the
number of design points is by no means sufficient, a more global approach should
be pursued. Examples of such a global-optimization approach are the continuous
shape optimization of winged entry vehicles [4], and the robust multi-disciplinary
optimization of unmanned entry capsules [18, 19].

For a constrained system, arbitrary variation of design parameters generally does
not lead to a feasible solution, let alone an optimal one. It may thus be clear that a
more systematic design approach is needed to generate the best conceptual design.
It is the objective of this study to present a methodology to investigate a wide range
of possible shapes and to find the most promising one for a re-entry test vehicle. This
vehicle would be the best compromise with a minimum effort and without using
complex time-consuming design tools, and thus saving time and costs during the
preliminary design. Once the general direction of the design has been established
the outcome can be used as input to the next design phase (not presented here),
such that all effort can be concentrated on the refinement of the design using more
detailed design tools. The approach that we will follow is one from the field of
design of experiments, in combination with a response-surface methodology from
the field of regression analysis.

To illustrate the approach we will look at the aerodynamic design of two (hyper-
sonic) flight-test vehicles with fundamentally different base shapes, as discussed
by Mooij et al. [11] and Sudmeijer and Mooij [26]. The first vehicle assumes the
availability of a low-cost launch facility that enables a maximum Mach number
between 10 and 12, a set of mission requirements, and the definition of the
experiments and corresponding equipment. The initial vehicle geometry is based on

1In fact, this could apply to the design of any complex (sub-)system and could be extended to
detailed design as well.
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a trapezoidal cross section and a sharp, water-cooled nose to increase the lift-to-drag
ratio, a reaction-control system and four flaps mounted at its base for aerodynamic
control. Several performance indices related to controllability, mission constraints
and experiment performance (e.g., duration of flight above Mach 8) will be taken
into account.

For the second generic module shape, a blunted bi-cone has been selected that
is simple to manufacture, has good stability properties and potential for various
aerodynamic and material experiments. The cooling of the spherical nose is based
on nucleate pool boiling of water. For this second vehicle, the focus will be on
the thermal loading of certain elements of the vehicle while doing a ballistic entry.
The entry conditions come from a (sub-orbital) launch, and the vehicle reaches
maximum Mach numbers close to 20. Variations in entry conditions and vehicle
mass are included in an integral approach combined with the shape variations to
establish the best shape for different mission types.

The layout of this chapter is as follows. In Sect. 2, the parametric design and
analysis method is discussed. This methodology is successively applied in two test
cases. Section 3 focuses on the aerodynamic design of a test vehicle with trapezoidal
cross section, whereas in Sect. 4 the integrated shape and trajectory analysis of a
biconic entry capsule is discussed. Section 5 concludes this chapter with some final
remarks.

2 Parametric Design and Analysis

2.1 Design of Experiments

Generally, in a sensitivity analysis or a design exploration one wants to cover the
full experimental region with a minimum number of simulations. When no details
on the functional behavior of the response parameters are available, it is important
to obtain information from the entire design space. Therefore, design points should
be “evenly spread” over the entire region. Furthermore, the design should be non-
collapsing. Two design points are said to collapse when one of the design parameters
has (almost) no influence on the function value and the two designs differ only in this
parameter. As a consequence this means that effectively the same point is evaluated
twice, and for deterministic simulation models this is not a desirable situation.
Therefore, two design points should not share any coordinate values when it is
not known a-priori which dimensions are important. However, from a preliminary
analysis we know this situation will not occur in the treated examples. It could be
useful, though, to keep this in mind for future reference when the design parameters
change.
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Table 1 Orthogonal array L8
with seven factors (A–G) on
two levels; “�1” represents
the normalized minimum
value and “1” the maximum
one

Design nr A B C D E F G

1 �1 �1 �1 �1 �1 �1 �1

2 �1 �1 �1 1 1 1 1

3 �1 1 1 �1 �1 1 1

4 �1 1 1 1 1 �1 �1

5 1 �1 1 �1 1 �1 1

6 1 �1 1 1 �1 1 �1

7 1 1 �1 �1 1 1 �1

8 1 1 �1 1 �1 �1 1

Straightforward factorial design, i.e., varying one parameter at a time and
executing all combinations, rapidly leads to a large number of simulations.2

A fractional factorial method was found in the field of design and production-
process optimisation, called the Taguchi Method [17, 27]. This method makes use of
orthogonal arrays to define parameter-setting combinations. Matrix orthogonality,
in this context, should be considered in the combinatorial sense, namely: for any pair
of columns all combinations of parameter levels occur an equal number of times, the
so-called balancing property [17]. In the field of Design of Experiments, a parameter
(a design variable, sensitivity parameter, uncertainty, etc.), is commonly known as
a factor. Similarly, the performance of the system under study (or, equivalently, the
deviation from a set point, a constraint value, or anything that says something about
the system’s behaviour) is called the response of the system.

Taguchi [27] has derived many orthogonal arrays, most of them based on two-
or three-level factors, which are commonly used in practical applications. As an
example, the so-called L8 array is given in Table 1 (note that the index ‘8’ indicates
the number of rows, or, similarly, the number of designs/experiments). Seven two-
level factors (A through G), with levels �1 (normalised minimum value) and 1
(normalised maximum value) are varied over eight experiments. For columns 1 and
2, the four possible combinations of factor levels, i.e., (�1,�1), (�1,1), (1,�1)
and (1,1), occur in experiments (1,2), (3,4), (5,6) and (7,8), respectively. In a full
factorial design 27 (= 128) experiments would be required. Note that the L8 design
is non-collapsing.

The use of orthogonal arrays is based on application of the so-called D-optimality
criterion, which is easiest explained with the definition of a response surface (also
known as a least-squares fit) of a performance index � D Xˇ, where X is the
regression matrix and ˇ is the vector with regression coefficients. D-optimality is
based on the notion that the experimental design should be chosen so as to achieve
certain properties in the moment matrix M, which is proportional to XTX. Since the
inverse of M contains variances and covariances of the regression coefficients ˇ,
it means that the determinant of XTX is inversely proportional to the square of the

2Variation of k parameters with two (three) possible values, also called levels, results in a total of
2k (3k) combinations.
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volume of the confidence region on the regression coefficients [13]. The application
of orthogonal arrays to define X will maximise the determinant of XTX, which
means that for a given definition of the response surface this will result in the most
accurate estimate of the regression coefficients.

Although there are many orthogonal arrays available from literature, the selection
of the proper orthogonal array is not trivial. This is particularly true if many factors
are included and there are potential interactions (an interaction between two factors
is said to exist, when a variation in the first factor results in a different variation of
the response for each level of the second factor). Then, the column assignment can
be complicated and it is possible that not all of the factors and interactions can be
studied in one go. The columns that are assigned to interactions are available from
so-called interaction tables [17]. For the array given in Table 1, if one assigns two
factors to columns A and B, then a potential interaction is linked with column C.
Similarly, column A and D are linked to E, whereas B and D are linked to column
F. The particular interaction tables follow from the mathematical derivation of
the corresponding orthogonal array, and is not a trivial process. Discussing the
interactions in detail does not serve a purpose here, so we leave it to the given
references that provide a lot of background information.

In case the so-called main-factor effects are much larger than the effect of the
interaction, the latter can usually be ignored, though. But if the system under study
is not known one cannot say beforehand which of the interactions between the input
parameters do not have an effect on a selected response. If two factors A and B
are varied at the same time, the interaction AxB can be studied by not assigning
any factor to the appropriate column as specified by the related interaction table.
However, when a factor C is assigned to that column, the corresponding factor
variation will be influenced or confounded by the interaction AxB. When for a
two-level array the factors are assigned to the columns such that all the two-level
interactions are free of confounding with other two-level interactions and main
effects, this results in a so-called Resolution-V array, see also [5]. Basically, this
is required when no information about the interactions is available.

To study only linear effects, factor variations over two levels will suffice. In case
one is also interested in quadratic effects, variation over three levels is required,
which leads to larger orthogonal arrays. However, also another approach is possible.
After conducting a matrix experiment, it is possible to compute a response surface,
i.e., a polynomial function in one or more dimensions that describes the relation
between a response and the applied factors. To study quadratic effects, a second-
order response surface may be used:
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for which the coefficients ˇ can be estimated by minimising a quadratic error crite-
rion, resulting in the well-known method of least squares. Solution of the resulting
problem can conveniently be done by, for instance, singular value decomposition.
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One particular and efficient design to generate the responses to solve the
coefficients of Eq. (1) was introduced by Box and Wilson [2], i.e., the (empirical)
class of Central Composite Designs (CCDs):

1. a complete (or fraction of a) Resolution-V 2k factorial design, where the factor
levels are coded to the usual �1,C1 values (the factorial portion of the design),

2. n0 centre points (n0 � 1), and
3. two axial points on the axis of each design variable at a distance ˛ from the

design centre (the axial portion of the design). To determine ˛, let ntot be the
total number of designs and nf the corresponding number of the factorial portion.
For a so-called orthogonal design, i.e., a design for which the variance of the
coefficient estimates is minimised, Khuri and Cornell [6] state that

˛ D
rp

ntotnf � nf

2

Montgomery [8] mentions that a CCD is made rotatable,3 the preferred class of
second-order response-surface designs, by choosing ˛ D n0:25f . Combining both
expressions would lead to n0 	 4pnfC4�2k to make the design both orthogonal
and rotatable.

Since many engineering problems exhibit a second-order behaviour, i.e., they con-
tain linear, quadratic and first-order interaction effects, this design can effectively
be used in many situations.

As an example, consider a system design with three (k = 3) design variables. The
factorial portion is taken as a full factorial design, such that nf D 23 D 8. For a
rotatable design, ˛ D n0:25f D 1:6818, and to make the design orthogonal as well,
n0 D 4pnfC4�2k D 9:3, which is rounded off to n0 D 9. For three design variables
with nominal values of x1 D 5, x2 D 3 and x3 D �8, and corresponding ranges
of �x1 D ˙2, �x2 D ˙1 and �x3 D ˙1:5, this means that the corresponding
minimum and maximum values for these parameters—the �1 and +1 settings in
the orthogonal arrays—would be: x1;min D 3, x1;max D 7, x2;min D 2, x1;max D 4,
x3;min D �9:5, and x3;max D 6:5. The axial points, however, are at a greater distance
(at ˙1:6818�x) from the nominal design values. For x1, for instance, this would
mean that x1;˛;min D 1:6364 and x1;˛;max D 8:2728.

A typical example of a central composite design from literature is the rocket-
powered single-stage space-plane configuration selection and design [25], as well
as its propulsion-system optimization [24], and such a CCD will also be used
here for the aerodynamic-shape selection. In general, such a design requires fewer
experiments than using a stand-alone three-level orthogonal array.

A statistical description of a number of N observations of a response can be given
by the mean response, Ny, and its standard deviation, � , defined by:

3A rotatable design is the most effective from a variance point-of-view, and all points at the same
radial distance from the center point have the same magnitude of prediction error (uniformity of
variance).
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Ny D 1

N

NX

jD1
yj D T

N
�2 D 1

N � 1
NX

iD1
.yi � Ny/2 (2)

where T D
NP

jD1
yj is the total sum. The sum of the squared deviation from this mean

(or the total variation in the set of observations) is represented by the total sum of
squares, ST .

ST D
NX

iD1
.yi � Ny/2 (3)

In case the response data are fitted by a response surface, the mean value is
represented by ˇ0, see Eq. (1). The relative values of the other coefficients give
the sensitivity of this mean response to a variation in the individual factors and
interactions. Of course it should be clear that the computed response surface has to
fit the responses well. The residual ri is the difference between the measured and
predicted response, i.e., ri D yi � Oyi. The predicted response Oyi; i D 1; � � � ;N,
is the response value computed with the response surface using the same factor
combination that resulted in the measured value. Three sums of squares can thus
be defined, the total sum of squares (ST ), given by Eq. (3), as well as the sum
of squares due to regression, SR, and the sum of squares unaccounted for by the
response surface, SE:

SR D
NX

iD1
.Oyi � Ny/2 ; SE D

NX

iD1
.yi � Oyi/

2 (4)

with the mean value of the observed responses, Ny, given by Eq. (2).
A first indication of the goodness of fit is given by the coefficient of determina-

tion, R2, defined by the ratio of the sum of squares of the residual and the total sum
of squares:

R2 D SR

ST
(5)

although this does not say anything about the response surface in between the nodal
points. In some cases the fit through the response values is very good (with R2 close
to its maximum of 1), but the response surface can exhibit oscillatory behaviour in
between.
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2.2 Vehicle-Design Methodology

The design approach followed is common to both cases to be discussed hereafter.
To begin with, one needs a set of (generic) mission and system requirements that
may drive the design process of flight-test vehicles. In general, they are derived
from a set of user requirements. These can be divided into two essentially different
groups, i.e., resulting from the use of (1) the vehicle itself to do tests in a hypersonic
environment that cannot be done in ground-based facilities, and (2) the internal
volume of the vehicle to do experiments in a better micro-gravity environment than
achieved in, for instance, a parabolic flight. The user requirements that will lead to
the set up of mission requirements can be categorised in the following sub-sets.

1. External-flow measurement experiments and CFD-code validation.

(a) Investigation of shock-layer properties, i.e., gas composition, density,
pressure and temperature,

(b) Investigation of shock-wave/boundary layer interaction, boundary layer
separation and reattachment, and

(c) Investigation of boundary-layer transition, determination of permissible
surface roughness and waviness.

To allow for the above experiments, the following mission requirements can be
set-up. To assure the occurrence of dissociation the chemical-kinetics parameter
	1RN (product of free-stream air density and nose radius of the vehicle), and
the relative free-stream velocity V1 should be simultaneously covering 	1RN 2
[0.1,10] g/m2 and V1 � 2.5 km/s. In addition, the aerodynamic performance of
hypersonic vehicles is characterised using the numbers of Reynolds and Mach,
Re1 and M1. For valuable data the flight test should be executed in the following
flight ranges: Re1 � 2:6�105Lref and M1 � 5. Here, Lref is a characteristic
reference length.

2. Vehicle navigation and control experiments.

(a) Testing of control surfaces, i.e., to provide data to validate and improve
prediction for control-flap effectiveness, study the influence of gaps on
heat loads and flap performance, and study hot-spot effects due to viscous
interaction (specifically in flow separation and reattachment regimes),4

(b) Investigation on RCS, i.e., to improve prediction and efficiency for the
performance of RCS, to study the interaction between the plume and the
surrounding flow field, and verification of the RCS-thruster,

(c) Navigation and measurement system (combination of global positioning
system (GPS) and inertial measurement unit (IMU)), i.e., the investigation
of advanced GPS for IMU update, investigation of accuracy of the GPS in

4To test the characteristics of a flap in the hypersonic flow, the Mach number should be larger than
5 at an altitude of about 60 km (typical re-entry trajectory).
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high velocities during re-entry, to study the integration of GPS antennas in
the thermal protection system (TPS) and the antenna gain, and to study the
ground-link communication black-out during re-entry,

(d) In-flight assessment of GNC software performance, and
(e) Testing instrumentation, i.e., the verification of sensor accuracy on the real

flight environment, verification of sensor reusability, investigation on smart
and small micro sensor applied in extreme flow conditions, and testing of a
new type of optical air-data system.

3. Micro-gravity experiments. The micro-g phase is defined as that part of the
trajectory where the residual acceleration along all axes is less than 10�4 g.
In general, the experiment module shall not generate forces leading to higher
accelerations. Fields for which these measurements could be relevant are:

(a) Life science, where the phenomenon itself is the most important element to
study; these experiments always have a statistical nature, and

(b) Materials and fluid science, for which a lot of theory has to be verified; these
experiments are always very dedicated and unique.

Of course, there may be specific requirements for particular sub-systems, which
should lead to an optimal design solution. Examples are the nose-cooling system,
part of the TPS of the test vehicle discussed in Sect. 3, or the analysis of TPS thermal
loads covered in Sect. 4.

The general design and analysis approach is now as follows. For the chosen
family of configurations we derive analytical expressions for the vehicle shape
and identify the geometrical parameters that we want to vary. The variation of
the selected parameters will be done according to a central composite design,
as discussed in Sect. 2.1, so we determine the ranges and assign the parameters
to the corresponding columns of the orthogonal array. For each of the design
configurations following from the CCD, first a surface mesh has to be generated that
serves as input to an aerodynamic engineering code based on modified Newtonian
flow for hypersonic speed. This code is used to build an aerodynamic database
for an adequate Mach and—if required—angle-of-attack range. Subsequently,
this database is linked with a flight-simulation software5 that can compute both
lifting and ballistic three-degrees-of-freedom trajectories. The output of the flight-
simulation software is processed to derive the performance indices and to serve as
input for the computation of the response surfaces. This output is also used as input
to dedicated models used for the sub-system analyses mentioned above.

It is stressed that this methodology will not work for very complex shapes,
because then we will not be able to create an analytical description of the geometry.
In that case the shape variation becomes far more complex: one can think of defining
the surface mesh by means of, for instance, Hermite polynomials, as was done by

5The flight-dynamics model has been developed for a rotating, flattened Earth; the atmosphere
model is the United States Standard Atmosphere (1976), and the gravitational model is a central
field model with a correction for the Earth’s flattening.
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Dirkx and Mooij [4]. However, the downside is the large number of parameters
defining the geometry, which will prevent an effective use of design of experiments.
Dirkx and Mooij [4] applied an evolutionary algorithm for the shape variation, at
the expense of a large increase in CPU time.

3 Shape Optimization

For the first design case we consider the conceptual design of a small low-cost
re-entry testbed for hypersonic experiments, designated Hyperion-2. This vehicle
is an improved version of an earlier concept [10]. As such, the arrangement of
the control flaps has been changed to prevent undesirable roll/yaw coupling of the
previous design. It was also observed that the dynamic stability parameter, Cnˇ;dyn ,
was too small causing an undesirable sensitivity for Dutch roll, indeed a classical
problem for lifting bodies. This problem has been considerably reduced by an angle
of dihedral (a V-shape) of the windward side of the module, see also Fig. 1.

Another important modification is the reduction of the nose radius RN to
substantially reduce the drag and subsequently increase the flight time at M > 8.
As a consequence the stagnation heat flux on the nose increased and has led to
a water-cooled nose to keep the temperature of the nose below 1300 ıC. This is
the temperature limit of the selected material PM1000, a metal oxide-dispersion
strengthened (ODS) superalloy.

The flap effectiveness has been improved and the undesired roll/yaw coupling
of the previous model could be avoided by applying four rather than three control
flaps. The two bottom flaps are used for roll and pitch control, the two upper flaps
are for yaw control and trim, but do not induce a roll moment when deflected.

Concerning the choice of launcher, sounding rockets do not reach orbital velocity,
but for hypersonic experiments only a Mach number in the order of 10 is required for
a reasonable amount of time. Most sounding rockets do not meet this requirement,
but (at the time of the study) the Brazilian VS-40 is an available non-military rocket

Fig. 1 Hyperion-2: artist impression (left) and generic geometry (right)
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with sufficient performance.6 So for the conceptual design of the present Hyperion
re-entry module the VS-40 has been selected as launcher, with as a primary goal
that the module should achieve a trajectory on which it reaches at least Mach 8, at
an altitude, which resembles the actual re-entry trajectory. The burnout conditions
of the VS-40 are such that at an altitude of h = 120 km the corresponding velocity
relative to the atmosphere is V = 3300 m/s, whereas the flight-path angle is �0 D
�10ı. It has to be confirmed, though, that these conditions are suitable for doing
hypersonic experiments.

With all these design changes, we want to know the following. Can the proposed
TPS protect the vehicle from the induced thermal environment? Can the dynamic
stability be improved? Do we get sufficient measurement time in the Mach range
of interest? To answer these questions a number of response objectives will be
defined, and variation of the baseline shape will be studied to see the effect on
these responses. The mission considered is one starting from the initial conditions
mentioned above and entering the atmosphere at the configuration for maximum
L=D until the flight-path angle � is zero, and successively a flight with zero flight-
path-angle rate, P� , that is forced on the vehicle by angle-of-attack modulation.
Conversion of the commanded � to a commanded ˛ follows directly from the related
equation of motion, as discussed in, for instance [9]. A detailed discussion on the
complete mission of Hyperion-2 is given by Mooij et al. [12].

3.1 Vehicle Description

As mentioned earlier, the vehicle’s nose TPS is based on water cooling. The water
takes up the heat and starts boiling after reaching the evaporation temperature.
During re-entry, the water damp will be forced towards the tank rear side due
to the deceleration. Here, a valve is mounted, which is set to open at 5 bar.
A tube leads the water damp towards the vehicle back side, where it is vented
in the base flow of the vehicle. This concept prevents the vehicle boundary layer
from being polluted with cooling mass, which would be undesirable for many of
the anticipated experiments. The influence on the vehicle motion of the coolant
dumping is considered to be controllable, due to the small cooling mass flow
involved.

The nose heat flux, qc;nose, is proportional to the inverse square root of the nose
radius. However, since the nose area simultaneously decreases to the second power
of the nose radius, the total heat load for the spherical nose decreases. Furthermore,
the heat flux near the stagnation point decreases approximately with the cosine of
the spherical nose angle before decreasing with the inverse running length from the
stagnation point a bit further [23]. This already indicates that for a small nose radius

6The VS-40 has been successfully used to launch SHEFEX-2, a DLR-operated re-entry vehicle for
hypersonic flight experiments [29].
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the conical part will require water cooling as well to avoid reaching the maximum
operating temperature of PM1000/PM2000.

An engineering-analysis model is established to quantify the required water
coolant mass during the re-entry orbit of Hyperion. It is based on heat transfer
methods of the stagnation point, laminar and turbulent layer flow after [31], which
involves the computation of the boundary layer momentum-thickness. Similar
methods after [1, 7] are modelled as well for reasons of verification of the analysis
code.

The above models require knowledge about the boundary-layer edge conditions,
for which two different methods are implemented, i.e., the so-called normal
shock/isentropic expansion model after [1], and one based on the modified Newton
method combined with a simple flow-angle-deflection velocity model. The former
covers the stagnation point region more realistic, whereas the latter has a better
representation of the decreased total pressure loss in the aft region of the nose,
where the entropy layer becomes small compared to the boundary-layer thickness.
The laminar heat flux of the latter model is slightly higher, but more important, due
to earlier transition on the vehicle the modified Newton model gives an increased
surface-integrated heat load compared to the normal shock/isentropic expansion
model.

The outer geometry of the re-entry vehicle that served as a generic baseline
for the aerodynamic design is build up with twelve independent parameters, i.e.,
eight for the body and three for the control flaps, that completely define the
geometry (Fig. 1). Out of the eight body parameters, five parameters that have a
major influence on the aerodynamic performance have been selected for variation,
namely: the semi-cone angle, �c, the side angle of the upper panels, �u, the body-
axis parameter, �, the rounded radius of the base, rB, and the angle of dihedral of
the bottom, �l. The aforementioned body-axis parameter defines the position of the
body axis, located along the X-axis in the plane of symmetry (X-Z plane). The body
axis is fixed in the triangle defined by the centres of the rounded radii at the base
by the fraction � of the height of the triangle (and has, therefore, always a value
between 0 and 1).

3.2 Aerodynamic Design

As mentioned, the five selected design parameters will be varied according to a
CCD. For the factorial portion of the design, Taguchi’s L16 array will be used,
which is Resolution-V for a maximum of five parameters, column assignment is
1, 2, 4, 8 and 15 [5]. The axial parameter ˛ will be chosen such that the design
is orthogonal, i.e., a design for which the variance of the coefficient estimates is
minimised. This means, for n0 D 1 centre point and 16 designs (L16) in the factorial
portion, that ˛ D 1:5467. The total number of designs comes to 16C5�2C1 D 27.
The nominal parameter settings and their variations are chosen to be representative
to obtain a broad family of designs, see also Table 2. Since the range in the L16 array
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Table 2 Parameter
variations in CCD

Nominal Maximum range Maximum range

Factor value L16 axial (˛ D 1:5467)

�c 13:0ı ˙0:647ı ˙1:0ı

�u 50:0ı ˙6:465ı ˙10:0ı

� 0.4 ˙0.129 ˙0:2
rB 0.2 m ˙0.065 m ˙0:1m

�l 5:0ı ˙3:233ı ˙5:0ı

is given by ˙1, this means that the maximum physical range should be divided
by 1.5467 to get the corresponding values. Note that the other three parameters
are dependent on the five selected ones, and will change accordingly during the
parameter variation. The vehicle configuration cannot change to extra-proportional
dimensions, so constraints have been imposed on the vehicle length (Lmax D 2:7m),
the vehicle width (bmax D 1:7m), and the vehicle height (hmax D 1:0m). If one of
the constraints is met during the parameter variation, the height is adjusted such that
the constraints are no longer violated.

The performance indices used in this study can be divided into several cate-
gories, i.e.,

1. Flight experiments:

(a) The altitude at which the vehicle is flying horizontally, hhor,
(b) Flight time between Mach 10 and 8, M10!8

(c) Flight time between Mach 8 and 6, M8!6

(d) Chemical-kinetics parameter 	1RN

(e) Reynolds number at Mach = 8

2. Controllability:

From analysing the eigenvalues of the characteristic polynomial, it appears that
the restoring moment

Cnˇ;dyn D Cnˇ � Clˇ tan˛0
Izz

Ixx
(6)

is an important index for the sensitivity for Dutch roll [30], and will therefore
be selected as objective as well. However, it will only be defined for one flight
condition, i.e., Mach = 8 and ˛0 D 5ı. Note that a positive value is required.

3. Trajectory constraints and vehicle related:

(a) Maximum g-load
(b) Maximum convective heat flux, qc, for equilibrium wall temperature
(c) Integrated heat load, Q
(d) Maximum mass flow of evaporated water, PmH2O

(e) Total cooling-water mass, mH2O
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Furthermore, some additional parameters such as the maximum L=D, the initial
Mach number at horizontal flight, the total flight time and the final altitude have
been defined as auxiliary parameters to analyse the results.

3.3 Results

Evaluating the 27 designs of the CCD as discussed in the previous section7 a
selection of the results (i.e., the performance indices) can be found in Table 3.
Unfortunately, it is not possible to discuss each of the results in great detail, so
we have to restrict ourselves to a limited number.

It is clear from inspecting Table 3, that there is a large variation in L=D, with
a minimum of 0.46 (#12) and a maximum of 2.21 (#5). It seems logical to expect
a large variation in the other performance indices too, as can indeed be observed.
As an example, qcmin is encountered by concept #4 (2255 kW/m2), whereas qcmax is
met by concept #5 (5483 kW/m2). Two remarks: (1) the optimal configurations for
L=D and qc do not correspond, which would lead to a compromise if, for instance,
L=Dmax and qcmin should both be met; (2) qcmax = 5483 kW/m2 is very high and leads
to very high temperatures. Moreover, the large L=D seems to contradict this high qc,
but we will come back to that later.

Note that for each of the concepts the maximum g-load, not listed here, varies
between 9.28 (#19) and 10.74 (#5), and these peak values all occur at more
or less the same time (t 	 90–100 s), some 5–10 s before the vehicle starts
flying horizontally. Obviously, the constant flight at ˛L=Dmax

results in a pull-up
with significant thermal and mechanical loads. In a next iteration step of the
design process, the pull-up manoeuvre should be optimised such that the loads are
decreased. On the other hand, the total amount of cooling water for the highest heat
flux is ‘only’ 6.19 kg, partly also because the peak is of a relatively short duration
(the cooling-water mass for the other configurations is lower; the variation of this
mass is between 1.09 and 7.75 kg, indicating that if no technological problems are
encountered, water cooling may be very efficient).

With respect to the chemical kinetics parameter and the Reynolds number
(evaluated at Mach = 8), the analysis may be brief. In all 27 cases, 	1RN is in
the required interval of [0.1,10] g=m2, whereas the Reynolds number (based on the
vehicle length, varying between 1.7 and 2.7 m) easily fulfills the criterion listed
in Sect. 2.2. Note that some of the configurations start the horizontal flight at a
lower Mach number than 8, hence the ‘–’ (= no value) in Table 3. Obviously, also
dt .M10!8/ is zero (‘–’) in that case.

7We have assumed that each vehicle can be trimmed throughout the flight. Verification of this has
shown that by shifting the centre of mass more or less in Z-direction (vertical) this can indeed be
achieved. At the moment we do not focus on optimizing the centre-of-mass location, and because
the flap contribution to the aerodynamics is in the same range for each configuration, we have
ignored this.
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Table 3 Results from the central composite design (minimum and maximum values are grey
shaded)

max. max. M10!8 M8!6 M=8 max.

L=D qc Q Cnˇ;dyn hhor 	1RN dt dt Re PmH2O mH2O

nr (�) (kW=m2) (MJ=m2) (1/rad) (km) (g=m2) (s) (s) (108) (g/s) (kg)

01 1.98 3944 301.7 0.686 32.2 0.33 32.0 57.0 1.88 68.9 3.45

02 1.03 2955 140.6 1.034 32.5 0.32 0.2 25.0 1.68 171.8 4.22

03 1.19 3044 155.9 0.526 32.9 0.30 5.0 28.0 1.18 43.7 1.39

04 0.63 2255 87.2 0.828 32.7 0.31 - - - 92.7 2.10

05 2.21 5483 432.3 0.916 28.5 0.59 38.8 61.0 3.41 108.6 6.19

06 1.28 3900 199.9 1.277 30.3 0.45 7.6 30.0 2.56 255.1 7.75

07 1.47 4012 236.8 0.657 30.6 0.43 14.3 39.0 1.88 66.4 2.74

08 0.66 2926 109.2 1.061 29.8 0.48 - 1.6 - 170.3 3.58

09 1.71 3652 244.9 0.634 32.5 0.32 21.8 47.0 1.58 60.1 2.56

10 1.00 2676 128.4 0.938 33.5 0.28 - 23.6 - 130.4 3.13

11 1.12 2800 141.4 0.496 33.6 0.27 2.2 27.0 1.02 36.2 1.09

12 0.46 2294 79.5 0.769 30.1 0.47 - - - 104.1 2.10

13 2.09 5365 378.4 0.871 28.6 0.59 31.7 52.0 3.25 103.4 5.41

14 1.04 3562 163.8 1.177 30.2 0.46 0.9 24.0 2.24 221.9 6.11

15 1.24 3814 197.7 0.631 30.3 0.45 7.6 30.0 1.68 62.1 2.28

16 0.61 2792 101.5 0.952 29.8 0.49 - - - 150.7 3.12

17 1.35 3504 197.2 0.895 31.9 0.35 10.8 35.0 1.79 118.5 4.00

18 1.11 3105 156.0 0.800 32.3 0.34 2.4 28.0 1.47 102.5 2.99

19 1.08 2612 131.9 0.696 34.2 0.24 1.4 26.0 1.10 34.8 1.54

20 1.34 4115 224.8 1.030 29.8 0.48 10.5 35.0 2.32 147.6 5.29

21 1.69 3919 265.0 0.985 31.6 0.37 22.3 48.0 2.13 147.0 5.92

22 0.74 2662 106.8 0.690 31.7 0.36 - 6.8 - 73.6 1.69

23 1.90 4519 301.9 0.551 30.3 0.45 25.7 47.0 2.16 47.1 2.29

24 0.64 2655 99.7 1.076 30.8 0.42 - 0.9 - 188.8 3.75

25 1.29 3410 181.1 0.840 31.9 0.35 7.7 31.0 1.73 110.3 3.57

26 1.15 3429 169.5 0.860 31.3 0.39 3.9 28.0 1.76 112.3 3.34

27 1.22 3415 175.4 0.844 31.6 0.37 6.4 29.0 1.73 111.0 3.59

Finally, the minimum critical flap deflection above which a strong interaction
between the shock wave and the boundary layer occurs (and hence creating a hot
spot on the control surface which might lead to structural problems due to the
high thermal load) is in all cases relatively small: it varies between 1:8ı and 2:6ı,
encountered at the peak dynamic pressure, or, equivalently, the peak g-load. This
means that at this point in the trajectory, the total flap deflection, i.e., the deflection
due to trim plus the increment due to control-system activities for corrective control
should be smaller than this critical value. Of course, in general this is true for other
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Table 4 Response-surface coefficients for L=Dmax

Constant Linear Interaction Quadratic

1.2241 �c �0.0747 �c � �u �0.0063 �2c 0.0021

�u 0.0906 �c � � 0.0088 �2u �0.0063

� �0.3096 �c � rB 0.0125 �2 �0.0042

rB �0.3972 �c � �l �0.0063 r2B 0.0190

�l �0.0412 �u � � �0.0200 �2l �0.0021

�u � rB �0.0338

�u � �l 0.0025

�� rB 0.0613

�� �l 0.0050

rB � �l �0.0013

points in the trajectory as well, and therefore this ıcrit as a function of time should
be included in the formulation of the trim algorithm, and the design of the control
surfaces and the control system.

After this global discussion of the results, we try to establish a means to find
the optimum vehicle configuration that fits the user requirements from Sect. 2.2.
By simply picking the best-performing configuration, the first step in the design
process could be finalised. However, by using all information available in Table 3, it
is possible to optimise the performance even more.

In Sect. 2.1, Eq. (1) defines a response surface, i.e., a description of a perfor-
mance index as a function of the independent vehicle parameters. Such response
surfaces have been computed for each of the performance indices. By optimising
these surfaces, the optimum vehicle configuration, as defined by the response
surface, can be determined. It is clear that this optimal configuration should be
verified by a design cycle, because the response surface is only an approximation
with a finite accuracy (up to quadratic terms). Another point of attention is
that the applied optimisation algorithm, a truncated Newton method for bounded
optimisation developed by Nash [14], finds a local rather than a global optimum.

The first response surface that we discuss here is the one for L=Dmax. In Table 4,
the related coefficients are listed. The constant coefficient (= 1.2241), represents
the value of the nominal configuration (all normalised parameters equal to ‘0’, or
the nominal values of Table 2). To address the importance of each of the terms, the
contribution to the nominal value can be computed if each of the linear, interaction
and quadratic terms is either �1 or 1, and the absolute contribution would be
checked against 1.2241 (e.g., the contribution of � would be 25.3 %, the interaction
� � rB is 5 %, and so on). By adding the contribution of each group of coefficients,
the linear terms contribute 82.7 %, the interactions 14.3 % and the quadratic 3.1 %.
Although individual coefficients may be neglected it is clear that the total group of
interactions is too large to ignore. Major linear contributors are � (25.3 %) and rB

(32.5 %), the three largest interactions are � � rB (5 %), �u � rB (2.8 %) and �u � �
(1.6 %), whereas the largest quadratic term is r2B (1.6 %). Note that the so-called
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Table 5 Optimal vehicle-configurations (design parameters are grey
shaded)

Vehicle parameter Unit L=Dmax dtmax Cnˇ;dyn Multi

Semi-cone angle .ı/ 12.000 12.603 12.496 12.000

Angle upper panels .ı/ 60.000 60.000 60.000 40.000

Body axis parameter .�/ 0.200 0.200 0.200 0.200

Rounded radius base (m) 0.100 0.100 0.300 0.238

Angle of dihedral .ı/ 5.737 10.000 10.000 0.110

Radius top nosecone (m) 0.025 0.025 0.025 0.025

Body width base (m) 0.914 0.957 1.014 1.538

Radius base nose cone (m) 0.100 0.100 0.300 0.238

Body height base (m) 0.855 0.924 1.000 0.923

Nose radius (m) 0.026 0.026 0.026 0.026

Nose length (m) 0.020 0.020 0.020 0.020

Length conical nose (m) 0.353 0.335 1.241 1.003

Triangular body length (m) 2.327 2.345 1.295 1.676

Body length (m) 2.700 2.700 2.556 2.700

coefficient of determination, i.e., a measure for the goodness of fit, is 99.9 %,
indicating a good representation of the 27 data points. Deviations in between data
points are of course still possible, hence the need for the verification step in the
design cycle.

Optimising the response surface gives a maximum L=D of 2.69, with the
corresponding configuration listed in Table 5. While doing a verification design
cycle, it was found that L=Dmax was 2.81, not too much different from the predicted
value. Trajectory simulation showed that the peak value qcmax increased to the very
large value of 7659 kW=m2, leading to very high nose and flap temperatures (nose
cooling to an acceptable level still requires no more than 10 kg of water!). As before,
the reason is that despite the fact that the L=D is large, in absolute sense the lift and
drag have small values because of the small drag area. Basically, the vehicle is long
(L = 2.7 m) and small (b = 0.855 m), which means that it will dive deep into the
atmosphere, and will start flying horizontally (h = 25.1 km) at a high speed (Mach
= 10.6). On the other hand, because of this high speed and low drag, the time it flies
between Mach = 8 and 10 has increased to 64.9 s! On the downside, also the total
flight time down to Mach 3 has increased, so the total integrated heat load (0.765
MJ=m2) may become a problem for the overall structure. This remains to be studied
in more detail. Conclusion is that at least the pull-up manoeuvre should be refined
as to increase the altitude at which the vehicle flies horizontally.

Finally, a point of attention with respect to the difference between predicted and
verified optimum is that the response surface may not predict the response values
with equal accuracy in each direction of the independent variables. As we mentioned
before, the applied CCD was made orthogonal by selecting an axial parameter of ˛
= 1.5467. By choosing ˛ = 2, the design can be made rotatable, which means that
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it will be equidirectional. By defining 10 centre points (which, in the case discussed
here, would just lead to 10 repetitions of the same design cycle, but this, of course,
affects the statistics), the CCD is both orthogonal and rotatable. It remains to be
studied whether this will improve the prediction of the optimal values, and, by equal
maximum variation of the vehicle parameters, how reducing the range for the L16
experiments will influence the results.

The response surface for dt .M10!8/ shows coefficient contributions of 64.6 %
(linear), 23.5 % (interactions) and 12.0 % (quadratic), which indicates, with a
coefficient of determination close to 100 %, that a full second-order response surface
has been the right choice. The computed maximum dt, however, is only 11.4 s,
which indicates that a local maximum is found. This is obvious considering a very
close goodness of fit and individual data points that have dt = 38.8 s (concept #5). So,
at least this data point should have been found as maximum. A possible approach to
avoid this problem would be to do the same optimisation with more (and different)
starting estimates of the optimum.

Optimising the flight time dt .M8!6/, on the other hand, gives a predicted
maximum of 61.3 s for the configuration listed in Table 5. Verifying this particular
flight time showed a configuration performance similar to the one for L=Dmax, albeit
with a lower L=D (= 2.69). The verified dt .M8!6/ = 82 s is, whereas dt .M10!8/

= 59.4 s! The latter result stresses that special care should be taken that one is
convinced of the global nature of the optimum value.

The last performance index to be discussed, Cnˇ;dyn , has a maximum value of
1.403 with a verified value of 1.468 (the minimum is 0.189, still positive, so in
principle the whole concept family should have relatively good flying properties).
A follow-up controllability study must address the flying qualities of the resulting
configuration (Table 5) in more detail, to indicate whether they are sufficient,
because at this moment it is not clear what the target value should be. It may
be possible that the maximum value is too much, resulting in a somewhat wild
behaviour.

In Table 5, three different ‘optimum’ configurations were found, that are conflict-
ing in some parameters of the vehicle geometry. In addition, especially the L=D and
dtmax configuration result in very large heat fluxes. By simultaneously optimising
multiple performance indices and taking constraints into account, theoretically a
better feasible design may be derived that at least meets with more criteria and
gives a consistent vehicle geometry. A first step in this direction is done with three
performance indices, i.e., qcmax that should be lower than 3500 kW=m2, the height
for horizontal flight (as large as possible; goal has been defined as 35 km) and the
flight time between Mach 10 and 8 (as large as possible; goal = 50 s). To solve
the non-linear programming problem for this multi-objective optimisation, Goal
Attainment (with equal weights for the objectives) is used, which is an improved
form of Sequential Quadratic Programming.8

8The algorithm used is one of the local-search methods implemented in the Matlabő Optimization
Toolbox.
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The results, however, are striking. Since we wanted to avoid the risk of reaching a
local maximum for the flight time, it was decided to take the 27 combinations of the
original CCD as starting values for the Goal Attainment. All 27 cases converged
to the same optimum of qcmax D 3500 kW=m2, h = 33.5 km and dt .M10!8/ =
9.7 s—the relatively low qcmax prevents that dt .M10!8/ can reach higher values.
However, the corresponding vehicle configurations were all different although some
groups with identical values could be identified. This means that these performance
indices are to a certain extent relatively insensitive to changes in vehicle geometry.
Consequentially, we should focus on one (or several) additional performance indices
that matter to include in the optimisation process. As an example the optimisation
is repeated for similar goals for qcmax and h, and dt .M8!6/ = 50 s instead of
dt .M10!8/.

The resulting configuration is listed in the last column of Table 5. The perfor-
mance of this configuration is quite reasonable, namely a height for horizontal
flight of 33.4 km, whereas the time between Mach 6 and 8 is 32.3 s. The heat-flux
constraint is just met, so qcmax D 3500 kW=m2. A verification design cycle shows
that qcmax D 3189 kW=m2, h = 33.0 km and dt .M8!6/ = 36 s, which is matching
quite well. Note that dt .M10!8/ = 9.5 s, which indeed indicates that this flight time
is relatively insensitive for certain vehicle variations, and that it is possible to focus
on another performance index without major consequences.

As found before, dt .M10!8/ can be significantly increased, albeit at the expense
of a much higher qcmax , and consequently, a large impact on the structural design.
If the technological problems of nose cooling can be solved, and in addition C-SiC
(that can withstand high temperatures) is applied to part of the windward side of the
vehicle, a unique experimental platform can be obtained.

3.4 Conclusions

An improved vehicle design is obtained for doing low-cost hypersonic re-entry
testing and micro-gravity experiments, which will be launched by a Brazilian
sounding rocket. This is established by applying a Response Surface Methodology
incorporating orthogonal arrays centred around a number of performance indices
that are derived from a set of well-defined user and mission requirements.

Essential geometric parameters of a generic vehicle, with a water-cooled nose,
dihedral bottom and four control flaps, are optimised to such an extent, that:

1. hypersonic experiments can be performed around a flight Mach number of 8 for
at least 20 s in a interesting flight regime regarding parameters like Reynolds
number and chemical kinetics,

2. the vehicle will be aerodynamically stable during this flight phase, and
3. it will encounter thermal heat loads, which can be met with the foreseen structural

design.
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The maximum flap deflection to avoid strong shock-wave boundary-layer inter-
action has an obvious impact on control-system performance. The next step would
therefore be to detail a flight control system and study its performance, e.g.,
verifying that the controllability is assured despite this flap constraint. Moreover,
the simultaneous optimisation of performance indices including vehicle and mission
constraints should be studied in more detail, such that the discussed design
methodology can be a valuable tool in the (pre-)design phase of small re-entry
vehicles.

4 Integrated Shape and Trajectory Analysis

For the second design case we will look at a different vehicle shape that allows for
other aerodynamic experiments, but due to this shape it also encounters a different
thermal environment. The vehicle shape may appear simple, i.e., it is a biconic
capsule, but it has some favourable characteristics in terms of internal volume,
stability characteristics, and ease of manufacturing. To show more of the capabilities
of Design of Experiments, we will not only use this method to optimize the vehicle
shape, but also do an integrated analysis of multiple re-entry missions.

4.1 The Re-entry Module Concept

In an earlier study two different bi-conical vehicles were analysed [16], the REV-
olution module studied at Delft University of Technology9 and the Russian Volan
module (see Fig. 2). The REVolution module allows for aerodynamic experiments
with strong Shock-Wave Boundary-Layer (SWBL) interaction, but as a result there
are high thermal fluxes on the flare. The heat fluxes on the Volan are lower, because
of the larger nose radius and weak SWBL interaction.

Fig. 2 Volan (left) and
DART (right)

9This module is also known as DART, which stands for Delft Aerospace Re-entry Test Vehicle [3].
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Fig. 3 General shape of the
re-entry module

The best design would probably be something in between these two concepts, but
certainly closer to the Volan than to the REVolution concept, because strong SWBL
interaction would cause heat fluxes too high for the wall cooling system of the flare.
As a second demonstration of the proposed methodology we will investigate a wide
range of possible shapes to find the most promising shape of the module. Common
to all vehicles is an outer skin consisting of PM1000 that sets a constraint to the
design with respect to a maximum allowable skin temperature of 1300 ıC. This
is a major design driver for the shape of the re-entry module and as a result of
this constraint additional cooling devices have to be included for the nose and
the flare. The limitations of the cooling devices lead to additional constraints and
requirements that make such a design very attractive to demonstrate the versatility
of the RSM.

The outer geometry of the (biconic) re-entry capsule is fully determined by five
parameters (Fig. 3): the nose radius, RN , the base radius, rB, the semi cone-angle,
�c, the semi flare-angle, �f , and the vehicle length, L. The base diameter has a
fixed dimension of 1.12 m and the maximum vehicle length shall not be more than
1.6 m, because of the available space inside the fairing of the selected launcher (the
submarine-launched VOLNA, a former Russian ICBM).

The re-entry module has some novel features, such as a fully metallic outer skin,
a water-cooled nose and a new enhanced radiation-cooling system for the body to
keep the body temperature below 1300ı C. To avoid exceeding this safe temperature
limit the aerodynamic design has to assure that the heat flux on the body will not be
more than 600 kW=m2, the maximum capacity of the wall-cooling system. The heat
flux caused by the strong SWBL interaction will certainly exceed 600 kW=m2, so it
is also required that no separation after the cone-flare junction occurs and that weak
interaction is assured.
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4.2 Theoretical Model

Nose cooling by nucleate pool boiling needs only 8–15 kg water (depending on the
nose radius) due to the high evaporation heat of water, but there exists a maximum
value for the heat flux to avoid film boiling [15], given by the Rohsenow limit:
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If this limit heat flux is exceeded a vapour film will develop between water and
nose wall that decreases the heat transfer and as a result the temperature of the nose
will jump up to unacceptable high values. Note: in Eq. (7) the following symbols
have been used: 	v and 	l are the water density in the vapour and liquid phase, hfg
is the latent heat of vaporisation, ag is the gravitational acceleration, and �� is the
surface tension of liquid-vapour interface.

The shape of the module shall be designed such that the stagnation heat flux will
not exceed the Rohsenow limit of Eq. (7). The heat flux of the cone and flare shall
not exceed 295 kW=m2 for a non-cooled skin or 600 kW=m2 for a cooled skin. These
maximum allowable heat fluxes practically exclude strong SWBL interactions,
because of the extreme heat flux at reattachment of the boundary layer. As a result a
constraint is defined for the maximum allowable cone-flare angle to avoid the strong
interaction. Thus, the maximum cone-flare angle without separation of the boundary
layer at the cone-flare junction is [23]:
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where Te and �e are the temperature and the viscosity at the edge of the boundary
layer of the flare, respectively, and the asterix denotes evaluation at the reference
temperature
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T�
e D 0:28 Te C 0:5 Tw C 0:22 Taw (11)

In Eq. (10), Sutherland’s equation, B� D 1:458�10�6 Pa s K�1=2 is a constant
depending on the gas and S� = 110.4 K is Sutherland’s constant.
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The streamlines at the edge of the boundary layer passed an oblique shock wave.
By shock-wave theory the shock angle ˇ is

ˇ D �cF.M1/
M21

C
s�

�cF.M1/
M21

�2
C 1

M21
(12)

with

F.M1/ D .� C 1/M21 C 2 (13)

Note that Eq. (12) is valid for a two-dimensional wedge flow. However, the shock
angle of a cone is smaller than for a wedge but the shock of a blunted cone is curved
and as a result higher shock angles are expected. The Reynolds number in Eq. (8) is
influenced considerably by the entropy layer caused by the blunt nose that reduces
the velocities at the edge of the boundary layer. The Reynolds numbers are corrected
for this entropy effect by a method based on measurements [7].

The heat fluxes on the nose, the cone and the flare for the complete re-entry flight
are determined by engineering approximations based on existing literature. The heat
flux in the stagnation point on the nose can be estimated by the classical Chapman
relation for a wall temperature of 300 K:
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with C D 1:06584�108pm and Vc D 7905m/s. The stagnation heat flux corrected
for the actual outer wall temperature is

qc.t/ D qc300 .t/

Taw.t/ � 300 ŒTaw.t/ � Tw.t/� (15)

The heat flux on the cone is determined by

qc;cone D St	eV1 cos �ccpŒTaw.t/ � Tw.t/�
p
3 (16)

where the Stanton number St and the adiabatic wall temperature Taw are calculated
from

St D 0:332
p
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2cp

(18)
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The asterix of the Reynolds and Prandtl numbers refers to the evaluation of these
numbers at the reference temperature, defined by Eq. (11).

The heat flux on the flare can be estimated by
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where z is the length of the boundary layer over the flare along a meridian [22].
The boundary layer of the flare past the shock wave of the cone-flare junction is
assumed to be turbulent, so in Eq. (19) the values n = 0.2 and A = 0.575 can be used.
The temperature on the flare can be calculated by
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with c = -0.412. Moreover, T�
f is evaluated by Eq. (11), whereas the boundary-layer

thickness of the cone near the cone-flare junction is given by
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A correction of the specific heat for high temperature effects is applied with [7]

cp D cp1
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(22)

4.3 Aerodynamic Design

4.3.1 Design Setup

As discussed before, the outer geometry of the bi-conic re-entry vehicle that serves
as a generic base line for the aerodynamic design is defined by five independent
body parameters, i.e., RN , �c, �f , rB and L. In the exploratory phase of the research,
it was found that varying all five parameters gave results that were highly non-linear,
and could not be fitted properly by a second-order response surface. Adding cubic
terms to the response surfaces improved the fit through the data points considerably
(indicated by a larger coefficient of determination), but the predictive quality in
between the data points was still bad (indicated by the relatively large uncertainty
in the computed coefficients of the response surface). Two approaches were left to
follow, i.e., decreasing the ranges of the design variables such that the system would
become more linear, or to remove a design variable that would possibly account for
(part of) the non-linearity. We have selected the latter approach to cover an as large
design space as possible.
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Two possible candidates for the non-linearities in the system appeared to be the
vehicle length and base radius. This second parameter has been selected to be frozen,
since basically one wants a base diameter that is as large as possible to maximise the
internal volume. So, this leaves four parameters for variation according to a CCD as
discussed before. For the factorial portion of the design, Taguchi’s L16 array will be
used, as was also done in Sect. 3.2. Also now the axial parameter ˛ will be chosen
such that the design is orthogonal, which means that for n0 = 1 centre point and
16 designs (L16) in the factorial portion ˛ = 1.4142. The total number of designs
comes to ntot = 16+4*2+1 = 25. The nominal parameter settings and their variations
are chosen to be representative to obtain a broad family of (viable) designs, see
also Table 6. The maximum parameter variation is, of course, defined by the axial
points. As for the previous design case, the range in the L16 array is given by ˙1;
this means that the maximum physical range should be divided by 1.4142 to get
the corresponding values. The nominal configuration has been depicted in Fig. 4,
whereas in Table 7 the settings of the independent variables for all 25 configurations
have been listed.

Table 6 Parameter
variations in CCD
(˛ D 1:4142)

Nominal Maximum Maximum
Factor value range L16 range axial

RN (m) 0.3 0.071 0.10

�c .
ı) 5 3.53 5

�f .
ı) 20 3.53 5

L (m) 1.45 0.106 0.15

Fig. 4 Nominal
configuration of the bi-conic
re-entry capsule
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Table 7 Central composite
design of bi-conic re-entry
capsule

RN �c �f L

Design (m) .ı/ .ı/ (m)

L16 row #01 0.229 1.464 16.464 1.344

L16 row #02 0.229 1.464 16.464 1.556

L16 row #03 0.229 1.464 23.536 1.344

L16 row #04 0.229 1.464 23.536 1.556

L16 row #05 0.229 8.536 16.464 1.344

L16 row #06 0.229 8.536 16.464 1.556

L16 row #07 0.229 8.536 23.536 1.344

L16 row #08 0.229 8.536 23.536 1.556

L16 row #09 0.371 1.464 16.464 1.344

L16 row #10 0.371 1.464 16.464 1.556

L16 row #11 0.371 1.464 23.536 1.344

L16 row #12 0.371 1.464 23.536 1.556

L16 row #13 0.371 8.536 16.464 1.344

L16 row #14 0.371 8.536 16.464 1.556

L16 row #15 0.371 8.536 23.536 1.344

L16 row #16 0.371 8.536 23.536 1.556

-Axial #01 0.200 5.000 20.000 1.450

Axial #01 0.400 5.000 20.000 1.450

-Axial #02 0.300 0.000 20.000 1.450

Axial #02 0.300 10.000 20.000 1.450

-Axial #03 0.300 5.000 15.000 1.450

Axial #03 0.300 5.000 25.000 1.450

-Axial #04 0.300 5.000 20.000 1.300

Axial #04 0.300 5.000 20.000 1.600

Centre point 0.300 5.000 20.000 1.450

the grey-shaded cells represent the extreme values of
the design space

4.3.2 Performance Indices

The performance indices that have been defined can be divided into several
categories. In this study, we will focus on the structure-related performance indices,
i.e., the maximum heat flux in the nose (including the integrated heat load), on the
cone and on the flare, as well as two aerodynamics-related performance indices, i.e.,
the location of the centre of pressure and the maximum cone-flare angle for which
only weak SWBL interaction is assured. The maximum fluxes and heat load should
all be as small as possible, of course, whereas the cone-flare angle should be as large
as possible. The centre of pressure should be located as far backward as possible, to
enhance the stability properties of the bi-cone.
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4.3.3 Mission Analysis

It is noted that the variation of entry velocity and entry angle, and vehicle mass will
be taken into account. At this stage, no detailed layout studies have been done, which
would give input to defining the mass properties of the vehicle. Therefore, a mass
range in between 150 and 250 kg has been assumed that is representative for this
type of vehicle. The mission profile for the bi-conic vehicle consists of a ballistic re-
entry at zero angle of attack. The state vector of the vehicle at an altitude of 120 km
is given by the following ranges, depending on the chosen launcher: velocity range
[4500,6000] m/s, with a nominal value Ve = 5250 m/s, and a flight-path angle range
[�10ı,�3ı], with a nominal value �e D �6:5ı.10

It is assumed that these parameters will vary over a minimum, nominal and
maximum level, equally spaced around the nominal value. However, not all possible
combinations (33 = 27) will be simulated, because for the total of 25 concepts it
would generate too much data to process in an efficient way. As a representative
alternative Taguchi’s L9 orthogonal array will be used to determine the parameter
combinations. This array has nine rows (i.e., nine simulations) and allows for the
variation of up to four independent parameters. Although it is likely that the three
selected parameters are not independent, interactions will not be taken into account,
because we are only interested in the main effect of the parameter variation. In
Table 8, the parameter settings are listed. Note that by assigning the parameters
to columns #2 to #4, row 2 represents the nominal value of each of the three
parameters.

Table 8 Orthogonal array L9
with four factors on three
levels

Not Ve �e m

Run used (m/s) .ı/ (kg) Load case

1 �1 4500 �10 150 –

2 �1 5250 �6.5 200 Nominal

3 �1 6000 �3 250 –

4 0 4500 �6.5 250 –

5 0 5250 �3 150 –

6 0 6000 �10 200 Maximum

7 1 4500 �3 200 Minimum

8 1 5250 �10 250 –

9 1 6000 �6.5 150 –

10The remaining initial conditions (longitude 
 , latitude ı, and heading �) at the atmospheric
interface are (arbitrarily) defined to be: 
 D ı D 0ı, and � D 90ı to define an equatorial re-
entry.
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4.4 Results

The CCD comprises a total of 25 concepts that have to be analysed (Table 7). Per
concept, nine simulations are executed to account for the range of entry conditions
and vehicle mass. This means that a total of 225 trajectory simulations have been
executed. It can easily be understood that this amount of data is too much to be
discussed in detail. Therefore, we only highlight some of the results.

After inspecting the results and the parameter combinations given by Table 8, a
minimum, nominal and maximum load case can be identified: row 7 is the minimum
load case (resulting in the minimum maximum heat flux), row 2 is the nominal load
case, and row 6 is the maximum load case. These cases will provide part of the data
for analysis.

To get an impression for the kind of mission we are discussing here, in Fig. 5a
the nine trajectories have been plotted for the nominal configuration. Indicated is
the Mach number as a function of altitude. Clearly, the influence of three different
initial velocities is shown. Basically, there is no influence of the varying mass and
entry flight-path angle down to an altitude of about 60 km. Then, three trajectories
per entry velocity can be discerned, showing the impact of the two other parameters.
Note that the simulation stops at M = 3, albeit at different altitudes, because of the
trajectory variation.

In Fig. 5b, one of the performance indices, i.e., the flare flux, has been plotted
as a function of altitude for the nominal configuration. The thermal load on the
flare gradually increases when the vehicle dives deeper into the atmosphere. The
maximum flare flux occurs at different altitudes for each of the nine trajectories (in
between 40 and 33 km), obviously also with different peak values (ranging from 650

to 1850 kW=m2). With a maximum allowable flare flux of about 600 kW=m2, it can
be concluded that the nominal configuration does not meet with this constraint for
each of the nine trajectories, not even the minimum-load trajectory.
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Fig. 5 Results for the nominal configuration and nine different design trajectories. The nominal-
load trajectory has been indicated with a dotted line. Left: Height as a function of Mach number.
Right: Maximum flare flux versus height
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Fig. 6 Maximum g-load (top) and maximum nose heat flux for the nominal configuration and
nine different combinations of entry conditions and mass

Figure 5b shows the importance of the flare-flux profile for the design process.
However, as such this figure does not give the right representation to be included
in an automated design-optimisation process. In Fig. 6, two of the selected perfor-
mance indices have been plotted for the nominal configuration, i.e., the maximum
g-load and the maximum nose heat-flux. These bar charts show the variation of
the maximum values for each of the trajectories. Combining the two charts, also
confirms the definition of the minimum- and maximum-load trajectories. It may be
concluded, that irrespective of the thermal load on the vehicle, also the mechanical
load is too much for some of the trajectories. Obviously, once the shape has been
optimised to minimise the thermal loads, attention should be paid to the mechanical
loads as well. Since the mechanical load is less shape dependent than the thermal
load, the former will not be considered here any further.

Although not included in the current study, some results will be presented here
for future reference. It may be possible to derive some optimisation criteria based
on the dissociation parameter 	1RN . As an example, in Fig. 7 the dissociation
parameter has been plotted versus the velocity. Also included in the figure is a
box, which assures the occurrence of dissociation: the chemical-kinetics parameter
	1RN and the relative velocity V1 should be simultaneously covering 0:1 g=m2 �
	1RN � 10 g=m2 and V1 � 2:5 km/s (Sect. 2.2).
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Fig. 7 Dissociation parameter versus velocity (nominal concept, nine load cases). Dotted line:
nominal load case; rectangular box: flight region of interest

Optimising the vehicle shape is in principle done for a single trajectory. One
might think, that if the vehicle is optimised for all nine trajectories, the result may
be nine different vehicles. A preliminary analysis has shown, however, that for a bi-
conic shape optimisation varying only RN , �c and �f=c D �f � �c, the optimised
shape was the same for the minimum-, nominal- and maximum-load trajectory.
Therefore, initially we will focus on the nominal-load trajectory and do a verification
for the other two.

In Fig. 8, two of the performance indices have been plotted for each of the 25
configurations, i.e., the x-location of the c.o.p., xcop, relative to the vehicle length
and the maximum occurring flare flux. From these results, it shows that concept #19
is best with respect to c.o.p. and will be the most stable. However, even though this
concept is not the worst with respect to the flare flux, it is by no means the best
one. This would be concept #21, with a 60 % lower flare flux than concept #19.
The conflict in optimising both performance indices simultaneously has thus been
demonstrated. Note that both concepts outperform the nominal concept.

As a further illustration, in Fig. 9 the maximum flare flux and the maximum cone-
flare angle have been plotted for the minimum- and maximum-load trajectories. It is
concluded that the variation over the concepts seems to be more or less the same
for the two trajectories, which confirms our earlier findings. Looking in more detail
at the results, it shows that only one concept (#21) can withstand the thermal load
on the flare in the maximum-load trajectory. This makes it likely that the mission
that is to be flown by the vehicle should be more tailored towards the nominal-
load trajectory, otherwise different materials and/or thermal protection should be
considered.
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Fig. 8 Relative X location of the centre of pressure (top) and maximum flare heat flux (bottom)
for each of the 25 designs (nominal-load trajectory)

For each of the load cases, the individual performance indices are fit into response
surfaces (i.e., a least-squares fit). As an example response surface, the maximum
flare flux (nominal-load trajectory) is (nominally) represented by the coefficients
listed in Table 9.

Note that the response surface has been computed for normalised independent
variables, i.e., each of them varies between the minimum and maximum axial value
(˛ =˙1.4142), which means that the relative contribution to, for instance, the mean
value is 1.4142 times larger than the indicated coefficient values.

It can easily be seen that the contribution of each of the terms cannot be
neglected. Of the linear terms, �c and �f contribute up to 100 % to the mean value.
This means, that by varying these two parameters the maximum flare flux can
be decreased significantly, which is important design information. The relatively
large interaction and quadratic terms stress the non-linear nature of the flare flux in
response to a vehicle design variation.

The optimum configuration of the re-entry vehicle can be found by either a
single-objective or multi-objective optimisation of the related response surfaces.
Previously, we have already identified that optimising, for instance, the flare flux
and the xcop will lead to conflicting configurations. Therefore, for this case study
only multi-objective optimisation using goal attainment with equal weight for the
objectives will be applied. The five criteria that have been selected to be optimised
are the maximum qc;nose, qc;cone and qc;flare (these responses should be minimised)
and �f=c and xcop (which should be maximised).



230 E. Mooij

0 5 10 15 20 25
0

1

2

3

4

5

design [-]

m
ax

. f
la

re
 fl

ux
 [M

W
/m

2
]

minimum
maximum

0 5 10 15 20 25
0

5

10

15

20

design [-]

m
ax

. c
on

e-
fla

re
 a

ng
le

 [d
eg

]

Fig. 9 Maximum flare flux (top) and maximum cone-flare angle (bottom) for each of the 25
designs (minimum- and maximum-load trajectory)

For the nominal-load trajectory, the following optimised configuration is found:
RN D 0:353m, �c D 2:69ı, �f D 15:00ı, and L D 1:404m, with pre-
dicted responses of qc;nose D 1:83MW=m2, qc;cone D 57:4 kW=m2, qc;flare D
312:8 kW=m2, �f=c D 12:2ı, and xcp D 67:2%. The final step in this optimisation
process is to generate a panel grid for this configuration, compute the aero-dynamic
coefficients and to compute the responses with a non-linear trajectory analysis. In
doing so, the following results were obtained: qc;nose D 1:94MW=m2, qc;cone D
65:8 kW=m2, qc;flare D 408:8 kW=m2, �f=c D 11:9ı, and xcp D 0:94352mD 67:2%.
As can be seen, the results match quite well, apart from the flare flux. The differences
are attributed to the finite accuracy of the response-surface approximation.

Finally, we will check the optimal configuration for the minimum and maximum-
load trajectories. Optimising the response surfaces yields RN D 0:278m, �c D
3:15ı, �f D 15:00ı, and L D 1:366m for the minimum-load trajectory, and RN D
0:4m, �c D 1:60ı, �f D 15:00ı, and L D 1:434m for the maximum-load trajectory.

The three configurations are shown in Fig. 10, and obviously they are not the
same. Apart from the flare angle, which is constant for the three vehicles, we find
an increasing nose radius from minimum-, to nominal- to maximum-load trajectory,
a decreasing cone angle and an increasing vehicle length. Comparison of predicted
and verified responses gives similar difference between the two as for the nominal-
load trajectory. However, if we compare the results of all nine trajectories for each of
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Table 9 Nominal
response-surface coefficients
for the maximum flare flux,
with relative contribution to
the mean value
(coefficient b0)

Absolute value Relative value
(kW=m2) ( %)

Linear terms (b0; � � � ; bk)

Constant term 1051:4 �
RN (m) �37:3 5:0

�c (ı) 189:2 25:4

�f (ı) �545:8 73:4

L (m) 78:6 10:6

Interaction terms (b12; � � � ; b.k�1/k/

RN � �c 108:9 14:6

RN � �f 37:4 5:0

RN � L 50:7 6:8

�c � �f 123:5 16:6

�c � L 83:6 11:2

�f � L 42:7 5:7

Quadratic terms (b11; � � � ; bkk/

RN (m) 56:8 7:6

�c (ı) 80:4 10:8

�f (ı) 45:7 6:2

L (m) 33:0 4:4

Fig. 10 Optimal configurations for three trajectory load cases: minimum (left), nominal (middle),
and maximum (right)

the three configurations, it appears that in case of the flare flux, the response value of
the ‘maximum’ configuration is consistently smaller than the corresponding values
of the other two concepts, even for the trajectory for which those concepts were
optimised (see Fig. 11a). This means, that regarding the flare flux, the ‘maximum’
concept is the better concept.

This is not the case for the maximum cone-flare angle (see Fig. 11b). Looking
at the results, it appears that the opposite is the case, the ‘minimum’ concept is
the better one. Another observation that can be made is that the variation of the
maximum cone-flare angle in each of the nine trajectories is not the same as for the
flare flux. For instance, compare the results of trajectory #9, where the flare flux is
by no means the largest whereas the cone-flare angle is. In fact, the minimum-load
trajectory #7 (almost) gives the smallest flare flux, but in case of the cone-flare angle
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Fig. 11 Results for each of the nine combinations of entry conditions and mass, plotted for the
minimum-, nominal- and maximum-load configuration (left-to-right). Left: Maximum flare heat
flux. Right: Maximum cone-flare angle

this would be trajectory #4. So, with some reservation, it may be concluded that the
addition of the cone-flare angle as one of the optimisation criteria, the trajectory-
independent optimisation has been changed into a dependent one.

This trajectory dependency can be further analysed by looking at the signal-
to-noise ratio for each of the concepts. Let Ny be the mean response of nine
trajectory runs for a particular configuration, and let � be the corresponding standard
deviation. The signal-to-noise ratio of any response can be defined by

S=N D 10 log10

� Ny2
�2

�

(23)

A larger value for S=N indicates a smaller sensitivity to trajectory and mass
variations. Plotting Ny, � and S=N for the maximum flare flux (Fig. 12a) we find a
large variation in Ny and � for the 25 configurations, meaning a large variation in
absolute values due to the trajectory and mass variations, but an almost constant
�. This means, that each configuration will respond in the same relative manner
to the trajectory and mass variations, with, of course, differences in the absolute
values of the flare flux. In case of the maximum cone-flare angle, on the other hand,
a much smaller variation in Ny and � is seen (Fig. 12b), but a larger variation in
S=N. This confirms the earlier findings that due to trajectory and mass variations
the maximum-cone flare angle has such an impact on the optimisation process that
different optimal configurations have been found.

Focusing on the optimal configuration for the nominal-load trajectory, and
comparing this configuration with the Volan (see Fig. 2), the resemblance is striking.
The Volan has also been optimised to avoid the strong SWBL interaction, as well as
to minimise the thermal loads, a configuration that is confirmed in the current study
with a relatively small design effort.
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Fig. 12 Mean value and standard deviation for each of the 25 designs (top), as well as the
signal-to-noise ratio to reflect trajectory sensitivity (bottom). Left: Maximum flare heat flux. Right:
Maximum cone-flare angle

4.5 Conclusions

The second case study was focussed on improving the design of a biconic re-
entry vehicle, and study the effects of different initial conditions and vehicle
mass on the shape. Three optimal configurations were obtained for different
combinations of trajectory and vehicle mass. Comparison of the nominal and
maximum-load configurations with the Russian Volan design shows a striking
resemblance. It was demonstrated, however, that not all investigated combinations
of entry velocity, flight-path angle and vehicle mass are feasible with respect to the
thermo-mechanical loads, most notably the flare flux exceeds the allowable value for
the maximum-load configuration and for combination #6 even for all three optimal
configurations.

5 Concluding Remarks

The current study has led to a methodology to investigate a wide range of possible
shapes and to find the most promising one for a re-entry test vehicle. Whereas
normally in a conceptual-design phase one would only look at a limited number of
variations, the use of techniques from Design of Experiments enables the designer
to study a broad range of shapes within one class of vehicles. The use of engineering
tools gives results rapidly, yet still provides the required accuracy to lead to design
conclusions. So the “optimum” vehicle would be the best compromise with a
minimum effort and without using complex time-consuming design tools, and thus
saving time and costs in the preliminary design phase. It can rapidly provide insight
in the main design problems and thus rule out the many useless configurations.
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The applied design method is a combination of Central Composite Design
(CCD) and a Response Surface Methodology, enabling to fit a second-order
response surface through the defined performance indices. Even with the good
results achieved, there are limitations as well. The number of (independent) design
parameters should not be too large, as to avoid interactions between them. Also
strong non-linearities in the responses may lead to less than optimal results. In
the second case of the bi-conic vehicle some of the response surfaces appeared
to be troublesome with respect to accuracy. Higher-order approximations may be
required, but since CCD is developed to derive second-order approximations, it is
not suitable for higher orders. And unless one has insight in the nature of the higher-
order terms, which would allow for building a higher-order response surface, the
preferred method may be a full factorial design. This would obviously lead to a
rapid increase of design options.

Another approach to avoid such problems could be an evolutionary process
with “genetic manipulation”. The configurations would be generated directly in
large numbers and processed, which would have the advantage that the set of
optimal alternatives in multi-objective optimisation (the so-called Pareto front) is
automatically formed. An essential assumption in the use of evolutionary algorithms
is, of course, that all design tools are linked together, and that data transfer between
the individual tools is fully automated.
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Rigorous Global Optimization for Collision
Risk Assessment on Perturbed Orbits
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Abstract In this chapter, a method to assess the occurrence of impacts between
objects (either spacecraft or space debris) orbiting around the Earth is presented.
The method is based on the computation of the minimum distance between two
evolving orbits by means of a rigorous global optimizer. Analytical solutions of
artificial satellite motion are utilized to account for perturbative effects of Earth’s
zonal harmonics, atmospheric drag, and third body. It is shown that the method can
effectively compute the intersection between perturbed orbits and hence identify
pairs of space objects on potentially colliding orbits. Test cases considering sun-
synchronous, low perigee and earth-synchronous orbits are presented to assess the
performances of the method.

Keywords Minimum orbit intersection distance • Space debris • Taylor models
• Global optimization • Orbital perturbations

List of Acronyms

MOID Minimum orbital intersection distance
FFT Fast Fourier transform
DA Differential algebra
LDB Linear dominated bounder

A. Morselli (�)
European Space Agency, European Space Operations Centre, Robert-Bosch-Straße 5, 64293
Darmstadt, Germany
e-mail: alessandro.morselli@esa.int

R. Armellin
Departamento de Matemáticas y Computación, Universidad de La Rioja, C/Luis de Ulloa s/n,
26004 LogroQno, Spain
e-mail: roberto.armellin@unirioja.es

P. Di Lizia • F. Bernelli-Zazzera
Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34,
20156 Milano, Italy
e-mail: pierluigi.dilizia@polimi.it; franco.bernelli@polimi.it

© Springer International Publishing Switzerland 2016
G. Fasano, J.D. Pintér (eds.), Space Engineering, Springer Optimization
and Its Applications 114, DOI 10.1007/978-3-319-41508-6_9

237

mailto:alessandro.morselli@esa.int
mailto:roberto.armellin@unirioja.es
mailto:pierluigi.dilizia@polimi.it
mailto:franco.bernelli@polimi.it


238 A. Morselli et al.

QFB Quadratic fast bounder
ECI Earth Centered Inertial
UT Universal time

1 Introduction

The probability of a close encounter or an impact between two bodies moving
on orbits around the Earth can be assessed by computing the minimum distance
between their orbits. In astrodynamics this quantity is usually referred to as
minimum orbital intersection distance (MOID), and is usually computed by looking
at all the stationary points of the square of the Euclidean distance, d2, between two
points on the first and the second orbit, respectively. Several algorithms have been
proposed for the solution of this problem [9, 15, 30]. These algorithms are mainly
affected by the difficulty in dealing with a nonlinear one-dimensional equation
appearing when a component of the critical points of d2 is sought for. In [22]
the problem was algebraically solved in the case of two Keplerian elliptic orbits
by finding all the critical points of a trigonometric polynomial of degree eight,
obtained with Gröbner bases theory. Furthermore, it was proven that a trigonometric
polynomial of degree less than eight does not exist. Later in [4] the method
was extended to all types of conic sections. In [13] an algorithm based on the
resultant theory and the Fast Fourier Transform (FFT) is introduced to perform the
elimination of one variable; an upper bound on the maximum number of critical
points (if they are finitely many) is also obtained by using Newton’s polytopes and
Bernstein’s theorem. Several improvements to the algorithm were later presented in
[14] as well as the extension to unbounded Keplerian orbits. In [2], the computation
of MOID for Keplerian orbits is approached as a global optimization problem.
The rigorous global optimizer COSY-GO [28] is run on either the square distance
function or the square of its gradient for the computation of the MOID or all the
stationary points of d2, respectively.

All the aforementioned methods make the assumption of Keplerian orbits. In
this chapter, the approach presented in [2] is applied to non-Keplerian orbits. The
two-body approximation for space objects orbiting the Earth can be too crude, even
when small time intervals are considered. Perturbations, such as non-symmetrical
gravity field, atmospheric drag, solar radiation pressure, and luni-solar perturbation,
act on the orbiting bodies and, as a consequence, the motion is no longer Keplerian.
Analytical approximations suitable for different orbital regimes (see [1, 18, 19]) can
be used to efficiently describe the dependence of the orbital parameters on time.
As a result, the square distance function d2 becomes time dependent. Thus, two
true anomalies and an epoch, which determines the current orbital configuration,
are necessary to identify the MOID. Note that the MOID computation remains
a geometrical problem, as time is used to describe the evolution of the orbital
parameters only. No information on minimum distance between trajectories is
gained (we refer to this as the synchronization problem); but a small MOID in
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the perturbed dynamics indicates that, during the considered time window, the
perturbations modify the orbits in such a way that a conjunction is possible. This
approach can be possibly useful to pick out, over long time intervals, threatening
configurations, otherwise missed in a two-body approximation.

The chapter is organized as follows. In Sects. 2 and 3 some notes on the theory
of Taylor models are given and the rigorous global optimizer COSY-GO is briefly
described. The problem formulation is introduced in Sect. 4, underlining the main
characteristics of the analytical solutions considered as well as the procedure for
objective function computation. Some numerical experiments are presented and
discussed in Sect. 5. Final remarks conclude the chapter.

2 Notes on Taylor Models

Verified global optimization needs the determination of rigorous upper and lower
bounds of the objective function in order to implement a branch-and-bound method
[21]. The commonly used interval approach has excelled in solving this problem
elegantly from both a formal and an implementational viewpoint. However, there
are situations where the method has limitations for extended or complicated
calculations because of the dependency problem, which is characterized by a
cancellation of various sub-parts of the function that cannot be detected by direct
use of interval methods. This effect often leads to pessimism and sometimes even
drastic overestimation of range enclosure. Furthermore, the sharpness of intervals
resulting from calculations typically scales linearly with the sharpness of the
initial discretization intervals. For complicated problems, and in particular higher
dimensions, this sometimes significantly limits the sharpness of the result that can
be obtained [26].

The Taylor model approach enables the computation of fully mathematically
rigorous range enclosures while largely avoiding many of the limitations of the
conventional interval method [25]. The method is based on the inductive local
modelling of functional dependencies by a polynomial with a rigorous remainder
bound, and as such represents a hybrid between formula manipulation, interval
methods, and methods of computational differentiation [7, 12].

An n-th order Taylor model of a multivariate function f that is .n C 1/-times
continuously partially differentiable on the domain D, consists of the n-th order
multivariate Taylor polynomial P expanded around a point x0 2 D and representing
a high-order approximation of the function f , and a remainder error interval I for
verification such that

8x 2 D; f .x/ 2 P.x � x0/C I: (1)

From Taylor’s theorem, it is clear that the width of the remainder interval I can
be chosen to scale with the domain size proportional to jx � x0jnC1: The practical
computation of P and I is based on Taylor model arithmetic, which carries P and I
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through all the operations comprising I. By choosing the size jx � x0j sufficiently
small and the order n sufficiently high, the size of the remainder interval I can
be kept very small in practice. The bulk of the functional dependency is kept in
the polynomial part P with point coefficients, and there is no interval arithmetic
associated inflation that happens in the polynomial part. Thus, the interval related
overestimation is rather optimally suppressed with the Taylor model method [26].
The implementation of the method in the code COSY Infinity [6, 25] supports
binary operations and standard intrinsic functions, as well as the antiderivative
operation which widens the applications of the method. Note that when only the
polynomial part P of the Taylor model is considered, also the analytic operation
of differentiation can be introduced, so finalizing the definition of a differential
algebraic (DA) structure [5].

The Taylor model approach has the following important properties:

1. The ability to provide rigorous enclosures of any function given by a finite
computer code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order .nC 1/ of the width of the domain.

2. The computational expense increases only moderately with order, allowing
the computation of sharp range enclosures even for complicated functional
dependencies with significant dependency problem.

3. The computational expense of higher dimensions increases only very moderately,
significantly reducing the “curse of dimensionality”.

The structure of Taylor models naturally represents a rich resource of infor-
mation. In particular, the coefficients of the polynomial part P of a Taylor model
are nothing but the derivatives up to order n. Consequently, when representing a
function f by a Taylor model .P; I/ on a computer, we also obtain the local slope,
Hessian and higher order derivatives. When a task is focused on range bounding,
those pieces of information become particularly useful.

While naive range bounding of Taylor models, namely merely evaluating each
monomial of P using interval arithmetic then summing up all the contributions as
well as the remainder interval I [27], already exhibits the superiority over the mere
interval arithmetic and the more advanced centered form [25], the active utilization
of those additional pieces of information in Taylor models has a lot of potential
of developing efficient range bounders. Based on this observation, various kinds
of Taylor model based range bounders have been developed [8], and among them
the linear dominated bounder (LDB) and the quadratic fast bounder (QFB) are the
backbones of Taylor model based verified global optimizer COSY-GO that will be
discussed afterward.

The linear dominated bounder (LDB) is based on the fact that for Taylor
models with sufficiently small remainder bound, the linear part of the Taylor model
dominates the behavior, and this is also the case for range bounding. The linear
dominated bounder utilizes the linear part as a guideline for iterative domain
reduction to bound Taylor models. Around an isolated interior minimizer, the
Hessian of a function f is positive definite, so the purely quadratic part of a Taylor
model .P; I/ which locally represents f , has a positive definite Hessian matrix.
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The quadratic fast bounder provides a lower bound of a Taylor model cheaply when
the purely quadratic part is positive definite. More details on polynomial bounders
are given in [28].

3 COSY-GO

COSY-GO [8] is a branch-and-bound optimization algorithm employing local
domain reduction techniques exploiting the bounding performances assured by
Taylor model methods. Should the global minimum of a sufficiently regular scalar
function f on a given domain A 
 <m wished to be evaluated, the algorithm starts
with an initial value for the global optimum, the cut-off value, and then proceeds on
analyzing at each step a subdomain for possible elimination or reduction. At each
step the following tasks are performed.

1. A rigorous lower bound l of the objective function is obtained on the subdomain
of interest using various bounding schemes hierarchically with the hope of
showing that l lies above the already established cut-off value, which will allow
elimination of the subdomain. A first assessment is made whether the remainder
bound of the Taylor model at hand is sufficiently small; if it is not, then the
underlying function exhibits too much detail for modeling by local estimators,
and the subdomain is split in the direction of fastest change of the function.

2. If the remainder bound is sufficiently small, as a first test the polynomial part
of the objective function is evaluated in interval arithmetic. When it fails to
eliminate the box, the LDB bounder is applied. If it also fails to eliminate the
box, and if the quadratic part of the polynomial representation of the objective
function P is positive definite, the QFB bounder is applied.

3. If the just studied subdomain of interest cannot be eliminated, but is seen to have
a lower bound close to the current cut-off values, domain reduction techniques
are brought to bear based on the LDB and QFB algorithms to reduce the
subdomain in size. Once these methods are applicable, they will allow to cut
the subdomain of interest and rapidly reduce the active volume.

4. The cut-off value is updated using various schemes. First, the linear and quadratic
parts of the Taylor polynomial are utilized to obtain a potential cut-off update.
In particular, if the quadratic part of the polynomial is positive definite, the
minimizer of the quadratic polynomial is tested. If the quadratic part is not
positive definite, the minimizer of the quadratic part in the direction of the
negative gradient is tested. For objective functions of nontrivial cost, as in the
example at hand, also more sophisticated local searches within and near the
current subdomain may be carried out.

The algorithm continues to reduce and examine the domain until the minimum
dimension allowed is reached. The result of the optimization is the validated
enclosure of the global minimum of the problem.
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4 Problem Formulation

In [2], the MOID is computed by running the optimizer COSY-GO on either the
square distance function between two bodies moving on perturbed Earth orbits or
the square of its gradient. The considered orbits are Keplerian and the objective
function is the square of the Euclidean distance d2 between two generic points
belonging to the first and the second orbit respectively. Since the two orbits are
Keplerian, their five Keplerian elements ai, ei, Ii, �i, and !i, where i D 1; 2, are
constants and d2 is a function of the true anomalies �1 and �2 only (see Fig. 1).

The position of an object in the Earth Centered Inertial (ECI) reference frame is
computed from its orbital elements using the following equations

ri D
ai
�
1 � e2i

�

1C ei cos.�i/

ri D
8
<

:

rIi

rJi

rKi

9
=

;
D ri

8
<

:

cos.�i/ cos.!i C �i/ � sin.�i/ cos.Ii/ sin.!i C �i/

sin.�i/ cos.!i C �i/C cos.�i/ cos.Ii/ sin.!i C �i/

sin.Ii/ sin.!i C �i/

9
=

;
:

(2)

The square distance d2 is given by

d2 D .rI1 � rI2 /
2 C .rJ1 � rJ2 /

2 C .rK1 � rK2 /
2 ; (3)

and, for Keplerian orbits, it is a function of the two true anomalies �1 and �2 only.
In a perturbed two-body problem, the Keplerian elements ai, ei, Ii, �i, and

!i of the two objects, and, consequently, the square distance of their orbits

Fig. 1 Distance between two orbits: given the Keplerian elements of both orbits, the distance is
univocally determined by the pair .�1; �2/
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become functions of time t. Thus, the objective function evaluation must include
a mathematical model to account for the dependence on t. An analytical model is
used in this chapter. This section is devoted to illustrate the approach and its use
within the formulation of the objective function.

4.1 Analytical Representation of Orbital Dynamics

The time dependence of the Keplerian elements is obtained by means of analytical
theories for satellite motion. Thus, the value of the orbital elements at time t is
computed through the evaluation of analytical expressions. Usually the perturbative
effects are divided into long-period and short-period. For the former, explicit
functions of time are available, whereas the latter can only be evaluated solving
Kepler’s equation.

The analytical solutions adopted in this chapter are

• Aksnes’s solution [1]: zonal harmonics from J2 to J5;
• HANDE [18]: zonal harmonics from J2 to J4, atmospheric drag;
• SGP4 [19]: zonal harmonics from J2 to J4, luni-solar perturbation, daily reso-

nance with tesseral harmonics J2;2, J3;1, J3;3.

Based on the perturbations included in each model, HANDE is suitable for low-
Earth orbits, where the effect of atmosphere is not negligible. It is worth highlighting
that HANDE’s density model is arbitrary and even tabulated values can be adopted.
Thus, depending on the considered orbit, the best fitting model can be chosen. SGP4
is used for geostationary orbits, where atmospheric drag is negligible and luni-
solar perturbations are comparable with zonal harmonic J2 perturbative acceleration.
Aksnes’ solution is considered for intermediate orbits, for which the atmospheric
drag can be neglected and the luni-solar perturbation is still orders of magnitude
lower than zonal harmonics perturbations. No matter which model is selected, the
orbital evolution of one object is represented by a single analytical solution. It is
thus assumed that the selected model can accurately predict the motion of the object
for the entire time window at hand. The details of these methods are reported in the
following sections.

4.1.1 Aksnes Zonal Harmonics Solution

The Aksnes zonal harmonics solution was originally developed in 1971 [1]. Since
the model is used in this chapter to compute the square distance of two orbiting
objects, this section focuses on the description of the terms for the computation of
the position vector.
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Given the initial mean Keplerian elements (a0, e0, I0, l0 D M0, g0 D !0,
h0 D �0) the following constants are computed

c D cos.I0/

s D sin.I0/

� D
p
1 � e02

p D a0 �
2

n0 D
r
�C

a03

� D J2

�
RC

p

�2

�j D Jj

J22

�
RC

p

�j�4
; j D 3; 4; 5:

(4)

where �C and RC are the gravitational parameter and mean radius of the Earth
respectively; Jj, j D 2; 3; 4; 5, are the zonal harmonics.

The constant rates of the Delaunay’s variables l, g and h are given by

Pl D n0

�

1� 3

4
� �

�

1� 3 c2 � 1

32
�
˚
10
�
1� 6 c2 C 13 c4

�� 5
�
5� 18 c2 C 5 c4

�
e20 C

C16� �1� 6 c2 C 9 c4
�� 15 �4

�
3� 30 c2 C 35 c4

�
e20
	
�
 (5)

Pg D � 3
4
� n0

�

1� 5 c2 C 1

32
�
˚
2
�
5C 43 c2

� �
1� 5 c2

�C �
25� 126 c2 C 45 c4

�
e20 C

�24 � �1� 8 c2 C 15 c4
�C 20 �4

�
3� 36 c2 C 49 c4

�C 45 �4
�
1� 14 c2 C 21 c4

�
e20
	
�

(6)

Ph D � 3
2
� c n0

�

1� 1

16
�
˚
4� 40 c2 � �

9� 5 c2
�

e20 C 12�
�
1� 3 c2

� C

�5�4 �3� 7 c2
� �
2C 3 e20

�	
�

:

(7)

Thus, their mean values can be computed as

h D h0 C Ph t

g D g0 C Pg t

l D l0 C Pl t ;

(8)

where t is time since reference epoch.
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The longitude Q� and latitude Q', measured from the Vernal point meridian and the
equator respectively, are obtained through the following equations

I D arccos .c/

Q' D arcsin .sin.I/ cos.u//

Q� D arctan

�
cos.I/ sin.u/

cos.u/

�

C h ;

where u D gC �, with � being the true anomaly.
The position in ECI is obtained as

r D r Ou; (9)

where

Ou D
8
<

:

cos. Q�/ cos. Q'/
sin. Q�/ cos. Q'/

sin. Q'/

9
=

;
: (10)

4.1.2 HANDE

The mathematical procedure for the formulation of the analytical solution of the
HANDE model can be found in [18] and [16]. The method for the long-period
contribution to the position vector is reported hereafter.

First of all, the solution is initialised by computing the secular variations of the
six Keplerian elements due to atmospheric drag, as well as the derivatives of mean
motion n and eccentricity e. To this aim, the mean Keplerian elements at epoch are
required, together with satellite ballistic coefficient B. The first derivatives of mean
motion and eccentricity can be computed by means of the integrals

f
.2/
n;D D 1

2

Z

�

3

2
B nˇ�2 	 v

�

1C e2 C 2e cos.�/� !a

n
ˇ3 cos.I/

�

dM

f
.2/
e;D D � 1

2

Z

�

1

2
B 	 v

"

2 .e C cos.�//� !a

n
ˇ3 cos.I/

�
2 cos.�/C e C e cos2.�/

�

.1C e cos.�//2

#

dM ;

(11)

where !a is the rotational velocity of Earth’s atmosphere, ˇ D p1 � e2, 	 is the
atmospheric density at the satellite altitude above Earth’s surface (hence a function
of true anomaly �), and the satellite velocity v with respect to atmosphere is given by

v D n a

ˇ

s

.1C e2 C 2 e cos.�// � 2 !a

n
ˇ3 cos.I/C !a

2

n2
ˇ6
1 � sin2.I/ sin2.u/

.1C e cos.�//2
:

(12)
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The integration is facilitated by the change of variables

dM D ˇ3

.1C e cos.�//2
d� :

The integrals, also referred to as drag functions, are evaluated using a 13-points
Gauss-Legendre formula (see [23]). In this approach there is no constraint on the
choice of the density model, that can be either mathematical (e.g. power density
or power function) or tabulated. Also the higher-order derivatives are obtained
numerically, using a 7-points central difference formula. Hence, values of n, Pn, e,
and Pe at the instants ˙3
 , ˙2
 , ˙
 , as well as their values at epoch are required.
Denoting mean motion and eccentricity, as well as their first derivatives at epoch,
with a subscript 0, the values at ˙
 are

n˙
 D n0 ˙ Pn0
 and e˙
 D e0 ˙ Pe0
 :

Given the values of n and e at time ˙
 , the derivatives Pn˙
 and Pe˙
 are obtained
by evaluating the integrals (11) with the updated values of mean motion and
eccentricity. The values at the other instants can be obtained using the same strategy.
When all seven values of eccentricity and mean motion are available, the derivatives
Pe, Re,«e, Pn, Rn and«n can be computed using formulae in [11]. To compute¬n the formula
for the third derivative should be employed, using the first derivatives of n at times
˙3
 , ˙2
 ,˙
 .

The secular variations of the other four Keplerian elements can be computed
from the drag functions

f .2/I;D D �
1

2

Z

�

1

2
B 	 v

!a

n
ˇ�1 sin.I/

r2

a2
cos2.u/ dM (13)

f .2/!;D D
1

2

Z

�

�
1

2
B 	 v

!a

nˇ
cos.I/

r2

a2
.sin.�/ cos.�/C sin.u/ cos.u// ��MD

�

dM

(14)

f .2/�;D D �
1

2

Z

�

1

2
B 	 v

!a

n
ˇ�1 r2

a2
sin.u/ cos.u/dM (15)

f .2/M;D D
1

2

Z

�

�
1

2
B 	 v

�

2 e sin.E/ � 2 e

1C ˇ sin.�/ C

� !a

n
cos.I/

r2

a2

� �2 e

ˇ .1C ˇ/ C cos.�/

�

sin.f /




C�MD

�

dM ;

(16)



Rigorous Global Optimization for Collision Risk Assessment on Perturbed Orbits 247

where u D � C !, E.�/ is the eccentric anomaly r.�/ the orbit radius and

�MD D B	v

�

1 � !a

nˇ
cos.I/

r2

a2

�
sin.�/

e
:

When e ! 0 the values of �MD becomes singular, due to arbitrary definition of
the location of perigee in circular orbits. Since this term exactly vanishes in the sum
M C !, numerical singularities are avoided setting �MD D 0 when e < 1 � 10�6.

For highly eccentric orbits density decreases rapidly away from the pericentre.
In this case the integrals can be approximated by

I D 1

2

Z

�
f .�/d� ' 1

2

bZ

�b

f .�/d� :

The value of b can be computed as

cos.b/ D a e .1 � e/ ��r

a e .1 � e/C e�r
for�r < 2 a e

cos.b/ D �1 for�r > 2 a e ;

with

�r D q
�
A0 C A1 qC A2 q2 C A3 q3 C A4 q4 C A5 q5 C A6 q6

�

q D a0 .1 � e0/ � RC

A0 D �3:1301240
A1 D 6:1710434 � 10�2

A2 D �3:4111266 � 10�4

A3 D 8:7321429 � 10�7

A4 D �1:1225340 � 10�9

A5 D 7:1123451 � 10�13

A6 D �1:7765750 � 10�16 ;

where q is the perigee height above Earth’s mean surface in kilometres and �r
is the altitude change in kilometres for a drop in density by a factor 100. This
approximation avoids the underestimation of Keplerian elements secular rates that
would occur computing numerically the integrals on the whole domain Œ�; �.
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The total secular rates of Keplerian elements due to zonal harmonics and drag
are computed using the following equations

PI0 D f .2/I;D (17)

P!0 D f .2/!;D C
3

4
n0J2

�
RC

p0

�2 
4 � 5 sin2.I0/

�
C 3

16
n0J

2
2

�
RC

p0

�4 �
4 � 5 sin2.I0/

��

12 C

�43
4

sin2.I0/C 6ˇ0
�

1 � 3
2

sin2.I0/

��

C
�

7 � 9
2

sin2.I0/ � 45
8

sin4.I0/

�

e20

�

C

� 15
32

n0J4

�
RC

p0

�4 �

16 � 62 sin2.I0/C 49 sin4.I0/C
�

18 � 63 sin2.I0/C 189

4
sin4.I0/

�

e20

�

(18)

P�0 D f .2/�;D �
3

2
n0J2

�
RC

p0

�2
cos.I0/ � 3

8
n0J

2
2

�
RC

p0

�4
cos.I0/

�

9 � 10 sin2.I0/C

C e20

�

1C 5

4
sin2.I0/

�

C 6ˇ0
�

1 � 3
2

sin2.I0/

��

C

C 15

16
n0J4

�
RC

p0

�4
cos.I0/


4 � 7 sin2.I0/

��

1C 3

2
e20

�

:

(19)

The constants of the long-period periodic variations of the osculating Keplerian
elements are computed as well, since they depend only on the mean elements at
epoch:

eLP1 D C1 e0 ˇ
2
0 sin2.I0/ (20)

eLP2 D �C2 ˇ
2
0 sin.I0/ (21)

ILP1 D �C1 e20 sin.I0/ cos.I0/ (22)

ILP2 D C2 e0 cos.I0/ (23)

!LP1 D �C1

�

sin2.I0/ � e20 C
9

2
e20 sin2.I0/

�

C

� 1
8

J2

�
RC

p0

�2 1

4 � 5 sin2.I0/


e20 sin2.I0/

�
 

1C 5 J4
J22

! (24)

!LP2 D �C2e0 sin.I0/
35 cos2.I0/

4 � 5 sin2.I0/
C�! ��M (25)
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�LP1 D �C1e
2
0 cos.I0/C 5

8
J2

�
RC

p0

�2 1

4 � 5 sin2.I0/


e20 cos.I0/ sin2.I0/

�
 

3C 7 J4
J22

!

(26)

�LP2 D
C2

4 � 5 sin2.I0/
e0 sin.I0/

�

15 cos.I0/C 4

1C cos.I0/

�

��!: (27)

where the constants C1, C2, and �! are defined as

C1 D 1

8
J2

�
RC

p0

�2
1

4 � 5 sin2.I0/

�

14 � 15 sin2.I0/C J4
J22

�
30 � 35 sin2.I0/

�
�

(28)

C2 D 1

2

J3
J2

�
RC

p0

�

(29)

8
<

:

�! D C2
4 e0

sin.I0/

1

4 � 5 sin2.I0/
ifI0 > 1 � 10�6

�! D 0 ifI0 < 1 � 10�6 :
(30)

The last constants computed during initialization are

P̌
0

ˇ0
D � e0 Pe0

ˇ20
(31)

Ř
0

ˇ0
D � 1

ˇ40

�Pe20 C e0 Re0 ˇ20
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ˇ0
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9

Pn20
n20
C 7

3

Rn0
n0
� 14 Pn0

n0

P̌
0

ˇ0
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P̌2
0

ˇ20
� 3
Ř
0

ˇ0

!
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9

Pn20
n20
C 7

3

Rn0
n0
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3

Pn0
n0

P̌
0

ˇ0
C 20

P̌2
0

ˇ20
� 4
Ř
0

ˇ0

!

: (36)

The second step of the method consists in applying both secular and long-period
periodic variations of the mean elements, through the equations
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n0 D n0 C Pn0 t C 1

2
Rn0 t2 C 1

6
«n0 t3 C 1

24
¬n0 t4 (37)

!sec D !0 C P!0 t (38)

e0 D e0 C Pe0 t C 1

2
Re0 t2 C 1

6
«e0 t3 C eLP1

�
cos2.!sec/� cos2.!0/

�C eLP2 .sin.!sec/� sin.!0//

(39)

I0 D I0 C PI0 t C ILP1

�
cos2.!sec/� cos2.!0/

�C ILP2 .sin.!sec/� sin.!0// (40)

�0 D �0 C P�0 t C�LP1 .sin.!sec/ cos.!sec/� sin.!0/ cos.!0// C
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2
n0 J2

�
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cos.I0/

�
D1;�4 t2 C D2;�4 t3

� (41)

!0 D !sec C !LP1 .sin.!sec/ cos.!sec/ sin.!0/ cos.!0//C !LP2 .cos.!sec/� cos.!0// : (42)

From the primed variables computed above the following change of variables is
made

a0 D
�
�C

n02

� 1
3

(43)

ˇ0 D
p
1 � e02 (44)

p0 D a0 ˇ2 (45)

u0 D �0 C !0 (46)

r0 D a0 ˇ02

1C e0 cos.�0/
; (47)

where �0 is the true anomaly.
The position in Earth centred inertial (ECI) reference frame is given by

r D r0 Ou ; (48)

where

Ou D
8
<

:

� sin.�0/ cos.I0/ sin.u0/C cos.�0/ cos.u0/
cos.�0/ cos.I0/ sin.u0/C sin.�0/ cos.u0/

sin.I0/ sin.u0/

9
=

;
: (49)

4.1.3 SGP4/SDP4

The Simplified General Perturbations #4 (SGP4) model is one of the orbit propaga-
tor developed during the 1970s by NORAD and U.S. Air Force Space Command.
The SGP4 method is optimized to work with Two Line Elements (TLE), an
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ASCII representation of the orbital parameters required to describe the motion of
an Earth-orbiting object. The USSTRATCOM maintains a catalog of containing
TLEs for all resident space objects that is accessible through Space-Track1 and
Celes-Track2websites. The details of SGP4 implementation can be found in [15,
17, 19, 20, 31]. The algorithm presented in this section is a simplified version of
the SGP4 algorithm. All terms related to atmospheric drag have been dropped, as
well as effects of 12 h resonances. This version is thus intended to be used with
space objects with orbital periods larger than 225 min or orbiting in geostationary
regime, and is indeed quite close to the Simplified Deep Space Perturbations #4
(SDP4). This theory, although initially developed as a stand-alone propagator, is
now commonly embedded into SGP4 implementations, which is also referred to as
SGP4/SDP4.

The orbital elements provided by the a TLE are mean elements, computed using
Kozai mean motion. The first step is to recover from them the Brower mean motion
through the equations

ak D
�
�C

n2k

� 1
3

(50)

ı1 D 3
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�
�C

n20

� 1
3

: (55)

where nk is the Kozai mean motion and the coefficient k2 is related to the second
zonal harmonic and can be computed as

k2 D 1

2
J2R

2
C
: (56)

1http://www.space-track.org.
2http://www.celestrack.org.
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The next step is computing the secular effects of Earth’s zonal harmonics
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in which k4 is related to the fourth zonal harmonics and is defined as

k4 D � 3
8

J4R
4
C
: (60)

The secular effects of luni-solar perturbations are also computed during initializa-
tion. For this purpose, the orbital elements of the Sun and the Moon at the TLE
reference epoch are required. Following the procedure in [19] and [10], Moon’s
right ascension of ascending node (RAAN) �K, inclination IK, and argument of
pericentre !K are computed. Sun’s RAAN �@ and argument of pericentre !@ are
treated as constants instead.

For both the Sun and the Moon the following coefficients are calculated

a1x D cos.!x/ cos.�0 ��x/C sin.!x/ cos.Ix/ sin.�0 ��x/

a3x D � sin.!x/ cos.�0 ��x/C cos.!x/ cos.Ix/ sin.�0 ��x/

a7x D � cos.!x/ sin.�0 ��x/C sin.!x/ cos.Ix/ cos.�0 ��x/

a8x D sin.!x/ sin.Ix/

a9x D sin.!x/ sin.�0 ��x/C cos.!x/ cos.Ix/ cos.�0 ��x/

a10x D cos.!x/ sin.Ix/

a2x D a7x cos.I0/C a8x sin.I0/

a4x D a9x cos.I0/C a10x sin.I0/

a5x D �a7x sin.I0/C a8 cos.I0/

a6x D �a9x sin.I0/C a10x cos.I0/

(61)
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X1x D a1x cos.!0/C a2x sin.!0/

X2x D a3x cos.!0/C a4x sin.!0/

X3x D �a1x sin.!0/C a2x cos.!0/

X4x D �a3x sin.!0/C a4x cos.!0/

X5x D a5x sin.!0/

X6x D a6x sin.!0/

X7x D a5x cos.!0/

X8x D a6x cos.!0/

(62)

Z31x D 12X21x � 3X23x

Z32x D 24X1xX2x � 6X3xX4x

Z33x D 12X22x � 3X24x

Z1x D 6
�
a21x C a22x

�C �1C e20
�

Z31x

Z3x D 6
�
a23x C a24x

�C �1C e20
�

Z33x

Z11x D �6a1x a5x C e20 .�24X1x X7x � 6X3x X5x/

Z13x D �6a3x a6x C e20 .�24X2x X8x � 6X4x X6x/

Z21x D 6a2x a5x C e20 .24X1x X5x � 6X3x X7x/

Z23x D 6a4x a6x C e20 .24X2x X6x � 6X4x X8x/

Z22x D 6a4x a5x C 6a2x a6x C e20 .24X2x X5x C 24X1x X6x � 6X4x X7x � 6X3x X8x/

Z12x D �6a1x a6x � 6a3x a5x � e20 .24X2x X7x C 24X1x X8x C 6X3x X6x C 6X4x X5x/ ;

(63)

where subscript x stands for the considered perturbing body, while subscript 0
indicates the satellite mean elements at reference epoch. The secular rates for each
body are given by

Pax D 0 (64)

Pex D �15Cx nx
e0 ˇ0

n0
.X1x X3x C X2x X4x/ (65)

PIx D � Cx nx

2 n0 ˇ0
.Z11x C Z13x/ (66)

PMx D � Cx nx

n0

�
Z1x C Z3x � 14 � 6e20

�
(67)
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P�x D
8
<

:

Cx nx ˇ0

2 n0 ˇ0 sin.I0/
.Z21x C Z23x/ if jI0j 6 3deg

0 if jI0j > 3deg
(68)

P!x D Cx nx ˇx

n0
.Z31x C Z33x � 6/ � P�x cos.I0/ : (69)

where nx is the perturbing body mean motion; CK and C@ are lunar and solar
perturbation coefficients listed in [19]. For a nearly geosynchronous satellite or
debris, whose period in minutes is in the interval Œ1200; 1800�, it is necessary to
calculate the functions of inclination F.I/

F220 D 3

4
.1C cos.I0//

2 (70)

F311 D 15

16
sin2.I0/ .1C 3 cos.I0// � 3

4
.1C cos.I0// (71)

F330 D 15

8
.1C cos.I0//

3 ; (72)

and eccentricity function G.e/

G200 D 1 � 5
2

e20 C
13

16
e40 (73)

G310 D 1C 2e20 (74)

G300 D 1 � 6e20 C
423

64
e40 : (75)

The coefficients of the resonance terms are subsequently computed:

ıS1 D 3 n20
a30

F311 G310 Q31 (76)

ıS2 D 6 n20
a20

F220 G200 Q22 (77)

ıS3 D 9 n20
a30

F330 G300 Q33 ; (78)

where Q coefficients are listed in Table 1.
To compute the resonance effect, a numerical integration scheme is required. The

1-day period initial conditions are computed during initialization and are given by

�i0 D M0 C !0 C�0 � �G0 (79)

ni0 D n0 (80)
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Table 1 SGP4 tesseral and sectoral constants

n 2 3 3

m 2 1 3

Qnm 1.7891679�10�6 2.1460748�10�6 2.2123015�10�7

�nm [rad] 2.88431980 0.13130908 0.37448087

P�i0 D PMz C PM@ C PMK C P�z C P�@ C P�K C P!z C P!@ C P!K � !C (81)

Pni0 D ıS1 sin.�i0 � �31/C ıS2 sin.2�i0 � �22/C ıS3 sin.3�i0 � �33/ (82)

R�i0=2 D Pni0=2 (83)

Rni0=2 D
 P�i0=2

�
ŒıS1 sin.�i0 � �31/C 2ıS2 sin.2�i0 � �22/C 3ıS3 sin.3�i0 � �33/� ;

(84)

where �22 and �33 are the tesseral harmonics coefficients, and �G0 is GST angle
measured at epoch. The GST is obtained evaluating a third degree polynomial at the
universal time (UT) of interest [3].

Once all constants are defined, the osculating elements can be obtained from the
mean Keplerian elements. The secular variations due to zonal harmonics and luni-
solar attraction are given by

Msec D M0 C n0 tC � PMz C PM@ C PMK

�
t (85)

!sec D !0 C . P!z C P!@ C P!K/ t (86)

�sec D �0 C
� P�z C P�@ C P�K

�
t (87)

Isec D I0 C
�PI@ C PIK

�
t (88)

esec D e0 C .Pe@ C PeK/ t : (89)

The next step is computing resonance effect of Earth’s gravity through numerical
integration. The equations to integrate with an Euler-Maclaurin scheme are

�i D �i�1 C P�i�tC
 R�i=2

�
�t (90)

ni D ni�1 C Pni�tC .Rni=2/ �t ; (91)

where n is the mean motion and � is defined as

� D M C�C ! � �G : (92)

The time step �t is 12 h. At the first step the values �i0 and ni0 and their derivatives
computed during initialization are used. At each step the derivatives of �i and ni are
updated with the relations
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P�i D ni C P�i0 (93)

Pni D ıS1 sin.�i � �31/C ıS2 sin.2�i � �22/C ıS3 sin.3�i � �33/ (94)

R�i D Pni=2 (95)

Rni=2 D
 P�i=2

�
ŒıS1 sin.�i � �31/C 2 ıS2 sin.2�i � �22/C 3ıS3 sin.3�i � �33/� :

(96)

When �i and ni are obtained at the time of interest, the mean motion and mean
anomaly are given by

n0 D ni (97)

Msec D �i ��sec � !sec C �G ; (98)

where �G is Greenwich hour angle at time t.
The long-period periodic effects of luni-solar perturbation can now be applied,

knowing the mean anomaly Mx of the body x at time t. The true anomaly of the
perturbing body is approximated by

�x D Mx C 2ex sin Mx (99)

Defining for both the Sun and the Moon

F2x D 1

2
sin2.�x/ � 1

4
F3x D � 1

2
sin.�x/ cos.�x/ ; (100)

the long-period variations of the secular elements due to body x written in non-
singular variables are

ıex D �
�

30 ˇ0 Cx
e0
n0

�

ŒF2x .X2x X3x C X1x X4x/C F3x .X2x X4x � X1x X3x/� (101)

ıIx D � Cx

n0 ˇ0
ŒF2x Z12x C F3x .Z13x � Z11x/� (102)

ıMx D �2 Cx

n0

�
F2x Z2x C F3x .Z3x � Z1x/ � 3 ex sin.�x/

�
7C 3 e20

��
(103)

.ı!x C cos.Ix/ ı�x/ D 2 ˇ0 Cx

n0
ŒF2x Z32x C F3x .Z33x � Z31x/ � 9 ex sin.�x/�

(104)

sin.Ix/ ı�x D Cx

n0 ˇ0
ŒF2x Z22x C F3x .Z23x � Z21x/� ; (105)
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where the subscripts x on the right side of the equation are referred to the perturbing
body. The combined contribution for the two body are applied directly to secular
elements when I0 > 0:2 rad

e0 D esec C ıe@ C ıeK (106)

I0 D Isec C ıI@ C ıIK (107)

M0 D Msec C ıM@ C ıMK (108)

�0 D �sec C .ı�@ C ı�K/ (109)

!0 D !sec C
�
ı!@ C cos.I0/ı�@ C ı!K C cos.I0/ı�K

� � .ı�@ C ı�K/ cos.I0/ :
(110)

It is important to underline that the long-period variations are usually non-null at
reference epoch, as initial elements are mean elements. To have zero values of long-
period perturbation at initial time, and hence initial perturbed values equal to mean
Keplerian elements, the initial values of long-period variations can be used as an
offset and subtracted to ı quantities. When I0 < 0:2 rad the perturbations can not
be applied directly, as the presence of small divisor leads to singular values. In this
case the Lyddane[24] modification is applied to RAAN and argument of pericentre,
while the other three elements are computed as above. The following quantities are
computed when I0 > 0

˛ D sin.I0/ sin.�sec/C sin.I0/ .ı�@ C ı�K/ cos.�sec/C cos.I0/ sin.�sec/ .ıI@ C ıIK/
(111)

ˇ D sin.I0/ cos.�/ � sin.I0/ .ı�@ C ı�K/ sin.�sec/C cos.I0/ cos.�sec/ .ıI@ C ıIK/ ;
(112)

whereas when I0 < 0, ˛ and ˇ are

˛ D � sin.I0/ sin.�sec/C sin.I0/ .ı�@ C ı�K/ cos.�sec/C cos.I0/ sin.�sec/ .ıI@ C ıIK/
(113)

ˇ D � sin.I0/ cos.�/ � sin.I0/ .ı�@ C ı�K/ sin.�sec/C cos.I0/ cos.�sec/ .ıI@ C ıIK/ :
(114)

Then the mean longitude L is computed

L0 D M0 C !sec C cos.I0/�sec ��sec sin.I0/ .ıI@ C ıIK/ C
C �ı!@ C cos.I0/ı�@ C ı!K C cos.I0/ı�K

� (115)
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and the primed values of � and ! are given by

�0 D arctan2

�
˛

ˇ

�

!0 D L0 �M0 � cos.I0/�0 : (116)

These passages are necessary because at zero inclination and eccentricity the
argument of pericentre and right ascension of the ascending node are not defined
uniquely.

Subsequently, the long-period periodic effects of Earth’s gravity are added, using
the quantities

axN D e0 cos.!0/ (117)

ayN D e0 sin.!0/C 1

4

A3;0 sin.I0/
k2 a0 ˇ02 (118)

u D !0 C �0 C 1

8

A3;0 sin.I0/
k2 a0 ˇ02

�
e0 cos.!0/

�
�
3C 5 cos.I0/
1C cos.I0/

�

(119)

r D
a0

1 � e02

�

1C e0 cos �

"

1 � 3
2

k2

p
1 � e02
p2L

�
3 cos2.I0/ � 1�

#

; (120)

where a0 is the semi-major axis obtained with mean motion n0; A3;0, e, and pL are
defined as

A3;0 D �J3 R3
C

(121)

e D
q

a2xN C a2yN (122)

pL D a0 1 � e02� : (123)

The position in Earth centred inertial reference frame is given by

r D r Ou ; (124)

where

Ou D
8
<

:

� sin.�/ cos.I/ sin.u/C cos.�/ cos.u/
cos.�/ cos.I/ sin.u/C sin.�/ cos.u/

sin.I/ sin.u/

9
=

;
: (125)
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4.2 Objective Function

Based on the analytical approaches described above, the computation of the MOID
for two Earth-orbiting objects in a perturbed dynamical framework goes through the
following steps:

1. The perturbed values of the orbital elements are evaluated at the desired time
t, taking into account only long-period perturbations. Neglecting short-period
oscillation terms introduces an error of a few kilometers on the object position
[29]. Thus, if these oscillations were considered, it would be more appropriate to
study the synchronization problem rather than identifying the MOID.

2. The position vectors of the two objects and the square distance d2 are computed
using Eq. (2) and (3) respectively.

3. The MOID is obtained by running the global optimizer COSY-GO to minimize
d2. The search space is Œ�180IC180� deg for the true anomalies and Œ0; nd� days
for time (nd stands for the number of days), measured from the epoch at which
the initial orbital elements are given.

5 MOID of Perturbed Orbits: Numerical Experiments

This section is devoted to assess the performances of the procedure proposed in
Sect. 4 on a set of test cases. If not otherwise mentioned, the minimum box size of
the optimizer is 1E-2 on all variables. The expansion order is set to 6, as higher
order coefficients of the Taylor expansion become too small and their contribution
is moved to the remainder interval. A time window of 1 year is considered to allow
for a large evolution of the orbital parameters.

In Table 2 the orbits of the two objects analyzed in the first test case are defined.
The first orbit (e.g. a debris) is sun-synchronous and the perturbation of the first
four zonal harmonics is modeled through Aksnes’ solution. The second object
is supposed to move on a Keplerian orbit by adopting a proper station keeping
strategy (e.g. an operative satellite). It is worth noting that, if both orbits were
considered as Keplerian, the MOID would be 1880:083 km. According to this value,
the possibility of an impact between the two objects would be ruled out. However,
due to zonal harmonics perturbation, the orbital plane of the sun-synchronous orbit
rotates around an axis which is perpendicular to Earth’s equatorial plane and, as a
result, the actual MOID can be lower.

Table 2 Test case #1: orbits definition

a e I � !

Orbit # Orbit type Dynamical model [km] [ı] [ı] [ı]

1 Sun-syncr. Aksnes 6878.136 0.0 97.0 110.0 70.0

2 MEO Kepler 11,130.227 0.4 6.5 300.0 73.0
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Table 3 Test case #1:
enclosure of objective
function minimum

Test case # d2 [km2]

1 [�0.22250739E�307, 0.68795338E�014]

Table 4 Test case #1: enclosure of the four intersections

�1 [ı] �2 [ı] t Œdays�

[ 155.990229, 155.990231 ] [ 26.0738534, 26.0738536 ] [ 119.068571, 119.068573 ]

[ 118.290326, 118.290328 ] [ �26.0738536, �26.0738534 ] [ 260.826736, 260.826738 ]

[ �39.7805915, �39.7805913 ] [ 26.0738534, 26.0738536 ] [ 318.632662, 318.632664 ]

[ �40.9823329, �40.9823327 ] [ �26.0738536, �26.0738534 ] [ 61.7190874, 61.7190876 ]

COSY-GO is used to identify the MOID in the perturbed motion. The interval
enclosure of the minimum of the objective function is reported in Table 3. The
two bounds of the enclosure are small numbers and the lower bound is negative.
Thus, the null square distance belongs to this interval and intersections between
these orbits could occur in the considered time span. The minimum of the objective
function occurs at four different orbital configurations. Each of them is defined by a
set of values of �1, �2, and t, whose interval enclosures are reported in Table 4.

The configuration of the two orbits at the four intersections are illustrated in
Fig. 2. The contour plot of the objective function along �1-�2 sections at the four
intersections are presented in Fig. 3. The algorithm can compute the minimum dis-
tance between two orbits, one of which is perturbed by Earth’s zonal harmonics. The
presented example also shows that the MOID computed with the approximation of
Keplerian orbits is not always sufficient to exclude the occurrence of intersections.

The second and third test cases are aimed at showing the effect of atmospheric
drag. They involve two perturbed orbits, whose parameters are listed in Table 5. The
orbit #1 is similar to a Molnyia orbit, although having lower semi-major axis and
eccentricity. The two optimizations are run on the time span of 1 year. In the second
test case both orbits are modeled by Aksnes’ solution, i.e. considering the effect of
zonal harmonics from second to fourth, only. In the third test case, the orbit #1 is
modeled by means of HANDE formulation, thus including atmospheric drag. The
ballistic coefficient B for the object on orbit #1 is reported in Table 5 as well. The
enclosures of the global minimum obtained for the two cases are listed in Table 6.
It can be observed that there is no intersection for test case #2 and the MOID is
17.15 km, whereas an intersection is found in the other test case. The reason is that
the apogee height of the first orbit decreases due to the atmospheric drag, which
is modelled in HANDE algorithm. The enclosure of the three variables is listed
in Table 7. The two orbits at their minimum distance are illustrated in Fig. 4. The
contour plots of the search domain at the times of minimum distance are represented
in Fig. 5 for the two test cases.

The fourth test case considers two geostationary orbits, whose Keplerian ele-
ments are listed in Table 8. Orbit #2 represents a controlled satellite, whereas a space
debris moves on orbit 1, and SGP4 analytical solution is used. Two intersections
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Fig. 2 Representation of orbits at intersections: (a) first intersection, (b) second intersection, (c)
third intersection, (d) fourth intersection
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Fig. 3 Test case #1: MOID computation. Objective function contour plots: (a) first intersection,
(b) second intersection, (c) third intersection, (d) fourth intersection
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Table 5 Test cases #2 and #3: orbits definition

a e I � ! B

Orbit # Orbit type Dynamical model [km] [ı] [ı] [ı] [m2/kg]

1 Molnyia-like Aksnes/HANDE 9825.909 0.3 63.43 276.6 168.7 0.04

2 MEO Aksnes 12,559.681 0.0 10.0 0.0 0.0 –

Table 6 Test cases #2 and
#3: enclosure of objective
function minimum

Test case # d2
�
km2

�

2 [ 294.108777, 294.111215 ]

3 [ �0.22250739E�307, 0.25157065E�018 ]

Table 7 Test cases #2 and #3: enclosure of stationary points

Test
case # �1 [ı] �2 [ı] t Œdays�

2 [ �164.464846, �164.460773 ] [ �104.832006, �104.824949 ] [ 359.995569, 360.000001 ]

3 [ �163.805136, �163.805134 ] [ �52.4528862, �52.4528823 ] [ 336.907751, 336.907755 ]

Fig. 4 Representation of orbits at their minimum distance: (a) test case #2, (b) test case #3

are found in the time span of 1 year. More specifically, 41 boxes smaller than
the minimum allowed size remain at the end of the optimization process for the
first intersection and 56 boxes for the second. The boxes are grouped together to
obtain the enclosures reported in Table 9, since intervals neighbor each other in
the search domain. The contour plot of the objective function can be observed in
Fig. 6. The relative geometry of the two orbits is such that, at each time, a line of
objective function values close to the MOID is identified on the search space. Thus,
the solution of the problem requires many objective function evaluations. In Fig. 6b
and d the search domain is sectioned along planes parallel to domain boundaries and
whose intersection identifies the position of the MOID.

The last test case involves two perturbed orbits that do not intersect in the
considered time span. The first orbit has low perigee and thus atmospheric drag
is accounted for. The second orbit is a MEO and it is propagated by means of
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Fig. 5 MOID computation. Objective function contour plot at intersection time: (a) test case #2,
(b) test case #3

Table 8 Test case #4: orbits definition

a e I � !

Orbit # Orbit type Dynamical model [km] [ı] [ı] [ı]

1 GEO SGP4 42,164.136 0.04 �0:86 0.00 0.00

2 GEO Kepler 42,164.136 0.00 0.00 0.00 0.00

Table 9 Test case #4: enclosure of intersections

�1 [ı] �2 [ı] t Œdays�

[ 92.296701, 92.563286 ] [ 7.204308, 6.9307441 ] [ 243.935364, 243.944814 ]

[�92.438383, �92.197266 ] [ �177.802735, �177.561034 ] [ 243.932431, 243.943692 ]

Table 10 Test case #5: orbits definition

a e I � ! B

Orbit # Orbit type Dynamical model [km] [ı] [ı] [ı] [m2/kg]

1 Molnyia-like HANDE 9825.909 0.3 63.4 276.6 171.5 0.04

2 MEO Aksnes 11,278.136 0.0 25.0 110.0 200.0 –

Table 11 Test case #5:
enclosure of objective
function minimum

Test case # d2
�
km2

�

5 [ 1566860.77, 1566861.40 ]

Aksnes’ solution. The initial osculating Keplerian elements are listed in Table 10.
The enclosure of the minimum of the objective function computed by COSY-GO is
listed in Table 11. In this case the square distance is comprised between two large
positive numbers and thus no intersection occurs. Three contiguous boxes remain
at the end of the optimization run, whose size is lower than the minimum box size.
The remaining boxes are grouped together to obtain the enclosures of �1, �2, and t
corresponding to the global minimum shown in Table 12.

The computational time associated to each test case is reported in Table 13. The
table refers to the computational time obtained by running the code on an Intel
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Fig. 6 MOID computation for test case #4: (a) objective function contour plot at the first
intersection, (b) search domain dissection at the first intersection, (c) objective function contour
plot at second intersection, (d) search domain dissection at the second intersection

Table 12 Test case #5: enclosure of intersections

�1 [ı] �2 [ı] t Œdays�

[ �162.265526,
�162.258591 ]

[ �31.9152062,
�31.9107101 ]

[ �0.2225074E�307,
0.5562744E�003 ]

Table 13 CPU time in seconds required for the computation of the MOID
for the different test cases

Test case #: 1 2 3 4 5

Computational time [s]: 116.74 63.27 57.12 4466.98 216.07

Pentium M 1.73 GHz with 1 GB RAM, Sabayon Linux 5.3. It can be observed that
the computational time increases if

• many orbital intersections occur (e.g., test case #1);
• the objective function is flat near the MOID in large portion of the search space

(e.g., test cases #4 and 5).

In the latter case the computational cost is magnified by setting a small value for
the minimum box size dimension. This is evident in case #4 and it is due to the
larger number of boxes that must be processed until the end of the optimization. In
addition, the computational time increases with analytical model complexity, since
the number of terms to be evaluated is higher.
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Table 14 Test case #3:
computational time for
different expansion orders

Cut-off Elapsed time

Œkm2� Box size Expansion order [s]

– 0.1 6 57.60

100 0.1 6 49.58

– 0.1 4 31.74

100 0.1 4 27.38

– 0.1 2 31.39

100 0.1 2 26.79

Table 15 Test case #5:
computational time for
different box sizes and
expansion orders

Cut-off Elapsed time

[km2] Box size Expansion order [s]

– 0.01 6 216.07

100 0.01 6 15.88

100 0.1 6 15.55

100 0.1 4 10.74

100 0.1 2 8.02

The test cases presented above shows that the developed approach can identify
rigorous and sharp enclosures of orbit intersections. The algorithm can be effectively
used to assess which pairs of orbits can potentially intersect. Nevertheless, the
computational time of a single optimization run turns out to be relevant, since
hundreds of seconds are required.3 However, the computational time can be
significantly reduced by setting larger values of the minimum box size, thus avoiding
many unnecessary box splitting. Furthermore, a suitable cut-off value can be set at
the beginning of the optimization to obtain an efficient pruning of the regions of the
search space where the orbits are far apart.

In Table 14, the computational times for test case #3 are reported. The minimum
box size is kept constant, whereas the Taylor model expansion order is changed.
The computational time required by the optimization process decreases with the
expansion order. In addition, if a cut-off value is introduced, a further reduction of
computational time is achieved. The effect of cut-off value and box size is shown
in Table 15. The minimum d2 in this case is large and the introduction of a cut-off
value produces a drastic reduction in the computational time.

3The computational time can indeed be reduced almost linearly performing parallel computation
on many processors as COSY-GO has a fully parallel implementation.
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6 Final Remarks

This chapter described a method for the computation of the global minimum of the
distance function between two perturbed orbits based on Taylor models. The orbital
evolution of the orbiting objects has been computed through analytical solutions,
thus accounting for zonal harmonics, atmospheric drag, and luni-solar long-period
perturbations.

A global optimization problem has been formulated and solved rigorously by
means of the global optimizer COSY-GO to obtain a validated enclosure of the
solutions. Five sets of orbital parameters have been used as test cases. It has been
shown that potential collisions could occur between Sun-synchronous and other
LEO orbits due to orbital plane rotation caused by J2 perturbations. In addition,
test cases #2 and #3 demonstrated the capability of the method to catch semi-
major axis reduction. The method has also been applied to a GEO case using
the SGP4 analytical solution. The case of no intersection has been considered
with test case #5. The numerical experiments performed have shown that orbital
conjunctions can occur also for orbits with large initial MOID. In these cases a two-
body approximation would miss the occurrence of threatening conditions.

An analysis of the effects of expansion order, cut-off value, and minimum box
size on computational time has also been performed. A considerable reduction of
the computational effort can be mainly achieved by lowering the expansion order
and setting proper cut-off values.

When orbits have similar orbital elements, as in test case #4, many similar MOID
can be found at each time. It is thus convenient to approach the risk assessment
by computing the distance between the trajectories, which requires the validated
solution of Kepler’s equation. In this case an optimization problem in a single
variable, i.e. time, can be formulated.
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Optimal Robust Design of Hybrid
Rocket Engines

Dario Pastrone and Lorenzo Casalino

Abstract Hybrid rocket engines are flexible, safe, reliable, and low-cost and can
be used in many aerospace applications. The engine design and operation are
contingent on the type of designated mission and engine design is strictly related
to trajectory optimization. In real-world applications, uncertainties affect propulsion
system performance: mission goals and constraints may be not fulfilled by an engine
designed using a deterministic approach. Uncertainty of the coefficient and mass
flux exponent in the classical regression rate correlation are here taken into account,
as they are the ones that more remarkably deviate delivered propulsion system
performance from expected nominal values. The upper-stage of a small launcher
is considered. The engine has a partially regulated pressure-fed system. First,
the deterministic optimal design is obtained by means of a nested direct–indirect
optimization procedure, and launcher performance are evaluated considering non-
nominal regression rate correlations. The height of the attainable orbit results to be
strongly jeopardized when the regression rate is larger than that of the nominal case
(large oxidizer residual). In contrast, when regression rate is smaller than nominal,
residual propellant consists of fuel and a less severe performance degradation
occurs. Some improvements in the off-design behavior can be obtained if the engine
design is optimized for values of the regression rate correlation coefficient that
are larger than the nominal ones. Results shows that robustness of deterministic
solutions is not adequate (e.g., insertion within 100 km from the desired orbit
altitude). An evolutionary optimization code is then used to define the optimal
robust design. The fitness of each individual of the population is evaluated as a
linear combination of payload and an index that quantifies the effective reaching
of the target orbit under uncertainty (based either on the worst case scenario or
on the average performance). Results show that close matching of the required
performance (e.g., within 10 km from the desired orbit altitude) can be obtained
with a moderate (below 5 %) penalty on the payload.
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1 Introduction

Hybrid rocket engines (HRE) are promising propulsion systems. Their performance
is similar to that of storable or semi-cryo liquid rocket engines and they share
appealing features of both solid rocket motors and liquid rocket engines. Moreover,
they are cheaper and safer than liquid and solid rockets, and, in many cases, they are
more environmentally friendly than storable liquid and solid rockets. Due to these
reasons, many research programs focus on the development of HREs. Different
applications are being investigated, including microgravity platforms, upper stage
for small launchers, debris removal and commercial space flights.

Budget and time required for the development of HREs can be reduced if a
proper conceptual design is carried out. Multidisciplinary design optimization can
be performed to improve performance. The propulsion needs are strictly related
to the mission to be carried out and a coupled optimization of the propulsion
system and trajectory is required. This is especially true for HREs, which are one-
lever control engines and usually exhibit varying thrust profile and mixture ratio
shifting. Of course, the optimization process is simplified if the design variables
and the model parameters are assumed to have deterministic values. On the other
hand uncertainties, inherently present in real life, may cause severe deviation of the
performance from nominal values, so that vehicle performance are jeopardized or
even mission failure may occur. Therefore, it is important to take uncertainties into
account from the beginning of the design phase [20, 28]. The goal is to improve the
robustness of the design, i.e. to minimize the effects that uncertainty or variation of
design parameters may have on system performance, without eliminating the causes
of uncertainty or variation [3, 21, 24, 26].

Previous studies highlighted that a hybrid rocket upper stage is a viable option
for small/low-cost launchers [17]. The authors carried out deterministic multidis-
ciplinary optimizations and demonstrated that the use of HREs can provide a very
good margin of payload improvement [8, 9, 12, 13]. The present work concerns the
robust optimal design of a hybrid rocket upper stage for a small launcher, focusing
on the effects of the uncertainty of the parameters of the regression rate correlation.
In literature, few works have concerned robust design of HREs, and pointed out that
regression rate uncertainty is the most important factor that influences the propulsion
system performance [29, 30]. In fact, the fuel regression rate highly conditions
the design and the performance of HREs [22] and the parameters that appear in
the classical correlations that describe regression rate behavior may be affected by
relevant uncertainty. As a result, the deterministic optimum solution may not be
robust enough to guarantee a reliable insertion of the given payload to the prescribed
orbit [10].

In a previous work [9], the authors presented an approach to the deterministic
optimization of hybrid rocket design and trajectory, with several example of suitable
applications. In this chapter, a robust optimization procedure is presented. Reference
is made to the Vega launcher [16], which has three solid-propellant stages and
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a fourth liquid propellant stage. The fourth stage is first ignited to complete the
boost phase and then performs a second burn for the injection into the final orbit. A
HRE is considered to replace the third and fourth stages. It is designed to perform
the injection into the final orbit by means of two burns. Hydrogen-peroxide (HP)/
polyethylene (PE) is the propellant combination. A partially regulated gas-pressure
feed system is adopted because of its simplicity and lower cost compared to pump-
fed engines. First, a sensitivity analysis is performed. This analysis is pursued
via a multidisciplinary optimization approach, which couples the optimization of
propulsion system and 3D trajectory. The set of design parameters is optimized
by means of a direct method (mathematical programming), in conjunction with
an indirect procedure to optimize the trajectory. The performance index to be
maximized is the payload inserted into a reference orbit. The optimal values for
the propulsion system parameters are sought, while holding the lift-off mass and
the performance of the lower stages of the launcher unchanged (i.e., mass, altitude
and velocity at the upper stage ignition are assigned). The effects of the regression
rate on launcher performance, engine design parameters and engine operation are
investigated. Then the off-design performance are evaluated for different engine
designs as a function of regression rate parameter values, in order to find a design
which is more insensitive to regression rate uncertainty. Finally, an evolutionary
optimization code is used to define the optimal robust design. The fitness of each
individual of the population is evaluated as a linear combination of payload and
an index that quantifies the effective reaching of the target orbit under uncertainty
(based either on the worst case scenario or on the average performance).

2 Grain Geometry and Ballistic Model

In HREs, oxidizer and fuel are separated and stored in two different physical
phases. A HP/PE combination is here considered. The solid fuel PE is stored as
a cylindrical grain in the combustion chamber and the liquid oxidized HP is stored
in a tank and injected into the combustion chamber. The fuel grain presents one
or more perforations, called ports, through which the oxidizer flows. Combustion
takes place through diffusive mixing of oxidizer and fuel coming from the solid
grain surface. The fuel mass flow results to be proportional to the regression rate Py
and the perimeter P of the holes. Due to the low fuel regression rate and the high
trust level required, a multi-port grain geometry is here adopted in order to avoid
grains with unacceptable length. The regression rate is assumed to be uniform along
the port axis.

The geometry of the circular-section grain [2]. described in Fig. 1, is defined
by the number of ports N, the web thickness w and the grain outer radius Rg. The
parameters x, h, and ˇ are introduced

x D =N sin�1Œw=.Rg � w/� (1)
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Fig. 1 Grain geometry

h D
q
.Rg � w/2 � w2 � w tan.=2 � =N/ (2)

ˇ D =2C x=N (3)

to evaluate the grain geometry. The initial (subscript i) port area Ap is

.Ap/i D 2N
�
.Rg � w/2.1 � x/=.2N/ � hw=2/

�
(4)

For a given burning distance y (0 � y � w), one easily computes the burning
perimeter P

P D 2N
�
.Rg � wC y/.1 � x/=N C ˇyC hC .=2 � =N/y

�
(5)

and the port area

Ap D .Ap/i C 2N
˚�
.Rg � wC y/2 � .Rg � w/2

�

.1 � x/=.2N/C ˇy2=2C hyC .=2 � =N/y2=2
	

(6)

No pyrolysis of the lateral ends is considered. Pressure losses inside the combustion
chamber are taken into account by relating the chamber head-end pressure p1 to
the chamber nozzle-stagnation pressure pc. An approximate relation, similar to that
proposed by Barrere et al. [1] for side-burning grains, is used

p1 D
"

1C 0:2
�

Ath

Ap

�2
#

pc (7)

where Ath is the throat area.
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The regression rate is determined by the oxidizer mass flow rate PmO and grain
geometry

Py D a . PmO=Ap/
n (8)

with nominal values for the regression rate correlation [18, 27] a D 7 � 10�6 and
n D 0:8, when SI units are used. The hydraulic resistance Z in the oxidizer flow path
from the tank to the combustion chamber determines the oxidizer flow rate. Under
the assumption of incompressible turbulent flow

PmO D
p
.pt � p1/=Z (9)

where pt is the oxidizer tank pressure. The value of Z is assumed to be constant
during engine operation. The fuel mass flow PmF is obtained as

PmF D 	F PyAb D 	F PyLbP (10)

where 	F is the fuel grain density, Ab is the burning area, and Lb is the cylindrical
grain length. The mixture ratio ˛ is

˛ D PmO

PmF
/ Pm1�n

O An
p=Ab (11)

An isentropic expansion in the nozzle is assumed, and the chamber nozzle-
stagnation pressure pc is determined by

pc D . PmO C PmF/c�

Ath
(12)

The performance of the propellant combination is evaluated [19] as a function
of the mixture ratio ˛, assuming pc D 10 bar. Even though the actual pressure in
the combustion chamber can span over a wide range during engine operations, the
error is small for chamber pressures and mixture ratios considered in this chapter.
Frozen equilibrium expansion is assumed; the exhaust gas maintains throughout the
nozzle the composition that it has in the combustion chamber. This conservative
assumption of frozen equilibrium expansion is adopted to account for the low
combustion efficiency of HREs; in addition a 0.96 c�-efficiency [25] is introduced.
Third-degree polynomial curves fitting the characteristic velocity and specific heat
ratio are embedded in the code to compute the proper values as the mixture ratio
changes during engine operations.
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3 Deterministic Design and Optimization

A suitable set of variables must be used to define the engine geometry and the
propulsion system. In an initial design phase, variables that have a clear physical
meaning and can be easily estimated are preferred. According to the chosen ballistic
model, the design of the HRE is defined by the initial thrust level Fi, the initial
mixture ratio ˛i, the nozzle expansion ratio E, the initial value of tank pressure
.pt/i, the initial value of chamber pressure .pc/i, and the ratio J of the throat area
to the initial port area. Some of these variables are however here constrained. The
initial chamber pressure is assigned by imposing .pc/i D 0:4 .pt/i; actually, the ratio
pt=pc varies during operation, but the assumed initial ratio is usually sufficient to
guarantee pt=pc > 1:5 and to avoid coupling between the hybrid engine and the
oxidizer feed system. The initial port area to throat area ratio J should be as large
as possible but not exceed 0.5 to avoid excessive pressure losses and nonuniform
grain regression: J D 0:5 is therefore assumed throughout. The initial tank pressure
would assume rather low values if left unconstrained, so its value is here fixed at
25 bar.

A partially regulated feed system is considered: A phase with constant tank
pressure, maintained by means of helium flowing from an auxiliary tank, is
introduced, followed by a blowdown phase. The initial ullage volume is assumed to
be 3 % of the oxidizer volume, in order to have a stable regulator response when the
out flow starts [4]. In this case two additional parameters are the auxiliary gas tank
volume Va and the initial pressurizing gas pressure pa; the latter is fixed at pa D 200
bar, even though improved performance could be obtained by increasing the gas tank
pressure. The parameter Va is conveniently replaced by the exhausted oxidizer mass
at the beginning of the blowdown phase .mO/BD. When the tank pressure is kept
constant pt D .pt/i, whereas pt is calculated assuming an isentropic expansion of the
pressurizing gas in the tank during the subsequent blowdown phase. By indicating
with subscript BD the values at the beginning of the blowdown phase, one has

pt D .pt/i

�
.Vg/BD

Vg

��g

(13)

where the gas volume in the tank Vg D .Vg/iCmO=	O depends on the oxidizer mass
that has been exhausted (mO), .Vg/BD D .Vg/i C .mO/BD=	O, and �g is the specific
heat ratio of the pressurizing gas. The design parameters are optimized by means of
a direct method, described in the following.

Given the set of design parameters, the engine geometry is initially determined
and the trajectory is then optimized to determine the payload. From ˛i, the relevant
properties of the combustion gases can be computed and the thrust coefficient CF

can then be evaluated by assuming an isentropic one-dimensional expansion to the
exit conditions (subscript e), with constant specific heat ratio � (a 0.98 correction
factor introduced to modify the vacuum thrust coefficient)
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where the term related to the atmospheric pressure p0 is always small, as the third
stage always flies at high altitude. From Fi, the mass flow rates at rocket ignition
(i.e., at t D 0) are found

. Pmp/i D .1C ˛i/. PmF/i D 1C ˛i

˛i
. PmO/i D Fi

c�
i .CF/i

(15)

and throat and initial port areas Ath and .Ap/i are then determined

Ath D . Pmp/i

.pc/ic�
i

I .Ap/i D Ath

J
(16)

The nozzle throat area Ath is considered to be constant during operation. One also
finds

.Ab/i D .Ap/
n
i

a	F

. PmF/i

. PmO/
n
i

(17)

The grain geometry can then be derived by means of an iterative procedure. A
tentative value is assumed for Rg and Eqs. (1)–(4) are numerically solved for x, ˇ,
h, and w given the required initial port area. Equation (5) at ignition (y D 0) gives
the initial perimeter Pi to compute the grain length Lb D .Ab/i=Pi. Equation (8)
is integrated up to burnout during the optimization of the ascent trajectory. The
optimization procedure corrects the tentative value for Rg to match the necessary
condition yf D w at burnout.

The head-end pressure is computed with Eq. (7) and, knowing the initial tank
pressure, also the hydraulic resistance Z can be determined by applying Eq. (9)
at t D 0. The engine geometry is completely defined and, once the initial ullage
volume in the propellant tank has been assumed and the pressurization system has
been specified, the engine performance can be evaluated during operation.

The tank pressure is either pt D .pt/i or it is provided by Eq. (13). Numerical
integration of Eqs. (8)–(10), allows for the evaluation of the fuel grain geometry, the
exhausted masses of oxidizer and fuel, and their mass flow rates. At each instant
t, once the tank pressure pt and the engine geometry are known, the regression
rate, the propellant flow rates (and their ratio ˛), c�, pc and p1 are computed by
numerically solving Eqs. (8)–(12) while the curve fit for c� as a function of ˛ is
used. Then, the thrust level F D pcAthCF is determined by evaluating CF at the
actual altitude via Eq. (14), in order to integrate the trajectory equations. At burnout
the overall propellant is finally evaluated, and an estimation of the structural masses
can be obtained. The oxidizer volume is required to determine the initial ullage
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volume. A tentative value is assumed for the overall oxidizer mass and is corrected
by the indirect method during the trajectory optimization, in order to match the value
obtained by integrating Eq. (9) up to the orbit insertion.

The optimization procedure aims at finding the engine design parameters and the
corresponding trajectory that maximize the mission performance index, that is, the
payload inserted into a prescribed orbit. A mixed optimization procedure [6] is here
adopted. An indirect method [11] optimizes the trajectory for each choice of the
engine parameters. These are instead optimized by means of a direct procedure [5].
Both methods have been developed at the Politecnico di Torino.

Tentative values are initially assumed for the design parameters, i.e., Fi, ˛i, E, and
.mO/BD. For each set of parameters the fast and accurate indirect procedure provides
the optimal trajectory and the corresponding performance index; few seconds are
required when a 2 GHz PC is used. The design parameters are then varied by
small quantities to numerically evaluate the derivatives of the performance index
with respect to the design parameters. To find the maximum performance index,
a procedure based on Newton’s method is used to determine the set of design
parameters which simultaneously nullify the index partial derivatives. Only a few
minutes are sufficient to obtain the optimal design and the corresponding trajectory.

A point mass rocket is considered for the trajectory optimization. The state
equations [6] provide the derivative of: Position r (radius, latitude and longitude),
velocity v (radial, eastward, and northward components) and rocket mass M. In a
vectorial form one has

dr
dt
D v

dv
dt
D gC F � D

m

dM

dt
D � jFj

c�CF
(18)

An inverse-square gravity field g is assumed. An interpolation of the standard
atmosphere is used to evaluate density and pressure as a function of the rocket
altitude to compute the aerodynamic drag D.

The equations of motion are written in non-dimensional form to improve the inte-
gration’s numerical accuracy. The trajectory is split into phases with homogeneous
control law. In the present case, the trajectory consists of four arcs: First burn, split
into constant-pressure phase and blowdown phase, coasting, and second burn. The
initial rocket conditions (position, velocity, and mass) are given.

The details of the indirect optimization procedure can be found in Ref. [6] and
are here only summarized. An adjoint variable is associated to each equation; the
theory of optimal control provides the Euler-Lagrange equations for the adjoint
variables, algebraic equations that determine the control variables (i.e., the thrust
direction), and the boundary conditions for optimality, which also implicitly define
the engine switching times. The multipoint boundary value problem, which arises
from the application of the theory of optimal control, is solved by a procedure
[14] based on Newton’s method. Tentative values are initially chosen for the
problem unknowns and progressively modified to fulfill the boundary conditions.
The unknown parameters are the time lengths of each phase, the initial values
of five adjoint variables (the variable corresponding to longitude is null, the one



Optimal Robust Design of Hybrid Rocket Engines 277

corresponding to the mass is fixed at one, as the problem is homogeneous in the
adjoint variables, which can therefore be arbitrarily scaled). The overall oxidizer
mass and the grain radius are additional unknowns.

No constraints (dynamic pressure, heat flux, acceleration) are explicitly imposed
during the trajectory optimization. However, unconstrained optimal trajectories tend
to penetrate deeply into the atmosphere during the coasting arc, causing excessive
thermal loads (it is here supposed that, at the ignition of the third stage, the fairing
has already been jettisoned). A rigorous analysis of this problem is not carried out
here; only, a constraint, which forces the velocity to be horizontal at the end of the
first burn, is added. An additional unknown (the adjoint variable corresponding to
the horizontal velocity component has a free discontinuity at the end of the first burn)
is introduced in the trajectory optimization procedure. This constraint is sufficient
to guarantee a trajectory that does not reenter into the atmosphere and has limited
thermal loads. Typically, a 10 kg penalty is associated to the introduction of this
constraint.

4 Numerical Results for Deterministic Design

The design of a hybrid propellant third stage is considered, with the aim of
maximizing the payload delivered into a 700-km polar orbit. Data and boundary
conditions are detailed in Ref. [7]. Fixed conditions at the ignition of the third stage,
consistent with a launch from Kourou, have been assumed: height h D 86:88 km,
latitude ' D 9:11ı, velocity components in the radial northward and eastward
directions u D 0:142 km/s, v D 0:230 km/s, w D 4:146 km/s, respectively, mass
14,522 kg. A 8-port grain is assumed.

The indirect trajectory optimization maximizes the final mass (initial mass minus
exhausted propellant) given the propulsion system design, for assigned value of a
and n. This is equivalent to maximize the payload, which is evaluated by subtracting
the mass of the propulsion system, i.e., the masses of combustion chamber, nozzle,
tanks, rocket casing and propellant sliver, from the final mass; these masses are
estimated by means of suitable assumptions and approximations [8]. The direct
optimization procedure for the design variables determines the values that maximize
the payload, i.e., the nozzle expansion area ratio, the oxidizer mass of the constant-
pressure phase, and the initial values of thrust and mixture ratio. Very small values
of tank pressure would be required for optimal performance, with the risk of poor
combustion due to low regression rate. For this reason the tank pressure is here fixed
at 25 bar.

Nominal values of the regression rate correlations, that is, Eq. (8), are a D 7 �
10�6 m2nC1 sn�1 kg�n and n D 0:8. A sensitivity analysis is first carried out to assess
how changes of ballistic properties (a and n) affect the deterministic optimal design.
Variations between 6:9 � 10�6 and 7:1 � 10�6 m2nC1 sn�1 kg�n are assumed for a,
whereas n varies between 0.79 and 0.81. The optimization procedure for the same
initial conditions and final orbit is repeated for the nominal values and for the values
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Table 1 Optimal deterministic designs and performance for different ballistic
properties

a mu Fi .mO/BD

m2nC1 sn�1 kg�n n kg kN ˛i E kg

7:0 � 10�6 0:80 1955:3 327:7 6:30 15:14 3961:6

6:9 � 10�6 0:79 1955:0 317:5 6:38 15:29 3976:2

6:9 � 10�6 0:81 1955:0 334:1 6:23 15:04 3951:5

7:1 � 10�6 0:79 1955:5 321:5 6:37 15:23 3971:8

7:1 � 10�6 0:81 1955:2 338:4 6:22 14:98 3947:1

Table 2 Off-design attainable orbit height (km) of deterministic designs

Design values

Case A Case B

a D 7:0 � 10�6 m2nC1 sn�1 kg�n a D 7:1 � 10�6 m2nC1 sn�1 kg�n

n D 0:80 n D 0:81

a, m2nC1 sn�1 kg�n n D 0:79 n D 0:80 n D 0:81 n D 0:79 n D 0:80 n D 0:81

6:9 � 10�6 564 669 266 431 534 638

7:0 � 10�6 594 700 109 461 565 699

7:1 � 10�6 625 511 – 491 596 700

at the extremes of the variation intervals. Results in terms of payload and design
variables are summarized in Table 1.

Ballistic properties greatly affect the evolution of thrust and mixture ratio during
operation, and relevant changes (up to 7 %) in some of the design variables are
required to guarantee almost the same payload, in the presence of even small
differences in a and n. The optimal design changes are a clear sign that uncertainties
in the knowledge of the ballistic properties may have a large influence on the
performance of a given design and justify the need of a robust design approach.

To this purpose, the performance of a design which is optimal for specific a and n
values, must be evaluated when the ballistic properties assume different values. For
a given design, the rocket mass budget (including payload), grain and feed system
features are now all fixed. The optimization procedure maximizes the orbit height
to which the payload is delivered (700 km in the nominal case). Five equally spaced
values in the variation intervals are evaluated for a and n. Results are presented only
for two cases: Case A assumes nominal values, that is, a D 7:0�10�6m2nC1sn�1 kg�n

and n D 0:80; case B has a D 7:1 � 10�6 m2nC1sn�1 kg�n and n D 0:81 and exhibits
the most robust performance among the deterministic designs. Table 2 shows the
orbit height that can be reached by a given (optimal) design as a function of the
actual values of a and n used to compute the ascent trajectory.

When a and n assume values that differ from those used to optimize the design,
performance is depleted. With similar relative variation ranges, the effect of n (mass
flux exponent) is larger than the one of a. The performance of the nominal design
rocket (case A) when a and n assume different values shows an evident asymmetry,
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depending of whether the burning rate is larger (a and n greater than the nominal
values) or lower compared to the nominal one. For a large burning rate the fuel
is completely burned before all the oxidizer has been exhausted. A large residual
oxidizer mass remains on board and greatly penalizes the performance. When
a D 7:1 �10�6 m2nC1sn�1 kg�n and n D 0:81 the rocket designed for nominal values
(case A) cannot even achieve a sufficient �V to reach any orbit. On the contrary,
for values of the regression rate lower than those used to design the rocket, there
is a smaller performance depletion, as the oxidizer is exhausted first, and only a
relatively small fuel mass remains on board. This diverse behavior is caused by the
relatively large value of mixture ratio; the same residual percentage (which one can
assume to be produced by changes in the ballistic properties) corresponds to a much
larger residual mass for the oxidizer than the fuel. These observations suggest that
a design which is carried out for the ballistic properties corresponding to the fastest
burning rates would show good performance for any combination of the actual
ballistic coefficients. This supposition is confirmed by the results in Table 2, which
shows that, even with a remarkable penalty (up to 270 km), orbit can be achieved
even for ballistic coefficients at the opposite extreme of the variation interval.

5 Robust Optimization

A robust design must be such that satisfactory performance can be obtained for any
values of a and n. The solutions found using the approach described in the previous
section do not have satisfactory off-design performance. The most appealing case
(i.e., B) presented in Table 2, may possibly insert the payload 270 km below the
required altitude. It is necessary to give up some payload to achieve robustness, that
is, the capability of achieving a suitable orbit altitude under non-nominal conditions.
The engine must have more fuel and more oxidizer to adapt to both fast and slow
burning rates, and it is necessary to enlarge the set of design variables to determine
the required values. In the optimal design procedure, oxidizer and fuel masses
are implicitly defined to assume the minimum values that allow to achieve the
prescribed orbit for the assigned values of a and n (thus maximizing the payload). In
the robust design they must assume larger values that must be properly determined.

An evolutionary optimization algorithm developed at Politecnico di Torino
[23] is employed to this purpose. The algorithm can employ in parallel different
algorithms (genetic algorithm, differential evolution, particle swarm optimization),
but only particle swarm optimization with 20 particles is used here, since it exhibits
a good compromise between probability of success (i.e., finding the optimum)
and convergence speed. The set of design variables is conveniently re-defined to
comprise Rg, w, Lb, Z, .mO/f , and, again, .mO/BD and E. This set of variables
completely determines the propulsion system configuration and the payload. Ranges
for the variables are chosen to comprise the optimal design values and are shown
in Table 3. Some of the optimization runs produce values that lie on the boundary.
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Table 3 Variable ranges for robust optimization

Variable Rg w Lb Z .mO/f .mO/BD E

m m m – kg kg –

Lower boundary 0:45 0:045 3:2 90 9440 3780 14

Upper boundary 0:53 0:056 3:8 140 9730 4360 20

Usually, small improvements are obtained if the variable range is enlarged, but these
cases are not discussed here in detail.

A 3� 3 grid is used to assess off-design performance (as in Table 2) with
ai � 106 D 6:9; 7; 7:1m2nC1sn�1 kg�n for i D 1; 2; 3; respectively, and nj D
0:79; 0:8; 0:81 for j D 1; 2; 3; respectively. For each individual the altitude of the
attained orbit hij is evaluated for the nine combinations of a and n.

Optimal robust design requires large payloads while assuring satisfactory off-
design performance in terms of orbit altitude. Since two objectives are relevant (i.e.,
payload and altitude), an �-constraint approach [15] is adopted to find the Pareto
front of robust solutions. Both the worst-case scenario and the average performance
are considered. The worst case scenario evaluates the maximum altitude constraint
violation, that is the difference between the imposed altitude (h� D 700 km) and the
minimum achieved altitude (only when it is below h�) �max D maxij.0; h� � hij/.
The minimum altitude hmin D h� � �max is constrained to a specific value � by
maximizing the performance index

J1 D mu � k1 max.0; � � hmin/ (19)

with a sufficiently large penalty weight k1 (e.g. 2). On the other hand, the average
constraint violation�avg DPij pipjmaxij.0; h��hij/ can be considered (a binomial
distribution is assumed giving p1 D p3 D 0:25 and p2 D 0:5). The average altitude
is then havg D h� ��avg and the index

J2 D mu � k2 max.0; � � havg/ (20)

is maximized selecting k2 D 20 to force the average altitude at �. Different values
are selected for � to evaluate the trade-off between payload and robustness. The
�-constraint method works flawlessly and allows to find the non-convex Pareto
front. It is almost a straight line for the worst case (continuous line in Fig. 2), with
dmu=dhmin nearly constant: about 2 kg of payload are lost for a 3 km increase of the
minimum altitude. The behavior of average-altitude Pareto front is instead convex
(dashed line in Fig. 2). The results of the robust optimization are summarized in
Fig. 2 and are compared to the optimal deterministic designs in Tables 4 and 5.

Design variables of the robust optimization exhibit a somehow irregular behav-
ior: exact convergence to the optimum would require large computational times with
marginal improvements. The evolutionary algorithms is stopped after 100 steps and
the algorithm typically converges to a set of variables which is capable of assuring
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Fig. 2 Minimum and average altitudes of optimal robust designs

Table 4 Performance of
deterministic and robust
designs

Case mu �max �avg

kg km km

Deterministic
A 1955 700 198

B 1955 269 135

J1 max
� D 600 km 1939 100 23:5

� D 630 km 1915 70 13:9

� D 660 km 1896 40 6:0

� D 690 km 1877 10 1:3

J2 max
� D 680 km 1936 108 20:0

� D 690 km 1913 72 10:0

� D 695 km 1898 47 5:0

� D 698 km 1890 31 2:0

� D 700 km 1873 0 0:0

sufficient performance. A comparison to the deterministic designs confirm that
robustness requires the increase of fuel (mainly) and oxidizer (to a lesser extent)
masses. Also, the nozzle expansion ration is increased to improve the specific
impulse, thus reducing the propellant requirement (which is subject to uncertainty)
at the expense of a heavier nozzle. As the robustness requirements are strengthened,
the propellant mass is increased. Performance show that the required 700-km
altitude can be assured in any case with an 82-kg penalty in terms of payload, which
decreases as the robustness requirement is loosened. It is worth noting that small
design changes are required, but they have a quite relevant effect on performance.



282 D. Pastrone and L. Casalino

Table 5 Comparison of deterministic and robust designs

Case Rg w Lb Z .mO/f .mO/BD E

m m m – kg kg –

Deterministic
A 0:503 0:0447 3:58 133:7 9541 3961 15:1

B 0:513 0:0459 3:43 125:6 9537 3947 15:0

J1 max
� D 600 km 0:482 0:0559 3:37 90:0 9515 3993 18:6

� D 630 km 0:484 0:0547 3:42 90:0 9518 3928 18:9

� D 660 km 0:483 0:0557 3:41 90:0 9543 3985 18:1

� D 690 km 0:483 0:0556 3:45 90:0 9538 3953 18:4

J2 max
� D 680 km 0:483 0:0560 3:35 90:0 9500 3960 20:0

� D 690 km 0:483 0:0560 3:33 90:0 9540 3964 20:0

� D 695 km 0:483 0:0555 3:44 90:0 9511 4034 19:7

� D 698 km 0:482 0:0557 3:43 90:0 9514 4036 20:0

� D 700 km 0:482 0:0560 3:41 90:0 9533 3993 20:0
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Fig. 3 Thrust history for deterministic design (case A) and optimal robust design (� D 700 km)

Figures 3 and 4 compare thrust and mixture ratio histories for the deterministic
optimum and the optimal robust design with � D 700 km in the case of nominal
values of a and n. The robust design exhibits slightly larger changes of thrust
magnitude and mixture ratio shifting, due to the reduced grain radius and larger
web thickness, which cause enhanced changes of port and burning area. Differences
are however quite limited, as, in this case, robustness can be obtained with moderate
changes in the engine design.
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6 Conclusions

The robust design of a hybrid rocket engine to be used as the third stage of a three-
stage launcher is discussed in order to take the uncertainties of the coefficients in
the regression rate correlation into account. An analysis of the optimal deterministic
designs, which are obtained by means of a coupled direct–indirect optimization
method, shows that the required altitude may be missed by a large margin in off-
design conditions and justifies the need of a robust design procedure.

A robust optimization procedure based on an evolutionary algorithm is intro-
duced. An �-constraint approach is adopted to maximize payload while minimizing
constraint violation either in terms of worst-case scenario or average performance.
The procedure proves to be effective and relatively fast, as an optimization run
requires roughly 2 h on a standard 2.13 GHz PC. Results prove that robustness can
be achieved at the expense of a relatively small payload reduction: a penalty of 82 kg
(4 %) with respect to the deterministic optimum is encountered to guarantee a 100 %
success in achieving the required altitude.
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Abstract The search for a better understanding of complex systems calls for
quantitative model development. Within this development process, model fitting to
observational data (calibration) often plays an important role. Traditionally, local
optimization techniques have been applied to solve nonlinear (as well as linear)
model calibration problems numerically: the limitations of such approaches in
the nonlinear context—due to their local search scope—are well known. In order
to properly address this issue, global optimization strategies can be used to find
(in practice, to approximate) the best possible model parameterization. This work
discusses an application of nonlinear regression model development and calibration
in the context of space engineering. We study a scientific instrument, installed on-
board of the International Space Station and aimed at studying the Sun’s effect
on the Earth’s atmosphere. A complex sensor temperature monitoring objective
has motivated the adoption of an ad hoc calibration methodology. Due to the
apparent non-convexity of the underlying regression model, a global optimization
approach has been implemented: the LGO software package is used to carry out
the numerical optimization required periodically for each stage of the analysis. We
report computational performance results and offer related insight. Our case study
shows the robust and efficient performance of the global scope model calibration
approach.
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1 Introduction

Regression analysis [1–7] is an important subject across a broad range of studies
in econometrics, engineering, and the sciences. Nonlinear regression is a general
framework for regression analysis in which the observational data are modeled by
a postulated nonlinear function: this function is then parameterized according to a
stated optimality criterion. A quick Internet search for the key words “Nonlinear
Regression” returns close to 2,700,000 results (as of March 2016, using Google’s
search engine), clearly indicating a substantial interest towards the subject.

The most frequently used classical optimization method to find the parameters
of a nonlinear regression model (based on the minimization of the corresponding
least squares error function) is the Levenberg–Marquardt algorithm (LMA). The
LMA is a modification of the Gauss-Newton method, proposed by Levenberg [8]
and rediscovered by Marquardt [9]: consult e.g. the related discussions in Press
et al. [10], Björck [2], and Kelley [11]. In the LMA a linearized local approximation
of the nonlinear model is used sequentially, and—based on a suitable initial solution
“guess”—the model parameters are iteratively refined.

The model fitting exercise can become a hard numerical challenge when the
conjectured regression model includes highly nonlinear functions. This study will
discuss such a case with compositions of trigonometric functions in the regression
model. In similar cases, the error function can be multi-extremal: hence, different
initial solution “guesses” can lead to locally best model fitting results of broadly
varying quality—calling for a global scope calibration strategy.

Model development studies in which a proper global optimization approach is
required arise in numerous real-world applications: consult e.g., Pintér ([12, 13]),
Van der Molen and Pintér [14], Finley et al. [15] for related examples and case
studies. The substantial advances in global optimization witnessed in recent decades
support the application of global optimization algorithms and software to handle
challenging nonlinear model fitting problems. Without going into details on the
subject of global optimization that are outside of the scope of the present discussion,
we refer e.g. to [12, 16–21].

The chapter is organized as follows. The subjects of model calibration, global
optimization and information regarding the LGO software package are concisely
presented and discussed in Sect. 2. Following these brief expositions that serve as the
technical basic of our modeling and solution approach, we present a trend analysis
and failure detection case study arising in a current space engineering application
(Sect. 3). Section 4 presents concluding notes, followed by a list of references.
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Let us mention that a broad range of space engineering case studies is discussed
in the volumes edited by Fasano and Pintér [22, 23]: several of these studies include
also various model calibration tasks as important ingredients.

2 Global Optimization for Nonlinear Model Fitting

2.1 The Model Calibration Problem

Model development is an essential research tool in many quantitative studies. In very
general terms, the following main phases of such development can be distinguished:

1. formulation of model objectives
2. determination of the model structure (functional form selection) based on domain

specific knowledge and expertise
3. data collection and analysis, to support model development
4. model fitting to data (calibration, parameterization)
5. validation and sensitivity study
6. applications in analysis, forecasting, management, and so on.

Hence, model calibration is an important stage of the process of understanding
and managing complex (chemical, engineering, environmental, physical, or other)
systems.

In order to present a general model calibration problem statement, we introduce
the following notation:

tD 1, : : : ,T time moments of system observations; T is the number of data used
x model parameters (to be selected according to some chosen optimal-

ity criterion); x is assumed to be a real n-vector
D set of admissible (feasible) model parameterizations
M continuous (real-valued, scalar) model function; the values of M

depend on x, for each value of tD 1, : : : ,T
mt model output data at time t; mtDM(x,t); their sequence is fmtg, for

tD 1, : : : ,T
ot measurement data at time t corresponding to mt; their sequence is

fotg, tD 1, : : : ,T
f continuous error function that expresses the discrepancy between the

sequences m D fmtg and o D fotg W f D f .fmtg ; fotg/ :
Applying these notations, the generic model calibration problem can be formu-

lated as

min f .fmtg ; fotg/
mt D M.x; t/ t D 1; : : : ;T
x 2 D � Rn:

(1)
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In order to specify the general model (1), next we present some frequently used
model types. The set of feasible parameter settings D can be defined by explicit finite
lower and upper bounds (n-vectors l and u) regarding x, as well as by an optional
set of k� 0 additional constraints written in summary form as g(x)� 0 (g denotes a
continuous k-dimensional vector function when such constraints are present):

D D fx W l � x � u; g.x/ � 0g : (2)

Based on these conditions, D is a bounded subset of the n-dimensional Euclidean
space; we will assume that D is non-empty.

The aggregate model error function f is often defined using a suitably chosen
lp-norm to measure the discrepancy between the vectors m and o:

f D f .fmtg ; fotg/ D jjm � ojjp 1 � p � 1: (3)

Various extensions of this model can be introduced to handle more general
formulations, including consideration for uncertainties and/or for multiple model
calibration objectives: consult, e.g. Van der Molen and Pintér [14], Pintér [12].

In the context of our discussion, let us point out that the general nonlinear
model calibration problem (1)–(3) could well be multi-extremal: cf. e.g. Pintér [12]
Chapter 4.5, and several environmental modeling case studies discussed in the same
work that illustrate this aspect. For this reason, we have been introducing and using
global optimization technology to handle nonlinear model calibration problems
across a range of application areas.

2.2 The Global Optimization Model

The model calibration problem (1)–(3) belongs to the general class of continuous
global optimization models stated as

min f .x/ (4)

D D fx W l � x � u; g.x/ � 0g
(5)

f and g .the latter component-wise/ are continuous functions in Œl; u� : (6)

Notice the absence of the usual convexity assumptions in the above general model
formulation that would justify the use of local optimization tools. In (4)–(6) not only
the objective f could be multi-extremal, but the feasible region D could also be non-
convex. At the same time, the above stated key assumptions already guarantee that
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the optimal solution set X* of model (1)–(3) is non-empty. For additional technical
details, we refer to Pintér [12].

2.3 LGO Solver Suite for Nonlinear Optimization

The traditional numerical optimization methods used for model calibration seek
only for local optima (tacitly assuming the availability of a sufficiently good initial
parameter vector). In the general framework presented here this may not be a
realistic assumption: therefore global scope search strategies will be required to
parameterize (possibly multi-extremal) nonlinear regression models.

Specifically, we will use the Lipschitz Global Optimizer (LGO) solver suite
for constrained nonlinear—both global and local—optimization. LGO can handle
models with merely continuous structure (without asking for higher order—
gradient, Hessian—information); and its operations are based on model function
values. This feature makes LGO a suitable choice to tackle a broad range of model
calibration problems, including completely “black box” models, in addition to
standard (analytically defined) models.

LGO has been discussed in other works, cf. e.g. Pintér [12, 21, 24, 25]: therefore
here we present only a summary description. The design of LGO is based on
the flexible combination of several nonlinear optimization algorithms, each with
corresponding theoretical (provable) global and local convergence properties. It
should be noted that the name LGO reflects the original (first) global solver
component embedded in the software. (Note in passing that even this solver
component uses only model function values, without requiring exact—typically
unknown—Lipschitz-continuity information.)

Next, we briefly describe the overall algorithmic structure of LGO. LGO includes
a local solver (LS) option which precedes all global search options. LS can be started
either from an initial solution point provided by the user, or from a default point
determined by LGO. The LS search mode can be also used without a subsequent
global search phase. Following the LS phase, two quick global pre-solvers are
launched: each of these is followed by LS from the current best point, if an
improved solution has been found. The overall purpose of these solver components
is to provide a reasonable quality solution with a relatively small global search
effort. Next, one of three theoretically “exhaustive” global search options is invoked
based on the LGO user’s preference: the methods to choose from are branch-and-
bound (BB), single-start partially randomized search (RS), and multi-start partially
randomized search (MS). Each of BB and RS is followed by a LS phase, while each
major MS iteration is followed by a corresponding LS phase.

Based on the solver options summarized above, LGO—as a stand-alone solver
suite—can be used for both global and local constrained nonlinear optimization.
Without going into further details, we refer to Pintér [12] for an in-depth discussion
of the theoretical results leading to the global search options BB, RS and MS. The
relatively inexpensive first global pre-solver is described in Pintér and Horváth [26];
the second one is an unpublished heuristic strategy. The LS method is a generalized
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reduced gradient algorithm implementation: for background, consult e.g. Edgar
et al. [27].

In the practical context of numerical optimization—that is, in resource-limited
computations—each one of LGO’s “exhaustive” global search options generates a
global solution estimate(s) that is (are) refined by the seamlessly following local
search mode(s). This way, the expected overall result of using LGO is global
and/or local search based high-quality feasible solution that satisfies at least the
local optimality criteria. (To guarantee theoretical local optimality, standard local
smoothness conditions need to apply—at least whenever LS is invoked.)

At the same time, one should keep in mind that no global—or, in fact, any other—
optimization software will always work satisfactorily, with default settings and
under resource limitations related to model size, time, model function evaluation,
or other usage limits. With this cautionary remark in mind, extensive numerical
tests and a growing range of practical applications demonstrate that LGO and
its platform-specific implementations can find high-quality numerical solutions to
complicated and sizeable GO problems. For details, consult e.g. Pintér [12, 19, 25,
28], Pintér and Kampas [29], with references to a range of applications—including
also real-world model fitting problems.

LGO is available for use with a range of compiler platforms (C/CCC/C#,
Fortran 77/90/95), with seamless links to several optimization modeling languages
(currently, AMPL, GAMS, MPL), to Excel, and to the leading high-level technical
computing systems Maple, Mathematica, and MATLAB.

The structure of the compiler-based core LGO implementation used in our study
is shown by Fig. 1: a brief explanation of the symbols displayed follows below.

LGOMAIN is a driver program that defines or retrieves from the input file (called
LGO.IN) LGO’s static calling parameters before activating LGO. The adjective
static refers to model descriptor and solver option information that is defined (or
read) only once and then remains unchanged during a specific LGO run. LGOMAIN
may also include additional user actions such as links to other program files and to
external applications, to report generation and to the further optional use of LGO
results.

LGOFCT serves to define the dynamic components of an optimization problem:
these are defined by the model objective f and constraint functions g. Here dynamic
means that this file will be called at every algorithmic iteration step of LGO, to
evaluate its functions depending on the algorithmically generated sequence of input

Fig. 1 LGO application
program structure

LGO.IN  

LGOMAIN LGO  LGOFCT 

LGO.SUM   LGO.OUT   LGO.LOG  
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variable arguments x. Again, this file may include calls to other application programs
(as needed), in order to evaluate the model functions.

LGO.IN is an optionally used LGO input parameter (text) file that stores LGO’s
static calling parameters (unless these are directly defined by LGOMAIN).

The source code files LGOMAIN and LGOFCT are to be compiled and linked
to the LGO (object or dynamic link library) file. Upon launching the generated
executable program, LGOMAIN invokes the LGO solver suite; then LGO iteratively
calls LGOFCT.

LGO’s operations can be partially controlled by the static input parameter file
LGO.IN, or by changing LGOMAIN: this structure supports repeated LGO runs
under various model specifications and/or solver option settings. Of course, LGO-
FCT can also be changed if necessary to test different model variants. LGOMAIN
optionally reads LGO.IN when launched; in the opposite case all calling parameters
are directly defined in LGOMAIN.

LGO optionally generates result text files, on different levels of detail specified
by the user. The first one of these files, called LGO.SUM, presents only a concise
summary of the results obtained. The second file, called LGO.OUT, provides
more detailed information pertinent to the optimization process. The third file,
called LGO.LOG, reports the entire sequence of all arguments x generated and the
resulting function values f and g.

For additional details, we refer to the earlier listed references, especially to the
current LGO manual [25].

3 A Regression Model Case Study in Space Engineering

3.1 Introduction

Columbus is a science laboratory that is part of the International Space Station (ISS):
it is the largest contribution to the ISS made by the European Space Agency (ESA).
For information related to the ISS, consult NASA [30]; regarding Columbus, see
ESA [31]. The Columbus laboratory carries an extensive collection of instruments.
These instruments—referred to as payloads—are aimed at performing various
requested scientific experiments, and can be located either internally or externally.

The SOLAR (external) payload (ESA [32], see Fig. 2) has the scope of studying
the Sun with extremely high accuracy across most of its spectral range. Its scientific
contributions are mainly focused on solar and stellar physics, as well as on the
Sun’s interaction with the Earth’s atmosphere. Its monitoring activity has been in
continuous operation since its installation outside the ESA Columbus module in
February 2008.

SOLAR consists of three instruments that complement each other, to allow
measurements of the solar spectral irradiance virtually throughout the whole
electromagnetic spectrum (from 17 nm to 100 �m) in which 99 % of all solar
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Fig. 2 SOLAR. Copyright ©
ESA; http://www.esa.int/
ESA_Multimedia/Images/
2008/01/SOLAR

energy is emitted. These instruments are referred to as SOL-ACES (SOLar Auto-
Calibrating Extreme UV/UV Spectrophotometers; see NASA [33]), SOLSPEC
(SOLar SPECtral Irradiance measurements; see NASA [34]) and SOVIM (SOlar
Variable and Irradiance Monitor; see NASA [35]).

The present discussion is focused on monitoring the SOLAR sensor temperature.
Relevant data are retrieved continuously from the ISS to the Earth, in order to carry
out a dedicated trend analysis and failure detection activity. This is accomplished
periodically (every 3 months), applying regression analysis as described in the
following subsections.

3.2 Trend Analysis and Failure Detection

From the point of view of regression modeling, the trend analysis and failure detec-
tion activity essentially consists of deriving (repeatedly) the analytical expression
representing the sensor temperature trend, from the data available for each time
period analysed. (Actually, for safety reasons—in order to increase data reliability—
two sensors are utilized and the average of their measurements is considered.)
This analysis is then used in conjunction with a reference function to identify
possible deviations from the nominal state, together with the identification of
possibly occurring anomalies, as well as to predict (through extrapolation) the future
behaviour of the system, with respect to the temperature control. A further goal is
to verify that the expected temperature trend stays inside the admissible operational
range.

At its nominal state, the temperature trend is expected to have two leading modes:
a primary (carrier) and a secondary (modulating) periodic mode, as depicted by
Fig. 3.

The first mode is associated with the nodal precession of the ISS, with a period
of about 2 months [30]. The secondary mode is determined by the orbital motion of
the ISS around the Earth, with a period of about 90 min. Both modes are therefore

http://www.esa.int/ESA_Multimedia/Images/2008/01/SOLAR
http://www.esa.int/ESA_Multimedia/Images/2008/01/SOLAR
http://www.esa.int/ESA_Multimedia/Images/2008/01/SOLAR
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Fig. 3 Primary periodical (carrier) mode and secondary periodical (modulating) mode

Fig. 4 Possible systematic (linear) degradation function: an example

assumed to have approximately a sinusoidal nominal trend. A possible systematic
physical degradation of the SOLAR thermal protection system (due to ambient
radiation) is hypothesized next: for the sake of simplicity, the corresponding trend
function is assumed to be linear, see Fig. 4.

3.3 The Model Calibration Problem

The analytical formulation of the regression model outlined above leads to an
optimization problem, defined by the following objective function

min
A1;A2;
T01;T02;
K1;K2;
R; S

X

i2I

fDi � ŒA1 sin .T01 C K1Ti/C A2 sin.T02 C K2Ti/C RTi C S �g 2 (7)

We also consider the following box constraints:

A1 2
�
A1;A1

�
;A2 2

�
A2;A2

�
;T01 2

�
T01;T01

�
;T02 2

�
T02;T02

�
;

K1 2
�
K1;K1

�
;K2 2

�
K2;K2

�
;R 2 �R;R� ; S 2 �S; S� : (8)
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Fig. 5 Solution typology: graphical representation

In model (7)–(8) A1, T01, K1, A2, T02, K2, R, S are model parameters to estimate; I
denotes the set of sampling time moments, and Di are the corresponding temperature
measurements. The objective function terms A1 sin .T01 C K1t/ are related to the
primary mode, the terms A2 sin .T02 C K2t/ are related to the secondary mode, and
RtC S is the possible linear degradation.

The computational difficulty of this global optimization problem is dictated by
its highly multi-modal objective function. Evidently (after considering the specific
notations), model (7)–(8) is a special case of both generic model formulations (1)–
(3) and (4)–(6).

3.4 Solving the Regression Model

This section provides some insights and details regarding the actual application of
the globally optimized model calibration approach. Our experimental results will be
merely outlined, due to confidentiality restrictions: nonetheless, what follows will
suffice to illustrate the efficiency of the methodology adopted.

Let us point out that the amount of telemetry data to handle is huge. Approx-
imately 150 million sample points (observations affected by abnormal gaps and
spikes that are to be properly filtered) have been retrieved since 2011. This
circumstance has induced the need to develop a dedicated pre-processing package
which will not be discussed here.

Figure 5 illustrates a typical solution extracted from the set of those obtained
so far, considering 365 days of observation on the horizontal axis and temperature
trend expressed in centigrade degrees on the vertical axis.

The experimental analysis that has been performed since 2008 to date has
highlighted a slight increment of the amplitude A1 of the primary mode. A linear
degradation rate of about 1.35 degC/year has furthermore been detected based on the
mean value since 2008 to date. By extrapolating the latter information, compliance
with the currently given tolerance limits would be guaranteed until 2025, well
beyond the mission deadline.
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Fig. 6 An example of explained anomalies

No actual anomalies have been identified so far, although apparently some
occurred: in fact, these were related to non-nominal manoeuvres of the ISS
itself. Figure 6 shows an example of such explainable anomalies, pointing out
the supposed deviation by circling the relevant two sets of measurements. In all
observed cases, the event times corresponded exactly to specific non-standard
control actions performed by the ISS.

In our study, the LGO solver suite has been regularly (sequentially) used to
solve model calibration problems of the type (7)–(8). Since the frequencies and
amplitudes corresponding to the primary and secondary modes respectively are
characterized by pronouncedly different scales, in practice the relevant parameters
could be estimated separately. A first analysis is therefore performed regarding
the primary set of terms including a possible degradation A1, T01, K1, R, S, while
neglecting the secondary terms A2, T02, K2. Next, a number of short-term sub-
intervals is selected, and then an evaluation of the secondary parameters can
be carried out, while keeping the results obtained for the primary terms. The
average values of the secondary terms, derived considering the entire set of sub-
intervals selected, will yield the final estimation. At each step of this analysis, the
numerical results obtained in the previous step for the entire set of model parameters
(A1, T01, K1, A2, T02, K2, R, S) have been utilized as initial solution “guess” values.

In order to provide an overview of the solution quality obtained by the LGO
solver, observational data related to the time period January 2013 to December 2014
have been considered and analysed according to two different temporal frameworks:
365 days and 90 days. A set of 9 model fitting test case results is summarized in
Table 1, indicating also the number of observational data used, the computational
effort (expressed as hours:minutes:seconds), and the solution quality obtained. The
number of the optimized (primary) variables is 5, in each case shown.

For both timeframes considered, LGO finds parameter settings that lead to
remarkably well-fitted models. Two examples of the solutions found are shown
by Figs. 7 and 8 respectively: the scattered dots (representing actual data) are
compared with the continuous line representing the expected trend according to the
parameterized model resulting from the analysis.



298 J.D. Pintér et al.

Ta
bl

e
1

Il
lu

st
ra

tiv
e

ex
pe

ri
m

en
ta

lr
es

ul
ts

T
im

e
pe

ri
od

Te
st

ca
se

nu
m

be
r

N
um

be
r

of va
ri

ab
le

s
D

ay
s

D
at

es
N

um
be

r
of

da
ta

en
tr

ie
s

Pr
og

ra
m

ex
ec

ut
io

n
tim

e

N
or

m
al

iz
ed

le
as

t
sq

ua
re

s
er

ro
r

G
lo

ba
lo

pt
im

al
ity

st
at

us

T
E

ST
1

5
36

5
01

/0
1/

20
13

!
12

/3
1/

20
14

21
86

01
:4

2:
06

21
.9

7
O

pt
im

um
re

ac
he

d
T

E
ST

2
5

36
5

04
/0

1/
20

13
!

03
/3

1/
20

14
21

91
03

:1
6:

28
22

.1
7

O
pt

im
um

re
ac

he
d

T
E

ST
3

5
36

5
07

/0
1/

20
13

!
06

/3
0/

20
14

22
70

02
:2

4:
37

25
.9

2
O

pt
im

um
re

ac
he

d
T

E
ST

4
5

36
5

10
/0

1/
20

13
!

09
/3

0/
20

14
21

93
01

:0
7:

01
23

.2
4

O
pt

im
um

re
ac

he
d

T
E

ST
5

5
36

5
01

/0
1/

20
14

!
12

/3
1/

20
14

21
83

00
:4

3:
04

23
.1

2
O

pt
im

um
re

ac
he

d
T

E
ST

6
5

90
01

/0
1/

20
14

!
03

/3
1/

20
14

54
2

05
:5

2:
42

20
.0

4
O

pt
im

um
re

ac
he

d
T

E
ST

7
5

90
04

/0
1/

20
14

!
06

/3
0/

20
14

10
83

11
:5

3:
49

23
.9

6
O

pt
im

um
re

ac
he

d
T

E
ST

8
5

90
07

/0
1/

20
14

!
09

/3
0/

20
14

16
36

18
:0

8:
29

18
.6

5
O

pt
im

um
re

ac
he

d
T

E
ST

9
5

90
10

/0
1/

20
14

!
12

/3
1/

20
14

21
83

02
:1

2:
37

13
.8

8
O

pt
im

um
re

ac
he

d



Nonlinear Regression Analysis by Global Optimization: A Case Study in Space. . . 299

Fig. 7 Example of analysis for the carrier mode (TEST 1, 365 days)

Fig. 8 Example of analysis for the carrier mode (TEST 9, 90 days)

In all examples presented, a high-quality numerical global optimum (estimate)
is reached. Additional statistical analysis of the residuals (normalized with respect
to the mean value of the model function) exhibits an apparently “normal-like”
distribution: see Fig. 9. This finding is in line with the underlying statistical
assumptions of the least squares based model fitting paradigm.

4 Conclusions

This work discusses a nonlinear regression model development and calibration study
in the context of an application in space engineering. We study the SOLAR payload,
installed on-board of the International Space Station. This scientific device is aimed
at studying the Sun’s effect on the Earth’s atmosphere. Due to the apparent non-
convexity of the underlying mathematical model, a global optimization approach
has been proposed for model calibration. The LGO solver suite is used to carry out
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Fig. 9 Normal-like distribution of residuals for carrier mode

the numerical optimization required periodically for each analysis stage. Insights
regarding the experimental results and computational performance are provided.
Our case study demonstrates the efficiency of the approach proposed, as well as
of the software used.

Regarding the SOLAR mission, future research can be directed towards optimiz-
ing further model parameters relevant to the payload, such as the voltage/current
involved. Extensions to other scientific instruments on-board the International Space
Station can also be foreseen, as well as applications related to future scenarios
including the anticipated challenge of interplanetary missions.
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Regression-Based Sensitivity Analysis
and Robust Design

Guido Ridolfi and Erwin Mooij

Abstract This paper presents the Regression-Based global Sensitivity Analysis
method (RBSA). It is an approach for quantitative, variance-based, sensitivity
analysis of mathematical models used for design purposes. The method is based on
the subdivision of the global variance into its components, due to the design-factor
contributions, using general polynomial regression models. The performance of the
RBSA is compared to other methods commonly used in engineering for computing
sensitivity, namely, the method of Sobol’, the Fourier amplitude sensitivity test, the
method of Morris, and the standardized regression coefficients. It was found that
RBSA, under certain circumstances, provides very accurate results with a significant
reduction of the number of required model evaluations. A test case, using the
mathematical models of two subsystems of a spacecraft, demonstrates how RBSA
facilitates the discovery and understanding of the effects of the design choices on
the performance of the system.

Keywords Computer-supported design • Decision making • System(s) design •
Space systems • Global sensitivity analysis • Conceptual design

1 Introduction

Sensitivity Analysis (SA) is a technique used in many scientific and technical
environments with different purposes, such as the determination of the quality of a
certain model, validation of assumptions, or as a method to identify important design
factors. The SA method proposed in this chapter is intended to support the system-
design activities, where the system of interest is represented by its mathematical
model. A mathematical representation of the system to be designed (being very
preliminary or detailed, depending on the type of analysis to be performed) is
fundamental to understand the result of the decisions taken during the design on
its final performance (cause! effect), even before the system is built and operated.
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In this context, SA can be described as the study of the effect of a certain model
input Xi (or group of inputs) on a given model output Yj. It allows to identify
design drivers, i.e., those factors or group of factors that shall be carefully assessed
by the design team, because those factors will be the principal responsible for
determining the performance of the system. The effect mentioned before can be
the result of a local measure. It can be, for instance, the measure of a derivative,
e.g.,

�
@Yj=@Xi

�
XiDx�

, which requires an infinitesimal variation of the input Xi around
a specific value x�.

The measure of sensitivity can also be obtained when the input varies over a
specified finite interval �Xi. In this case, SA is valid over the entire interval of
variation spanned by the input factor (i.e., the design region of interest) rather than
only directly around a single (operating) point. Therefore, this type of SA is often
called global. The global importance of a factor Xi can be determined on the basis of
the reduction of the variance of the output Yj, V

�
Yj
�
, given that Xi, normally varying

over an interval �Xi, is fixed to x� [17, 18].
The computation of global sensitivity based on the variance of the model output

is a growing (and also logical) practice. It allows for taking the dimensions of
the design region of interest into account to provide multi-dimensional averaged
information on the effect of the factors on the output. The advantages of using global
sensitivity analysis and factors prioritization during the preliminary design of space
systems were already demonstrated [12]. Indeed, the knowledge of the importance
of the factors in their contribution to the output variance, is fundamental information
for engineers and can be used to identify and fix the non-influential factors (or those
with a limited influence) on the determination of the output of the model. The most
important ones may be ranked and their effect may be studied in more detail.

Sampling the design space is the first step necessary when the mathematical
model of a system needs to be studied. A sample is a set of points in the design
space (a k-dimensional hyperspace), whose coordinates are the values of the design
variables taken from their variability ranges. The model is executed using each
sample point as input. The corresponding output, i.e., the performance, can then
be studied in detail to draw conclusions on the correlation between input and
output. Key requirements for the chosen sampling method are, for a certain required
coverage of the design space, the total number of sample points, and the ability
to address both continuous and discrete design variables. One such method is
the so-called mixed-hypercube approach that was especially developed for this
[2, 11, 12, 14]. With some modifications this method can also be used to address
the robustness of the design, i.e., to make the design least sensitive to uncertainties
that cannot be controlled by the designer.

To address the above mentioned aspects of sensitivity and robustness, this chapter
is organized as follows. A literature survey of related work is provided in Sect. 2.
In Sect. 3 the Regression Based Sensitivity Analysis (RBSA) method is described
in detail. In Sect. 4 a comparison of RBSA with other methods for SA is presented.
In Sect. 5 we will introduce the augmented mixed-hypercube approach to be used
for robust design. A test case with the step-by-step implementation of RBSA is
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discussed in Sect. 6, where we address the sensitivities in the design of a satellite’s
communication and power system, as well as its robustness. Finally, conclusions are
provided in Sect. 7.

2 Related Work

Global SA can be computed using qualitative or quantitative methods; it depends on
the purpose of the analysis, on the complexity of the problem and on the available
computational resources.

A qualitative approach, like the method of Morris [8], allows to determine
the importance of the factors with a relatively limited computational effort. It is
based on the so-called elementary effect, which is a measure of the sensitivity in
the form of incremental ratios, i.e., an approximation of a local gradient within
a finite interval of variation of the variable. As such, the elementary effect is a
local measure of sensitivity. However, in the method of Morris, the final value
attributed to the sensitivity of each design variable is obtained by averaging several
elementary effects computed at different points of the input space [8]. The method
of Morris provides two qualitative measures of sensitivity, namely the mean, �,
and the standard deviation, � , of the elementary effects. Large values of � indicate
that a factor has a prominent overall influence on the output. Large values of � ,
instead, are the result of interactions of the factors with other factors or non-linear
effects on the output. It was recognised that the method of Morris may present
some limitations with non-monotonic problems. Campolongo et al. [1] propose an
alternative measure of the parameter �, namely ��, to avoid misleading results with
non-monotonic models. This is the measure that we also use throughout this chapter.
For more information on the method of Morris we refer the reader to the original
literature.

The method of Morris, and other qualitative methods, can only rank input
factors in order of importance. If from one hand qualitative methods are unable to
determine a quantitative measure of the contribution of the factors to the variability
of the performance, from the other hand quantitative techniques usually require
a large number of model evaluations to perform SA. This may be a limitation
when a large number of input factors are taken into account, or when the model
is computationally time consuming.

The sensitivity indices introduced by Sobol’, for instance, are quantitative [17,
21]. Consider, for instance, Y D f .X/ as the mathematical model of the system
of interest. Y is the output vector while X D .x1; x2; � � � ; xk/ is the vector of the k
independent input factors.

To compute the sensitivity with the method of Sobol’, a sample of N points is
taken from Y D f .X/ by evaluating the model N times. The unconditional variance
V .Y/ can be decomposed as follows [21]:

V .Y/ D
X

i

Vi C
X

i

X

j>i

Vij C � � � C V12���k (1)
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where Vi is the variance of Y due to factor i, Vij is the variance of Y due to
the interaction between factor i and factor j. All the terms of this relationship
are conditional variances of the factors indicated by the subscripts. For factor i,
for instance, Vi D V .E .Y jxi //. For the interaction factor Vij, instead, Vij D
V
�
E
�
Y
ˇ
ˇxi; xj

�� � Vi � Vj, which is the combined effect of the factors xi and xj

minus their individual conditional variances Vi and Vj.
Since the following relationship holds, V .Y/ D V .E .Y jxi //CE .V .Y jxi //, and

since the unconditional variance V .Y/ is constant, an important factor will lead to
a small value of E .V .Y jxi //, as anticipated before, or equivalently to a large value
of V .E .Y jxi // [17]. Therefore, each term in Eq. (1) can be used as a measure of
global sensitivity. Indeed, Sobol’ sensitivity indices are defined as follows [21]:

Si D V .E .Y jxi //

V .Y/
(2)

Si, one of the two measures of sensitivity introduced by Sobol’, is sometimes
called the first-order sensitivity index to distinguish it from higher-order sensitivity
indices (Sij, Sijw, or Sii, which represent the effects of the interactions between factors
or the effect of higher-order terms on the unconditional variance).

Another measure of sensitivity is represented by the so-called total-effect
sensitivity indices, STi. A total-effect sensitivity index takes the contribution to the
unconditional variance of a certain variable Xi into account, considering the first-
order and all higher-order effects that involves it. A total sensitivity index provides
an indication of the overall effect of a certain variable on the response of the model.
The total-effect sensitivity indices can be computed as follows [17]:

STi D 1 � V .E .Y jX�i //

V .Y/
(3)

where V .E .Y jX�i // indicates the contribution to the variance due to all factors with
the exception of xi. The vector X D Œx1; x2; : : : ; xi; : : : ; xk� contains all the design
factors. The vector X�i D Œx1; x2; : : : ; xi�1; xiC1; : : : ; xk� contains all the factors
except xi.

Using an analogy with the analysis of signals in the frequency domain, [3] were
able to develop an algorithm to compute the sensitivity indices as indicated in
Eq. (2). Indeed, the Fourier Amplitude Sensitivity Test (FAST) foresees that each
factor xi is associated with a certain frequency !i.

Saltelli et al. [16] proposed the Extended-FAST as an improved version of FAST.
The limitation of FAST is that it allows for computing the first-order sensitivity
indices only [3]. With EFAST the total-effect sensitivity indices as indicated in
Eq. (3) can be estimated as well [16].

Many alternative approaches have been developed in the past years for the
computation of sensitivity indices for computer models. A thorough discussion of
all of them is beyond the scope of the current chapter. Helton and Davis [5] present
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an analysis of the methods that are most widely used in engineering. The study
provides results on the comparison of the performances of the following procedures
and measures of sensitivity: correlation coefficients, rank correlation coefficients,
common means, common locations, common medians, statistical independence,
standardized regression coefficients, partial correlation coefficients, standardized
rank regression coefficients, partial rank correlation coefficients, stepwise regression
analysis and scatter plots. Despite the limited computational effort required by most
of the mentioned procedures, many of them provide local measures of sensitivity
while many other only provide a qualitative indication on the ranking of the
importance of the design variables in the determination of the output.

Regression analysis is a popular method to assess the effects of input factors on
performances. In particular, least-squares procedures are used to construct linear
regression models in the following form:

OY D Ǒ0 C
kX

iD1
Ǒ
ixi (4)

where Ǒ0; Ǒ1; : : : ; Ǒk are the estimated regression coefficients. The Ǒ are often used
as measure of sensitivity. In general, they do not provide global sensitivity indica-
tions, it is the case only for linear models. The same happens when the regression
coefficients are expressed as Standardized Regression Coefficients (SRCs), i.e.,
normalized coefficients, to eliminate the effect of the units in which Y and xi are
expressed, and the effect of the range of variation of the variables.

In general, a linear regression model like Eq. (4), very often results to be poor in
approximating the behavior of the model Y , thus the regression coefficients undergo
the risk of being quantitatively meaningless and sometimes also qualitatively
misleading.

3 Regression-Based Sensitivity Analysis Method

The Regression-Based Sensitivity Analysis method is general enough to be appli-
cable using regression models of any order. However, the choice of the regression
order depends on several aspects that will be discussed throughout this section. For
ease of discussion the method will be explained using a second-order model as a
reference:

OY D Ǒ0 C
kX

iD1
Ǒ
ixi C

kX

iD1
Ǒ
iix
2
i C

k�1X

iD1

kX

jDiC1
Ǒ
ijxixj (5)

Here, Ǒi, Ǒii and Ǒij are the estimated regression coefficients that are calculated by
fitting a response surface, using least squares, through the points sampled from the
model.
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3.1 A Review of the Least-Squares Method

Let us consider a general mathematical model using a compact notation:

Y D ˇ0 C
lX

jD1
ˇjxj (6)

where xj represents any functional involving any of the design variables, for instance
xj D x22 or xj D x1x2. In this case the coefficients ˇj are the true (unknown) ones,
which will be estimated by the coefficients Ǒj.

Using a least-squares method to estimate the l regression coefficients of the
model, at least N � l samples are needed. The least-squares method computes an
estimation of the regression coefficients minimizing the sum of squares of the errors
�i:

Yi D ˇ0 C
lP

jD1
ˇjxj C �i; i D 1; 2; : : : ;N (7)

In Eq. (7), Yi represents the observed response for the ith design-variable set Xi.
If the model in Eq. (7) is rewritten with matrix notation, i.e., Y D Xˇ C � the
least-squares method is easier to present and to implement. Here, we have used the
following definitions:

Y D

0

B
B
B
@

Y1
Y2
:::

YN

1

C
C
C
A
; X D

2

6
6
6
4

1 x11 x12 � � � x1l

1 x21 x22 � � � x2l
:::
:::

:::
: : :

:::

1 xN1 xN2 � � � xNl

3

7
7
7
5
; ˇ D

0

B
B
B
@

ˇ0
ˇ1
:::

ˇl

1

C
C
C
A
; � D

0

B
B
B
@

�0
�1
:::

�N

1

C
C
C
A

The least-squares estimate of the regression coefficients is computed as follows:

Ǒ D �XTX
��1

XTY (8)

The utilization of a decomposition method, such as QR factorization or singular
value decomposition (SVD), to work with the matrix XTX in Eq. (8) is highly
recommended. That matrix may be close to be singular in some cases, also said
ill-conditioned, and these factorization or decomposition methods are considered
numerically stable also with ill-conditioned matrices. The least-squares model is
therefore represented by the following relationship:

OY D X Ǒ (9)
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In general, the error between the regression model and the observations may
have two main sources. The first source of error is the lack-of-fit of the regression
model, when the model for which the regression has been computed does not
have enough parameters to explain the data. The second source of error is the
measurement performed to collect the sample; in this case it is called pure error, or
measurement error. Since in this case regression analysis is applied to deterministic
mathematical models, the pure error is zero. Indeed, given a certain combination of
design variables values, the response will always be the same.

In the case of computer experiments, the utilization of least squares for regression
analysis may be questionable by some, because of the lack of independent random
errors as in physical experiments. In this case, however, least squares are only
viewed as a curve fitting tool. This does not imply the assumption of having the
residuals behaving like white noise (as for physical experiments). Other methods are
considered more suitable for regression analysis of computer experiments (e.g., the
kriging method also called Gaussian process). These are non-parametric approaches
that do not treat the variables individually in favour of using sets of functions
that best interpolate the available data [23]. This aspect makes kriging methods
unsuitable for using them for SA purposes.

3.2 Decomposition of the Variance

The total sum of squares of a set of observations of a mathematical model can be
expressed as follows:

SST D
NX

iD1
.Yi � E.Y//2 (10)

The sum of squares of the regression only, instead, can be computed as follows:

SSR D
NX

iD1

 OYi � E.Y/
�2

(11)

SSR represents the portion of the total variability that can be explained by the
regression model. In case the regression model perfectly fits the data then SST D
SSR. When residuals are present the portion of the total variability not explained by
the regression model can be computed in the form of the error sum of squares, SSE:

SSE D
NX

iD1


Yi � OYi

�2
(12)
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The following relationship holds between the total, regression, and error sum-of-
squares:

SST D SSR C SSE (13)

To obtain the sensitivity indices of all the factors that contribute to the total
variability of the regression model, the regression sum of squares SSR should be
partitioned in its components. The main idea is to associate a sensitivity index to
the additional variability calculated when a factor is added to the regression model.
To do so, a matrix notation for the sum of squares is now introduced. Combining
Eqs. (8) and (9), the regression model can be expressed as follows:

OY D X
�
XTX

��1
XTY D HY (14)

The matrix H D X
�
XTX

��1
XT is called the hat matrix. It transforms the vector of

the observed responses Y into the vector of the fitted values OY. Using the hat matrix,
the total, regression and error sums of squares can be expressed with the following
relationships [7]:

SST D YT

�

I � 1

N
J
�

YI SSR D YT

�

H � 1

N
J
�

YI SSE D YT ŒI �H�Y (15)

where I is an N � N identity matrix, and J is an N � N matrix of ones.
In literature there are several methods that are most widely used to obtain the

variance decomposition of Eq. (5) [4]. As one of the possible models that Eq. (5)
can describe, let us consider the following, with 3 factors:

OY D Ǒ0 C Ǒ1x1 C Ǒ2x2 C Ǒ3x3 C Ǒ11x21 C Ǒ22x22 C Ǒ33x23C
C Ǒ12x1x2 C Ǒ13x1x3 C Ǒ23x2x3

(16)

In the following discussion, SS.Yx1 / represents the sum of squares associated
with the model computed with only the factor x1 (i.e., OY D Ǒ0 C Ǒ1x1). SS.x2jYx1 /

represents the sum of squares associated with a regression model where x2 is added
to the model given that x1 is already present, it will also be indicated as SS.x2/
since it is the sum of squares associated with x2 only. This indicates the additional
variability explained by adding x2 to the model.

The Type-II sum-of-squares decomposition, or classical sum of squares, indicates
the change in the variability explained by the regression model due to adding an
extra term to the model, given that all other terms have been added except for the
terms that contain the effect under test. For instance, the sum of squares of factor x3,
with x1 and x2 in the model, with all interactions (two and three factor-interactions)
can be computed as follows:

SS.x3/ D SS.x3jYx1x2x12 / D SS.Yx1x2x3x12x13x23 / � SS.Yx1x2x12 / (17)
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Another method for sum-of-squares decomposition computes the contribution to
the variability explained by the regression model due to adding an extra term, given
that all other terms are already in the model, including the interactions and higher-
order factors involving the term under investigation. The sum of squares of Type-III
for the factor x3 of the model in Eq. (16) would be as follows:

SS.x3/ D SS.x3jYx1x2x12 / D SS.Yx1x2x3x12x13x23 / � SS.Yx1x2x12x13x23 / (18)

In Eqs. (17) and (18) the term Y.�/ represents the regression model with all
the factors and interactions indicated by the subscripts. Given the sum of squares
associated with every factor of the regression model, the sensitivity indices can be
computed with a relationship that is similar to that presented in Eqs. (2) and (3):

Si D SS.xi/

SSR C SSE
(19)

Indeed, the sensitivity measures computed using Eq. (19) can be interpreted in
terms of the first-order and total-order sensitivity indices. When SS.xi/ is computed
with the Type-II decomposition, Eq. (17), it describes the contribution of a factor
considering, simultaneously, all the interactions and higher-order effects involving
it. Thus, it provides information on the total effect of that factor. Using the Type-
III decomposition to compute SS.xi/, Eq. (18), instead, we obtain the contribution
of each term of the polynomial regression model (e.g., x1, x21, or x1x2) to the
total variability computed with the regression model. This allows to compute the
contribution to the variance of individual effects in a way that is not allowed with
other approaches discussed in the previous section. And this is possible with no
additional simulations.

In the case of RBSA we call the effects of the individual factors [computed with
Eqs. (18) and (19)] first-order effects. In these cases it would be more appropriate
calling them individual-order effects since they refer to individual terms in the
regression model, therefore also the quadratic (e.g., x21) or interaction (e.g., x1x2)
terms. With the Sobol’ method, or FAST, it is only possible to compute the actual
first-order sensitivity indices (e.g., sensitivity indices of x1, x2, etc.).

3.3 The Algorithm for RBSA

The RBSA algorithm begins with an educated hypothesis on the behavior of the
model in the design region of interest. Eq. (5) could be used, for instance, as an initial
assumption. However, if later in the process inacceptable lack-of-fit is detected, this
assumption could be reviewed by modifying the regression model and adding cubic
(e.g, x3i ) or higher-order interaction terms (e.g, xixjxk), for instance. For the moment,
let us use the model presented in Eq. (5).

The second step consists in the creation of an input sample matrix M, made of k
columns (the number of design variables taken into account) and N rows:
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M D

0

B
B
B
@

x11 x12 � � � x1k

x21 x22 � � � x2k

:::
:::
: : :

:::

xN1 xN2 � � � xNk

1

C
C
C
A

(20)

Each row represents a design vector with a value for each design variable: each row
represents a sample point. The sample size N shall be larger than the number of
coefficients to estimate. For instance, N > 2kC k.k � 1/=2 samples are needed for
the regression analysis on the model of Eq. (5). The output vector Y is obtained by
executing the mathematical model with the rows of M as inputs.

The next step is to build the matrix X that will be used to compute the sum of
squares and the sensitivity indices. The construction of X, and the methodology to
compute the sensitivity indices, will only be presented specifically for the model in
Eq. (5). The derivation for regression models of different orders is similar. First, the
two matrices R1 and R2 with dimensions N � k.k � 1/=2 shall be obtained by a
re-arrangement of the columns of M.

M(1,1) ... M(1,1) M(1,2) ... M(1,2) ... M(1,k-1)

M(2,1) ... M(2,1) M(2,2) ... M(2,2) ... M(2,k-1)

...
. . .

...
...

. . .
...

. . .
...

M(N,1) ... M(N,1) M(N,2) ... M(N,2) ... M(N,k-1)

R1 =

k-1 k-2 1

M(1,2) . . . M(1,k) M(1,3) . . . M(1,k) . . . M(1,k)

M(2,2) . . . M(2,k) M(2,3) . . . M(2,k) . . . M(2,k)

...
. . .

...
...

. . .
...

. . .
...

M(N,2) . . . M(N,k) M(N,3) . . . M(N,k) . . . M(N,k)

R2 =

k-1 k-2 1

The matrices R1 and R2 can be visualized in blocks. The first k � 1 columns of
R1 are k�1 replications of the first column of M. The second block of k�2 columns
is made of the replication of the second column of M, and so on until the last-but-
one column of M, which appears only once. R2 is built with a different approach,
but the visualization by blocks is still possible. The first k � 1 columns of R2 are
replications of the second to last column of M. The second block of k � 2 columns
consists of the third to last column of M, and so on until the last column of M,
which appears only once. Therefore, the elements of R1 and R2 can be interpreted
as follows: M.1;1/ D x11, M.1;k/ D x1k, and M.N;k/ D xNk.

The coefficient-wise (i.e., Hadamart, indicated by ı) product of R1 and R2 gives
the matrix R:

R D R1 ı R2
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Each element of R is obtained by multiplying the corresponding elements of R1 and
R2, i.e., Rij D R1.ij/�R2.ij/. R will be used to compute the interaction effects for the
sensitivity indices. The matrix X to be used for the regression analysis is obtained
by re-arranging the columns of M and R:

1 M(1,1) . . . M(1,k) M(1,1)

2 . . . M(1,k)

2 R(1,1) . . . R(1,k(k-1)/2)

1 M(2,1) . . . M(2,k) M(2,1)

2 . . . M(2,k)

2 R(2,1) . . . R(2,k(k-1)/2)

...
...

. . .
...

...
. . .

...
...

. . .
...

1 M(N,1) . . . M(N,k) M(N,1)

2 . . . M(N,k)

2 R(N,1) . . . R(N,k(k-1)/2)

X=

Once X is available, SST , SSR, and SSE can be computed using the hat matrix H and
the relationships presented in Eq. (15).

Total-order sensitivity indices are computed for every design variable in the
model. For each of the k design variables a reduced version of X, namely Xred,
needs to be build. Xred is obtained by removing the columns of X that are related to
all terms involving the related design variable for which the total sensitivity index is
computed. For instance, consider the model of Eq. (5) with three design variables.
The construction of Xred

x3 for the variable x3 would be as shown below, by removing
the white columns:

1 X(1,1) X(1,2) X(1,3) X(1,4) X(1,5) X(1,6) X(1,7) X(1,8) X(1,9)

1 X(2,1) X(2,2) X(2,3) X(2,4) X(2,5) X(2,6) X(2,7) X(2,8) X(2,9)

...
...

...
...

...
...

...
...

...
...

1 X(N,1) X(N,2) X(N,3) X(N,4) X(N,5) X(N,6) X(N,7) X(N,8) X(N,9)

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

1 Xred
(1,1) Xred

(1,2) Xred
(1,4) Xred

(1,5) Xred
(1,7)

1 Xred
(2,1) Xred

(2,2) Xred
(2,4) Xred

(2,5) Xred
(2,7)

...
...

...
...

...
...

1 Xred
(N,1) Xred

(N,2) Xred
(N,4) Xred

(N,5) Xred
(N,7)

Xred
x3

=

1

1

...
1

X(1,1)XX

X(2,1)XX

...
X(N,1)XX

X(1,2)XX

X(2,2)XX

...
X(N,2)XX

X(1,4)XX

X(2,4)XX

...
X(N,4)XX

X(1,5)XX

X(2,5)XX

...
X(N,5)XX

X(1,7)XX

X(2,7)XX

...
X(N,7)XX
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Using Xred the regression sum of squares, SSred
R , can be computed using Eqs. (14)

and (15):

Hred D Xred
�
XTredXred

��1
XT;red (21)

SSred
R D YT

�

Hred � 1

N
J
�

Y (22)

SSred
R of a certain design variable xi indicates the variability that the model without

the contribution of the terms that involve xi is able to explain. The difference
between the regression sum of squares computed with Eqs. (14) and (15) using X
and the reduced regression sum of squares indicates the overall contribution of the
design variable xi to the variability detected by the full model (i.e., Type-II sum of
square). Thus, a total-order sensitivity index may be computed as follows:

STi D SSR � SSred
R

SSR C SSE
(23)

First-order sensitivity indices can be obtained in a very similar fashion for each
term of the model, including interactions and higher-order terms. For each term of
the model Xred needs to be build, as in the previous case. Xred is again a reduced
version of the matrix X, but in this case it is obtained by removing only the column
of X that is related to the term of interest. For instance, the construction of Xred

x1x2 for
the interaction term x1x2 would be as follows:

1 X(1,1) X(1,2) X(1,3) X(1,4) X(1,5) X(1,6) X(1,7) X(1,8) X(1,9)

1 X(2,1) X(2,2) X(2,3) X(2,4) X(2,5) X(2,6) X(2,7) X(2,8) X(2,9)

...
...

...
...

...
...

...
...

...
...

1 X(N,1) X(N,2) X(N,3) X(N,4) X(N,5) X(N,6) X(N,7) X(N,8) X(N,9)

x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

1 Xred
(1,1) Xred

(1,2) Xred
(1,3) Xred

(1,4) Xred
(1,5) Xred

(1,6) Xred
(1,8) Xred

(1,9)

1 Xred
(2,1) Xred

(2,2) Xred
(2,3) Xred

(2,4) Xred
(2,5) Xred

(2,6) Xred
(2,8) Xred

(2,9)

...
...

...
...

...
...

...
...

...

1 Xred
(N,1) Xred

(N,2) Xred
(N,3) Xred

(N,4) Xred
(N,5) Xred

(N,6) Xred
(N,8) Xred

(N,9)

Xred
x1x2

=

1

1

...
1

X(1,1)XX

X(2,1)XX

...
X(N,1)XX

X(1,2)XX

X(2,2)XX

...
X(N,2)XX

X(1,3)XX

X(2,3)XX

...
X(N,3)XX

X(1,4)XX

X(2,4)XX

...
X(N,4)XX

X(1,5)XX

X(2,5)XX

...
X(N,5)XX

X(1,6)XX

X(2,6)XX

...
X(N,6)XX

X(1,8)XX

X(2,8)XX

...
X(N,8)XX

X(1,9)XX

X(2,9)XX

...
X(N,9)XX
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Using Xred the regression sum of squares SSred
R is again obtained with Eqs. (21)

and (22). The first-order sensitivity index for each term of the model may be
computed as presented before:

Si D SSR � SSred
R

SSR C SSE
(24)

In this case the difference between the regression sum of squares computed with
Eqs. (14) and (15) using X and the reduced regression sum of squares indicates the
Type-III sum of squares indicated in Eq. (18).

This approach to compute the sensitivity indices, based on regression analysis
provides some advantages. First of all, the number of model evaluations, that is
usually the most resource-consuming part of the analysis, is reduced (a numeri-
cal comparison is provided in Sect. 4). Second, the RBSA provides quantitative
information (rather than qualitative as most of the screening or sample-based
SA methods) also on the effects of interactions and higher-order terms on the
performance of interest (rather than only first-order and total sensitivity indices as
the method of Sobol’ or FAST). The fact that higher-order models are implemented,
rather than linear models only, allows to explain a larger part of variability when
compared to the SRCs method, for instance.

One possible drawback of RBSA is that the validity of the results depends on the
lack-of-fit of the regression model with respect to the sample data. Indeed, special
attention must be paid to the ratio between the regression and the total sum of
squares. If SSR is close to SST , then the regression model is able to account for
a large part of the output variance, and as a consequence the sensitivity indices
are meaningful measures. If this is not the case, lack-of-fit is present meaning that
important terms are missing from the initially assumed regression model. Lack-of-
fit is important to decide whether to proceed with SA anyway or to modify the initial
assumption and increase the order of the regression model by adding extra terms,
e.g., higher-order terms like cubic or higher-order interactions.

3.4 Testing for Model Adequacy

Testing for model adequacy is a fundamental step, since it is a means to validate the
results of the SA, allowing to mitigate the effect of the lack-of-fit on the sensitivity
indices by an iterative approach (see also Sect. 3.5). The presence of lack-of-fit
could be related to the fact that important terms have been neglected, or simply
that the chosen polynomial regression model is not entirely adequate to reproduce
the relationships between the design variables, e.g., in case of higher-order effects,
exponential or sinusoidal effects.

The coefficients of determination, R2, and often its adjusted version R2adj allow
to detect the fraction of the model output variance accounted for by the regression
model [7]:
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R2 D
PN

iD1
 OYi � NY

�2

PN
iD1

�
Yi � NY

�2 D
SSR

SST
0 � R2 � 1 (25)

Very often the adjusted coefficient of determination, R2adj, is used instead of R2:

R2adj D 1 �
�

N � 1
N � .lC 1/

�
�
1 � R2

�
0 � R2adj � 1 (26)

where l indicates the total number of regressors in the polynomial model (without
the constant term ˇ0).

Values of R2 or R2adj larger than 0:9 usually suggest a good fit of the data. The
extreme case in which R2 or R2adj are equal to one, indicates that the regression model
is able to account for all the variability of the model output, but this does not always
mean that the regression model perfectly matches the true one in all points of the
design region. Having R2 or R2adj equal to one may also be caused by using regression
model of a lower order than the real one. Increasing the order of the regression model
could substantially help for a better reconstruction of the underlying relationships
between the design variables. To reduce lack-of-fit increasing the sample size alone
is in general only partially beneficial. A better approximation is obtained when there
is also an increase in the order of the regression model.

Concluding, there is not a general and guaranteed approach to identify lack-of-
fit. It is advised, though, to build the regression models with a number of samples
that exceeds the actual number of terms needed to build the model. In this way, more
degrees of freedom for the estimation of the error are provided, avoiding to obtain
misleading values for R2 or R2adj. Here, we will use the R2adj as a measure of lack-of-
fit. The discussion on the model adequacy provided in this section is limited to the
implementation needed for the proposed RBSA methodology. For a more complete
analysis the interested readers may consider the books of [4] and [7].

3.5 The Iterative Approach to RBSA

In Table 1 a list of suggested regression models of increasing order, with the
minimum number of samples required to compute all the coefficients, is presented.
This particular choice is merely indicative, it shall be considered as an example
to explain the iterative approach to RBSA. The minimum number of samples for
every regression model is equal to the number of factors present in the model plus
extra sample points equal to the number of variables of the model. The decision to
modify the initial assumptions on the regression model depends on the adequacy of
the current one, determined by R2adj.

At the beginning of the process, the minimum number of samples for fitting
a linear model is collected. If R2adj is lower than a certain threshold value, e.g.,
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Table 1 Suggested regression models for the iterative procedure

Model order Regression model Minimum number of samples

1 Y1 D ˇ0 CP
ˇixi 2C k

11=2 Y1=2 D Y1 CP
ˇijxixj 2C k C �

k
2

�

2 Y2 D Y1=2 CP
ˇiix2i 2C 2k C �

k
2

�

3 Y3 D Y2 CP
ˇiiix3i CP

ˇijwxixjxw 2C 3k C �
k
2

�C �
k
3

�

4 Y4 D Y3 CP
ˇi4x

4
i 2C 4k C �

k
2

�C �
k
3

�

5 Y5 D Y4 CP
ˇi5x

5
i 2C 5k C �

k
2

�C �
k
3

�

6 Y6 D Y5 CP
ˇi6x

6
i 2C 6k C �

k
2

�C �
k
3

�

7 Y7 D Y6 CP
ˇi7x

7
i 2C 7k C �

k
2

�C �
k
3

�

k is the number of design variables

0:9, the sample size is increased (by a multiple of k, for instance), and R2adj is
computed again. During the iterations, each time that the number of samples is
sufficient to evaluate the next higher-order regression model, see Table 1, also R2adj
of that model is tested. This procedure is repeated until at least one regression
model provides satisfactory results, or if for increasing regression-model order and
increasing sample size the value of R2adj does not significantly improve. RBSA is
then computed with the regression model having the best performance in terms of
R2adj.

At first sight, this iterative approach may seem inefficient, due to the re-sampling
of the design region. However, with particular care on the sampling technique,
the samples taken in one iteration can be re-used also for the subsequent one.
For instance, the sampling technique developed by Sobol’, the LP
 sequence, is
a quasi-random sequence of numbers [20]. The LP
 algorithm provides a sequence
of sampling points for which it is known at any stage how successive points will fill
in the gaps in the previously generated distribution [9]. That means a reuse of earlier
points such that there is only a limited additional computational load. We therefore
advise the reader to use such a sampling method for the iterative RBSA.

4 Validation of RBSA

In this section the methods for global SA mentioned in the introduction, including
RBSA, are tested against five problems of increasing complexity, derived from [5].
The purpose is to evaluate the performance of RBSA in determining the sensitivity
indices of the various factors, comparing it with the method of Sobol’, FAST, the
method of Morris, and the SRCs. The comparison is based on the number of model
evaluations, indicated with N, needed to obtain the sensitivity indices, and their
accuracy. For a given model, a smaller number of evaluations indicates that the
computational time needed to obtain the sensitivity indices is lower. It is useful
to remember that the evaluation of the model is considered the computationally
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expensive part of the analysis. The analysis of the data to perform SA is relatively
fast in all cases presented here.

The main purpose of this comparison is to demonstrate that RBSA is able to
successfully provide quantitative sensitivity indices (as the Sobol’ and the FAST
approach) with a low number of model evaluations (as most of the screening
methods, such as the method of Morris). The method of Morris is executed with
increasing levels (P) and increasing number of samples-per-level (R) for the same
purpose. The values of the SRC are reported from the original study of Helton and
Davis [5] for comparison with the results obtained with the other methods. The
RBSA method is executed with models of increasing order and with an increasing
number of sample points until a satisfactory level of R2adj is obtained, as discussed in
Sect. 3. We stress the fact that the order of the model is not fixed a-priori, but rather
determined automatically by the iterative process discussed in Sect. 3.5.

The sensitivity indices obtained with the method of Sobol’, FAST and RBSA
are only reported in terms of total-order sensitivity indices, STi. The methods are
executed on each problem with an increasing number of sample points to determine
the minimum number of model evaluations that allows to stabilize the value of
the sensitivity indices. By stable it is intended that the sensitivity indices do
not change significantly for increasing sample size, i.e., they are constant to the
second meaningful decimal digit. To obtain the sensitivity indices with the methods
of Sobol’, FAST, and Morris, the Simlab software suite was used [19]. In the
comparison presented in this section, we consider the converged values from the
method of Sobol’ and FAST to be the correct results for the sensitivity indices. With
RBSA, we try to obtain the same results, in a computationally cheaper way.

The first test problem considered is linear with only three uniformly distributed
variables (Problem 1, [5]):

f .x/ D
3X

iD1
xi; x D Œx1; x2; x3� (27)

with xi W U. Nxi � �i; Nxi C �i/; Nxi D 3i�1; �i D 0:5 Nxi for i D 1; 2; 3.
The results of the comparison are summarized in Table 2. Considering the low

complexity of the problem, the method of Sobol’ and FAST converge to a stable
value of the sensitivity indices with a relatively large sample size, 1000 model
evaluations, while the RBSA provides satisfactory results already after 20 model
evaluations.

This is demonstrated with the graphs in Fig. 1. They show the trend of the
sensitivity indices computed with the method of Sobol’ (a), FAST (b), and RBSA
(c), as a function of the number of model evaluations. The first two methods
provide a definite distinction between the effects of the three factors already with
few sample points but the values of the sensitivity indices are stable only after
many more model evaluations. This effect will be more evident in the presence of
more complex problems. Far less model evaluations are needed by the method of
Morris to obtain a qualitative measure of sensitivity, i.e., the ranking of the factors
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Table 2 Comparison of SA methods. Problem 1 [see Eq. (27)]

Sobol’ FAST Morris method SRCa RBSAb

N D 1000 N D 1000 N D 8 N D 100 N D 20

Variable name STi STi Rank �� � Value STi

x1 0:011 0:014 3 9 0 0:105 0:013

x2 0:099 0:101 2 3 0 0:316 0:097

x3 0:892 0:890 1 1 0 0:946 0:890

aStandardized Regression Coefficients. Data adapted from [5]
bLinear regression model with 2-factors interaction terms. R2adj D 1:00
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Fig. 1 Total-order sensitivity indices as a function of the sample size. Problem 1 [see Eq. (27)].
(a) Method of Sobol’ . (b) FAST. (c) RBSA

according to their importance in the determination of f .x/. RBSA provides very
precise quantitative sensitivity indices with a reduced computational effort when
compared to the method of Sobol’ and FAST. Indeed, only 20model evaluations are
required to obtain in practice the same results as the method of Sobol’ and FAST.
The SRCs provide a correct ranking of the relevance of the factors, but the sensitivity
indices are much different from these provided by the other methods. Indeed, x2
results to be much more important than it actually is.

The second test problem is again a linear one, but with a larger number, i.e., 22,
of uniformly distributed variables (Problem 2, [5]):
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Fig. 2 Total-order sensitivity indices as a function of the sample size. Problem 2 [see Eq. (28)].
(a) Method of Sobol’ . (b) FAST. (c) RBSA

f .x/ D
22X

iD1
ci .xi � 0:5/ ; x D Œx1; x2; � � � ; x22� (28)

with xi W U.0; 1/ and ci D .i � 11/2 for i D 1; 2; � � � ; 22.
The large number of variables of Problem 2 causes the method of Sobol’ and

FAST to converge to a stable value for the sensitivity indices only after 10,000 and
24,000 model evaluations, respectively. However, a clear distinction between the
factors is already in place after 5000 samples in the case of the method of Sobol’,
see Fig. 2a.

The method of Morris provides excellent results in ranking the factors with a
very low number of simulations. This is due to the fact that Problem 2 is linear, and a
precise estimation of the variability of the data using the elementary effect is already
possible with two sample points per variable. The RBSA provides very precise
quantitative sensitivity indices, see Table 3, already after 600 model evaluations.

In both Problems 1 and 2 the method of Morris is able to correctly rank the factors
and to correctly indicate the absence of interactions or non-linear effects (since
the value of � is zero for all factors). Also the SRCs provide a correct indication
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Table 3 Comparison of SA methods. Problem 2 [see Eq. (28)]

Sobol’ FAST Morris method SRCa RBSAb

N D 10;000 N D 24;000 N D 46 N D 100 N D 600

Variable name STi STi Rank �� � Value STi

x1 0:149 0:192 2 100 0 0:381 0:152

x2 0:0979 0:115 3 81 0 0:308 0:100

x3 0:0619 0:0660 4 64 0 0:243 0:0633

x4 0:0369 0:0372 5 49 0 0:186 0:0369

x5 0:0199 0:0212 6 36 0 0:136 0:0198

x6 0:0093 0:0130 7 25 0 0:0951 0:0096

x7 0:0038 0:0081 8 16 0 0:0608 0:0039

x8 0:0012 0:0023 9 9 0 0:0342 0:0012

x9 0:0002 0:0013 10 4 0 0:0152 0:0002

x10 0 0:0011 11 1 0 0:0038 0

x11 0 0:0011 12 0 0 0 0

x12 0 0:0011 11 1 0 0:0038 0

x13 0:0002 0:0012 10 4 0 0:0152 0:0002

x14 0:0012 0:0026 9 9 0 0:0342 0:0012

x15 0:0038 0:0059 8 16 0 0:0609 0:0039

x16 0:0093 0:0076 7 25 0 0:0951 0:0096

x17 0:0199 0:0160 6 36 0 0:136 0:0197

x18 0:0367 0:0390 5 49 0 0:186 0:0371

x19 0:0619 0:0520 4 64 0 0:243 0:0627

x20 0:0980 0:116 3 81 0 0:307 0:100

x21 0:149 0:174 2 100 0 0:380 0:153

x22 0:218 0:232 1 121 0 0:460 0:224

aStandardized Regression Coefficients. Data adapted from [5]
bLinear regression model. R2adj D 1:00

on the relative importance of the factors but they do not provide any information
on the presence (or not) of higher-order effects. The method of Sobol’ and FAST
provide quantitative sensitivity indices at the expenses of a large computational
effort. The RBSA method provides very precise quantitative sensitivity indices, even
in problems with a large number of variables, as Problem 2, at a computational cost
that is much lower when compared to the method of Sobol’ and FAST.

The third problem is monotonic, non-linear, with six uniformly distributed
variables (Problem 3, [5]):

f .x/ D exp

 
6X

iD1
bixi

!

�
6Y

iD1

.ebi � 1/
bi

; x D Œx1; x2; : : : ; x6� ; (29)

with xi W U.0; 1/ for i D 1; 2; : : : ; 6 and b1 D 1:5; b2 D b3 D � � � D b6 D 0:9.
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Table 4 Comparison of SA methods. Problem 3 [see Eq. (29)]

Sobol’ FAST Morris method SRCa RBSAb

N D 7500 N D 7500 N D 2870 N D 100 N D 500

Variable name STi STi Rank �� � Value STi

x1 0:399 0:391 1 36:97 1:22 0:522 0:392

x2 0:166 0:161 6 22:37 0:82 0:295 0:153

x3 0:153 0:165 4 22:61 0:84 0:297 0:157

x4 0:164 0:156 3 22:70 0:90 0:344 0:159

x5 0:158 0:173 5 22:46 0:81 0:351 0:157

x6 0:155 0:170 2 23:41 0:92 0:284 0:156

aStandardized Regression Coefficients. Data adapted from [5]
bCubic regression model. R2adj D 0:99

The results of the comparison are shown in Table 4. The method of Sobol’
and FAST converge to stable values for the sensitivity indices after 7500 model
evaluations. The RBSA is able to account for almost all the variability of Problem
3 with a cubic regression model (R2adj D 0:99), and already with 500 sample points
the estimation of the sensitivity indices is very precise, see Table 4.

In this case the factor x1 is identified as the most relevant one already with R D
10, thus with a sample size of 70. The relative ranking of the factors x2 to x6 keeps
changing with increasing R. For this reason it was decided to report only the results
for R D 410 in Table 4.

In the case of non-linear monotonic problems the method of Sobol’ and FAST
provide as accurate results as in the linear case. The method of Morris has shown
one potential weakness that arises when non-linear problems are taken into account:
the results are very sensitive to the number of levels P and the number of sample
points per level R. The SRCs perform well, even with non-linear monotonic
problems. Linear approximations of the non-linear monotonic models provide a
good indication of the general trends of the output, but this cannot be considered
true in general. The RBSA demonstrates excellent performance also with this class
of problems. Indeed, it provided very precise quantitative sensitivity indices at a
relatively low computational cost.

The fourth problem is non-monotonic with eight uniformly distributed variables
(Problem 4, [5]):

f .x/ D
8Y

iD1

j4xi � 2j C ai

1C ai
x D Œx1; x2; : : : ; x8� ; (30)

with xi W U.0; 1/ for i D 1; 2; : : : ; 8 and a1 D 0; a2 D 1; a3 D 4:5; a4 D 9; a5 D
a6 D a7 D a8 D 99.

The results of the comparison are presented in Table 5. The first aspect worth
mentioning is that the SRCs are not able to distinguish any of the variables effects.
This is probably an expected result since the model of Problem 4 presents an
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Table 5 Comparison of SA methods. Problem 4 [see Eq. (30)]

Sobol’ FAST Morris method SRCa RBSAb

N D 3000 N D 5000 N D 90;000 N D 100 N D 1000

Variable name STi STi Rank �� � Value STi

x1 0:792 0:794 1 0:0060 0:0260 � 0 0:704

x2 0:244 0:239 2 0:0048 0:0151 � 0 0:175

x3 0:0338 0:0355 4 0:0014 0:0059 � 0 0:0214

x4 0:0104 0:0114 3 0:0028 0:0033 � 0 0:0120

x5 0:0001 0:0006 7 0:0003 0:0003 � 0 0:0075

x6 0:0001 0:0006 6 0:0004 0:0003 � 0 0:0110

x7 0:0001 0:0006 5 0:0007 0:0003 � 0 0:0118

x8 0:0001 0:0006 8 0:0000 0:0003 � 0 0:0075

a Standardized Regression Coefficients. Data adapted from [5]
b Fifth-order regression model. R2adj D 0:938

absolute value, which causes the linear model to be deceived. The method of
Sobol’ and FAST provide stable results after 3000 and 5000 model evaluations,
respectively. As already anticipated in the brief description of the methods, and as
demonstrated in this test case, they do not suffer the highly non-linear behavior of
the problem under investigation in the design region of interest. The polynomial
regression models of the RBSA cannot perfectly cope with a functional like the
absolute value, by definition. However, with a fifth-order model and 1000 sample
points the RBSA can already account for almost 94% of the variability of the data,
providing a good quantitative distinction between the effects of the factors, and
quantitative sensitivity indices that are close to the actual ones.

As reported in Table 5, the method of Morris presents the same type of problem
encountered with the SRCs. However, a certain qualitative distinction between the
factors’ importance may still be identified. This is mainly due to the asymmetry of
the absolute value of Eq. (30) in the variability interval determined by the variable
ranges. The results are obtained with R = 10,000, thus a sample size of 90,000.

The last problem is non-monotonic with 3 uniformly distributed variables
(Problem 5, [5]):

f .x/ D sin x1 C A sin2 x2 C Bx43 sin x1 x D Œx1; x2; x3� ; (31)

with xi W U.�; / for i D 1; 2; 3 and A D 7;B D 0:1.
Also in this case, the SRCs and the method of Morris are not able to detect the

correct contribution of the factors to the variability of the performance, see Table 6.
The method of Sobol’ and FAST confirm the fact that the results they provide are
not sensitive to the nature of the underlying model. Indeed in Table 6 it is shown
that they provide a stable estimate of the sensitivity indices for 3000 and 5000
model evaluations, respectively. The RBSA, using a seventh-order model provided
a coefficient of determination of 0:75. In this case this result is not as good as the
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Table 6 Comparison of SA methods. Problem 5 [see Eq. (31)]

Sobol’ FAST Morris method SRCa RBSAb

N D 3000 N D 5000 N D 40;000 N D 100 N D 1000

Variable name STi STi Rank �� � Value STi

x1 0:556 0:536 1 7:99 0:0988 � 0 0:417

x2 0:445 0:487 3 0:0055 0:0284 � 0 0:330

x3 0:237 0:242 2 0:1157 0:0781 � 0 0:0054

aStandardized Regression Coefficients. Data adapted from [5]
bSeventh-order regression model. R2adj D 0:75

previous examples, leading to a misleading value for the absolute sensitivity index
of the variable x3. However, at least a correct ranking of the importance of the factors
can be identified.

The Regression-Based Sensitivity Analysis method has shown good performance
with different types of models. The sensitivity indices for linear and non-linear
monotonic models can be precisely computed with a very reduced number of
model evaluations, when compared to other methods. In the case of non-monotonic
problems, the polynomial representation shows its limitations. RBSA provides less
accurate quantitative results in these cases, but still it provides insight in the ranking
the factors according to their importance, also when other qualitative methods fail.
A polynomial function does not cope well with terms like sin x, cos x, ex, and 1

x , for
instance. Therefore, it is hard to obtain a value for the coefficient of determination
that is close enough to one. These non-polynomial terms could be included in the
representation of the model of Eq. (5), but then the sensitivity indices would indicate
the effect of the terms sin x, cos x, ex, and 1

x rather than the effect of the factor x,
which is what designers are usually interested in.

The method of Sobol’ and the RBSA are in general valid for independent
(i.e., non-correlated) input factors. The case with correlated inputs implies that
the correlation structure must be taken into account during the sampling of the
design space, leading to higher computational cost on one hand and to a non-
direct applicability of the method on the other hand [17]. An effective technique
for imposing the correlation between input variables has been proposed by [6].

The application of RBSA to a realistic, space-engineering related problem will
be discussed in Sect. 6. There, we will study the design of the communication and
power subsystems of a satellite.

5 Robust Design

So far we have looked at the sensitivity of a design’s response to variations in the
design parameters. In the related method, RBSA, we used a smart sampling method
to reduce the number of sampling points when iteratively increasing the order of the
regression model. A suitable and smart sampling method, however, does not only do
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Fig. 3 Mixed-hypercube
sampling with three discrete
and two continuous variables

Matrix design 
Discrete variables

Sobol’ Sequence
Continuous variables

that, but also allows for varying different types of design parameters. Such a method
is the mixed-hypercube approach that we can also efficiently apply to robust design.

The mixed-hypercube approach is a mixed sampling method that can take
both continuous and discrete variables into account. In particular, with the mixed-
hypercube approach we use both sampling for continuous variables and elements
from Design of Experiments. The main idea is to separate the continuous and
discrete variables into two groups. A matrix design is then created for the discrete
variables, while for every row of the matrix design (i.e., for every design point of
the factorial design), a Sobol’ sequence is generated for the continuous variables.
An example with three discrete and two continuous variables is presented in Fig. 3.

The advantage of using a matrix design instead of a space-filling technique for
the discrete variables is that it allows to deterministically select the levels of the
factors. When only few factor levels can be selected (e.g., in a database there is a
certain number of batteries, or only a limited number of thrusters is considered in
the analysis of a satellite system) the maximum number of simulations is determined
by a full-factorial design. Then, depending on the type of analysis, and the available
resources, one could choose for a fractional-factorial design. This will allow for
the reduction of the computational effort while avoiding to disrupt the balance
characteristics of the sampling matrix. The modification of a random or pseudo-
random technique for sampling only at certain levels does not immediately provide
such a balance, especially when the number of samples is kept low. On the other
hand, in case of continuous variables matrix designs alone are less flexible in filling
the design region and less suitable for the re-sampling process than the Sobol’
technique.

The proposed mixed-hypercube sampling approach allows for covering the
design region more uniformly when compared to other techniques already with
a low number of samples, such as Latin hypercube sampling, factorial design,
and orthogonal arrays. The sensitivity-analysis technique described in Sect. 3, will
directly benefit from these characteristics, since convergence of the variance is
obtained with a reduced computational effort, for instance. Another aspect of using
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specific implementations of the mixed-hypercube sampling method in combination
with the design approaches discussed in this chapter is found in the area of robust
design.

Robustness is a concept that can be seen from two different perspectives. One
can define robustness of the system with respect to the effect of uncontrollable
factors (aleatory and/or epistemic) and, if interested in obtaining a robust design,
one can select that combination of controllable design-factor values that minimizes
the variance while optimizing the performance. This concept is the most common
way of thinking of robust design.

However, robustness can also be defined as the insensitivity of a certain design
baseline to modification of the design variables in subsequent phases of the
design process, thus providing an intrinsic design-baseline robustness figure. The
modification of the levels of the design variables is likely to happen, especially when
the baseline is at an early stage of the design process (phase 0/A). In this sense,
robustness can be linked to the programmatic risk encountered when modifying a
set of design parameters at later stages of the design process [15]. In the first case,
instead, robustness is more related to the operational-life risk of the system (if the
uncertainties derive from the operational environment, for instance).

In this section we introduce the Augmented Mixed Hypercube (AMH) as a mixed
sampling techniques that takes into account continuous and discrete variables, where
continuous variables can be deterministic (i.e., controllable) or probabilistic (i.e.,
uncontrollable). Discrete design factors are always considered deterministic here.
For system design, discrete variables describe architectures of the system, and
system architectures are fully controllable during the design.

The AMH is presented in Fig. 4 as an extension of the mixed hypercube shown
in Fig. 3. In the AMH we take all types of design factors mentioned in this
chapter into account. When the purpose of the analysis is to study the settings of
controllable factors that are able to cope with the uncertainties introduced by the
uncontrollable factors (stochastic and epistemic) then the AMH of Fig. 4a shall be
used. There, for each combination of the levels of the controllable design variables,
an uncertainty analysis can be executed using the unified sampling method to obtain
the performance of the system, and the relative statistics, due to uncertain factors.
When the purpose is only to propagate uncertainty into the model, then the AMH in
the form presented in Fig. 4b shall be used instead. In the next section AMH shall be
used for the robust design of the satellite’s communication and power subsystems.

6 Test Case: Design of Communication and Power
Subsystems of a Satellite

The main purpose of the discussion in this section is to better explain the utilization
of the iterative RBSA method and to show, step-by-step, its implementation to
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Fig. 4 Augmented Mixed Hypercube sampling procedure for robust design, (a) Study of
controllable-factor settings. (b) Uncertainty propagation

Table 7 Settings of the
design variables for the
design of the communication
and power subsystems

Intervals

Design variables Code Min Max Levels

Output RF power [W] A 1 50 �
Antenna diameter [m] B 0:05 1 �
Type of antenna [–] C 1 2 2

Type of solar array [–] D 1 3 3

Type of transmitter [–] E 1 2 2

compute the sensitivity indices. Moreover, in the second half, we will address the
subsystems’ robustness.

The model used for the analysis is intentionally focussed on the interactions
existing between the communication and the power subsystem of a satellite. In
particular, the model of the communication subsystem is used to estimate the uplink
and the downlink budget between the satellite and the ground station, and its mass
and power consumption. The model of the power subsystem, instead, is used to
estimate the mass and power consumption of the power subsystem. The results
presented in this section are obtained by using mathematical models available from
Wertz and Larson [22], and Ridolfi et al. [10, 13].

In Fig. 5 we show a schematic, an N2 chart, with the interactions between the
communication and power subsystems. Besides links with the subsystem experts
and with other subsystems and disciplines, there is one point of attention that is
the loop created between the required power (from the communication subsystem)
and the available power (from the power subsystem). This type of loops makes
the design process iterative and correlates the performance of the two satellite
subsystems.

We set up an analysis of the communication and power subsystems using five
design variables, see Table 7, two performance indicators (namely, the down-link
margin and the total mass of the two subsystems) and one constraint represented
by the down-link margin itself demanded to be larger than 4 dB. More details on
the settings of other design factors that influence the performance of these two
subsystems are provided in the appendix.
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Fig. 5 Schematic representation of the interactions between the communication and power
subsystems’ models with the subsystem experts and other subsystems and disciplines

The three discrete variables give rise to a three-dimensional factorial design with
12 possible factor-level combinations in total. For each combination of discrete-
variable levels the RBSA routine initially generates 7 (2+5, see Table 1) sample
points using a Sobol’ sequence. With seven sample points, a linear regression model
is computed for both performances.

The coefficients of determination indicate that the subsystems mass is well
represented by a linear relationship, R2adj D 0:995. The down-link margin, instead,
could be better approximated using a higher-order model. Indeed in this case
R2adj D 0:920. The decision whether to re-sample or continue with the RBSA shall
be based on the value of R2adj. In this case a threshold of R2adj D 0:95 is used, which
induces the iterative RBSA to add sample points to the analysis. A linear regression
model with interaction terms is not sufficient to reach the threshold, which can be
met only with a quadratic regression model. In this case the number of sample points
is increased from 7 to 22 (2C10C10, see Table 1). The indications of Table 1 are
only for the minimum number of sample points. The actual number of sample points
to use, for each model order, is up to the user of RBSA.

The coefficients of determination (R2adj D 0:998 for the mass and R2adj D 0:992

for the down-link margin) confirm that a quadratic regression model is suitable for
representing the variability of the performances in the design region of interest

With the same process described for the first combination of discrete design
variables, the mathematical models of the communication and power subsystems are
executed on the sample points for the other discrete-variable combinations. Then,
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Fig. 7 Sensitivity indices obtained with the regression based sensitivity analysis. Down-link
margin

with the RBSA the sensitivity indices can be estimated, using the relationship of
Eqs. (23) and (24). In Figs. 6 and 7 the total-order and the first-order sensitivity
indices for the subsystems’ mass and down-link margin, respectively, are shown.
The bars represent the sensitivity indices, i.e., the contribution of the factors
indicated on the horizontal axis of the graphs, their interactions (when the product of
two factors is indicated), and their quadratic effects (when the product of the factor
by itself is indicated) to the variability of the performances. A sensitivity index equal
to 0:2, for instance, indicates a contribution of that factor to the variance of the
performance of interest equal to 20%. The contribution of all other effects that are
not explicitly shown in the bar plots, including the regression error, are encapsulated
in the bars named Other.

The Output RF Power and the Antenna Diameter contribute for more than
50% of the variability of the subsystems mass while they influence almost all
the variability of the down-link margin. The Type of Antenna (C) and the Type of
Transmitter (E) affect the mass of the subsystems because of their power density
with respect to the aperture diameter and the output power. These interactions are
evident in the bars of Fig. 6 named (BC) and (AE), respectively. The Type of Solar
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Array (D) contributes to a limited extent to the variability of the mass of the two
subsystems. This is due to the relatively low difference between the values of the
power density of the solar cells selected from the data base for the analysis, see
Table 9. Their contribution is mainly quadratic, correctly indicating that there is a
minimum (in this case) of mass when the selected array is the one corresponding
to the second level of the discrete design variable. The contribution of the Type
of Antenna (C) to the down-link margin is very limited, and hidden in the Other
bar of Fig. 7. For a given diameter, in the given frequency range, the aperture and
horn antenna have similar performances in terms of gain, which lead to similar
performances in terms of down-link margin. On the other hand, the influence on
the mass of the Type of Antenna is more significant, with the aperture antenna being
lighter than the horn one for a given reference diameter.

A quantitative indication of the importance of the factors for the determination
of the performances, provides the engineering team with fundamental information
to understand the effects of the design choices on the final design. In this case,
for instance, one may easily conclude that the Type of Solar Array does not affect
the performances much, thus it might be frozen to a particular type, based, for
instance, on the availability at the moment of implementation, or its cost, or based
on experience on past space missions. The Type of Antenna can be selected on the
basis of its sole contribution to the mass (the aperture antenna minimizes the mass
for a given down-link margin performance). This reduces de facto the dimensions
of the design space allowing the design team to channel the effort on the more
relevant design parameters. Very often the expert designers, or the developers of the
mathematical model themselves, are already able to predict in advance the effects
of the design choices on the output. However, this does not have to be the case,
especially in the presence of less expert engineers or team members, or those who
were not directly involved in the development of the mathematical model.

The next step in the analysis of the communication and power subsystems will
be its robust design using the Augmented Mixed Hypercube approach. The above
results obtained with the RBSA suggest that the linear graphs and contour plots that
retain most of the variability of the performances are those presented in Fig. 8. As
shown there, the trends corroborates the initial insight in the problem gained with
the sensitivity analysis.

With these settings of the design variables, a confirmation experiment was
performed on the model. The simulation provided a mass of the coupled subsystems
of 160.2 kg and a down-link margin of 4.96 dB. The reason for performing a
confirmation experiment is that the design point selected from the contour plot may
not be very precise eventually due to the presence of lack-of-fit in the regression
model. To get the results without the bias caused by the lack-of-fit, a confirmation
experiment is needed.

The purpose of the analysis presented here is to draw some conclusions on
the robustness to controllable and uncontrollable factors variations of the various
architectures, using the AMH approach. A tabular representation of the AMH used
for the analysis is presented in Table 8. The two continuous design variables are
considered with a certain degree of uncertainty with respect to their baseline value.
The other uncontrollable factors in Table 8 encompass many aspects related to the
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Fig. 8 Main results of the Communication and Power subsystems analysis. � is a tentative
selected baseline. The light-gray area represents the down-link margin constraint-violation
conditions

design and the operative life of the satellite for which there is uncertainty on one
side, and the impossibility of controlling them directly on the other side. The results
of the robust design on the Communication and Power subsystems, presented in
Fig. 9, are computed using the AMH sampling procedure as shown in Fig. 4b.

In Fig. 9a, b the most robust and least robust configurations of the architectural
variables are presented. In this case, the optimal configuration selected as a tentative
baseline is also the most robust one (see the black probability density function). The
least robust configuration, the one with the largest variance, is instead represented
by the one having the horn antenna, the triple junction type of solar cell, and the
SSPA type of transmitter. The sensitivity analysis presented in Fig. 9c, d reports the
uncertain-factors contribution to these results. The transmitter output-power and
the transmission efficiencies are the factors that influence most the sensitivity of
the subsystem mass to the uncertainties (design and environmental). This means
that the transmitter output power shall be carefully controlled in subsequent phases
of the design process to maintain the as-designed performances. This also means
that the margin that shall be applied to the subsystem mass is strongly dependent
on the uncertainties that the engineering team has on the efficiencies with which
the power is transmitted on board. Further, other sources of uncertainty will not
affect the design much from the mass point-of-view. In Fig. 9a, the black vertical
arrow represents the 20 % margin applied to the mean (nominal) value of the
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Table 8 Settings of the design variables

Intervals

Uncertain variables Code Min Max Distribution

Output RF power [W] A 35 45 Uniform

Antenna diameter [m] B 0:75 0:85 Uniform

Satellite pointing error [ı] C 1 4 Normald

Implementation loss [dB] D 1 4 Epistemica

Satellite antenna efficiency [–] E 0:45 0:55 Normald

Antenna mass density [Kg/m2] F 9 11:5 Log-Normale

Ground antenna efficiency [–] G 0:45 0:55 Normald

Ground antenna pointing
error

[ı] H 0:1 1 Log-normale

Transmission
efficiency—sunlight

[–] I 0:6 0:8 Epistemicb

Transmission
efficiency—eclipse

[–] J 0:6 0:8 Epistemicc

Solar cells � [%] K Nom.f�10 % Nom.f+10 % Log-normale

Solar array power dens. [W/kg] L Nom.f�10 % Nom.f+10 % Log-normale

Batteries energy dens. [Wh/kg] M 25 75 Log-normale

Circular orbit altitude [km] N 990 1100 Normald

Type of antenna [–] 1 2 2 levels

Type of solar array [–] 1 3 3 levels

Type of transmitter [–] 1 2 2 levels
aIntervals Œ1; 1:75; 2:5; 3:25; 4�, BPA Œ0:4; 0:25; 0:2; 0:15�
bIntervals Œ0:6; 0:667; 0:773; 0:8�, BPA Œ0:25; 0:4; 0:35�
cIntervals Œ0:6; 0:667; 0:773; 0:8�, BPA Œ0:25; 0:4; 0:35�
d� D 0 � D 1, Min and Max are the 0:01 and 0:99 percentile respectively
e� D 1, Max is the 0:99 percentile, Min corresponds to X D 0
fSee nominal values in Table 9

subsystems mass. A classical margins-approach just providing the margin with
respect to the mean value, will not convey any other kind of knowledge on the
uncertainty structure and on the sensitivity with respect to the uncertain factors.

7 Conclusions

The Regression-Based Sensitivity Analysis (RBSA) proposed here uses general
regression models obtained by adding higher-order terms (including interactions)
to the standard linear model to minimize the lack-of-fit. However, it introduces a
fundamental novel aspect by basing the computation of the sensitivity indices on the
contribution to the variance of the various parameters, rather than simply relying on
the regression coefficients, therefore providing global sensitivity information to the
design team.
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Fig. 9 Communication and power subsystems robust design and uncertainty analysis. Probability
density function of the most robust (black lines) and least robust (gray lines) configuration on the
(a) Subsystems mass, (b) Down-link margin. (c) Sensitivity analysis of the subsystems mass to the
uncertain factors. (d) Sensitivity analysis of the down-link margin to the uncertain factors

The RBSA has been compared to other widely used approaches to global SA for
designing purposes, and it demonstrated the characteristic of providing very precise
quantitative information on the importance of the factors at a reduced computational
effort in the case of linear and non-linear problems, even with a large number of
variables. Further, it has been demonstrated the possibility of obtaining quantitative
indices also of the single effects involving the design variables, information that
is not available with the other SA methods. In case of highly non-linear and non-
monotonic problems, the RBSA is able to provide at least a qualitative indication
on the importance of the factors and their ranking, even when other qualitative
screening methods fail. When designing a complex engineering system, with
many variables to be taken into account, the RBSA could help in supporting the
engineering team in quantitatively assess on the contribution of the design drivers,
with a low computational cost and thus in a shorter time, which also means cost in
most of the cases. This characteristic makes RBSA amongst the best candidates as
a quantitative analysis technique to be used during design activities for the support
of decision-making processes.
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By combining the smart sampling method with an uncertainty analysis—the
so-called augmented-hypercube sampling—one can successfully (and efficiently)
generate response data to obtain the performance of the system, and the relative
statistics, due to uncertain factors. This way the design can be fine-tuned to
become least sensitive to disturbance sources that cannot be controlled by the
designer.

One should realise that the applied augmented-hypercube sampling method
is what we call a local method. Sometimes a single hypercube is sufficient to
entirely cover the design space, sometimes instead a narrower hypercube might be
needed to avoid major lack-of-fit conditions. In this case more than one hypercube
may be implemented to study different regions of the design space as different
alternative baselines of the system. In this case, the methodologies presented
in this chapter will not only support the engineering team in selecting the best
configuration for each single baseline, but will also allow to compare and trade
between the baselines based on their performances, constraint-violation conditions
and robustness.

Appendix: Communication and Power Subsystem

In Table 9 we describe the settings of the discrete variables used for the analysis
of the communication and power subsystem. Further, the analysis of the communi-
cation and power subsystems cannot be performed considering them as separate
from the other subsystems of the satellite and irrespectively of the orbit that
the satellite will undergo. Some boundary conditions need to be set. In Table 10,
the settings of all the parameters that significantly influence the performances of the
communication and power subsystems are presented.

Table 9 Communication and power subsystem, discrete design variables settings

Levels

Type of antenna Horn aperture

Type of solar array Silicon

�cell D 0:148

Id D 0:77

�degr=year D 0:037

	power D 115W=kg

GaAs

�cell D 0:24

Id D 0:77

�degr=year D 0:038

	power D 140W=kg

Triplejunction

�cell D 0:20

Id D 0:60

�degr=year D 0:02

	power D 100W=kg

Type of transmitter TWTA SSPA

Data from [22]
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Table 10 Communication system, settings of other factors influencing the performance

Value

Mission and orbit Orbit type [–] Circular

Orbit altitude [km] 1000

Minimum elevation angle [ı] 30

Mission duration [years] 7

Attitude control Antenna pointing offset [ı] 2

Sun incidence angle [ı] 23

Payload Average power consumption [W] 160

Communication subsystem Implementation losses [dB] 2

Ground antenna efficiency [ı] 0.55

Ground antenna pointing offset [ı] 0.3

Down-link frequency [GHz] 2.2

Down-link data rate [Mbps] 100

Power subsystem Transmission efficiency (sunlight) Œ%� 71

Transmission efficiency (eclipse) Œ%� 62

Solar flux [W/m2] 1367

Batteries DoD Œ%� 50

Batteries energy density [Wh/kg] 50
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Low-Thrust Multi-Revolution Orbit Transfers

Sven Schäff

Abstract This chapter presents a procedure to solve low-thrust orbit transfer with
many orbital revolutions. One typical application is a transfer from the Geostation-
ary Transfer Orbit (GTO) to the Geosynchronous Equatorial Orbit (GEO). Many
telecommunication satellites to be located in the GEO ring are placed into an
intermediate transfer orbit like the GTO. Just recently these spacecrafts are equipped
more often with electric propulsion (EP) systems for the transfer. With respect to
state of the art chemical apogee kick engine, EP provides just a small amount of
thrust. As a result, the transfer needs many weeks or months and involves many
orbital revolutions around the central body. The spacecraft has to be steered properly
to match transfer constraints such as the final orbit. An approach is presented to
solve this type of orbit transfers. After introducing the required spacecraft dynamics,
several astrodynamical aspects like perturbations and environment conditions are
highlighted. A direct collocation method is proposed to solve the optimal control
problem. Furthermore few practical applications are shown to demonstrate the
capabilities of the mentioned strategy.

Keywords Optimization models and methods • Astrodynamics • Low-thrust •
Orbit transfer • Orbit-raising • Multi-revolution transfer • GTO-to-GEO • Tra-
jectory optimization • Optimal control problem • Direct collocation • Nonlinear
programming • Large-scale

1 Introduction

Telecommunication satellites located in the Geostationary Equatorial Orbit (GEO)
are often injected in a Geostationary Transfer Orbit (GTO). Then they are transferred
to the GEO using their own onboard propulsion system. State of the art for this
type of transfer is the chemical propulsion. In the meantime few satellites consider
Electric Propulsion (EP) for their orbit-raising, because it is very attractive to exploit
the high specific impulse of EP technology to reduce the propellant consumption.
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But electric orbit-raising requires much more complex maneuver sequences than
what is needed for pure chemical transfers. And the optimization of such scenarios
requires sophisticated modeling and optimization techniques. Since only small
thrust magnitudes are provided, the transfer lasts many months. A careful planning
of the spacecraft attitude maneuvers is required in advance to fulfill this mission.
Unfortunately, most approaches lack the accuracy necessary to fully exploit all
capabilities of electric orbit-raising. For example, the transfer trajectory has to avoid
crossings of the GEO belt. Further, limitations and constraints related to different
spacecraft subsystems, such as eclipse handling, and other possible limitations
related to environmental aspects (e.g. radiation) have to be considered. For such
sophisticated optimal problems it is very convenient to utilize direct transcription
of the optimal control problem into a nonlinear programming (NLP) problem by
discretization, because it results in a sparse problem solved in short time.

Section 2 introduces the required spacecraft dynamics and details the modeling
of the environment and astrodynamics. Details about the proposed optimization
procedure are presented in Sect. 3. Few examples of typical low-thrust multi-
revolution transfers are given in Sect. 4. Finally, Sect. 5 concludes this chapter.

2 Modeling

The modelling of the low-thrust orbit transfer scenario is the first essential step
for its computation and/or optimization. It encompasses the dynamic system, the
perturbations acting on the spacecraft during its travel as well as some additional
environmental effects.

Furthermore this section introduces the independent variable and controls
required to setup the optimal control problem.

2.1 Dynamics

Any two objects of mass m and M with distance r apart are attracting each other.
This is known as Newton’s law of gravitation. Assuming the mass M is fixed in
inertial space and m� M Newton’s law yields

Rr D � �

krk3 r (1)

where � is the standard gravitational parameter of mass M and Rr is the acceleration
vector of mass m relative to the inertial frame. It represents the motion of mass m in
the gravity field of mass M. Here, the first one is the mass of the satellite, while the
latter one is the mass of the central body.
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Since (1) is only true for two-body systems, a disturbing acceleration vector a is
introduced

Rr D � �

krk3 rC a (2)

It is required to include disturbing accelerations which can be caused by thrust
and/or other effects like gravitational perturbations and solar radiation pressure.
Assuming the magnitude of the disturbing acceleration being small, like it is the case
for low-thrust transfers, the equation describes the motion of a spacecraft subject to
perturbations.

Next, the Cartesian state representation is transformed into a set of orbital
elements. Each classical Keplerian orbital element

• semi-major axis a,
• eccentricity e,
• inclination i,
• argument of periapsis !,
• longitude of ascending node ˝ and
• true anomaly �

characterizes a physical property of the orbit shape (a, e), its orientation (i, !,
˝) and the position of the body orbiting the central body (�). Indeed, this is very
helpful to understand the variation of orbital changes.

However, these classical orbital elements suffer from two singularities. First,
with circular orbits, which have eccentricity of zero, the line of apsis is undefined.
And second, with an equatorial orbit, which means an inclination of either 0ı
(prograde) or 180ı (retrograde), both the ascending and descending nodes are ill-
defined. Therefore a new set of orbital elements which eliminates these deficiencies
is required: the equinoctial elements.

They are also the better choice for the optimization since the results are more
precisely, the time needed for the optimization is less and the convergence of the
computation is better toward the Keplerian elements [1, 2]. Unfortunately, the set of
classical equinoctial elements does not accommodate orbits with e� 1. To eliminate
this deficiency, a set of modified equinoctial elements is used as proposed in [1].

Equinoctial element p is the semi-latus rectum of the orbit and is related to
the semi-major axis and eccentricity. The modified equinoctial elements f and
g represent the eccentricity vector, and h and k represent the inclination vector.
Equinoctial element L is the true longitude of the spacecraft. All six elements
describe the position and velocity of the spacecraft expressed as state vector x. The
relationship between the modified equinoctial elements and the Keplerian orbital
elements is given in the following equations:

p D a
�
1 � e2

�
(3)
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f D e cos .! C�/ (4)

g D e sin .! C�/ (5)

h D tan

�
i

2

�

cos� (6)

k D tan

�
i

2

�

sin� (7)

L D �C ! C � (8)

Using the inverse transformation the Keplerian orbital elements are defined by:

a D p

.1 � f 2 � g2/
(9)

e D
p

f 2 C g2 (10)

i D 2tan�1ph2 C k2 (11)

! D tan�1 g

f
� tan�1 k

h
(12)

� D tan�1 k

h
(13)

� D L � tan�1 g

f
(14)

To obtain the inertial Cartesian coordinates for position r and velocity v the
following equations can be used:

r D

2

6
4

r
s2

�
2hk sin LC �1C ˛2� cos L

�

r
s2

��
1 � ˛2� sin LC 2hk cos L

�

2r
s2
.h sin L � k cos L/

3

7
5 (15)

v D

2

6
6
6
4

� 1
s2

q
�

p

��
1C ˛2� .sin LC g/ � 2hk .cos LC f /

�

� 1
s2

q
�

p

�
2hk .sin LC g/C �˛2 � 1� .cos LC f /

�

2
s2

q
�

p .k .sin LC g/C h .cos LC f //

3

7
7
7
5
; (16)
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where

w D 1C f cos LC g sin L (17)

r D p

w
(18)

/2 D h2 � k2 (19)

s2 D 1C h2 C k2: (20)

2.2 Equations of Motion

When using the modified equinoctial element, it is convenient to express the
disturbing acceleration vector a in a rotating frame. Its origin is the center of mass
of the spacecraft. This reference frame is defined with respect to the inertial frame
by the following principal axes:

ir D r
krk (21)

it D .r � v/ � r
k.r � v/ � rk (22)

in D r � v
kr � vk (23)

Index r indicates the radial component, t is the transverse (along-track) component
and n is the normal (cross-track) component. The r-axis points in the same direction
as the position vector and the t-axis lies in the orbital plane pointing in direction of
flight. Both axes span the orbital plane. Note that the t-axis is not necessarily parallel
to the velocity vector. The out-of-orbit-plane axis n is perpendicular to the orbital
plane and points in the direction of the angular momentum. This coordinate frame
is also called RTN or LVLH (local vertical, local horizontal). In [3] it is known as
RSW.

The corresponding transformation matrix given by

R D � ir it in
�

(24)
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describes the transformation from the rotating RTN-frame to the inertial frame, i.e.
the International Celestial Reference System (ICRS).

Next, the disturbing acceleration vector in the rotating RTN-frame is introduced:

� D RTa (25)

With the acceleration vector components defined in the rotating frame, the equinoc-
tial dynamics have to be defined. These are the state derivatives which are integrated
over the independent variable. For the states describing the position and velocity of
the spacecraft these are simply the derivatives of the modified equinoctial elements
(see [2]):

:
p D

r
p

�
�t
2p

w
(26)

:

f D
r

p

�

�

�r sin LC�t
1

w
Œ.wC 1/ cos LC f � ��n

g

w
Œh sin L � k cos L�




(27)

:
g D

r
p

�

�

��r cos LC�t
1

w
Œ.wC 1/ sin LC g�C�n

f

w
Œh sin L � k cos L�




(28)

:

h D
r

p

�
�n

s2

2w
cos L (29)

:

k D
r

p

�
�n

s2

2w
sin L (30)

:

L D pp�

�
w

p

�2
C
r

p

�
�n
1

w
.h sin L � k cos L/ (31)

In case the disturbing acceleration is zero (� D 0), all equations of motion except
the one of the true longitude (

:

L) become zero:

:
p D :

f D :
g D :

h D :

k D 0 (32)

It implies these modified equinoctial elements are simply constant, while the
equation of motion related to the true longitude describes the movement of the point
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mass according to the two-body equation:

:

L D pp�

�
w

p

�2
(33)

2.3 Perturbations

Also impacting the equations of motion are all perturbing forces acting on the
spacecraft during its transfer in the gravity well of the central body. Mainly it is
the thrust acceleration of the on-board propulsion system. Besides, available per-
turbations include gravitational accelerations and non-conservative perturbations,
among others. All perturbing forces are summed up and the resulting disturbing
acceleration vector is given by

� D �T C�G C�3rd C�D C�SRP C�SW (34)

where acceleration �T is due to thrust, �G is due to central body gravity perturba-
tions,�3rd is due to third body gravity perturbations,�D is due to atmospheric drag,
�SRP is due to solar radiation pressure and �SW is due to solar wind.

2.3.1 Thrust

In case of a low-thrust orbit transfer the motion of a spacecraft is mainly affected
by its propulsion system. In contrast to natural forces it is active controlled and
long propulsion periods, also known as thrust arcs, are one of the characteristics of
low-thrust transfers.

Since the thrust acceleration vector can be defined in the rotating RTN frame, it
is given by

	T D T

m
aT (35)

where T is the thrust magnitude of the propulsion system, m is the mass of the
spacecraft and aT is the vector defining the direction of the thrust magnitude in the
rotating RTN frame according to

aT D
0

@
ar

at

an

1

A (36)

It is a time-varying vector in its Cartesian representation and has to have unit length
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kaTk D
q

a2r C a2t C a2n D 1 (37)

Further, the mass flow rate is defined as

:
m D � T

vex
(38)

where vex is the exhaust velocity given by

vex D g0Isp (39)

where g0 is the standard acceleration due to gravity at Earth’s surface and Isp is
the specific impulse. The minus sign of the mass flow rate describes the loss of
propellant. Integrating the mass flow rate yields the consumed propellant mass. The
higher the specific impulse, the less propellant needed for a given delta-v increment.

2.3.2 Central Body Gravity

For a point mass, the potential function of the gravity is

ˆ D �

r
(40)

where � is the gravitational parameter of the central body and r is the distance of the
spacecraft to the center of the central body. It indicates that the gravity potential at
a certain point is directly proportional to the mass of the center body and inversely
proportional to the distance of the spacecraft to the central body.

In case of a spheroidal central body, the potential of the gravity has to be
integrated. Chobotov [4] shows that

ˆ D �

r

1X

nD0

nX

qD0

�
R0
r

�n

Pq
n .sin'/

�
Cn;q cos q�C Sn;q sin q�

�
(41)

where R0 is the equatorial radius of the central body, ® is the planeto-centric latitude
(also known as declination), � is the longitude towards east, Cn,q and Sn,q, are the
coefficients of the potential of degree n and order of m and Pn are the Legendre
polynomials.

Considering a spheroid of revolution with q D 0 yields the potential function

ˆ D ��
r

 

1 �
1X

nD2
Jn

�
R0
r

�n

Pn .sin'/

!

(42)
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where Jn are the dimensionless potential coefficients (Jn D �Cn;0). They are also
known as zonal harmonic coefficients and only depend on the latitude. Another
representation of the potential function is

ˆ D ��
r
C B .r; �; '/ (43)

with the gravity perturbation

B .r; �; '/ D �

r

1X

nD2
Jn

�
R0
r

�n

Pn .sin'/ (44)

The gravitational disturbing acceleration vector is given by

aG D �rB .r; �; '/ D �

0

B
@

@B
@r

1
r sin'

@B
@�

1
r
@B
@'

1

C
A (45)

Using (44) and (45) yields

aG D �

0

B
B
B
B
B
B
@

�

r2

1X

nD2
.nC 1/ Jn

�R0
r

�n
Pn .sin'/

0

�

r2
cos'

1X

nD2
Jn
�R0

r

�n
P’

n .sin'/

1

C
C
C
C
C
C
A

(46)

where P’
n(sin®) is the derivative of the n-th order Legendre polynomial. Since

only zonal harmonics are considered here there is no longitudinal acceleration. In
general, the Legendre polynomials of order n and degree of m are given by

Pnm.x/ D
�
1 � x2

� m
2

2nnŠ
� d.nCm/

�
x2 � 1�n

dx.nCm/
(47)

For convenience, the Legendre polynomials up to order 6 and degree 0 are

P2 D 3

2
sin2� � 1

2
(48)

P3 D 5

2
sin3� � 3

2
sin� (49)

P4 D 35

8
sin4� � 15

4
sin2�C 3

8
(50)
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P5 D 63

8
sin5� � 35

4
sin3�C 15

8
sin� (51)

P6 D 231

16
sin6� � 315

16
sin4�C 105

16
sin2�C 5

16
(52)

and their corresponding derivatives are

P’
2 D 3 sin� (53)

P’
3 D

15

2
sin2� � 3

2
(54)

P’
4 D

35

2
sin3� � 15

2
sin� (55)

P’
5 D

315

8
sin4� � 105

4
sin2�C 15

8
(56)

P’
6 D

693

8
sin5� � 315

4
sin3�C 105

8
sin� (57)

Finally, the acceleration vector needs to be transformed from the local reference
frame to the rotating RTN frame given as

	G D RT
LaG (58)

where RL is the corresponding transformation matrix from the rotating RTN-frame
to the local reference frame (in case of Earth it is the International Terrestrial
Reference System). Oblateness of the central body is one of major perturbations
for low-thrust trajectories. Most impact can be observed in the longitude of the
ascending node ˝ and the argument of periapsis !.

2.3.3 Third Body Gravity

Perturbing accelerations caused by third bodies have to be considered for low-thrust
transfers as well. In some situations this acceleration might be even larger than the
thrust acceleration of the spacecraft itself. To consider perturbations of the third
bodies the following formulation is used:

a3rd D �
X

k

�k

�
dk

kdkk3
C sk

kskk3
�

(59)



Low-Thrust Multi-Revolution Orbit Transfers 347

where �k is the standard gravitational parameter of the kth third body, dk is the
vector from the kth third body to the spacecraft and sk is the vector from the central
body of the spacecraft to the kth third body. It follows that

dk D r � sk (60)

Equation (59) can be used to compute the gravitational perturbation vector. How-
ever, Battin [5] suggests using the following

f .qk/ D dk

sk
� 1 D qk

�
3C 3qk C q2k
1C .1C qk/

3=2

�

(61)

where

qk D rT .r � 2sk/

sT
k sk

(62)

Finally (59), (60) and (61) yield

a3rd D �
X

k

�k

kdkk3
.rC f .qk/ sk/ (63)

Since this acceleration vector is given in the inertial frame, the following transfor-
mation is used to obtain it in the RTN frame

	3rd D RTa3rd (64)

where R is the transformation matrix from the RTN frame to the inertial frame.

2.3.4 Atmospheric Drag

Atmospheric drag mostly influences the spacecraft trajectory in low altitudes.
This effect can be dominant with respect to other perturbations like central body
oblateness. On the other side, in higher altitudes (i.e. more than 1000 km) the
atmospheric drag becomes very small and is dominated by solar radiation pressure
and third body perturbations. The atmospheric drag is caused by the particles of the
atmosphere and depends on its density as well as the velocity of the spacecraft with
respect to the atmosphere.

The perturbing force vector induced by the atmospheric drag is defined by

FD D �pCDA
vrel

kvrelk (65)
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where p is the atmospheric pressure, CD is the drag coefficient of the spacecraft,
A is the cross-sectional area of the spacecraft and vrel is the velocity vector of the
spacecraft relative to the atmosphere. The atmospheric pressure is obtained from the
Bernoulli equation

p D 1

2
	kvrelk2 (66)

where 	 is the atmospheric density. Further, the velocity vector of the spacecraft
relative to the rotating atmosphere is defined by

vrel D v �¨ � r (67)

where ¨ is the spin vector of the central body. The atmospheric density is quite
difficult to be determined since the density of the upper atmosphere changes due to
the following:

• molecular composition
• solar flux
• interactions with the magnetic field

There are many factors affecting the density of the atmosphere, such as variations
in the position (longitude, latitude) and cyclic variations (diurnal, solar rotation
cycle, solar cycle, etc.) [3]. One of the most precise atmosphere models for Earth is
the Jacchia-Bowman 2008 model [6]. Much faster in computation, but less accurate,
is an exponential model. Such a basic model varies the density of the atmosphere
according to

	 D 	0e

� h�h0

H

�

(68)

where 	0 is the reference density specified at the reference altitude h0, h is the
actual altitude of the spacecraft and H is the scale height. Quite moderate results are
achieved with the exponential atmosphere model suggested in [3]. It uses the U.S.
Standard Atmosphere (1976) and CIRA-72 including exospheric temperatures.

Finally, the resulting acceleration vector is the atmospheric drag force over mass,
and with equations (65) and (66) it follows that

aD D �1
2
	

CDA

m
kvrelk2 vrel

kvrelk (69)

Transforming it to the rotating RTN frame yields

	D D RTaD (70)

where R is the transformation matrix.
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2.3.5 Solar Radiation Pressure

Due to nuclear fusion reaction the Sun continuously emits radiant energy, called
solar radiation. It includes all electromagnetic waves emitted by the Sun and
the electromagnetic energy has a spectrum close to that of a black body with a
temperature of 5800 K. The solar radiation pressure (SRP) is the pressure exerted by
the solar radiation on objects within its reach, i.e. spacecrafts. Its effect is strongest
for light objects with large reference areas. If the solar photons are completely
absorbed the SRP is defined as

pSRP D S

c
(71)

where S is the solar radiation flux density and c is the speed of light in vacuum.
Because the radiation flux of the Sun, respectively a point light source, is propor-
tional to the inverse square of distance, the solar radiation pressure becomes

pSRP D S0
c

�
r0
krSk

�2
(72)

Where S0 is the solar constant at a distance of 1 astronomical unit (AU), r0 is the
distance between Sun and Earth defined as 1 AU and rs is the vector from the
spacecraft to the Sun. The solar constant is not a physical constant. It varies by
about 0.1 % over each solar cycle (sunspot cycle) of about 11 years, discovered by
astronomer Schwabe.

The perturbing force vector exerted due to solar radiation pressure is defined by

FSRP D �pSRPCRA
rS

krSk (73)

where CR is the coefficient of reflectivity of the spacecraft and A is its reference area.
Valid values for CR are between 0 and 2 where CR equals 1 for a perfect absorber
(black body) and in case of a perfect reflector it equals 2. Translucent materials have
a value between 0 and 1. For typical SEP spacecrafts a value of about 1.3 is used [2].

Since the acceleration is defined by force over mass, and with (72) and (73), it
yields

aSRP D �CR
AS0
mc

r20
rS

krSk3
(74)

where m is the mass of the spacecraft. To obtain the acceleration in the rotating RTN
frame, it follows that

	SRP D RTaSRP (75)

where R is the transformation matrix.
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2.3.6 Solar Wind

The solar wind was postulated to explain the bending of a comets plasma tail and the
auroras. It is a stream of charged particles, also known as plasma, expelled from the
Sun and consists mainly of protons, high-energy electrons, alpha particles and heavy
ions. These charged particles may also affect sensor performance of the spacecraft
and/or ground-spacecraft communication. With dominating hydrogen and helium
the composition of the solar wind is identical to the corona of the Sun.

Two different kinds of the solar wind exist: a fast and a slow solar wind. In
the plane of the ecliptic, and therefore also next to the planets, the solar wind is
slower and denser. The typical speed is between 200 and 600 km/s with an average
value of 400 km/s [7]. It is also notable that daily fluctuations by a factor of two
exist. Outside the ecliptic plane the solar wind is faster with typical speeds between
600 and 800 km/s. Both the slow and the fast solar wind can be interrupted by
interplanetary coronal mass ejections, known as solar storms. When arriving at Earth
they temporarily deform its magnetic field.

Any impact of energetic particles from the solar wind on a spacecraft exerts a
force which can be compared to that from the atmospheric drag, since both are
typical drag forces. The drag force induced by the solar wind is given by

FSW D �pSWCDA
rS

krSk (76)

where pSW is the pressure exerted by the solar wind, CD is the drag coefficient of
the spacecraft, A is the reference area of the spacecraft and rs is the vector from
the spacecraft to the Sun. The solar wind pressure is obtained from the Bernoulli
equation

pSW D 1

2
	v2SW (77)

where 	 is the density and vSW is the velocity of the solar wind. Assuming a constant
density in all directions of the solar system, the density is defined by

	 D
:

msun

vSWAs
(78)

Where
:

msun is the mass flow rate of the Sun and As is the area defined by

As D 4krsk2 (79)
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It is the surface area of a sphere centered at the center of the Sun and with a radius
given by the distance between Sun and spacecraft. Again, the acceleration is defined
by force over mass and with (76), (77), (78) and (79) it yields

aSW D �CD

:
msun

8

A

m
vSW

rS

krSk3
(80)

The acceleration defined in the RTN frame is

	SW D RTaSW (81)

where R is the transformation matrix.
Just like the solar radiation pressure the influence of the solar wind is given for all

orbital elements and, of course, the impact is larger for spacecrafts with low ballistic
coefficients. Nevertheless, the acceleration induced by the solar wind is expected to
be few magnitudes less than by the solar radiation pressure. Hence its modelling is
only required for very accurate trajectory propagations.

2.4 Environment

The definition of the environment is the setup of the central body as well as other
celestial bodies required to model the scenario. Each body is typically defined by its
equatorial radius and its gravity field defined as point mass. Only the central body
might require a more detailed definition by means of polar radius to represent the
flattening and by means of spherical harmonics for the gravity field.

Further it is vital to know the positions of the celestial bodies to each other,
known as ephemerides. Another environmental aspect is the radiation caused by the
radiation belt(s). In case of Earth, these are the inner and outer Van Allen radiation
belts.

Additionally, eclipses need to be considered to model the solar electric propul-
sion system which is typically used for low-thrust orbit transfers.

2.4.1 Ephemerides

Certain accelerations like solar radiation pressure and third body perturbations
require the position of additional celestial bodies. In general, position and velocity
of celestial bodies are known as ephemerides. Each ephemeris can be either obtained
from pre-computed sources like dynamic libraries or from analytical computation.

Widely used is the ephemeris data DE405 calculated by numerical integration at
the Jet Propulsion Laboratory (JPL). The data file provides position and velocity of
the Sun, the major planets as well as the Moon, among others.
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Another source for ephemerides is the Astronomical Almanac [8]. It provides
geocentric ephemerides of Sun, Moon and the planets. Besides, also the heliocentric
osculating orbital elements are provided.

2.4.2 Radiation Belt

Depending on the initial and final orbit of the low-thrust transfer, the spacecraft
might have to pass through the radiation belt of the central body many times.
Every time the spacecraft crosses the radiation belt the total time spent there is
accumulated. A basic implementation is given by

rRB;l � r � rRB;u (82)

where rRB,l is the lower radius of the radiation belt and rRB,u is the upper radius of
the radiation belt.

In case the stay time in the radiation belt is subject to be minimized, it is required
to integrate the duration spent inside the belt according to

:
tRB D

8
<

:

0

1

0

r < rRB;l

rRB;l � r � rRB;u

r > rRB;u

(83)

2.4.3 Eclipses

Since typical low-thrust orbit transfers are achieved with solar electric propulsion, it
is essential to consider eclipsing effects. Almost every spacecraft orbiting a celestial
body except the Sun encounters eclipses during its orbits. The following kinds of
eclipses are distinguished:

• Umbra is a total eclipse when the Sun is completely blocked by the central body.
• Penumbra is a partial eclipse and only a portion of the Sun is obscured by the

central body. This is typically the case before and after the umbra, in other words
it is the transition from 100 % sunlight to 100 % shadow.

• Antumbra is a partial eclipse as well but here the central body is entirely
contained within the Sun-disc and a ring of the Sun is visible around the central
body. The spacecraft experiences an annular eclipse.

Eclipses do not only impact the power generation and therefore the available
thrust magnitude of a solar electric propulsion spacecraft, also perturbations caused
by solar radiation pressure and solar wind are affected. A comprehensive description
of the eclipse geometry as well as their conditions and computation is found in
[3, 9].
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2.5 Independent Variable

Usually a spacecraft trajectory is integrated over time and for most applications it
is eminently suitable. In case of low-thrust planetary orbit transfers the spacecraft
travels several weeks or even months while using its propulsion system to bend
the trajectory. This type of orbital transfer is also called multi-revolution transfer
because of the high number of revolutions.

In such a low-thrust multi-revolution transfer two problems are faced which are
related to each other:

1. During a transfer starting in a low-altitude orbit and spiraling up for example
to the GEO belt, the orbital period is changing from about 2 h at the beginning
to 24 h when reaching the belt. It is obvious that a fixed integration step size
(equidistant grid nodes, e.g. each 30 min) would result in only 1/12 integration
steps over one orbital revolution in a low altitude orbit in comparison to the final
GEO orbit.

2. When starting the transfer in a geostationary transfer orbit the initial eccentricity
is quite high. With equidistant integration steps the accuracy during the apoapsis
passage would be good while during the periapsis passage the accuracy is so
poor that the result is not reliable anymore. In other words, the discretization of
the spacecraft dynamics is not good enough.

Both aspects can be solved by simply increasing the number of integration steps
and reducing the step size. Although the pure integration of the trajectory is working,
the optimal control problem is not only enormously oversized. Also an optimization
method is required handling such huge optimization problems with probably tens
or hundreds of millions of parameters. Furthermore the computational effort is
tremendous.

A second solution would be to place the grid points not equidistant over time but
only where required. In that way the number of optimizable parameters can be kept
small. However, during the optimization the shape of the orbit is changing. Thus,
it might happen that perfectly and densely placed grid nodes during the periapsis
passage are now during the apoapsis passage and vice versa. As a result only few
nodes would be present at the periapsis passage resulting in poor discretization and
a loss of accuracy.

Finally, the integration over time is very critical for low-thrust trajectories
with many revolutions, typically several hundreds, especially in combination with
dramatically changing orbital periods or in case of high-eccentric orbits. One
solution is using almost the same number of grid nodes in each revolution and
to fairly distribute them over periapsis and apoapsis passages. It results in a
good discretization and can be achieved by integrating over an orbital angle: the
equinoctial element L also known as the true longitude. It is the sum of true anomaly,
argument of periapsis and the right ascension of the ascending node. A change of
2 in this variable represents one orbit revolution of the spacecraft.

As a result the state vector x representing the spacecraft dynamics
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xT D Œp; f ; g; h; k;L� (84)

becomes

xT D Œp; f ; g; h; k; t� (85)

where the true longitude L is replaced by the time t. The derivative for the state time
t(L) is the reciprocal of the derivative of L(t):

dt
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it follows for the remaining state derivatives
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2.6 Controls

Controls represent optimizable parameters as function of the independent variable.
But in contrary to states they do not have equations of motion. Still, they are
impacting the dynamics of the optimal control problem. For low-thrust orbit transfer
it is suitable to use the spacecraft attitude or at least the thrust direction as control.
In case of the thrust direction, the third degree of freedom of the spacecraft attitude
is usually not modelled since it increases the complexity and size of the optimal
control problem.
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Few representations of the direction and magnitude of the thrust vector exist

• Cartesian vector components
• Spherical vector components (i.e. angles) and throttle
• Quaternion and throttle

The first two have three control variables, while the latter one results in five
control variables. Of course, quaternions have several advantages. Most important is
the proper handling of the gimbal lock. But there are also other benefits for example
in memory consumption, interpolation and transformation efficiency. However, two
additional control variables increase the problem size.

A second option is to describe the thrust vector with a reduced set of Euler
angles: the out-of-orbit-plane angle yaw and the in-plane angle pitch. As both
angles describe the direction of the thrust vector a third control is required for
its magnitude: the throttle. They define the spherical vector components. Because
angular quantities are periodic by nature (e.g. sin˛ D sin˛ ˙ 2) they show a
wrapping behaviour in the optimization. In summary, they are fast in computation
but not very robust.

Therefore it is most convenient using the Cartesian representation of a vector
as control. It describes magnitude and direction of the thrust vector. Two possible
frames for the vector representation exist. First, in case of the inertial frame the
control vector is defined as

u D
0

@
ux

uy

uz

1

A (93)

Since the thrust acceleration is required in the rotating RTN-frame it yields
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The second possibility is to define the control vector directly in the rotating RTN-
frame
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Now, the thrust acceleration vector becomes
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Without transformation matrix this approach is faster in computation as long as only
the dynamics are considered.

3 Optimization

To optimize a low-thrust orbit transfer the optimal control problem (OCP) has
to be solved. Very efficient is a direct transcription of the OCP into a nonlinear
programming problem by discretization. In a next step the NLP problem is solved
by using sequential quadratic programming (SQP). The drawback of this approach
is the high number of parameters, typically in the order of several 10,000 or 100,000.
Therefore a sparse NLP solver is required.

This section briefly describes few discretization methods applicable to solve the
optimal control problem of low-thrust orbit transfers. Furthermore the constraints
and objectives are discussed. At the end of this section some details are provided
about the optimization convergence and the accuracy of the solution. But before the
creation of an initial guess is explained in more detail, since it provides an initial
solution of the problem.

3.1 Initial Guess

Computing low-thrust trajectories from “scratch” which can be used as initial guess
for the optimization process is very crucial due to the complexity of the spacecraft
attitude during its multi-revolution orbit transfer. To provide suitable initial guesses
two different methods can be identified:

1. Using analytic control laws to describe the spacecraft attitude.
2. Using a previously computed (sub-)optimal spacecraft attitude.

In the first method analytic control laws are applied like the ones described by
Pollard [10]. These attitude laws change either one or multiple of the following
orbital parameters:

• semi-major axis
• eccentricity
• inclination
• argument of periapsis
• right ascension of the ascending node.

Furthermore some laws can be enhanced by an out-of-plane component so that
the inclination changes at the same time. For example, such a strategy is very
convenient when for the orbital elements semi-major axis and eccentricity. An
internal scheme following predefined rules can be applied to change the control
laws automatically during the initial guess creation. Besides the initial and final
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orbit conditions have to be considered as well to match the user defined transfer
characteristics.

A second approach to provide an initial guess is to use the attitude of an already
computed (sub-)optimal trajectory. Especially for very complex orbit transfers it
might be required since the problem description is changing between multiple
optimization runs. However in both cases the states are purely integrated according
to the equations of motion introduced in the previous section and considering the
provided attitude.

3.2 Discretization

Discretization methods are required to transcribe the optimal control problem
into a nonlinear programming problem. Since the entire optimization problem is
discretized on a grid it is also known as direct transcription. The grid contains the
so called collocation nodes where state and control values are known. But the state
values are not integrated. They are approximated using polynomials depending on
the applied discretization method. Due to this approximation a small discontinuity
is present at each node for every state: the discretization error.

Several different discretization schemes exist, such as

• Trapezoidal
• Hermite-Simpson compressed
• Hermite-Simpson separated

The trapezoidal method is a basic discretization scheme of order 2 whereas the
Hermite-Simpson discretization schemes are of order 4. They last two use third-
order polynomials and introduce additional NLP variables at the mid-point: the
compressed scheme adds control variables only and the separated scheme adds
control and state variables at the mid-point. In both cases not only the number of
NLP variables increases but also the number of constraints since the defects at the
mid-points have to be evaluated additionally. Thus, the trapezoidal discretization
method is faster in computation but less robust than the Hermite-Simpson methods.

3.3 Constraints

It is important to postulate some requirements which have to be met and they
are typically modelled as constraints. The following kinds of constraints are
distinguished:

• initial boundary constraints (at t0/L0)
• path constraints (between t0/L0 and tf /Lf )
• final boundary constraints (at tf /Lf )
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The first and the last one are also known as point constraints and they are
evaluated at the initial and final value of the independent variable, respectively.
Initial boundary constraints have to meet the initial orbital properties, while the
final boundary constraints have to meet the final or target orbit conditions.

Since the control vector is defined as unit vector it must be assured that the length
of the control vector equals one at each value of the independent variable where the
control vector is present. Thus, this is modelled as path constraint

0 D 1 �
q

u2r C u2t C u2n (97)

in case the attitude control is defined in the rotating RTN-frame.

3.4 Objectives

The objective of the optimal control problem is subject to be minimized while all
constraints have to be fulfilled. In principle, any property of the optimal control
problem might be formulated as objective. While there is only one objective in
single-objective optimization problems, it might contain several cost terms which
are, for example, simply summed up.

Similar to the constraints different kinds of cost functions are distinguished:

• initial cost (at t0/L0)
• Lagrange cost (between t0/L0 and tf /Lf )
• final cost (at tf /Lf )

Initial and final cost are known as Mayer cost terms and evaluated at the initial
and final value of the independent variable, respectively. The final cost is also known
as terminal cost. A Lagrange cost is an integrated cost term from initial to final
independent variable.

Typical final cost terms are the transfer duration or the propellant consumption,
depending on the scenario. The path constraints for the unit vector length can be
also reformulated as Lagrange cost.

3.5 Convergence and Precision

Convergence of the optimal control problem is achieved when few conditions are
satisfied. For example, the violation of the constraints must be within a specified
tolerance (typically in the order of 1e�7). Further, the norm of the projected gradient
of the partial derivatives of f must be within a specified tolerance of e.g. 1e�7. It is a
measure for the optimality of the OCP. But also the error in the discretization must
be smaller than a certain tolerance (e.g. 1e�6). The discretization error depends on
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Table 1 Example for
convergence of optimizer

Mesh number Number of grid nodes Error in equations

1 5001 2.4e�5

2 10,001 9.0e�7

3 10,001 1.1e�7

4 10,354 3.0e�8

Table 2 Accuracy of the
final spacecraft position for a
6-month low-thrust
GTO-GEO transfer

Optimization (km) Propagation (km)

x-Position 42,138.5 42,198.8
y-Position �1471.5 �1473.6
z-Position 0.0 9.3

the discretization scheme, the variable (states and controls) values, their derivatives
as well as the grid. Since state derivatives are given by the dynamics of the optimal
control problem, the discretization accuracy, in other words the accuracy of the
approximation, strongly depends on the grid and the interval length between two
grid nodes. More precisely the amount of change of a variable within a discretization
interval is a measure for the discretization error. When variables are not changing
much, longer intervals are fine, while shorter intervals are required in case at least
one variable changes rapidly. This is a reason why proper selection of spacecraft
dynamics and control variables is crucial.

During the optimization process the optimizer is converging by introducing
additional grid nodes where the requested discretization accuracy is not achieved.
It refines the discretization and each time additional nodes are added to the grid
is understood as mesh refinement. Usually the optimization algorithm utilizes
automatic mesh refinements. One example of the discretization error and the number
of grid nodes for several mesh refinements is summarized in Table 1. A final
discretization error of about 3e�8 is almost machine accuracy. More information
about discretization accuracy, mesh refinement and convergence is provided in [11,
12].

Considering the spacecraft dynamics and controls of the optimal control prob-
lem, mesh number 4 results in about 200,000 parameters and about 160,000
constraints.

An example for the accuracy of the final spacecraft position after successful mesh
refinement of an end-to-end low-thrust orbit transfer from GTO to GEO is given in
Table 2. The result of the optimization is exactly the requested target orbit position,
whereas the propagation of the optimized attitude profile is slightly different. Of
course, it must be considered that at each node of the grid a small discretization (less
than 3e�8) error is present which results in a different propagated position. Further
is has to be remembered that the integrated trajectory lasts about 6 months and
about 260 orbital revolutions. Finally, the difference in x-position is about 60 km,
or 0.14 %. In the y and z components the position error is much smaller with only a
few kilometers.
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4 Examples of GTO-GEO Transfers

Few examples are presented based on the modeling and optimization concept
already introduced. The application is a transfer from the GTO to the GEO. Certain
results like time and propellant optimality are shown as well as the impact of phasing
on the optimal solution. How to avoid the crossing the GEO ring is shown as well.

For the presented examples it is assumed to have a spacecraft of 1,000 kg with
a thrust magnitude of 150 mN. Initial and final orbit conditions are summarized in
Tables 3 and 4. Perturbations are not considered in the given examples. Their impact
on the performance parameters (time, propellant consumption) is negligible for this
type of transfer. But the control histories would be actually different, in particular the
thrust direction. Anyway, the impact on the shown figures is almost not traceable.

4.1 Time Optimal Transfer

Before showing the results for a time optimal low-thrust transfer from GTO to
GEO the computation of the initial guess is shown. For sake of convenience the
attitude control laws are augmented by an out-of-plane control strategy for efficient
inclination change. These laws are to change the semi-major axis or eccentricity,
for example. Other possible control laws include very basic control strategies like
constant thrust in radial, normal or transverse/tangential orbit direction.

For a standard GTO to GEO transfer with an initial inclination of 27ı the attitude
control is shown in Fig. 1. Two different phases can be identified: first half of the
transfer the orbit energy is increased at a maximum rate with only a small portion
for the inclination change. Once the desired orbit energy, here GEO orbit altitude,

Table 3 Initial orbit
conditions

Apoapsis altitude 35,786 km
Periapsis altitude 250 km
Inclination 27 deg
True anomaly 180 deg
Argument of periapsis 178 deg
RAAN 0 deg

Table 4 Final orbit
conditions

Semimajor axis 42,164.137 km
Eccentricity 0
Inclination 0 deg
Argument of periapsis 0 deg
RAAN 0 deg
True anomaly 0 deg
Relative longitude 37 deg
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Fig. 1 Control history of radial (left), transversal (middle), and normal component (right) using
enhanced attitude control laws
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Fig. 2 History of the orbital elements semi-major axis (blue), eccentricity (black) and inclination
(red) of a propagated GTO to GEO low-thrust transfer using augmented attitude control laws

Table 5 Comparison of a GTO-GEO transfer using augmented attitude control laws
and the time optimal solution

Transfer duration (days) Fuel consumption (kg)

Initial guess with control laws 202:94 134:10

Time optimal solution 188:95 124:85

is achieved, the control of the remaining transfer circularizes the orbit shape and
reduces the inclination to zero. At the end GEO orbit is reached (Fig. 2).

The presented initial guess is an excellent starting point for the optimization
of the transfer while minimizing the transfer duration. After the optimization the
transfer performance is increased by about 7 % (see Table 5). The optimal control
history of the spacecraft attitude is shown in Fig. 3 and the optimized orbit elements
are presented in Fig. 4.

For the computation of the initial guess where analytic laws are used less than
1 min of a single-core CPU (Central Processing Unit) is required. The converged
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Fig. 3 Control history of a time optimal GTO to GEO transfer after converged optimization: the
radial thrust vector control component is shown to the left, the transversal component in the middle,
and the normal component to the right
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Fig. 4 Semi-major axis (blue), eccentricity (black) and inclination (red) of time optimal transfer

solution using the sparse NLP optimizer is achieved in few minutes. In case
of a more sophisticated model including many perturbing forces like third body
perturbations, atmospheric drag and solar radiation pressure the computation time
is increasing due to many computations of the ephemerides to retrieve the position of
the spacecraft with respect to other orbital bodies. Anyway, the converged solution
is achieved in less than 30 min on a today standard desktop computer using one
CPU core.

4.2 Propellant Optimal Transfer

For the minimization of the propellant consumption the transfer duration needs
to be extended. The longer the transfer with respect to the time-optimal solution
the more propellant can be saved. But there is a minimum propellant consumption
required to bend the trajectory to the desired target orbit. An example is shown
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Fig. 5 Pareto front of the fuel consumption versus transfer duration of propellant optimal transfers

Table 6 Seasoning effect of eclipses caused by Earth on GTO-GEO transfers

Epoch 21st of March 21st of June 21st of September 21st of December

Duration of eclipses (h) 68.2 58.0 81.0 92.2

in Fig. 5. All presented solutions define the Pareto front of this optimal control
problem. Here, the propellant consumption of 125 kg for a time optimal transfer
can be reduced to about 100 kg when the transfer duration is extended by more than
50 %. It seems that further extended mission duration will not significantly reduce
the fuel consumption.

It is also known as multi-objective optimization problem since we have two
objectives: the time and the propellant consumption. There is not one single
optimum but a whole solution class known as the Pareto front.

4.3 Eclipses

As the propulsions system is fed by solar energy the effect of eclipses during the
many months lasting low-thrust transfer cannot be neglected. But eclipses strongly
depend on the seasons and therefore the initial date when the transfer starts. An
example for an Ariane 5 GTO to GEO transfer lasting about 6 months is given in
Table 6. The difference between the minimum and the maximum time spent in the
shadow of Earth is more than 50 %.
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Fig. 6 Attitude profiles for time-optimal transfer with GEO box targeting

4.4 Phasing

Phasing means the targeting of a certain longitude in the GEO, also known as GEO
box/slot. The relative (geographic) longitude of the final spacecraft position has to
match a required GEO box. Phasing couples the final orbit with a certain time. In
the worst case the transfer duration is increasing by almost 1 day with respect to the
time optimal one when targeting a specific GEO slot, because the Earth rotates once
in 24 h.

The required phasing strongly depends on the initial launch epoch, orbit and
target GEO box longitude. In the given example in Fig. 6 the spacecraft targets a
longitude of 15ı east while in the time-optimal transfer it was approaching at about
13ı east. Thus, the transfer needs to be extended by almost one day for the phasing.
The changes in radial and normal attitude control component are quite obvious in
comparison to the time optimal solution (see Fig. 3). Alternatively, the spacecraft
could start its transfer also about 2/360 days earlier to arrive at 15ı East with the
time optimal transfer and no phasing would be required.

4.5 GEO Belt Crossings

The GEO belt, or GEO ring, is understood as the area in space where most of the
operational satellites in geosynchronous orbit are located. Typically they have an
inclination and eccentricity of almost zero, but arbitrary geographic longitudes.

In general, a spacecraft might cross the GEO ring at the beginning, mid of the
transfer, and at the end. But it strongly depends on the orbital parameters of the
transfer trajectory. For example, most influence has the initial and final orbit as well
as the argument of periapsis during the transfer. Especially at the end of a low-thrust
orbit transfer to the GEO the spacecraft may cross the GEO belt several times since
the spacecraft targets zero eccentricity and inclination at GEO altitude.

To avoid the risk of a possible collision with assets in the GEO belt, a condition
is formulated as cost function forbidding the spacecraft to travel through the GEO
ring. The situation is illustrated in Fig. 7 in a co-rotating frame. The x-axis is
the direction from the center of Earth towards the projected spacecraft position
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Fig. 7 Super-synchronous transfer (blue) without GEO belt avoidance (left) and with active GEO
belt avoidance (right). The location of the GEO ring is indicated by the red rectangle

Table 7 Performance table for time optimal transfers regarding GEO belt crossings

GEO ring
crossings Transfer duration (%) Propellant consumption (%)

Super-synchronous 7 100.0 100.0
GEO crossing condition 0 100.02 100.02
Sub-synchronous 0 110.9 110.9

Fig. 8 3d plot of super-synchronous (left) and sub-synchronous transfer (right)

in the equator plane, also known as r-bar. The y-axis is the out-of-equator plane
component pointing north, labelled h-bar. The red rectangle indicates the GEO ring
location in the co-rotating frame. In the right figure it can be seen that the spacecraft
circumnavigates the GEO belt once the formulated condition is considered in the
optimization problem. The fuel consumption and transfer duration is increasing by
less than 0.02 % (see Table 7). In this example, a target orbit with an altitude of
500 km below the GEO orbit was targeted to demonstrate zero crossings of the
belt. When directly targeting, there is one “crossing” of the belt when the spacecraft
enters it to meet the final position located inside the GEO belt.

An alternative to reduce the number of crossings is a sub-synchronous transfer
with the spacecraft staying below GEO altitude during the whole transfer (Fig. 8).
Here, the transfer duration and propellant consumption is increased by e.g. about
11 % in comparison to a super-synchronous transfer with active GEO belt crossing
avoidance (see also Table 7).
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5 Conclusions

In this chapter the modeling and optimization of low-thrust multi-revolution orbit
transfers was outlined. First, the modeling of the aerospace problem was introduced.
It encompasses the spacecraft dynamics. Using modified equinoctial elements to
represent the position and velocity of the spacecraft is perfectly suited for this type
of application. Next, all typical perturbations affecting the spacecraft dynamics were
presented. Besides the thrust, it is vital to consider atmospheric drag, solar radiation
pressure as well as gravitational perturbations like central body oblateness and third
bodies.

For the optimization of such large-scale optimal control problems a direct
collocation method is used to transcribe it into an NLP problem using sequential
quadratic programming. Creation of a suitable initial guess is possible with simple
analytic attitude control laws. Furthermore a brief description of the constraints
and objective function was given and the typical performance and accuracy was
presented.

Several examples of GTO to GEO transfers have shown the practical application
of the presented procedure. It was shown that time and propellant optimal transfers
can be solved even when considering complex transfer characteristics like phasing
and avoidance of GEO ring crossings.

Once the optimal control problem was formulated, it is not required to refor-
mulate it when the orbit transfer characteristics change. For example, changing
the initial or final orbit, thrust to mass ratio or considered perturbations do not
require any reformulation of the original OCP. Therefore this presented approach
is perfectly suited for mission analysis engineers.
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Balance Layout Problems: Mathematical
Modeling and Nonlinear Optimization

Yuriy Stoyan, Tatiana Romanova, Alexander Pankratov, Anna Kovalenko,
and Peter Stetsyuk

Abstract The paper studies the optimal layout problem of 3D-objects (solid
spheres, straight circular cylinders, spherocylinders, straight regular prisms, cuboids
and tori) in a container (a cylindrical, a parabolic, or a truncated conical shape) with
circular racks. The problem takes into account a given minimal and maximal allow-
able distances between objects, as well as, behaviour constraints of the mechanical
system (equilibrium, moments of inertia and stability constraints). We call the
problem the Balance Layout Problem (BLP) and develop a continuous nonlinear
programming model (NLP-model) of the problem, using the phi-function technique.
We also consider several BLP subproblems; provide appropriate mathematical
models and solution algorithms, using nonlinear programming and nonsmooth
optimization methods, illustrated with computational experiments.

Keywords Layout problems • Behaviour constraints • Distance constraints •
Phi-functions • Quasi-phi-functions • NLP-models • Optimization algorithms

1 Introduction

3D layout optimization problems have a wide spectrum of practical applications.
In particular, these problems arise in space engineering for rocketry design. Their
distinctive feature consists of taking into account behaviour constraints of a satellite
system. Behaviour constraints specify the requirements for system’s mechanical
properties such as equilibrium, inertia, and stability. Many publications analyze
problems of the equipment layout in modules of spacecraft or satellites (see, e.g.

Y. Stoyan • T. Romanova (�) • A. Pankratov • A. Kovalenko
Department of Mathematical Modeling and Optimal Design, Institute for Mechanical
Engineering Problems of the National Academy of Sciences of Ukraine, 2/10 Pozharskyi Str.,
61146 Kharkov, Ukraine
e-mail: tarom27@yahoo.com

P. Stetsyuk
Department of Methods of Nonsmooth Optimization, Glushkov Institute of Cybernetic of the
National Academy of Sciences of Ukraine, 40 Glushkova Ave., 03187 Kyiv, Ukraine

© Springer International Publishing Switzerland 2016
G. Fasano, J.D. Pintér (eds.), Space Engineering, Springer Optimization
and Its Applications 114, DOI 10.1007/978-3-319-41508-6_14

369

mailto:tarom27@yahoo.com


370 Y. Stoyan et al.

[1, 2]). For example, objects layout problems for a simplified scheme of satellite
module taken into account behaviour constraints were considered in [3–8]. These
problems are NP-hard [9].

To construct adequate mathematical models of the layout optimization problems
in the form of nonlinear programming problems, analytical description of special
constraints is important: placement constraints (non-overlapping of objects, contain-
ment of objects in a container with regard for the minimal and maximal allowable
distances) and behaviour constraints (equilibrium, moments of inertia, and stability
constraints).

The phi-function technique is generally known to be an efficient tool of mathe-
matical modeling of geometric objects relations in the class of placement problems.
This technique allows nonlinear programming methods to solve the placement
optimization problems. The studies [1, 2] present radical-free phi-functions and
quasi-phi-function for classes of 2D and 3D objects. With the use of these functions,
mathematical models of some types of layout optimization problems described in
[1, 10] are proposed.

In the paper we consider the Balance Layout Problem (called the BLP problem)
in the following statement: arrange 3D objects in a container with circular racks tak-
ing into account special constraints so that the objective function attains its extreme
value. The objects are solid spheres, straight circular cylinders, spherocylinders,
straight regular prisms, cuboids and tori. As a container we choose a cylindrical,
parabolic or truncated conical shape.

The purpose of the study is to create an exact mathematical model of the balance
layout of 3D-objects as a nonlinear programming problem. Such model can be used
to obtain various variants of the BLP problem, which are determined by the variety
of spatial forms of objects and containers, forms of the objective function, and the
presence of the special constraints mentioned above.

Our chapter is organized as the following. Section 2 introduces shapes of objects
and types of containers, provides analytical descriptions of the placement and
behaviour constraints considered in the BLP problem. In Sect. 3 we develop the
exact NLP-model of the BLP problem and propose a general solution strategy.
Section 4 is devoted to modeling and solving of some variants of the BLP problem.
Here we present new algorithms to construct feasible starting points, involved in
our multistart strategy. Here we give computational results illustrated with pictures.
Section 5 completes our chapter with some conclusions.

2 Problem Formulation

2.1 Objects and Containers

Let � D f.x; y; z/ 2 R
3 W G.x; y; z/ � 0g be a container of given height H.

We consider the following types of containers: 1) � � C, C is a straight circular
cylinder with a base of radius R, G.x; y; z/ D minf�x2 � y2 C R2;�z C H; zg; 2)
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� � ƒ,ƒ is a paraboloid of revolution with a base of radius R D pH, G.x; y; z/ D
minf�z � x2 � y2 C H; zg; 3) � � E, E is a straight circular blunted cone with
lower and upper bases of radii R1 and R2 < R1 respectively, G.x; y; z/ D minf�z �
H.
p

x2 C y2 � R1/=.R1 � R2/;�z C H; zg. Suppose that � is divided by circular
racks Sk, k D 1; 2; : : : ;mC 1, into subcontainers �k, k D 1; 2; : : : ;m. We assume
that S1 is a base of �. Between racks Sk and SkC1 the distance tk is given.

We specify Oxyz as a local coordinate system of container �, where Oz is the
longitudinal axis of symmetry of �. The origin O of system Oxyz is the center of
symmetry of the lower base S1 of � (Fig. 1).

Family A D fAi; i 2 Ing, In D f1; 2; ::; ng, involves the following shapes of
objects: solid spheres Si of radius ri; straight circular cylinders Ci of radius ri and
height 2hi; tori Ti with metric characteristics .ri; hi/, where ri is the distance from
the center of generating circle to the axis of revolution, 2hi is the height of Ti, hi is
the radius of the generating circle; spherocylinders SCi with metric characteristics
.li; ri; hi/, where li is the height of ball segments, ri is the radius and 2hi is the
height of cylinder; straight regular prisms and cuboids Ki with metric characteristics
.hi; Qvil; /, where 2hi is the height of Ki, Qvil D .Qxil; Qyil/, l D 1: : : : ; si, are vertices of
the base of Ki (which is a convex polygon Ki), si is the number of vertices of Ki.

We specify the local coordinate system Oixiyizi of object Ai. The axes of the
system we denote by Oixi, Oiyi, Oizi. The origin Oi of the coordinate system is at
the center of object Ai. We note that Oizi kOz (Fig. 2).
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Fig. 3 Example of
system �A

Each object Ai is a homogeneous rigid body of given mass mi.
Assume that a partition of A into subsets Ak D fAi; i 2 Ikg, k D 1; 2; : : : ;m,

I1 [ I2 [ : : : [ Ik [ : : : Im D In, with respect to the placement of the subsets of
objects inside subcontainers �k, k D 1; 2; : : : ;m, is given.

In turn each subset Ak is divided into two subsets AkC D fAi; i 2 IkCg and Ak� D
fAi; i 2 Ik�g, where AkC is subset of objects, which have to be placed on the rack
Sk, Ak� is subset of objects, which have to be placed under the rack SkC1 inside
subcontainer �k.

Any arrangement of object Ai 2 A inside container � is defined by vector
ui D .vi; �i/ with respect to the coordinate system Oxyz, where vi D .xi; yi; zi/

is a variable translation vector of object Ai, �i is a variable rotation angle of object
Ai in the plane Oixiyi. Thus, a vector of variables u D .p; u1; u2; : : : ; un/, defines the
arrangement of object family A inside container � where p is a vector of variable
parameters of container. Container� with the objects packed in it is called a system
�A (Fig. 3).

Balance Layout Problem (BLP): Pack 3D objects Ai 2 A, i D 1; 2; : : : ; n, sliding
on (above or below) assigned racks Sk, k D 1; 2; : : : ;m, inside container �, so that
the given objective function F.u/ attains its extreme value with regard for special
constraints.

Let us define the special constraints, which embrace placement constraints and
behaviour constraints.
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2.2 Placement Constraints

The placement constraints in the BLP problem are generated by non-overlapping of
objects Ai;Aj, i > j 2 Ik, k D 1; : : : ;m, which have to be placed inside subcontainer
�k, and containment of object Ai in container�, i 2 In. In addition, the minimal 	�

ij

and maximal 	C
ij � 	�

ij allowable distances between objects Ai;Aj 2 Ak, i > j 2 Ik,
may be specified. Also, the minimal allowable distance 	�

i between object Ai 2 A,
i 2 In, and the lateral surface of container�may be given. Without loss of generality
we set ¡�

ij D 0 (or 	C
ij D $/ if a minimal (or a maximal) allowable distance between

objects Ai and Aj is not given, i > j 2 Ik. Here$ is a given sufficiently great number.
In particular, the condition 	C

ij D 	�
ij provides the arrangement of objects Ai and Aj

on the exact distance. We also set 	�
i D 0 if a minimal allowable distance between

object Ai and the lateral surface of subcontainer �k is not given.
Placement constraints in the BLP problem may be presented as the following:

	�
ij � dist.Ai;Aj/ � 	C

ij ; i > j 2 Ik; k D 1; 2; : : : ;m;
and

dist.Ai; �
�/ � 	�

i ; i D 1; : : : ; n;
where �� D R

dnint�, d D 2; 3.
To describe the placement constraints analytically we employ the phi-function tech-
nique (see, e.g., [11, 12]). We offer the reader some needed definitions illustrated
with examples in Appendix 1.

Adjusted phi-functions and quasi-phi-functions. Let A;B � R
d be two phi-

objects (see, e.g., [11] and Appendix 1), d D 2; 3. Assume, that at least one of them
is bounded. And let uA and uB be placement parameters of A and B, respectively.
Let minimal 	� and maximal 	C allowable distances between objects A and B be
given, i.e.

dist.A;B/ � 	�; dist.A;B/ � 	C

where dist.A;B/ D min
t12A;t22B

d.t1; t2/, d.t1; t2/ is the Euclidean distance between two

points t1 and t2.
To formalize the mentioned above distance constraints we employ adjusted phi-

functions (see, e.g., [11]) and adjusted quasi-phi-functions (see, e.g., [2, 13]).

Definition 1. Everywhere defined and continuous function
_

ˆ
�
.uA; uB/ (or

_

ˆ
C
.uA; uB// is called an adjusted phi-function for objects A.uA/ and B.uB/, if

_

ˆ
�
.uA; uB/ > 0; if dist.A;B/ > 	� .

_

ˆ
C
.uA; uB/ > 0; if dist.A;B/ < 	C/;

_

ˆ
�
.uA; uB/ D 0; if dist.A;B/ D 	� .

_

ˆ
C
.uA; uB/ > 0; if dist.A;B/ D 	C/;

_

ˆ
�
.uA; uB/ < 0; if dist.A;B/ < 	� .

_

ˆ
C
.uA; uB/ < 0; if dist.A;B/ > 	C/:
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Definition 2. A function
_

ˆ
0
.uA; uB; u0/ is called an adjusted quasi-phi-function for

objects A.uA/ and B.uB/, if function max
u02Rd

_

ˆ
0
.uA; uB; u0/ is an adjusted phi-function

_

ˆ.uA; uB/ for objects A.uA/ and B.uB/. Here u0 is a vector of extra variables. The
dimension of Euclidean space R

d depends on the object shapes.

By analogy we discriminate the adjusted quasi-phi-functions for modeling
minimal and maximal allowable distances between objects A and B, and denote

these functions by
_

ˆ
0�

and
_

ˆ
0C

.

Thus, max
u02U

_

ˆ
0�
� 0 , dist.A;B/ � 	� and max

u02U

_

ˆ
0C
� 0 , dist.A;B/ � 	C.

Using the properties of quasi-phi-functions [13], we may conclude that
_

ˆ
0�
� 0)

dist.A;B/ � 	�;
_

ˆ
0C
� 0) dist.A;B/ � 	C.

Placement constraints in terms of phi-functions. Using the definitions of the
adjusted phi-function and the adjusted quasi-phi-function our placement constraints
in the BLP problem may be presented in the following form:

_

ˆ
�
ij � 0 or

_

ˆ

0�
ij � 0) dist.Ai;Aj/ � 	�

ij ; i > j 2 Ik; k D 1; 2; : : : ;m;
_

ˆ
C
ij � 0 or

_

ˆ

0C
ij � 0) dist.Ai;Aj/ � 	C

ij ; i > j 2 Ik; k D 1; 2; : : : ;m;

dist.Ai; �
�/ > 	�

i )
_

ˆ
�
i � 0; i D 1; : : : ; n:

Now we introduce two functions

‡1.u; u
0/ D minf‡�

ij ; .i; j/ 2 „k�; ‡C
ij ; .i; j/ 2 „kC; k D 1; 2; : : : ;mg (1)

where uD .p; u1; u2; : : : ; un/; u0D .u0�
ij ; .i; j/2„k�; u

0C
ij ; .i; j/2„kC; kD 1; 2; : : : ;m/,

„k�Df.i; j/ W jzi�zjj< hiC hjC 	�
ij ; i> j2 Ikg; „kC D f.i; j/ W 	C

ij <$; i> j2 Ikg;

‡�
ij 2 f

_

ˆ
�
ij ;

_

ˆ

0�
ij g; .i; j/ 2 „k�; ‡C

ij 2 f
_

ˆ
C
ij ;

_

ˆ

0C
ij g; .i; j/ 2 „kC;

and

‡2.u/ D minf_ˆ
�
i ; i 2 Ik; k D 1; 2; ::;mg: (2)

Then the inequality

‡.u; u0/ D minf‡1.u; u0/; ‡2.u/g � 0 (3)

describes placement constraints in the BLP problem.
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Below we define the explicit forms of our adjusted phi-functions and adjusted
quasi-phi-functions involved in (3).

Modeling of constraints on minimal allowable distances between placement

objects. To construct adjusted phi-functions
_

ˆ
�
ij and adjusted quasi-phi-functions

_

ˆ

0�
ij for objects Ai and Aj, .i; j/ 2 „k�, in (1) we derive zij D z of a point of contact

for objects
_

Ai D Ai ˚ S.	�
ij / and Aj, where S.	�

ij / is a solid sphere of radius 	�
ij , ˚

is a symbol of Minkovski sum. There are two cases of contact: (a) a unique point
of contact (Fig. 4a), (b) a continuum of contact points (Fig. 4b). In case (b) we set
zij D minfzi C hi; zj C hjg.
(1) Let Ai;Aj 2 fS;C;T;SCg. We consider cross-sections of objects

_

Ai and Aj by

plane Oxy provided that zij D z. We denote the radius of the section of object
_

Ai
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by rz
i , and the radius of the section of object Aj by rz

j . Then distance constraint
dist.Ai;Aj/ � 	�

ij , can be described by means of an adjusted phi-function of the
form

_

ˆ
�
ij .ui; uj/ D .xj � xi/

2 C .yj � yi/
2 � .rz

i C rz
j /
2: (4)

(2) Let Ai;Aj 2 fKg. Now we consider two objects
_

Ki D Ki ˚ S.	�
ij / and Kj,

and the appropriate cross-sections of the objects by plane Oxy provided that

zij D z. We denote the appropriate cross-sections by
_

Ki D Ki ˚ C.	�z
ij / and Kj.

It should be noted that if objects Ki and Kj have a continuum of contact points
then 	�z

ij D 	�
ij . Then distance constraint dist.Ki;Kj/ � 	�

ij can be described by
means of an adjusted quasi-phi-function of the form

_

ˆ

0�
ij .ui; uj; uP/ D minfˆKiP.ui; uP/; ˆ

KjP�

.uj; uP/g � 0:5	�z
ij ; (5)

where ˆKiP.ui; uP/ D min
1�l�si

 P. Qv0
il/ is a phi-function of Ki and halfplane P.uP/,

ˆKjP�

.uj; uP/ D min
1�1�sj

.§P.Qv0
j1// is a phi-function of Kj and halfplane P�.uP/ D

R2nintP.uP/, Ki and Kj are bases of Ki and Kj. Here and after we set P.uP/ D
f.x; y/ W  P D ˛ � xC ˇ � yC �P � 0g, uP D .�P; �P/, ˛ D cos �P, ˇ D sin �P.
Here and after Qv0

il D .Qx0
il; Qy0

il/, l D 1; : : : ; si, Qv0
jl D .Qx0

jl; Qy0
jl/, l D 1; : : : ; sj, Qx0

il D
xi C Qxil cos �i C Qysin �i ; Qy0

il D yi � Qxil sin �i C Qyil cos �i, Qx0
jl D xj C Qxjl cos �j C

Qysin �j ; Qy0
jl D yj � Qxjl sin �j C Qyjl cos �j.

(3) Let Ai 2 fS;C;T;SCg, Aj 2 fKg. Now we consider two objects! _

Ai and Kj

and the appropriate cross-sections of the objects by plane Oxy provided that

zij D z. We denote the radius of the cross-section of! _

Ai by rz
i . Then distance

constraint dist.Ai;Kj/ � 	�
ij can be described by means of an adjusted quasi-

phi-function of the form

_

ˆ
0�
ij .ui; uj; uP/ D minfˆKP.uj; uP/;

_

ˆ
CP�

.ui; uP/g; (6)

where ˆKP.uj; uP/ D min
1�l�sj

 P. Qv0
jl/ is a phi-function of Kj and P,

_

ˆ
CP�

.ui; uP/ D � P.ui/ � rz
i is a phi-function of

_

Ci and P�, Kj is the base
of Kj.

Modeling of constraints on maximal allowable distances between placement
objects. In order to describe maximal allowable distances in (1) we use adjusted phi-

functions
_

ˆ
C
ij , or adjusted quasi-phi-functions

_

ˆ

0C
ij for objects Ai and Aj, .i; j/ 2 „kC.
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Let Ai;Aj 2 fS;C;T;SC;Kg. We denote the appropriate cross-sections of objects
_

Ai D Ai ˚ S.	C
ij / and Aj with plane Oxy provided that zij D z in the point of contact

by
_

Az
i and Az

j .

Then distance constraint dist.Ai;Aj/ � 	C
ij can be defined by means of the

following functions:

• if
_

Az
i � Cz

i ;A
z
j � Cz

j then we use an adjusted phi-function of the form

_

ˆ
C
ij .ui; uj/ D �.xj � xi/

2 � .yj � yi/
2 C .rz

i C rz
j /
2; (7)

where rz
i ; r

z
j are radii of circles Cz

i and Cz
j .

• if
_

Az
i �

_

Kz
i D Ki ˚ C.	Cz

ij /;A
z
j � Kz

j then we use an adjusted quasi-phi-function
of the form

_

ˆ

0C
ij .ui; uj; u

0/ D minf.	Cz
ij /

2 � dist2.pi; pj/; fi.pi/; fj.pj/g; (8)

where u0 D .pi; pj/, pi D .xpi ; ypi/, pj D .xpj ; ypj/;

dist2.pi; pj/ D .xpj � xpi/
2 C .ypj � ypi/

2;

fi.pi/ D minf�0
il.pi/; l D 1; : : : ; sig; �0

il.pi/ D A0
il.xpi/ � B0

il.ypi/C C0
il;

A0
il D Qy0

i.lC1/ � Qy0
il; Bil D Qx0

i.lC1/ � Qx0
il; C0

il D Qy0
il � Qx0

i.lC1/ � Qy0
i.lC1/ � Qx0

il;

fj.pj/ D minf�0
jl.pj/; l D 1; : : : ; sjg; �0

jl.pj/ D A0
jl.xpj/ � B0

jl.ypj/C C0
jl;

A0
jl D Qy0

j.lC1/ � Qy0
jl; Bjl D Qx0

j.lC1/ � Qx0
jl; C0

jl D Qy0
jl � Qx0

j.lC1/ � Qy0
j.lC1/ � Qx0

jl;

pi D .xpi ; ypi/; pj D .xpj ; ypj/ 2 R
2, such that fi.pi/ � 0 (fj.pj/ � 0/, if pi 2 Az

i
(pj 2 Az

j / (and fi.pi/ < 0 (fj.pj/ < 0/ otherwise), �0
il D 0 (�0

jl D 0/ are the
equations of straightlines, passing through vertices Qv0

il and Qv0
i.lC1/ of polygon Ki,

l D 1; 2; : : : ; si (or vertices Qv0
jl and Qv0

j.lC1/ of polygon Kj, l D 1; 2; : : : ; sj/. Here
Ki (Kj/ is the base of Ki (Kj/;

• if
_

Az
j � Cj;A

z
i � Ki then we use a quasi-phi-function of the form

_

ˆ

0C
ij .ui; uj; u

0/ D minffij.pi; uj/; fi.pi/g; (9)

where u0 D .pi/, pi D .xpi ; ypi/, fij.pi; uj/ D �.xj � pxi/
2 � .yj � pyi/

2 C .rz
j /
2, rz

j
is the radius of Cz

j , and function fi.pi/is defined in (8).

Modelling containment constraints taking into account minimal allowable dis-

tances. To describe function (2) we use adjusted phi-functions
_

ˆ
�
i for objects Ai,

i 2 Ik; and ��k.
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(1) Let Ai 2{S, C, T, SC},
_

Ai D Ai ˚ S.	�
i /. We consider cross-section C� of

subcontainer �k and cross-section
_

Ai of object
_

Ai by plane Oxy, provided that
z D z�i D const. The value of z�i is defined explicitly by metric characteristics

of
_

Ai and �k, if � 2 fƒ;Eg (Fig. 4c). We set z�i D zi if � 2 fCg (Fig. 4d).
Then a containment of object Ai in subcontainer�k taking into account minimal
allowable distance 	�

i we define, using the following adjusted phi-function

_

ˆi.ui/ D �x2i � y2i C .Rz
i � rz

i /
2; (10)

where rz
i is the radius of

_

Ai , Rz
i � rz

i is the radius of C�.

(2) Let Ai 2{K}. We consider cross-section
_

A
�

of object
_

�
k

D R
3nint

_

�
k�

and

cross-section Ki of Ki by plane Oxy, provided that zij D z, where
_

�
k�
D �k�˚

S.	�
i /, �

k� D R
3nint�k. Then a containment of object Ki in subcontainer

�k taking into account minimal allowable distance 	�
i we define, using the

following adjusted phi-function

_

ˆi.ui/ D minf�.Qx0
il/
2 � .Qy0

il/
2 C .Rz

i /
2; l D 1; : : : ; sig; (11)

where .Qx0
il; Qy0

il/, l D 1; : : : ; si, are coordinates of vertices of Ki and Rz
i is the

radius of
_

C�.

2.3 Behaviour Constraints

Let m0 be the mass of container � (we neglect masses of racks and the base of the
container). We denote the center of mass of � in the fixed coordinate system Oxyz
by .x0; y0; z0/. Assume that the density of the lateral surface of � is a constant. For
each considered type of our container � the point .x0; y0; z0/ belongs to axis Oz of
its symmetry, therefore x0 D 0, y0 D 0 and z0 is defined as the following:

z0 D H

2
for C; z0 D 2H

5
for ƒ; z0 D H

3

R1 C 2R2
R1 C R2

for E:

The center of mass of each object Ai is at origin Oi of the coordinate system of
object Ai.

We denote the center of mass of system �A by Os D .xs; ys; zs/, where

xs.u/ D 1

M

nX

iD1
mixi; ys.u/ D 1

M

nX

iD1
miyi; zs.u/ D 1

M

nX

iD1
mizi;

M D
nP

iD0
mi is the mass of system �A.
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Now we define coordinate system OsXYZ of �A. The origin of the system is at
Os and OsXkOx, OsYkOy, OsZkOz (Fig. 3.).

Let us consider the constraints of mechanical characteristics of system �A.
The equilibrium constraints are defined by the following system of inequalities:

�11.u/ D minf�.xs.u/ � xe/C�xe; .xs.u/ � xe/C�xeg � 0;
�12.u/ D minf�.ys.u/ � ye/C�ye; .ys.u/ � ye/C�yeg � 0;
�13.u/ D minf�.zs.u/ � ze/C�ze; .zs.u/ � ze/C�zeg � 0;

where .xe; ye; ze/ is the expected position of Os, .�xe; �ye; �ze/ are admissible
deviations from the point .xe; ye; ze/.

The constraints of moments of inertia are defined as the following:

�21.u/ D �JX.u/C�JX � 0;
�22.u/ D �JY.u/C�JY � 0;
�23.u/ D �JZ.u/C�JZ � 0;

where JX.u/; JY.u/; JZ.u/ are the moments of inertia of the system �A with respect
to the axes of coordinate system OsXYZ, �JX; �JY ; �JZ are admissible values for
JX.u/; JY.u/; JZ.u/, where

JX.u/ D Jx0 C
nX

iD1
.Jxi cos2 �i C Jyi sin2 �i/C

nX

iD1
.y2i C z2i /mi �M.y2s C z2s /;

JY.u/ D Jy0 C
nX

iD1
.Jxi sin2 �i C Jyi cos2 �i/C

nX

iD1
.x2i C z2i /mi �M.x2s C z2s /;

JZ.u/ D
nX

iD0
Jzi C

nX

iD1
.y2i C z2i /mi �M.x2s C y2s /;

Jx0 ; Jy0 ; Jz0 are the moments of inertia of container � with respect to the axes of
the coordinate system Oxyz, Jxi ; Jyi ; Jzi , i 2 In, are the moments of inertia of object
KAi with respect to the axes of coordinate system Oixiyizi (see Appendix 2).

The stability constraints are defined by the following system of inequalities:

�31.u/ D minf�JXY.u/C�JXY ; JXY.u/C�JXYg � 0;
�32.u/ D minf�JYZ.u/C�JYZ ; JYZ.u/C�JYZg � 0;
�33.u/ D minf�JXZ.u/C�JXZ ; JXZ.u/C�JXZg � 0;
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where JXY.u/; JYZ.u/; JXZ.u/ are the products of inertia of system�A with respect to
the axes of the coordinate system OsXYZ, �JXY ; �JYZ ; �JXZ are admissible values
for JXY.u/; JYZ.u/; JXZ.u/, respectively,

JXY.u/ D 1

2

nX

iD1
.Jxi � Jyi/ sin 2�i C

nX

iD1
xiyimi �Mxsys;

JYZ.u/ D
nX

iD1
yizimi �Myszs; JXZ.u/ D

nX

iD1
xizimi �Mxszs:

Behaviour constraints of the BLP problem we define as the system of inequalities

�1.u/ � 0; �2.u/ � 0; �3.u/ � 0;

where

�1.u/ D minf�11.u/; �12.u/; �13.u/g; (12)

�2.u/ D minf�21.u/; �22.u/; �23.u/g; (13)

�3.u/ D minf�31.u/; �32.u/; �33.u/g: (14)

3 A Mathematical Model and a Solution Strategy

Using (1)–(14), a mathematical model of the BLP problem can be presented in the
form

min F.u/ s:t: .u; u0/ 2 W (15)

W D f.u; u0/ 2 R
� W ‡.u; u0/ � 0; �.u/ � 0; � � 0g; (16)

where ‡.u; u0/ is defined in (3), �.u/ D minf�s.u/; s 2 Utg, Ut 2 P.U/, P.U/ is
the power set of U D f1; 2; 3g, functions �1.u/; �2.u/; �3.u/ are given in (12)–(14),
� � 0 is the system of additional constraints of metric characteristics of container
� and placement parameters of objects. If s D ;, i.e. behaviour constraints are not
involved in (16), then our objective function F.u/ meets mechanical characteristics
of system �A.

Depending on the form of objective function different variants of mathematical
model (15) and (16) can be generated. The most frequently occurring objective
functions found in related publications are the following: (1) size of container �;
(2) deviation of the center of mass of system �A from a given point; (3) moments
of inertia of system �A (see, e.g., [3–8]).

Problem (15) and (16) for a given Ut is a multiextremal nonlinear programming
problem. Feasible region W is described by the system of N inequalities with
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nonsmooth functions, where N D Na C Nb, Na is the number of adjusted
phi-functions and adjusted quasi-phi-functions for non-overlapping constraints,

Na D
mP

kD1
Nk, Nk is the number of adjusted phi-functions and adjusted quasi-

phi-functions for containment constraints, Nk D n2k, k D 1; 2; : : : ;m, Nb is
the number of functions for behaviour constraints, Nb � 15. The adjusted phi-
functions and adjusted quasi-phi-functions in (3) are composed generally of min-
and max-operations of nonlinear functions. As a result, set W of feasible solutions
is non-convex, leading to many local extrema.

One of the important features of our feasible region (16) is the following: W D
W1 [ : : : [ Ws [ : : : [ W
 , where each subregion Ws is specified by a system of
inequalities with differentiable functions (see, e.g., [2, 10])

Problem (15) and (16) can be reduced to the following optimization problem:

F.u�; u0�/ D minfF.us�; u0s�/; s D 1; 2; : : : ; 
g; (17)

where

F.us�; u0s�/ D min F.u; u0/ s:t: .u; u0/ 2 Ws � R
� : (18)

The model requires a comprehensive search for local extrema on all subregions
and provides the global minimum provided each subproblem (18) can be solved
optimally. Subproblems (18) are nonlinear programming problems and they may be
directly solved by means of global NLP-solvers (at least theoretically).

Based on the features of adjusted phi-functions and adjusted quasi-phi-functions
defined in (4)–(11), and the forms of our functions for behaviour constraints (12)–
(14) the feasible region (16) can be described by a system of inequalities with
differentiable functions, i.e.
 D 1.

Problem (15) and (16) can also be transformed into the nonconstrained optimiza-
tion problem of the form

min f .u; u0/; (19)

where f .u; u0/ is the almost everywhere differentiable function

f .u; u0/ D F.u/C P1

NaX

lD1
maxf0;�ˆl.u; u

0/g C P2

NbX

kD1
maxf0;��k.u/g

C P3 maxf0;�pC plowg;

Pi; i D 1; 2; 3; are penalty coefficients, ˆl, l D 1; : : : ;Na, are phi-functions from
(1) and (2), �k, k D 1; : : : ;Nb, are functions of the form (12)–(14), plow is the
evident lower bound of variable metrical characteristic p of container �.
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To solve problem (15) and (16) we apply a multi-start strategy, which involves
the following procedures:

– generation of starting points;
– solving nonlinear optimization problem (18) (or problem (19)) for each starting

point obtained at the previous step;
– selection of the best of local minima obtained at the previous step as a local-

optimal solution of problem (15) and (16).

To solve our NP-hard constrained optimization problem (18) we combine our
strategy with a clever choice of feasible starting points and our special local NLP
solver. We develop special fast algorithms (BSPA) to construct feasible starting
points depending on the form of objective function F.u/ and types of constraints
used in (16). It should be noted that the finding of a feasible starting point by BSPA
is granted only when every nonlinear subproblem, involved in BSPA, is solved
optimally (with using global NLP-solvers).

In order to reduce computational costs (time and memory) we employ a
modification of LOFRT algorithm proposed in [2, 13]. The algorithm allows us to
reduce large dimension problem (18) with a large number of inequalities to sequence
subproblems with a considerably smaller number of variables and inequalities.

We apply IPOPT for solving nonlinear programming problems in our algorithms,
which is available in the open access noncommercial software depository (https://
projects.coin-or.org/Ipopt) and is based on the interior point method described in
[14].

To solve nonconstrained nonlinear optimization problem (19) we use randomly
generated starting points. To search for local minima of the almost everywhere
differentiable function f .u/ we employ the nonsmooth optimization method based
on Shor’s r-algorithm [15, 16] (see Appendix 3) and program ralgb5 [16].

4 Variants of BLP Problems

Here we formulate some types of the BLP problem, provide their mathematical
models as realizations of problem (15) and (16), develop the appropriate algorithms
to generate feasible starting points and provide computational results for each
realization. To search for feasible starting points we use homothetic transformations
of our objects, assuming that object homothetic coefficients �i D �, 0 � � � 1,
i 2 In, are variable.

4.1 BLP1 Problem

Place a family of cylinders Ci of the same height 2hi and different radii ri, i 2 In,
into container � � C of variable radius R and given height H D 2hi, taking into
account the behaviour constraints. Here we minimize R.

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
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Since H D 2hi and zi D 0, i 2 In, then Os D .xs.u/; ys.u/; 0/. Assume that the
origin of system Oxyz of � is located in the center of its symmetry, .x0; y0; z0/ D
.0; 0; 0/ and m0 D 0.

Taking into account the peculiatrities of BLP1 problem, axial and axifugal
moments of inertia of system �A in (13), (14) can be simplified as the following:

JX.v/ D 1

12

nX

iD1
mi.3r2i C H2/C

nX

iD1
y2i mi�M.ys.v//

2;

JY.v/ D 1

12

nX

iD1
mi.3r2i C H2/C

nX

iD1
x2i mi �M.xs.v//

2;

JZ.v/ D 1

2

nX

iD1
mir

2
i C

nX

iD1
.x2i C y2i /mi �M..xs.v//

2 C .ys.v//
2/; (20)

JXY.v/ D
nX

iD1
xiyimi �Mxs.v/ys.v/; JXZ.v/ D 0; JYZ.v/ D 0: (21)

Now mathematical model (15) and (16) for BLP1 problem takes the form

min R s:t: u 2 W;

W D fu 2 R
2nC1 W ‡1.v/ � 0;‡2.u/ � 0; �.v/ � 0; � � 0g;

where u D .R; v/, v D .v1; : : : ; vn/, ‡1.v/ is defined by (1), provided that k D 1,
	�

ij D 0, 	C
ij D $ (i.e. „1� D f.i; j/ W i < j 2 I1 D f1; 2; : : : ; ngg, „1C D f;g/,

‡2.u/ D min f‡i2.R
z
i D R; vi/; i 2 Ing, provided that 	�

i D 0, Ut 2 P.U/n;,
�1.v/; �2.v/; �3.v/ are defined in (12)–(14), taking into account (20) and (21), � D
R � max

iD1;:::;n ri.

Feasible starting point algorithm (BSPA1) for BLP1 problem. BSPA1 algorithm
involves the following steps.

Step 1. Set sufficiently great starting value of radius R D R0 of our container (e.g.,

R0 D Rup D
nP

iD1
ri/.

Step 2. Generate a collection of random points v0i D .x0i ; y
0
i / 2 �0, i 2 In. Form

vector v0 D .x01; y01; : : : ; x0n; y0n/:
Step 3. Take feasible starting point and solve the following auxiliary nonlinear

problem:

�� D max�; s:t: v� 2 W� (22)

W� D fv� 2 R
2nC1 W ‡1.v�/ � 0;‡2.Rup; v�/ � 0; 1 � � � 0; � � 0g;

(23)
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where v� D .v; �/, ‡1.v�/ and ‡2.Rup; v�/ are defined by analogy with
functions ‡1.u/, ‡2.u/ in (1), (2), taking into account variable homothetic
coefficient � under �i D 0, i 2 In. We denote a point of the global maximum
of problem (22) and (23) by v�

� D .v�; �� D 1/.
Step 4. Derive �.v�/. If �.v�/ < 0, then go to Step 5, otherwise go to Step 6.
Step 5. Take feasible starting point and solve the following auxiliary nonlinear

problem:

˛� D max˛; s:t: v˛ 2 W˛; (24)

W˛ D fv˛ 2 R
2nC1 W ‡1.v/ � 0;‡2.Rup; v/ � 0; �.v/ � ˛ � 0;�˛ � 0g;

(25)

where ˛ is the auxiliary discrepancy-variable, v˛ D .v; ˛/.
If ˛� D 0 then pointD .v�; ˛�/ of the global maximum of problem (24)

and (25) is found and we go to Step 5. If ˛� < 0 then a feasible starting
point for BLP1 problem could not be found, since behaviour constraints are
“disrupted”. In the case we return to Step 2.

Step 6. Form starting feasible point u0 D .Rup; v
�; �0/ 2 W for BLP1 problem.

Computational experiments for BLP1 problem

Instance 1. Let H D 1, m D 1, n D 5, A D fCi; i 2 I5g, hi D 1, i 2 I5, fri; i 2
I5g D{0.1, 0.2, 0.3, 0.5, 0.8}, fmi; i 2 I5g D{0.0785, 0.314, 0,7065, 1.9625, 5,024},
„1C D f;g, .xe; ye; ze/ D .0; 0; 0/, .�xe; �ye/ D .10�4; 10�4/, .�JX; �JY ; �JZ/ D
.5; 5; 5/.

The best local-optimal solution under Ut D f1g found both by Shor’s r.˛/-
algorithm and IPOPT is F.u�/ D R� D 1:316108 (see, Fig. 5a). The found point u�
is a point of the global minimum (the rigorous proof of the fact one can find in [17]).

The best local-optimal solution under Ut D f1; 2g found by IPOPT is F.u�/ D
R� D 1:362501 (see, Fig. 5b).

Instance 2. Let H D 700, m D 1, n D 40, A D fCi; i 2 I40g, hi D 700, i 2 I40,
fri; i D 1; : : : ; 40g D{106, 112, 98, 105, 93, 103, 82, 93, 117, 81, 89, 92, 109, 104,
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Fig. 5 Local-optimal placements in Instance 1: (a) a global-optimal placement under Ut D f1g,
(b) a local-optimal placement under Ut D f1; 2g
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Fig. 6 The local-optimal placement of cylinders in Instance 2: (a) system �A, (b) the projection
of �A on Oxy

115, fmi; i D 1; : : : ; 40g = {11, 12, 9, 11, 8, 10, 6, 8, 13, 6, 7, 8, 11, 10, 13, 12,
12, 7, 6, 14, 11, 7, 8, 10, 10, 11, 12, 11, 11, 8, 12, 8, 10, 8, 11, 12, 13, 7, 7, 9},
„1C D f;g; .xe; ye; ze/ D .0; 0; 0/, .�xe; �ye/ D .10�7; 10�7/.

The best local-optimal solution under Ut D f1g found by Shor’s r.˛/-algorithm
is F.u�/ D R� D 711:9522 (Fig. 6).

4.2 BLP2 Problem

Place a family of cylinders Ci of height 2hi and different radii ri, i 2 In, into
container � 2 fC;ƒ;Eg taking into account the behaviour constraints. Here we
minimize a deviation of the center of mass of system �A.

Now mathematical model (15) and (16) for BLP2 problem takes the form

min
�
.xs.v//

2 C .ys.v//
2 C .zs � ze/

2
�
; s:t: v 2 W;

W D fv 2 R
2n W ‡1.v/ � 0;‡2.v/ � 0; �.v/ � 0g;

where v D .x1; y1; : : : ; xn; yn/, .xs.v/; ys.v/; zs/ is the center of mass of system �A,
function ‡1.v/ has form (1) provided that 	�

ij D 0, „�
k D f.i; j/ W i < j 2 Ikg,

	C
ij D $ (i.e. „kC D f;g/, function ‡2.v/ has form (2) provided that 	�

i D 0,
‡2.v/ D min f‡i2.R

z
i D const; vi/; i 2 Ing, axial and axifugal moments of inertia of

sytem �A are defined by (12)–(14), Ut 2 f;; f2g; f3g; f2; 3gg:
It should be noted that if the value of the objective function is equal to .zs � ze/

2

then the optimal solution of BLP2 problem is found.
Feasible starting point algorithm (BSPA2) for BLP2 problem. BSPA2 algorithm

involves the following steps.
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Step 1. Generate a collection of random points v0i D .x0i ; y
0
i / belonging to the

appropriate cross-section circles of radii Rz
i , i 2 In. Form vector v0 D

.x01; y
0
1; : : : ; x

0
n; y

0
n/:

Step 2. Take feasible starting point and solve the following nonlinear auxiliary
problem:

�� D max�; s:t: v� 2 W�; (26)

W� D fv� 2 R
2nC1 W ‡1.v�/ � 0;‡2.v�/ � 0; 1 � � � 0; � � 0g; (27)

where v� D .v; �/, functions ‡1.v�/ and ‡2.v�/ are defined by analogy
with functions ‡1.u/ and ‡2.u/ in (1), (2) taking into account homothetic
coefficient �, provided that �i D 0, i 2 In. We denote a point of local
maxima of problem (26) and (27) by v�

� D .v�; ��/. If �� D 1 go to Step
3, otherwise we return to Step 1.

Step 3. Derive �.v�/. If �.v�/ < 0, then go to Step 4, otherwise go to Step 5.
Step 4. Take feasible starting point and solve the following nonlinear auxiliary

problem:

˛� D max˛; s:t:v˛ 2 W˛; (28)

W˛ D fv˛ 2 R
2nC1 W ‡1.v/ � 0;‡2.v/ � 0; �.v/ � ˛ � 0;�˛ � 0g;

(29)

where ˛ is the auxiliary discrepancy-variable, v˛ D .v; ˛/.
If ˛� D 0 then point .v�; ˛�/ of the global maximum of problem (28)

and (29) is found and we go to Step 5. If ˛� < 0 then a feasible starting
point for BLP2 problem could not be found, since the behaviour constraints
are “disrupted”. In the case we return to Step 1.

Step 5. Form starting feasible point u0 D .v�; �0/ 2 W for BLP2 problem.

Instance 3. Let � � E, m D 2, .v; u0/ 2 W, R1 D 0:5, R2 D 0:3, t1 D 0:3, n D 8,
A D fCi; i D 1; : : : ; 8g, fri; i D 1; : : : ; 8g D{0.1, 0.1, 0.1, 0.075, 0.075, 0.06, 0.05,
0.045}, fhi; i D 1; : : : ; 8g D{0.12, 0.09, 0.1, 0.1, 0.1, 0.075, 0.1, 0.08}, fmi; i 2
I8g D{26.62, 16.97, 18.85, 10.6, 10.6, 5.09, 4.71, 3.05}, A1� D fC1;C2;C3;C4g,
A2C D fC5;C6;C7;C8g, Ut D f2; 3g, .xe; ye; ze/ D .x0; y0; z0/ D .0; 0; 0:275/,
.�JX; �JY ; �JZ/ D .5; 5; 5/, .�JXY ; �JYZ ; �JXZ/ D .0; 0; 0/.

The best local-optimal solution found by IPOPT is F.v�/ D 0:000819642

(Fig. 7).

Instance 4. Let� � ƒ, H D 70, m D 3, t1 D 18:5, t2 D 14, n D 45, A D fCi; i D
1; : : : ; 45g, hi D 1:85, i D 1; : : : ; 45, fri; i D 1; : : : ; 45g D{2.0, 2.4, 0.8, 1.1, 1.3,
0.7, 0.7, 1.5, 2.4, 1.8, 1.5, 1.7, 1.7, 1.4, 1.6, 1.8, 0.5, 2.1, 2.1, 1.3, 0.8, 1.4, 0.8, 1.5,
1.1, 1.7, 2.1, 1.6, 0.6, 1.8, 2.4, 1.3, 2.0, 1.0, 1.5, 2.0, 2.2, 1.7, 1.7, 0.7, 2.1, 1.1, 0.5,
2.3, 0.8}, fmi; i D 1; : : : ; 45g D{86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31,
47, 39, 61, 73, 83, 11, 20, 75, 29, 36, 58, 75, 32, 98, 52, 76, 85, 59, 18, 85, 36, 12,
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on rack S3, (d) system �A

35, 61, 49, 89, 68, 80, 93, 82, 70, 20}, „1C D f;g; Ut D ;; .xe; ye; ze/ D .0; 0; zs/,
A1C D fC1; : : : ;C20g, Á2C D fC21; : : : ;C35g, Á3C D fC36; : : : ;C45g.

The best local-optimal solution found by IPOPT is F.v�/ D 0 (Fig. 8).

4.3 BLP3 Problem

Place a family of cylinders Ci of height 2hi and different radii ri, i 2 In, into
container � � C under Ik D IkC, k D 1; : : : ;m, taking into account the behaviour
constraints. Here we minimize both the radius of C and the deviation of the center
of mass of system �A.

Now mathematical model (15) and (16) for BLP3 problem takes the form

min
�
�1RC �2

�
.xs.u//

2 C .ys.u//
2 C .zs � ze/

2
��
; s:t: u 2 W;

W D fu 2 R
2nC1 W ‡1.v/ � 0;‡2.u/ � 0; �.u/ � 0; � � 0g;
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Fig. 9 The local-optimal placement of cylinders in Instance 5: (a) the projection of A1
C

on rack
S1, (b) the projection of A2

C
on rack S2, (c) the projection of A3

C
on rack S3, (d) system �A

where v D .x1; y1; : : : ; xn; yn/, .xs.v/; ys.v/; zs/ is the center of mass of system �A,
�1; �2 are the given weighting coefficients, function‡1.v/ is defined by (1) provided
that 	�

ij D 0, 	C
ij D $ , ‡2.R; v/ D min f‡i2.R

z
i D R; vi/; i 2 Ing provided that

	�
i D 0, � D R� max

iD1;:::;n ri, Ut 2 f;; f2g; f3g; f2; 3gg, functions �2.u/ and �3.u/ are

described by (13), (14).
In order to search for feasible starting points for BLP3 problem we employ

BSPA1 algorithm. However, at Step 6 we form point u0 D .Rup; v
�; �0/ 2 W for

BLP3 problem.

Instance 5. Let � � C, m D 3, H D 9, t1 D 3, t2 D 3, n D 21, A D fCi; i D
1; : : : ; 21g, hi D 0:88, i D 1; : : : ; 21, A1C D fC1;C8;C9;C15;C16;C17;C18g, A2C D
fC2;C3;C4;C10;C11;C12;C19;C20g, A3C D fC5;C6;C7;C14;C21g, .xe; ye; ze/ D
.0; 0; zs/, ri D 0; 45; mi D 3:1416; for i D 1; : : : ; 7, ri D 0; 5; mi D 3:8013;

for i D 8; : : : ; 14, ri D 0:54; mi D 4:5239; for i D 15; : : : ; 21, Ut D ;:
The best local-optimal solution is found by IPOPT under R� D 1:7554 and

.xs.v
�//2 C .ys.v

�//2 C .zs � ze/
2 D 0 (Fig. 9), i.e. F.v�/ D 1:7554

Instance 6. Let � � C, H D 9, m D 2, n D 35, t1 D 4, Á D fCi; i D 1; : : : ; 35g,
hi D 1; 85, i 2 I35, .xe; ye; ze/ D .0; 0; zs/, Ut D ;, A1C D fCi; i D 1; : : : ; 20g,
fri; i D 1; : : : ; 35g D{20, 24, 8, 11, 13, 7, 7, 15, 24, 18, 15, 17, 17, 14, 16, 18,
5, 21, 21, 13, 8, 14, 8, 15, 11, 17, 21, 16, 6, 18, 24, 13, 20, 10, 15}, fmi; i D
1; : : : ; 35g D{86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61, 73, 83,
11, 20, 75, 29, 36, 58, 75, 32, 98, 52, 76, 85, 59, 18, 85, 36, 12}.

The best local-optimal solution is found by IPOPT under R� D 80:716254 and
.xs.v

�//2 C .ys.v
�//2 C .zs � ze/

2 D 0 (Fig. 10), i.e. F.v�/ D 80:716254
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4.4 BLP4 Problem

Place a family of 3D-objects (solid spheres, right circular cylinders, tori, sphero-
cylinders, cuboids and right-angle prisms) into container � 2 fC;ƒ;Eg taking into
account minimal and maximal allowable distances and behaviour constraints. Here
we minimize a deviation of the center of mass of system �A.

Now mathematical model (15) and (16) for BLP4 problem takes the form

min
�
.xs.v//

2 C .ys.v//
2 C .zs � ze/

2
�
; s:t: .v; u0/ 2 W;

W D f.v; u0/ 2 R
� W ‡1.v; u0/ � 0;‡2.v/ � 0; �.v/ � 0g;

where v D .x1; y1; : : : ; xn; yn/, .xs.v/; ys.v/; zs/ is the center of mass of�A, function
‡1.v; u0/ has form (1) and is described by means of adjusted phi-functions and
adjusted quasi-phi-functions (4)–(11), ‡2.v/ D min f‡i2.R

z
i D const; vi/; i 2 Ing,

Ut 2 f;; f2g; f3g; f2; 3gg.
It should be noted that if the value of the objective function is equal to .zs � ze/

2

then the optimal solution of BLP4 problem is found.
Feasible starting point algorithm (BSPA4) for BLP4 problem. BSPA4 algorithm

involves the following steps.

Step 1. Generate a collection of random points v0i D .x0i ; y
0
i / belonging to the

appropriate cross-section circles of radii Rz
i , i 2 In. Form vector v0 D

.x01; y
0
1; : : : ; x

0
n; y

0
n/: Fix rotation parameters �i D �0i D 0, i 2 In.

Step 2. Let � D �i be a homothetic coefficient for objects Ai, i 2 In. Using clear
geometric constructions we define the vector of additional variables u00
of 
 -dimension, such that each our adjusted quasi-phi-function in (1) will
reach its maximal value by additional variables u00 at point .u0�; u

00/, where
u0� D .v0; �0; �0/, �0 D 0, v0 D .v01; : : : ; v0n/, �0 D .�01 ; : : : ; �0n /.
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Step 3. Derive ˛0 D min f‡1.u0�; u00/; ‡2.u0�/g. If ˛0 < 0, then go to Step 4,
otherwise form point and go to Step 5.

Step 4. Set � D 0, �i D �0i D 0, i 2 In and use as a starting point to solve the
following auxiliary nonlinear problem:

˛� D max˛; s:t: u˛ 2 W˛; (30)

W˛ D fu˛ 2 R
3nC
C1 W ‡1.u�; u0/ � ˛ � 0;‡2.u�/ � ˛ � 0;�˛ � 0g;

(31)

where D .u�; u0; ˛/.
If ˛� D 0 then point of the global maximum of problem (30) and (31)

is found and we go to Step 5. If ˛� < 0 then a feasible starting point for
problem (30) and (31) could not be found, since placement constraints for
BLP4 problem are “disrupted” under � D 0. In the case we return to Step
1.

Step 5. Assume that parameters �i, i 2 In; are variable. Generate randomly starting
values of rotation parameters ��

i 2 Œ0; 2/, i 2 In, involved in vector.
Step 6. Take feasible starting point .u�

�; u
0�/ using and solve the following auxiliary

nonlinear problem:

�� D max�; s:t: .u�; u
0/ 2 W�; (32)

W� D f.u�; u0/ 2 R
3nC
C1 W ‡1.u�; u0/ � 0;‡2.u�/ � 0; 1 � � � 0; � � 0g:

(33)

If �� D 1 then point .u�
�; u

0�/ D .v�; ��; ��; u0�/ of the global
maximum of problem (32) and (33) is found and we go to Step 7. If �� < 1
then go to Step 1.

Step 7. Derive �.v�; ��/. If �.v�; ��/ < 0, go to Step 8, otherwise go to Step 9.
Step 8. Starting from point , solve the following auxiliary nonlinear problem:

ˇ� D maxˇ; s:t: uˇ 2 Wˇ; (34)

Wˇ D fuˇ 2 R
3nC1 W ‡1.u; u0/ � 0;‡2.u/ � 0; �.u/ � ˇ � 0;�ˇ � 0g;

(35)

where ˇ is a discrepancy-variable, uˇ D .u; u0; ˇ/, u D .v; �/.
If ˇ� D 0 then point .v�; ��; u0�; ˇ�/ of the global maximum of

problem (34) and (35) is found and we go to Step 9. If ˇ� < 0 then go
to Step 1.

Step 9. Form starting feasible point u0 D .v�; ��; u0�/ 2 W for BLP4 problem.

Instance 7. Let � � E, m D 2, H D 0:6, R1 D 0:5, R3 D 0:3, t1 D 0:3, n D
10, A D fS1;S2;C3;C4;T5;T6;SC7;SC8;K9;K10g, A1� D fS1;C3;T5;SC7;K9g,
A2C D fS2;C4;T6;SC8;K10g, 	�

ij D 0:03, i > j 2 I10, 	
C
39 D 0:1, 	C

26 D 0:08 ,
.xe; ye; ze/ D .0; 0; 0:275/,
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Fig. 11 The local-optimal placement of 3D-objects: (a) system �A in Instance 6, (b) system �A

in Instance 7

{zi; i D 1; : : : ; 10}={0.19, 0.4, 0.19, 0.41, 0.24, 0.35, 0.19, 0.39, 0.18, 0.42},
{mi; i D 1; : : : ; 10}={27.8764, 20.944, 34.5575, 16.9332, 28.4245, 22.2066,
17.2159, 19.2265, 38.4, 19.9532}, r1 D 0:11, r2 D 0:1, r3 D 0:1, h3 D 0:11,
r4 D 0:07, h4 D 0:11, r5 D 0:08, h5 D 0:06, r6 D 0:09, h6 D 0:05, r7 D 0:08,
h7 D 0:05, l7 D 0:06, h8 D 0:06, l8 D 0:03, s9 D 4; h9 D 0:12, Qv91 D
.0:08; 0:1/, Qv92 D .0:08;�0:1/, Qv93 D .�0:08;�0:1/, Qv94 D .�0:08; 0:1/, s10 D 6,
h10 D 0:12, Qv.10/1 D .0:04; 0:07/, Qv.10/2 D .0:08; 0/, Qv.10/3 D .0:04;�0:07/,
Qv.10/4 D .�0:04;�0:07/, Qv.10/5 D .�0:08; 0/, Qv.10/6 D .�0:04; 0:07/.

The local-optimal solution under Ut D f2; 3g found by NLP-solver in CAS
Wolfram Mathematica 9.0 (Fig. 11a) is F.u�; u0�/ D 1:12726 � 10�6.

Instance 8. Let � � C, m D 3, H D 1, R D 0:45, t2 D 0:35, n D 20,
A D fSi; i D 1; : : : ; 4;Ci; i D 5; : : : ; 8;Ti; i D 9; : : : ; 12; SCi; i D
13; : : : 16;Ki; i D 17; : : : ; 20g, A1C D fS1;C5;C6;T9;SC14;P17g, A2C D
fS2;S3;C7;T10;SC15P18;K20g, A3C D fS4;C8;T11;T12;SC16;P19g, Ut D
;; 	�

ij D 0:02, i < j D 1; : : : ; 20, .xe; ye; ze/ D .0; 0; 0:5/, {zi; i D
1; : : : ; 20}={0.1, 0.44, 0.46, 0.81, 0.11, 0.12, 0.46, 0.78, 0.06, 0.425, 0.76,
0.77, 0.11, 0.13, 0.46, 0.81, 012, 0.47, 0.82, 0.46}, {mi; i D 1; ::; 20}={20.944,
15.2681, 27.8764, 34.5575, 63.7115, 41.8146, 30.4106, 28.4245, 49.9649, 24.8714,
38.6888, 26.2637, 20.7764, 17.2159, 16.8756, 52.8, 52.8, 52.8, 23.1489}, r1 D 0:1,
r2 D 0:09, r3 D 0:11, r4 D 0:11, r5 D 0:1, h5 D 0:11, h6 D 0:12, r7 D 0:11,
r8 D 0:11, h8 D 0:08, r9 D 0:08, h9 D 0:07, r10 D 0:09, h10 D 0:075, r11 D 0:07,
h11 D 0:06, r12 D 0:08, h12 D 0:07, r13 D 0:1, h13 D 0:05, l13 D 0:07, r14 D 0:05,
h14 D 0:05, l14 D 0:08, r15 D 0:08, h15 D 0:05, l15 D 0:06, r16 D 0:08, h16 D 0:04,
l16 D 0:07, si D 4, Qvi1 D .�0:11;�0:1/, Qvi2 D .0:11;�0:1/, Qvi3 D .0:11; 0:1/,
Qvi4 D .�0:11; 0:1/, hi D 0:12,i D 17; 18; 19, s20 D 6, Qv.20/1 D .0:045; 0:078/,
Qv.20/2 D .0:09; 0/, Qv.20/3 D .0:045;�0:078/, Qv.20/4 D .�0:045;�0:078/,
Qv.20/5 D .�0:09; 0/, Qv.20/6 D .�0:045; 0:078/, h20 D 0:11.
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The local optimal solution under Ut D ; found by NLP-solver in CAS Wolfram
Mathematica 9.0 is F.u�; u0�/ D 0:001911 (Fig. 11b).

Instance 9. Let � � C, m D 2, H D 20, R D 8:8, t1 D 10, n D 80,
A D fCi; i D 1; : : : 64;Ki; i D 65; : : : ; 80g, A1C D fCi; i D 1; : : : ; 16;Ki; i D
65; : : : ; 68g, A1� D fCi; i D 17; : : : ; 32;Ki; i D 69; : : : ; 72g, A2� D fCi; i D
49; : : : ; 64;Ki; i D 77; : : : ; 80g, A2C D fCi; i D 33; : : : ; 48;Ki; i D 73; : : : ; 76g,
Ut D ;; fri; i D 1; : : : ; 64g D{2.0, 2.4, 0.8, 1.1, 1.3, 0.7, 0.7, 1.5, 2.4, 1.8, 1.5, 1.7,
1.7, 1.4, 1.6, 2.1, 2.0, 2.4, 0.8, 1.1, 1.3, 0.7, 0.7, 1.5, 2.4, 1.8, 1.5, 1.7, 1.7, 1.4, 1.6,
2.1, 2.0, 2.4, 0.8, 1.1, 1.3, 0.7, 0.7, 1.5, 2.4, 1.8, 1.5, 1.7, 1.7, 1.4, 1.6, 2.1, 2.0, 2.4,
0.8, 1.1, 1.3, 0.7, 0.7, 1.5, 2.4, 1.8, 1.5, 1.7, 1.7, 1.4, 1.6, 2.1}, si D 4, i D 65; : : : ; 80,
Qvi1 D .�1:8;�1:8/, Qvi2 D .1:8;�1:8/, Qvi3 D .1:8; 1:8/, Qvi4 D .�1:8; 1:8/,
i D 65; 69; 73; 77, Qvi1 D .�0:5;�0:5/, Qvi2 D .0:5;�0:5/, Qvi3 D .0:5; 0:5/,
Qvi4 D .�0:5; 0:5/, i D 66; 70; 74; 78, Qvi1 D .�2:1;�2:1/, Qvi2 D .2:1;�2:1/,
Qvi3 D .2:1; 2:1/, Qvi4 D .�2:1; 2:1/, i D 67; 71; 75; 79, Qvi1 D .�1:3;�1:3/,
Qvi2 D .1:3;�1:3/, Qvi3 D .1:3; 1:3/, Qvi4 D .�1:3; 1:3/, i D 68; 72; 76; 80,
{hi; i D 1; : : : ; 62}={1.5, 1.5, 1.5, 1.5, 1.5, 3.0, 1.5, 1.5, 1.5, 3.0, 1.5, 3.0, 1.5,
3.0, 3.0, 1.5, 1.5, 1.5, 3.0, 1.5, 3.0, 1.5, 1.5, 3.0, 1.5, 1.5, 3.0, 1.5, 1.5, 3.0, 1.5,
1.5, 1.5, 3.0, 1.5, 1.5, 1.5, 3.0, 1.5, 1.5, 1.5, 3.0, 1.5, 1.5, 1.5, 3.0, 3.0, 1.5, 1.5, 1.5,
3.0, 1.5, 3.0, 1.5, 1.5, 3.0, 1.5, 1.5, 3.0, 1.5, 1.5, 3.0, {hi; i D 63; : : : ; 80}={1.5},
{mi; i D 1; : : : ; 80}={86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61,
73, 83, 11, 20, 86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61, 73, 83,
11, 20, 86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61, 73, 83, 11, 20,
86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61, 73, 83, 11, 20}.

The local optimal solution found by IPOPT is F.u�; u0�/ D 0:000000 (Fig. 12).
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Fig. 12 The local-optimal placement of 3D-objects in Instance 8: (a) system �A; (b) top view of
�A, (c) bottom view of �A
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5 Conclusions

In this chapter we formulate the optimization layout problem of 3D objects (solid
spheres, right circular cylinders, tori, spherocylinders, cuboids and right-angle
prisms) into a container (cylinder, blunted cone, paraboloid of revolution) with
circular racks taking into account both distance (minimal and maximal allowable
distances) constraints and behaviour (equilibrium, inertia and stability) constraints.
We call the problem as Balance Layout Problem (BLP). In order to describe
placement constraints analytically we derive a collection of radical-free adjusted
phi-functions and adjusted quasi-phi-functions. These functions allow us to build
an exact mathematical model of the BLP problem in the form of nonlinear
programming problem with differentiable functions. We develop a solution strategy,
which is based on the multistart method and involves nontrivial procedures to con-
struct feasible starting points, nonlinear programming and nonsmooth optimization
methods, employing NLP solvers. We also consider some variants of the BLP
problem depending on the form of the objective function, shapes of objects and
containers, types of distance and behaviour constraints. To show the efficiency of
our approach we provide the collection of Instances.

Appendix 1: Phi-Functions and Quasi-Phi-Functions

Phi-Objects

Here we define a class of admissible objects for our models, called phi-objects (see,
e.g., [11]). They must have interior (“main part”) and boundary (frontier). Accord-
ingly, we require each phi-object be the closure of its interior. (In mathematical
topology, closed sets that are closures of their interior are said to be canonically
closed; this is what our phi-objects are.) This requirement rules out such elements
as isolated points, one-dimensional curves, etc.— they do not occur in realistic
applications. Figure A1a shows an invalid phi-object— it has three one-dimensional

Fig. A1 Examples of invalid phi-objects: (a) object with ‘whiskers’, isolated and four punctured
points, (b) object with self-intersections along its frontier, (c) the confusion case for two objects
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Fig. A2 Examples of valid phi-objects: (a) 2D phi-objects, (b) 3D phi-objects

‘whiskers’, two isolated points, and four punctured interior points (white dots).
In addition, our phi-objects should not have self-intersections along their frontier,
as shown in Fig. A1b because this may lead to confusion. For example, Fig. A1c
shows a dark domain of which two ends touch each other like pincers; this must be
prohibited. The reason is also demonstrated in the same figure: a similar object (the
light grey “figure eight”) is placed so that the two objects intersect each other only
in their frontiers, which is generally allowed, but in this particular case we cannot
place these objects as shown because one ‘cuts’ through the other.

Mathematically, the above requirement can be stated as the following: a phi-
object and its interior must have the same homotopic type (the same number of
connected components, the same number of interior holes, etc.). These requirements
may sound too abstract, but their practical meaning should be clear from the above
example. An important property of phi-objects is that if A is a phi-object, then the
closure of its complement is a phi-object, too. Figure A2 shows the examples of
valid phi-objects.

Phi-Functions

Let A and B be two phi-objects. The position of object A is defined by the vector
of placement parameters .vA; �A/, where: vA D .xA; yA/ is a translation vector and
�A is a rotation angle if A � R2I vA D .xA; yA; zA/ is a translation vector and �A D
.�z; �x; �y/ are rotation angles (from axis OX to OY, from axis OY to OZ and from
axis OX to OZ) if A � R3. We denote the vector of variables for object A by uA D
.vA; �A/ and the vector of variables for object B by uB D .vB; �B/. Object A rotated
by �A and translated by vector vA will be denoted by A.uA/.

In order to feasibly place two phi-objects within a containing region, we need
an analytical description of the relationships between a pair of objects A and B. We
employ the phi-function technique for this. Phi-functions allow us to distinguish the
following three cases: A and B are intersecting so that A and B have common interior
points; A and B do not intersect, i. e. A and B do not have common points; A and B
are in contact, i. e. A and B have only common frontier points.
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Definition A1. Continuous and everywhere defined function ˆAB.uA; uB/ is called
a phi-function for objects A.uA/ and B.uB/ if

ˆAB < 0; if intA.uA/ \ intB.uB/ ¤ ;I
ˆAB D 0; if intA.uA/ \ intB.uB/ D ; and frA.uA/ \ frB.uB/ ¤ ;I

ˆAB > 0; if A.uA/ \ B.uB/ D ;:

Here frA means the boundary (frontier) and intA means the interior of object A.

Thus, ˆAB � 0 , intA.uA/ \ intB.uB/ D ;. We employ phi-functions for
the description of the containment relation A 
 B as the following: ˆAB� � 0,
where B� D RdnintB, d D 2; 3. We emphasize that according to Definition
A1, phi-function ˆAB for a pair of objects A and B can be constructed by many
different formulas, and we can choose the most convenient ones for our optimization
algorithms.

Quasi-Phi-Functions

In comparison with phi-functions we include auxiliary variables u0, which take
values in some domain U � Rn (it depends on the shapes of objects A and B/,
and introduce function ˆ0AB.uA; uB; u0/: The function must be defined for all values
of uA and uB. It must be continuous in all its variables.

Definition A2. Continuous and everywhere defined function ˆ0AB.uA; uB; u0/ is
called a quasi-phi-function for two objects A.uA/ and B.uB/ if max

u02U
ˆ0AB.uA; uB; u0/

is a phi-function for the objects.

Let us consider two convex objects A.uA/ and B.uB/ and let P.uP/ be a half-
space: P.uP/ D f.x; y; z/ W  P D ˛ � xCˇ � yC� � zC�P � 0g, uP D .�xP; �yP; �P/,
˛ D sin �yP; ˇ D � sin �xP � cos �yP; � D cos �xP � cos �yP for 3D case;

P.uP/ D f.x; y/ W  P D ˛ � x C ˇ � y C �P � 0g; uP D .�P; �P/; ˛ D
cos �P; ˇ D sin �P for 2D case. A function defined by

ˆ0AB.uA; uB; u
0 D uP/ D min fˆAP.uA; uP/; ˆ

BP�

.uB; uP/g;

is a quasi-phi-function for A.uA/ and B.uB/. Here ˆAP.uA; uP/ is a phi-function
for A.uA/ and a half-space P.uP/ and ˆBP�

.uB; uP/ is a phi-function for B.uB/ and
P�.uP/ D RdnintP.uP/, d D 2; 3.

The latter function meets all the requirements of Definition A2. First, function
ˆ0AB is defined everywhere and is continuous in all its variables, since the phi-
functions ˆAP and ˆBP�

enjoy the same properties. Based on the properties of a
separated line (plane) for two convex objects the following is fulfilled:
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1) max
u02Rd

ˆ0AB < 0; if intA.uA/ \ intB.uB/ ¤ ;;
2) max

u02Rd
ˆ0AB D 0; if intA.uA/ \ intB.uB/ D ; and frA.uA/ \ frB.uB/ ¤ ;;

3) max
u02Rd

ˆ0AB > 0; if A.uA/ \ B.uB/ D ;.

It means that max
u02Rd

ˆ0AB is a phi-function for objects A and B according to

Definition A1.

Examples

Example 1. Let v1i D .x1i ; y
1
i /, i D 1; : : : ;m1, be the vertices of convex polygon

K1.u1/, and v2j D .x2j ; y
2
j /, j D 1; : : : ;m2, those of convex polygon K2.u2/, and

K1.u1/ D f.x; y/ W �i � 0; i D 1; : : : ;m1g, K2.u2/ D f.x; y/ W  j � 0; j D
1; : : : ;m2g; �i D ˛0

i xC ˇ0
i yC � 0

i ,  j D ˛00
j xC ˇ00

j yC � 00
j , where u1 D .x1; y1; �1/

and u2 D .x2; y2; �2/ are the placement parameters of polygons K1 and K2.

It should be noted that each point .ex;ey/ of non-translated and non-rotated convex
polygon K is transformed into point .x; y/:

x Dex � cos �K Cey � sin �K C xK ; y D �ex � sin �K Cey � cos �K C yK ;where (xK ,yK/

is a translation vector and �K is a rotation angle of K.
A phi-function for K1 and K2 can be defined in the form

ˆK1K2 D max f max
1�i�m1

min
1�j�m2

�ij; max
1�j�m2

min
1�i�m1

 jig; (36)

where �ij D �i.v
2
j / D ˛0

i x
2
j C ˇ0

i y
2
j C � 0

i ,  ji D  j.v
1
i / D ˛00

j x1i C ˇ00
j y1i C � 00

j .

Example 2. Let us consider convex polygons K1 and K2 from Example 1.
A quasi-phi-function for K1 and K2 can be defined in the form

ˆ0K1K2 .u1; u2; uP/ D min fˆK1P.u1; uP/; ˆ
K2P�

.u2; uP/g; (37)

where ˆK1P.u1; uP/ D min
1�i�m1

 P.v
1
i / is a phi-function of K1 and halfplane P.uP/,

ˆK2P�

.u2; uP/ D min
1�j�m2

.� P.v
2
j // is a phi-function of K2 and halfplane P�.uP/ D

R2nintP.uP/.

In general, each of our phi-functions (ordinary, adjusted) is formed by operations
of minimum and maximum of continuous and everywhere defined functions. The
more operations of maximum take part in forming of a phi-function the more
nonlinear programming subproblems we need to solve.

For example, in order to reach the global minimum for the problem of packing of
two convex polygons K1 and K2 in a rectangle of minimum area, using phi-function
(36), we need to solve m1Cm2 nonlinear programming subproblems optimally. See
details in [18].
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Alternatively, in order to reach the global minimum of the latter problem, using
quasi-phi-function (37), we need to solve only one nonlinear programming problem
optimally. However, in the case the problem dimension is increased by two.

We may reasonably combine phi-functions and quasi-phi-functions in our models
depending on types of our objects.

Appendix 2: Moments of Inertia for Containers and Objects

• For the lateral surface of container � we have:

� � C W Jx0 D Jy0 D
1

6
m0.3R2 C 2H2/; Jz0 D m0R

2I

� � ƒ W Jx0 D Jy0 D
1

70
m0H.21C 16H/; Jz0 D

3

5
m0HI

� � E W Jx0 D Jz0 D
m0

2

�
H2.R1 C 3R2/

3.R1 C R2/
C R21 C R22

2

�

; Jz0 D
m0.R21 C R22/

2
:

• For a homogeneous object Ai we have:

Ai � Si W Jxi D Jyi D Jzi D
2

5
mir

2
i I

Ai � Ci W Jxi D Jyi D
1

12
mi.3r2i C 4h2i /; Jzi D

1

2
mir

2
i I

Ai � Ti W Jxi D Jyi D
1

8
mi.4r2i C 5h2i /; Jzi D

1

4
mi.4r2i C 3h2i /I

Ai � SCi W Jxi D Jyi D
mi

2

�
hi.2hi.l3i C 3lir2i /C .2l4i C 4l2i r2i C 3r4i //

l3i C 6hir2i C 3lir2i
C

C 7l5i C 5r2i .8h3i C 3l3i C 2lir2i /

10.l3i C 6hir2i C 3lir2i /

�

; Jzi D
mi.l5i C 5l3i r2i C 30hir4i C 10lir4i /

10.l3i C 6hir2i C 3lir2i /
:

For objects Ai � Ki moments of inertia depends on a type of the cross-section
polygon. For instance, we have

Jxi D 1
12

mi.l2i C h2i /; Jyi D 1
12

mi.w2i C h2i /; Jzi D 1
12

mi.l2i C w2i / for cuboid,
and Jxi D Jyi D 1

24
mi.5r2i C 8h2i /, Jzi D 5

12
mir2i for straight regular prism with the

regular hexagon base.
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Appendix 3: Shor’s r-Algorithm

The r-algorithm is one of the Shor’s subgradient-type methods with the space
transformation of variables (the space dilation) for minimisation of nonsmooth
convex functions. Shor’s r-algorithms are based on two related ideas. The first
idea lies in using the steepest descent method in the direction of antisubgradient
of nonsmooth convex functions in the transformed space of variables. It ensures
a monotonicity of a nonsmooth convex function for the minimizing the sequence
which is constructed by r-algorithm. The second idea employs the operation of the
space dilation in the direction of the difference of two subsequent subgradients in
order to transform the space of variables; this permits to improve the properties of
ravine-like functions in the transformed space. Combination of the ideas provides
the accelerated convergence of r-algorithms for ravine-like functions ensuring their
monotonicity (or almost monotonicity) under certain regulation of the step and the
space dilation coefficients.

Let f .x/ be a convex function, x be a vector of n variables. We assume that
space dilation coefficients f˛kg1kD0 have to be greater than unity. Our r-algorithm
for minimization of f .x/ is an iterative procedure for finding sequence of vectors
fxkg1kD0 and matrices fBkg1kD0 by the following rule:

xkC1 D xk � hkBk�k; BkC1 D BkRˇk.�k/; k D 0; 1; 2; : : : ; (38)

where

�k D BT
k gf .xk/

k BT
k gf .xk/ k ; hk D arg min

h�0 f .xk � hBk�k/; (39)

�k D BT
k rk

k BT
k rk k ; rk D gf .xkC1/ � gf .xk/; ˇk D 1

˛k
< 1: (40)

Here, x0 is a starting point; B0 D In is a unity n�n-matrix (B0 is often taken to be
diagonal matrix Dn with positive entries on a diagonal to make scaling of variables);
hk is a step multiplier (found from the condition of minimum of function f .x/ in
the direction of the normed subgradient in the transformed space of variables); ˛
is a coefficient of the space dilation; Rˇ.�/ D In C .ˇ � 1/��T is an operator of
contraction of space of subgradients in the normed direction � with coefficient ˇ D
1
˛
< 1; gf .xk/ and gf .xkC1/ are subgradients of function f .x/ at points xk and xkC1.

If gf .xk/ D 0, then xk is a point of the minimum of function f .x/, and process (38)
and (40) stops.

Among r-algorithms the most efficient is r.˛/-algorithm with ˛k � ˛ and
adaptive regulation of step hk. The value of hk is related to the unidimensional
descent procedure in the direction of the normed antigradient in the transformed
space of variables. The procedure involves parameters h0, q1, nh, q2. Here h0 is the
value of an initial step (it is used on the first iteration, and this value is sequentially
refined on each iteration); q1 is a step decrease factor (q1 � 1/, if the descent
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stopping criterion is satisfied in one step; q2 is a step increase factor (q2 � 1/; natural
number nh specifies the number of steps in one-dimensional descent (nh > 1/—after
this number of steps the step size will be taken q2 times greater.

Guidance to the values of the space dilation coefficient as well as the parameters
of adaptive regulation of a step is discussed in [15, pp. 104–105]. The values are
aimed to improve the accuracy of finding of approximation to the minimum of the
function, provided that the number of steps should not be too large (two-three per
one iteration).

Stopping criteria in r.˛/-algorithm is described by parameters "x and "g:
calculations come to the end at point xkC1, if kxkC1 � xkk � "x (stopping criterion
by argument) or if

�
�gf .xkC1/

�
� � "g (stopping criterion by normed gradient, which

is used for smooth functions). Abnormal program termination can happen if either
function f .x/ is not bounded below, or initial step h0 is too small and should be
increased.

The following values of parameters are recommended for minimization of
nonsmooth functions: ˛ D 2� 3, h0 D 1:0, q1 D 1:0, q2 D 1:1� 1:2, nh D 2� 3.
If the priory bound of the distance from starting point x0 to the minimum point x�
is given, then it is reasonable to choose initial step h0 to be approximately equal to
k x0 � x� k.

For minimization of smooth functions the same parameters are recommended,
except q1, that should be taken q1 D 0:8�0:95. This can be explained in such a way:
further step decreasing would provide finding a more accurate approximation to the
minimum point of the function in the direction, and in the case of minimization
of smooth functions this gives good rate of convergence. Under the parameters the
number of descents is usually not greater than two, and after n steps the accuracy
will be three-five times better. Stopping parameters "x; "g  10�6 � 10�5 for
minimization of a convex function (even the strongly ravine-like one) provide
finding x�

r which is a fairly good approximation to the minimum point of the
function.

Usually the condition f .x�

r /�f .x�/

jf .x�/jC1  10�6 � 10�5 for nonsmooth functions (and

 10�12 � 10�10 for smooth functions) is satisfied. It is confirmed by the results
of numerous tests and applied calculations in linear and nonlinear programming
problems, block problems with different schemes of decompositions, minimax and
matrix optimization problems. It is also used for calculation of Lagrangian dual
bounds in multiextremal and combinatorial optimization problems.

Shor’s r.˛/-algorithm with the adaptive step regulation is realized by a number of
programs. One of the simplest programs is octave-program ralgb5, which requires
5n2 arithmetical operations for each iteration [16]. The program uses octave’s
function [f, g] = calcfg(x), which calculates values of function f D f .x/ and its
subgradient g D @f .x/ at point x.
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Pilot-Induced-Oscillations Alleviation Through
Anti-windup Based Approach

Sophie Tarbouriech, Isabelle Queinnec, Jean-Marc Biannic,
and Christophe Prieur

Abstract The chapter is dedicated to the optimization of a well-known structure
of compensators: the anti-windup scheme. This approach belongs to the saturation
allowance control class which aims to exploit at the most the actuators capabilities.
The objective of this chapter consists of adapting and developing the anti-windup
compensator design to some particular classes of nonlinear actuators presenting both
magnitude and rate saturations. It is illustrated on the lateral flying case for a civil
aircraft in presence of aggressive maneuvering of the pilot. A complete methodology
is then proposed comparing several approaches including given anti-PIO filters.

Keywords Magnitude and rate saturations • Anti-windup compensator • Convex
optimization • PIO

1 Introduction

Control engineers, where possible, like to work under the assumption of linearity.
The mathematics associated with the field of linear systems is well developed and
underpins much of the control theory which is applied in industry. Even nonlinear
techniques often attempt to generalize linear concepts, and frequently nonlinear
systems are linearized to obtain linear models which locally yield good engineering
approximations [18]. The problem with the assumption of linearity is that it is
sometimes unrealistic and can lead to erroneous results. Actually, the increasing
requirements in terms of operational reliability and performance ask to work beyond

S. Tarbouriech (�) • I. Queinnec
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
e-mail: tarbour@laas.fr; queinnec@laas.fr

J.-M. Biannic
ONERA, System Control and Flight Dynamics Department, Toulouse, France
e-mail: Jean-Marc.Biannic@onera.fr

C. Prieur
GIPSA-Lab, Department of Automatic Control, Grenoble Campus,
Saint Martin d’Hères, France
e-mail: christophe.prieur@gipsa-lab.fr

© Springer International Publishing Switzerland 2016
G. Fasano, J.D. Pintér (eds.), Space Engineering, Springer Optimization
and Its Applications 114, DOI 10.1007/978-3-319-41508-6_15

401

mailto:tarbour@laas.fr
mailto:queinnec@laas.fr
mailto:Jean-Marc.Biannic@onera.fr
mailto:christophe.prieur@gipsa-lab.fr


402 S. Tarbouriech et al.

the linear behavior of the system. Hence, actuators saturations (both magnitude
and rate saturations) represent a common nonlinear phenomenon in almost all
physical applications, especially in space and aeronautical fields. There are many
examples of saturation problems but perhaps the most notorious are those associated
with so-called pilot-induced-oscillations (PIO’s) in aeronautics (see, for example,
[8, 19, 20]). These saturation-induced events have led to the crash of several aircrafts
(the SAAB Grippen and the Boeing V22 Osprey are notorious examples [2]) and
several near-misses with others. Actually, recall that a pilot-induced oscillation is
a sustained or uncontrollable, undesired oscillation resulting from the action of
the pilot to control the aircraft. A common nonlinearity leading to PIO is control
surface rate limiting. Then this phenomenon can introduce a delayed response and
then the action of the pilot implies that the airplane response is essentially opposite
of the command wished by the pilot (see, in particular the recent chapter [7])
Thus the presence of saturation can lead to performance degradation from the mild
to the severe and can also lead to loss of stability [16, 17]. Although this is not
always critical, it is clear that some way of predicting the effects of saturation is
required and, moreover, that some method of limiting the degradation that occurs
is warranted. This reflects the need for the development of new and more complex
control techniques in order to meet the new demands.

In the aeronautical literature, there exist some methods mainly based on the
addition of filters or estimators designed to predict and reduce the risk of PIO
(see, for example the OLOP criterion using describing functions studied in [12]
or the use of a detector based on short time Fourier transform and autoregressive
model [21]. In this chapter, we choose another route by considering the use of
anti-windup technique, with the objective to provide constructive conditions (that
is associating theoretical conditions to optimization routines in order to exhibit
effective numerical solutions). More specifically, the approach proposed in this
chapter is based on the optimization of a well-known structure of compensators:
the anti-windup scheme (see e.g., [29, 32] for an introduction of this notion). This
approach belongs to the saturation allowance control class which aims to exploit
at the most the actuators capabilities. The basic concept consists of introducing
an extra layer to the existing linear controller, accounting for the nonlinearities
in order to mitigate the windup phenomenon created by the saturation [15]. This
strategy, also called anti-windup design, allows the designer to keep the existing
linear controller (already validated) and to introduce a compensator which is
active only when the nonlinearity arises. In this framework, numerous works
have emerged in the context of both magnitude and rate saturation constraints
[6, 10, 11, 13, 25, 26]. Such an approach appears to be really attractive as the
anti-windup loop may work with existing control laws (a priori designed by the
engineers to answer to defined requirements). Indeed, it represents an interesting
technique for the controller designers who can use familiar and intuitive techniques
for them and then, simply add an extra layer, which will consider the nonlinear
behavior in a second step. If originally, results on anti-windup design consisted on
ad-hoc methods intended to work with PID controllers [3, 9], modern anti-windup
methods have emerged during the last decade (see, for example, [14, 31]). Then, the
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design of such an additional compensator is generally carried out through a static
optimization problem of the controller parameters. Thanks to the development of
semi-definite programming and convex optimization [5], the anti-windup controller
design problem can be formulated as the optimization of a multi-objective criterium
(corresponding to closed-loop stability and performance specifications) subject to
matrix inequalities constraints associated to the dynamical system. Many different
techniques exist in control theory to synthesize such anti-windup controllers, among
which static and dynamic linear anti-windup augmentation (see [32]) based on a
generalized sector condition representing the saturation [29]. Other anti-windup
augmentations are possible as nonlinear synthesis, in particular for control systems
equipped with other nonlinearities than magnitude and rate saturations. One can
consult [1] for control systems presenting two different sector conditions, and [30]
for a control system with a memory-based input.

The objective of this chapter is to adapt and develop the anti-windup compensator
design to a class of systems presenting both magnitude and rate saturations. The
techniques proposed first include a modeling of the nonlinear actuator involved
to further derive analysis and design conditions. It is illustrated on the lateral
flying case for a civil aircraft in presence of aggressive maneuvering of the pilot.
A complete methodology is then proposed comparing several approaches including
given anti-PIO filters (borrowed mainly from [4, 22]).

The chapter is organized as follows. In Sect. 2, a complete model of plant, actu-
ator and controller involved to address the stability and performance optimization
problem is described. Then, the multi-objective problem to be solved in order to
design anti-windup loops is stated. Section 3 pertains to the anti-windup design
conditions in two cases depending on the signal used as the input of the anti-
windup controller. Then, in order to alleviate the PIO risk for a civil aircraft in
presence of aggressive maneuvering of the pilot, Sect. 4 depicts how the previous
techniques are very interesting in comparison with classical anti-PIO filters to
guarantee stability and performance of the closed-loop system. Several simulations
illustrate the benefits provided by the anti-windup compensators, in terms of simple
and systematic methods without needing a tuning parameters step. Finally, some
concluding remarks end the chapter.

2 Model Description and Problem Formulation

Anti-windup strategies represent an appropriate framework to mitigate the undesired
saturation effects [29, 32]. Thus, the general principle of the anti-windup scheme can
be depicted in Fig. 1, where the (unconstrained) signal produced by the controller
is compared to that which is actually fed into the plant (the constrained signal).
This difference is then used to adjust the control strategy by preserving stability and
performance.
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Fig. 1 Principle of anti-windup

The kind of anti-windup controller used in the chapter is specified later and is
strongly depending on the considered plant, actuator and controller. Let us first
describe the complete model.

2.1 Plant Model

Unlike most systems in the literature, the outputs of the controller are not affected
in a same way by the nonlinear elements. Then, the vector u 2 <m building the
m inputs of the plant is decomposed into two subvectors: the first one, denoted
us 2 <ms , corresponds to ms saturated inputs, whereas the second one, denoted
uns 2 <m�ms , corresponds to the linear inputs (unsaturated inputs). The plant model
can be defined by:

sysP W

8
<̂

:̂

Pxp D Apxp C Bs
puus C Bns

puuns C Bpww
yp D Cpxp C Ds

puus C Dns
puuns C Dpww

z D Czxp C Ds
zuus C Dns

zuuns C Dzww

(1)

where xp 2 <np and yp 2 <p are the state and the measured output of the plant.
w 2 <q generally represents an exogenous perturbation but may also be used to
represent a reference signal (or both). Furthermore, z 2 <l represents the regulated
output, which is used to evaluate the performance of the system with respect to the
perturbation w via some pertinent optimization criteria.

2.2 Controller Model

Differently from the classical anti-windup loops, in which the output of the anti-
windup controller is injected to the dynamics of the controller and/or the output
of the controller, we consider here that the output of the anti-windup controller
modifies only partially the dynamics of the controller and/or the output of the
controller. Then, with this in mind, the dynamical controller is described as follows:
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sysC W
8
<

:

Pxc D Acxc C Bcuc C BcwwC Bcavx

ycs D Cs
cxc C Ds

cuc C Ds
cwwC Dcavy

ycns D Cns
c xc C Dns

c uc C Dns
cww

(2)

where xc 2 <nc and uc 2 <p are the state and the input of the controller. The
output of the controller is decomposed into two signals: ycs 2 <ms , which will be
interconnected to us through a saturated actuator, and ycns 2 <m�ms , which will be
interconnected with the linear (unsaturated) input uns. Moreover, vx and vy are the
additional inputs that will be connected to the anti-windup controller.

Bca and Dca are matrices of dimensions nc�ncr and ms�mr, and allow to specify
what are the ncr states and mr outputs modified by the anti-windup action.

2.3 Actuator Model

There is an actuator block between the output of the controller yc and the input
of the plant u, which is decomposed into two blocks: the first one corresponding
to the nonlinear (saturated) part and the second one corresponding to the linear
(unsaturated) part. The nonlinear actuator part involves ndz nested saturations,
including the case of rate and magnitude saturations, as depicted in Fig. 2a. Such
nonlinearities will be tackled via the use of dead-zone, denoted �i.:/, i D 1 : : : ndz.

The dynamical model of the actuator is based on Fig. 2b as follows:

sysACT W
8
<

:

Pxa D v C �1.v/
v D T0ycs C T0�0.ycs/ � T0xa

us D xa

(3)

with �0.ycs/ D satu0 .ycs/ � ycs and �1.v/ D satu1 .v/ � v, where satu0 .:/ and
satu1 .:/ are classical saturation functions and u0 and u1 are the levels of saturation

+

u

+− 1u−

+−u0

u

+−

0

1−

+ v

1
1/T0 s +1

T0

ycs us

ycs

a

b

us

Fig. 2 (a) Actuator with rate and magnitude saturations. (b) Model used to represent such an
actuator (scalar case)
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in magnitude and in rate, respectively. The elements of the diagonal matrix T0 2
<ms�ms classically take values large enough in order to avoid affecting the linear
dynamics of the closed-loop system.

2.4 Interconnections

The interconnections considered in the chapter can be described as follows:

• linear link between the output of the plant and the input of the controller: uc D yp;
• the first part of the output of the controller (ycs) is linked to the corresponding

inputs of the plant (us) through the actuator model (3);
• the second part of the output of the controller is directly connected to the

corresponding inputs of the plant: uns D ycns;
• vx and vy are built from the anti-windup compensator (and will be specified later).

2.5 Anti-windup Compensator

In the DLAW (Direct Linear Anti-Windup) strategy, the anti-windup controller uses
as input the difference between the signals issued either from the input and the
output of the whole actuator or from the input and the output of the nonlinear
elements included in the actuator. Following this, we pursue two strategies to design
the anti-windup loops.

• The first strategy is reported in [4] and considers the difference between the input
and the output of the actuator defined by e D us � ycs 2 <ms . Additionally,
one assumes that the anti-windup controller only acts on the dynamics of the
controller, which corresponds to vy D 0, or equivalently, mr D 0. The anti-
windup controller of order naw, with vx 2 <ncr , reads:

AWe W
� Pxaw D Aawxaw C Be

aw.us � ycs/

vx D Cawxaw C De
aw.us � ycs/

(4)

• The second strategy considers that the input of the anti-windup controller are the
dead-zones associated to each saturation. Hence, the anti-windup controller of
order naw reads:

AW� W
8
<

:

Pxaw D Aawxaw C B0aw�0.yc/C B1aw�1.v/�
vx

vy

�

D Cawxaw C D0
aw�0.yc/C D1

aw�1.v/
(5)

where vx and vy are of dimensions ncr and mr, respectively.
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Remark 1. The interest of the second anti-windup structure resides in the simplicity
of the design conditions. Indeed, the design of a static anti-windup gain (only
matrices D0

aw and D1
aw are used) is issued from a fully linear problem. In the case

of the design of a dynamical anti-windup controller, for a priori given matrices Aaw

and Caw, the determination of input and transmission matrices is also obtained by
solving a linear problem. In the case where naw D np C nms C nc, the resolution of
a linear problem can also be considered [29]. At the opposite, the first strategy is
more adapted to provide analysis conditions but does not allow to simultaneously
compute the matrices of the anti-windup and the matrix of the Lyapunov function
through a linear optimization problem, even in the static anti-windup case.

Remark 2. The anti-windup model (5) imposes the assumption that the input and
output signals of each saturation block is available. To overcome this assumption,
alternative strategies can be investigated. For example, the anti-windup may use the
difference between the nonlinear actuator and a linear fictitious one (with the same
dynamics but without saturation blocks) to explicitly take into account the dynamics
of the actuator (present in the rate limiter) [23]. Another option would be to build an
observer to evaluate the internal state of the actuator [27]. In these cases, conditions
can be derived in a simpler way than that ones issued from the strategy with (4), but
they remain more complex than those due to the strategy with (5).

2.6 Standard Formulation

In [29], a standard formulation of the anti-windup design has been proposed for
different kinds of actuators. In the current case, by considering an augmented state
of dimensions n D np C ms C nc C naw including the state of the plant, the state of
the actuator, the state of the controller and the state of the anti-windup controller,
the following standard model of the complete closed-loop system can be defined by:

8
ˆ̂
<

ˆ̂
:

Px D A xC B0�0.yc/C B1�1.v/C B2w
yc D C0xCD00�0.yc/CD01�1.v/CD0ww
v D C1xCD10�0.yc/CD11�1.v/CD1ww
z D C2xCD20�0.yc/CD21�1.v/CD2ww

(6)

Then, depending of the anti-windup scheme under consideration, the matrices of the
anti-windup controller are encapsulated into the matrices of system (6).

The design procedure of the anti-windup controller consists in optimizing some
quantities as the size of the region of stability of the closed-loop system or the
guaranteed level of performance. Several optimization problems are then of interest.
In particular, the idea by adding the anti-windup loop is to maximize the basin of
attraction of the origin for the closed-loop system and/or to minimize the L2 gain
between w and z or to maximize the set of perturbation w, which can be rejected.
Then, throughout the chapter, the signal of perturbation is supposed to be bounded
in energy as follows:
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kwk22 D
Z 1

0

w0.t/w.t/dt � ı�1 I 0 � ı�1 <1 (7)

The problem we intend to address in the chapter can be summarized below.

Problem 1. Determine an anti-windup controller and a region E , as large as
possible, such that

• Internal stability. The closed-loop system (6) with w D 0 is asymptotically stable
for any initial conditions belonging to E [which is a region of asymptotic stability
(RAS)];

• Performance. The L2 gain between w and z is finite and equal to � > 0.

The convex optimization problems associated to Problem 1 are specified in
Sects. 3.2 and 3.3.

3 Main Anti-windup Design Conditions

3.1 Solution to Standard Anti-windup Design

The following proposition provides conditions of local stability and L2 performance
for the closed-loop system (6). The result regards existence conditions to solve
Problem 1.

Proposition 1. If there exist a symmetric positive definite matrix Q 2 <n�n, two
matrices Z0 and Z1 2 <m�n, two positive diagonal matrices S0 and S1 2 <m�m and
a positive scalar � such that the following conditions are verified:

2

6
6
6
6
6
4

QA 0 CA Q B0S0 � QC 0
0 � Z0

0 B1S1 � QC 0
1 � Z0

1 B2 QC 0
2

? �2S0 �D00S0 � S0D 0
00 �D01S1 � S0D 0

10 �D0w S0D 0
20

? ? �2S1 �D11S1 � S1D 0
11 �D1w S1D 0

21

? ? ? �I D 0
2w

? ? ? ? �� I

3

7
7
7
7
7
5

< 0

(8)
"

Q Z0
0.i/

? ıu20.i/

#

� 0; i D 1; : : : ;m (9)

"
Q Z0

1.i/

? ıu21.i/

#

� 0; i D 1; : : : ;m (10)
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then,

1. when w D 0, the set E .Q�1; ı/ D fx 2 <nI x0Q�1x � ı�1g is RAS for the
closed-loop system (6);

2. when w ¤ 0, satisfying (7), and for x.0/ D 0,

• the trajectories of the closed-loop system remain bounded in the set
E .Q�1; ı/;

• the L2 gain is finite and one gets:
Z T

0

z.t/0z.t/ dt � �
Z T

0

w.t/0w.t/ dt;8T � 0 (11)

In an analysis purpose (the anti-windup controller being given), conditions of
Proposition 1 are linear and can be directly used to solve adequate optimization
problems. Moreover, in the design context, conditions of Proposition 1 are non
convex, matrices Aaw, Baw, Caw and Daw being hidden in matrices A , Bi, Ci, Dij,
i; j D 0; 1. Depending on the problem studied, conditions linear in the decision
variables can be obtained, more or less directly, by modifying a bit the original
conditions or still by considering iterative procedures (including D-K iteration
process) allowing to search for Lyapunov matrix and anti-windup matrices. These
situations are detailed in the next sections.

Remark 3. In the sequel, one considers a set X0, defined by some directions in
the plant state space vi 2 <np , i D 1; : : : ; q, to provide a desired shape of the
region E .Q�1; ı/ to be maximized when solving Problem 1. Then, considering Nvi D�
v0

i 0
�0 2 <n, i D 1; : : : ; q and ˇ a scaling factor such that ˇX0 � E .Q�1; ı/, an

additional condition to those of Proposition 1 have to be considered in the algorithms
which follow:

"
ı 1
ˇ2

ı Nv0
i

ı Nvi Q

#

> 0; i D 1; : : : ; q (12)

3.2 Algorithms for AWe Case

From (1), (2), (3) and (4), matrices of system (6) read:

A D
�
A 0

0 0

�

C B�BAawC�A C B�BBe
awC�C C B�DCawC�A C B�DDe

awC�C

B0 D
�

B�0
0

�

I B1 D
�

B�1
0

�

I B2 D
�

B2
0

�

C B�BBe
awC�W C B�DDe

awD0w

C0 D
�

C0 0
� I C1 D

�
C1 0

� I C2 D
�

C2 0
�

D00 D 0 I D01 D 0 I D10 D D1 I D11 D 0
D20 D 0 I D21 D 0 I D0w D D0w I D1w D D1w I D2w D D2w

(13)
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with

AD

2

6
6
6
6
4

Ap C Bns
pu�

�1Dns
c Cp Bs

pu C Bns
pu�

�1Dns
c Ds

pu Bns
pu�

�1Cns
c

T0Ds
c.CpCDns

pu�
�1Dns

c Cp/
T0.Ds

cDs
pu � Ims

CDs
cDns

pu�
�1Dns

c Ds
pu/

T0.Cs
cCDs

cDns
pu�

�1Cns
c /

BcCpCBcDns
pu�

�1Dns
c Cp BcDs

puCBcDns
pu�

�1Dns
c Ds

pu Ac C BcDns
pu�

�1Cns
c

3

7
7
7
7
5

B2 D

2

6
4

Bpw C Bns
pu�

�1.Dns
c Dpw C Dns

cw/

T0.Ds
cDpw C Ds

cw C Ds
cDns

pu�
�1.Dns

c Dpw C Dns
cw//

Bcw C BcDpw C BcDns
pu�

�1.Dns
c Dpw C Dns

cw/

3

7
5

B�0 D

2

6
4

0

T0
0

3

7
5 I B�1 D

2

6
4

0

Ims

0

3

7
5 I D1 D T0

C0 D
h

Ds
c.Ip C Dns

pu�
�1Dns

c /Cp Ds
c.Ip C Dns

pu�
�1Dns

c /D
s
pu Cs

c C Ds
cDns

pu�
�1Cns

c

i

C1 D
h

T0Ds
c.Ip C Dns

pu�
�1Dns

c /Cp T0Ds
c.Ip C Dns

pu�
�1Dns

c /D
s
pu � T0

T0.Cs
c C Ds

cDns
pu�

�1Cns
c /
i

C2 D
h

Cz C Dns
zu�

�1Dns
c Cp Ds

zu C Dns
zu�

�1Dns
c Ds

pu Dns
zu�

�1Cns
c

i

D0w D Ds
cw C Ds

cDpw C Ds
cDns

pu�
�1.Dns

c Dpw C Dns
cw/

D1w D T0.Ds
cw C Ds

cDpw C Ds
cDns

pu�
�1.Dns

c Dpw C Dns
cw//

D2w D Dzw C Dns
zu�

�1.Dns
c Dpw C Dns

cw/

B�B D

2

6
6
6
4

0

0

0

Inaw

3

7
7
7
5
I B�D D

2

6
6
6
4

0

0

Bca

0

3

7
7
7
5
I C�A D

h
0 0 0 Inaw

i

C�C D
h
�Ds

c.Ip C Dns
pu�

�1Dns
c /Cp Im � Ds

c.Ip C Dns
pu�

�1Dns
c /D

s
pu

�Cs
c � Ds

cDns
pu�

�1Cns
c 0

i

and � D Im�ms � Dns
c Dns

pu.
In the analysis context, conditions of Proposition 1 using the AWe structure are

linear in the decision variables and can be directly used. On the other hand, in
the design context, conditions of Proposition 1 are nonlinear due to, in particular,
the products between the Lyapunov matrix Q and the matrices of the anti-
windup controller. Then, to address the design and solve Problem 1, some iterative
procedure can be applied by considering at the first step a given static (naw = 0) or
dynamic (naw ¤ 0) anti-windup controller.

The following algorithms can be used.
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Algorithm 3.1. Analysis of a given AWe anti-windup controller

1. Give matrices Aaw, Be
aw, Caw and De

aw.
2. Choose directions to be optimized vi 2 <np , i D 1; : : : ; q and a known

perturbation with bound ı.
3. Solve

min
Q;S0;S1;Z0;Z1;�;�

� C �
subject to LMI (8), (9), (10) and (12)

where � is the L2 gain between w and z and � D 1=ˇ2.

Algorithm 3.2. Design of a AWe anti-windup controller

1. Select an initial guess for matrices Aaw, Be
aw, Caw and De

aw. of appropriate
dimensions in order to build the desired anti-windup loop. A static anti-windup
AWe may also be used by considering naw D 0.

2. Choose directions to be optimized vi 2 <np , i D 1; : : : ; q and a known
perturbation with bound ı.

3. Analysis step—Solve

min
Q;S0;S1;Z0;Z1;�;�

� C �
subject to LMI (8), (9), (10) and (12)

where � is the L2 gain between w and z and � D 1=ˇ2.
4. If the solution obtained is satisfactory (some accuracy has to be fixed) or no more

improved from the previous steps then STOP. Otherwise, go to the next iteration
(the idea is to finish by an analysis step).

5. Synthesis step—Pick the solution Q obtained at Step 3 and solve

min
Aaw;Be

aw;Caw;De
aw;S0;S1;Z0;Z1;�

�

subject to LMI (8), (9), (10) and (12)

6. Go to Step 3.

Remark 4. The selection of an initial guess of anti-windup in the Algorithm 3.2
must take care of the dimension of each elements but must also verify that Aaw is
Hurwitz. Actually, it is not possible to initialize the problem with null matrices of
appropriate dimensions (for a given order of the anti-windup scheme naw) as the
condition on A in the first block of inequality (8) imposes that both the closed-loop
linear dynamics of the system and the anti-windup dynamics are asymptotically
stable. An option may then be to select any stable dynamical matrix Aaw with
matrices Be

aw, Caw and De
aw equal to null matrices of appropriate dimensions. This

initial anti-windup scheme is ineffective but allows to solve the analysis steep and
obtain a matrix Q to be used in the synthesis step.
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3.3 Algorithms for AW� Case

As for the previous case, from (1), (2), (3) and (5), matrices of system (6) are
defined by:

A D
�
A BvCaw

0 Aaw

�

I B0 D
�

B�0 C BvD0
aw

B0aw

�

I B1 D
�

B�1 C BvD1
aw

B1aw

�

C0 D
�

C0 Cv0Caw

� I C1 D
�

C1 Cv1Caw

� I C2 D
�

C2 0
�

D00 D Cv0D0
aw I D01 D Cv0D1

aw I D10 D D1 C Cv1D0
aw I D11 D Cv1D1

aw

B2 D
�

B2
0

�

I D20 D 0 I D21 D 0 I

(14)

Matrices A, B2, B�0, B�1, D1, C0, C1, C2, D0w, D1w and D2w remain unchanged.
Matrices defining the interconnection between the anti-windup loop and the sys-
tem are:

Bv D
2

4
0

T0Dca
�
0 Imr

�

Bca
�

Incr 0
�

3

5 I Cv0 D Dca
�
0 Imr

� I Cv1 D T0Dca
�
0 Imr

�

As in the previous case, the analysis problem (Algorithm 3.3) is linear and
the synthesis problem of the anti-windup is nonlinear, including products between
decision variables, and in particular between the Lyapunov matrix Q and the anti-
windup elements. As for the AWe strategy, a D-K iteration procedure may then be
considered for the synthesis problem (Algorithm 3.4). However, differently for the
AWe strategy, the synthesis optimization problem may be partially linearized and,
for given matrices Aaw and Caw, the design of matrices Bi

aw and Di
aw, i D 0; 1 can be

handled via a linear optimization problem (Algorithm 3.5).

Algorithm 3.3. Analysis of a given AW� anti-windup controller

1. Select matrices Aaw, B0aw, B1aw, Caw, D0
aw and D1

aw.
2. Choose directions to be optimized vi 2 <np , i D 1; : : : ; q and a known

perturbation with the bound ı.
3. Solve

min
Q;S0;S1;Z0;Z1;�;�

� C �
subject to LMI (8), (9), (10) and (12)

where � is the L2 gain between w and z and � D 1=ˇ2.
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Algorithm 3.4. Design of a AW� anti-windup controller

1. Select matrices Aaw, B0aw, B1aw Caw, D0
aw and D1

aw of appropriate dimensions in
order to build the desired anti-windup loop. A static anti-windup AW� may also
be used by considering naw D 0.

2. Choose directions to be optimized vi 2 <np , i D 1; : : : ; q and a known
perturbation with bound ı.

3. Analysis step—Solve

min
Q;S0;S1;Z0;Z1;�;�

� C �
subject to LMI (8), (9), (10) and (12)

where � is the L2 gain between w and z and � D 1=ˇ2.
4. If the solution obtained is satisfactory (some accuracy has to be fixed) or no more

improved from the previous steps then STOP. Otherwise, go to the next iteration
(the idea is to finish by an analysis step).

5. Synthesis step—Pick the solution Q obtained at Step 3 and solve

min
S0;S1;Z0;Z1;B0aw;B

1
aw;D

0
aw;D

1
aw;�
�

subject to LMI (8), (9), (10) and (12)

6. Go to Step 3.

Algorithm 3.5. Design of a AW� anti-windup controller with fixed dynamics

1. Give matrices Aaw and Caw.
2. Choose directions to be optimized vi 2 <np , i D 1; : : : ; q and a known

perturbation with the bound ı.
3. Solve

min
Q;S0;S1;Z0;Z1; NB0aw; NB1aw; ND0aw; ND1aw;�;�

� C �
subject to LMI (8), (9), (10) and (12)

where � is the L2 gain between w and z and � D 1=ˇ2.
4. Compute B0aw D NB0awS�1

0 , B1aw D NB1awS�1
1 , D0

aw D ND0
awS�1

0 and D1
aw D ND1

awS�1
1 .

Remark 5. In Algorithm 3.5, condition (8) is not directly applied. The products
between Bi

aw and Di
aw with the matrices Si are replaced by the change of variables

NBi
aw and NDi

aw, i D 0; 1, which allows to linearize the problem.

Remark 6. An interesting case is the static anti-windup one, for which matrices Aaw

and Caw are null matrices of appropriate dimensions. It implies that Bi
aw, i D 0; 1

are also null matrices of appropriate dimensions and only matrices Di
aw, i D 0; 1 are

computed in the linear Algorithm 3.5.
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Remark 7. Matrices Aaw and Caw to be used in Algorithm 3.5 may be selected
as the solution of a full-order (naw D np C nc C ms) anti-windup compensator
design where the actuator is just a saturation in magnitude (see, for example, the
conditions provided in [29]), i.e. via a linear optimization problem. Eventually, an
order-reduction step may also be considered in order to select matrices Aaw and Caw

(see Example 8.5 in [29]). Other procedures developed in [32] could be used.

4 Anti-windup and Its Use for PIO Alleviation

The design and analysis algorithms of Sect. 3 are now applied and compared in the
realistic context of lateral maneuvers of a civil transport aircraft. A specific attention
will be devoted to aggressive pilot’s demands in conjunction with actuator loss.

In the following, the pilot’s activity is modeled as a static gain Kpil. For this
application, a normal activity would correspond to Kpil D 1. But, in stressful
situations, notably in case of actuators loss, a more aggressive pilot’s behavior is
generally observed, resulting in much higher gains. Here, the gain is set to Kpil D 3.

4.1 Problem Setup and Objectives

The two anti-windup structures AWe and AW� above described are compared in
this applicative part of the chapter. Both nonlinear closed-loop Simulink imple-
mentations are sketched in Figs. 3 and 4, respectively. For each design strategy,
the state-space models sysP and sysC are readily obtained from the Simulink

ANTI-WINDUP

CONTROL AIRCRAFT

PILOT GAIN

REFERENCE

ref

1

1

phi_c

Kpil
3s+Kpil

Kpil+-

x' = Ax+Bu

vp

vb

uc

ycs

ycns

ycs us

23

us

uns

yp

yp

us, yc

Pcom

y = Cx+Du

x' = Ax+Bu
y = Cx+Du

ACTUATOR

+-

Fig. 3 Nonlinear closed-loop Simulink implementation of Anti-Windup AWe for lateral aircraft
simulations
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1
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vb

ub

ycs
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ycs
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23
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us, yc

pcom

y = Cx+Du

x' = Ax+Bu
y = Cx+Du

ACTUATOR

++

Fig. 4 Nonlinear closed-loop Simulink implementation of Anti-Windup AW� for lateral aircraft
simulations

diagrams of Figs. 3 and 4 with the help of the Matlab linmod function. The plant
corresponds to the “yellow box” depicting the aircraft system while the global
controller (including pilot actions) is obtained by extraction of the three blue boxes.
A standard balanced reduction technique is finally applied to obtain reasonably
sized models. The obtained reduced orders, respectively np D 8 and nc D 20, are
compatible with the proposed algorithms. The aircraft system involves two inputs
(m D 2) with only the ailerons deflection actuator which saturates (ms D 1), and
five outputs (p D 5), among which the performance output which is set as the roll
angle (l D 1). The disturbance of the system is due to the saturation of the input,
i.e., Bpw D Bs

pu (q D 1).
In the AWe strategy, the anti-windup input is a single scalar signal (ms D 1) which

only captures the difference between the input of the nonlinear ailerons deflection
actuator and its output. In the AW� strategy, two signals (one for the magnitude
limitation and one for the rate limitation) are used by the anti-windup device. Their
generation is detailed in the Simulink implementation of Fig. 5.

Whatever the considered approach, both anti-windup controllers act similarly on
the internal dynamics of the nominal lateral controller of the aircraft through two
scalar signals vp and vb which respectively affect roll and sideslip angles dynamics
(vx D

�
vp vb

�0
and vy D 0, ncr D 2, mr D 0). Remark yet that the second

strategy offers more flexibility with the possibility of a direct anti-windup action at
the controller output. However, no significant improvement has been observed with
this additional feature which has thus not been further considered in this application.

The main objective of this application is to design and evaluate anti-windup
systems to improve the aircraft response to roll angle solicitations while limiting
oscillations despite actuator loss [22]. During such maneuvers, a significant control
activity is observed on the ailerons. This is why the effects of saturations are
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Fig. 5 Detailed view of the magnitude and rate limitations system

modeled and taken into account for these actuators in both diagrams of Figs. 3 and 4
while no saturation is introduced on the rudders. The effects of saturations become
even more penalizing in case of a partial loss of control capability. Assume indeed
that the aircraft is controlled by a pair of ailerons on each wing but only one is
operational. In that case, the activity of the remaining actuators is doubled as well
as the risk of magnitude and rate saturations. Then, the magnitude and rate limits in
the following will be halved. We will consider Lm D 10ı (instead of 20 in normal
conditions) and Lr D 20ı/s (instead of 40).

In the sequel, five different anti-windup compensators are implemented and
compared:

• A standard anti-PIO filter used in the industry. It is an “open-loop” solution which
does not exploit the information relative to the saturation of the signal (see [4]).
This may be considered as the basic solution from the industry. It corresponds to
the block REFERENCE in Figs. 3 and 4;

• A dynamic H1AWe anti-windup built by using a structured H1 design
method [22]. The advantage of such a strategy is that it circumvents some
limitations of LMI-based strategies (limitation on the size problem when
manipulating LMIs, conservatism of sufficient conditions) but to the detriment
of the easiness of construction for engineers not always specialists of advanced
control theories;

• A dynamic AWe anti-windup designed with the Algorithm 3.2 initialized with the
H1AWe anti-windup above-described;

• A dynamic AW� anti-windup designed with the Algorithm 3.5 using matrices Aaw

and Caw borrowed to the H1AWe anti-windup;
• A static AW� anti-windup designed with the Algorithm 3.5. This strategy is

an alternative to the standard anti-PIO filter as it is very easy to implement
(no additional dynamical system to introduce in the controller block).
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4.2 Analysis and Design of Anti-windup AWe

First, an analysis step (in terms of stability and performance) of the anti-windup
controller proposed in [4] (denoted H1AWe anti-windup) is carried out. This anti-
windup compensator has been built by using a structured H1 design method [22].
Such an anti-windup has provided very good numerical results but no proof of
its stability in closed-loop was a priori ensured. By using Algorithm 3.1, one can
verify that the conditions are feasible. The optimization problem is then solved by
considering the bound on perturbation ı D 0:1 and v1 D ŒCp.4; W/ 0� as the direction
to be optimized over the set E .Q�1; ı/. Algorithm 3.1 gives the optimal solution:

Analysis H1AWe W � D 1:7167 I ˇ D 0:6254

It is interesting to do the same analysis for the closed-loop system without anti-
windup. The feasibility is also obtained and the solution is:

Analysis without anti-windup: � D 1:8929 I ˇ D 0:7851

The solution with the H1AWe anti-windup described through � and ˇ as per-
formance indicators does not appear as much better than the one without anti-
windup: indeed � is actually decreased in the case with anti-windup but ˇ is
slightly degraded. However, simulations presented in [4] exhibited that the time
responses with the H1AWe strategy were very close to the desired behavior (that
is without saturation), differently from the case without anti-windup resulting in
large overshoot and degraded time evolution. The meaning of this is that the
considered criterion of optimization, which does not explicitly include the time
response performance, does not exactly fit to the analysis or design of the anti-
windup loop. Nevertheless, considering criteria on time response performance is a
difficult task and the optimization criterion used here gives a reasonable trade-off
between stability guarantee, performance and time response.

In a second step, Algorithm 3.2 is used by considering the previous anti-windup
controller at the initialization step (Step 1). After one iteration (after the conditions
become unfeasible for numerical reasons), one gets a new anti-windup controller
AWe such that:

Design AWe W � D 1:6887 I ˇ D 0:6978

Now, we compare the results obtained in response to a step demand of 40ı on the
roll angle, by using the scheme given in Fig. 3.

In Fig. 6, the time evolutions obtained with the H1AWe anti-windup (used in
the first step of analysis) and the AWe anti-windup above designed are compared.
The case without saturation is also plotted (denoted “reference” in the figure). The
time evolution of inputs ıpc is plotted in both cases and without saturation in Fig. 7.
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Remark 8. Note that the level of performance obtained with the H1AWe anti-
windup cannot be much improved with our strategy as this “initial” anti-windup had
been cleverly designed with the structured H1 approach. The iterative procedure
could be initialized with any other anti-windup controller of order naw, for example
(as suggested before) solution of a design in the case of magnitude saturation only.
The initial choice has however a significant influence on the iterative process and
the attainable solution. Many tests have shown that the results obtained are often
not much convincing (generally the solution extended from the initial H1AWe anti-
windup shows better performance indexes) and then it seems that this anti-windup
structure is not much adapted to a design from scratch.

4.3 Design of Anti-windup AW�

In this section, we consider the second strategy, whose main advantage is that it is
based on a systematic method without tuning parameter. Figure 4 shows how the
AW� anti-windup is implemented.

As commented in Sect. 3, in the context of the AW� strategy, the design of
matrices Bi

aw and Di
aw is cast by solving a linear optimization problem. Then, for the

same conditions on ı and X0 as in the previous case, and by considering matrices
Aaw and Baw of the H1AWe anti-windup, Algorithm 3.5 gives matrices Bi

aw and
Di

aw, i D 0; 1, and the following optimal solution

Design of dynamical AW� W � D 1:8441 I ˇ D 0:9013

As previously, we consider a Roll solicitation of 40ı to compare the results.
The time responses of the roll angle for the case without saturation, with the
H1AWe anti-windup and the designed dynamic AW� anti-windup are plotted in
Fig. 8. Similarly, the time evolutions of ıpc in these cases are depicted in Fig. 9.

One can observe that the level of performance of the H1AWe anti-windup is
slightly degraded in the case of the design of AW� , but it remains acceptable.

Now, we design a static AW� anti-windup (only matrices Di
aw, i D 0; 1, have to be

designed). The main advantage is that we do not need to initialize the algorithm as
matrices Aaw and Caw do not exist (naw D 0). Algorithm 3.5 provides the following
optimal solution:

Static AW� design W � D 1:7846 I ˇ D 0:7772

Figures 10 and 11 illustrate the time evolution of the closed-loop system to a
roll solicitation of 40ı. The responses are compared by considering the case without
saturation, a standard anti-PIO strategy (see [4]) and the static AW� anti-windup
strategy. It is important to underline that a simple static anti-windup strategy allows
to obtain better performance than the standard anti-PIO case, which adds dynamics
in the system.
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5 Conclusion

In this chapter, an anti-windup analysis and design strategy has been proposed for
systems involving both magnitude and rate saturations, and taking into consideration
that such saturations elements only affect some of the inputs. Such a situation
has much practical interest for many systems issued in particular from aerospace
domain. It is illustrated here on a lateral flying model of a civil aircraft in presence
of aggressive maneuvering of the pilot. Actually magnitude and rate saturations of
the ailerons deflection actuator may lead to an undesirable behavior which is often
called Pilot-Induced-Oscillation (PIO). For this class of nonlinear control systems,
anti-windup compensators have been adapted through adequate convex optimization
schemes. A comparison with given dynamic anti-PIO filters already used for this
class of systems has also been provided. This work lets many questions open,
such as the design of other anti-windup schemes. Other classes of fruitful anti-
windup compensators may include the parameter-varying approach [24] or reset
controllers [28].

Acknowledgement This work was supported by COCKPIT project, convention ONERA F/20
334/DA PPUJ.
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Modeling and Optimization of Hybrid Transfers
to Near Earth Objects

Francesco Topputo and Mauro Massari

Abstract Hybrid propulsion combines chemical propulsion and electric propul-
sion on the same platform. The brand-new hybrid transfers are thus achieved
by sequential combination of high thrust (impulsive maneuvers) and low thrust
(continuous arcs). In this chapter, hybrid propulsion transfers are applied to the
trajectory optimization for missions to the Near Earth Objects (NEOs). These have
been obtained with an optimization based on a direct transcription procedure. The
problem is formulated as a nonlinear programming problem and solved for a finite
set of variables, which maximize the final spacecraft mass. Effort has been put
in modeling the propulsion subsystem. Realistic limitations on both the impulsive
maneuvers and low-thrust magnitude have been considered, as well as gravity losses
and variation of available electrical power with the distance from the Sun. The
transfer to asteroid 162173/1999 JU3 is considered as case study. The designed
hybrid propulsion transfers have been compared with purely chemical transfers
proposed for the ESA’s Marco Polo mission.

Keywords Hybrid transfer • Low-thrust transfer • Near Earth asteroids

1 Introduction

The concept of hybrid propulsion originates from the attempt to combine the
features of low-energy transfers and those of low-thrust transfers [8]. Low-Energy
transfers are special lunar and interplanetary transfers defined in the frame of
the restricted n-body problem [3]. These trajectories take advantage of the highly
nonlinear dynamics produced by n�1 attractors to reduce the�V cost of a transfer,
which in turn reduces the propellant mass. In the Earth–Moon scenario, the low-
energy transfers are derived by exploiting the gravitational attractions of the Earth,
the Sun, and the Moon. These three forces are modeled as all simultaneously acting
upon the spacecraft. A low-energy transfer exploits the natural dynamics of the solar
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system in a more efficient way. Low-energy transfers are achieved with impulsive
�V’s that intrinsically ask for chemical propulsion.

Low-thrust propulsion, which is usually obtained through Solar Electric Propul-
sion (SEP), represents a viable option to attain further reductions of the propellant
mass fraction. However, with low-thrust propulsion only, the transfer time increases
excessively. Moreover, using low-thrust propulsion to achieve hyperbolic escape
in the framework of interplanetary transfers is not usually deemed a viable option
due to the long time required, which is also mostly spent in the harsh radiation
environment of the Van Allen belts.

An appealing option to improve the performances of the low-energy transfers
without excessively increasing the transfer time is represented by the so-called low-
energy, low-thrust transfers or hybrid propulsion transfers. This concept has been
assessed in a number of works [7, 9, 10]. Hybrid propulsion couples the chemical
propulsion escape with a subsequent low-thrust propulsion phase. In this way, both
the benefits of low-energy and low-thrust can be exploited, reducing the long time
limitation typical of low-thrust propulsion, which are limited in this case to the
insertion into the final orbit only. The impact of this aspect on the mission is highly
dependent on the particular target orbit required. The case of missions to NEOs is
practically not affected by this limitation as the gravity attraction of the target is not
sufficiently high to generate a sphere of influence. Therefore, encountering a NEO
can be regarded as a rendezvous in heliocentric orbit. This assumption is also true
for an eventual return trip from the NEO to the Earth, as the arrival at Earth usually
consists in a direct reentry trajectory. For these reasons the adoption of hybrid
propulsion transfers for sample return missions to NEOs could potentially allow
peculiar performances in terms of mass returned to Earth, and thus consequently of
NEO’s sample mass.

The case study selected to assess the performances of hybrid propulsion transfers
to NEOs is ESA’s Marco Polo NEO sample return mission [2]. In Marco Polo, a
spacecraft rendezvous with an asteroid, collects some samples, and returns them
back to Earth with a direct re-entry trajectory. The most relevant constraints from
the mission analysis point of view are the launcher, the launch window, the mission
duration, and the hyperbolic Earth arrival velocity. The constraints reported above
have been considered in the design of hybrid propulsion transfers for Marco Polo
mission, using the same values considered in the preliminary mission design. To
mimic the reference Marco Polo mission, hybrid propulsion transfers to the asteroid
162173/1999 JU3 have been searched in the years 2018 (baseline) and 2019 (back-
up). Moreover, for each of the 2 years window, the possibility of exploiting a lunar
gravity assist has been assessed.

2 Definition of Hybrid Propulsion Transfers

A hybrid propulsion transfer can be briefly described by the following sequence
of events. First, the spacecraft is launched and placed into a low-Earth parking
orbit. Then, an impulsive maneuver injects the spacecraft into an Earth-escape orbit
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toward the Sun–Earth L1, L2 Lagrange points region. The Earth-escape maneuver is
accomplished by using chemical propulsion. From this point on the spacecraft can
only rely on its low-thrust propulsion to reach the final target.

Few observations can be made from the definition of hybrid propulsion transfer.
First of all, a lunar gravity assist (performed immediately after the chemical burn)
can be considered. This option would improve the overall transfers performances
[5–7] although the inclusion of a lunar swing-by is not straightforward and depends
on the mission at hand. For instance, it can be planned only for missions having a
dedicated launch. In the case of exploitation of a lunar gravity assist, it would be
desirable to account for a small trajectory correction maneuver (TCM) between the
initial impulsive injection and the Moon encounter, that can be performed using both
chemical propulsion or SEP. When no lunar swingbys are envisaged, possible errors
in the nominal trajectory (due to off-nominal impulsive injection) can be recovered
in the subsequent low-thrust arc.

As the entity of the initial chemical injection maneuver can be considerably high,
it is advisable to split it into several (e.g., two or three) lower �V maneuvers. This
allows reducing considerably the gravity losses associated with the initial maneuver.
Although this increases the total flight time, splitting the initial injection maneuver
may allow for trajectory corrections and full spacecraft commissioning before the
escape.

The chemical propulsion is used only to achieve the injection into escape
trajectory. Enabling the use of chemical propulsion along the transfer is not
convenient; the main reasons for this are related to the fact that the chemical
propulsion is strictly necessary only in the first phase of the mission. After achieving
escape, all the masses associated to the chemical propulsion subsystem are not
needed anymore and could be ejected. In this way the low-thrust propulsion would
be more effective on a higher thrust-to-mass ratio. Keeping the chemical propulsion
subsystem on-board means having a less complex system design (e.g., no separation
of propulsion stage is required).

With reference to Fig. 1, two different options can be considered for the system
design: a single stage spacecraft or a dual stage spacecraft. In a single stage
spacecraft, the two propulsion subsystems, as well as the main platform, constitute
a single system. Although chemical propulsion is used in the first part of the transfer
only, the spacecraft carries on all the masses associated to it (thruster, tanks, residual
propellant, feeding lines, etc.). In principle, this solution is inefficient (the chemical
propulsion is no longer used after the Earth departure and the possible TCM), while
it eases the design, integration, and operations. The dual stage spacecraft is made
of a chemical propulsion module (CPM) and by the main platform equipped with
SEP. After having executed the Earth departure and the possible TCM, the CPM is
jettisoned from the main spacecraft, which continues its mission by relying on SEP
only. This solution is deemed efficient, as the thrust-to-mass ratio of the SEP arcs
is higher than that of a single stage spacecraft. Moreover, in this case the existing
technology of dual stage spacecraft can be reused. This is the case, for instance, of
the propulsion modules of LISA Pathfinder [12]. This would reduce the costs and
complexity of a dual stage choice.
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Fig. 1 Hybrid propulsion transfers for single and dual staged spacecraft

In the rest of the chapter the concept of a dual stage spacecraft is considered. For
the mid-sized class of interplanetary missions to the NEOs, the potential benefits
may overcome the increased complexity, especially considering that the design of
the chemical propulsion stage could be easily shared with other missions directed to
different targets.

3 Modeling Hybrid Propulsion Transfers

3.1 Chemical Propulsion

Chemical propulsion is modeled as producing instantaneous velocity changes. For
the sake of evaluating the preliminary chemical propellant mass budget, the rocket
equation is used:

mpch D m0


1 � e

� �V
Ispch g0

�
.1C gl/ (1)

where mpch is the chemical propellant mass, m0 is the wet mass delivered in GTO
by a Soyuz launcher (see Sect. 4.2), �V is the magnitude of the initial impulse,
Ispch is the chemical engine specific impulse (assumed 316 s), g0 is the gravitational
acceleration at sea level, and gl is the gravity loss factor. A value of gravity loss
equal to 5% has been assumed, which is compatible with a three-burn strategy for
the initial impulse.

It is worth observing that in case of dual stage spacecraft (CPM jettisoned after
the impulsive maneuver), the CPM mass has to be subtracted from m0 in order
to infer the initial mass for the SEP trajectory. As sizing the CPM is behind the
scope of this work, it has been assumed that the dry mass of the CPM, mdryCPM , is a
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fixed fraction of the spacecraft dry mass, mdrySC . A mass fraction of 15% is taken.
Therefore, since mdrySC D 1600 kg, we have

mdryCPM D 0:15 mdrySC D 240 kg: (2)

The assumption in Eq. (2) is compatible with the statistical data regarding propul-
sion subsystem for interplanetary missions, and is in accordance with the available
data of missions implementing a separated propulsion unit.

3.2 Electric Propulsion

Solar electric propulsion is modeled as a low-thrust acceleration. The propellant
mass spent in the thrust arcs is obtained by integrating the following equation:

Pm D � jTj
Isplt g0

(3)

where Pm is the instantaneous mass-flow rate, jTj is the instantaneous thrust magni-
tude, Isplt is specific impulse of the low-thrust engine. Depending on the technology
implemented in the low-thrust engine, the figures of solar electric propulsion may
vary sensitively.

The Snecma PPS 5000 Hall effect thruster has been considered for the low-thrust
phase. The nominal values of thrust and specific impulse for this thruster have been
considered in the trajectory optimization. These values, reported in Table 1, have
been extrapolated from [4] by considering the performances at 5.5 kW.

In the optimization two different cases have been considered, with the Electrical
Power Subsystem (EPS) sized to provide the required 5.5 kW at NEO’s maximum
distance from the Sun and at 1 AU. The first case is simple, because it is equivalent
to considering the maximum thrust fixed for the entire trajectory, making the
assumption that the necessary 5.5 kW power is always available. In the second case,
the maximum thrust and Isp are function of the available power, which is dependent
on the actual distance from the Sun. In this work, it has been considered that the Isp

remains always constant and that the maximum thrust is proportional to the available
power, which depends on the distance from the Sun as

Tmax D Tmax1AU r�1:8 (4)

Table 1 Snecma PPS 5000
figures

Element Value Unit

Maximum Isp 1769 s

Maximum thrust at 5:5 kW 307 mN
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where r is the distance from the Sun. The exponent 1.8 is considered in place of the
classic 2 to account for better performances of the solar arrays associated to lower
temperatures, which are achieved when moving far from the Sun.

3.3 Trajectory Optimization

The equations of motion used to model the orbital dynamics are

RrC �

r3
r D T

m
(5)

where r is the distance from the Sun and � is the Sun gravitational parameter. The
guidance law, T.t/, is the unknown in the trajectory optimization. This has to be
determined such that the boundary conditions are met, as well as the technological
limitations, typically written in the form jTj � Tmax � 0.

In this work, a direct transcription procedure has been used to optimize the
hybrid transfers. The dynamics in Eq. (5) is discretized over a uniform time grid
and the constraints deriving from the equations of motion are enforced within
each of the time intervals. The problem is formulated as a nonlinear programming
problem using a Pseudo Spectral Method and solved for a finite set of variables. The
optimization maximizes the final spacecraft mass while respecting the trajectory
constraints. Details on the method used can be found in [5].

4 Marco Polo Reference Mission

To assess the usefulness and efficiency of hybrid propulsion transfers to NEOs, the
Marco Polo mission has been taken as benchmark case. This is a NEO sample return
mission. It is important to highlight that the work presented in this chapter considers
the available data in the reference documentation of Marco Polo for what concerns
the details of the mission and for comparing it with conventional propulsion [11].
It is deemed that the updates on Marco Polo mission (new asteroid, new launch
window, use of low-thrust, etc.) do not add significant information. The data relevant
from the Marco Polo mission analysis are reported in Table 2.

The most relevant constraints from the mission analysis point of view are the
launcher capability, the launch window, the mission duration and the hyperbolic
Earth arrival velocity. The figures in Table 2 have been considered for the design
of a hybrid propulsion transfer for a NEOs sample return mission. The boundary
conditions considered are represented by the initial orbit and by the target orbit,
which are briefly described in the following.
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Table 2 Marco Polo mission
summary (taken from [11])

Launch Direct escape using Soyuz Launcher

Target Asteroid 162173/1999 JU3

Propulsion Chemical propulsion

Launch window 2018 baseline, 2019 back-up

Mission duration Less than 8 years

Near asteroid phase Longer than 8 months

Earth arrival velocity Less than 6 km/s

Table 3 Orbital elements of
asteroid 162173/1999 JU3

Element Value Unit

Semi-major axis 1.18953379 AU

Eccentricity 0.19025925 –

Inclination 5.88404421 deg

RAAN 251.61712004 deg

Perihelion anomaly 211.42300069 deg

Mean anomaly at epoch 226.57102589 deg

Epoch 4655.5 MJD2000

4.1 Asteroid 162173/1999 JU3 Orbit

The asteroid 162173/1999 JU3 is an Apollo-type, Earth crossing asteroid. The
orbital parameters of asteroid 162173/1999 JU3 are given in Table 3.

With these data, the perihelion and aphelion are 0:9632 and 1:4158AU, respec-
tively, so indicating that the asteroid may get close to the Earth and Mars orbits.
This encounter does not occur in the time-frame of interest, and therefore the orbit
considered is that specified by the above mentioned orbital parameters. The orbits
of the Earth, Mars, and asteroid 162173/1999 JU3 are shown in Fig. 2.

4.2 Soyuz-Fregat GTO Orbit

For the hybrid transfer to asteroid 162173/1999 JU3, a dedicated launch from
Kourou with Soyuz 2.1b and the Fregat upper stage has been considered. The orbital
parameters of the reference GTO are summarized in Table 4.

The altitude of perigee and apogee is fixed, as well as the inclination and
argument of perigee. The right ascension of ascending node (RAAN) is calculated
as a function of the departure epoch (t0) through

�.t0/ D �CM.t0/C 182ı (6)

where �CM.t0/ is the argument of the central meridian (Greenwich meridian) at the
departure epoch]. As the dedicated launch strategy foresees a launch at any desired
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Fig. 2 The orbits of the
Earth, Mars, and asteroid
162173/1999 JU3
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Table 4 Orbital parameters
of the Soyuz 2.1b Fregat
GTO [1]

Element Value Unit

Perigee altitude 250 km

Apogee altitude 35;950 km

Inclination 6 deg

Argument of perigee 178 deg

moment (within the year and within the day), all values of RAAN can be achieved
by properly selecting t0.

5 Hybrid Propulsion Options for Marco Polo

The hybrid propulsion transfers for the sample return mission to NEOs that have
been designed are all structured with the qualitative sequence of events reported in
Fig. 3 and listed in Table 5.

The two gravity assists at the Moon and Earth are optional; i.e., they are not
strictly needed to accomplish the transfer. In addition, the Earth return is foreseen
with a direct re-entry with a limit on the hyperbolic excess velocity, like in the
Marco Polo mission. The aim of the hybrid transfers is maximizing the final mass
at asteroid arrival, which in turn maximizes the final mass returned to Earth. This is
accomplished by minimizing both the total �V of the impulsive maneuvers as well
as the propellant mass spent in the low-thrust arcs.
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Chemical Propulsion

ED TCM LGA DSLT

Low-Thrust Propulsion

EGA DSLT RV DSLT EA

Fig. 3 Sequence of events for hybrid transfer to asteroid 162173/1999 JU3

Table 5 Sequence of events
for hybrid transfer to asteroid
162173/1999 JU3

Event Description

ED Earth departure

TCM Trajectory correction maneuver (optional)

LGA Lunar gravity assist (optional)

DSLT Deep space low-thrust

EGA Earth gravity assist (optional)

RV NEO rendez-vous

EA Earth arrival

To mimic the reference Marco Polo mission, hybrid propulsion transfers to the
asteroid 162173/1999 JU3 have been searched in the years 2018 (baseline) and
2019 (back-up). Moreover, for each of the two one-year windows, the possibility of
exploiting a lunar gravity assist has been assessed. Marco Polo mission foresees the
possibility of a direct injection into escape orbit, however, the concepts of hybrid
propulsion transfer is based on the assumption of departure from LEO or GTO.
Therefore, in order to fairly compare Marco Polo conventional propulsion transfer
with the hybrid propulsion transfer, it has been decided to select as departure orbit
the GTO orbit of the Soyuz 2.1b launched from Kourou and achieved with the Fregat
upper stage (i.e., using the same launcher configuration used for Marco Polo).

5.1 The Escape Portion

The initial impulsive maneuver is needed to achieve escape from the Earth. This
can be of two types, ballistic [13] or hyperbolic. Although ballistic escape may be
more efficient than the classical hyperbolic escape, the latter has been considered in
this study. However, the hyperbolic escape orbit is not achieved using only chemical
propulsion and considering the analytic solution of the two-body problem. The full
four-body model is considered for the dynamics, and the SEP is used in conjunction
with the chemical propulsion to achieve the escape, exploiting in this way both the
gravitational attractions of the Moon and the Sun, and the low-thrust propulsion.
In this way, the solution obtained is more flexible and faster than a purely ballistic
escape, but it is less costly than a purely hyperbolic escape.
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5.2 The Low-Thrust Portion

Solar electric propulsion is used to rendezvous with the target asteroid. The SEP is
switched on after the chemical maneuver, or in the case it is foreseen, after the lunar
flyby, and it is used in the deep space to acquire the proper conditions at arrival. In
this phase, the dynamics are those of a controlled two-body problem, where only
the gravitational attraction of the Sun is considered.

The return leg is treated likewise, with the only difference that the arrival
condition is constrained by a limit on the hyperbolic excess velocity, while the initial
condition is considered to be equal to the asteroid state.

In general, the duration and the mass spent in the low-thrust phases depend on
the type and the number of thrusters, on the thrusters Isp, on the thrust magnitude
and on the nominal guidance law. The low-thrust phases are designed such that the
propellant mass is minimized, regardless of the transfer time, as in the considered
reference mission only constraints on the maximum mission duration are foreseen.

6 Results

Hybrid transfers to the asteroid 162173/1999 JU3 have been searched with departure
in the years 2018 (baseline) and 2019 (back-up). Moreover, the possibility of
exploiting a lunar gravity assist has been assessed. Executing one or multiple
Earth gravity assists has been deemed not useful in the hybrid propulsion transfer
scenario as the 5.9ı inclination change can be achieved efficiently with SEP, without
constraining the trajectory to perform Earth encounters. All the cases analyzed have
been optimized considering the EPS sized for maximum power both at the target
NEO distance and at Earth distance (1 AU).

The return leg of the trajectory has been designed fixing a departure date for
the return trip. This is common to all the cases considered. It allows the easing
the trajectory design without jeopardizing the feasibility of the mission, as both the
minimum stay at the asteroid and the maximum mission duration are guaranteed by
the chosen date. In this way the return trip is optimized in one case, and obtained by
continuation for the other cases, by just changing the initial mass. In summary, the
eight cases summarized in Table 6 have been analyzed.

Table 6 Summary of
solutions analyzed

Label Year Launch EPS sizing

H18DN 2018 Direct transfer @ NEO

H18LN 2018 Lunar gravity assist @ NEO

H19DN 2019 Direct transfer @ NEO

H19LN 2019 Lunar gravity assist @ NEO

H18DE 2018 Direct transfer @ 1 AU

H18LE 2018 Lunar gravity assist @ 1 AU

H19DE 2019 Direct transfer @ 1 AU

H19LE 2019 Lunar gravity assist @ 1 AU
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The details of the designed hybrid propulsion transfers are reported in Table 7. In
Fig. 4a, b the heliocentric phase of H18DN is reported. From the figure it is possible
to see that the change of inclination is performed gradually with the SEP during the
heliocentric phase and that the need of multiple revolutions is essentially due to that.

In Fig. 5a, b both the heliocentric and geocentric phases of solution H18LN are
reported. This solution performs a lunar gravity assist. However, the final mass does
not improve at all. This is mainly due to the fact that a lunar gravity assist requires
that the spacecraft encounter with the Moon happens at one of the Moon orbital
nodes. This is required to avoid the necessity of a plane change maneuver between
the equatorial plane of the GTO and the Moon orbital plane in the initial phase. This
imposes phasing constraints to the geocentric trajectory which are in contrast with
the constraints required by the subsequent heliocentric rendez-vous.

Figure 6a, b shows the heliocentric phases of solution H19DN. Both the transfer
from Earth to the NEO and the return to Earth are reported. The heliocentric phase
of solution H19LN is very similar to that of solution H19DN, so it has not been
shown. It is worth to recall that the return trajectories of all the solutions are very
similar as the departure date is the same and are all obtained by continuation of the
Solution H18DN.

The return transfer requires considerably less propellant than the initial transfer
to reach the NEO. This is mainly due to the fact that the constraints on the arrival
velocity at Earth does not require neither a rendezvous nor that the spacecraft change
the inclination to be on the orbital plane of the Earth, thus reducing considerably the
amount of propellant needed.

The solutions for the cases considering the sizing of the EPS at 1 AU have
been obtained by continuation, starting for the corresponding solution with EPS
sized at the NEO. The final trajectories are almost identical to the cases already
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Fig. 6 Solution H19DN. (a) Earth to asteroid phase. (b) Asteroid to Earth phase

shown. Also the performances obtained in terms of final mass delivered to Earth are
similar. This result was unexpected, as it seem reasonable that the reduced available
maximum thrust should have affected more the trajectories. However, this can be
easily explained, looking at the thrust profile obtained for solutions H18DN shown
in Fig. 7. It is clearly visible that the thrust profile has a typical bang-bang structure,
as it could have been expected maximizing the final mass. The interesting issue is
that all the obtained solutions take advantage of the higher efficiency of the thrust
at lower distance from the Sun, thus minimizing the effect of the maximum thrust
reduction due to the more stringent EPS sizing.
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7 In-depth Comparison and Discussion

The reference solutions for assessing hybrid transfers to NEOs are taken from Marco
Polo reference documentation [11]. In these study a direct injection into an escape
hyperbola has been considered. It is straightforward that the direct injection option
with Soyuz launch involves a much lower mass delivered by the launcher with
respect to the injection in GTO. This amounts roughly about 1650 kg, and depends
on the hyperbolic escape velocity and declination of the escape hyperbola. It has
been considered that even in the case of departure from GTO, for a purely chemical
mission, the escape mass will not be too much different, as the required escape
velocity should be reached in any case. All reference solutions consider chemical
propulsion and a single stage spacecraft.

7.1 Marco Polo Mission: Direct Escape with Soyuz

In Marco Polo reference documentation two solutions are presented, the first covers
a launch in 2018 (baseline), the second in 2019 (back-up). The details are reported
in Table 8. The baseline solution has two Earth swing-by’s and four deep-space
maneuvers (DSM); the back-up solution foresees instead one Earth swing-by and
three DSM. In all cases, the total transfer budget is 1394 m/s, roughly split in
850 m/s for the transfer to the asteroid, and 550 m/s for the Earth return. One of
the most important figures is the maximum available mass at Earth return, whose
value amounts to 929 kg in the baseline solution and 897 kg in the back-up.
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Table 8 Details of Marco
Polo reference solutions (BL:
baseline, BK: backup) [11]

Solution BL BK

Departure epoch Dec 2018 Dec 2019

Earth flyby 1 epoch Dec 2019 Dec 2020

Earth flyby 2 epoch Dec 2020 –

Asteroid encounter Feb 2022 Feb 2022

Asteroid departure Jul 2023 Jul 2023

Earth re-entry Dec 2024 Dec 2024

Total mission duration 6 years 5 years

Hyperbolic escape velocity 3.2 km/s 3.2 km/s

Total �V 1394 m/s 1394 m/s

Earth escape mass 1661 kg 1629 kg

Earth return mass 929 kg 897 kg

7.2 Critical Comparison

A preliminary analysis of the hybrid solutions found and their consequences at
system level can be performed by comparing the results above. On the one side,
hybrid propulsion transfers have some drawbacks with respect to conventional
propulsion: they require longer transfer times and higher power levels (i.e., larger
solar arrays); they also involve an increased complexity of both the system and
operations. However, on the other side, the potential savings in Earth return mass
are dramatic. Moreover, if compared with a purely SEP transfer, a shorter durations
are required, especially during the escape phase, so allowing a reduction of the
cumulated radiation dose.

In Table 9, the most relevant figures of the hybrid propulsion transfers found
(taken from Table 7) and those of the reference Marco Polo mission (taken from
Table 8) are reported. In particular, the focus in on (1) the Earth escape mass (EM),
which is the mass placed in hyperbolic Earth escape orbit, (2) the mass at asteroid
(MA), which is the mass at asteroid arrival, (3) the Earth return mass (ERM), which
is the mass at Earth re-entry, (4) the time to asteroid encounter (TAE), which is the
time for the Earth–asteroid transfer, and (5) the Asteroid–Earth transfer time (AET),
which is the time for the Earth return.

The hybrid solutions are able to place a higher mass in Earth escape orbit. This
is due to the lower values of the impulse required. As for the mass at asteroid
rendezvous, the hybrid solutions outperform the direct escape solutions (BL and
BK). The best performances are obtained in terms of Earth return mass. Here the
hybrid propulsion transfers assure an atmospheric entry mass that is approximately
600 kg higher than the direct escape case. This is an important result.

The same conclusions can be drawn by looking at Fig. 8, which shows the mass
breakdown of the different solutions, where the ERM is summed up to the mass
needed to escape, to reach the asteroid, and to come back to Earth. The reference
mission solutions are characterized by a different launch option (direct escape)
with respect to the hybrid propulsion transfers (GTO). Therefore, to make a fair
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Fig. 8 Solutions mass breakdown (masses in kg)

comparison, it has been assumed that the same escape trajectory and mass can be
obtained considering a pure chemical spacecraft starting from a GTO and thus with
an initial mass of 3070 kg.

7.3 Discussion

Earth–NEO hybrid propulsion transfers from GTO have been computed in this
study. Although these solutions can be re-computed and better refined considering
a more accurate model of both the dynamics and the thruster, some observations
can be done by analyzing the results in Table 9. In general, the hybrid propulsion
transfers outperform the chemical propulsion transfers. The price to pay for higher
transfer efficiency is the increased transfer time. In this case, this is mitigated by
the fact that no Earth flyby are required in the hybrid propulsion transfers. All
hybrid transfers for Marco Polo behave better than the reference solutions in terms
of Earth return mass. Moreover, since lunar gravity assists do not improve the
hybrid solutions, they can be neglected, thus reducing the complexity of the hybrid
approach.

8 Conclusion

In this chapter, the concept of hybrid propulsion transfers for sample return mission
to the NEOs has been presented. These transfers foresee the presence of both high-
thrust chemical propulsion and low-thrust solar electric propulsion on the same
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platform. The hybrid propulsion transfers have been applied to the case of Marco
Polo sample return mission. It has been demonstrated that the hybrid propulsion
transfers are more convenient with respect to the reference conventional propulsion
in terms of Earth return mass. The implications of the hybrid propulsion transfers on
the system design have been briefly discussed, and even if the potential benefits have
been shown, it is hardly possible to clearly state that the hybrid propulsion concept
is better than conventional propulsion. However, the results shown indicate that this
technology can enable considerable benefits for certain kind of mission, such as the
missions to the NEOs.
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Probabilistic Safety Analysis of the Collision
Between a Space Debris and a Satellite
with an Island Particle Algorithm

Christelle Vergé, Jérôme Morio, Pierre Del Moral,
and Juan Carlos Dolado Pérez

Abstract Collision between satellites and space debris seldom happens, but the
loss of a satellite by collision may have catastrophic consequences both for the
satellite mission and for the space environment. To support the decision to trigger
off a collision avoidance manoeuver, an adapted tool is the determination of the
collision probability between debris and satellite. This probability estimation can
be performed with rare event simulation techniques when Monte Carlo techniques
are not enough accurate. In this chapter, we focus on analyzing the influence of
different simulation parameters (such as the drag coefficient) that are set for to
simplify the simulation, on the collision probability estimation. A bad estimation of
these simulation parameters can strongly modify rare event probability estimations.
We design here a new island particle Markov chain Monte Carlo algorithm to
determine the parameters that, in case of bad estimation, tend to increase the
collision probability value. This algorithm also gives an estimate of the collision
probability maximum taking into account the likelihood of the parameters. The
principles of this statistical technique are described throughout this chapter.
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1 Introduction

On February 10th 2009, active commercial satellite Iridium-33 and out of order
Russian satellite Cosmos-2251 collided [6]. The impact produced more than 2000
trackable debris. Most of them may destroy any satellite, whether in use or not,
they might encounter. The safest practice for satellites that encounter space debris
is to avoid collision. Avoidance maneuvers are an efficient mean to reduce the
collision probability between two orbiting objects, nevertheless they consume fuel
reducing the operational lifetime of the satellite and they perturb the operational
mission of the satellite. Consequently, satellite safety responsible teams have to
take into account the operational mission prior to the definition of a collision
avoidance maneuver and try to combine, whenever possible, planned station keeping
maneuvers with collision avoidance maneuvers. Avoidance maneuvers are decided,
among other parameters, based on the estimated collision probability.

The orbital motion of the space objects is simulated using a simplified deter-
ministic dynamical model that may be considered as an input-output function
where the random inputs are, for instance, the position and the speed of the debris
and of the satellite as well as other dynamic parameters, and the output is the
minimum distance between the debris and the satellite. The collision probability
is then estimated on this output. This input-output function can be seen as a
“black-box” with random inputs. Some parameters, denoted by a vector ‚, in
black-box functions are implicitly set, such as parameters of the model (the drag
coefficient for instance) or of the input parametric model density, and their value
influences the collision probability estimation. These hypotheses are often assumed
for simplification and computational reasons. From a risk analysis point of view, it
is interesting to determine the variability of the collision probability with respect
to (w.r.t.) the uncertainty on theses input parameters ‚, and to quantify the impact
of such tuning in the realization of a collision. Of course, different values of ‚
can strongly modify rare event probability estimation and sometimes miss a risk
situation. The issue of concern in safety would be to underestimate a risk because
of a bad tuning of model parameters ‚. That is why in this paper we propose to
estimate the law of the parameters‚ conditionally on a collision between the debris
and the satellite. We develop in this chapter the SMC2 (Sequential Monte Carlo
Square) algorithm to estimate this kind of targeted laws introduced [5] to do filtering
on hidden Markov models. We apply this island particle algorithm to debris satellite
collision use case and analyse its results for the system safety.

2 Debris Satellite Collision Simulation

We consider two space objects (a debris and a satellite) orbiting around an Earth
centered inertial reference frame. Their geometry is assumed spherical (i.e. the
objects have a high tumbling motion when compared with their orbital period) and
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we assume that we perfectly know the radius of such sphere and the mass of the
objects. We wonder about the relative position of the two satellites and ask whether
the distance between the two objects could be smaller than a conflict distance T
during the given time span I. To model the orbital motion of both space objects, we
consider a general perturbation approach where the original equations of motion are
replaced with an analytical approximation that captures the essential character of the
motion over some limited time interval, which also enables analytical integration of
the equations. SGP4 model [9] is used to propagate the trajectories of debris and
satellite according to the time. At time t, the space objects will be represented by
their 6-dimensional state vectors s1.t/ and s2.t/, i.e. their 3-dimensional position
vectors r1.t/ and r2.t/ and their 3-dimensional speed vectors v1.t/ and v2.t/ such
that si D .ri; vi/. The initial conditions in the proposed example are defined in
terms of two line elements (TLE), similar to those provided by NORAD (North
American Aerospace Defense Command), as the SGP4 model is used for the orbital
propagation of the considered objects. The initial condition value is denoted sm

i at a
given time tm

i . SGP4 enables us to propagate the orbit of both space objects through
time, denoted by a scalar continuous function � such that

8i 2 f1; 2g;8t 2 I; si.t/ D �.sm
i ; t

m
i ; t/;

ı D min
t2I
fkr2 � r1k.t/g:

The function of time t 2 I 7! kr2 � r1k.t/ makes ı available through numerical
optimisation in a deterministic approach. In fact, the position and velocity of
space objects are estimated from more or less imprecise measurements. While the
measurement means used for satellites (e.g. GPS, laser) result in a reasonable orbital
accuracy (e.g. several tens of meters) the measurement means used for debris and
uncooperative space-objects (e.g. mainly radar and telescopes) could result in quite
imprecise orbits (e.g. several hundred of meters or few kilometers). This lack of
accuracy will depend on a great number of factors. TLEs sum up this information
and feed the models with the couple .sm

i ; t
m
i / for i D 1; 2, but to cope with their

uncertainty, we have added independent and identically distributed Gaussian noises
to the model inputs sm

i .
Debris satellite conflict may be modelled as an input-output function where:

• the input X represents the position and the speed of the debris space (the position
and the speed of the satellite are assumed to be known). X is a 6-dimensional mul-
tivariate normal random vector of mean .‚1;‚2;‚3;‚4;‚5;‚6/

t and covari-
ance matrix is equal to the identity matrix defined on a measurable space .X;X /.
The means corresponds to the debris measurement errors on its position and
speed;

• the input-output function � enables to propagate the debris and satellite
trajectories with the SGP4 model during I. The input-output code includes
the transformation that allows to switch from the standard space of the input to
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the physical space in which evolve the satellite and debris position and speed.
The function � is a continuous positive scalar function � W R6 ! R and is static;

• the error on the drag coefficient which is considered inside the function � is also
random and follows a normal distribution with mean ‚7 and variance 1;

• the output Y is the minimum distance between the debris and the satellite during
I. We assume that it is a positive random variable.

The complete set of model parameters is summed up in the vector ‚ D
.‚1;‚2;‚3;‚4;‚5;‚6;‚7/

t. The quantity of interest on the output Y is the
probability

P.Y < T/ D P.�.X/ < T/ :

When the event f�.X/ < Tg is rare relatively to the available simulation budget
(which is often the case in safety and reliability issues), different algorithms
described in [1–4, 14, 15, 18] have notably been proposed to estimate accurately
its probability.

3 Basics of Safety Analysis

In the present chapter, one focuses on the case where the law of X is uncertain and
depends upon unknown parameters. We assume that X is distributed according to
a well known parametric model and its parameters, denoted by a random vector
‚, have a probability density �. We also suppose that ‚ has a density f‚ w.r.t. a
dominating measure of reference �, that is

�.d�/ D f‚.�/ �.d�/ :

In the application considered here, X is a random vector with a multivariate normal
distribution, and ‚ describe the mean of X. It corresponds notably to realistic
applications where it is not always possible to evaluate accurately the density of
input parameters. This formalism enables thus to consider a large range of input
probability density function.

The probability of interest P.Y < T/ depends of course on ‚ and thus on the
distribution �. In safety applications, it is important to estimate a superior bound of
the rare event probability P.Y < T/ taking also into account the prior on ‚. The
prior on ‚ is important since unrealistic bad tuning values of ‚ which lead to high
probabilities P.Y < T/ are not relevant. The idea of this chapter is thus to determine
the distribution of ‚ conditionally on the fact that Y does not exceed the threshold
T . This distribution, denoted by  , will be referred to in the sequel as the target law.

In the further development, when there is no confusion, we sometimes write
P.Y < Tj�/ instead of P.Y < Tj‚ D �/.
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Note that using the Bayes’ formula, the target law can be written

.d�/ D 1

P.Y < T/
P.Y < Tj�/�.d�/ : (1)

We propose in this paper a SMC (Sequential Monte Carlo) algorithm which evolves
according to iterative selection and mutation steps, and which approximates 
when the number of particles gets large. This algorithm requires the estimation
of P.�.X/ < Tj‚ D �/ for different settings of parameter � . For that purpose,
we describe the splitting algorithm that enables us to estimate this probability with
accuracy.

4 The SMC2 Algorithm

4.1 Principle

The SMC2 algorithm is based on the use of two sets of particles to iteratively
approach  . The first set of particles is defined on the parameter ‚ and the second
set of particles is useful to estimate the probabilities P.Y < Tj�/. The complete
demonstration of interacting particles systems (IPS) convergence and the link with
Feynman-Kac framework is given in [10].

Define T1;T2; : : : ;Tn D T a series of decreasing thresholds and denote for all
i 2 �0; n�

i D 1

P.Y < Ti/
P.Y < Tij�/�.d�/ :

The target law is of course  D n. The probability law n is thus proportional to

n / P.Y < Tnj�/ �.d�/

n / Hn.�/ �.d�/ ;

where Hn.�/ D P.Y < Tnj�/. The term Hn.�/ can be expressed as a product of
conditional probabilities

Hn.�/ D
2

4
n�1Y

pD1
P.Y < TpC1jY < Tp; �/

3

5 � P.Y < T1j�/ D
n�1Y

pD0
hp.�/ ; (2)
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with

�
hp.�/ D P.Y < TpC1jY < Tp; �/

h0.�/ D P.Y < T1j�/ :

In this notation, we have

n /
n�1Y

pD0
hp.�/ �.d�/ : (3)

One can also remark that Hp D Hp�1 � hp�1 and consequently the link between
pC1 and p can be written on the following way

pC1 D  hp.p/; (4)

where  hp is the so-called Boltzmann-Gibbs transformation. Let P.E/ be the set
of probability measures on E. For all positive bounded function G, the Boltzmann-
Gibbs transformation ‰G W P.E/ ! P.E/ is defined for all � 2 P.E/ such that
�.G/ D R G.x/ �.dx/ > 0 by

‰G.�/.dx/ WD 1

�.G/
G.x/ �.dx/:

If one assumes that it is possible to determine a Markovian kernel Mp that let p

invariant (which is not restrictive using, for example, a stage of the acceptance/re-
jection of Metropolis-Hastings algorithm) we have

p D .pMp/.d�/ D
Z

p.d�
0/Mp.�

0; d�/: (5)

This yields the evolution equation

pC1 D  hp.p/MpC1 : (6)

Equation 6 may be cast in the Feynman-Kac framework and then, each measure p

can be approximated by an IPS which evolves with selection steps related to the so
called potential functions hp and mutation steps related to the Markov kernel Mp.
Denote by f.�1p ; : : : ; �N1

p /gn�0 a system of N1 particles.
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The selection stage consists in sampling f O� i
pgN1iD1 independently according to the

probability measure  hp , i.e. selecting the particles f� i
pgN1iD1 with probabilities

proportional to their weights fhp.�
i
p/gN1iD1. The mutation stage consists in updating

the selected particles conditionally independently using the Markov kernel MpC1
that let pC1 invariant. This step enables to increase the diversity of O�p without
changing its probability law, that is already close to pC1. The Feynman-Kac theory
[10] ensures that at each transition stage p :

1

N1

N1X

iD1
ı� i

p
������!
N1!C1 p :

Thus, at the end of the nth transition stage, the system of particles converges to the
target law n so that

1

N1

N1X

iD1
ı� i

n
������!
N1!C1 n :

Nevertheless, the knowledge of hp is required to apply the different selection/muta-
tion stages. In practice, hp.�

i
p/ is not analytically computable but can be estimated

by defining a new set of particles f� i;j
p gN2jD1 on the random variable X conditionally to

the different thresholds Tp and associated to each � i
p.

4.2 Description

Consider f� i
0gN1iD1 generated with probability law �. At iteration k of the algorithm,

with k � 1, we assume that particles f� i
kgN1iD1 are available and then, the interacting

island algorithm consists in two iterative type stages:

• Selection stage The selection stage consists in choosing randomly and inde-
pendently N1 particles amongst f� i

kgN1iD1 with probabilities proportional to their
weights fhk.�

i
k/gN1iD1. Thus, the particles with low weights are killed whereas those
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with high weights are multiplied. The number of particles is kept constant in this
stage and a new set particles f O� i

kgN1iD1 can be defined.
Remind that the potential functions hk are defined by:

�
hk.�

i
k/ D P.Y < TkC1jY < Tk; � D � i

k/; k � 1
h0.� i

0/ D P.X < T1j� D � i
0/

These quantities have to be computed.
• Mutation stage Even if the number of particles is still equal to N1, some particles

have been duplicated, so we apply a Markov kernel to increase the diversity of
the particles. Building a kC1-reversible transition kernel that let kC1 invariant
is the objective of mutation stage. For that purpose, the acceptance/rejection
step of the Metropolis-Hastings algorithm [17] is useful. This approach results

in the exploration of ‚ space set without changing the
 O� i

k

�

1�i�N1
distribution

and the increase of the particle diversity. A new particle � i0
k is proposed with a

�-reversible kernel Q. The acceptation rate of a new proposal is consequently

1^ HkC1. O� i0
k /

HkC1. O� i
k/

. If HkC1. O� i0
k / > HkC1. O� i

k/, the proposal O� i0
k is automatically accepted

and replaces O� i
k in the set of current particles. Otherwise, the proposal O� i0

k

is accepted with probability HkC1. O� i0
k /

HkC1. O� i
k/

. This acceptance/rejection procedure is

repeated Napp times to decrease the correlation between the particles. At the end
of this stage, a new set of particles f� i

kC1gN11Di can be defined.

Mutation and selection stage are applied n times until reaching the target
threshold Tn. At the end of the algorithm, the particles f� i

ngN11Di provides an estimate
of n :

ON1
n D

1

N1

N1X

iD1
ı� i

n
:

For i 2 Œ1;N1� and k 2 Œ0; n�, the point is to estimate each probability fhl.�
i
k/g1�l�k.

It can be done with another interacting particle system (also called, in that
case, sequential Monte Carlo, importance splitting, subset simulation or subset
sampling). It is a rare event estimation technique which considers the estimation
of several conditional probabilities that are easier to evaluate than estimate only one
probability through a very tough simulation. Its principle is also based on selection
and mutation stages. Let us define f� i;j

0 gN2jD1 with probability density fXj� i
j

w.r.t. �X ,

i.e. the density of X knowing ‚ D � i
k. At iteration l of the algorithm, we assume

that particles f� i;j
l gN2jD1 are available and then IPS consists in two iterative stages:
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• Selection stage The selection stage consists in choosing randomly and inde-
pendently N2 particles amongst the particles f� i;j

l gN2jD1 which are above Tl. The
particles which have not reached the threshold Tl are thus killed. The number of
particles is kept constant, and a new set of particles f O� i;j

l gN2jD1 can be defined.
• Mutation stage The mutation stage is patterned with acceptance/rejection

principle using the Metropolis-Hastings algorithm [17]. A new particle O� i;j0
l is

then proposed with a Markov kernel QQ. If �. O� i;j0
l / < Tl, then the proposal is

accepted with probability 1 ^ f
Xj� i

l
.O� i;j0

l / QQ.O� i;j0
l ;O� i;j

l /

f
Xj� i

l
.O� i;j

l /
QQ.O� i;j

l ;
O� i;j0
l /

and O� i;j0
l replaces O� i;j

l in the set

of current particles. If �. O� i;j0
l / > Tl, the proposal is automatically rejected and

the particle O� i;j
l is remained. This acceptance/rejection procedure is repeated

Napp2 times to decrease the correlation between the particles. At the end of this
stage, a new set of particles f� i;j

lC1gN2jD1 can be defined. An estimate Ohl.�
i
k/ of

hl.�
i
k/ D P.Y < TlC1jY < Tl; ‚ D � i

k/ is given by the ratio between the number
of f� i;j

l gN2jD1 particles such that �.� i;j
l / < TlC1 and the total number of particles N2.

Mutation and selection stages are applied k times until reaching the target thresh-
old Tk. At the end of the algorithm, HkC1.� i

k/ D P.Y < TkC1j� i
k/ is estimated by

OHkC1.� i
k/ D

kY

lD0
Ohl:

For a given particle � i
k, a complete set of particles f� i;j

l g1�l�k
1�j�N2

is thus generated.

An island particle is thus constituted of a particle � i
k and its associated f� i;j

l g1�j�N2
1�l�k

particle set.
The SMC2 algorithm is described more precisely in Algorithm 2. Interacting

particle system for probability estimation required in Algorithm 2 is developed in
Algorithm 3.

The determination of Q and QQ, in the general case, implies the use of Metropolis-
Hastings algorithm. Nevertheless, if � is a standard normal distribution, a transition
from x to z defined with the following expression

x 7! z D p1 � a xCpa W; (7)

where W  N .0; 1/ and a is scalar parameter such as a 2 Œ0; 1�, is �-reversible.
In order to use Eq. (7) instead of Metropolis-Hastings algorithm, it is also possible
to apply a transformation on the variables X or ‚ so that they follow a standard
normal PDF. Depending on the available information on the PDF of X, several
transformations can be proposed [7, 8, 11–13].
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Algorithm 2 The SMC2 algorithm
1: Setting definition:
2: Define the thresholds T1; : : : ;Tn, the sample sizes N1, N2 and the number of applications Napp

of Markov kernel Q.
3: Initialization:
4: Sample

�
� i
0

�
1�i�N1

with probability law �.
5: for i from 1 to N1 do

6: Sample

�

i;j
0

�

1�j�N2
according to the probability density fXj� i

0
.

7: end for
8: Transition:
9: for k from 0 to n do

10: Associate a system of particles

�

i;j
l

�1�j�N2

1�l�k
to each � i

k in order to estimate hk

�
� i

k

�
and

HkC1

�
� i

k

�
with Algorithm 3.

11: Selection of the � -particles:

12: Sample Ik D �
Ii
k

�
1�i�N1

multinomially with probability proportional to fhk

�
� i

k

�gN1
iD1.

13: Set O� i
k D �

Ii
k

k .
14: Mutation of the � -particles:
15: for m from 1 to Napp do
16: for i from 1 to N1 do
17: Sample O� i0

k with a � reversible kernel Q.
18: Sample u with a uniform random variable.

19: if


u < 1^ HkC1. O�
i0
k /

HkC1. O�
i
k/

�
then set � i

kC1 D O� i0
k .

20: else set � i
kC1 D O� i

k.
21: end if
22: end for
23: if m < Napp then set O� i

k D � i
kC1.

24: end if
25: end for
26: end for
27: Estimation:
28: Estimate n with ON1

n D 1
N1

PN1
iD1 ı� i

n

5 Estimation of Collision Probability Between
Orbiting Objects

The SMC2 algorithm has been applied on the debris satellite collision test case
in order to estimate  , the conditional law of ‚ given �.X/ < T , with the
following parameters: N1 D 1000, N2 D 50, Napp D 1, Napp2 D 1. The
intermediate thresholds Ti on the output distance are expressed in meters with
f200; 100; 66; 50; 40; 33; 28; 25; 22; 20g. The estimators of the different marginals
of  , obtained with the SMC2 algorithm, are given in Fig. 1, where the first marginal
is related to the first parameter and so on.

The estimated probabilities bP.Y < Tj‚ D �/, when ‚ follows � and  are
represented in Fig. 2. The mean probabilitybP.Y < Tj‚ D �/ when ‚ follows � is
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Algorithm 3 Interacting particle system for probability estimation

1: For a given value � i
k, we build an IPS which allows to estimate both hk

�
� i

k

� D
P
�
Y < TkC1jY < Tk; ‚ D � i

k

�
and HkC1 D Qk

pD0 hp

�
� i

k

�
.

2: Setting definition:

3: Define the number of applications Napp2 of Markov kernel QQ and recall the iteration parameter
k and the particle value � i

k, the thresholds T1; : : : ;TkC1 and the sample size N2, that have been
defined or obtained in Algorithm 2.

4: Initialisation:

5: Sample

�

i;j
0

�

1�j�N2
following probability density fXj� i

k
.

6: Transition:
7: for l from 0 to k � 1 do
8: Selection of the � particles:
9: for j from 1 to N2 do

10: if �

�

i;j
l

�
� TlC1 then set O� i;j

l D �
i;j
l .

11: else Sample O� i;j
l randomly and uniformly among particles which are below the

threshold TlC1.
12: end if
13: end for
14: Mutation of the � particles:
15: for r from 1 to Napp2 do
16: for j from 1 to N2 do

17: Sample O� i;j0
l according to QQ

O� i;j
l ; :

�
.

18: if �
O� i;j0

l

�
> TlC1 then set � i;j

lC1 D O� i;j
l .

19: else Sample u with a uniform random variable.

20: if

 

u < 1^ f
j� i

k
.O�

i;j0
l / QQ.O�

i;j0
l ;O�

i;j
l /

f
j� i

k
.O�

i;j
l / QQ.O�

i;j
l ;

O�
i;j0
l /

!

then set � i;j
lC1 D �

i;j0
l

21: else set � i;j
lC1 D O� i;j

l
22: end if
23: end if
24: end for
25: if r < Napp2 then set O� i;j

l D �
i;j
lC1.

26: end if
27: end for
28: Set Ohl

�
� i

k

� D 1
N2

PN2
jD11�


�

i;j
l

�
�TlC1

29: end for
30: Set Ohk

�
� i

k

� D 1
N2

PN2
jD11�


�

i;j
k

�
�TkC1

31: Estimation:
32: Estimate hk

�
� i

k

�
with Ohk

�
� i

k

�
and HkC1

�
� i

k

�
with

Qk
lD0

Ohl

�
� i

k

�
.

estimated to 3:9 � 10�4. When � D PN�
iD1 � i

m=N� , the probability bP.Y < 20j‚ D
PN�

iD1 � i
m=N� / is equal to 0:034.

The question is how to analyze the estimated density of  for the tuning of
‚. A possible approach is to consider the Kullback-Leibler distance between the
estimated marginal density of  for the parameter‚i and the initial marginal density
of � for parameter‚i. If the Kullback-Leibler distance is significant for‚i, then one
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Fig. 1 Estimations of the marginals of  using the SMC2 algorithm. The red curve corresponds
to the standard normal density that is the initial marginal of the different parameters

can assume that ‚i has to be finely tuned and conversely. In that case, a misestima-
tion of ‚i will indeed tend to increase the failure probability. Table 1 summaries
the different Kullback-Leibler distances obtained for the different components of
‚. The first error component‚1 of the position vector seems to be the most influent
parameter on P.�.X/ < T/. On the contrary, the second error component of position
and speed vector, that are ‚2 and ‚5 require a lower accuracy since the considered
values for these parameters lead the maximum of the collision probability; an error
on these parameters will thus tend to decrease the failure probability. In the same
way, the density parameter‚7 of the drag coefficient does not require also a too fine
tuning in the proposed example.

It may be also interesting in practice to transform the six first components of
‚ into usual orbital parameters (the semi-major axis a, eccentricity e, inclination
i, argument of perigee !, longitude of the ascending node �, the mean anomaly
m) and then to evaluate  in that case. The estimation of the marginals of  for
the different orbital parameters is proposed in Fig. 3. The corresponding Kullback-
Leibler analysis is given in Table 2. The mean anomaly is on this use case the orbital
parameter that has to be most finely tuned. There is indeed a higher chance that the
collision probability increases if the mean anomaly is not correctly set.
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Fig. 2 Estimates of P.Y < Tj�/ with ‚ following � and 

Table 1 Kullback-Leibler distance between marginal density  and �
for parameters ‚i

Component of ‚ Kullback-Leibler distance with the marginal of 

‚1 0.46

‚2 0.13

‚3 0.30

‚4 0.24

‚5 0.11

‚6 0.25

‚7 0.10

6 Conclusion

In this chapter, we have proposed an original methodology to analyze the influence
of parameter model that are set for the sake of simplicity, on a rare failure
probability. The proposed SMC2 algorithm has been described in the case of a
general problem where the model is a black-box system with random inputs.



456 C. Vergé et al.

7255 7256 7257 7258 7259 7260 7261

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Histogram of a|φ(X)<T

0.0151 0.0152 0.0152 0.0153 0.0153 0.0154 0.0154

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Histogram of e|φ(X)<T

1.7178 1.7178 1.7179 1.7179 1.7179 1.7179 1.7179

0

5

10

15
x 10

4 Histogram of i|φ(X)<T

0.207 0.207 0.2071 0.2072 0.2072 0.2072 0.2073

0

0.5

1

1.5

2

2.5
x 10

4 Histogram of ω|φ(X)<T

5.16 5.165 5.17 5.175 5.18 5.185 5.19 5.195

0

20

40

60

80

100

120

140

160

180
Histogram of Ω|φ(X)<T

1.06 1.065 1.07 1.075 1.08 1.085 1.09 1.095

0

20

40

60

80

100

120

140

160

180
Histogram of m|φ(X)<T

Fig. 3 Estimations of the marginals of  using the SMC2 algorithm on the orbital parameters. The
red curve corresponds to the initial density of the orbital parameters

Table 2 Kullback-Leibler distance between marginal density  and � for
the orbital parameters

Orbital parameters Kullback-Leibler distance with the marginal of 

a 0.24

e 0.20

i 0.16

! 0.23

� 0.15

m 0.34

This algorithm has been applied with success for the analysis of collision probability
between space debris and satellite. The set model parameters influence strongly the
value of the collision probability and their value has to be carefully investigated to
avoid collision probability underestimation.

The complete interpretation of target law  remains complicated and has to be
continued. The analysis of the particles obtained by the SMC2 algorithm with Sobol
indices [16] is a potential perspective to this work.
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Flatness-Based Low-Thrust Trajectory
Optimization for Spacecraft Proximity
Operations

Le-ping Yang, Wei-wei Cai, and Yan-wei Zhu

Abstract This chapter presents a novel computational framework integrating the
differential flatness theory and the analytic homotopic technique for the low-
thrust trajectory optimization for spacecraft proximity operations. Based on the
flatness property of relative motion equations, the trajectory optimization problem is
transformed into the flat output space with all the differential constraints eliminated
and the number of decision variables reduced. Then the mapped Chebyshev
pseudospectral method is applied to parameterizing the profiles of flat outputs,
whose high-order derivatives are enhanced by improving the differential matrix’s
ill- conditioning. Furthermore, the analytic homotopic technique is introduced to
improve the applicability to non-smooth trajectory optimization problems. Numer-
ical simulation results show that the proposed framework scheme is feasible and
effective for spacecraft proximity maneuvers.

Keywords Differential flatness • Homotopic technique • Mapped pseudospectral
method • On-orbit operation • Non-smooth trajectory

1 Introduction

Spacecraft proximity operations are becoming increasingly important because they
enable critical capabilities such as autonomous on-orbit assembly and inspection,
servicing of disabled spacecraft, or debris deorbiting. Of particular interest in
this field is the optimization of proximity maneuvering trajectories facilitated by
miniaturized and high-efficiency propulsion technologies. The low-thrust trajectory
optimization for proximity relative motion could be formulated as a constrained
nonlinear optimal control problem, which is usually computationally intractable due
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to the differential dynamic equations and the large dimensionality of state space. In
this chapter, we would propose a differential flatness-based hybrid computational
framework to facilitate the optimization process.

Due to the flatness property of the proximity relative motion model, the system
states and inputs could be formulated as functions of flat outputs and their deriva-
tives. Thus the original trajectory optimization problem could be transformed to
optimizing the flat output profiles with the elimination of differential constraints and
reduction of design variables [1, 2]. After obtaining the flat output solutions, they
are mapped back into the original domain, generating the nominal trajectory and
the corresponding inputs. For the flat output optimization problem, it is ultimately
converted into a nonlinear programming (NLP) problem by parameterizing the
flat outputs with Chebyshev pseudospectral method (CPM), where the high-order
derivatives of flat outputs could be easily computed via the pseudospectral dif-
ferentiation matrices. However, the ill-conditioning of the standard pseudospectral
differentiation matrices would evidently influence the numerical accuracy of the
high-order derivatives. Thus the conformal map and barycentric rational interpo-
lation techniques are utilized to improve the ill-conditioning of pseudospectral
differentiation matrices.

Note that the aforementioned approach is quite efficient and accurate for smooth
trajectories, but its application to bang-bang type optimal control problems, such
as time-optimal low-thrust proximity maneuvering, would induce some numerical
difficulties. Specifically, due to the discontinuities in the derivatives of flat outputs,
the obtained solutions would exhibit the well-known Gibbs phenomenon which
is resulted from approximating a non-smooth function with a finite number of
smooth functions [3]. Though adding more discretization nodes for mesh refinement
may be working, it would result in inefficiencies. In this chapter, the non-smooth
difficulty is eliminated by using the analytic homotopic approach. For example,
given the time-optimal low-thrust trajectory planning problem, the related but
smoother energy-optimal trajectory planning problem is firstly introduced and
solved utilizing the aforementioned numerical approach. Based on the obtained
energy-optimal trajectory, the analytic homotopic approach constructs an auxiliary
optimal control problem whose costates are simply zero, avoiding the difficulties
of initial costates estimation in the traditional homotopic approach. Clearly, the
proposed hybrid framework successfully addresses the issues of pseudospectral
method and homotopic approach when they are applied separately. In the end,
numerical simulations are presented to validate the performance of the hybrid
computational framework.

2 Relative Translational Dynamic Equations

The mathematical model for the relative motion between two spacecraft, i.e. the
leader SatA and the follower SatB, is briefly developed in this section. Note that
only two spacecraft are considered here, since a multi-spacecraft scenario can be
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similarly analyzed and addressed. For the purposes of our formulation, we shall
assume that the follower is forced while the leader is not. In addition, all the non-
Keplerian acceleration (for example, caused by J2 or atmospheric drag) is neglected
here.

The relative motion is described in the rotating Hill orbit frame OH-xyz whose
origin is chosen to be at the mass center of SatA as shown in Fig. 1. The Cartesian
coordinates of x, y and z are aligned with the directions of the orbit radial (outward),
orbital velocity vector and normal vector with respect to the orbital plane. Moreover,
to describe the inertial motions of both satellites, the ECI frame OE-XYZ is defined
with its origin located at the center of the Earth, the X and Z axis aligned with the
equinox and the Earth’s self-spin axis, while the Y axis completes the right-hand
triad.

The inertial equations of motion of both spacecraft (assuming the Earth is
spherical) are respectively given by

d2rA

dt2
D ��rA

r3A
(1)

d2rA

dt2
D ��rB

r3B
C fB (2)

where rA and rB denote the leader and follower positions relative to the center of the
Earth; d( )/dt represents the time derivative in frame OE-XYZ; fB is the acceleration
caused by the thrusters and � D 3:986 � 1014 m3/s2 is the gravitational constant of
Earth.

Let ¡ D rB � rA denote the position vector of SatB relative to SatA. Subtracting
Eq. (1) from Eq. (2) yields
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d2¡
dt2
D d2rB

dt2
� d2rA

dt2
D �


�

r3B
rB � �

r3A
rA

�
C fB

D �

r3A

�

rA �


rA
rB

�3
rB

�

C fB

(3)

In order to express the relative motion in frame OH-xyz, we recall that

d2¡

dt2
D ı2¡

ıt2
C ı¨A

ıt
� ¡C 2¨A � ı¡

ıt
C¨A � .¨A � ¡/ (4)

where¨A is the angular vector of frame OH-xyz relative to frame OE-XYZ, and ı( )/ıt
represents the time derivative in frame OH-xyz.

Let a, e, n, � denote the semi-major axis, eccentricity, mean angular velocity and
true anomaly of SatA, then we can obtain the following auxiliary relations:

n D
r
�

a3
; rA D

a
�
1 � e2

�

1C e cos �
;
:

� D n .1C e cos �/

.1 � e2/3=2
; R� D �2n2e sin �.1C e cos �/3

.1 � e2/3

(5)

As ¨A is normal to the orbital plane, we may write

¨A D
h
0 0

:

�

iT
; ı¨A=ıt D

�
0 0 R� �T

(6)

Also, let

¡ D � xH yH zH

�T
; ı¡=ıt D � :xH

:
yH

:
zH

�T
; rA D

�
rA 0 0

�T
(7)

Substituting Eqs. (3), (6) and (7) into Eq. (4) yields the following component-
wise equations for relative motion:

8
<̂

:̂

RxH D
:

�
2

xH C R�yH C 2
:

�
:
yH C �=r2A � � .rA C xH/ =r3B C fBx

RyH D � R�xH C
:

�
2

yH � 2
:

�
:
xH � �yH=r3B C fBy

RzH D ��zH=r3B C fBz

(8)

where rB D
q
.rA C xH/

2 C y2H C z2H.

Assuming that the relative distance is much less than the orbital radius of SatA,
a more compact form can be obtained by applying the first-order linearization
technique [4]

8
<̂

:̂

RxH � 2
:

�
:
yH �

:

�
2

xH � R�yH � 2�xH=r3B D fBx

RyH C 2
:

�
:
xH �

:

�
2

yH C R�xH C �yH=r3B D fBy

RzH C �zH=r3B D fBz

(9)
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where �=r3B D n2.1C e cos �/3=
�
1 � e2

�3
.

Considering the capability of the low-thrust actuators on SatB, the acceleration
fB may be written as

fB D Amaxu (10)

where Amax denotes the magnitude of the maximum acceleration.
When the leader is moving along a circular orbit, i.e. the eccentricity e D 0, the

time derivatives of the true anomaly are

:

� D n; R� D 0 (11)

Substituting Eqs. (10) and (11) into Eq. (9) yields

8
<

:

RxH � 2n
:
yH � 3n2xH D Amaxux

RyH C 2n
:
xH D Amaxuy

RzH C n2zH D Amaxuz

(12)

The linearized equations of motion are called the Clohessy-Wiltshire (C-W)
equations or the Hill equations. Note that the in-plane relative motion and the out-of-
plane motion are obviously decoupled. Thus when given a proximity relative motion
planning problem, we could address the in-plane and out-of-plane trajectories
separately.

3 Problem Formulation

3.1 Formulation in State Space

For a typical on-orbit proximity operations mission, the system needs to observe
some constraints for safety or actuator’s capability considerations. Among the
various kinds of constraints, the aforementioned dynamic model is a typical kind
which ensures the physical feasibility of the maneuver trajectory. Moreover, the
limitations on allowable control inputs contribute another important kind:

umin � u � umax (13)

The performance criteria denote the designer’s requirement for the proximity
operations. Without loss of generality, the performance criterion could be written in
Bolza form as

J D ˆ �x .t0/ ; x
�
tf
�
; t0; tf

�C
Z tf

t0

ƒ Œx.t/;u.t/; t� dt (14)
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where ˆ.�/ denotes the Mayer cost and ƒ.�/ the Lagrangian cost. Note that x 2 R
n

here is defined as
�
xH; yH;

:
xH;

:
yH

�T
for the in-plane motion and

�
zH;

:
zH
�T

for the
out-of-plane motion. The symbol u 2 R

m .m � n/ can be set similarly.
Till now, we can formulate the low-thrust trajectory optimization problem as the

following optimal control problem.

Problem A Find the state-control profile fx.t/;u.t/g ; t 2 �t0; tf
�
, possibly also the

endpoint time tf , that minimize the performance criterion in Eq. (14), and subject to
the constraints on controls in Eq. (13), the system equations

:
x.t/ D g .x.t/;u.t/; t/ (15)

and the boundary conditions:

x .t0/ D x0; x
�
tf
� D xf (16)

where g .�/ denotes the aforementioned governing equations.

For the proximity relative motion problem, considering the agile orbital maneu-
ver capability required by many space missions, the minimum maneuver time in
Eq. (17) is an important performance criterion. On the other hand, the minimum
control effort in Eq. (18) constitutes another important index since it indicates the
engineering feasibility of space missions, especially for those realized by propellant-
based actuators.

J1 D tf (17)

J2 D
Z tf

t0

mX

iD1
u2i dt (18)

3.2 Reformulation in Flat Output Space

Differential flatness reveals a structural property of general nonlinear systems,
denoting that all states and inputs can be expressed in terms of a set of differentially
independent variables and their time derivatives. More precisely, consider the
nonlinear system in Eq. (15). It is differentially flat if and only if there is a vector
− 2 R

m with differentially independent components, so-called flat outputs, such that
the state and control input vectors could be reformulated as

�
x D x

�
−;

:
−; � � � ;−.˜�1/�

u D u
�
−;

:
−; � � � ;−.˜/� (19)
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where x, u are smooth function; −(k)
i denotes the kth order time derivative of the

ith component of the vector −; and ˜ D Œ�1 : : : �m�
T the relative degree of −

�i D min
n

k 2 N�; 9j 2 f1; : : : ;mgj @&.k/i =@uj ¤ 0
o
; .i D 1; : : : ;m/ (20)

For the proximity relative motion problem studied here, the aforementioned
dynamic model is obviously flat. For example, the equations for the in-plane motion
could be rewritten as:

8
<

:

:
x1 D x3;

:
x2 D x4

:
x3 D 3n2x1 C 2nx4 C Amaxu1
:
x4 D �2nx3 C Amaxu2

(21)

where x D Œx1; x2; x3; x4�T D
�
xH; yH;

:
xH;

:
yH

�T
, u D Œu1; u2�T D

�
ux; uy

�T
.

Let − D Œ&1; &2�
T D Œx1; x2�

T be the candidate flat output vector, the in-plane
motion states and control inputs can be written as

8
ˆ̂
<

ˆ̂
:

x1 D &1; x2 D &2
x3 D :

&1; x4 D :
&2

u1 D
� R&1 � 3n2&1 � 2n

:
&2
�
=Amax

u2 D
� R&2 C 2n

:
&1
�
=Amax

(22)

Substituting the reformulated systems states and inputs into the aforementioned
constraints and performance criteria, the original low-thrust trajectory optimization
problem for proximity relative motion is transformed into the flat output space and
formulated in the framework of optimal control problem.

Problem B Determine the composite variable Q−.t/ D �
−.t/;

:
−.t/; R−.t/�T

; t 2�
t0; tf

�
, and possibly the endpoint time tf , that minimize the performance criterion

J
� Q−; t0; tf

� D ˆ � Q− .t0/ ; Q−
�
tf
�
; t0; tf

�C
Z tf

t0

ƒ Œ Q−.t/� dt (23)

and subject to the boundary constraints

E
� Q− .t0/ ; Q−

�
tf
�
; t0; tf

� D 0 (24)

and path constraints on control inputs

umin � u
� Q−.t/; t0; tf

� � umax; t 2 �t0; tf
�

(25)

Since the flat output represents a minimal description of the system’s behavior,
the number of design variables for the relative motion trajectory optimization
problem has been greatly reduced after converting into the flat space. Moreover, the
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flatness transformation has entirely eliminated the original differential constraints,
generating an integration-free geometric programming problem, which is computa-
tionally tractable and quickly solvable. Although the feasible region in the flat output
space is usually non-convex, which may affect the search for the global optimal
solution, the side effects could be improved by approximating the feasible region
with polytopes or superquadric surfaces [5, 6].

4 Flat Output Optimization

A general and efficient way to find the optimal flat outputs is to parameterize
them and then transform Problem B into a nonlinear programming problem.
Traditionally, this transformation is enabled by approximating the flat outputs with
piecewise-continuous functions such as Bézier polynomials and B-splines [1, 7].
However, these schemes are proven neither most accurate nor most efficient [8]. In
this section, we propose to parameterize the flat outputs by Mapped Chebyshev
Pseudospectral Method (MCPM). Actually, some pseudospectral methods have
been applied to optimizing the trajectories for flat systems in some earlier researches
[9–11]. However, the advantages of MCPM mainly include that the approximation
accuracy for the higher-order derivatives of flat outputs has been greatly enhanced
by introducing the conformal map and barycentric rational interpolation techniques.

4.1 Mapped Chebyshev Pseudospectral Method

Since the mapped Chebyshev-Gauss-Lobatto (MCGL) nodes lie in the computa-
tional interval Œ�1; 1�, the affine transformation in Eq. (26) is used to scale the time
domain [t0, tf ]:


 D �2t � �tf C t0
��
=
�
tf � t0

�
; t 2 �t0; tf

�
(26)

Using the famous conformal map proposed by Kosloff and Tal-Eaer [12], the
MCGL nodes are defined as

�k D g .
k; ˛/ D asin .˛
k/

asin˛
; .k D 0; : : : ;N/ (27)

where 0 � ˛ < 1 is the map parameter that determines the degree to which the
nodes are shifted toward equidistant spacing, and 
 k the standard CGL nodes whose
closed form are given by


k D cos .k=N/ ; k D 0; : : : ;N (28)
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Compared with other maps, the one-to-one and sufficiently smooth properties of
conformal maps preserve the CPM’s spectral accuracy. Another important advan-
tage of the Kosloff-Tal-Ezer map in our research is that it improves the theoretical
convergence of the interpolation approximation. In addition, to compensate for the
round-off error induced by the conformal map, the parameter ˛ is preferred to be
valued as

˛ D sech .jln "j =N/ (29)

where " is the desired round-off error.
For the shifted interpolation nodes, the classical Lagrange interpolation tech-

nique in the standard CPM may induce the well-known Runge phenomenon,
thus we propose to approximate the desired outputs with the barycentric rational
interpolation formulation:

&i .
/ 	 &N
i .
/ D

NX

kD0

!
bary
k &i .�k/

� � �k
=

NX

kD0

!
bary
k

� � �k
(30)

where !bary
k ; .k D 0; 1; : : : ;N/ denotes the associated barycentric weight of �k:

!
bary
0 D 1

2
; !

bary
N D .�1/N

2
; !

bary
k D .�1/k; .k D 1; : : : ;N � 1/ (31)

Evaluating the derivatives of flat output −i(
 ) at the mapped CGL nodes �k gives
a matrix multiplication of the following form:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

:
& i .�k/ 	

:

&
N

i .�k/ D
NX

jD0
Dkj&i

�
�j
�

R&i .�k/ 	 R&N
i .�k/ D

NX

jD0
D
.2/

kj &i
�
�j
�

(32)

where Dkj are entries of the .N C 1/ � .N C 1/ first order mapped Chebyshev

differentiation matrix D, while D
.2/

kj the second order. The matrices are given by:
for k ¤ i,

8
ˆ̂
<̂

ˆ̂
:̂

Dij D !
bary
j =!

bary
i

�i��j

D
.2/

ij D �2
!

bary
j =!

bary
i

�i��j

2

4
X

k¤i

!
bary
k =!

bary
i

�i � �k
� 1

�i � �j

3

5
(33)
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Fig. 2 Elements of Chebyshev differentiation matrix

for k D i,

Dii D �
X

k¤i

Dik; D
.2/

ii D �
X

k¤i

D
.2/

ik (34)

To illustrate the improvement of differentiation matrix’s ill-conditioning, the
distributions of both the standard and mapped differentiation matrices for N D
32; ˛ D 0:99 are presented in Fig. 2. Obviously, compared with the standard
differentiation matrix, the magnitude of the elements near the diagonal endpoints
has been greatly reduced, validating the validity of MCPM in enhancing the
numerical accuracy for derivatives of desired outputs.

For MCGL nodes, the cost function in Eq. (23) can be reformulated as

J D ˆ � Q−.1/; tf
�C

Z 1

�1
ƒ .g .
// g0 .
/ d
 (35)

Applying the Clenshaw-Curtis quadrature scheme to discretizing the integral part
into a finite sum yields [13]

J 	 JN D ˆ � Q−.1/; tf
�C

NX

kD0
!C

k g0 .
k/ƒ Œg .
k/� (36)

where g0(
 ) is the first order derivative of the conformal map in Eq. (27), and
!C

k .k D 0; : : : ;N/ are Clenshaw-Curtis weights given by
for N even,

8
ˆ̂
<

ˆ̂
:

!C
0 D !C

N D 1
N2�1

!C
s D !C

N�s D 4
N

.N=2/’’X

iD0

1

1 � 4i2
cos

2 is

N
; s D 1; : : : ; N

2

(37)
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for N odd,

8
ˆ̂
<

ˆ̂
:

!C
0 D !C

N D 1
N2

!C
s D !C

N�s D 4
N

..N�1/=2/’’X

iD0

1

1 � 4i2
cos

2 is

N
; s D 1; : : : ; N�1

2

(38)

where the double prime in the summation operations denotes that the first and last
elements have to be halved.

Therefore, given the values of desired outputs at MCGL nodes − .�k/ ;

.k D 0; 1 : : : ;N/, the system states and inputs can be reformulated as their functions,
transforming Problem B into the following NLP problem:

Problem C Determine the variables − .�k/ ; .k D 0; 1 : : : ;N/, and possibly the
endpoint time tf , that minimize the cost function in Eq. (36), and subject to the
constraints

F
�
− .�k/ ; t0; tf

� � 0 (39)

where F .�/ represents a generalized form for the boundary and input constraints. In
general, this is an NLP which can be solved by suitable algorithms or commercial
packages. After obtaining the flat output solutions, the relative motion trajectory and
the corresponding control inputs can be easily generated by mapping back into the
original state space.

4.2 Non-Smoothness Difficulty

In practice, we found that the aforementioned computational framework presents
high performance for flat system’s smooth trajectory optimization. However, when
directly applied to optimizing the trajectories with bang-bang type control inputs,
namely non-smooth trajectories, the situation becomes much tougher. The numeri-
cal difficulties mainly include two aspects. Firstly, since the control inputs and time
derivatives of states are discontinuous for the bang-bang type trajectories, the appli-
cation of MCPM would inevitably yield the well-known Gibbs phenomenon, which
is resulted from the approximation of a non-smooth function with a finite number of
smooth functions. Secondly, the switch points for the bang-bang type inputs can’t be
captured exactly, fundamentally due to the predetermined distribution of collocation
nodes.

One straightforward way is to divide the whole interval into segments that
are free of interior discontinuities. Then for each segment, that initial trajectory
optimization problem is transformed into the NLP problem by MCPM, while the
relationships with neighboring segments are guaranteed by the linkage conditions
[10, 14]. It should be noted that the successful application of this method greatly
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relies on the segment division, i.e. detecting the switching points of the bang-bang
type inputs. Nevertheless, incorporating the switching detection algorithms into
mesh refinement would make the solution procedure more complicated. Moreover,
MCPM only enforces the constraints on the mapped CGL nodes, hence no guarantee
on constraint satisfaction between neighboring collocation nodes.

In our research, the analytic homotopic approach is proposed to address the afore-
mentioned numerical difficulties. Note that the conventional homotopic approach
was first proposed to address the issues of small convergence domain and initial
costates sensitivity in the indirect method for optimal control problems [15]. The
key concept of homotopic approach is to construct a related, easy-handling auxiliary
problem to connect with the original problem through a perturbation parameter,
namely hotmotopic parameter. Starting from the auxiliary problem and varying
the perturbation parameter, the solution to the original problem can be obtained
by continuously calculating the associated two-point boundary value problem
(TPBVP) for each perturbation parameter. The fundamentals of homotopic approach
involve taking the solution to previous runs as an initial guess for the current run,
yielding rapid computation of the sequences of TPBVPs. However, how to start
the homotopic procedure remains a challenge, because reasonable initial guess
of costates is still absent for the auxiliary problem. This is what the analytic
homotopic approach addresses. Taking the proximity relative motion problem
herein for example, the time-optimal low-thrust trajectory is non-smooth, while the
related energy-optimal one is much smooth. Thus the related and tractable energy-
optimal trajectory problem is firstly generated using the flatness and MCPM based
computational framework. Then based on the energy-optimal trajectory, an auxiliary
optimal control problem whose costates are naturally valued zero is constructed,
eliminating the aforementioned starting challenge.

5 Numerical Continuation by Analytic Homotopic Approach

In this section, we would introduce how to construct an auxiliary optimal control
problem with zero-valued costates, and how to achieve the solutions to the original
optimal control problem through a continuation scheme.

5.1 Auxiliary Optimal Control Problem

Assume that the optimal trajectory for Problem A is non-smooth, and we have
generated a related but smooth trajectory fxA(t), uA(t), tfAg. The subscript ‘A’ here
means auxiliary trajectory for constructing the auxiliary optimal control problem
whose costates are simply zero. Since the auxiliary trajectory exactly observes the
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boundary conditions of the original optimal control problem, the auxiliary optimal
control problem can be formulated as follows.

Problem D Determine the state-input pair fx.t/ 2 R
n;u.t/ 2 R

mg ; t 2 �t0; tf
�
, and

the endpoint time tf that minimize the performance criterion:

JA .u; t/ D ˆA
�
x .t0/ ; x

�
tf
�
; t0; tf

�C
Z tf

t0

ƒA .x.t/;u.t/; t/ dt

D 1
2

�
tf � tfA

�2 C 1
2

Z tf

t0

ˇ
ˇu.t/ � uA

�
t � tfA=tf

�ˇ
ˇ2dt

(40)

and subject to the governing equations

:
x.t/ D g .x.t/;u.t/; t/ (41)

the boundary conditions

x .t0/ D x0; x
�
tf
� D xf (42)

and constraints on controls

umin � u.t/ � umax (43)

It is obvious that the performance criterion gets its minimum value JA min D
0 at the given auxiliary trajectory, i.e. the optimal solution to Problem D is
fxA(t), uA(t), tfAg. This conclusion can be analyzed as follows.

The Hamiltonian function of Problem D is given by:

HA D 1
2

ˇ
ˇu.t/ � uA

�
t � tfA=tf

�ˇ
ˇ2 C œTg .x;u/

D
mX

iD1

1

2

�
ui.t/ � uiA

�
t � tfA=tf

��2 C œTg .x;u/
(44)

where œ 2 R
n denotes the costate vector. The first-order necessary optimality

condition can be derived as

@HA

@u
D �u.t/ � uA

�
t � tfA=tf

��T
Im C œT @g .x;u/

@u
D 0 (45)

where Im is a m � m unit matrix.
The associated costate equation is

:

œ
T D �@HA

@x
D �œT @g

@x
(46)

with the transversality condition
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œ
�
tf
� D @ˆA

@x

ˇ
ˇ
ˇ
ˇ
tf

D 0 (47)

Considering the free endpoint time, the Hamiltonian function HA at tf is written
as

HA .x;œ;u; t/jtf D �
@ˆA

@t

ˇ
ˇ
ˇ
ˇ
tf

D � �tf � tfA
�

(48)

Since the state-control pair fxA(t), uA(t)g is the optimal solution to Problem D, it
is easy to find that the costate vector œ D 0 satisfies these optimality conditions in
Eqs. (45)–(47). Moreover, the Hamilton function HA evaluates zero when the costate
vector is valued zero. Thus according to the transversality condition in Eq. (48), it
can be concluded that tf D tfA is the optimal endpoint time.

5.2 Continuation Toward the Original Problem

Note that the governing equations and constraints of Problem D, i.e. auxiliary
optimal control problem, are consistent with those in Problem A, thus these two
problems can be related by introducing the so-called homotopic parameter " to
reformulate the performance criterion as:

J" .x;u; t/ D ˆ"
�
x .t0/ ; x

�
tf
�
; t0; tf

�C
Z tf

t0

ƒ" Œx.t/;u.t/; t� dt (49)

where

�
ˆ"
�
x .t0/ ; x

�
tf
�
; t0; tf

�D .1�"/ˆ �x .t0/ ; x
�
tf
�
; t0; tf

�C"ˆA
�
x .t0/ ; x

�
tf
�
; t0; tf

�

ƒ" Œx.t/;u.t/; t� D .1 � "/ƒ Œx.t/;u.t/; t�C "ƒA Œx.t/;u.t/; t�
(50)

Obviously, the parameter " D 1 corresponds to Problem D, and " D 0 to
Problem A. Thus starting from the solution to Problem D, the non-smooth solutions
of Problem A could be obtained by homotopic algorithm.

By varying the homotopic parameter from 1 to 0, a series of optimal control
problems associated with each J" are defined, and the corresponding TPBVPs can
be developed by applying the Pontryagin principle. To solve these TPBVPs with
the simple shooting method, the first run of the homotopic procedure, i.e. " D 1,
is initialized with the solutions to the auxiliary optimal control problem, namely
Problem D, whereas the subsequent steps use the solution to the previous runs
as initialization. Actually, this is the key idea underlying the analytic homotopic
algorithm.
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It should be noted that as the homotopic parameter " approaches zero, the
optimal controls become less and less smooth, inducing trouble for the integration
accuracy of classical integrator with adaptive step size. To address this problem, the
fourth-order Runge–Kutta algorithm with fixed step size combined with switching
detection is proposed in [16]. This integration algorithm is effective and easy to
achieve for systems with small number of inputs, while much more complicated
for multi-input systems. Alternatively, Li suggested utilizing the events checking
function of ode45, a MATLAB embedded propagator, to capture the switching time,
and then changing the controls according to the corresponding switching function
[17].

6 Numerical Simulation

In this section, two numerical examples, an energy-optimal trajectory planning
problem with the performance criterion in Eq. (18) and a time-optimal one with
the criterion in Eq. (17), are presented to validate the performance of the proposed
computational framework. Just as discussed before, the in-plane motion and out-of-
plane motion are studied separately here.

6.1 Energy-Optimal Trajectory Planning

The leader is assumed to be moving in a circular orbit at an altitude of 1000 km,
and the associated mean angular velocity n is 9.9621� 10�4 rad/s. The maximum
control acceleration on the follower Amax is set to be 6.0� 10�5 m/s2, and the
constraints on control inputs take the form of �1 � ui � 1. Note that the endpoint
time tf is fixed at 5000 s for the energy-optimal trajectory planning problem. Let
¡ D ŒxH; yH; zH�

T denote the relative position vector, and then the initial and
terminal relative states are given by

¡0 D Œ160;�300;�90�Tm;
:
¡0 D Œ�0:15;�0:3; 0:1�Tm=s

¡f D Œ0; 150; 10�Tm;
:
¡f D Œ0; 0; 0�Tm=s

According to the analysis in Sect. 3.2, the governing equations for the in-plane
relative motion are differentially flat. Thus the associated energy-optimal trajectory
is readily generated under the framework of flatness and MCPM. The parameters
N and ˇ of MCPM are valued as 32 and 1.0� 10�12 respectively, resulting in a
conformal map parameter ˛ of 0.7161. The MATLAB fmincon function is applied
to the NLP problem with all the parameters ‘TolFun’, ‘TolCon’ and ‘TolX’ set to be
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Fig. 3 Time histories of relative position (in-plane)

1.0� 10�12. The time histories of system states and control inputs are presented
in Figs. 3, 4 and 5, where the circles denote the corresponding variables at the
mapped CGL nodes. The energy-optimal trajectory for in-plane motion is smooth,
and the control inputs observe the saturation constraints. To evaluate the results of
our research, Radau pseudospectral method (RPM) is also applied to this problem by
utilizing a modified version of the open source GPOPS package [14]. This package
has been widely used in various fields due to its excellent performance. The field
of ‘autoscale’ in GPOPS is set ‘on’ to invoke the automatic scaling routine, while
the ‘mesh refinement’ option is set by default to accurately distribute the collocation
nodes. The ‘RPM’ trajectories are also illustrated in Figs. 3–5 by dashed lines for
comparison. The differences between the ‘Flat’ and ‘RPM’ trajectories are very
slight, and both the associated performance indexes are 1237.1 s, validating the
feasibility and validity of the flatness based framework for smooth trajectories. All
simulations were performed on a standard desktop PC with a 2.80-GHz processor.
The CPU time required for the flatness-based framework is about 4.2 s, while 4.7 s
for the RPM approach. Note that the CPU time herein only provides a reference,
because the computational efficiency mainly depends on the scale and solver of
the NLP problem. In GPOPS package, the NLP problem scale is evidently larger,
because the discretization mesh is refined repeatedly to generate trajectories in
higher accuracy. On the other hand, the commercial solver SNOPT is utilized in
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Fig. 4 Time histories of relative velocity (in-plane)

Fig. 5 Time histories of control inputs (in-plane)
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Fig. 6 Time histories of relative states (out-of-plane)

GPOPS, whereas the embedded fmincon function for the flatness-based framework.
For the out-of-plane relative motion, the same computation procedure is conducted,
and the corresponding energy-optimal trajectories are presented in Figs. 6 and 7.

6.2 Time-Optimal Trajectory Planning

Let the configuration parameters of the time-optimal trajectory planning problem
keep exactly the same as those for energy-optimal trajectory planning, except for
the free endpoint time. For the in-plane relative motion, the time-optimal trajectory
is firstly generated utilizing the flatness based approach, and the time histories
of control inputs are presented in Figs. 8 and 9. It can be seen that the obvious
Gibbs phenomenon exists, and the switching points cannot be identified. Thus the
analytic homotopic approach is needed to eliminate these numerical difficulties, and
gradually achieving the time-optimal trajectory from the aforementioned energy-
optimal solution.

Taking the in-plane motion for example, the energy-optimal trajectory based
auxiliary optimal control problem could be readily written in the form of Problem
D. The detailed formulations have been omitted here for compactness, and only the
associated TPBVP for some specific homotopic parameters is presented here.
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Fig. 7 Time histories of control inputs (out-of-plane)

Fig. 8 Time histories of ux
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Fig. 9 Time histories of uy

For a given homotopic parameter ", the corresponding Hamilton function in the
homotopic procedure is written as

H" D "
2


.u1 � u1A/

2 C .u2 � u2A/
2
�
C �1x3 C �2x4 C : : :

�3
�
3n2x1 C 2nx4 C Amaxu1

�C �4 .�2nx3 C Amaxu2/
(51)

where xi; .i D 1; 2 � � � 4/ and ui; .i D 1; 2/ are defined as those in Eq. (21), and the
subscript ‘A’ denotes the corresponding variables of the energy-optimal trajectory.

Thus the costate equations are given by

8
ˆ̂
<̂

ˆ̂
:̂

:

�1 D �3n2�3
:

�2 D 0
:

�3 D ��1 C 2n�4
:

�4 D ��2 � 2n�3

(52)

The necessary optimality condition @H"=@u D 0 yields the optimal inputs:

ui D
8
<

:

umin; si � umin

umax; si � umax

si; else
(53)
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Table 1 Results of homotopic procedure (in-plane motion)

" Iter. Tf Initial value of costates

1 0 5000 0 0 0 0
0.6 3 4999.93 �1.7464 � 10�4 1.1657 � 10�5 �0.0955 �0.0698
0.2 3 4999.50 9.3353 � 10�4 �1.4464 � 10�4 0.5600 0.2897
0.1 3 4998.87 0.0020 �3.0085 � 10�4 1.2142 0.6482
0.01 6 4987.68 0.0023 �3.3988 � 10�4 1.3770 0.7370
10�3 9 4889.61 0.0025 �3.7491 � 10�4 1.5103 0.8041
10�4 13 4408.42 0.0024 �3.8437 � 10�4 1.4686 0.7425
10�5 13 4128.10 0.0021 �4.4967 � 10�4 1.3324 0.5047
10�6 7 4114.20 0.0020 �5.1285 � 10�4 1.1480 0.4179
10�7 23 4114.05 0.0019 �5.1062 � 10�4 1.1025 0.3941
10�8 16 4114.05 0.0019 �5.1063 � 10�4 1.1003 0.3925

where si D uiA � �iC2Amax="; .i D 1; 2/ is the switching function.
The boundary and trans-versatility conditions are

x .t0/ D x0; x
�
tf
� D xf (54)

œ
�
tf
� D �@ˆ"=@xC �@NT

1 =@x
�
”
�

tf
(55)

And the Hamilton function at endpoint time observes

H� �t�f
� D ��@ˆ"=@tC ”T .@N1=@x/

�
tf

(56)

The TPBVP for homotopic parameter " is addressed utilizing the simple
shooting method, where the resulted nonlinear shooting equations are solved by the
MATLAB fsolve function with the option parameters ‘TolX’, ‘TolFun’ and ‘TolCon’
set as 1.0� 10�12. The results of the associated TPBVPs during the homotopic
procedure are listed in Table 1 and the continuous achieving process of controls
and states are illustrated in Figs. 10, 11, 12 and 13 by dotted lines. Obviously, by
initializing the shooting method with the results of the previous run, the solutions
can be obtained in a small number of iteration steps. The final result 4114.05 s for
" D 10�8 is accurate enough to be regarded as the minimum time solution, whose
corresponding profiles of controls and states are presented in Figs. 10, 11, 12 and
13 by solid lines. It can be seen that the Gibbs phenomenon of MCPM solution has
been entirely eliminated. Moreover, utilizing the same computational framework,
the time-optimal trajectory for the out-of-plane motion could be easily obtained
with the achieving process of controls and states illustrated in Figs. 14 and 15. The
minimum time required to accomplish the out-of-plane maneuver is 3333.66 s, and
the associated switching points of the control inputs are given in Table 2.
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Fig. 10 Homotopy procedure of ux

Fig. 11 Homotopy procedure of uy
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Fig. 12 Homotopy procedure of xH

Fig. 13 Homotopy procedure of yH
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Fig. 14 Homotopy procedure of uz

Fig. 15 Homotopy procedure of zH
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Table 2 Switching points Control Point 1 Point 2 Point 3

ux (s) 1146:79 2144.45 –
uy (s) 293:13 1373.06 3296.38
uz (s) 2296:06 – –

7 Conclusions

Against the background of on-orbit proximity operations missions, we studied a
hybrid computational framework which is based on the flatness theory and analytic
homotopic approach to optimize the low-thrust relative motion trajectory. Some
useful conclusions are drawn as follows:

1. For differentially flat systems, the associated optimal control problem could be
reformulated in the flat output space with the reduction of decision variables and
elimination of the differential constraints.

2. For the smooth trajectory optimization problems, the MCPM based flat output
discretization approach presents excellent performance, where the approximation
accuracy for the derivatives of flat outputs is evidently improved by conformal
map and barycentric rational interpolation techniques.

3. For the non-smooth trajectory optimization problems, the numerical difficulties
of the MCPM based flat output discretization approach can be eliminated by
introducing the analytic homotopic technique. On the other hand, this combined
framework also addresses the initialization difficulty of the conventional homo-
topic approach.
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