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Intertemporal Pricing With Strategic Customer Behavior

Abstract
This paper develops a model of dynamic pricing with endogenous intertemporal demand. In the model, there
is a monopolist who sells a finite inventory over a finite time horizon. The seller adjusts prices dynamically to
maximize revenue. Customers arrive continually over the duration of the selling season. At each point in time,
customers may purchase the product at current prices, remain in the market at a cost to purchase later, or exit,
and they wish to maximize individual utility. The customer population is heterogeneous along two
dimensions: they may have different valuations for the product and different degrees of patience (waiting
costs).

We demonstrate that heterogeneity in both valuation and patience is important because they jointly
determine the structure of optimal pricing policies. In particular, when high-value customers are
proportionately less patient, markdown pricing policies are effective because the high-value customers would
buy early at high prices while the low-value customers are willing to wait (i.e., they are not lost). On the other
hand, when the high-value customers are more patient than the low-value customers, prices should increase
over time to discourage inefficient waiting. Contrary to intuition, we find that strategic waiting by customers
may sometimes benefit the seller: when low-value customers wait, they compete for availability with high-
value customers and thus increase their willingness to pay. Our results also shed light on how the composition
of the customer population affects optimal revenue, consumer surplus, and social welfare. Finally, we consider
the long-run problem of selecting the optimal initial stocking quantity.
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Inter-temporal Pricing with Strategic Customer Behavior

Xuanming Su

Haas School of Business, University of California, Berkeley, CA 94720

Abstract

This paper develops a model of dynamic pricing with endogenous customer behavior. In the

model, there is a monopolist who sells a finite inventory over a finite time horizon. The seller adjusts

prices dynamically in order to maximize revenue. Customers arrive continually over the duration of the

selling season. At each point in time, customers may purchase the product at current prices, remain in

the market at a cost in order to purchase later, or exit, and they wish to maximize individual utility.

The customer population is heterogeneous along two dimensions: they may have different valuations

for the product and different degrees of patience (waiting costs). We study this continuous-time game

between the seller and the customers, show that it can be reduced into a single-variable nonlinear

program, and characterize the equilibrium that maximizes revenue for the seller.

We demonstrate that heterogeneity in both valuation and patience is important because they

jointly determine the structure of optimal pricing policies. In particular, when high-value customers are

proportionately less patient, markdown pricing policies are effective because the high-value customers

would still buy early at high prices while the low-value customers are willing to wait (i.e. they are

not lost). On the other hand, when the high-value customers are more patient than the low-value

customers, prices should increase over time in order to discourage inefficient waiting. Our results

also shed light on how the composition of the customer population affects optimal revenue, consumer

surplus, and social welfare. Finally, we consider the long run problem of selecting the optimal initial

stocking quantity.
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1 Introduction

Pricing is one of the most fundamental but also most difficult decisions that firms have to make.

An important reason is that businesses today are facing a generation of increasingly sophisticated

customers. Whether firms adopt the most powerful category pricing software or the most data-

intensive revenue management system, customers are becoming extremely adept at finding the “best

deals.” Readers of this article may even have some personal experiences that they are proud to share.

According to SmartMoney magazine, there is constantly a “cat-and-mouse game between retailers,

who hope to charge full price for everything, and shoppers, who wait for a sale” (see Kadet, 2004).

The zero-sum nature of pricing makes this inevitable. Firms are constantly improving their pricing

strategies in order to collect as much revenue as possible, and customers are constantly modifying

their purchase plans in order to pay as little as possible.

Recently, a major electronics retailer, Best Buy, has expressed some strong opinions about this

kind of strategic customer behavior. In an article that appeared on the front page of the Wall Street

Journal, Best Buy Chief Executive Officer Brad Anderson openly labels some customers as “devils”

(see McWilliams, 2004). According to Anderson, these are the customers who wait for markdowns,

respond to promotions, and apply for rebates. In contrast, Anderson also describes the “angels” as

the customers who snap up high-end gadgets without hesitation. Best Buy estimates that approxi-

mately 100 million out of its 500 million customer visits each year are “undesirable.” Although these

pejorative labels have attracted criticism (see Queenan, 2005), Best Buy has implemented customer

relationship management programs to better distinguish the “angels” from the “devils” (see Arndorfer

and Creamer, 2005). Apart from Best Buy, many other firms are also beginning to recognize that

revenues are lost when customers wait for sales. Retailers, such as Bloomingdale’s, Ann Taylor, Gap,

and Home Depot, are turning to price optimization software instead of blindly slashing prices toward

the end of the selling season (see Schlosser, 2004).

Although the importance of strategic customer behavior is recognized by many, its implications

on inter-temporal pricing strategies has not been widely studied. This paper sets out with three main

objectives. Our first goal is to formulate and solve the seller’s dynamic pricing problem when facing

strategic customers who may delay purchases and wait for sales. In this situation, should prices increase

or decrease (or stay fixed) over time? What is the optimal timing and extent of the markups and/or

markdowns? For the customers, how should they react to the seller’s pricing strategies? Second, we

would like to understand the main drivers behind the structure of the optimal policy characterized

above. When prices change, what is the reason and what effect does this achieve? How should the seller

respond when there are changes in the selling environment? Our final objective pertains to modeling.

We would like to develop a comprehensive yet tractable framework to model dynamic pricing under
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strategic customer behavior. The underlying problem is a dynamic principal-multi-agent problem

between the seller and the customers. Although this class of problems is analytically complex, we

would like to find an approach that captures a wide range of heterogeneous customer behavior, while

retaining the seller’s flexibility to control prices and ration inventory continuously over time.

In our model, there is a monopolist who sells a finite inventory over a finite time horizon. The

seller may charge different prices over time, and may also practice rationing by fulfilling only a portion

of market demand. There is a continuous inflow of customers arriving into the market. If they are

unwilling to purchase the product immediately, they may leave the system, or may wait for more

attractive purchase opportunities in the future. Although prices may fall, there is also the possibility

that the product will become unavailable. Furthermore, customers incur waiting costs. Within this

environment, the seller seeks to maximize revenue, and customers wish to maximize individual utility.

Heterogeneity plays a key role in our model. We allow the customers to vary along two di-

mensions: they may have different valuations for the firm’s product and may have different degrees of

patience (i.e. different waiting costs). Heterogeneous valuations imply that dynamic pricing is worth-

while because there is an opportunity to practice inter-temporal price discrimination. Heterogenous

waiting costs allow us to capture a wide variety of customer behavior. At one extreme, when waiting

costs are infinitely large, customers are myopic and make a one-time buy-or-exit decision upon arrival;

on the other hand, customers with finite waiting costs may delay their purchases strategically. Existing

models consider customer populations that are either purely myopic or purely strategic, whereas we

allow for arbitrary combinations of both. With these two dimensions of heterogeneity, we believe that

we can capture a good representation of reality.

This paper makes two main contributions. First, we demonstrate that strategic customer be-

havior is a main driver determining the structure of optimal pricing policies. Most existing models

either explicitly impose structural restrictions (such as requiring monotonicity, or specifying the num-

ber of price changes), or do so implicitly; for instance, models based on stochastic customer arrivals

tend to yield decreasing prices since the option value of unsold units decreases toward the end of

the horizon, while models based on uncertain customer valuations tend to lead to increasing prices

since customers who buy early need to be compensated for bearing additional risk. In contrast, our

model does not impose any restrictions a priori. By endogenizing customer behavior, we find that

a full spectrum of pricing policies may emerge at the optimal solution. This includes markups and

markdowns, as well as other non-monotone price paths.

Our second contribution is to explain how optimal inter-temporal pricing strategies depend on

the composition of the customer population. In particular, customer valuations, patience, as well as

the interaction between these two dimensions of heterogeneity play an important role. Under any
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price discrimination strategy, the seller has the choice between selling to low-valuation customers (at

a low price) during the start or the end of the selling horizon. The latter implies holding “end-of-

season sales,” and this is preferred when low-valuation customers are sufficiently patient to wait for

sales, while high-valuation customers are sufficiently impatient to buy early at higher prices. On the

other hand, setting promotional low prices at the start is preferred when high-valuation customers

are more patient than low-valuation customers: this discourages inefficient waiting and also captures

surplus from high-valuation customers who miss the promotional prices. Finally, when high-valuation

and low-valuation customers do not differ significantly in terms of patience, it may be optimal to have

both promotional low prices as well as end-of-season sales, so the price schedule may not be monotone.

The remainder of this paper is organized as follows. Section 2 provides a literature review.

Section 3 describes the model. Section 4 develops some structural properties, uses them to characterize

an upper bound on seller revenues, and shows that this upper bound can be attained. Section 5 presents

the main results, characterizing the seller’s optimal policy. Section 6 examines the seller’s revenue,

consumer surplus, and social welfare under the optimal regime. The long run problem of selecting an

optimal initial stocking quantity is analyzed in Section 7. Finally, Section 8 offers concluding remarks.

All proofs are presented in the appendix.

2 Literature Review

The three main issues examined in this paper are: (i) strategic customer behavior, (ii) price dynamics,

and (iii) limited capacity. There are several streams of related literature, each addressing different

subsets of these issues.

The revenue management literature on dynamic pricing of finite inventories is closely related

to our work. This stream of papers focuses on price dynamics and limited capacity (the primary

question is how to set prices as a function of remaining inventory). However, strategic customer

behavior is absent from the earlier models. The first papers were by Gallego and van Ryzin (1994,

1997). They model customer arrivals using Poisson processes and formulate the dynamic pricing

problem as an intensity control problem; their 1997 paper generalizes the basic model to a network

(multi-product) setting. Federgruen and Hetching (1999) combine pricing with inventory decisions.

Feng and Gallego (1995, 2000) make a practically justified restriction: they consider a discrete menu

of prices and policies involving at most one price change. Feng and Xiao (2000a, 2000b) extend this

to policies involving multiple and reversible (non-monotonic) price changes. Similarly, Bitran and

Mondschein (1997) consider periodic pricing policies that modify prices only at pre-specified times.

Zhao and Zheng (2000) study dynamic pricing in more general situations with time inhomogeneous

customer arrivals. For surveys of this literature, readers are referred to Bitran and Caldentey (2003),
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Elmaghraby and Keskinocak (2003), and McAfee and te Velde (2005). For a comprehensive coverage

of revenue management, readers are referred to the book by Talluri and van Ryzin (2005). A common

approach in this literature is to determine optimal prices dynamically by considering the option value

of unsold units. The result is that optimal price paths are decreasing over time (on average), because

the option value of unsold units decreases as the deadline approaches. However, this result requires

the assumption that demand is exogenous and independent across time. This no longer applies in the

current work because strategic purchase delays in our model imply that demand may spill over into

the future. As a result, we obtain optimal price schedules that may both increase or decrease over

time.

Recent papers in revenue management have begun to examine customer behavior more closely.

However, the focus is on how customers choose between substitute products offered by the firm (rather

than on inter-temporal demand substitution). Talluri and van Ryzin (2004) use discrete choice models

to describe how customers, in the context of airlines, choose among the set of fare classes offered;

van Ryzin and Liu (2004) extends this analysis to the network setting. Shumsky and Zhang (2004)

consider demand substitution, via upgrading, when inventory has been depleted. Netessine et al.

(2004) consider cross-selling (i.e. offering customers a choice between their requested product and a

package containing the requested product as well as another product). Cooper et al. (2004) show

that neglecting substitution across products can lead to a spiral-down effect, in which the capacity

allocation policy systematically performs worse and worse as the forecasting-optimization process

continues. Zhang and Cooper (2005a) analyze a capacity allocation model with customer choice

over parallel flights, and they extend this analysis (Zhang and Cooper, 2005b) to incorporate pricing

decisions. Maglaras and Meissner (2006) show that the dynamic pricing problem when customers

choose between multiple products can be reduced to an equivalent one-dimensional problem. In all

these papers, customers choose what to buy, whereas in our work, customers choose when to buy.

Both aspects of strategic customer behavior are important, and they are addressed using different

modeling techniques.

The papers on dynamic pricing of finite inventories that are most closely related to ours involve

inter-temporal demand. These papers explicitly model customers’ decisions regarding when to buy.

Aviv and Pazgal (2003) assume that there is a single price reduction and examine the optimal timing

and extent of the discount in the presence of strategic customers. Elmaghraby et al. (2004) also

focus on markdown mechanisms, and customers with multi-unit demands choose how many units to

purchase at each price step. These two papers explicitly assume that prices should decrease over time,

whereas we permit arbitrary price schedules. Next, using an infinite horizon model, Gallien (2004)

shows that optimal prices should increase over time; for the simpler case where customers do not wait,
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Arnold and Lippman (2001) and Das Varma and Vettas (2001) obtain similar conclusions. Unlike these

papers, we consider a finite horizon, and we find that markups and markdowns may be optimal under

different situations. Zhou et al. (2005) analyze the purchasing strategies of a single customer facing

dynamic prices; our approach additionally considers the interaction between customers, in the sense

that they are competing for the same pool of inventory. Rather than focusing on customers’ decisions,

Ovchinnikov and Milner (2005) focus on firms’ pricing strategies when facing an exogenously specified

profile of aggregate customer waiting behavior. This approach differs from our paper, in which we

endogenously characterize customer waiting behavior as an equilibrium outcome. In another paper,

Xu and Hopp (2004) show that prices should decrease when customers become increasingly price

sensitive over time (and vice versa). However, they assume that customers commit to a purchasing

time right from the start and do not wait in the market after observing current prices. Instead

of pricing decisions, van Ryzin and Liu (2005) consider quantity decisions in a two-period capacity

rationing model with strategic customers. They assume that the seller pre-commits to prices in both

periods. Unlike the above two papers, we do not require commitment, either on the buyer side or on

the seller side. Instead, we analyze a dynamic principal-agent game in which both the seller and the

customers continuously optimize their decisions over time.

The aspect of strategic customer behavior analyzed in this paper (inter-temporal demand) first

appeared in the economics literature on durable goods monopoly. The general approach is based

on rational expectations: customers anticipate future price changes and adjust their purchase timing

in response. However, unlike the papers reviewed above, capacity constraints and time deadlines

are not considered, since the monopolist may sell as many units as desired over an infinite horizon.

This literature has been inspired by the classic work of Nobel laureate Ronald Coase (1972): his

main insight was that if customers strategically wait for price reductions, even a monopolist would

be forced to price at marginal cost and earn zero profits. The earliest attempts to rigorously prove

this result are by Stokey (1979, 1981) and Bulow (1982). Conlisk et al. (1984) introduce customer

dynamics and show that the optimal price path involves periodic sales, with customers being willing

to pay less as the next sale approaches. Gul et al. (1986), Ausubel and Deneckere (1989) and Sobel

(1991) characterize a family of subgame perfect equilibria for the monopoly pricing game. Besanko

and Winston (1990) present a dynamic programming procedure to compute the optimal price path.

There are many variations of this basic setup; see Guth and Ritzberger (1998) for a survey. Unlike all

these papers, we consider a fixed inventory and a finite time horizon. We show that these constraints

influence customer expectations and thus have an important impact on optimal pricing strategies.

There are several other related papers that examine the relationship between capacity con-

straints (limited inventory) and pricing schemes. Harris and Raviv (1981) use a priority pricing mech-
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anism to ration limited capacity. Wilson (1988) shows that when a monopolist sells a fixed quantity,

it is optimal to post two prices and ration demand at the lower price. Lazear (1986) and Pashigian

(1988) consider stochastic customer valuations and show how to use markdowns to extract high rev-

enues during high-valuation realizations of demand. Desiraju and Shugan (1999) use a two-period

model to investigate the profitability of various yield management practices, such as early discount-

ing, overbooking and rationing. Dana (1998, 1999a) analyzes pricing and rationing decisions when

customers face uncertainty over their own demands, and Dana (1999b, 2001) also allows for aggregate

demand uncertainty. The common theme across all these papers is that by rationing demand at lower

prices, firms can stimulate demand at higher prices, although precise implementation details may vary

across different model setups. In our current study, we find that it may sometimes be profitable to

generate scarcity, but we also identify situations when this is not necessary. Furthermore, all the

papers above adopt a static mechanism design approach: the seller first establishes some mechanism,

and then customers make a static buying decision. We hope to add to this research by studying

the dynamics of pricing and rationing (on the seller side) as well as the dynamics of purchase and

consumption (on the customer side).

3 Model

There is a monopolist seller who operates over a finite time horizon, the length of which is normalized

to one (time unit). At the start of the time horizon, the seller is endowed with an inventory of Q units.

By the end of the selling season, leftover units have zero value. This model is applicable to different

industries, including travel (airplane seats and hotel rooms), retailing (fashion apparel and seasonal

goods), and entertainment (concert and football tickets).

Customers are infinitesimally small and arrive continuously according to a deterministic flow

of constant rate. This demand pattern is the same as that in the classical Economic Order Quantity

(EOQ) model. We normalize the customer arrival rate to one (customer unit per time unit). Each

customer demands a single unit of the seller’s product. In other words, a mass of t customer units

would have arrived by time t, and the aggregate demand of these customers is t units of the seller’s

product.

The customer population is heterogeneous along two dimensions. The first dimension is valu-

ation. A fraction α of the customers value the product at VH and the remaining α ≡ 1− α value the

product at VL; we denote the difference using ∆ ≡ VH − VL > 0. We shall refer to these customers as

“high-types” and “low-types” respectively. We assume that VL ≥ αVH ; otherwise, it is optimal to sell

only to high-types (because selling to low-types not only depletes inventory at a faster rate, but also

earns lower revenue per unit time). The second dimension of heterogeneity is patience. Customers
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who delay purchases incur different waiting costs, which may either be bP or bI per unit time, with

bI > bP ≥ 0. We shall adopt the terminology “patient” and “impatient” to distinguish these two cases.

A fraction φH of the high-types are patient and the remaining φH ≡ 1− φH are impatient; similarly,

a fraction φL of the low-types are patient and the remaining φL ≡ 1 − φL are impatient. We shall

refer to these four customer types as patient-high-types, impatient-high-types, patient-low-types, and

impatient-low-types, denoted by θ ∈ Θ ≡ {PH, IH, PL, IL}. It is convenient to denote the proportion

of each customer type using fPH ≡ αφH , fIH ≡ αφH , fPL ≡ αφL, fIL ≡ αφL, and to use Vθ and bθ

to denote the valuation and waiting cost of type-θ customers. We assume that customer types are

unobservable to the seller, and that the customer composition is stationary over time.

The seller has to decide on pricing and rationing policies {p(t), r(t)} and control policies

{S(t),D(t)}. These choices, collectively referred to as the selling policy, are announced at the start

of the time horizon. The price schedule p(t) specifies the price charged at each time t ∈ [0, 1]. The

rationing policy r(t) specifies the fraction of current market demand that is fulfilled; we assume

proportional rationing (see Tirole, 1988). The control policies represent cumulative sales processes

S(t) ≡ {Sθ(t) : θ ∈ Θ} and cumulative departure processes D(t) ≡ {Dθ(t) : θ ∈ Θ} planned by the

seller. That is, according to the seller’s plans, by the end of time t, Sθ(t) units would have been

sold to type-θ customers, and Dθ(t) type-θ customers would have departed from the market (without

buying). These control processes also jointly determine cumulative market demand

Zθ(t) = Aθ(t)− Sθ(t)−Dθ(t), (1)

where Aθ(t) ≡ fθt denotes cumulative arrival processes. Here, the market demand Zθ(t) comprises

of accumulated customers who have arrived and are waiting for a future purchase. When demand is

rationed (i.e. r(t) < 1), all the
∑

θ Zθ(t) customers in the market have an equal r(t) chance of getting

the product. Customers who are rationed remain in the market if and only if their continuation utility

is positive. Finally, we make the technical requirement that the seller’s control policies {S(t),D(t)} are

right-continuous with left-limits (RCLL) and have a finite number of discontinuities. These regularity

conditions ensure that the controls are implementable, in the sense that each individual customer’s

purchase or departure times (according to the controls) are well defined.

During the time horizon, based on the announced pricing and rationing policies {p(t), r(t)},
customers decide whether or not to purchase the product and whether or not to leave the market.

Staying in the market incurs waiting costs at a constant rate, buying the product reaps an instan-

taneous surplus (valuation minus price paid) at the time of purchase, and leaving the market yields

zero continuation payoff. For a type-θ customer with valuation Vθ and waiting cost bθ, his total utility

may be zero (if he leaves immediately upon arrival), or Vθ − p− bθl (if he buys at price p after a time

delay of length l), or −bθl (if he waits around for time l but ends up not buying). Therefore, each
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customer faces a continuous time optimal stopping problem with two exit options. We assume that

departed customers do not re-enter the market. Let Jθ(t) denote the optimal continuation value to a

type-θ customer from staying in the market at the end of time t. Then, the customer is willing to buy

at time t if Jθ(t) ≤ Vθ − p(t); if he does not buy, he is willing to leave if Jθ(t) ≤ 0.

There are two additional conditions that the selling policy must satisfy. First, the control policy

{S(t),D(t)} must be incentive compatible, because our customers are free to make their own utility

maximizing choices. Specifically, cumulative sales Sθ(t) may increase if and only if customers are

willing to purchase and cumulative departures Dθ(t) may increase if and only if customers are willing

to leave. Second, the pricing and rationing policies {p(t), r(t)} must be credible. In other words, there

must not exist any time t when it is to the seller’s advantage to deviate to a different price or rationing

policy. Only then are customers willing to base their purchase decisions on these announcements.

Our goal is to determine the revenue-maximizing selling policy {p∗(t), r∗(t),S∗(t),D∗(t)}, sub-

ject to incentive compatibility and credibility. At first glance, this is a control problem in continuous

time. However, most existing methods do not apply directly because verifying incentive compatibility

involves solving additional control problems (one for each customer type). Furthermore, verifying

credibility requires us to analyze the continuation-version of this problem at every point in time.

Therefore, instead of tackling this problem directly, we shall first proceed to simplify it by exploiting

some of its structural properties. This is done in the next section. Readers who prefer to first see

the results and insights may proceed directly to Section 5, before returning to these technical and

methodological details later.

4 Structural Properties and Upper Bounds

In this section, we show that the seller’s continuous-time control problem can be reduced to a single-

variable nonlinear program, which we solve explicitly. We proceed in four major steps. In Section 4.1,

we identify some key features that parameterize feasible solutions. In Section 4.2, for each set of policy

parameters, we establish an upper bound on revenues. In Section 4.3, we construct candidate policies

attaining the upper bounds above. Finally, in Section 4.4, we optimize over policy parameters to find

the largest upper bound, and conclude that the corresponding candidate policy must be optimal.

4.1 Policy Parameters

We begin by proving some structural properties that an optimal solution must satisfy. Based on

these properties, we show that all feasible policies {p(t), r(t),S(t),D(t)} are parameterized by several

real-valued quantities. These parameters will be the focus of our analysis.
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Lemma 1 For any feasible policy, we must have p(t) ≥ VL.

Intuitively, prices strictly below VL are not credible because when the time comes to honor

these prices, the seller will increase prices to VL since all customers are still willing to buy at this

price. At the time of purchase, waiting costs are sunk and customers will contend with any price that

leaves them with non-negative surplus.

Proposition 1 For any feasible policy, there exists parameters τ0, τ1, . . . , τN , π1, . . . , πN , with
∑N

i=0 τi =

1, such that at least the same revenues are earned under some policy satisfying

(i) p(t) = VL and r(t) = 1 for every t ∈ [0, τ0].

(ii) p(tk) = VL and r(tk) = πk for tk =
∑k

i=0 τi, for k = 1, . . . , N .

This result illustrates that every feasible policy is associated with a set of parameters, namely

τ0, ~τ ≡ {τ1, . . . , τN}, and ~π ≡ {π1, . . . , πN}. We may interpret τ0 as the length of an initial time

interval with price VL. After this, “sale” prices of VL occur only at discrete time points: each τk is the

length of time that transpires before the next “sale” occurs, during which a fraction πk of demand is

fulfilled. We shall refer to the time interval with length τk as the k-th time segment, for k = 0, 1, . . . , N .

4.2 Upper Bounds

Next, for each set of policy parameters τ0, ~τ ≡ {τ1, . . . , τN}, ~π ≡ {π1, . . . , πN}, we proceed to find an

upper bound on revenues. In other words, any policy associated with the corresponding parameters

can not earn more revenues than this upper bound. To obtain these bounds, we compute customers’

willingness-to-pay (WTP) at each time, and aggregate these WTPs over all individuals. We first focus

on the case bI > bP = 0; that is, patient customers face zero waiting cost. The other case with

bI > bP > 0 will be examined later.

We begin by considering the stopping problem faced by low-valuation customers. First, if

waiting costs are strictly positive, the customer will either buy immediately upon arrival (if price is

VL) or leave the market forever (if price exceeds VL). These customers never wait because they know

that they can at best enjoy zero surplus, since the lowest possible price is VL. On the other hand,

low-type customers with zero waiting cost will wait for a price of VL before purchasing. Therefore, in

the current case with bI > bP = 0, patient-low-types strategically wait for the sale, but impatient-low-

types behave myopically and make a one-time buy-or-exit decision at the time of arrival.

Next, we consider the decision problem faced by high-valuation customers, given policy param-

eters τ0, ~τ ≡ {τ1, . . . , τN}, ~π ≡ {π1, . . . , πN}. First, we consider patient-high-types. Since waiting costs

are bP = 0, the WTP of patient-high-types arriving during the k-th time segment, denoted WPH
k , can
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be characterized using backward induction. Specifically, we have

WPH
N = VH − πN∆, (2)

WPH
k = VH − πk∆− (1− πk)(VH −WPH

k+1), k = 1, . . . , N − 1. (3)

These expressions imply the following upper bound on the WTP of patient-high-types:

WPH
k ≤ VH − πk∆. (4)

By a similar logic, we can characterize the WTP of impatient-high-types. Since waiting costs bI > 0

are now relevant, the WTP depend on the precise time of arrival within each time segment. Let

W IH
k (s) denote the WTP of impatient-high-types arriving in the k-th time segment, at time s ≤ τk

before the end of the time segment. We have the following upper bound on WTP:

W IH
k (s) ≤ min{VH − πk∆ + bIs, VH}. (5)

This is because impatient-high-types have an option to wait (at cost of bIs) until the end of the time

segment. If we assume that impatient-high-types are required to leave the market by the end of the

current time segment, their WTP then would be VH −πk∆, so (5) would hold with equality. However,

since exit is not mandatory, we only have an upper bound above. It is convenient to rewrite (5) as

W IH
k (s) ≤ VH − [πk∆− bIs]+. (6)

Aggregating these WTP expressions yield an upper bound on seller revenues. In the following

two lemmas, we characterize this upper bound and derive an useful condition that it satisfies.

Lemma 2 Let bI > bP = 0. Consider any policy with parameters τ0, ~τ ≡ {τ1, . . . , τN}, ~π ≡ {π1, . . . , πN}.
The revenue collected under this policy can not exceed the upper bound UB(τ0, ~τ , ~π) given by

τ0VL +
N∑

k=0

(
fPLτkπkVL + fPHτk(VH − πk∆) + fIH

∫ τk

0
VH − [πk∆− bIs]+ds

)
. (7)

Lemma 3 Define τ̄ =
∑N

k=1 τk and π̄ =
∑N

k=1 τkπk∑N
k=1 τk

. Then, we have UB(τ0, ~τ , ~π) ≤ UB(τ0, τ̄ , π̄).

The preceding lemmas yield an important implication. Given any feasible policy with parame-

ters τ0, ~τ , ~π, we know that revenues do not exceed UB(τ0, ~τ , ~π), which in turn is less than UB(τ0, τ̄ , π̄)

with τ̄ , π̄ defined in Lemma 3. Therefore, we can start with using UB(τ0, τ̄ , π̄) as an upper bound on

policy revenues. This allows us to make the following conclusion.

Proposition 2 Let bI > bP = 0. Then, under any feasible policy, there exist parameters τ0, τ1, π1

such that the revenues collected does not exceed the upper bound UB(τ0, τ1, π1).
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4.3 Candidate Policies

Next, for each set of parameters τ0, τ1, π1, we proceed to construct a feasible policy attaining the upper

bound given above. As we vary the parameters, this class of policies serves as possible candidates

for the optimal policy. We will specify the price schedule p(t), rationing function r(t), as well as the

controls for cumulative sales and departures {S(t),D(t)}. The policy described in the following lemma

attains revenues that are arbitrarily close to the upper bound.

Proposition 3 Let τ0, τ1, π1 ∈ [0, 1] with τ0 + τ1 = 1. For some small ε > 0, under the policy

p(t) =





VL, t ∈ [0, τ0],

VH − [π1∆− bI(1− ε− t)]+, t ∈ (τ0, 1− ε],

VH − π1∆, t ∈ (1− ε, 1),

VL, t = 1,

(8)

r(t) =

{
1, t ∈ [0, 1),

π1, t = 1,
(9)

Sθ(t) =





fθt, if θ = IH, or (θ = PH and t ≥ 1− ε),

fθ min(t, τ0), if θ = IL, or (θ = PH and t < 1− ε), or (θ = PL and t < 1),

fθ(τ0 + π1τ1), if (θ = PL and t = 1)

(10)

Dθ(t) =





0, if θ ∈ {IH, PH}, or (θ = PL and t < 1), or (θ = IL and t ≤ τ0),

fθτ1(1− π1), if (θ = PL and t = 1),

fθ(t− τ0), if (θ = IL and t > τ0),

(11)

revenues collected are at least UB(τ0, τ1, π1)− ε∆.

The essence of this result is depicted in Figures 1 and 2, which plot the prices, rationing function, and

controls over time. It is straightforward to verify that this policy attains the revenues as claimed. For

convenience, we shall refer to this as the (τ0, τ1, π1)-policy.

Next, observe that the seller must exhaust all available inventory Q by the end of the horizon.

This is because any policy with leftover inventory violates the credibility condition, since the seller

would always prefer to sell them to waiting customers at t = 1 rather than to discard them. Customers

anticipate this move and these expectations would affect their WTP. Thus, the outcome would be as

if the seller has planned on selling out right from the start. This implies that in order for the policy

of Proposition 3 to be feasible (in particular, credible), we must have

τ0 + τ1(fPH + fIH + π1fPL) = Q, (12)

where the left-hand-side is the number of units sold. Together with the condition

τ0 + τ1 = 1, (13)
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Figure 2: Cumulative sales and departures for each customer type under (τ0, τ1, π1)-policy

we are left with only one degree of freedom among the parameters τ0, τ1, π1. That is, specifying the

value of one parameter pins down the value of the other two. In particular, we shall primarily use π1

to uniquely characterize any (τ0, τ1, π1)-policy. In this way, we have a continuum of candidate policies

parameterized by π1.

It is worthwhile to point out the two extreme cases in our continuum of candidate policies.

These are shown on Figure 3. On one extreme, π1 is minimized at π1 = 0, with τ0 = Q−α
1−α and

τ1 = 1−Q
1−α (recall that fPH + fIH = α). This corresponds to a pure markup policy, since prices start

at VL and then increase to VH at time τ0. At the other extreme, π1 is maximized at π1 = π̄1 ≡ Q−α
αφL

(recall that fPL = αφL), and the other parameter values are τ0 = 0, τ1 = 1. This describes a pure

markdown policy, since the zeroth time segment has length τ0 = 0 and prices decrease over all of the

next time segment of length τ1 = 1 and culminate at VL. At all intermediate policies with π1 ∈ (0, π̄1),

the price schedule is not monotone: optimal prices start low at VL, increase at time t = τ0, and then

decrease again at time t = 1. We refer to these as interior policies.

The class of (τ0, τ1, π1)-policies may be interpreted as follows. (Please refer to Figure 1.) There

is initially a promotional pricing phase of length τ0, at which all arriving customers purchase at price

VL. There is no rationing, and all demand is fulfilled. Then, the regular selling season of length τ1
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Figure 3: Pure markup and pure markdown policies

follows: prices decline steadily over the season and culminate in a sale at price VL, when demand is

rationed and there is only a π1 chance of getting the product. Since customers balance the tradeoff

between low prices and product availability, the price decrease is designed to induce high-types to

buy instead of waiting for the final sale. During the season, impatient-high-types buy immediately,

patient-high-types wait to buy right before the sale, patient-low-types wait to buy at the final sale

price VL (succeeding only if they are not rationed), and impatient-low-types are lost.

4.4 Attaining ε -Optimality

In this subsection, we maximize the upper bound UB(τ0, τ1, π1) over all τ0, τ1, π1 ∈ [0, 1] satisfying (12)

and (13). From Propositions 1 and 2, we know that this maximum value must be an upper bound on

optimal seller revenues. Based on the characterization given in Proposition 3, we can then construct

an ε-optimal (τ0, τ1, π1)-policy whose revenue is within ε∆ of the optimal revenue. Since ε can be

made arbitrarily small, we shall henceforth contend with ε-optimality and refer to it as “optimality”

for brevity.

Before presenting the next result, let us define the constants A ≡ α(1−Q)
1−α ·

(
1− φH

φL

)
· ∆,

B ≡ −α·φH ·∆
2

bI
, and K ≡ −AφL

B = 1−Q
1−α · φL−φH

1−φH
· bI
∆ . Also, let us define the function G(u) ≡ u(1−φLu)2

and notice that its maximum value over u ∈ [0, 1] is 4
27φL

. We are now ready to state our result.

Proposition 4 Let bI > bP = 0. Then, the optimal policy is a (τ0, τ1, π1)-policy, with π1 given below.

(i) When K ≤ 0, we have π1 = 0.

(ii) When K ∈ (0, 4
27φL

), we have either π1 = π̄1 or π1 = ξ ∈ (0, π̄1), where ξ is the smallest solution

of G(ξ) = K. In particular, if K ≤ G(π̄1) ≤ 4
27φL

, we have πi = ξ.

(iii) When K ≥ 4
27φL

, we have π1 = π̄1.

Finally, we return to the case with bI > bP > 0. In this case, recall that all low-types, having a

positive waiting cost, behave myopically, so that sales at the end of the length-τ1 time segment benefit

only high-types. Since all these high-types are willing to pay VH , it is optimal to set prices at VH after
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time t = τ0, so π1 = 0, which uniquely determines the optimal policy. We thus have the following

result.

Proposition 5 Let bI > bP > 0. Then, the optimal policy is a (τ0, τ1, π1)-policy, with π1 = 0.

In this section, we have simplified a dynamic principal-agent control problem in continuous

time into a nonlinear program in a single variable. The latter problem is then solved to characterize

the seller’s optimal policy. In the next section, we proceed to identify the main drivers that determine

the structure of the optimal policy.

5 Optimal Policy

Should the seller still hold sales when customers strategically wait for them? Under the revenue-

maximizing price discrimination strategy, should the seller have low-priced transactions at the start

or at the end of the selling horizon? Or both? In this section, we show that the answers to these

questions depend critically on customer valuations, waiting costs, as well as the interaction between

these two dimensions of heterogeneity.

Theorem 1

(a) The optimal policy is a pure markup policy if at least one of the following conditions hold:

(i) φL ≤ φH ,

(ii) bP > 0.

(b) The optimal policy is a pure markdown policy if all of the following conditions hold:

(i) φL ≥ φH ,

(ii) bP = 0 and bI is sufficiently large (that is, bI ≥ 4(1−α)
27(1−Q) · 1−φH

φL(φL−φH) ·∆).

(c) The optimal policy is an interior policy if all of the following conditions hold:

(i) φL ≥ φH ,

(ii) bP = 0 and bI is sufficiently small (that is, bI ≤ (Q−α)(1−Q)
(1−α)2

· 1−φH

φL(φL−φH) ·∆).

This theorem follows from Propositions 4 and 5. It indicates that strategic waiting on the part

of customers is critical in determining the structure of optimal price schedules. Within our framework,

we show that a full spectrum of pricing policies may be optimal, ranging from monotone increasing to

monotone decreasing price paths. In case (i), pure markup policies are optimal, and the seller should

concentrate all low-priced transactions at the start of the horizon, whereas in case (ii), the seller should

use pure markdown policies and defer all sales to the end of the horizon. The intuition is as follows.

Markups defend the seller against strategic delays since waiting does not pay off. This is important

when the high-type population is patient and more likely to wait, compared to the low-types (i.e.
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when φH ≥ φL). Another situation in which markups are appropriate is when waiting costs are high

in general (i.e. high bP and bI). In this case, it is important to use markups to discourage waiting,

since waiting is inefficient and induces a deadweight loss. On the other hand, the success of price

markdowns is contingent upon whether low-valuation customers will wait around to purchase at sales,

after the (relatively more impatient) high-types have purchased at a higher price. This requires low

waiting costs for patient-low-types and high waiting costs for impatient-high-types (i.e. low bP and

high bI), as well as a relatively large segment of impatient customers among high-types (i.e. φL ≥ φH).

For other parameter values, neither of the opposing factors above dominate. Then, it may be optimal

to sell low-priced units both during the start and the end of the horizon, using an interior policy.

The promotional selling phase appeals to early customers who object to either paying high prices or

waiting too long for a sale, and the regular selling season is short enough so that it is not too costly

for self-selecting customers to wait for the sale, thereby achieving price discrimination.

Corollary 1 Consider the limiting case with bP = 0 and bI = ∞. Then, the optimal policy is a pure

markup policy if φH ≥ φL and a pure markdown policy when φL ≥ φH .

In this limiting case, Corollary 1 tells us that pure markups are optimal when high-types are

relatively more patient, pure markdowns are optimal when high-types are relatively less patient, and

interior policies are no longer needed. The same intuition above still applies. Since this limiting case

allows us to derive the same insights, while being analytically more convenient, we shall focus on this

case henceforth. Furthermore, since impatient customers with bI = ∞ never wait, we may describe

them as being myopic and the patient customers as being strategic.

The results presented thus far apply to the case where the seller’s initial inventory Q lies

between α and α + φLα. Equivalently, there is excess inventory after satisfying all high-type demand

(of mass α), but this excess is not sufficient to supply to all patient-low-types (of mass φLα). The

other cases are not presented here because they do not yield any new insights. In the case where

Q < α, the seller simply sets a high price of VH throughout, and in the case where Q > α + φLα, the

seller initially sets promotional prices of VL so that inventory can be depleted until it is within the

range of our analysis, which is then directly applicable.

Anecdotal evidence suggests that markups are common in the travel industries whereas mark-

downs are common in fashion retailing. In fact, Feng and Gallego (1995, 2000) and Feng and Xiao

(2000) use this observation to motivate their analysis of markup and markdown pricing mechanisms,

but they do not explain whether markups or markdowns are more appropriate in any given situa-

tion. Bitran and Mondschein (1997) and Zhao and Zheng (2000) provide an explanation based on

time-inhomogeneous demand patterns. They note that for fashion products, arrival intensities and
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reservation prices are higher during the start of the selling season; however, in airlines and hotels,

arrival intensities and reservation prices are higher during the end of the time horizon. They use this

difference to build a model that explains why airlines and hotels use markups while fashion retailers

use markdowns. It is important to note that time-inhomogeneity is crucial in these models: with sta-

tionary (and non-strategic) demand, inter-temporal price discrimination is not worthwhile because the

seller should simply charge the monopoly price (on average) throughout the time horizon. However,

in these models, time-inhomogeneity is exogenously specified.

Our results in Theorem 1 provide an alternative explanation based on strategic customer be-

havior. It is conceivable that in fashion retailing, high-valuation customers prefer to have the product

earlier and are relatively less patient to wait for sales, whereas in the case of airlines, the high-types

(e.g. business travelers) tend to be more patient and do not mind committing to travel schedules later.

Based on our model, this difference would explain why markdowns are often seen in fashion retailing

and markups are often seen in travel industries such as airlines. In fact, our explanation based on

strategic customer behavior complements previous explanations based on time-inhomogeneity. This

is because by incorporating strategic considerations, we show that time-inhomogeneity arises endoge-

nously as an equilibrium outcome (e.g. when customers wait for markdowns). Although we assume

stationary arrivals at the outset, we find that strategic customer behavior can generate the time-varying

purchase patterns that have been shown to account for increasing or decreasing price paths.

Another observation is that each of the four customer segments in our model affects the seller

in different ways. First, impatient-high-types benefit the seller because he is able to extract high

revenues from these customers immediately when they arrive. Second, patient-high-types hurt the

seller because strategic delays have an adverse effect on revenue. Third, patient-low-types benefit

the seller because when they strategically delay purchase, they create competition with the other

high-valuation customers for product availability at the end of the selling season; this discourages

the high-types from waiting and increases their willingness to pay. Finally, impatient-low-types is of

minimal value to the seller because it is not possible for these customers to generate high profits.

Therefore, depending on the relative sizes of these four segments, the seller should adjust the price

schedules accordingly as specified in Theorem 1.

In our model, the optimal price schedule may either increase or decrease over time, whereas

most papers in the dynamic pricing literature generate price paths that, on average, only decrease

over time. In a recent review paper on the airline industry, McAfee and te Velde (2005) write,

“a remarkably robust prediction of theories ... (is that) prices are falling as takeoff approaches.”

This can be understood by considering the option value of unsold units. As the end of the horizon

approaches, it becomes less likely that a given unit would be sold, so its option value declines. In
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fact, Gallego and van Ryzin (1994) use their stochastic model with Poisson arrivals to establish the

following structural properties: (i) for a fixed inventory level, the price should decrease over time, and

(ii) at a fixed time, the price should increase as the remaining inventory decreases. This implies that

along any sample path, the optimal price decreases continually, and jumps up whenever units are sold.

McAfee and te Velde (2005) scrutinize the Gallego and van Ryzin (1994) model and conclude that

the two structural properties above, when combined, lead to a decrease in expected prices over time.

Therefore, these stochastic models and their corresponding option-value interpretations do not explain

the use of markups (commonly observed in airlines); a notable exception is Zhao and Zheng (2000),

whose model with time-inhomogeneous demand processes may lead to increasing price paths. Our

game-theoretic model, in contrast, rationalizes both markups and markdowns by explicitly accounting

for inter-temporal customer utility. This suggests that in some practical pricing contexts, strategic

considerations are no less significant than stochastic influences.

Nevertheless, the option value interpretations from stochastic models can be combined with

the insights from our game theoretic model. In the stochastic analogue of our model (e.g. customers

arrive according to Poisson processes), we conjecture that our main findings will remain unchanged.

The work of Gallego and van Ryzin (1994, 1997) lends support for this conjecture by showing that

deterministic models provide good approximations because statistical fluctuations in demand average

themselves out. In particular, they observed that compensating for demand uncertainty by adjusting

prices dynamically achieves a minimal effect: their deterministic heuristic performs almost as well as

the optimal dynamic pricing policy. In the same way, one can view the current work as a deterministic

solution to the general yield management problem under strategic customer behavior. In general,

although optimal prices should decrease along each sample path as the deadline approaches (because

the option value decreases), these decreases only have a second-order effect. In contrast, first-order

price changes are triggered by the “regime switches” captured in our deterministic model, in which the

seller changes his target group of buyers. Specifically, markups reflect the seller’s intention to restrict

sales to a smaller group of high-valuation buyers, while markdowns reflect the opposite intention

to include a larger set of potential buyers with lower valuations. In a stochastic setting, whether

these first-order price changes should involve markups or markdowns depends on the composition of

the customer pool in a similar fashion as before. However, all these statements are conjectures that

remain to be verified by future research.

6 Seller Revenue, Consumer Surplus, and Social Welfare

We are interested in the seller’s optimal revenue R, as well as the consumer surplus Uθ of type-

θ customers (averaged over all customers of each type). The following proposition, proven in the
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appendix, expresses these quantities of interest in terms of basic model parameters.

Proposition 6 Let bP = 0 and bI = ∞. Under the optimal selling policy, the seller’s revenue and

customers’ surplus are characterized below.

(i) When φH ≥ φL (i.e. markups are used),

R = αVH +
Q− α

1− α
(VL − αVH), (14)

UPH = UIH =
Q− α

1− α
∆, (15)

UPL = UIL = 0. (16)

(ii) When φH ≤ φL (i.e. markdowns are used),

R = αVH +
Q− α

φLα
(φLαVL − φHα∆) , (17)

UPH =
Q− α

αφL
∆, (18)

UIH = UPL = UIL = 0. (19)

These expressions have intuitive interpretations. When the high-type population is relatively more

patient (φH ≥ φL), Theorem 1 tells us that the seller uses a markup. With a markup, the seller’s

revenue in Proposition 6(i) is the sum of the base revenue αVH (obtained by charging VH throughout),

and the incremental revenue from charging the low introductory price of VL for the first Q−α
1−α time units.

For high-types, the consumer surplus is ∆ during the introductory period and zero at other times, so

this yields Q−α
1−α ∆ on average. For low-types, it is clear that the consumer surplus is always zero. In

the other case where the high-type population is relatively less patient (φH ≤ φL), Theorem 1 tells

us that the seller uses a markdown. With a markdown, the seller’s revenue in Proposition 6(ii) is the

base revenue of αVH (obtained if all high-types pay VH), plus the incremental revenue from a fraction
Q−α
αφL

of the patient-low-types who buy at the end of the horizon (the first term in parentheses), minus

the revenue from patient-high-types that must be sacrificed in order to ensure that these customers

will not choose the “deal” intended for the low-types (the second term in parentheses). This foregone

revenue results in consumer surplus of Q−α
αφL

∆ for all the patient-high-types, while all other customers

earn zero surplus.

The expressions for seller revenue and high-type consumer surplus are plotted against φH and

φL in Figure 4. (We omit the low-types because they receive zero surplus.) First, we look at the

graphs on the left-hand-side. As the proportion of patient customers among the low-types increases

(i.e. as φL increases), both the seller’s revenue and consumers’ surplus initially remain unchanged

as long as φL ≤ φH . As soon as φL increases beyond φH , there is a transfer of surplus from the
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Figure 4: Seller’s revenue and consumer surplus against φH and φL

impatient-high-types to the patient-high-types. This occurs due to the regime switch from markup

pricing (positive surplus available to all high-types) to markdown pricing (positive surplus are exclusive

to patient-high-types). As φL continues to increase, the surplus for impatient-high-types stays at zero

and the surplus for patient-high-types decreases, while the seller’s revenue increases. This transfer

from patient-high-types to the seller occurs because a larger pool of patient-low-types (i.e. higher φL)

increases the competition for availability at the final markdown price and helps the seller to extract a

larger part of the patient-high-type consumer surplus. Next, we look at the graphs on the right-hand-

side. As the proportion of patient customers among the high-types decreases (i.e. as φH decreases),

all quantities initially remain unchanged. As φH falls below φL, the regime switch (from markups to

markdowns) leads to a transfer from impatient-high-types to patient high-types, as discussed above.

As φH continues to decrease, consumer surplus remains unchanged but the seller’s revenue increases.

The seller gains, even though each individual customer is unaffected, because there is an increased

mass of impatient-high-types who pay the maximum price VH .

In general, as illustrated in Figure 4, the seller is better off when either φL increases or φH

decreases. When the high-valuation segment becomes proportionately less patient (i.e. φH decreases),

there are more impatient-high-types who are willing to pay a high price immediately upon arrival,

and there are less patient-high-types who use strategic delays to pay less than their individual valua-

tion. Each of these two effects enhances revenues. Similarly, when the low-valuation segment becomes

proportionately more patient (i.e. φL increases), there are more patient-low-types. These customers

benefit the seller because they compete with other customers for end-of-season inventory, thus encour-

aging earlier purchases at higher prices.
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Customers who arrive early during the selling season (early-birds) earn different levels of surplus

from those who arrive later (late-comers). According to Theorem 1, when markups are used, early-

birds (who arrive before time t = Q−α
1−α ) with high valuations enjoy a surplus of ∆, but late-comers

(who arrive after time t = Q−α
1−α ) do not earn any surplus. On the other hand, when markdowns are

used, individual surplus does not depend on arrival time: all patient-high-types have an equal chance

of earning positive surplus (regardless of arrival time) and all other customers earn zero surplus.

This suggests that in an environment with φH ≥ φL, the use of markups will encourage customers

(or the high-valuation customers, at least) to arrive earlier. On the other hand, in the opposite

environment (φH ≤ φL), the use of markdowns implies that arriving early is of no value. Therefore, if

customers were able to choose when to arrive to the market, their arrival times would be influenced by

the composition of the customer pool (which determines whether markups or markdowns are used).

These choices of arrival times generate non-stationary intensities and valuations in the arrival process,

which in turn influence the seller’s optimal inter-temporal pricing strategies. We leave the task of

endogenizing customers’ choices of arrival times as a topic for future research. For a similar setting

with endogenous arrivals to a queue, readers are referred to Lariviere and van Mieghem (2004).

Finally, observe that the optimal selling policy is socially efficient. Whether the seller uses a

markup or a markdown, the limited inventory is always used up and allocated to all the high-valuation

customers and a portion of the low-valuation customers. The only difference is in terms of low-type

allocation, i.e., which low-type customers receive the product? When markups are used, early-bird

low-types receive the product, but when markdowns are used, patient-low-types receive the product.

In either case, social welfare (i.e. the sum of the seller’s revenue and total consumer surplus) is

maximized and equals αVH + (Q− α)VL.

7 Initial Inventory Choice

So far, the seller’s inventory Q has been exogenously specified. Now, suppose that each unit can be

procured at some cost, normalized to zero. If inventory planning were possible for the seller, how

many units Q should he stock? The next proposition, proven in the appendix, provides the answer.

Proposition 7 Let bP = 0 and bI = ∞. The seller’s optimal stocking quantity and selling policy are

characterized below.

(i) When αVH ≥ VL and αφHVH ≥ (αφH + αφL)VL, the seller should stock Q∗ = α units, charge

the constant price p∗(t) = VH , and satisfy all demand with r∗(t) = 1.

(ii) When αVH ≤ VL and αφHVH ≤ (αφH + αφL)VL, the seller should stock Q∗ = 1 unit, charge the

constant price p∗(t) = VL, and satisfy all demand with r∗(t) = 1.
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(iii) In all other cases, the seller should stock Q∗ = α + αφL units, use the markdown price schedule

p∗(t) =

{
VH , t < 1,

VL, t = 1,
(20)

and satisfy all demand with r∗(t) = 1.

This proposition distinguishes between three cases. We refer to case (i) as the constant-high-price

case, because the seller stocks α units, charges the high price VH throughout the horizon, and satisfies

all high-type demand. Next, we refer to (ii) as the constant-low-price case, because the seller stocks

one unit, charges VL throughout, and satisfies all demand at the low price. Finally, case (iii) involves

a single markdown. The seller stocks α + αφL units, sells to impatient-high-types (of mass αφH) at

the high-price VH throughout the horizon, and sells to all patient customers (of mass αφH + αφL) at

the marked-down price VL at the end.

Low−types are valuable

PRICING

(i) CONSTANT HIGH PRICE

(ii) CONSTANT LOW PRICE

(iii) MARKDOWN

High−types are valuable

Low−types are patient High−types are patient

Figure 5: Regions for candidate pricing regimes

Figure 5 shows the regions (in parameter space) over which each of these three cases apply. On

the x-axis, we have

x = αφHVH − (αφH + αφL)VL, (21)

which represents the profit differential between selling to the patient-high-types at the high price VH

and selling to all patient customers at the low price VL. Observe that x is increasing in φH but

decreasing in φL. Therefore, we can interpret an increase in x as the high-type population becoming

proportionately more patient (i.e. an increase in φH), and we can interpret a decrease in x as the

low-type population becoming proportionately more patient (i.e. an increase in φL). Next, on the

y-axis, we have

y = αVH − VL, (22)
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which represents the profit differential between selling to all the high-types at the high price VH and

selling to all customers at the low price VL. Therefore, we can interpret an increase in y as the high-

type population becoming more valuable (i.e. an increase in αVH), and we can interpret a decrease in y

as the low-type population becoming more valuable (i.e. an increase in VL). According to Proposition

7, cases (i) and (iii) may apply in the upper half-plane (i.e. y ≥ 0), and the other condition for (i) to

hold here is αφHVH ≥ (αφH + αφL)VL, or x ≥ 0. Similarly, in the lower half-plane (i.e. y ≤ 0), cases

(ii) and (iii) may apply. Here, the condition for (ii) to hold is αφHVH ≤ (αφH + αφL)VL, or x ≥ y.

This yields the three regions shown in the diagram.

In a similar model, Wilson (1988) shows that uniform prices are optimal if the seller can choose

initial inventory levels. In his model, all the customers are strategic (i.e. φH = φL = 1), so his results

apply to situations on the x = y line in Figure 5. In other words, our findings are consistent with

earlier work. In fact, by considering a more general composition of the customer population, we show

that apart from uniform pricing, markdowns may also be optimal when the initial inventory level is

flexible.

Let us now draw some observations from the regions in Figure 5. First, when the low-type pop-

ulation is proportionately more patient than the high-type population, the seller should use markdown

pricing. This agrees with our earlier findings when the initial inventory is fixed. On the other hand,

when the high-type population is proportionately more patient, the seller should charge fixed prices: a

constant high price should be used when there is a significant value differential between the high-type

and low-type clienteles, otherwise, a constant low price should be used. This result differs from our

earlier case where the initial inventory is fixed; in that case, markup pricing is appropriate because it

provides the optimal time-mixture between the constant-low-price policy and the constant-high-price

policy, subject to the inventory-constraint that all available units must be sold. However, when the

initial inventory is flexible, such time-mixing is no longer needed, because the seller is free to choose

the constant price (and stock the associated quantity) that maximizes profits.

These results suggest that price increases, which are quite common in practice, are driven by

factors that extend beyond the realm of our stylized model. For example, consider uncertainty and

non-stationarity in demand patterns. In environments with aggregate demand uncertainty, initially

low prices may help the firm learn about market potential. Furthermore, with time-inhomogeneous de-

mand, increasing prices may even be necessary if higher-value customers arrive later. A more complete

investigation of the joint pricing-inventory problem with strategic customers should incorporate these

factors, in order to better identify the forces favoring either markups or markdowns and understand

their interplay with the initial inventory choice.
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Our analysis has examined both short-term (when the initial inventory is fixed) and long-

term (when the initial stock is flexible) solutions. Under some practical situations, the “short-term”

solutions are also relevant in the long run. This may occur when there is uncertainty in demand

during the inventory planning stage. The stock of Q units must be ordered/produced in the absence

of perfect demand information. Subsequently, after demand is realized, the inventory has already

been ordered/produced, and the seller must choose prices according to the “short-term” solutions.

Alternatively, there may also be scenarios where the initial inventory is used to serve different streams

of demand (for example, in airlines, the inventory of seats on the same plane is used on flights with

different demand characteristics). In this case, the stocking quantity Q is not completely flexible even

in the long run: there must be some situations when the seller faces a “fixed” inventory that has been

optimized for some other stream of demand, and the “short-term” solutions must be used instead.

These situations suggest that our “short-term” solutions in Theorem 1 may continue to persist in the

long run.

8 Conclusion

The main contribution of this paper is to analyze the inter-temporal pricing problem when the customer

pool consists of four distinct groups: patient-high-types, impatient-high-types, patient-low-types, and

impatient-low-types. This model sheds light on how the composition of the customer pool influences

the optimal pricing regime, as well as the division of surplus between the seller and his customers. In

most existing work, customers either do not wait in the market or have homogeneous discount rates.

In contrast, we find that heterogeneity in both valuations and waiting costs are crucial and they jointly

determine the structure of optimal pricing policies.

When the seller has a fixed initial inventory, we find that prices should decrease over time when

the market is dominated by either impatient-high-types or patient-low-types. On the other hand, when

the market is dominated by patient-high-types or impatient-low-types, prices should increase over

time. Figure 6 summarizes these conclusions. This provides a possible explanation for the prevalence

of markdowns in fashion retailing, because high-valuation customers derive immediate consumption

utility and are less willing to wait until the end of the season. On the other hand, in travel industries

such as airlines, markup pricing could be justified because high-types (business travelers) tend to be

more willing to wait.

In the long run, the seller is able to select an initial stocking quantity. We find that markdowns

remain optimal when the high-valuation customer segment is relatively less patient. However, when

the high-valuation segment is relatively more patient, the long run optimum is to charge a single price

(which depends on market characteristics) throughout the selling season. The seller selects the price
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Figure 6: Structure of optimal pricing policy when each customer segment dominates the market

that maximizes his long run profit rate, and stocks the corresponding quantity.

The results in this paper can be extended in three broad directions. The first direction is to

introduce inventory. In this paper, the seller is endowed with a fixed inventory. The long run stocking

decision considered herein is also highly simplified because demand is deterministic. It would be

interesting to consider the seller’s (retailer’s) inventory ordering decisions under demand uncertainty,

in a newsvendor-type setting. How does the stocking decision (which determines availability) change

when customers anticipate stockouts and markdowns? How should ordering and pricing decisions

be made in conjunction? What are the implications of strategic customer behavior on decentralized

decisions in a supply chain? These issues are examined in Su and Zhang (2005). These questions

also extend to infinite horizon applications. Incorporating strategic customer behavior into classical

inventory models is also a potential area of research; see Ahn et al. (2005). The second direction is

to introduce competition. When there are multiple sellers, it is interesting to see how sellers react

to each other’s pricing strategies. For customers, a critical modeling component is to specify how

they choose between sellers at different prices. Previous work involving competition (for example,

Netessine and Shumsky, 2005) do not incorporate strategic customer behavior. Finally, the third

direction is to extend our setup to a service setting. The service provider sets prices dynamically,

and customers strategically choose when to seek service, taking into account future prices as well as

negative congestion externalities. A similar kind of customer behavior has been examined by Lariviere

and van Mieghem (2003) and Armony and Maglaras (2004a, 2004b), but these papers do not consider

pricing. In my opinion, each of these directions present fruitful opportunities for future research.
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Appendix

Proof of Lemma 1 Suppose there exists some time t at which positive sales occur at price p(t) < VL.

Let s be the supremum of this set of times. Then, at time s − ε, consider increasing prices to

max{p(t), VL}. Sales that were planned for the time interval [s − ε, s] are still incentive compatible

because the new prices are still lower than all future prices after time s. This modification strictly

increases revenues. Thus, the credibility condition is violated.

Before presenting the proof of Proposition 1, we need the following two lemmas.

Lemma 4 Let B be the set of times over which sales occur at price VL. Then, r(t) = 1 over B, except

possibly for a set of measure zero.

Proof of Lemma 4 Suppose there exists some positive-measured subset B′ ⊂ B such that r(t) < 1

over B′. Then, we can find a closed interval [a, b] ⊂ B′, and let r = min{r(t) : a ≤ t ≤ b} ∈ (0, 1). Let

c = (a + b)/2. Since r(t) < 1 over [a, c], the market size Zθ(c) > 0.

Fix ε > 0. Since Zθ(t) is RCLL, there must exist δ > 0 such that |Zθ(c + s) − Zθ(c)| ≤ ε for

every s ≤ δ. However, for every δ > 0, we can show that Zθ(c + δ) is arbitrarily close to zero, because

for any integer k, Zθ(c+ δ) ≤ Zθ(c) · [1− r(c+ δ/k)] · [1− r(c+2δ/k)] · · · [1− r(c+ δ)] ≤ (1− r)kZθ(c).

This contradicts the right continuity of Zθ(t) at t = c.

Lemma 5 Let I = (a, b) be some interval over which sales occur at price VL. Then, revenues remain

unchanged under the alternative price schedule

p′(t) =





VL, t ∈ [0, b− a],

p(t− (b− a)), t ∈ (b− a, b],

p(t), t ∈ (b, 1].

(23)

Proof of Lemma 5 By Lemma 4, we must have r(t) = 1 over all times with price VL. By right-

continuity, we must have p(a) = VL under the original policy. Therefore, revenues earned during time

interval (a, b] in the original policy are equal to revenues earned during time interval (0, b− a] in the

modified policy. Further, notice that the problem facing customers over time interval (0, a] in the

original policy is identical to the problem facing customers over time interval (b− a, b] in the modified

policy. Therefore, the modified policy (with control processes translated accordingly) must reap the

same revenues. Finally, for the time interval (b, 1], choices (and thus revenues) remain unchanged.

With the two preceding lemmas, we are now ready to provide the proof for Proposition 1.
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Proof of Proposition 1 By the repeated application of Lemma 5 to time intervals with price VL,

any feasible policy is reduced to some policy satisfying (i), with r(t) = 1 following from Lemma 4.

After time τ0, we have p(t) = VL only at isolated points. Since feasible controls are limited to a finite

number of discontinuities, we can have only a finite number of subsequent time points with p(t) = VL.

Let there be M such time points. These time points, with rationing fractions denoted by πk, punctuate

the horizon into intervals of length τk. If p(1) = VL, we are done, as we have
∑M

i=0 τi = 1. Otherwise,

we set p(1) = VL and r(1) = 0, so that this final (M + 1)-th time segment has τM+1 = 1 −∑M
i=0 τi

and πM+1 = 0; we obtain
∑M+1

i=0 τi = 1.

Proof of Lemma 2 First, observe that in order to prove an upper bound on revenue, we may assume

that sales to high-types are conducted during the time segment of arrival. To see this, suppose that a

high-type who arrives during the k-th time segment were carried over to the next time segment. Then,

even if the maximum revenue of VH is anticipated in the next time segment, there is a πk chance of this

high-type securing the product at price VL at the end of the k-th time segment, resulting in expected

revenue of at most VH−πk∆. This does not exceed the WTP expressions (4) and (6) obtained for both

patient and impatient high-types. Therefore, we may assume that each high-type contributes their

WTP at time of arrival to the upper bound. Then, we can write down the desired upper bound. The

leftmost term reflects revenue collected during [0, τ0]. Within the summation, the first term is revenue

earned from patient-low-types in the k-th time segment, and the next two terms are revenue upper

bounds based on the WTP expressions (4) and (6) of patient-high-types and impatient-high-types

respectively.

Proof of Lemma 3 We may assume that π1 ≥ π2, which implies π1 ≥ π̂ ≥ π2. Define the function

L(τ, π) ≡
∫ τ

0
[π∆− bIu]+du =

{
τπ∆− bIτ2

2 , bIτ ≤ ∆π,
(∆π)2

2bI
, bIτ ≥ ∆π.

(24)

For any τ1, τ2, π1, π2 ∈ (0, 1) such that τ1 + τ2 ∈ (0, 1], let τ̂ = τ1 + τ2 and π̂ = (τ1π1 + τ2π2)/(τ1 + τ2).

Denote L1 = L(τ1, π1), L2 = L(τ2, π2) and L̂ = L(τ̂ , π̂). To prove the lemma, it suffices to show that

L1 + L2 ≥ L̂.

We consider three cases. First, suppose that bIτ1 ≥ ∆π1. Then, we must have bI τ̂ ≥ bIτ1 ≥
∆π1 ≥ ∆π̂. This implies that L1 + L2 ≥ L1 = (∆π1)2

2bI
≥ (∆π̂)2

2bI
= L̂ as required.

Next, suppose ∆π1 > bIτ1 ≥ ∆(π1 − π2). Then we have, as required,

L1 + L2 =
∫ τ1

0
[π1∆− bIu]+du +

∫ τ2

0
[π2∆− bIu]+du

≥
∫ τ1

0
[π̂∆− bIu]+du +

∫ τ2

0
[(π1∆− bIτ1)− bIu]+du
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=
∫ τ1

0
[π̂∆− bIu]+du +

∫ τ1+τ2

τ1

[π1∆− bIu]+du

≥
∫ τ1

0
[π̂∆− bIu]+du +

∫ τ1+τ2

τ1

[π̂∆− bIu]+du

=
∫ τ̂

0
[π̂∆− bIu]+du = L̂.

Finally, consider the case bIτ1 < ∆(π1 − π2). Define π′1 = π1 − ε, π′2 = π2 + τ1
τ2

ε for some ε > 0.

Notice that τ1π
′
1 + τ2π

′
2 = τ1π1 + τ2π2. Next, denote L′1 = L(τ1, π

′
1) and L′2 = L(τ2, π

′
2). Then,

(L′1 + L′2)− (L1 + L2) = (τ1π
′
1∆− bIτ

2
1 /2)− (τ1π1∆− bIτ

2
1 /2) +

∫ τ2

0
[π′2∆− bIu]+ − [π2∆− bIu]+du

≤ −τ1∆ε + τ2∆
τ1

τ2
ε = 0.

Therefore, we can repeatedly apply this transformation to decrease τ1 and increase τ2 until the pre-

ceding cases applies.

Proof of Proposition 4 Our goal is to maximize, subject to (12) and (13), the upper bound

UB(τ0, τ1, π1) = τ0VL + fPLτ1π1VL + fPHτ1(VH − π1∆) + fIH

∫ τ1

0
VH − [π1∆− bIs]+ds (25)

= τ0VL + fPLτ1π1VL + (fPH + fIH)τ1(VH − π1∆) + H(τ1, π1) (26)

= C + α∆(1− 1/φL)τ1 + H(τ1, π1), (27)

where H(τ1, π1) = fIH

[
τ1π1∆− (π1∆)2/2bI

]
if τ1bI ≥ π1∆ and H(τ1, π1) = fIHbIτ

2
1 /2 otherwise, C

is some constant, and the last equality (27) follows from τ1π1 = τ1
φL
− 1−Q

αφL
as implied by (12) and (13).

We begin by showing that τ1bI ≥ π1∆ at the optimal solution. Suppose not. Then the objective

in (27) above becomes C + α∆(1− 1/φL)τ1 + fIHbIτ
2
1 /2. This is a convex function in τ1, which must

be maximized at an extreme point, contradicting the hypothesis τ1bI < π1∆.

The condition τ1bI ≥ π1∆ allows us to rewrite the objective function (27) as

UB(τ0, τ1, π1) = C + α∆
(

1− 1
φL

)
τ1 + fIH

[
τ1π1∆− (π1∆)2

2bI

]
(28)

= C + C ′ + α∆
(

1− 1
φL

)
τ1 + fIH

∆
φL

τ1 − fIH
(π1∆)2

2bI
(29)

= C + C ′ + α∆
(

1− φH

φL

)
τ1 − fIH

(π1∆)2

2bI
(30)

= C + C ′ +
A

1− φLπ1
+

B

2
π2

1, (31)

where C ′ is some constants, (29) follows from τ1π1 = τ1
φL
− 1−Q

αφL
and (31) follows from eliminating τ1

using τ1 = 1−Q
α(1−φLπ1) , and A,B are constants defined above.

We can ignore the constant terms and maximize UB(π1) ≡ A
1−φLπ1

+ B
2 π2

1 over π1 ∈ [0, π̄1].

Taking the derivative UB
′(π1), see that UB(π1) is increasing if and only if G(π1) = π1(1−φLπ1)2 ≤ K,
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keeping in mind that B < 0. Next, observe that G(π1) = 0 at π1 = 0 and π1 = 1/φL > π̄1; in between,

G(π1) increases to a maximum at G( 1
3φL

) = 4
27φL

and then decreases. Therefore, UB(π1) is decreasing

over π1 ∈ [0, π̄1] in case (i) and increasing in case (iii). In case (ii), UB(π1) is increasing and then

decreasing (and then possibly increasing again); however, if K ≤ G(π̄1), UB(π1) must increase and

then decrease (but can not increase again). The result thus follows.

Proof of Theorem 1 Part (a) follows directly from Propositions 4(i) and 5. Part (b) follows from

Proposition 4(iii). Part (c) follows from the second part of Proposition 4(ii), and from computing

G(π̄1) = G
(

Q−α
(1−α)φL

)
= (Q−α)(1−Q)2

(1−α)3
· 1

φL
.

Proof of Proposition 6 The expressions for consumer surplus US
H , UM

H , US
L , UM

L follow directly

from the optimal price schedule characterized in Theorem 1. To obtain the seller’s revenue, we again

use Theorem 1 to make the following calculations. For (i) we have

R =
Q− α

1− α
VL +

(
1− Q− α

1− α

)
αVH (32)

= αVH +
Q− α

1− α
(VL − αVH). (33)

As for (ii), since all the myopic-high-types pay VH , all the strategic-high-types pay
(
VH − Q−α

φLα ∆
)
,

and a fraction Q−α
φLα of the strategic-low-types pay VL, we have

R = φHαVH + φHα

(
VH − Q− α

φLα
∆

)
+

Q− α

φLα
φLαVL (34)

= αVH +
Q− α

φLα
(φLαVL − φHα∆) , (35)

which completes the proof.

Proof of Proposition 7 We begin by showing that there are three possible candidates for the

optimal stocking quantity Q∗, and then characterize them according to the theorem.

Notice that stocking Q < α is never optimal because the seller can always perform better by

increasing Q slightly, while continuing to charge p(t) = VH and use r(t) = 1.

Next, for any stocking quantity Q between α and α + αφL, the seller’s optimal revenue (from

using the optimal selling policy) is characterized in (14) and (17) in Proposition 6. The markdown

policy yields revenue (17), which is linear in Q; hence, the optimal stocking quantity Q∗ must be

an extreme solution, i.e. either α or α + αφL, and the corresponding selling policies are respectively

the constant-high-price policy in case (i) and the single-markdown policy in case (iii). The markup

policy, which might have been optimal when Q was fixed, is now suboptimal because it involves a
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time-mixture of constant-low-price and constant-high-price policies. The optimal solution should use

the policy generating a higher profit rate, so the optimal stocking quantity Q∗ must either be α or 1,

and the corresponding selling policies are respectively the constant-high-price policy in case (i) and

the constant-low-price policy in case (ii).

Similarly, any stocking quantity strictly between α + αφL and 1 is suboptimal. In order to sell

out all Q > α+αφL units, there must be a time-mixture between the constant-low-price policy (to sell

to myopic-low-types) and some other policy already considered above. However, the optimal solution

should use only one policy generating the highest profit rate. By the same argument above, the three

candidates for the optimum are described in cases (i), (ii), and (iii) in the theorem.

It remains to distinguish between the situations when each of the three candidates are optimal.

The constant-high-price and constant-low-price policies of (i) and (ii) generate revenue αVH and VL

respectively, whereas the markdown policy in (iii) generates revenue αφHVH +(αφH +αφL)VL. When

αVH ≥ VL, it suffices to check the seller’s preferences between the constant-high-price policy in (i) and

the markdown policy in (iii); the seller prefers the former when

αVH ≥ αφHVH + (αφH + αφL)VL (36)

⇔ αφHVH ≥ (αφH + αφL)VL. (37)

When αVH ≤ VL, it suffices to check the seller’s preferences between the constant-low-price policy in

(i) and the markdown policy in (iii); the seller prefers the former when

αφHVH + (αφH + αφL)VL ≤ VL (38)

⇔ αφHVH ≤ (αφH + αφL)VL. (39)

This completes the proof.
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