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Abstract: 

In coastal and estuarine waters, high turbidity and land interference 

severely diminish the utility of satellite data. This study tested the accuracy of 

hyperspectral inversion algorithms to better resolve chlorophyll a estimates in the 

Chesapeake Bay. Hyperspectral instruments measure reflected light with much 

greater spectral resolution than the multispectral instruments currently deployed 

on ocean-observing satellites. Increased spectral resolution allows for better 

approximation of phytoplankton concentrations in optically complex waters. This 

research seeks to test optical inversion algorithms designed for turbid waters like 

the Chesapeake Bay. By pairing in situ measurements of chlorophyll with 

electromagnetic spectrum measurements, we determined the most accurate 

algorithms for use in the Chesapeake Bay. These algorithms can then be 

employed in future remote sensing studies to yield accurate chlorophyll 

measurements in fine temporal, and spatial time scales. 
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Introduction: 

Overview 

Ecological research has been greatly served by the advent of remote 

sensing technology in the 1960’s. Remotely sensed data are becoming ever 

more prevalent as new technologies and new mathematical techniques to use 

these technologies emerge. My research centered on using new technology to 

better quantify levels of phytoplankton in the Chesapeake Bay, the largest 

estuary in the United States. To appreciate the relevance, and importance of this 

research, I will briefly describe the role of the world’s oceanic ecosystems in the 

global carbon cycle. I will describe the biological solubility pump, which accounts 

for two thirds of the total carbon exported from surface waters to the deep ocean. 

This will be followed by a brief description of estuarine ecosystems, which link 

riverine systems to oceanic environments. Because of the importance of 

phytoplankton on the biological solubility pump in the world’s oceans and on the 

primary production (a gross measurement of inorganic carbon fixed into organic 

molecules) of estuaries, I will evaluate the growing body of scientific research on 

phytoplankton population dynamics. Next, I will describe the Chesapeake Bay in 

detail, and define the current state of its health. I will then discuss the way in 

which ecosystem level measurements are made using remote sensing. These 

techniques are currently robust in oceanic ecosystems, but lack accuracy and 

consistency in estuaries, for reasons I will elucidate. Hyperspectral radiometers 

are replacing multispectral radiometers because of their higher spectral 

resolution. I will discuss the development of inversion algorithms designed 
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specifically for hyperspectral radiometers, and finally delve into my research, 

which sought to test inversion algorithms designed for the Chesapeake Bay. 
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Carbon cycling in the world’s oceans 

 Throughout the Earth’s history, the world’s oceans have played a crucial 

role in global climate cycles (Riebesell 2009, Falkowski et al. 2009, Sutton and 

Hodson 2005). Capable of storing 1,000 times more heat than the continents, 

oceans are the primary drivers of heat transport throughout the globe (Riebesell 

2009). Because of their impact on wind-driven atmospheric currents, ocean 

currents are responsible for many decadal climate patterns, such as the warm 

summer months in North America and Northern Europe (Sutton and Hodson 

2005). 

 The world’s first life forms evolved in oceans millions of years before 

continental plates emerged (Canfield 2005). The evolution of oxygen producing 

organisms 2.4 billion years ago was arguably the most important evolutionary 

event since the first nucleotides became self-replicating (Canfield 2005). Oxygen 

is the principle reducing agent used by life on Earth. From their inception until 

251 million years ago. Cyanobacteria were the principal producers of Oxygen 

until more complex taxas of aquatic life evolved (Flores and Herrero 2008). The 

beginning of the Mesozoic period (251-65 mya) saw the radiations of 

dinoflagellates, coccolithophorids and diatoms, however cyanobacteria continue 

to play a critical role in marine ecosystems to this day, especially in oceanic 

gyres (Flores and Herrero 2008). Collectively, these aquatic photoautotrophs are 

known as phytoplankton, from the latin ‘phyto,’ meaning light, and ‘plankton,’ 

meaning wanderer (Kirk 2011). Broadly speaking, phytoplankton are microscopic 

plants that convert radiant solar energy into chemical energy using specialized 

light capturing pigments. Phytoplankton principally rely on chlorophyll a, but may 
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use a suite of other light capturing pigments as well (Kirk 2011). Besides their 

contribution to maintaining atmospheric oxygen concentrations, phytoplankton 

play a critical role in the biological carbon pump of the world’s oceans. 

 Atmospheric CO2 is exchanged rapidly between terrestrial and oceanic 

ecosystems (Volk and Hoffert 1985). The relative rates at which both reservoirs 

exchange gases with the atmosphere effectively determine the overall rate of 

change of atmospheric CO2 (Falkowski et al. 2009). The world’s oceans 

represent a pool of 38,400 gigatons (Gt) of carbon, compared to the terrestrial 

biosphere which pools about 2,000 Gt of carbon (Toggweiler et al. 2003). 

Compared to the atmosphere, the world’s oceans contain 50 times the amount of 

dissolved inorganic carbon (DIC) (Plattner et al. 2001). carbon is exchanged 

much more quickly with the oceanic reservoir than the terrestrial reservoir 

(Plattner et al. 2001). Because of this quick exchange time, on millennial scales, 

oceans determine atmospheric CO2 concentrations: Atmospheric CO2 

concentrations do not determine oceanic CO2 concentrations (Falkowski et al. 

2009). 

 Atmospheric CO2 is continuously exchanged with the ocean surface; 

therefore, the ocean surface rapidly equilibrates with the atmosphere (Riebesell 

et al. 2009). Once dissolved in oceans, DIC may follow one of three paths. It may 

become bicarbonate, and eventually sink below 100 meters where it cannot 

exchange with the atmosphere (a process known as export), or it may be 

incorporated into organic molecules by phytoplankton. I will briefly expound on 

each of these three processes.  
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 Upon dissolution of CO2, carbon forms a weak acid that reacts with 

carbonate ions and water to form bicarbonate (Hedges 1992). This efficacy of 

this buffer system to absorb inorganic carbon is dependent on the addition of 

cations from weathering rocks, which is an extremely slow process (Hedges 

1992). Because the rate of CO2 emitted from humans is increasing much more 

rapidly than the addition of cations, global oceans are becoming increasing acidic 

and less efficient absorbers of CO2 (Plattner et al. 2001). A further discussion of 

the changing global oceans is discussed later in this section. 

 Vertical mixing is the process by which CO2-saturated ocean water is 

exported to depth and is no longer able to exchange with the atmosphere. The 

two processes that govern this phenomenon are known as the solubility pump 

and the biological pump (Volk and Hoffert 1985). Because colder, more saline 

water has a higher solubility for CO2, the northern latitudes absorb more CO2. 

During the spring and fall turnovers, the dense surface waters, and all the CO2 

therein, are exported to depth and effectively stored in the deep ocean carbon 

sink. It may take decades to several hundred years for the deep ocean to reemit 

the stored carbon (Riebesell et al. 2009). Climate models suggest that as oceans 

warm in the coming decades, increasing stratification of the water column will 

prevent vertical mixing, and therefore diminish the ability of the solubility pump to 

absorb atmospheric carbon (Sarmiento and Le Quere 1996). Increasing oceanic 

stratification will also weaken currents and will likely have significant impacts on 

global weather patterns (Riebesell et al. 2009). The solubility pump accounts for 

roughly one third of all DIC export. 
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 The biological pump accounts for the export of two thirds of DIC in the 

world’s oceans (Riebesell et al. 2009). The biological pump begins with 

photosynthesis by phytoplankton, a process that uses DIC and therefore lowers 

the partial pressure of CO2 in the photic zone (the depth to which light energy 

penetrates) (Falkowski et al. 2000). 25% of the carbon fixed by phytoplankton is 

exported to the aphotic zone (the depth to which no light reaches), where it is 

oxidized by heterotrophic organisms, mostly prokaryotes (Falkowski et al. 2000). 

The export of carbon by phytoplankton accounts for between 11 and 16 Gt of 

carbon per year and keeps atmospheric CO2 concentrations 150 to 200 parts per 

million (ppm) lower than they would be in the absence of phytoplankton 

(Falkowski et al. 2000). Because of its ubiquity in all forms of life, the carbon 

cycle is closely linked to biological activity. 

 Net primary production (NPP) is a measure of the atmospheric CO2 or DIC 

which is fixed into organic molecules by primary producers and therefore 

available to heterotrophic organisms. Specifically it is the rate at which primary 

producers fix carbon (gross primary production) minus the rate at which primary 

producers respire inorganic carbon (McGuire et al. 1997). Beyond their 

importance in the carbon cycle, photosynthesis by marine organisms produces 

between 30 and 60 petagrams (1 Pg = 1015 g) of organic carbon per year (Smith 

and Hollibaugh 1993), which accounts for upwards of 40% of the total NPP on 

Earth (Schlesinger 1991). The responses of NPP to anthropogenic carbon 

emissions are of concern because humans derive all their food, fuel and fiber 

from primary producers (Vitousek et al. 1986). NPP measurements are becoming 
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more accurate and detailed as remote sensing technologies improve. I will 

discuss these technologies further in a future section. 

 The oceans have already absorbed an estimated 50% of anthropogenic 

CO2 (Riebesell 2009). However, negative feedback loops have lowered the 

efficacy of the carbon pumps to export carbon to the deep ocean. The rate at 

which carbon export will decrease, and the implications thereof, is still uncertain 

(Bopp et al. 2001). I will expound upon the most pertinent negative feedbacks 

currently in effect. 

 The arctic ocean surface layers have been warming and freshening, 

reducing their solubility of CO2, and weakening global currents that contribute to 

vertical mixing in other regions of the globe (Gregory et al. 2005, Curry and 

Mauritzen 2005). The weakening currents will decrease the oceanic uptake of 

carbon by 3-20%, and the reduced solubility of warmer ocean waters will reduce 

the oceanic uptake of carbon by 9-15% by the end of the 21st century (Riebesell 

2009). The biological carbon pump is much more difficult to model, and scientists 

are unsure about how phytoplankton populations will respond to increasing 

ocean temperatures, decreasing salinity, and decreasing mixing (Gregory et al. 

2005). Warmer temperatures tend to favor the growth of heterotrophic grazers 

(zooplankton that eat phytoplankton), and reduced mixing will undoubtedly limit 

the ability for phytoplankton to grow, however it is possible that the increasing 

DIC in the photic zone will favor the growth of some phytoplankton taxa with 

inefficient CO2 acquisition pathways (Riebesell 1993). Although governed by the 

same physical processes, estuaries are characterized by a much higher degree 

of primary productivity and a much lower degree of DIC export than oceans. 
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Carbon cycling in Estuaries 

 Although marine research has typically centered on the open ocean, 

coastal environments and estuaries are extremely important drivers on the global 

carbon cycle (Mcleod et al. 2011). Although they may be inundated with water for 

extended lengths of time, coastal salt marshes, mangrove forests, and seagrass 

meadows are considered terrestrial ecosystems by earth systems modelers. 

These ecosystems, so called “blue carbon reservoirs” have a high capacity for 

sequestering carbon. Despite their relatively low land cover, coastal ecosystems 

bury levels of carbon comparable to those of terrestrial forests (Mcleod et al. 

2011).   

 Estuaries are considered oceanic ecosystems by earth systems modelers, 

and they are typically included in the carbon budget of oceans. Estuaries do not 

export carbon to the deep ocean: instead, they support a high degree of net 

primary productivity (NPP) and function to release carbon into the atmosphere 

(Cloern et al. 2014). In fact, the high respiration rates in estuaries reduces the 

total calculated oceanic global CO2 uptake by 12% (Borges 2005). Organic 

carbon is cycled more efficiently in estuarine environments and coastal oceans 

(Smith and Hollibagh 1993). Several factors likely impact this trend, most 

importantly, estuarine systems receive high degrees of nutrient influx which 

foster the concentrated growth of phytoplankton, and are subject to periodic 

mixing episodes which help to redistribute nutrients and organic matter (Smith 

and Hollibagh 1983). Because of the magnitude of human perturbation to riverine 

systems which eventually flow into estuaries, the degree to which human activity 

is altering the carbon dynamics of estuaries is most likely more severe for 



9 
 

estuaries than the open ocean (Holligan and Reiners 1992).  The need for large-

scale ecosystem measurements is therefore difficult to overemphasize. 

 Quantifying the extent to which estuaries contribute to global primary 

production and the release of carbon, is obfuscated by their high degree of 

environmental variability. Estuary nutrient availability and stratification are 

affected by the following: the seasonal upwelling of deep, nutrient-rich water from 

oceans; the seasonal influx of warm, freshwater from the continental watershed; 

wind patterns, tidal fluctuations, and long-term ocean current oscillations; global 

climate change, and sea level rise; and the abundance of benthic organisms, and 

submerged aquatic vegetation (SAV), which regulate nutrient recycling (Cloern et 

al. 2014). A study of the net primary production of any ecosystem begins with the 

base of the food web. As in their oceanic counterpart, phytoplankton account for 

most of the primary production in estuarine environments, therefore in the next 

section I will examine the role of phytoplankton in estuarine environments in 

further detail.  

Primary production in estuaries 

 Unlike the open ocean, very little carbon is exported to depths in 

estuaries, most is eventually respired back into the atmosphere by heterotrophs 

(Borges 2005). Because of their position at the base of the estuarine food web, 

phytoplankton are the most important drivers of the carbon cycle in estuaries. 

Phytoplankton enrich dissolved organic carbon with lipids and nitrogen creating 

easily assimilated energy sources for heterotrophic organisms. Most (~90%) of 

the organic matter produced by phytoplankton is consumed or decomposed to 

support heterotrophic metabolism (Duarte and Cebrian 1996). This stands in 



10 
 

contrast to organic carbon from land runoff, which is typically low in nutrients and 

is primarily metabolized by microbial decomposers (Sobczak et. al 2005). 

Vascular plants and macroalgae also produce a significant amount of organic 

matter. However, only 20% of their organic matter is consumed by heterotrophs, 

the majority is recycled back into CO2 by decomposers, or exported to sediment 

(Cebrian 1999). Understanding phytoplankton population dynamics in estuaries 

will allow for a better understanding of the total amount of carbon being emitted 

into the atmosphere from estuaries. Phytoplankton population dynamics are best 

understood in ocean ecosystems, therefore in the next section I will describe the 

current understanding of phytoplankton dynamics in the world’s oceans. 

Global phytoplankton population dynamics 

 To understand the long-term patterns of phytoplankton population 

variation, and to better tease apart anthropogenic influences from natural cycles, 

oceanic researchers have been expanding and modifying the current view of 

phytoplankton growth dynamics. Phytoplankton populations are characterized by 

periods of stability interspersed with periods of rapid growth and subsequent die 

offs, commonly referred to as “blooming.” The traditional view of phytoplankton 

blooms has centered on “bottom-up” controls of phytoplankton growth; namely 

the influence of nutrient and light limitation of phytoplankton growth. This 

hypothesis also maintained that the rapid growth of phytoplankton depended on 

an ecological disturbance event, e.g., the decreasing stratification of the water 

column in the spring and fall, to begin acceleration phytoplankton division rates. 

This view pervaded the literature of biological oceanography until a number of 

large-scale iron-enrichment studies were conducted in the 1990s (Behrenfeld 
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2010, Boss and Behrenfeld 2010, Behrenfeld et al. 2013). The emerging 

consensus among biological oceanographers is that top-down (i.e., higher trophic 

level interactions between autotrophic phytoplankton and heterotrophic 

zooplankton) controls must be accounted for in order to explain phytoplankton 

blooming (Behrenfeld 2014). This hypothesis was greatly bolstered by a handful 

of key, turn-of-the-century oceanographic expeditions. 

 Four recent experiments artificially added iron to iron-limited areas in the 

world’s oceans (Boyd et al. 2004, Tsuda et al. 2003, Coale et al. 1996, Boyd et 

al. 2000). In all four of the experiments, phytoplankton began to grow 

exponentially after 4-5 days. Growth began to slow and then decrease linearly in 

about a week (Boyd et al. 2004, Tsuda et al. 2003, Coale et al. 1996, Boyd et al. 

2000). Interestingly, phytoplankton growth stopped rising before the depletion of 

iron. Because neither light nor nutrients were limiting phytoplankton growth in 

their study area, their growth must have been checked by grazers (Landry et al. 

2000, de Baar et al. 2005).  

 Further evidence for the importance of top-down regulation on 

phytoplankton growth was found upon the taxonomic identification of the 

blooming species of phytoplankton. Initially many diatom species were present in 

the study areas, however, in all four experiments, the blooming population was 

composed of only one species of phytoplankton. The blooming species not 

consistent among the four study sites. Because most diatom species experience 

similar stimulation due to iron enrichment and have similar division rates, the only 

logical explanation appeared to be trophic web interactions: the blooming 
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population of diatoms must have been the species that experienced the least 

predation (Behrenfeld 2014).  

 The dynamics of the lower levels of marine ecosystems are complex. Both 

phytoplankton and zooplankton display a dizzying array of morphologies which 

have implications for their ability to prey upon or avoid predation successfully. 

Furthermore, the life histories of marine creatures are complex and depend upon 

food availability, and the physical characteristics of their environment (Verity et 

al. 2002). Therefore, it is likely that one species tends to dominate in blooming 

populations because that population happened to have physical traits that 

prevented its consumption by zooplankton (Mariani et al. 2013).  

 To add further credence to the importance of the top down hypothesis, 

ecosystem modelers began to incorporate a carnivore predation term into their 

ocean models as a density dependent loss rate (Calber and Landry 1999). When 

combined with “bottom up” information, e.g., mixed layer depth, ocean 

temperature, light attenuation, the ocean models began to satisfactorily predict 

both the magnitude and intensity of oceanic phytoplankton blooms within a broad 

spatial scale (Behrenfeld 2014). Because these models now take into account 

the ecosystem feedbacks between phytoplankton and their grazers, scientists 

can now predict both the time and place of major phytoplankton blooms in the 

global oceans. Furthermore, a more robust bloom hypothesis has been proposed 

which blends aspects of the previous bottom down hypothesis to the top down 

hypothesis: The current consensus is that phytoplankton blooms form because of 

an ecosystem interruption (e.g., rapid nutrient influx from storm events, seasonal 

water column inversion, freshwater intrusion) which causes phytoplankton growth 



13 
 

to decouple from predation and allow the formation of a bloom until grazers can 

regain high population levels (Anderson et al. 2010). 

 The above insights represent significant advancements the study of the 

biological carbon pump. However, a greater level of refinement is necessary in 

order to predict blooms in coastal and estuarine environments (Behrenfeld et al. 

2013). Although the above research centered on phytoplankton populations in 

the open ocean, these findings no doubt play important roles in coastal and 

estuarine environments (Behrenfeld 2014). The impact that top down controls 

play in more productive environments is an active area of research.  

 Although worldwide, phytoplankton levels appear to be geometrically 

decreasing (Boyce 2010), levels have been markedly increasing in the 

Chesapeake Bay since at least the 1950’s (Harding 1994). To date, little to no 

research has been done to elucidate the impacts of grazers on controlling 

blooms and hence impact the carbon cycle, in estuarine environments. The first 

steps in establishing a satisfactory ecosystem model must include more detailed 

information on phytoplankton population levels within fine spatial and temporal 

scales (Anderson et al. 2010 and Prowe et al. 2012). Only then can a more 

nuanced understanding of phytoplankton growth dynamics in estuaries be 

adequately characterized to predict when and where phytoplankton populations 

will bloom, as well as to understand which phytoplankton species will bloom. My 

research ultimately seeks to improve upon our understanding of phytoplankton 

populations in the Chesapeake Bay.  
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Phytoplankton dynamics in the Chesapeake Bay 

 The Chesapeake Bay is the largest estuary in the USA (Darrell 1998). It is 

almost 300 km long, with a relatively deep (20 to 30 m) and narrow (1 to 4 km) 

central channel confined by a sill at its inward end (Darrell 1998). Approximately 

half of the Chesapeake Bay’s water supply originates from the Atlantic Ocean, 

while, the other half originates from its enormous (~166,530 km2) watershed 

(Darrell 1998). Collectively, the Bay’s three largest rivers, the Susquehanna, 

Potomac, and James Rivers, provide 80% of the freshwater flow into the bay 

(Darrell 1998). Strong river flow is the predominant driver of estuarine circulation: 

warm freshwater sits atop counter-flowing, dense sea-water and acts to retain 

particulate and dissolved materials in the Bay. Consequently, this circulation 

regime promotes long nutrient residence times (90 to 180 days) (Pritchard 1956; 

1967). It also sets up well-defined stratification, which ultimately suppresses 

vertical nutrient exchange and isolates the deeper channel waters (Boicourt 

1992). The level of the water column through which irradiant light energy 

penetrates is known as the euphotic zone (Martin 2014). Nutrients are cycled 

more efficiently in the euphotic zone of the Chesapeake Bay than the aphotic 

zone.  

 The primary drivers of nutrient and carbon cycling in the Chesapeake Bay 

are phytoplankton (Sobczak et. al 2005). Within the first ten meters of the water 

column, phytoplankton metabolize nutrients efficiently (Boicourt 1992). 

Phytoplankton species dynamics change both seasonally and on interannual 

timespans (Kemp et al. 2005). Although it is difficult to isolate seasonal variability 

from long-term changes, phytoplankton dynamics have been undergoing definite 
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changes since measurements began in the early 20th century (Kemp et al. 2005). 

Diatom species abundance has been declining relative to smaller dinoflagellates, 

cyanobacteria, and small flagellates (Zimmerman and Canuel, 2002). Because 

smaller taxa of phytoplankton are lower quality food sources for copepods and 

oysters, the taxonomic composition of phytoplankton holds implications for the 

entire Chesapeake Bay food web (Verity 1988).  

 Phytoplankton undergo predicable patterns of seasonal variation. 

Enhanced precipitation in the winter and early spring lead to high levels of 

available nutrients in the euphotic zone (Verity 1988). Consequently, a large 

bloom of centric diatom bloom occurs in the spring (Verity 1988). The blooming 

diatom population is eventually checked by a burgeoning zooplankton population 

composed of copepods and rotifers (Verity 1988). These species are then 

consumed by gelatinous predators such as ctenophores and medusa, and fish 

such as menhaden and blue herring (Verity 1988, Baird and Ulanowicz 1989). In 

the summer months, smaller species of phytoplankton tend to bloom, such as 

various species of dinoflagellates, picoplankton and small centric diatoms (Najjar 

et al. 2010). Overall, the food web of the Chesapeake Bay is complicated and not 

static in time; it is subject to a huge variety of exogenous inputs and 

environmental factors. Attempting to delineate cause and effect in the estuarine 

food chain is therefore extremely challenging (Verity 1988, Baird and Ulanowicz 

1989). It is clear however that the influx of anthropogenic nutrients has been 

negatively affecting the health of the Chesapeake Bay. 

 Nutrient loading in the bay has undergone a marked increase since 

intensive agricultural operations began in 1850 (Darrell 1998). Phytoplankton 
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responsiveness to eutrophic conditions is not totally understood, but 

phytoplankton biomass and reproduction are clearly positively correlated with 

nutrient loading (Nixon 1992). Sellner et al. (1998) found that when sewage 

discharge into the Chesapeake Bay was screened of phosphorous, in the early 

1970’s, the frequency of the toxic cyanobacterium, Microcystis aeruginosa 

declined sharply (Sellner et al. 1988; Jaworski 1990). When eutrophic conditions 

persist, phytoplankton populations may bloom and cause direct harmful effects, 

including production of toxins, noxious discoloration, diminution of water clarity 

and floating mucilage (Kemp et al. 2005). As blooming populations die, their 

bodies are broken down by bacterial decomposers, which have a high demand 

for dissolved oxygen. Phytoplankton blooms, therefore, tend to increase hypoxia. 

Furthermore, large accumulations of phytoplankton shade submerged aquatic 

vegetation, which may contribute to their death as well as exacerbate hypoxia 

(Harding 1994). This drain in oxygen severely limits heterotroph respiration, and 

periodic, anoxic dead zones are becoming increasingly common (Kemp et al. 

2005).  

 Although complex and changing rapidly, the Chesapeake Bay’s food web 

is characterized by a high level of primary production, and abundant marine life 

(Cloern et al. 2014). Because of their position at the base of the estuarine food 

web, phytoplankton populations have implications on commercial fish and 

benthic invertebrate populations (Herman et. al,1999). To date, our knowledge of 

phytoplankton populations in the Chesapeake Bay is sparse in both temporal and 

spatial scales (Cloern et al. 2014). Remote sensing has the potential to provide 
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robust phytoplankton concentration data in the Chesapeake Bay. It has already 

been used extensively in the open ocean.  

Measuring ecosystem-scale processes 

 Up until the 1980’s, ocean research is conducted by means of discrete in 

situ measurements from research piers or vessels. The C14 tracer method was 

developed and tested by Steeman Nielson in 1952 to track the radioactive signal 

of carbon tracers throughout the ocean ecosystem (Longhurst et al. 1995). A 

great degree of methodological criticisms suggested that the tracer method 

tended to underestimate production rates, and this method largely fell out of favor 

as satellite-mounted radiometer data became more widely available (Longhurst 

et al. 1995). Costs of fuel and equipment also limited the spatial and temporal 

extent of data available for marine environments.  

 With the advent of satellite imagery in the late 1960’s, scientists have 

been collating a vast database of ocean light data (Martin 2004). The MODIS 

camera aboard the AQUA satellite is used for remote sensing information in the 

open ocean (Martin 2004). This multispectral camera scans light in 6 discrete 

wavebands. From these wavebands, scientific institutions such as NASA and 

NOAA have created algorithms which invert light data into ecosystem 

parameters. Oceanographers have been refining data processing protocols to 

remove the effects of sun angle away from the nadir, wind-born water vapor, and 

scattering by atmospheric particles (Martin 2004). After processing, light data can 

be scaled to relevant ecosystem parameters, such as water depth, temperature, 

carbon biomass, and chlorophyll concentration (Silsbe 2016). The processed 
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light data can then be inverted into a biologically prevalent parameter such as 

NPP. 

 As stated above, one of the key goals of marine ecosystem modelers is to 

understand the biological carbon pump of the ocean, i.e., the process by which 

inorganic carbon is either exported to the deep ocean or made available for use 

by heterotrophic organisms via primary producers (Riebesell 2007). An 

understanding of this process is necessary to develop accurate accounts of the 

net primary productivity of the world’s oceanic ecosystems. Currently, a great 

deal of uncertainty pervades oceanic NPP estimates: estimates range from 32 to 

79 Pg C m-2 yr-1 (Pg C is petagrams of carbon) (Carr et al. 2006).  

 The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFÉ) net 

primary production model is the most advanced method for determining NPP. 

The model uses the light absorption attributable to phytoplankton to extrapolate 

their growth rate, µ. µ is then multiplied by the biomass of phytoplankton to yield 

NPP. Using this model, the current best-estimate for annual net primary 

production is 52.2 Pg C m-2 yr-1 (Silsbe 2016). Unfortunately, the strength of 

these models to estimate NPP in estuarine environments is limited due to high 

sediment loading which obfuscates the reflectance spectra and therefore 

diminishes the accuracy of ocean color inversion algorithms (Kirk 2011).  The 

current best estimate of the NPP in the Chesapeake Bay stands at 50 g C m-2 yr 

(Kemp 1997). However, this estimate was created using data high inaccuracy 

relative to ocean measurements (Cloern et al. 2014). Furthermore, estuaries are 

dynamic and exhibit a large amount of temporal and spatial heterogeneity in 

production (Cloern et al. 2014), therefore greater spatial and temporal data 
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offered by new hyperspectral radiometers will greatly improve our understanding 

of these productive environments. 

Hyperspectral Remote Sensing  

 Hyperspectral radiometers have broader spectral ranges and higher 

resolutions than multispectral radiometers. NASA is currently scheduled to 

launch the PACE satellite in 2020 which is the first satellite to be equipped with a 

hyperspectral radiometer (Martin 2004). The greater spectral detail will allow 

modelers to use reflectance information from more wavelengths to better 

differentiate the reflectance of phytoplankton from the reflectance of sediment. 

More accurate NPP estimates will be available for highly productive coastal 

waters and estuaries, such as the Chesapeake Bay. In this research, I focused 

on inversion algorithms designed to yield greater accuracy of chlorophyll levels in 

turbid environments. From accurate chlorophyll measurements, accurate 

phytoplankton concentration can be estimated. These estimates will better 

characterize the NPP of the Chesapeake Bay. In the next section, I will describe 

the process by which light data is inverted to ecosystem parameters. 

Remote sensing inversion 

 Satellite mounted radiometers measure the light reflected from the surface 

of the Earth. Remote sensing reflectance, 𝑅𝑅𝑆(𝜆), is the upwelling radiance, 

Lu(𝜆), normalized to the downwelling irradiance, Ed(𝜆) (1). 

  𝑅𝑅𝑆(λ)  =
𝐿𝑢(𝜆)

𝐸𝑑(𝜆)
   (1) 

𝑅𝑅𝑆(𝜆) is an apparent optical property of aquatic media: it depends on the unique 

absorbance and scattering functions of each component within the water column, 
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i.e., the inherent optical properties (IOPs) of the medium. The components of the 

aquatic medium remove energy from a light beam as it propagates through the 

water column. Components may either scatter light energy or absorb light energy 

(Bukata 1995). Under a simplified model, the pertinent components of the water 

column are Colored Dissolved Organic Molecules (CDOM), phytoplankton, 

sediment and water itself.  

 Scattering occurs when light causes electrons to oscillate and reradiate 

light at a different angle (Meyer-Arendt 1972). The loss of light energy due to 

scattering is dependent on the incident angle of the light beam, and component 

size and composition (Bukata 1995, Dickey et al. 2011). The variability of 

scattering due to component size, composition, and incident light angle makes 

accurately describing scattering difficult, therefore improved scattering 

measurements will have the largest impact on the optical closure of reflectance 

inversion algorithms (Tzortziou 2007). Total backscattering, 𝑏𝑏(𝜆), is the sum of 

the backscattering due to phytoplankton, 𝑏𝜙(𝜆), particulate matter, 𝑏𝑝𝑚(𝜆), and 

water, 𝑏𝑏𝑤(𝜆) (backscattering due to CDOM is negligible) (Equation 2).  

  𝑏𝑏(𝜆) = 𝑏𝜙(𝜆) + 𝑏𝑝𝑚(𝜆) +  𝑏𝑏𝑤(𝜆)  (2) 

 Light absorption occurs when light of a particular frequency passes 

through matter, sets electrons oscillating, and is not reemitted (Meyer-Arendt 

1972). Light absorption is dependent on the unique resonance frequencies of 

molecules, and not the angle of incident light, therefore it is more easily 

predictable than scattering (Stomp et al. 2007 and Martin 2007). Total 
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absorbance, 𝑎(𝜆),  is the sum of the absorbance due to phytoplankton, 𝑎𝜙(𝜆), 

pure water, 𝑎𝑤(𝜆), CDOM, 𝑎𝐶𝐷𝑂𝑀(𝜆), and particulate matter, 𝑎𝑝𝑚(𝜆) (Equation 3).  

  𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝜙(𝜆) + 𝑎𝐶𝐷𝑂𝑀(𝜆)+𝑎𝑝𝑚(𝜆) (3) 

 As stated earlier, under a simplified model, the scattering and absorption 

of these three aquatic constituents account for all of changes in light energy as it 

is transmitted through the aquatic medium (Mobley 2014). Thus, 𝑅𝑅𝑆(𝜆) is an 

emergent property of the unique absorption and scattering properties of every 

element within the water column (Equation 4). 

  𝑅𝑟𝑠(𝜆) =
𝑏𝑏(𝜆)

𝑏𝑏(𝜆)+𝑎(𝜆)
. (4) 

 CDOM (also referred to as gelbstoff, yellow substance, and 

chromomorphic dissolved organic matter) is derived from several sources, both 

terrestrial and marine (Martin 2014). The exact constituents of CDOM vary 

between environments (Martin 2014). Terrestrial CDOM is typically composed of 

decaying vegetable matter, which decompose into humic and fulvic acids (Martin 

2014). Oceanic CDOM is composed of dead phytoplankton and zooplankton 

fecal pellets (Roesler et al.,1989). The absorption of CDOM across wavelengths 

follows a logarithmic decay. CDOM tends to be the dominant absorber of light 

until 500 nm, at which point water is the dominant absorber (Kirk 2011). CDOM’s 

contribution to scattering tends to be negligible in comparison to particulate 

matter (Kirk 2011). 

 Particulate matter is tidally stirred sediment, eroded soil, or detritus (Moore 

1999). Land runoff is generally much higher in overgrazed pastures, and logged 
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forests (Kirk 2011). The exact amount of soil eroded is also dependent on the 

vegetation type, the soil composition, the slope of the land, and the intensity of 

rainfall (Kirk 2011). Once in water, particles in suspension become sedimented at 

varying rates. The amount of time particles remain suspended depends on the 

electrolyte concentration within the water body (Kirk 2011). Particulate matters 

absorb very little across all wavelengths (Kirk 2011). The presence of particulate 

matter substantially increases scattering in inland water bodies (Nolen 1985). 

The degree to which particles scatter light is both a property of particle size and 

particle concentration, however particle size has been shown to be much more 

important on scattering intensity, with larger particles tending to scatter more light 

than smaller particles (Kirk 1985). In turbid environments, the wavelength 

dependence of scattering by particulate matter can be described by a power law: 

higher wavelengths are scattered more than lower wavelengths (Morel and 

Prieur 1977). In turbid waters, the ratio of light scattered at 700 nm to 300 nm 

was found to be 1.84 (Morel and Prieur 1977). Scattering of light by larger 

particles exhibits increasing wavelength dependence than scattering by small 

particles (Martin 2014). 

 Phytoplankton capture light energy in special photo-system complexes to 

reduce inorganic carbon into organic molecules (Kirk 2011).  Light absorption 

due to phytoplankton depends on the exact pigment types expressed, and their 

cellular size and composition (Kirk 2011). Because Chlorophyll molecules absorb 

light in the red and blue wavelengths, absorption by phytoplankton exhibit two 

distinct peaks in these wavebands (Kirk 2011). In his 1998 study, Volten found 
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that the backscattering of light attributable to phytoplankton was had negligible 

impacts on RRS(λ) measurements (Volten 1998).  

 The exact way in which water absorbs light depends upon the three 

vibrational modes of the water molecule (Stomp et al. 2007). Unlike most 

substances the blue color of pure water is due to molecular vibrations and not 

electron interactions (Dickey 2011). Water is primarily an absorber, and pure 

water tends to scatter much less light than particulate matter (Volten 1998). The 

wavelength dependence of water absorbtion is a well-established function of 

temperature and salinity (Silsbe, pers. comm.). 

 Because of the high degree of backscattering attributable to particulate 

matter, site-specific algorithms have been developed to isolate chlorophyll 

concentration information in the turbid waters (henceforth referred to as “case II” 

waters). These algorithms use features in the reflectance spectra to isolate IOPs 

of equations 2 and 3. In my study, I used algorithms which inverted RRS(λ) into a 

𝑎𝜙(𝜆), from which the concentration of Chlorophyll a can be extrapolated based 

on measured constants. 

Case I vs. Case II remote sensing  

 In the open ocean (case I waters), phytoplankton tend to be the dominant 

non-water absorbers of radiation (Martin 2015).Therefore, phytoplankton light 

absorbance can be easily ascertained and extrapolated into phytoplankton 

concentration data by simply taking a ratio of the light reflected in green 

wavelengths to the light reflected in the blue wavelengths (Martin 2014). 

However, in estuarine and coastal waters (case II waters) CDOM and sediment 
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tend to obfuscate the reflectance spectrum (Tzoztiou 2007). Therefore, 

generating reliable phytoplankton concentration estimates in case II waters, with 

large riverine inputs of dissolved and suspended particulate matter, is difficult 

(Moreno-Madriñán and Fischer 2013). Typical case II inversion algorithms in 

utilize the reflectance minimum at 672 nm (Figure 1). Chlorophyll a exhibits 

strong absorption in this red waveband, therefore if the light intensity absorbed 

by CDOM and scattered by sediments are removed from the RRS(λ) at this 

waveband, accurate retrievals of phytoplankton absorbance are possible 

(Tzortziou 2007). The absorption of phytoplankton can then be scaled to 

phytoplankton concentrations using standardized relationships developed by 

researchers (Kirk 2011). Because of the variability of backscattering by 

particulate matter in the Chesapeake Bay, researchers have been working to 

refine spectral inversion algorithms which can accurately measure chlorophyll a 

absorbance, and consequently phytoplankton concentration, in all parts of the 

bay (Tzortziou 2007). 
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FIG. 1. Example reflectance spectrum from a case I water. Note the distinct peak at 555 nm, and 
the minimum at 672nm, both of which are attributable to phytoplankton. 

 I evaluated the accuracy of four of these inversion algorithms using in situ 

measurements of chlorophyll paired with electromagnetic spectrum data taken by 

hyperspectral radiometers. More accurate and more frequent chlorophyll 

measurements will shed light on the health of the bay, and allow for better 

understanding of the role estuaries play in the global carbon cycle.  
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Methods: 

Study Site 

 The Choptank River is situated in the northern half of the Chesapeake Bay 

in the Delmarva Peninsula in Maryland. It lies entirely in the Atlantic Coastal Plain 

(Darrell 1998). The Choptank River has a drainage basin encompassing 

approximately 2,059 km2 (Darrell 1998). In general, the Choptank Basin has been 

characterized as a poorly drained basin (Darrell 1998). Poorly drained areas tend 

to have lower nutrient concentrations than better drained areas (Darrell 1998). 

However, during wet years a rapid influx of nutrients can rapidly alter rates of 

nutrient loading (Pluta 2015). 

 Within the Choptank’s watershed, agricultural land use (62%), mostly 

wheat, soybean, and corn, dominates (Sutton 2010). Forests are also abundant 

in the watershed, making up 26% of land cover (Fisher et al 1998). About half of 

all forests in the watershed are established riparian forests. Urban and developed 

areas make up 5% of land use, although this number is expected to rise as urban 

construction projects continue (Fisher et al 2006). The Choptank is a relatively 

small tributary to the Chesapeake, contributing 1.2% of the freshwater flow into 

the Chesapeake Bay (Darrell 1998). In comparison, The Susquehanna River, the 

largest tributary, contributes 52% of freshwater flow into the Chesapeake (Darrell 

1998). Along the river, a pronounced salinity gradient exists: upriver salinity may 

be as low as 2.5 parts per thousand, whereas downriver, salinity may be as high 

as12.5 ppt (Weinberg 2008). A marked turbidity gradient also exists: the mouth of 

the river is much clearer than waters upstream (Pluta 2015). In order to capture 
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the spatial heterogeneity of chlorophyll a levels and optical properties, my 

transect covered about one third of the total distance of the Choptank River. 
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Collection dates 

 Data were collected throughout the summer and fall of 2016. A ten station 

transect was sampled from the Choptank river on five different days (Fig. 1). 

Stations were selected to span a large optical gradient.  Additional sampling sites 

included seven stations on the northern Choptank and Tuckahoe Rivers (Fig. 2). 

At each station, data were collected using a floating rig with two vertically-

oriented radiometers. Discrete water samples were also collected from the 

surface of the water.  

Radiometric measurements 

 Radiometric measurements were made from a surface float, consisting of 

two hyperspectral radiometers (Trios Ramses, Rastede, Germany), which 

simultaneously measured Lu(𝜆) and Ed(𝜆). Each radiometer has a wavelength 

range of 320 to 950 nm, and a spectral resolution of 3.3 nm. The downwelling 

sensor measures the irradiant light field as well as the sensor inclination from the 

vertical. The upwelling sensor measures the light radiance (sensor A in figure). 

Following the skylight blocking approach outlined in Lee et. al, (2013), a black 

cone was attached to the upwelling sensor to remove light scattered from the 

atmosphere (sensor B in figure). 
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FIG. 2. Float schematic where A. is the downwelling light sensor and B. is the upwelling light 
sensor shown with a light-blocking cone (maroon circle). 

 The float was lowered into the water from the side of the sampling craft. 

Care was exercised to ensure the upwelling sensor was never completely below 

the water column. Before sampling began, the boat was reversed away from the 

float, to ensure that the sensor was not covered by the shadow of the vessel. The 

radiometric float was deployed for approximately five minutes with a sampling 

interval of ten seconds.  

Quality control 

 Downwelling irradiance was divided by upwelling radiance to determine 

𝑅𝑅𝑆(𝜆) (Equation 1). 𝑅𝑅𝑆(𝜆) is determined primarily by the IOP’s present in the 

water column, however it is still sensitive to wind speed, viewing angle, and the 

presence of clouds. To standardize IOP estimation, optical inversion algorithms 

have been developed assuming perfect light conditions, i.e., when the Earth is at 

its mean distance from the sun, the sun is at its zenith angle and in the absence 

of any atmospheric loss (Morel and Gentili 1996). Ideally, the upwelling sensor 

would measure only light emitted from one discrete angle (the radiance), 

however wind speed scatters light from the sea surface and therefore the sensor 
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may not viewing one discrete path of light (Mobley 2000). Thus, prior to 

averaging the 𝑅𝑅𝑆(𝜆) intensity values, and following the methodology outlined in 

Ruddick et. al 2006, we included only spectral measurements taken from the 

sensors with a tilt angle less than five degrees from the vertical.  Additionally, it 

has been found that in order to minimize the sea surface reflectance factor, light 

measurements should be taken on cloudless days (Mobley 2000). Therefore, we 

removed spectra with abnormally low downwelling irradiance values at 550 nm 

as this was most likely due to a cloud passing (Ruddick et al. 2006). 

Fluorometry 

 Chlorophyll a concentrations were determined fluorometrically following 

the methods of Strickland and Parsons (1972). In situ water samples were 

filtered using GE filters with a pore size of .7 microns. Each filter was then placed 

in a scintillation vial filled with 20 ml of 90% acetone for 24 hours. Next, a 

Fluoromax 3 fluorometer (Horiba, New Jersey) was set to transmit light at 440 

nm and read emission at 680 nm. The emission values of the extracted 

chlorophyll were read and then corrected for machine noise. N.B. for the final two 

transects, a Turner fluorometer (San Jose, CA) set to the same settings as the 

Fluoromax fluorometer was used. 

 In order to ascertain chlorophyll a levels from the emission intensity value, 

we created a standard curve from known concentrations of pure chlorophyll a 

and fit the emission values to the standard curve after correcting for different 

filtered water volumes. 

  



31 
 

Data analysis 

 Paired measurements of 𝑅𝑅𝑆(𝜆) and chlorophyll concentration allowed us 

to test the accuracy of four optical algorithms that scale 𝑅𝑅𝑆(λ) to chlorophyll a 

concentration. Table one outlines the algorithms tested, all algorithms are named 

according to their reference unless stated otherwise. 

Table 1. Short description of the four spectrum inversion algorithms tested. 

Model Type Reference Algorithm Summary 

Empirical O’reilly et al. 2000 Two waveband model developed for 
the open ocean referred to as 
OC4V4 

Empirical 
 
Empirical 
 
 
Semi-Analytical 

Gons 1999 
 
Ruddick 2001 
 
 
Gitelson 2005 

Two waveband model developed 
specifically for turbid waters 
 
Improved, dynamic two waveband 
model 
 
Three waveband model, tuned to 
multiple case II water datasets. 

 

 Because there was uncertainty associated with both the model predicted 

chlorophyll concentration and the actual chlorophyll concentration measured via 

fluorometry, a type two linear regression was used in comparing the model 

results to the lab measured results.  

 A type II regression was used because there was uncertainty in both the 

predicted chlorophyll a estimates and the fluorometer-derived chlorophyll 

measurements (Brewin et al. 2012). In order to capture the systematic errors 

attributable to each algorithm, I plotted the mean normalized bias (MNB) where, 

  𝑀𝑁𝐵 = 𝑚𝑒𝑎𝑛(100 ∗
𝑐ℎ𝑙𝑎𝑝𝑟𝑒𝑑−𝑐ℎ𝑙𝑎𝑚𝑒𝑎𝑠

𝑐ℎ𝑙𝑎𝑚𝑒𝑎𝑠
).  (5) 
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 To capture the random error attributable to each algorithm, I calculated the 

normalized root mean square error (NRMSE) where, 

  𝑁𝑅𝑀𝑆𝐸 = 𝑠𝑡𝐷𝑒𝑣((100 ∗
𝑐ℎ𝑙𝑎𝑝𝑟𝑒𝑑−𝑐ℎ𝑙𝑎𝑚𝑒𝑎𝑠

𝑐ℎ𝑙𝑎𝑚𝑒𝑎𝑠
). (6) 

 Following the protocol of Brewin et al. (2012), I ran a Pearson correlation 

coefficient (r) test to determine whether each individual algorithm performed 

significantly better than the average algorithm performance. All of the statistics 

were carried out in R using the hydroGOF and lmodel2 packages. Plots were 

made using ggplot2.   
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Results: 

Qualitative: 

The following plot (Fig. 3) was created in order to optically characterize the 

transect. The underlying map was created in Google Earth. Figure 3 clearly 

shows an optical gradient in the reflectance spectra. As the stations moved 

further and further upstream, the reflectance in the ranges of 500-650 nm 

increases at every point. The slope of the spectra line at these points also 

decreases, indicating that the water is becoming browner.  

 

FIG 3. Reflectance spectra for transects run on 8/3 (CR18-CR21) and on 8/5. Stations were 
selected to clearly show the changing light spectra from downriver to upriver. 

Quantitative:  

The following graphs show the predicted chlorophyll a concentrations plotted 

against the lab measured chlorophyll a concentrations and the normalized bias 

for each algorithm. The combined data was N=61.
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C. Gons Algorithm      D. 

A. Ocean Color Algorithm       B. 
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  E. Ruddick Algorithm      F. 

G. Gitelson Algorithm      H. 
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FIG. 4. The left graphs (A,C,E,G) show the results of a type II regression on modelled chlorophyll 
a concentration vs. measured chlorophyll a concentration. The graphs on the right (B, D, F, H) 
show the mean normalized bias for measured chlorophyll. A and B are for the OC4v.4 algorithm. 
C and D are for the Gons algorithm. E and F are for the Ruddick algorithm, and G and H are for 
the Gitelson algorithm. 

 
Table 2. Statistical results of the type two regressions run for the four inversion algorithms 
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OC4V4: 

 The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) bio-optical 

algorithm (OC4v.4) tended to overestimate chlorophyll a (chl-a) by an average of 

62.6%, with a high amount of random error, 16.5%. The r2 relationship between 

chl-apred and chl-ameas was .45, with a slope of 2.73 ± 3.8 and an RMSE of chl-a 

prediction of 8.85 mg m-3. A similar study conducted by Harding in the 

Chesapeake found that OC4v.4 tended to overestimate chlorophyll a by ~42% 

(Harding et al. 2005).  

Gons: 

 The low mean normalized bias, -27.2% indicates that this algorithm was 

mostly underestimating chlorophyll a levels. However, there was also a high 

amount of random error, 15.6%. The r2 relationship between chl-apred and chl-

ameas was .55, higher than the fit of OC4v.4. The slope was 2.73 ± 3.8 and the 

RMSE of chl-a prediction was 8.85 mg m-3. The scatter around the measured 

value is most likely due to the varying a*. A* is known to vary based on the 

composition of phytoplankton species, the compartmentalization of pigment, the 

intracellular absorption coefficient and the aggregation of phytoplankton (Gons 

1999).  

Ruddick: 

 This model had an overall low level of bias, .802%, however it still had 

high random error, 15.0%. The r2 relationship between chl-apred and chl-ameas was 

.67, higher than the fit of Gons. The slope was 2.54 ± 3.1 and the RMSE of chl-a 

prediction was 6.56 mg m-3. Ruddick’s algorithm exhibited similar inconsistency 
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as Gons, however it tended to underestimate chlorophyll a concentration less so 

than Gons, it also yielded a lower overall RMSE value. 

 

Gitelson: 

 The r2 relationship between chl-apred and chl-ameas was .59 , lower than 

that of Ruddick, but higher than the fit of Gons. The slope was 1.40 ± 1.76 and 

the RMSE of chl-a prediction was 4.20 mg m-3. This algorithm had the lowest 

overall level of scatter around the regression line (fig. 1G), and the lowest level of 

RMSE, 4.20 mg m-3.  

Summation: 

 The results of the Pearson coefficient (r) test, suggest that none of the 

algorithms performed significantly better than the average performance of all of 

the algorithms. It seemed that OC4v.4 was the worst predictor of chlorophyll a. It 

tended to overestimate the chlorophyll concentration (MNB = 62.6%) in an 

inconsistent way (NRMSE = 16.5%). Ruddick’s algorithm seems to have 

successfully improved upon the Gon’s algorithm: the mean normalized bias 

improved dramatically (MNBGons =-27.1%, MNBRuddick=.802%), however both 

algorithms exhibited high degrees of random error (RMSEGons =-15.6%, 

RMSERuddick=15.0%).  The Gitelson algorithm had a slope closest to one, a y 

intercept closest to zero, and the lowest absolute error (RMSE=4.20 mg/m-3), 

however it still exhibited high systematic and random errors (MNB=28.8%, 

NRMSE=17.1%).  
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Discussion: 

In order to best understand my results, I will discuss each algorithm 

individually. In my discussion, I will evaluate the assumptions made by the 

modelers and attempt to explain model performance in light of the unique optical 

properties of the Choptank River. Relative to inland bodies of water, and the 

open ocean, the Choptank River experiences a high degree of temporal 

heterogeneity with respect to levels of dissolved nutrients, sediment, and 

phytoplankton species assemblage and abundance (Kemp et al. 2005). Of the 

algorithms tested, only Gitelson’s algorithm was developed and parameterized to 

the Chesapeake Bay and the Choptank River. 

Qualitative Data: 

The gradient described in Figure 3 ensured that each of the algorithms 

was tested in a range of optical conditions. The gradient was most likely caused 

by the increased rate of sediment loading due to the preponderance of 

agricultural lands in the northern Choptank River (Darrell 1998). 

Quantitative Data: 

 As stated above, to better understand the performance of each individual 

algorithm, I will analyze each of the algorithms and attempt to explain their 

performance. 

OC4V4: 

 The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) bio-optical 

algorithm (OC4v.4) developed by O’reilly et al. (2000) takes a ratio of green light 
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to blue light. The green wavelength is always set to 555 nm, the blue light is 

either 443 nm, 490 nm, or 510 nm depending on which wavelength would yield 

the highest 𝑅𝑅𝑆(𝜆) ratio. (eq. 7). 

  𝑅𝑚𝑎𝑥 = log10(𝑅𝑅𝑆555
443 > 𝑅𝑅𝑆555

490 > 𝑅𝑅𝑆555
510) (7) 

The algorithm then uses 𝑅𝑚𝑎𝑥 as a coefficient in a fourth order polynomial (eq. 8). 

  𝑐ℎ𝑙 𝑎 = 10(.366−3.067𝑅𝑚𝑎𝑥+1.930𝑅𝑚𝑎𝑥
2 +.649𝑅𝑚𝑎𝑥

3 −1.532𝑅max
4 ) (8) 

 The previous blue/green algorithm used two wavelengths, 490 and 455 

nm (O’reilly et al. 2000). The OC4V4 iteration proved to substantially increase the 

model’s agreement with lab measurements of chlorophyll a in case I waters 

(O’reilly et al. 2000).  

 The high degree of systematic bias we found (MNB = 62.6%) in this 

algorithm was not surprising as this algorithm is designed for use in case I 

waters, where chlorophyll a tends to be the dominant reflector of light at 555 nm 

(O’reilly et al. 2000). In case II waters, both chlorophyll a and sediment strongly 

reflect green light. Therefore, the algorithm tended to overestimate the level of 

chlorophyll in the water, i.e., the algorithm could not distinguish the reflectance 

attributable to sediment from the reflectance attributable to chlorophyll a (O’reilly 

et al. 2000).  

 All of the following algorithms were designed specifically for case II waters 

with the purpose of accurately differentiating the reflectance due to sediment 

from the reflectance due to chlorophyll a. 
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Gons: 

 Instead of using the reflectance peak in the green wavelengths, biological 

oceanographers utilize the reflectance minimum in the red wavelengths (672 nm) 

in case II waters. Using the definition of RRS as described in Equation 1, Gons 

wrote the reflectance ratio of 704 nm and 672 nm, R, as, 

  𝑅 = (𝑎672 + 𝑏672)/(𝑎704 + 𝑏704) (9) 

 Gons (1999) made the following three assumptions to isolate the 

concentration of Chlorophyll a from equation 9: 

 1) Water absorption dominates at 672 nm. 

 2) Water absorption dominates at 704 nm. 

 3) Total scattering is wavelength independent over these wavebands. 

 𝑎672
∗  is designed to normalize the absorbance of phytoplankton to the 

absorbance of chlorophyll (Gons 1999). 𝑎672
∗  relates the absorbance of 

phytoplankton to the absorbance of Chlorophyll a according to, 

  𝑎𝑝ℎ𝑦/𝑎𝑐ℎ𝑙 (10) 

 By regressing equation 9 with data collected in a range of estuaries and 

lakes, Gons (1999) found 𝑎672
∗  to be equal to .0175 ± .00003. Gons (1999) used 

standard absorbance values for water to derive 𝑎𝑤704 and 𝑎𝑤672.  

 bb is the sum of the backscattering of particulates in the visible spectrum. 

This factor is found by multiplying the reflectance at 776 nm by a scaling factor. 

The scaling factor has not been empirically derived for the Chesapeake Bay, but 
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most biological oceanographers use a value of .287 for case II waters (Gons 

1999).  

 By making the above assumptions and using the above parameters, the 

concentration of Chlorophyll a can then be described as, 

  𝑐ℎ𝑙𝑎 = {𝑅 ∗ (𝑎𝑤704 + 𝑏𝑏) − 𝑎𝑤672 − 𝑏𝑏}/𝑎672
∗  (11) 

 I did not discern a clear pattern of systematic error for this algorithm, 

although overall the model tended to under-predict the chlorophyll a 

concentration (RMB = -27.1%). Because the Choptank River is subject to a high 

influx of sediment, it is possible that the scaling factor used for most case II 

waters was not high enough. It is also possible that the size of sediment in the 

Choptank River was not constant throughout the study duration, and because the 

optical properties of sediment depends on their size, bb may not have been 

constant across all stations, at all times (Kirk 2011).   

Ruddick: 

 Like Gons’ algorithm, Ruddick’s algorithm used a ratio of reflectance to 

remove the effects of sediment backscattering. Ruddick’s algorithm finds two 

wavelengths around 672 nm for which RRS is equivalent (Figure 5). If the 

following two assumptions are made, 

 1) The backscattering due to sediment, CDOM, and phytoplankton is 

constant in these two wavebands, and,  

 2) The absorbance due to sediment and CDOM is constant in these two 

wavebands, 
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 Then a ratio of the two RRS terms, will leave only the absorbance of water 

and the absorbance due to phytoplankton. Then, by taking the known 

absorbance of water at both wavelengths, the two terms can be subtracted, and 

the residual absorbance value should be attributable only to chlorophyll. 

Ultimately chlorophyll a concentration, C is set to, 

  𝐶 = 𝑎𝑤
′ / 𝑎672

∗  (12) 

Where, 

  𝑎𝑤
′ =  𝑎𝑤2 − 𝑎𝑤1 (13) 

Based on data collected by Ruddick (2001) in a variety of case II waters, 𝑎672
∗  

was set to 0.0176. 

 The following figure explains in detail how the two wavebands (from which 

𝑎𝑤1 and 𝑎𝑤2 are determined) are selected. 

 

FIG. 5. Explanation of the Ruddick algorithm for an arbitrary reflectance spectrum (Ruddick 
2001). 
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 The first waveband is always set to 672 nm (violet line), the second 

waveband (green line) is the nearest wavelength where the reflectance is within 

1% of the first wavelength. 

 Ruddick’s model yielded a low level of systematic error (RMB = .802%). 

The algorithm did not exhibit a propensity to under or over predict the level of 

chlorophyll, however the magnitude of error still tended to be very high (Figure 

4F).  

 Ruddick’s model assumed that the backscattering and absorption of 

particulate matter was equivalent in both wavebands selected (Ruddick 2001). 

Although the backscattering of sediment in these wavebands is most likely close, 

the absorption due to sediment may well be variable (Kirk 2011, Gitelson 2008). 

Gitelson: 

 Gitelson’s algorithm isolates the absorbance of phytoplankton at 665 nm 

by subtracting the reciprocal reflectance at 665 nm by the reciprocal reflectance 

at 715 nm.  

Because of the following assumptions, 

1) Absorbance due to particulate matter and CDOM is constant in these near IR 

wavebands, and 

2) The scattering of particulate matter is constant in the near IR bands, 

 when the two reflectance values are subtracted, their difference is 

proportional to the absorbance of Chlorophyll a multiplied by the absorbance of 

water and the scattering by particulate matter. To isolate the absorbance due to 
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chlorophyll a, the difference of the first two wavebands is multiplied by a longer 

waveband, 750 nm. Because Gitelson (2008) assumed that in this waveband 

only the absorbance of water and the scattering due to particulate matter was 

influencing the reflectance value, the resulting product is simply the absorption 

due to Chlorophyll a. After tuning his algorithm in the waters of the Chesapeake 

Bay, Gitelson (2008) derived his three-band algorithm, 

  𝑐ℎ𝑙𝑎 = 15.811 ∗ 70.712(𝑅𝑅𝑆665
−1 − 𝑅𝑅𝑆715

−1 ) ∗ 𝑅𝑅𝑆750 (14) 

 When Gitelson (2008) evaluated his algorithm in the Choptank River, he 

obtained the following statistics, NRMSE = 21.1%, MNB = 11.1%, and 

RMSE=3.5 mg m-3. These results are comparable to my own, NRMSE=17.1%, 

MNB = 28.8% and RMSE = 4.20 mg m-3. Examining graph 1H reveals that there 

is still a large amount of bias, although compared to all the other algorithms, the 

magnitude of bias seemed to be the least drastic. Gitelson (2008) found that his 

algorithm could maintain acceptable levels of accuracy in waters which were 

characterized by a large degree of variation in the dissolved matter 

(phytoplankton, sediment, and CDOM), and amongst different taxa of 

phytoplankton, such as the Chesapeake Bay (Gitelson 2008). My results are 

generally in line with Gitelson’s findings. 
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Conclusion: 

 For simple linear regression models, a slope close to one and an intercept 

close to zero is an indication that the model is accurately predicting in situ data 

(Brewin et al., 2015). MNB and NRMSE should also be close to zero (Brewin et 

al. 2015). My results suggest that an increased understanding of the variation of 

optically active constituents in the water column is necessary to refine current 

inversion models. Of the four algorithms tested, Gitelson’s three-band algorithm 

provided the most satisfying closure. In the future, an algorithm like Gitelson’s will 

be refined using precisely measured inherent optical properties of the 

Chesapeake Bay.  

 Although some amount of in situ error was statistically accounted for in the 

type II regression, in future studies it would be wise to include more trials of in 

situ data to create an index of in situ error. Furthermore, because there is 

uncertainty in the in situ data, it may not be wise to compare the performance of 

the four algorithms to the average performance of the algorithms using the z test. 

Additional sources of lab measured chlorophyll a error are discussed below. 

 Error in my lab measurements of Chlorophyll a may have impacted the 

accuracy of the optical inversion algorithms. The flourometer fires blue light at a 

water sample and then determines the chlorophyll a concentration by relating the 

emitted red light to a standard curve determined for pure chlorophyll a. However, 

because there are other light capturing pigments utilized by phytoplankton, the 

fluorometer was most likely over-predicting chlorophyll a levels (Holm-Hansen 

1965). In 1965, Holm-Hansen found that photosynthetic pigments are not the 

only biological materials that fluoresce red light upon the excitation of blue light. 
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Various porphyrins and metalloporphyrins also fluoresce in the measured 

waveband (Holm-Hansen 1965). Other factors that influence the accuracy of 

fluorometric analysis of chlorophyll a include the reabsorption of emitted red light 

by other pigments, the quenching of the emitted red light by beta carotene, and 

the oxidization of exposed chlorophyll molecules which diminishes their 

fluorescence (Holm-Hansen 1965).  

  Because typical sampling studies focus solely on the identification of 

Chlorophyll a, there is little information on the relative abundances of other 

chlorophyll molecules in the Chesapeake Bay. New technologies such as High 

Pressure Liquid Chromatography (HPLC) will allow precise pigment 

measurements. In the 1980’s HPLC emerged as the definitive method of 

measuring all aquatic pigments, surpassing the accuracy of both spectrometric 

and fluorescent analyses (Bidigare et al. 1985). HPLC not only measures 

Chlorophyll a but all light capturing pigments. HPLC is the most technologically 

advanced method of chromatography currently used in pharmaceutical, 

agrochemical and other involatile substance analysis (Lough 1995). A pulse-free 

pump is used to inject the analyte into a column containing 5 µm porous, 

spherical particles with a narrow size distribution. The resulting separation of 

particles can then be resolved by measuring the UV absorbance of the column 

(Lough 1995). HPLC analyses are expensive and time consuming, and therefore 

not used in this study.  

 Chlorophyll a is undoubtedly the most common pigment molecule in the 

open ocean, however in turbid environments with unique light fields, selection 

may favor the preponderance of phytoplankton with different compositions of 
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light-capturing pigments (Stomp et al. 2007). Because the presence of particulate 

matter and CDOM attenuates the light field as a function of their volume, shape, 

and chemical composition, the wavebands of light reaching phytoplankton are 

substantially different between case II waters and case I waters (Mobley 1999). 

Because light energy is a limiting resource for phytoplankton, natural selection 

would favor the phytoplankton species that most efficiently capture the available 

bands of light energy (Stomp et al. 2007). Phytoplankton in the Chesapeake Bay 

would then be expected to exhibit a variety of light capturing molecules uniquely 

adapted to the available light field in their environment. Using HPLC, studies 

could attempt to verify this hypothesis as well as better quantify the pigments 

utilized by phytoplankton in the Chesapeake Bay and all case II waters. New 

technology will also provide for more accurate inversion algorithm development. 

A discussion of the current drawbacks in case II inversion algorithms is 

discussed below. 

 Most case II inversion algorithms seek to exploit the relatively narrow band 

at which chlorophyll a preferentially absorbs light, namely 672 nm (Kirk 2011). 

This strategy is currently the most prevalent in the literature, but there are some 

simplifications made by modelers (Ruddick 2001, Gons 1999, O’reilly et al. 2000, 

Gitelson 2008). Most models assume that the only pigment phytoplankton are 

using is chlorophyll a. However other pigments, especially chlorophylls b and c, 

have overlapping absorption spectrums in the wavebands utilized by the 

inversion algorithms (Stomp et al. 2007). Therefore, the optical properties of 

these pigments in the water column would have decreased the reflectance 
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minimum at 672 nm, and therefore would have caused inaccurate chlorophyll a 

retrievals. The following two figures aim to emphasize this point. 

 

FIG 6. Entire transect light spectra for 07/06/2016 along the mainstem Choptank River transect. 

 

 

FIG 7. The 07/06/2016 mainstem Choptank River transect zoomed into the reflectance minima 
around 672 nm. 
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 As figures 5 and 6 make clear, the local minima occur before 672 nm, 

which would not happen if chlorophyll a was the only particle actively absorbing 

in these wavebands in the water.  

 Inversion algorithms also assume that there is no absorption by dissolved 

organic matter or detritus in the wavelengths near 672 nm. More advanced 

algorithms, such as Gitelson’s, assume that the absorbance by other particles is 

constant within the range of 550-770 nm, and thus corrections can be made 

wholly using reflectance information (Gitelson 2008). Far more desirable than 

inferring inherent optical properties from the reflectance information would be to 

directly measure the absorbance and backscattering properties of components in 

the water column (Tzortziou 2011). When inherent optical properties can be 

empirically measured using sophisticated profilers, these exact model 

parameters can be incorporated into existing algorithms and be used to create 

site-specific algorithms with a high degree of accuracy (Tzortziou 2011). 

Manufacturers such as WET labs (Philomath, Oregon) recently began selling 

optical profilers which can measure inherent optical properties of CDOM, 

sediment, and phytoplankton. 

 Greg Silsbe is currently using one of these profilers on the Choptank River 

to directly sample the optical properties of phytoplankton, sediment, and CDOM 

at discrete depths throughout the photic zone (Silsbe, pers. comm.). Using this 

spectral information, modelers will no longer need to assume that chlorophyll a is 

the only pertinent absorbing molecule used by phytoplankton, instead the 

absorptive properties of phytoplankton can be measured directly (Silsbe, pers. 

comm.). Because the absorptive properties of phytoplankton depend on their 
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size, and pigment concentration, the added spectral information may be used in 

the future to identify functional groups of phytoplankton. For example, a high 

concentration of very small reflective, phytoplankton typically indicates a 

coccolithophore bloom (Nair et al. 2008).  Phytoplankton species abundance has 

been found to have implications on the species abundance of heterotrophs such 

as fish and crab (Ulanowicz 1988). In the Chesapeake Bay, menhaden 

populations were correlated to dinoflagellate populations (Ulanowicz 1988). A 

more precise understanding of the exact optical properties of phytoplankton in 

the Chesapeake Bay will allow for a greater understanding of the entire estuarine 

food web. 

 Besides using the absorbance maximum of chlorophyll, a, some 

algorithms attempt to use the fluorescence peak of chl a in the 700 nm 

waveband. Although my study did not test these algorithms, a discussion of their 

usage may prove salient as algorithms will continue to be developed and refined 

in the future. The strong scattering peak by particulate matter in the fluoresced 

wavebands greatly complicates isolating the phytoplankton fluorescent signal 

(Hliang 2007). Based on his 2007 study in the Chesapeake Bay, Hliang found 

that fluorescence reflectance could be incorporated into existing algorithms to 

yield increasingly accurate chlorophyll a predictions. However, their results were 

obfuscated by a lack of understanding of specific chlorophyll absorption spectra, 

and complex illumination schemes. Consequently, more detailed field studies are 

necessary before a satisfactory algorithm that utilizes fluorescence information is 

usable (Hliang 2007). 
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 Remote sensors are currently faced with the challenge of accurately 

evaluating relevant water quality metrics in dynamic marine environments subject 

to large amounts of seasonal, and decadal change (Ruddick 2000). Thus far, 

significant progress has been made in the case I waters of the open ocean, and 

satisfying carbon cycling budgets can be extrapolated from MODIS gathered 

data (Silsbe 2016). Currently, oceanographers are seeking to seamlessly retrieve 

accurate water quality parameters in both case I and case II waters. A better 

understanding of the carbon cycle in extremely productive ecosystems such as 

the Chesapeake Bay must begin with accurate quantification of phytoplankton 

populations.  

 The use of hyperspectral radiometers, which have broader spectral ranges 

and higher resolutions than multispectral radiometers, represents an important 

advancement in biological oceanography. The launch of the PACE satellite in 

2020 will mark the first time in which high spectral resolution data will be 

available for coastal and estuarine waters. The greater spectral detail will allow 

modelers to use reflectance information from more wavelengths to better 

differentiate the reflectance of phytoplankton from the reflectance of sediment 

and CDOM. More accurate phytoplankton population information will allow for 

more accurate NPP estimates and increased understanding of phytoplankton 

population. These biological processes have implications on wild fish catches, 

upon which 13% of the world relies for protein, and on the warming of our planet 

(FAO 2016, Riebesell 2007).   
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