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Abstract

A basic model of commitment is to convert a two-player game in strategic form
to a “leadership game” with the same payoffs, where one player, the leader, commits
to a strategy, to which the second player always chooses a best reply. This paper
studies such leadership games for games with convex strategy sets. We apply them
to mixed extensions of finite games, which we analyze completely, including non-
generic games. The main result is that leadership is advantageous in the sense that,
as a set, the leader’s payoffs in equilibrium are at least as high as his Nash and cor-
related equilibrium payoffs in the simultaneous game. We also consider leadership
games with three or more players, where most conclusions no longer hold.
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1 Introduction

The possible advantage of commitment power is a game-theoretic result known to the gen-
eral public, ever since its popularization by Schelling (1960). Cournot’s (1838) duopoly
model of quantity competition was modified by von Stackelberg (1934), who demon-
strated that a firm with the power to commit to a quantity of production profits from this
leadership position. The leader-follower issue has been studied in depth in oligopoly the-
ory as “Stackelberg leadership”; see Friedman (1977), Hamilton and Slutsky (1990) and
the correction to that paper by Amir (1995), Shapiro (1989), or Amir and Grilo (1999) for
discussions and references.

We define a leadership game as follows (for details see Section 2). Consider a game of
k +1 players in strategic form. Declare one player as leader and let his strategy set be X .
The remaining k players are called followers. Let the set of their partial strategy profiles
(with k strategies) be Y , so that X ×Y is the set of full strategy profiles. The leadership
game is the extensive game where the leader chooses x in X , the followers are informed
about x and choose simultaneously their strategies as f (x) in Y , and all players receive
their payoffs as given by the strategy profile (x, f (x)). We only consider subgame perfect
equilibria of the leadership game where for any x the followers play among themselves a
Nash equilibrium f (x) in the game induced by x, even off the equilibrium path. We call
f (x) the response of the followers to x, which is simply a best reply in the original game
if there is only one follower. (The set of equilibria that are not subgame perfect seems too
large to allow any interesting conclusions.)

Our aim is to analyze completely leadership games for the mixed extension of a bi-
matrix game, that is, of a finite two-player game in strategic form. Then there is only one
follower (k = 1). The leader commits to a mixed strategy x in the bimatrix game. The
follower’s response f (x) is also a mixed strategy. The pair of pure actions is then chosen
independently according to x and f (x) with the corresponding bimatrix game payoffs, and
the players maximize expected payoffs as normally.

The payoff to the leader in a subgame perfect equilibrium of the leadership game
is called a leader payoff . His payoff in a Nash equilibrium of the simultaneous game is
called a Nash payoff . When considering the simultaneous game, we often have to identify
the player who becomes leader in the corresponding leadership game; for simplicity of
identification, we call this player also “leader” in the simultaneous game.

For the mixed extension of a bimatrix game, our main result (Corollary 8) states that
the set of leader payoffs is an interval [L,H] so that H ≥ E for all Nash payoffs E, and
L≥ E for at least one Nash payoff E. Furthermore, Theorem 12 states that H ≥C for any
correlated equilibrium payoff C to the leader. In this sense, the possibility to commit, by
changing a simultaneous game to a leadership game, never harms the leader. However,
this no longer holds for two or more followers, where leadership can be disadvantageous
(see Remark 5).

One motivation to consider commitment to mixed strategies is the “classical view” of
mixed strategies (see also Reny and Robson 2004). This is the view of von Neumann and
Morgenstern (1947), who explicitly define the leadership game corresponding to a zero-
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sum game, first with commitment to pure strategies (p. 100) and then to mixed strategies
(p. 149), as a way of introducing the max-min and min-max value of the game. They
consider the leader to be a priori at an obvious disadvantage. By the minimax theorem,
a player is not harmed even if his opponent learns his optimal mixed strategy. Hence, in
two-person zero-sum games, commitment to a mixed strategy does not hurt the leader, in
line with Corollary 8. The value of a zero-sum game is its unique leadership and Nash
payoff.

Important applications of commitment to mixed strategies are inspection games. They
model inspections for arms control treaties, tax auditing, or monitoring traffic violations;
for a survey see Avenhaus, von Stengel, and Zamir (2002). With costly inspections, such
games typically have unique mixed equilibria, and in the corresponding leadership games,
the inspector is a natural leader. As observed by Maschler (1966), commitment helps
the leader because the follower, who is inspected, acts legally in an equilibrium of the
leadership game, but acts illegally with positive probability in the Nash equilibrium of the
simultaneous game.

The central observation about leadership games for mixed extensions of bimatrix
games is the following. When the leader commits to his mixed strategy in equilibrium, the
follower is typically indifferent between several pure best replies. However, the condition
of subgame perfection implies that on the equilibrium path, the follower chooses the reply
that gives the best possible payoff to the leader; otherwise, the leader could improve his
payoff by changing his commitment slightly so that the desired reply is unique (which is
possible generically).

For inspection games, this reasoning based on subgame perfection was used by Aven-
haus, Okada, and Zamir (1991). Maschler (1966) still postulated a benevolent reaction of
the follower when she is indifferent (and called this behavior “pareto-optimal”), or else
suggested to look in effect at an ε-equilibrium in which the leader sacrifices an arbitrar-
ily small amount to induce the desired reaction of the follower. A similar observation
is known for bargaining games, for example in the iterated offers model of Rubinstein
(1982). In a subgame perfect equilibrium of this game, the first player makes the second
player indifferent between accepting or rejecting the offer, but the second player never-
theless accepts.

Some of our results apply to more general games than mixed extensions of bimatrix
games. In particular, we are indebted to a referee who suggested a short proof of Corol-
lary 8 based on Kakutani’s fixed point theorem. Different parts of Corollary 8 hold under
assumptions that can be weakened to varying extent. We therefore present these parts
separately, as follows.

In Section 2, we give a characterization in Theorem 1 of the lowest leader payoff, us-
ing standard assumptions so that Kakutani’s fixed point theorem can be applied, for games
with any number of followers. Suppose that they always choose their response to give the
worst possible payoff to the leader. In other words, the leader maximizes his payoff under
the “pessimistic” view that the followers act to his disadvantage. (This pessimistic view is
also used to the define a “Stackelberg payoff” to the leader in dynamic games; see Başar
and Olsder 1982, equation (41) on p. 136, and p. 141.) The resulting payoff function to
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the leader is typically discontinuous and has no maximum (see also Morgan and Patrone
(2006) and references). However, the supremum of the “pessimistically” computed pay-
off to the leader is obtained in a subgame perfect equilibrium of the leadership game, as
we show in Theorem 1. Subgame perfection implies that on the equilibrium path, the
followers’ response is not according to the pessimistic assumption but instead yields the
supremum payoff to the leader.

In Section 3, we observe in Theorem 2 that the lowest leader payoff is no worse than
the lowest Nash payoff. This theorem requires strong assumptions that hold for mixed
extensions of bimatrix games (Corollary 3), but not, for example, for mixed extensions of
three-player games (Remark 5). Furthermore, the highest leader payoff is obtained when
the followers always reply in the best possible way for the leader. It is easy to see that
this payoff is at least as high as any Nash payoff. Moreover, if the set of the followers’
responses is connected, then the set of leader payoffs is an interval (Proposition 7).

In Section 4, we consider mixed extensions of bimatrix games. We explicitly char-
acterize the lowest and highest leader payoffs and show how to compute them by linear
programming. For generic games, they are equal.

In Section 5, we show that the highest leader payoff H is at least as high as any
correlated equilibrium payoff to the leader. This is no longer true for the coarse correlated
equilibrium due to Moulin and Vial (1978) that involves commitment by both players,
which may give a higher payoff than H.

2 The lowest leader payoff

Our main results concern finite two-player games with commitment to mixed strategies.
We regard such games via their mixed extension, where each mixed-strategy simplex
becomes a set of new pure strategies. Some of our results hold more generally for any
finite number of players with convex and compact strategy sets.

For the general case, we consider a game with finite player set N. Each player i∈N has
a convex and compact strategy set Si, and a continuous payoff function ui : ∏i∈N Si → R.
Let S−i = ∏ j∈N−{i} S j. For sets X ,Y , the set of correspondences (set-valued mappings)
X → 2Y is denoted by X ³ Y . Player i’s best-reply correspondence Bi : S−i ³ Si is given
by

Bi(s−i) = argmax
si∈Si

ui(si,s−i), (1)

where argmax gives the set of all maximizers. Suppose each player’s best-reply cor-
respondence is convex-valued and upper hemi-continuous (uhc), that is, it has a closed
graph

⋃
s−i∈S−i

{s−i}×Bi(s−i). Then by the fixed point theorem of Kakutani (1941), there
is a fixed point (si)i∈N with si ∈ Bi(s−i) for all i ∈ N. This is an equilibrium of the game
where each player i plays a best reply si to the remaining strategies s−i. These conditions
hold for the mixed extension of a finite game where Si is player i’s mixed strategy simplex
and ui is his expected payoff function (Nash 1950).
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Consider such a game with player set N = {1,2, . . . ,k +1}. The corresponding lead-
ership game is a two-stage game played as follows. Player 1 is called leader, and the k
players 2, . . . ,k +1 are called followers. First, the leader chooses and commits to a strat-
egy s1 in S1, which is announced to all followers, who then simultaneously choose their
strategies s2, . . . ,sk+1, which are played together with s1. The players’ payoffs for the
strategy profile (s1, . . . ,sk+1) are as in the original game.

For convenience, we write X = S1, and let Y = S−1 be the set of partial strategy
profiles y = (s2, . . . ,sk+1) of the followers. For any strategy profile (x,y) ∈ X×Y , denote
the payoff to the leader by a(x,y) = u1(x,y). In the leadership game, y may depend on x,
so a strategy profile in the leadership game is given by (x, f ) where x ∈ X and f : X → Y .

We consider only subgame perfect equilibria of leadership games. In such a subgame
perfect equilibrium (x∗, f ∗), the followers’ response given by f ∗(x) in Y is a Nash equi-
librium of the game induced by x, for any x in X . Moreover, the leader’s commitment x∗ is
optimal, so a(x∗, f ∗(x∗))≥ a(x, f ∗(x)) for all x ∈ X . A leader payoff is the corresponding
payoff a(x∗, f ∗(x∗)).

For x in X , let the subset E(x) of Y be the set of Nash equilibria of the game induced
by x, which is nonempty by Kakutani’s theorem. Also, E(x) is the intersection of the fol-
lowers’ best reply correspondences and therefore closed. When there is only one follower
(k = 1), then E(x) is simply B2(x).

We define a new correspondence F : X ³ Y which expresses a “pessimistic” view of
the leader. The correspondence F is the sub-correspondence of E where the followers’
response is the worst possible for the leader,

F(x) = argmin
y∈E(x)

a(x,y), (2)

so F(x) is the set of all y in E(x) that minimize a(x,y). If k = 1, then F(x) contains the
follower’s best replies y to x that minimize the payoff to the leader.

@
@@

1
2

T

B

a b c d e

2 6 9 1 7

4 4 0 2 4

8 0 3 1 0

4 4 6 5 0

Figure 1 Example of a 2×5 game. In each cell, the payoffs to player 1 and 2 are shown
in the bottom left and top right corner, respectively.

We illustrate our considerations with an example, shown in Figure 1, which will be
used throughout the paper. We consider the mixed extension of this 2× 5 game, with
player 2 as the only follower. The set X of mixed strategies of player 1 can be identified
with the interval [0,1] for the probability that player 1 plays strategy B.
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Figure 2 (a) Expected payoffs to player 2, (b) expected payoffs to player 1, as functions
of player 1’s mixed strategy, in the game of Figure 1. The bold line in (b),
including the full dot at 2/3, indicates the “pessimistic” leader payoff resulting
from any reply in F(x) as in (3).

Figure 2 shows the expected payoffs to the two players as a function of the mixed
strategy of player 1. The top graph (a) shows the expected payoffs to player 2, from
which one can see that the pure best replies of player 2 are

a,b,e when prob(B) = 0,
a,b when 0 < prob(B) < 2/3,
a,b,c,d when prob(B) = 2/3,
c when prob(B) > 2/3.

For each of the pure strategies a, b, c, d, e chosen by player 2, the bottom graph (b) in
Figure 2 shows the expected payoff to player 1 as a function of his mixed strategy x. The
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correspondence F(x) in (2) chooses any best reply of player 2 that minimizes player 1’s
payoff and is given by

a when prob(B) < 1/3,
any mixture of a,b when prob(B) = 1/3,
b when 1/3 < prob(B) < 2/3,
d when prob(B) = 2/3,
c when prob(B) > 2/3.

(3)

The graph of the payoffs to player 1 when player 2 plays according to F is shown in
Figure 2(b) with bold lines and the filled-in dot when prob(B) = 2/3 where F(x) = {d}.

As this example shows, the graph of F is in general not closed so that F is not uhc.
The uhc correspondence F is defined via the closure of the graph of F , that is, for all
(x,y) ∈ X ×Y ,

y ∈ F(x) ⇐⇒ (x,y) ∈
⋃

x′∈X

{x′}×F(x′). (4)

In the example, in order to obtain the uhc correspondence F from F according to (4), we
have to add the best replies b and c when prob(B) = 2/3. The resulting payoffs to player 1
are 2 for b and 5 for c, shown as the two white dots at the ends of the bold lines for b and c
in Figure 2(b).

In the general setup, we define the following payoff to the leader:

L = sup
x∈X

min
y∈E(x)

a(x,y). (5)

By (2) and (5), the payoff L is the supremum of a(x,y) for x ∈ X and y ∈ F(x). In Fig-
ure 2(b), it is given by L = 5 when prob(B) approaches 2/3 from above, where player 2’s
best reply is c. However, this supremum is not achieved, because for prob(B) = 2/3 the
only best reply in F(x) is d with payoff 1 to player 1.

Nevertheless, there is a leader payoff 5 where the leader commits to prob(B) = 2/3
and the follower chooses c, because c is a best reply to the commitment. Moreover,
there is no leadership equilibrium with payoff less than 5. Suppose that there is such an
equilibrium with leader payoff 5−ε for some ε > 0. If the leader plays prob(B) = 2/3+δ
for δ > 0, the only best reply of the follower is c, with payoff higher than 5− ε for
sufficiently small δ . So the leader can profitably deviate. Hence, this is not an equilibrium.

The following central theorem of this section states that the lowest leader payoff is
given by (5). Its proof generalizes the argument made for the preceding example.

Theorem 1 The payoff L in (5) is the lowest leader payoff.

Proof. We have to prove that there is a leadership equilibrium with payoff L to the leader,
and that there is no lower leader payoff.

First, observe that by (2) which defines F , the payoff a(x,y) is a constant function of
y on F(x), so that

L = sup
x∈X

max
y∈F(x)

a(x,y). (6)
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We claim that
L = max

x∈X
max

y∈F(x)
a(x,y). (7)

Note that the first “max” in (7) does not have to be written as “sup” because F is uhc. Also,
while a(x,y) is constant in y on F(x), it is no longer constant on F(x), so it may happen
that maxy∈F(x) a(x,y) > maxy∈F(x) a(x,y), as the example for prob(B) = 2/3 shows.

To prove (7), let
L = max

x∈X
max

y∈F(x)
a(x,y) = a(x∗,y∗)

for some x∗ ∈ X and y∗ ∈ F(x∗). Clearly, L ≤ L. Consider some sequence (xn,yn) that
converges to (x∗,y∗) with yn ∈ F(xn) for all n. Then L ≥ a(xn,yn) by (6) and, because a
is continuous, L≥ a(x∗,y∗), which proves (7).

Next, we show that there is a leadership equilibrium (x∗, f ∗) with L = a(x∗,y∗) as
leader payoff. The correspondence E : X ³ Y is uhc because its graph is the intersection
of the graphs of the followers’ best reply correspondences in the original game (as subsets
of X ×Y ), so the graph of E is closed. Because F ⊆ E (in terms of the graphs of the
correspondences), we therefore have

F ⊆ E. (8)

The leadership equilibrium is given by f ∗(x∗) = y∗ and f ∗(x) in F(x) chosen arbitrarily
for any x 6= x∗. This defines a subgame perfect equilibrium because f ∗(x) ∈ F(x)⊆ E(x)
for all x, and because L = a(x∗,y∗) by (7).

Finally, we claim there is no leadership equilibrium (x̂, f ) with leader payoff less
than L. Suppose otherwise, that is, a(x̂, f (x̂)) = L− ε with ε > 0. Consider the above
sequence (xn,yn) that converges to (x∗,y∗), and choose n large enough so that a(xn,yn) >
a(x∗,y∗)−ε . Then if player 1 commits to xn, he will get a payoff a(xn, f (xn))≥ a(xn,yn)>
L−ε because a(xn,yn) ∈ F(xn), so he can improve his payoff by deviating from his com-
mitment x̂, which is a contradiction. So L is the lowest leader payoff.

3 Leader payoff versus Nash payoff

In this section, we compare the leader payoffs with the Nash payoffs to the leader in
the simultaneous game. The following result states that the lowest leader payoff L is at
least as high as some Nash payoff in the simultaneous game; its proof is inspired by a
suggestion of a referee. Recall that E(x) is the set of Nash equilibria of the game among
the followers induced by x.

Theorem 2 Suppose that

(a) E(x) is convex for all x in X,

(b) a(x,y) is a convex function of y on the convex domain E(x).
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Then the lowest leader payoff L in (5) is at least as high as some Nash payoff to the leader
in the simultaneous game.

Proof. Player 1’s best-reply correspondence B1 : Y ³ X is uhc and convex-valued. Let
conv F(x) be the convex hull of F(x) for all x ∈ X , where F is the uhc correspondence
defined by (4). Consider the correspondence (x,y) 7→ B1(y)× conv F(x). By Kakutani’s
theorem, it has a fixed point (x̂, ŷ) ∈ X ×Y , that is, x̂ ∈ B1(ŷ) and ŷ ∈ conv F(x̂). Because
E(x̂) is convex by assumption (a) and F(x̂) ⊆ E(x̂) by (8), it follows that ŷ ∈ E(x̂), so
(x̂, ŷ) is a Nash equilibrium of the simultaneous game.

Furthermore, ŷ = ∑k
i=1 λiyi for some points y1, . . . ,yk in F(x̂) and nonnegative weights

λ1, . . . ,λk with ∑k
i=1 λi = 1. Then, since a(x,y) is convex in y by assumption (b),

a(x̂, ŷ)≤
k

∑
i=1

λia(x̂,yi)≤ max
y∈F(x̂)

a(x̂,y)≤max
x∈X

max
y∈F(x)

a(x,y) = L

by (7).

Assumptions (a) and (b) of Theorem 2 are not required for Theorem 1. They are
trivially satisfied for the mixed extension of a bimatrix game:

Corollary 3 For the mixed extension of a bimatrix game, the lowest leader payoff L is at
least as high as some Nash payoff to the leader in the simultaneous game.

Proof. Assumption (a) of Theorem 2 holds because for one follower E = B2 and the best-
reply correspondence B2 is convex-valued. Assumption (b) holds because the expected
payoff a(x,y) is linear in y.

Another case in which (a) and (b) are trivially satisfied is when E(x) is always a
singleton. For example, in a two-player Cournot game, the follower’s best reply is often
unique. The following remark shows that Theorem 2 can fail without condition (b).

Remark 4 There is a two-player game with continuous payoffs and convex-valued best-
reply correspondences so that E(x) is convex for all x, but L is less than any Nash payoff.

Proof. Suppose that the strategy sets of the two players are X = Y = [−1,1], that the
payoff to player 2 is constant (so any y is a best reply), and that the payoff to player 1 is
a(x,y) = xy− y2. Both players’ payoffs are linear in their own strategy variable, so the
best-reply correspondences are convex-valued. We have E(x) = Y for all x, but a(x,y) is
not convex in y.

For any y ∈ [−1,1], we have a Nash equilibrium (x,y) if x is a best reply to y, that is,
x = −1 if y < 0, arbitrary x for y = 0, and x = 1 for y > 0. The resulting Nash payoff to
player 1 is |y|− y2 which is |y|(1−|y|) and therefore always nonnegative.

The lowest leader payoff, however, results from player 2 always choosing the worst
action for player 1 (which player 1 cannot force to be to his liking because player 2 is
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indifferent). This worst reply y, which defines F(x), is y = 1 if x < 0, it is y ∈ {1,−1}
if x = 0, and y = −1 if x > 0, so that the resulting payoff is x− 1 if x ≤ 0 and −x− 1 if
x ≥ 0, that is, −1−|x|, which is always negative. The best possible case is x = 0 where
the leader payoff is −1, worse than any Nash payoff.

In the example in Remark 4, player 2 has a constant payoff, so the leadership game
where the follower chooses the worst payoff to the leader is effectively a zero-sum with
payoff xy− y2 to the leader. In this game, the max-min value is less than the min-max
value. Hence, leadership is disadvantageous compared to playing simultaneously.

A similar situation arises in mixed extensions of games with more than two players.
An example are team games as investigated by von Stengel and Koller (1997), where k
players form a team and receive identical payoffs, which are the negative of the payoffs
to player 1. Here, commitment generally hurts player 1 since it allows the opposing team
players to coordinate their actions, which is not the case in the simultaneous game.

Remark 5 There is a mixed extension of a finite three-player game so that L in (5) is less
than any Nash payoff.

@
@@

2
3

P

Q

p q

−1,1,1 0,0,0

0,0,0 −4,4,4

l1 :

@
@@

2
3

P

Q

p q

−4,4,4 0,0,0

0,0,0 −1,1,1

r

Figure 3 Game between player 1 against the team of player 2 and 3 which has leader
payoffs that are worse than any Nash payoff.

Proof. Consider Figure 3. Player 1 chooses the left (l) or right (r) panel, and play-
ers 2 and 3 form the team and have two strategies each. The Nash equilibria in this
game are the pure equilibria (l,P, p) and (r,Q,q), both with payoffs (−1,1,1), the semi-
mixed equilibria (l,(0.8,0.2),(0.8,0.2)) and (r,(0.2,0.8),(0.2,0.8)), both with payoffs
(−0.8,0.8,0.8), and the completely mixed equilibrium ((0.5,0.5),(0.5,0.5),(0.5,0.5))
with payoffs (−1.25,1.25,1.25).

Suppose that the leader commits to the mixed strategy (1− x,x) in the leadership
game. In the correspondence F in (2), players 2 and 3 can coordinate to play their favor-
able response, namely (Q,q) with payoffs (3x−4,4−3x,4−3x) if 0≤ x≤ 0.5 and (P, p)
with payoffs (−1−3x,1+3x,1+3x) if 0.5 < x≤ 1 (for x = 0.5 the choice between (Q,q)
and (P, p) is arbitrary). The optimal commitment is then x = 0.5. This defines a subgame
perfect equilibrium with leader payoff L = −2.5, which is much worse for player 1 than
in any Nash equilibrium of the simultaneous game.
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In addition to Remark 5, note that the highest leader payoff in the game in Figure 3
is −0.8, which results when the leader commits to either l or r and the followers respond
by playing the mixed equilibrium in the corresponding panel in Figure 3. Because this
defines also a Nash equilibrium, the highest leader payoff is not higher than the highest
Nash payoff.

The game in Figure 3 is nongeneric. However, the same arguments apply for any other
generic game with payoffs nearby.

Our next observation concerns the highest leader payoff, for any number of followers
and our standard assumptions from Section 2.

Proposition 6 Let
H = max

x∈X
max

y∈E(x)
a(x,y). (9)

Then H is the highest leader payoff, and H ≥ a(x∗,y∗) for any Nash equilibrium (x∗,y∗)
of the simultaneous game.

Proof. Clearly, y∗ ∈ E(x∗), which implies

H ≥ max
y∈E(x∗)

a(x∗,y)≥ a(x∗,y∗).

Next, we note that under certain assumptions the set of leader payoffs is an interval
[L,H].

Proposition 7 Suppose that E(x) is connected for all x in X. Then any payoff in [L,H]
with L and H as in (5) and (9) is a possible leader payoff.

Proof. Let
x̂ ∈ argmax

x∈X
max

y∈E(x)
a(x,y),

so that H = maxy∈E(x̂) a(x̂,y). Clearly,

min
y∈E(x̂)

a(x̂,y)≤ sup
x∈X

min
y∈E(x)

a(x,y) = L,

so let ŷ ∈ E(x̂) with a(x̂, ŷ) ≤ L. Because E(x̂) is connected, and a(x̂,y) is continuous
in y, the set {a(x̂,y) | y ∈ E(x̂)} contains all reals in [a(x̂, ŷ),H] and hence in [L,H]. Any
a(x̂,y) ∈ [L,H] is a leader payoff in the subgame perfect equilibrium (x̂, f ) where the
followers’ response is f (x̂) = y and f (x) ∈ F(x) as in (2) for x 6= x̂.

The following corollary summarizes our main results for mixed extensions of bimatrix
games. An explicit characterization of L and H is given in the next section.

Corollary 8 For the mixed extension of a bimatrix game, the set of leader payoffs is an
interval [L,H] with L and H as in (5) and (9). If l and h are the lowest and highest Nash
payoff to the leader in the simultaneous game, then l ≤ L and h≤ H.

Proof. The set E(x) is the set of mixed strategies of player 2 that are best replies to x,
which is connected, so Proposition 7 applies.
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4 Leadership in mixed extensions of bimatrix games

In this section, we consider the mixed extension of a bimatrix game. We explicitly char-
acterize the lowest and highest leader payoff L and H in Corollary 8 and show how to
compute them by linear programming. For generic bimatrix games, we show that L = H.

We consider a bimatrix game with m×n matrices A and B of payoffs to player 1 and 2,
respectively. The players’ sets of pure strategies are

M = {1, . . . ,m}, N = {1, . . . ,n}.
Their sets of mixed strategies are denoted by X and Y . For mixed strategies x and y, we
want to write expected payoffs as matrix products xAy and xBy, so that x should be a row
vector and y a column vector. That is,

X = {(x1, . . . ,xm) | ∀i ∈M xi ≥ 0, ∑
i∈M

xi = 1 }

and
Y = {(y1, . . . ,yn)> | ∀ j ∈ N y j ≥ 0, ∑

j∈N
y j = 1 }

As elements of X , the pure strategies of player 1 are the unit vectors, which we denote by
ei for i ∈M.

For any pure strategy j of player 2, the payoffs to both players depending on x ∈ X
will be of interest. We denote the columns of the matrix A by A j and those of B by B j,

A = [A1 · · ·An], B = [B1 · · ·Bn]. (10)

An inequality between two vectors, for example B j < By for some j ∈N and y∈Y (which
states that the pure strategy j is strictly dominated by the mixed strategy y), is understood
to hold in each component.

For j in N, we denote by X( j) the best reply region of j. This is set of those x in X to
which j is a best reply:

X( j) = {x ∈ X | ∀k ∈ N−{ j} xB j ≥ xBk }. (11)

Let X◦( j) denote the interior of X( j) relative to X . Call X( j) full-dimensional if X◦( j)
is not empty. Any best reply region X( j) is a closed convex polytope. If it is full-
dimensional, then

X◦( j) = X( j). (12)

Because any x in X has at least one best reply j, we also have

X =
⋃

j∈N

X( j). (13)

In the example in Figure 1, we can identify X with the interval [0,1] for the probability
that player 1 plays the bottom row B. Then Figure 2(a) shows that the best reply region of
columns a and b is [0,2/3], of c is [2/3,1], of d is {2/3} and of e is {0}. The best reply
regions of d and e are not full-dimensional.

12



Theorem 9 Consider the mixed extension of a bimatrix game (A,B) with A j,B j as in (10)
and X( j) as in (11), for j ∈ N. Let D = { j ∈ N | X( j) is full-dimensional}. Then the
interval [L,H] of all leader payoffs in Corollary 8 is given by

L = max
j∈D

max
x∈X( j)

min
k∈N :Bk=B j

xAk , H = max
j∈N

max
x∈X( j)

xA j . (14)

We shall first explain Theorem 9 with our example, discuss the easy parts of its proof,
and give the full proof afterwards. First consider H in (14). If the leader chooses x in X( j),
then the follower can respond with a mixed strategy that assigns positive probability to j,
in particular the pure strategy j itself. Then xA j is the expected payoff to the leader. The
highest payoff to the leader is certainly attained with a pure strategy of the follower, and
the expression for H in (14) is the highest leader payoff. In the example, Figure 2(b)
shows that H = 7 where the leader commits to prob(B) = 0 and the follower responds
with e.

The characterization of L in (14) is more involved. It states that for the lowest leader
payoff L, best reply regions that are not full-dimensional can be ignored. In the example,
this concerns both the best reply region of d which has a low payoff to the leader, and
the best reply region of e which has a high payoff. The full-dimensional regions of a
and b are identical because their two payoff columns are identical, denoted by Bk = B j
in (14), with k, j standing for the columns a,b. Similar to our comments after Remark 4,
the leader plays essentially a zero-sum game against the follower on regions X( j) with
multiple best replies of the follower, which leads to the inner max-min expression for L
in (14). As Figure 2(b) shows, that max-min payoff for the region with best replies a,b is
4 and attained when the leader commits to prob(B) = 1/3, and for the best reply region
of c that payoff is 5 and attained for prob(B) = 2/3; this is the lowest leader payoff L.
Note that the highest and lowest leader payoff are not obtained for the same commitment
of the leader. However, it may happen that the same commitment is used, for example
if strategy e was absent in this game, in which case H = 6 (shown as a small triangle in
Figure 2(b)) where the leader commits to prob(B) = 2/3 and the follower responds with a.

Proof of Theorem 9. In (9), E(x) is the set of best replies to x. Among them, the
maximum is already attained for the pure strategies j so that x ∈ X( j). Hence,

H = max
x∈X

max
y∈E(x)

xAy = max
j∈N

max
x∈X( j)

xA j

as claimed in (14).

It remains to prove the expression for L. First, we show

X =
⋃

j∈D

X( j). (15)

To see this, let k ∈ N−D, and consider the open set S = X −⋃
j∈N−{k}X( j). Then by

(13), S is a subset of X(k) and hence of the set X◦(k), which is empty because k 6∈D, so S
is empty. This shows X =

⋃
j∈N−{k}X( j) which we now use instead of (13), and continue

in this manner for the elements of N−D other than k, to eventually obtain (15).
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Secondly, for j,k ∈ N,

x ∈ X◦( j) and x ∈ X(k) =⇒ Bk = B j. (16)

To see this, let x∈ X◦( j) and x∈X(k). For all i∈M consider the points zi = (1−ε)x+εei
obtained by moving from x in the direction of the unit vectors ei. The points zi also
belong to X◦( j) for sufficiently small ε > 0. By representing x as a convex combination
of z1, . . . ,zm, we prove that not only j but also k is a best reply to zi for each i∈M: Clearly,
ziB j ≥ ziBk. Suppose that ziB j > ziBk for some i. Then x = (x1, . . . ,xm) = x1z1 + · · ·+xmzm
and xB j = x1z1B j + · · ·+ xmzmB j > xBk because xi > 0 (since x is in the interior of X), in
contradiction to x ∈ X(k). So ziB j = ziBk for all i ∈M, and of course xB j = xBk. That is,
((1− ε)x + εei)B j = ((1− ε)x + εei)Bk, and therefore eiB j = eiBk, for all i ∈M. So the
column vectors B j and Bk agree in all components, as claimed.

Using (5), and the fact that minimum payoffs are already obtained among pure best
replies, and (15),

L = sup
x∈X

min
y∈E(x)

xAy = sup
x∈X

min
k∈N :x∈X(k)

xAk = max
j∈D

sup
x∈X( j)

min
k∈N :x∈X(k)

xAk . (17)

Changing X( j) to the smaller set X◦( j) and using (16), we get

L≥max
j∈D

sup
x∈X◦( j)

min
k∈N :x∈X(k)

xAk = max
j∈D

sup
x∈X◦( j)

min
k∈N :Bk=B j

xAk .

Given j, the function on the right is the minimum of a fixed finite set of linear functions
and therefore continuous. By (12), we obtain

L≥max
j∈D

sup
x∈X◦( j)

min
k∈N :Bk=B j

xAk = max
j∈D

sup
x∈X( j)

min
k∈N :Bk=B j

xAk

≥max
j∈D

sup
x∈X( j)

min
k∈N :x∈X(k)

xAk = L

where the last inequality holds because the minimum is taken over a larger set of pure
strategies k; the last equation is just (17). So all inequalities hold as equalities, giving

L = max
j∈D

sup
x∈X( j)

min
k∈N :Bk=B j

xAk = max
j∈D

max
x∈X( j)

min
k∈N :Bk=B j

xAk

as claimed in (14).

Next, we show how to compute L and H in (14) by linear programming. In contrast
to the problem of finding all Nash equilibria of the simultaneous game, the leadership
game is therefore easy to solve computationally. In addition, Corollary 8 provides quickly
computable bounds on the Nash payoffs.

The computation of H in (14) is straightforward: For each j ∈ N, solve the linear
program

max{xA j | x ∈ X( j)} (18)

where X( j) is the polyhedral set in (11) defined by the constraints x≥ 0, ∑i∈M xi = 1, and
xB j ≥ xBk for k 6= j. If these are infeasible, then X( j) is empty and j is never a best reply.
The maximum over j with nonempty X( j) of the values obtained in (18) is H.

The following proposition shows how to find L in (14).
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Proposition 10 The lowest leader payoff L in Theorem 9 is computed as follows:

(a) For each j ∈ N, identify the set N j = {k ∈ N | Bk = B j}.

(b) For each j ∈ N, we have j ∈D if and only if the following linear program has strictly
positive value:

max{ε | x ∈ X , xB j ≥ xBk + ε (k ∈ N−N j) }. (19)

(c) For each j ∈ D, the max-min expression for L in (14) is the value u j of the following
linear program:

max
x∈X( j)

min
k∈N j

xAk = u j = max{u | xAk ≥ u (k ∈ N j), x ∈ X( j)} , (20)

giving L = max j∈D u j.

Proof. Finding N j as in (a) is trivial. According to (16), if X( j) has nonempty interior,
then any point x in X◦( j) has best reply k only if k ∈ N j, so (19) has a solution (ε∗,x∗)
with ε∗ > 0. Conversely, x∗B j > x∗Bk for k ∈ N−N j implies that these inequalities hold
also for any x in a neighborhood of x∗, that is, for some x ∈ X◦( j). This shows (b).

If j ∈ D and x ∈ X( j), then xAk ≥ u for all k ∈ N j is equivalent to mink∈N j xAk ≥ u,
and the largest u subject to these inequalities is equal to mink∈N j xAk. Furthermore, the
maximum such u for all x∈X( j) equals u j in (20), which shows that L in (14) is max j∈D u j
as claimed in (c).

We have proved that the lowest leader payoff L is at least as high as some Nash payoff
(Theorem 2) with the help of Kakutani’s fixed point theorem. For the mixed extension of a
bimatrix game, one can instead consider for each j in D the “constrained game” (Charnes
1953) where player 1 chooses x in X( j) and player 2 mixes over the set N j, with zero-sum
payoff columns Ak to player 1 for k ∈ N j. The respective min-max strategies for player 2,
for each j obtained as the solution to the dual linear program to (20), can be combined
to give a Nash equilibrium with payoff at most L; for details see von Stengel and Zamir
(2004, Theorem 11).

Most of our observations simplify drastically for generic bimatrix games. Generically,
payoff matrices do not have identical columns, and best reply regions are either empty or
full-dimensional. This is asserted in the following proposition. We use “generic” in the
sense that any statement about the game holds also for any game with payoffs sufficiently
nearby. For bimatrix games, an explicit alternative definition is nondegeneracy, which
says that no mixed strategy has more pure best replies than the size of its support (see von
Stengel, 2002); nondegeneracy is a generic property.

Proposition 11 For the mixed extension of a generic bimatrix game, the lowest and high-
est leader payoff coincide, that is, L = H.

Proof. Consider a generic bimatrix game (A,B). Then clearly Bk 6= B j for any k 6= j
and in Proposition 10 we have N j = { j} for j ∈ N. By (14), L = max j∈D maxx∈X( j) xA j.
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We claim that any best reply region X( j) is either empty or full-dimensional. To see
this, consider the optimal value ε∗ of the linear program in (19). If ε∗ > 0, then X( j)
is full-dimensional (so j ∈ D), and if ε∗ < 0, then X( j) is empty because j is never a
best reply. The case ε∗ = 0 does not hold generically, because the constraints in (19)
are independently defined by the payoff columns in B, and the hyperplane defined by the
optimal value of ε would change (to positive or negative if the optimum was zero) for any
slight variation of a suitable payoff. Because pure strategies where X( j) is empty can be
omitted, we have L = max j∈D maxx∈X( j) xA j = max j∈N maxx∈X( j) xA j = H as claimed.

5 Correlated equilibria

In this section, we consider correlated equilibria (Aumann 1974) for bimatrix games. We
first show that the highest leader payoff H as defined in (14) is greater than or equal
to the highest correlated equilibrium payoff to the leader. This strengthens Corollary 8.
Trivially, the lowest leader payoff L in (14) is at least as high as some correlated payoff,
because it is at least as high as some Nash payoff.

We consider the canonical form of a correlated equilibrium, which is a distribution on
strategy pairs. With the notation of the previous section, this is an m× n matrix z with
nonnegative entries zi j for i ∈M, j ∈ N that sum to one. They have to fulfill the incentive
constraints that for all i,k ∈M and all j, l ∈ N,

∑
j∈N

zi j ai j ≥ ∑
j∈N

zi j ak j , ∑
i∈M

zi j bi j ≥ ∑
i∈M

zi j bil . (21)

When a strategy pair (i, j) is drawn with probability zi j according to this distribution by
some device or mediator, player 1 is told i and player 2 is told j. The first constraints
in (21) state that player 1, when recommended to play i, has no incentive to switch from
i to k, given (up to normalization) the conditional probabilities zi j on the strategies j of
player 2. Analogously, the second inequalities in (21) state that player 2, when recom-
mended to play j, has no incentive to switch to l.

Theorem 12 In the mixed extension of a bimatrix game, the highest leader payoff H in
(14) is greater than or equal to any correlated equilibrium payoff to the leader.

Proof. Assume that the leader is player 1. Consider a correlated equilibrium z with prob-
abilities zi j fulfilling (21) above. Define the marginal probabilities on N by

y j = ∑
i∈M

zi j for j ∈ N, (22)

and let S be the support of this marginal distribution, S = { j ∈N | y j > 0}. For each j in S,
let c j be the conditional expected payoff to player 1 given that player 2 is recommended
to (and does) play j,

c j = ∑
i∈M

zi jai j/y j .
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Finally, let s in S be a strategy so that cs = max j∈S c j .

We claim that H ≥ cs, and that cs is greater than or equal to the payoff to player 1
in the correlated equilibrium z, which proves the theorem. To see this, define x in X
by xi = zis/ys for i ∈ M. Let player 1 commit to x in the leadership game. Then s is
a best reply to x by player 2’s incentive constraints (21) for j = s, multiplied by the
normalization factor 1/ys. The corresponding payoff xAs to player 1 is cs. This may
not necessarily define a leadership equilibrium since player 1 may possibly improve his
payoff by a different commitment. At any rate, the payoff cs to player 1 when leader and
follower play as described fulfills cs ≤H. Furthermore, the correlated equilibrium payoff
to player 1 is an average of the conditional payoffs c j for j ∈ S and therefore not higher
than their maximum cs:

∑
j∈N, i∈M

zi jai j = ∑
j∈S, i∈M

y j zi jai j/y j = ∑
j∈S

y j c j ≤ cs ≤ H,

as claimed.

We conclude this paper by considering a generalization of correlated equilibria which
involves a commitment by both players. This is the “simple extension” of a correlated
equilibrium defined by Moulin and Vial (1978, p. 203), which, following Young (2004),
we call coarse correlated equilibrium. We show that such a coarse correlated equilibrium
may give a payoff to the leader which is higher than any leader payoff in the leadership
game.

A coarse correlated equilibrium is given by a distribution z on strategy profiles, which
are chosen according to this commonly known distribution by a mediator. Each player
must decide either to be told the outcome of the lottery z and to commit himself to playing
the recommended strategy, or not to be told the outcome and play some mixed strategy. In
equilibrium, the players commit themselves to playing the mediator’s recommendation,
and do not gain by unilaterally choosing not to be told the recommendation. So a uni-
laterally deviating player knows only the marginal probabilities under z of the choices of
the other players. For two players, the respective inequalities are, for all k ∈M and l ∈ N,

∑
i, j

zi j ai j ≥∑
j

(
∑

i
zi j

)
ak j , ∑

i, j
zi j bi j ≥∑

i

(
∑

j
zi j

)
bil . (23)

These inequalities are obviously implied by the incentive constraints (21); that is, any
correlated equilibrium according to Aumann fulfills (23).

Remark 13 The payoff to a player in a coarse correlated equilibrium of a two-player
game can be higher than any leader payoff in the corresponding mixed extension of the
game.

Proof. Figure 4 shows a variation of the “paper–scissors–rock” game. This game is sym-
metric between the two players, and does not change under any cyclic permutation of
the three strategies. The players’ strategies beat each other cyclically, inflicting a loss
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Figure 4 Game with payoff 0 in a coarse correlated equilibrium, which is higher than
any leader payoff.

−2 on the loser which exceeds the gain 1 for the winner. The game has a unique mixed
Nash equilibrium where each strategy is played with probability 1/3 and each player gets
expected payoff −1/3.

For the game in Figure 4, one coarse correlated equilibrium with payoff (0,0) is a lot-
tery that chooses each of (P, p), (Q,q) and (R,r) with probability 1/3, and any other pure
strategy pair with probability zero. This fulfills (23), but is not a correlated equilibrium.

In the leadership game for Figure 4, it suffices to consider only one best reply re-
gion, say for the first strategy p of player 2. The best reply region for p is the convex
hull of the points (in X , giving the probabilities for P,Q,R), (1/3,1/3,1/3), (3/4,0,1/4),
(0,1/4,3/4), and (0,0,1), with respective payoffs−1/3,−1/2,−5/4, and−2 to player 1.
The maximum of these leader payoffs is therefore −1/3, which is the same for any best
reply region because of the symmetry in the three strategies. In this game, leader and Nash
payoff coincide. By Theorem 12, the highest correlated equilibrium payoff is also −1/3,
which is also the lowest correlated equilibrium payoff since it is the max-min payoff.

We have shown that in the game in Figure 4, there is a coarse correlated equilibrium
which gives a payoff which is higher than the (unique) leader payoff of the mixed exten-
sion of the game. The coarse correlated equilibrium concept involves a commitment by
both players to a correlated device. However, this concept does not generalize the sub-
game perfect equilibrium of a leadership game, because it has correlated and Nash equilib-
ria of the simultaneous game as special cases, whereas leadership payoffs are generically
unique.
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