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Statistical Methods for Time-Conditional Survival Probability and Equally
Spaced Count Data

Abstract
This dissertation develops statistical methods for time-conditional survival probability and for equally spaced
count data. Time-conditional survival probabilities are an alternative measure of future survival by accounting
for time elapsed from diagnosis and are estimated as a ratio of survival probabilities. In Chapter 2, we derive
the asymptotic distribution of a vector of nonparametric estimators and use weighted least squares
methodology for the analysis of time-conditional survival probabilities. We show that the proposed test
statistics for evaluating the relationship between time-conditional survival probabilities and additional time
survived have central Chi-Square distributions under the null hypotheses. Further, we conducted simulation
studies to assess the empirical probability of making a type I error for one of the hypotheses tests developed
and to assess the power of the various models and statistics proposed. Additionally, we used weighted least
squares techniques to fit regression models for the log time-conditional survival probabilities as a function of
time survived after diagnosis to address clinically relevant questions. In Chapter 3, we derive the asymptotic
distribution of time-conditional survival probability estimators from a Weibull parametric regression model
and from a Logistic-Weibull cure model, adjusting for continuous covariates. We implement the weighted
least squares methodology to assess relevant hypotheses. We create a statistical framework for investigating
time-conditional survival probability by developing additional methodological approaches to address the
relationship between estimated time-conditional survival probabilities, time survived, and patient prognostic
factors. Over-dispersed count data are often encountered in longitudinal studies. In Chapter 4, we implement
a maximum-likelihood based method for the analysis of equally spaced longitudinal count data with over-
dispersion. The key features of this approach are first-order antedependence and linearity of the conditional
expectations. We also assume a Markovian model of first order, implying that the value of an outcome on a
subject at a specific measurement occasion only depends on the value at the previous measurement occasion.
Our maximum likelihood approach using the Poisson model for count data benefits from a simple
interpretation of regression parameters, like that in GEE analysis of count data.
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ABSTRACT

STATISTICAL METHODS FOR TIME-CONDITIONAL SURVIVAL PROBABILITY AND EQUALLY

SPACED COUNT DATA

Victoria A. Gamerman

Phyllis A. Gimotty

Justine Shults

This dissertation develops statistical methods for time-conditional survival probability and for equally

spaced count data. Time-conditional survival probabilities are an alternative measure of future sur-

vival by accounting for time elapsed from diagnosis and are estimated as a ratio of survival probabil-

ities. In Chapter 2, we derive the asymptotic distribution of a vector of nonparametric estimators and

use weighted least squares methodology for the analysis of time-conditional survival probabilities.

We show that the proposed test statistics for evaluating the relationship between time-conditional

survival probabilities and additional time survived have central χ2-distributions under the null hy-

potheses. Further, we conducted simulation studies to assess the empirical probability of making

a type I error for one of the hypotheses tests developed and to assess the power of the various

models and statistics proposed. Additionally, we used weighted least squares techniques to fit re-

gression models for the log time-conditional survival probabilities as a function of time survived after

diagnosis to address clinically relevant questions. In Chapter 3, we derive the asymptotic distribu-

tion of time-conditional survival probability estimators from a Weibull parametric regression model

and from a Logistic-Weibull cure model, adjusting for continuous covariates. We implement the

weighted least squares methodology to assess relevant hypotheses. We create a statistical frame-

work for investigating time-conditional survival probability by developing additional methodological

approaches to address the relationship between estimated time-conditional survival probabilities,

time survived, and patient prognostic factors. Over-dispersed count data are often encountered

in longitudinal studies. In Chapter 4, we implement a maximum-likelihood based method for the

analysis of equally spaced longitudinal count data with over-dispersion. The key features of this

approach are first-order antedependence and linearity of the conditional expectations. We also

assume a Markovian model of first order, implying that the value of an outcome on a subject at a
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specific measurement occasion only depends on the value at the previous measurement occasion.

Our maximum likelihood approach using the Poisson model for count data benefits from a simple

interpretation of regression parameters, like that in GEE analysis of count data.
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CHAPTER 1

INTRODUCTION

This dissertation develops statistical methods for time-conditional survival probability and for equally

spaced count data. In Chapter 2, we derive the asymptotic distribution of a vector of nonparametric

estimators and use weighted least squares methodology for the analysis of time-conditional sur-

vival probabilities. In Chapter 3, we derive the asymptotic distribution of time-conditional survival

probability estimators from a Weibull parametric regression model and from a Logistic-Weibull cure

model, adjusting for continuous covariates. We implement the weighted least squares methodology

to assess relevant hypotheses. In Chapter 4, we implement a maximum-likelihood based method

for the analysis of equally spaced longitudinal count data with over-dispersion.

1.1. Time-Conditional Survival Probability Methods

This work was motivated by increased attention in the medical literature on conditional survival. We

distinguish between two types of conditional survival probabilities. The first refers to those proba-

bilities that condition on fixed covariates at time of diagnosis (e.g., Xu and O’Quigley, 2000). The

second, which we refer to as time-conditional survival probabilities, condition on time survived and

will be the focus of the work here. With earlier detection, better therapies for diseases, and more

systematic tracking, patients in recent years have been surviving longer and information on their

long-term follow-up is more readily available. With patients living longer, there is interest in estimat-

ing the probability of survival not from a patient’s time of diagnosis, but rather from her/his present

state sometime after diagnosis. Time-conditional survival probability is defined as the probability

of surviving at least an additional ∆ years given that a patient has already survived a years. As

described in further detail in Chapter 2, this probability can be estimated by the ratio of the a- and

(∆ + a)-year estimated survival probabilities from a single Kaplan-Meier survivor function (Kaplan

and Meier, 1958).

We create a statistical framework for investigating time-conditional survival probability by devel-

oping additional methodological approaches to address the relationship between estimated time-

conditional survival probabilities, time survived, and patient prognostic factors. While the work

presented here focuses on applications in oncology, it can be applied to time-to-event data in other

1



disciplines.

1.1.1. Nonparametric Methods

Time-to-event data generally contain observations that are censored. Censoring occurs in situa-

tions when a patient has not yet experienced an event and is known to be alive up to a particular

time. When all that is known is that a patient is alive at a given point in time, that patient’s survival

data is right censored. In this work, we use the survival function, defined as the probability of surviv-

ing beyond a specified time, to estimate time-conditional survival probability. For the nonparametric

approach, the Kaplan-Meier Product-Limit methodology is used to estimate the survivor function,

which is then used to estimate survival probabilities (Kaplan and Meier, 1958).

Time-conditional survival probabilities are an alternative measure of future survival by accounting

for time elapsed from diagnosis and are estimated as a ratio of survival probabilities. Relative

survival is also defined as a ratio of probabilities in a target population relative to the expected

survival probability in a comparable general population over a given follow-up period (Dickman and

Adami, 2006). The estimate of five-year relative survival is the ratio of the estimated five-year sur-

vival probability for the target population divided by the expected five-year survival probability in the

general population that is assumed to be fixed (e.g., Ederer, Axtell, and Cutler, 1961; Hakulinen,

1982). Dickman et al., 2004 describe four approaches to estimate a regression model for relative

survival using maximum likelihood methodology. In our work, we use the weighted least squares

methodology to analyze nonparametric and parametric based estimators of time-conditional sur-

vival probabilities.

Over the last two decades, clinical investigators have presented point estimates and correspond-

ing 95% confidence limits for time-conditional survival probabilities. Clinical investigators report

that patients who have survived for some time beyond diagnosis are more interested in estimates

of time-conditional survival probabilities because these estimates offer more relevant prognostic

information than estimates from traditional survival probabilities computed using time from initial

diagnosis (e.g., Xing et al., 2010). Clinical research publications increasingly present estimates

of time-conditional survival probabilities. A topic search for “conditional survival” on Web of Sci-

ence conducted in early 2015 revealed approximately 150 articles published in the past five years

(2010-2014) compared to approximately 50 articles published in 2005–2009 and less than 30 ar-

2



ticles published in 2000–2004. The interest in these estimates demonstrates its strong relevance

to many clinical settings and highlights the importance of developing modeling methodology for

time-conditional survival probabilities.

In Chapter 2, we develop the asymptotic distribution for estimates of log time-conditional survival

probabilities. The asymptotic distribution facilitates the extension of statistical tools from estimation

to the statistical testing of different hypotheses of interest. We base our methods for hypothesis

testing and model fitting on the work of Grizzle, Starmer, and Koch, 1969, who used weighted least

squares as part of a regression modeling strategy for proportions and proposed test statistics for

evaluating simplified models. Koch, Johnson, and Tolley, 1972 applied this approach to survival

probabilities. With modifications, we apply their approach to time-conditional survival probabilities.

We use weighted least squares to develop a test statistics for relevant hypotheses, e.g. a multivari-

ate omnibus test of pairwise differences. We show that the proposed test statistics for evaluating

the relationship between time-conditional survival probabilities and additional time survived have

central χ2-distributions under the null hypotheses. Further, we conducted simulation studies to as-

sess the empirical probability of making a type I error for one of the hypotheses tests developed

and to assess the power of the various models and statistics proposed.

Additionally, we used weighted least squares techniques to fit regression models for the log time-

conditional survival probabilities as a function of time survived after diagnosis to address clinically

relevant questions. Quadratic, linear, and global mean models are used to explore the relationship

between log time-conditional survival probabilities and time survived. To include discrete, categori-

cal covariates, we develop a parametric framework for multivariable models. To avoid the problem

of multiple testing due to comparisons among covariate patterns resulting from either categorical

variables or categorization of continuous variables (Bennette and Vickers, 2012), we propose an

overall test of significance in addition to pairwise comparisons. Population based survival data from

patients with melanoma are used to illustrate the proposed methodology by evaluating survival in

patients who underwent clinical staging versus pathological staging (Balch et al., 2001).

In contrast, consider an alternative approach for nonparametric inference using median residual

lifetimes with censoring proposed by Jeong, Jung, and Costantino, 2008. As with time-conditional

survival probabilities, they draw the comparison between information at diagnosis and at a time

after diagnosis. For example, consider a patient’s interest in their estimate of expected survival

3



and the impact of first-line treatment on life expectancy from diagnosis in contrast with a patient’s

interest in their estimate of residual life expectancy sometime after diagnosis and the impact of

additional, second-line treatment.

To obtain an estimate of median residual lifetime for censored survival data, the authors’ first model

the survivor function. Then their approach infers the median of remaining lifetimes among survivors

beyond time t at a fixed time point, t0, to obtain an estimate of the median residual life function

evaluated at t0. To compute the median residual lifetime, the authors compute the residual lifetime

for a patient who has survived beyond t0 as S(t | t0) = S(t + t0)/S(t0) for t0 ≥ 0. As given in their

manuscript by Equation 2, they then obtain the estimated median of the residual lifetime distribution

at t0 by solving the equation û(θt0) = 0 for θt0 where

û(θt0) = Ŝ(t0 − θt0)− 0.5Ŝ(t0),

and where Ŝ(t) is the Kaplan-Meier estimator of S(t) (Jeong, Jung, and Costantino, 2008).

The resulting estimate provided to patients and physicians is the median residual life in years, which

is more intuitive for patients to understand than a survival probability. However, a limitation of this

approach is the influence of the proportion of censored observations as the median failure time

cannot be theoretically defined until the minimum of the survival curve reaches 0.5 (Jeong, Jung,

and Costantino, 2008). This issue is addressed in the later work by Park, Jeong, and Lee, 2012.

As will be demonstrated in the application of Chapter 2, time-conditional survival probability under

the nonparametric Kaplan-Meier framework is advantageous as it can be estimated irrespective of

the minimum of the survival curve.

Further, in their paper, Jeong, Jung, and Costantino, 2008 note that the methods of comparing

median residual life functions over the entire follow-up period that they developed did not address

issues of multiple comparisons. In our work, we developed an omnibus test of contrasts and other

hypotheses tests along with providing estimators of the covariance matrix to allow researchers to

address issues of multiple comparisons. Lastly, the authors note the need for future research to

develop a regression model that would take into account continuous prognostic factors and develop

such an approach using regression on quantile residual life (Jung, Jeong, and Bandos, 2009). This

is similar to the development of time-conditional survival where we began with the nonparametric

4



Kaplan-Meier framework in Chapter 2 and extended the approach to allow for continuous covariates

in the parametric framework in Chapter 3.

1.1.2. Parametric Survival Methods

Parametric models are used by researchers for time-to-event data in the estimation of model param-

eters and related functions such as the parametric hazard function. Modeling survival time without

the inclusion of covariates provides an estimate of the survival experience on the assumption that

the underlying population is homogeneous. Incorporating covariates allows for the study of het-

erogeneous populations that may characterize observational studies based in disease registries,

rather than populations from clinical trials with strict inclusion and exclusion criteria. Covariates

can be incorporated by modeling the natural logarithm of survival time (e.g., Weibull or log logistic

regression models) or using an accelerated failure-time model. In both cases, when the parametric

model provides a good fit for the data, the estimates from the model are often more precise than

those from the nonparametric setting because they are based on fewer parameters (e.g., Lambert

and Royston, 2009).

In Chapter 2, we develop the large sample distribution for log time-conditional survival and pairwise

tests for differences among a set of estimates. We also use weighted least squares to model a

profile of estimates as a function of time survived and compare time-conditional survival estimates

across groups of patients. Stratifying patients into groups based on covariate patterns requires

using categorical variables or categorizing continuous variables. For example, Barchielli et al.,

1994 categorized age at time of diagnosis into 5-year groups to evaluate the prognostic effect of

this variable as opposed to evaluating it as a continuous covariate. Stratification assumes that

patients falling into one stratum are homogeneous and, therefore, have a homogeneous risk for the

outcome (Bennette and Vickers, 2012). However, ignoring variability within the stratum leads to a

loss of information and reduces the power of a test of association (Greenland, 1995). Therefore,

we extend the work in Chapter 2 by developing methods under parametric assumptions.

Chapter 3 develops methods for parametric time-conditional survival probability. It extends the

methodology of Chapter 2 by allowing for the inclusion of multiple covariates, including continuous

variables, in a single regression model for time-conditional survival probability. Two regression

models are considered. In the first model, covariate adjusted time-conditional survival estimation
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is based on the log-linear model for the relationship between time survived from diagnosis and

covariates of interest. It is important to note that a survival model that tends to zero with increasing

time after diagnosis will be appropriate for a disease with a generally poor prognosis. If, on the

other hand, long-term survival is of interest due to patients surviving longer and having improved

prognoses, a model that allows for a non-zero probability of indefinite survival or cure will better

fit the data. The second regression is a parametric cure model where the underlying population

is a mixture of patients who experience the event of interest and those who do not. The Weibull

distribution is used to illustrate the methods which are applied to esophageal cancer data (Weibull

regression model with covariates) and to melanoma data (Logistic-Weibull cure model).

A recent paper by Hieke et al., 2015 emphasized the usefulness of the conditional survival concept

to provide information on the evolution of prognosis over time. In their application, these authors

used Kaplan-Meier survival estimation to analyze data from multiple myeloma patients stratified by

age groups and disease stage. Further, while they stated that methods to estimate conditional sur-

vival exist using Kaplan-Meier and Cox regression, they did not note uses of parametric regression

models in the estimation of conditional survival. This indicates that a methodological gap remains

in nonparametric estimation adjusting for continuous covariates which can be addressed using a

parametric statistical approach.

When assessing hypothesis testing based on conditional survival methods, Hieke et al., 2015 show

estimates in Figure 2B with a 5-year conditional survival profile plotted for each age strata and

95% confidence intervals around each point estimate of time since diagnosis in years. In our

work, we develop nonparametric and parametric methods that account for the correlation among

time-conditional survival probabilities through the hypothesis testing framework by incorporating the

covariance matrix into the test statistic.

Parast, Cheng, and Cai, 2011, 2012 have developed methodology for incorporating short-term out-

come information to predict long-term disease outcomes where the long-term event of interest is

time to a terminal event such as death and the short-term event is time to a non-terminal event.

These authors propose methods for incorporating censored short-term event information to pre-

dict long-term survival beyond the parametric models in a multi-state survival setting, which may

lead to invalid prediction if the model assumptions do not hold. In their earlier work (2011) they

developed nonparametric methods to predict the long-term outcome given the short-term outcome
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and information on a discrete marker. However, similar to the limitation in the time-conditional sur-

vival methods developed in Chapter 2, these methods cannot account for information from one or

more continuous covariates. The authors then extended work by others and proposed a flexible ap-

proach that allows for the inclusion of longitudinal predictor information collected such as repeated

biomarker measurements (2012). As the authors note, including information about a short-term

outcome in addition to genetic or biomarker measurements may lead to an improved ability to pre-

dict long-term survival. Accordingly, future research on implementing competing risks models in

the estimation of time-conditional survival needs to be explored.

1.2. Longitudinal Count Data Methods

Longitudinal count data are often encountered in scientific studies. Common features of longitudinal

count data include intra-subject correlation and over-dispersion. Intra-subject correlation is due to

similarities between the repeated measurements on each participant. When the variance is larger

than expected for the assumed distribution of the outcome variable then over-dispersion is observed

(Efron, 1992).

As noted by Farewell and Farewell, 2012, one approach to modeling longitudinal Poisson count

data is using a generalized linear mixed model with Poisson distributions conditional on random

effects. They note that a marginal modeling approach may be preferred for cases where the effect of

explanatory variables at the population-averaged level (marginal effects) is of interest as opposed to

subject-specific effects. Heagerty and Kurland, 2001 showed that marginal modeling is more robust

for the estimation of regression parameters as compared to subject-specific covariate effects when

there is a departure from the underlying random effects structure.

Marginal modeling can be implemented using generalized estimating equation (GEE) methods

(Solis-Trapala and Farewell, 2005). Two considerations when using the GEE approach are that

GEE methods do not give the researcher an understanding of the sources of variation and, un-

like parametric maximum likelihood estimation, there is reduced efficiency (Farewell and Farewell,

2012). Given these limitations, Farewell and Farewell, 2012 developed methods to analyze such

data using the Dirichlet negative multinomial distribution. From their simulation study to evaluate the

model robustness and finite-sample behavior, the authors found that the Dirichlet negative multi-

nomial regression was preferred over the GEE method. When applying this methodology to their
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data, Farewell and Farewell, 2012 also fit a Poisson generalized linear mixed model and found that

the estimated coefficients and standard errors were similar to their Dirichlet negative multinomial

model. Our approach offers an alternative to their methods and to the GEE approach.

Over-dispersed count data are often encountered in longitudinal studies. This may be present in

the context of the number of patients with epileptic seizures (Farewell and Farewell, 2012; Thall

and Vail, 1990) or the number of patients who had transplants performed. Over-dispersion occurs

when the variability is larger than the standard Poisson variability that is expected. However, few

likelihoods are available for the simulation and analysis of such data (Efron, 1992). Therefore, we

provide a maximum likelihood approach to model longitudinal Poisson count outcomes.

In Chapter 4, we develop an approach for maximum likelihood analysis of longitudinal discrete data

with over-dispersion. We implement a likelihood proposed for simulation of over-dispersed random

variables with specified marginal means and product correlations by Guerra and Shults, 2014.

The key features of this approach are first-order antedependence and linearity of the conditional

expectations. We also assume a Markovian model of first order, implying that the value of an

outcome on a subject at a specific measurement occasion only depends on the value at the previous

measurement occasion. Our maximum likelihood approach using the Poisson model for count data

benefits from a simple interpretation of regression parameters, like that in GEE analysis of count

data.

As described elsewhere (e.g., Shults et al., 2006 Appendix A), the maximum likelihood approach

for count data requires information on the correlation between adjacent measurements on each

subject. While Guerra and Shults, 2014 developed general simulation methods allowing for different

patterns of correlation, we focus our maximum likelihood approach to Poisson count data with a

first-order autoregressive (AR(1)) correlation structure. Given the specified marginal means and

adjacent correlations, the AR(1) correlation structure is induced and the marginal distributions are

over-dispersed relative to the Poisson distributions. Under the AR(1) structure, it is assumed that

the adjacent intra-subject correlations are constant. This assumption is appropriate when it is

reasonable to assume that two count outcomes that are measured closer in time will be more

highly correlated, because they are assumed to be more similar, rather than if they are farther apart

in time, in which case they are assumed to be less similar.
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We obtain likelihood-based estimating equations for the regression and correlation parameters.

Simulations are conducted to demonstrate that the approach has good statistical properties. This

approach is applied to the analysis of health policy data on doctor visits (StataCorp LP, 2013;

Winkelmann, 2004) and to seizure data (Farewell and Farewell, 2012; Thall and Vail, 1990).

1.3. Dissertation Structure

This dissertation is structured as follows. Chapter 2 defines the framework for nonparametric meth-

ods to assess time-conditional survival probability. This includes the development of the asymp-

totic distribution for a vector or profile of time-conditional survival probabilities, a flexible frame-

work for hypothesis testing using point estimates, and regression modeling to address clinically

relevant questions. Chapter 3 builds a parametric framework for time-conditional probability and

incorporates multiple discrete and continuous covariates in modeling time-conditional survival pro-

files. These methods are applied using a Weibull regression model for data where survival tends

to zero with increasing time after diagnosis and a Logistic-Weibull cure model for data where there

is evidence of cure in a fraction of patients. Chapter 4 discusses a new approach for maximum

likelihood-based analysis of correlated count data with over-dispersion. This maximum likelihood

approach assesses the problem of over-dispersion in Poisson data with an AR(1) structure. Such

longitudinal outcomes can be found in medical research in situations where measurements on a

subject are captured at pre-specified occasions over time. Poisson regression is often used for

analysis of count data, but would not be appropriate in an analysis of data characterized by over-

dispersion. Key assumptions of the maximum likelihood approach include the first-order Markov

property and the linearity of the conditional expectations for the conditional distributions. The pro-

posed approach is applied in analysis of data on doctor visits and epilepsy seizure data (R code is

available in the Appendix). Finally, Chapter 5 presents conclusions and envisions future work.
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CHAPTER 2

NONPARAMETRIC TIME-CONDITIONAL SURVIVAL PROBABILITY

2.1. Introduction

Commonly reported statistics for cancer patients include estimates of survival and conditional sur-

vival probabilities. Over the past two decades, clinical investigators have also reported estimated

time-conditional survival probabilities for patients who have already survived for a specified amount

of time after the diagnosis or therapy of their disease. While conditional survival probabilities condi-

tion on covariates that were measured at the time of diagnosis (e.g., Xu and O’Quigley, 2000), time-

conditional survival probabilities condition on the time already survived after diagnosis. Specifically,

time-conditional survival probability is defined as the probability of surviving at least an additional x

years given survival a years after diagnosis.

Typically, what is reported in the medical literature are the point estimates of the time-conditional

survival probabilities and their associated 95% confidence limits that are based on the estimated

Kaplan-Meier survival function (e.g., Choi et al., 2008; Merrill, Henson, and Ries, 1998; Xing et al.,

2010). These estimates can be used to answer questions such as “What is the expected probability

that a patient will survive an additional 5 years, given that she has already survived 5 years since

diagnosis”? However, additional methods are needed to answer other clinically relevant questions

of interest, such as “Does the expected probability that a patient will survive an additional 5 years

significantly increase with increasing time post-diagnosis”? For example, is the expected probability

of an additional 5 years survival significantly greater if the patient has survived 5 years than if she

has only survived 1 year after diagnosis?

This type of question is of clinical interest because it has been observed (Ries et al., 2003) that

for some cancers, the estimated time-conditional survival probabilities increase with an increasing

number of years survived. More recently, Miller, Lynch, and Buckwalter, 2013 investigated 5-year

conditional survival for a cohort of patients from the Surveillance, Epidemiology, and End Results

(SEER) registry with osteosarcoma and Ewings sarcoma. They found that 5-year conditional sur-

vival was 74.8% at diagnosis and 91.4% given survival beyond 5 years after diagnosis. Wang et al.,

2011a investigated 5-year conditional survival for a cohort of patients diagnosed with rectal cancer
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from the SEER registry. For Stage I patients, the 5-year survival at diagnosis was 71% and 5-year

conditional survival given survival beyond 5 years increased to 74%.

New methods are also needed to address questions about trends in the time-conditional survival

probabilities over the course of a study. For patients who have survived some time after diagnosis,

the probability of surviving an additional number of years may be different from an initial overall

survival probability at diagnosis because the probability is not necessarily static (Choi et al., 2008).

For example, is the change in probabilities linear, or quadratic? If we have different sub-groups

of patients, does the change over time differ between the groups? Does the strength of this rela-

tionship differ for males versus females? In this chapter we develop methodology to answer such

questions.

In Section 2, we define point estimates of time-conditional survival probabilities and their 95%

confidence intervals, methods which have been published in the medical literature. In Section 3, we

develop the asymptotic distribution of a vector of estimators of time-conditional survival probabilities

using large sample distribution theory. We derive the estimate for the natural logarithm (log) of

time-conditional survival probability and its estimated variance as a function of the number of years

survived.

Grizzle, Starmer, and Koch, 1969 presented a general approach for the analysis of categorical

data using linear models with weighted regression. This approach allowed for simplification in

model formulation and hypothesis testing within the linear models framework. Koch, Johnson,

and Tolley, 1972 applied linear regression models and weighted least squares methodology to the

analysis of survival rates. In Section 4, we use Koch’s regression modeling strategy using weighted

least squares to analyze time-conditional survival probabilities. In particular, we develop Wald test

statistics (Wald, 1943) to evaluate trends in time-conditional survival estimators that are relevant to

patients, clinicians, and researchers.

In Section 5, we present results from simulations that assess power and the empirical probability of

making a type I error for particular tests. We then apply the proposed methodology to a cancer study

in Section 6, where we estimate time-conditional probabilities for melanoma patients as a function

of time survived. Additionally, we evaluate the differences in time-conditional survival between

groups of patients. In Section 7, we present some discussion and concluding remarks.
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2.2. Estimation of Time-Conditional Survival Probabilities

2.2.1. Notation

Let n be the fixed number of individuals in a study. Define Ti = min(Xi, Ci), where Xi and Ci are

the event and censoring times for the ith subject, respectively. We assume the censoring time, Ci,

is independent of the event time, Xi. We observe the pair (ti, δi), i = 1, . . . , n, where ti is the time

on study and δi = I(Xi ≤ Ci) is the indicator variable for whether ti is an event or a censoring time.

Define J distinct event times to be t(1) < · · · < t(J) allowing for possible ties in the data. For each

observed event time t(j) in the set of ordered event times, define nj to be the number of subjects

at risk at time t(j) and let dj be the number of events observed at time t(j) among the nj subjects

at risk. To incorporate information on censoring, let wj denote the number of observations that are

(right) censored at times after the jth event time, but prior to the (j + 1)th time.

2.2.2. Current approach

Assume we have non-informative censoring, where knowledge of an individual’s censoring time

provides no further information about the patient’s likelihood of survival at a future time had they

continued on the study. Under this assumption of non-informative censoring, the likelihood is given

by

L(π1, . . . , πN ) ∝
J∏
j=1

π
dj
j S(t(j−1))

djS(t(j))
wj ,

where πj = lim
∆t↓0

P (t−(j) < T ≤ t−(j) + ∆t | T > t−(j)) is the conditional probability of an event at t(j),

j = 1, . . . , J , and where the survival function is given by S(t) = P (T ≥ t) such that t(0) = 0 and

S(t(0)) = 1 (Lachin, 2000).

Survival beyond time t(j) requires a subject to be event-free beyond time t(j−1) and all previous

times. If the survivor function is rewritten in terms of πj , the likelihood can be simplified in the

following product binomial form

L(π1, . . . , πJ) ∝
J∏
j=1

π
dj
j (1− πj)nj−dj .

The maximum likelihood estimator (MLE) of πj is given by π̂j =
dj
nj

, j = 1, . . . , J , and any two
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estimators from the same sample, π̂j and π̂k, where 1 ≤ j < k ≤ J , are uncorrelated (Lachin,

2000).

Define the x given a time-conditional survival probability as the probability of surviving at least an

additional x years given survival a years after diagnosis as

P (T > a+ x | T > a) =
P (T > a+ x)

P (T > a)
=
S(a+ x)

S(a)
, (2.1)

where a ≥ 0 and x > 0. To provide shorthand notation for the time-conditional survival probability,

let

CS (a+ x | a) = P (T > a+ x | T > a) .

The times a and b = a+ x are not necessarily observed event times, however, both a and b should

be chosen so that 0 ≤ a, b ≤ t(J) and a < b. The time-conditional survival probability is estimated

using the maximum likelihood estimators of the conditional probabilities, π̂j =
dj
nj

, j = 1, . . . , J , by

ĈS(b | a) =
Ŝ(b)

Ŝ(a)
=

∏
j:t(j)≤b

(
1− π̂j

)
∏
j:t(j)≤a

(
1− π̂j

) =
∏

j:a<t(j)≤b

(
1− π̂j

)
=

∏
j:a<t(j)≤b

(
1− dj

nj

)
. (2.2)

To derive the variance of the time-conditional survival probability, we use computations similar to

those used to obtain Greenwood’s formula (Greenwood, 1926) from the estimated Kaplan-Meier

survivor function. The estimated variance is given by

V̂ ar
(
ĈS(b | a)

)
= V̂ ar

(
Ŝ(b)

Ŝ(a)

)
=
(
ĈS(b | a)

)2 ∑
j:a<t(j)≤b

dj
nj(nj − dj)

. (2.3)

See Appendix Section A.1 for the derivation.

2.3. Distribution Theory

Clinical studies of time-conditional survival have used a profile of estimated time-conditional survival

probabilities (shown here as a p× 1 vector) given by

ĈS =
(
ĈS1(b1 | a1), ĈS2(b2 | a2), . . . , ĈSp(bp | ap)

)T
.
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When bj = aj + x for j = 1, . . . , p, these estimators represent consecutively estimated x-year time-

conditional survival probabilities. For example, 5-year time-conditional survival probabilities given

survival beyond 1, 2, and 3 years after diagnosis are consecutive estimators that can be expressed

as

ĈS3×1 =
(
ĈS1(6 | 1), ĈS2(7 | 2), ĈS3(8 | 3)

)T
.

2.3.1. The choice of p

The choice of p is limited by the amount of follow-up data available, the timing of events, and the

researcher’s choice of x and a (refer to Equation 2.1). Consider a data set where 10 years of annual

follow-up data is available. When researchers are interested in 5-year time-conditional survival

probabilities, at most five distinct time-conditional survival estimates can be computed using a one

year increment post baseline (time=0). Specifically, we assume that distinct estimates of survival

are available for S(1), . . . , S(10), which allows for subsequent estimation of 5-year time-conditional

survival probabilities given survival from 0 through 5 years after diagnosis.

For this example, the profile of distinct time-conditional survival estimates is given by

ĈS6×1 =
(
ĈS1(5 | 0), ĈS2(6 | 1), ĈS3(7 | 2), ĈS4(8 | 3), ĈS5(9 | 4), ĈS6(10 | 5)

)T
.

This profile represents estimates of 5-year time-conditional survival probabilities given survival at

diagnosis (year 0) and beyond 1, 2, 3, 4, and 5 years after diagnosis. Note that ĈS(5 | 0) = Ŝ(5) =

P̂ (T ≥ 5). Therefore, the elements of the profile, and the covariance matrix that correspond to this

term, will reflect that ĈS(5 | 0) is a survival probability.

2.3.2. Asymptotic distributions

In this section we derive the asymptotic distribution of the natural logarithm (log) of the profile of

estimators. Assume that nj/n converges in probability to ωj , nj/n
p−→ ωj . For fixed a and b, where

a < b, the asymptotic distribution of the log of the estimated time-conditional survival probability,

log ĈS(b | a), is given by

√
n

(∑
j:a<t(j)≤b log(1− π̂j)−

∑
j:a<t(j)≤b log(1− πj)

)
√∑

j:a<t(j)≤b
π̂j

ω̂j(1−π̂j)

d−→ N(0, 1), (2.4)
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where nj/n
p−→ ωj as n → ∞. This result follows from the consistency, asymptotic normality, and

invariance properties of the maximum likelihood estimator of πj . See Appendix Section A.3 for

details.

Using the δ-method, the large sample expectation of the individual log time-conditional survival

estimator is given by

E
(

log ĈS(b | a)
)
∼=

∑
j:a<t(j)≤b

log (1− πj) ,

and the large sample variance is given by

V ar
(

log ĈS(b | a)
)
∼=

∑
j:a<t(j)≤b

πj
nj(1− πj)

.

Substituting the maximum likelihood estimator, π̂j , for πj , the estimated mean and variance are

then given by

Ê
(

log ĈS(b | a)
)

=
∑

j:a<t(j)≤b

log

(
1− dj

nj

)
, (2.5)

and

V̂ ar
(

log ĈS(b | a)
)

=
∑

j:a<t(j)≤b

dj
nj(nj − dj)

, (2.6)

respectively.

Define the general p-vector profile of log time-conditional survival probability estimators as

log ĈS =
(

log ĈS1(b1 | a1), log ĈS2(b2 | a2), . . . , log ĈSp(bp | ap)
)T

. (2.7)

This profile is defined by a fixed difference between times bi and ai, such that bi − ai = c for

i = 1, . . . , p. The asymptotic distribution of the estimator of the p-vector profile is then given by

log ĈS d−→ N
(
E(log ĈS), V ar(log ĈS)

)

such that

E
(

log ĈS
)
∼= log CS,

V ar
(

log ĈS
)
∼= Σ.
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The formula for the estimate of each log time-conditional survival probability is given in Equation

2.5. See Appendix Section A.3 for more details regarding the derivation. Note that the inclusion of

the survival probability at diagnosis, such as log ĈS1(5 | 0), will need to be reflected as a survival

probability in the estimated p-vector profile and in the estimation of the variance and covariance

terms described below.

To describe the terms of the covariance matrix, Σ, and the estimated covariance matrix, Σ̂, we

define any two estimators of log time-conditional survival probabilities. These are given by

log ĈSl(bl | al) = log

(
Ŝ(bl)

Ŝ(al)

)
, (2.8)

and

log ĈSm(bm | am) = log

(
Ŝ(bm)

Ŝ(am)

)
, (2.9)

where 1 ≤ l,m ≤ J and where al, bl, am, bm are fixed times such that 0 ≤ al ≤ am ≤ bl ≤ bm ≤ t(J).

As shown in Appendix Section A.3, the elements of the covariance matrix, Σ, for l = m, are given

by

Σll = V ar
(

log ĈSl(bl | al)
)

=
∑

j:al<t(j)≤bl

πj
nj(1− πj)

and for l 6= m are given by

Σlm = Cov
(

log ĈSl(bl | al), log ĈSm(bm | am)
)

=
∑

j:am<t(j)≤bl

πj
nj(1− πj)

.

The covariance matrix, Σ, is estimated by Σ̂ where the elements of Σ̂ for l = m are given by

Σ̂ll = V̂ ar
(

log ĈSl(bl | al)
)

=
∑

j:al<t(j)≤bl

dj
nj(nj − dj)

(2.10)

and for l 6= m are given by

Σ̂lm = Ĉov
(

log ĈSl(bl | al), log ĈSm(bm | am)
)

=
∑

j:am<t(j)≤bl

dj
nj(nj − dj)

. (2.11)

See Appendix Section A.2 for a detailed derivation. The covariance is 0 if al, bl, am, bm are non-

overlapping fixed times such that 0 ≤ al < bl < am < bm ≤ t(J). Refer to Appendix Section A.3 for
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more details on the large sample distribution.

2.4. Hypothesis Testing Using Weighted Least Squares

We use the weighted least squares methodology of Grizzle, Starmer, and Koch, 1969 and Koch,

Johnson, and Tolley, 1972 to evaluate the relationship between time-conditional survival probabil-

ities and additional time survived. We propose test statistics to assess these relationships that

have central χ2-distributions under the null hypotheses. For example, is there a linear relationship

between the probabilities and additional time survived post-baseline?

We focus on four clinically relevant research questions using hypothesis testing. The first question

when considering a single time-conditional survival probability profile is whether the profile is con-

stant. The null hypothesis that the time-conditional survival probabilities in the profile are the same

indicating that increasing survival time after diagnosis (a) does not result in either an increased (or

decreased) likelihood of surviving an additional number of years. We first propose an omnibus test

of contrasts for adjacent time-conditional survival probabilities.

When the null hypothesis is rejected, there could be a linear or quadratic relationship between the

time conditional survival probabilities and additional time survived. The second objective is to fur-

ther consider the shape of the time-conditional survival probability profile. We propose a series of

hypothesis tests to identify the most parsimonious regression model to describe the relationship

between the log time-conditional survival probabilities and time survived after diagnosis. Specifi-

cally, we develop three regression models to evaluate the relationship between log time-conditional

survival probabilities and time survived: the quadratic model (QM), the linear model (LM), and the

global mean (GM) model. A quadratic relationship would suggest that there is a greater benefit with

increasing time survived post diagnosis than if the relationship were linear. Note that the GM model

is equivalent to the constant profile described for the first hypothesis test.

The third objective is to assess whether time-conditional survival profiles for independent strata

are the same and are constant. To do so, we estimate multiple time-conditional survival probability

profiles, one for each strata defined by categorical covariates. Under the null hypothesis, the profiles

are the same for all strata and are constant. This would indicate that there is no change in the

likelihood of surviving additional years with increased time after diagnosis in each stratum.
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The fourth and final objective is to apply a modeling strategy to evaluate differences in time-

conditional survival probabilities based on the covariates used to create the strata. For example,

to determine if observed linear relationships differ significantly between males and females, we de-

velop a set of hypothesis tests based a multivariable model framework allowing for the inclusion of

interaction terms. Under the null hypothesis of no interaction, if we have two independent binary

covariates used to create four strata, for example, then the model is adequately represented by an

additive model without the interaction term.

2.4.1. General Framework

In the case where there is a single population, the log time-conditional survival proportions are

defined by a p × 1 vector of estimated probabilities, log ĈS, which was defined in Equation 2.7.

Assume a regression model under the null hypothesis,

E(log ĈS) = Xβ,

where X (p × d) is a design matrix of rank d ≤ p and β is the corresponding vector of parameters.

This model can be fit using weighted least squares where the estimates of β are obtained by

weighting the estimating equations for β by the inverse of the estimated p×p covariance matrix, Σ̂,

defined in Section 2.3.2, so that

β̂ =
[
X′Σ̂−1X

]−1

X′Σ̂−1 log ĈS.

To test for overall regression, the null hypothesis is given by

H0 : log CS = Xβ,

and the test statistic is given by

TS(log CS = Xβ) =
(

log ĈS−Xβ̂
)′

Σ̂−1
(

log ĈS−Xβ̂
)
.

For large n, the test statistic is approximately distributed as a central χ2 with degrees of freedom

rank(X) under the null hypothesis. Under the alternative, the test statistic is distributed as a non-
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central χ2.

2.4.2. Contrasts of profile-based differences

A common objective in the medical literature is to evaluate differences among estimated time-

conditional survival probabilities. We define the log time-conditional survival probability as

logCSi = logCSi(bi | ai) = log

(
S(bi)

S(ai)

)
, i = 1, . . . , p,

such that a1 < a2 < . . . < ap < b1 < b2 < . . . < bp. Then, define the null hypothesis where,

with increasing time after diagnosis, the log time-conditional survival probabilities are all equal.

Under this null hypothesis, we expect the vector of pairwise differences between adjacent log time-

conditional survival probabilities to be zero. The null and alternative hypotheses are given by

H0 :



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

...
...

...
...

...

0 0 0 · · · 1 −1





logCS1

logCS2

...

logCSp


= XC log CS =



0

0

...

0


, (2.12)

and

H1 :


logCS1 − logCS2

...

logCSp−1 − logCSp

 =


∆1

...

∆p−1

 = ∆.

The (p− 1)× 1 vector of estimated pairwise differences is then given by

∆̂ =
(

log ĈS1 − log ĈS2, log ĈS2 − log ĈS3, . . . , log ĈSp−1 − log ĈSp

)′
,

where each of the differences in log time-conditional survival probabilities is estimated using the

Kaplan-Meier survivor function estimator, Ŝ(t) (see Equation 2.2).

From the distribution of log ĈS, it follows that the asymptotic distribution of the vector of pairwise

differences is given by

XC log ĈS
d−→ Np−1 (XC log CS,XCΣX′C) .
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The weighted test statistic for the test of this null hypothesis is given by

TS(C) = ∆̂′
(
XCΣ̂X′C

)−1

∆̂,

where XC is the (p − 1) × p matrix given in Equation 2.12. For large n, TS(C) is approximately

distributed as a central χ2(p − 1) under the null hypothesis and is distributed as a non-central χ2

under the alternative hypothesis.

When we reject the above null hypothesis that all adjacent pairwise differences are zero, we can

further evaluate each pairwise difference. Each null hypothesis is that there is no difference in the

adjacent pairwise difference of time-conditional survival probability estimators given by

∆h = logCSh − logCSh+1 = 0, h = 1, . . . , p− 1.

The univariate χ2 test statistic is given by

TS(Ch) =

(
log ĈSh − log ĈSh+1

)2

V̂ ar
(

log ĈSh

)
+ V̂ ar

(
log ĈSh+1

) ,
and under the null hypothesis, the test statistic is approximately distributed as a central χ2(1). When

multiple such independent pairwise tests are computed, we adjust the significance level using the

Bonferroni correction to achieve a total Type I error probability no greater than 5%.

2.4.3. Regression models for time-conditional survival probabilities

To assess whether there is evidence of a relationship between log time-conditional survival proba-

bilities and time survived after diagnosis, we develop three hypothesis tests. These models and hy-

pothesis tests allow researchers to investigate whether the profile of probabilities follows a quadratic

model (QM), a linear model (LM), or a global mean (GM) model. When performing these goodness-

of-fit tests, we begin with fitting the QM. This approach is appropriate when there are at least four

time-conditional survival probabilities (p ≥ 4) ensuring adequate degrees of freedom to test the QM

hypothesis.The goal is to find the most parsimonious model to fit the profile by subsequently testing

the remaining models. Without loss of generality, we assume that time consistently increases by 1

unit to define the time-conditional survival probabilities and reflect this in the design matrix.
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Quadratic Model. The estimated log time-conditional survival probabilities are first compared to

QM where the null and alternative hypotheses are given by

H0 : log CS = XQβQ and H1 : log CS = θ.

The parameter vector is βQ = (β0, β1, β2)
′ representing the intercept, linear, and quadratic param-

eters and the p× 3 design matrix is given by

XQ =



1 0 0

1 1 1

...
...

...

1 p− 1 (p− 1)2


.

Under the alternative hypothesis, the vector, θ = (θ1, . . . , θp)
′, of log time-conditional survival prob-

abilities is estimated from the Kaplan-Meier survivor function estimator, Ŝ(t) (see Equation 2.2).

The weighted least squares estimate of βQ is given by

β̂Q =
[
X′QΣ̂−1XQ

]−1

X′QΣ̂−1 log ĈS,

where Σ̂ is the estimated covariance matrix of log ĈS under the alternative hypothesis (Koch, John-

son, and Tolley, 1972). The test statistic is given by

TS(Q) =
(

log ĈS−XQβ̂Q

)′
Σ̂−1

(
log ĈS−XQβ̂Q

)
,

where the design matrix, XQ, is p × 3. For large samples, TS(Q) is approximately distributed

as a central χ2(p − 3) under the null hypothesis. Under the alternative, TS(Q) is distributed as

a non-central χ2. When the null hypothesis is not rejected, we conclude that the profile of log

time-conditional survival probabilities does not significantly differ from the quadratic model.

Linear Model. To assess whether the log time-conditional survival probabilities are a linear function

of the number of years survived, the null and alternative hypotheses as given by

H0 : log CS = XLβL and H1 : log CS = θ.
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Similar to the QM, the weighted least squares estimate of βL = (β0, β1)
′, the intercept and linear

parameters, is given by

β̂L =
[
X′LΣ̂−1XL

]−1

X′LΣ̂−1 log ĈS,

where Σ̂ is the estimated covariance matrix of log ĈS and the p× 2 design matrix is given by

XL =



1 0

1 1

...
...

1 p− 1


.

For this hypothesis test,

TS(L) =
(

log ĈS−XLβ̂L

)′
Σ̂−1

(
log ĈS−XLβ̂L

)

is the test statistic where the design matrix is p × 2. The test statistic, TS(L), is approximately

distributed as a central χ2(p − 2) under the null hypothesis. If TS(Q) does not lead to rejection

of the QM hypothesis but TS(L) does lead to rejection of the LM hypothesis, then the quadratic

model is the more parsimonious model to fit the data. Alternatively, when the null hypothesis is not

rejected using TS(L), we conclude that the profile of log time-conditional survival probabilities does

not significantly differ from the linear model.

Global Mean. Under the GM hypothesis, all time-conditional survival probabilities are equal to

the same parameter. Further, the profile is adequately represented by a line with slope 0. The

hypotheses are given by

H0 : log CS = XGβG and H1 : log CS = θ,

and the parameter βG is estimated by β̂G where

β̂G =
[
X′GΣ̂−1XG

]−1

X′GΣ̂−1 log ĈS,
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and the p× 1 design matrix, XG, is a vector of ones. Then,

TS(G) =
(

log ĈS−XGβ̂G

)′
Σ̂−1

(
log ĈS−XGβ̂G

)
,

is the weighted multiple regression test statistic where XG is a p×1 vector under the GM model. For

large samples, TS(G) is approximately distributed as a central χ2(p− 1) under the null hypothesis

and is distributed as a non-central χ2 under the alternative hypothesis. If TS(L) does not lead to

rejection of the LM hypothesis but TS(G) does lead to rejection of the GM hypothesis, then the

linear model is the more parsimonious model to fit the data. Alternatively, when the TS(G) null

hypothesis is not rejected, the GM model is the most parsimonious model for the data and the

profile is best described by a line with slope 0.

2.4.4. Stratified time-conditional survival probabilities

Consider the initial null hypothesis that the K samples have the same profile and that this same

profile shows no change in time-conditional survival probabilities with additional time survived. Un-

der this hypothesis, we expect no differences in adjacent log time-conditional survival estimates

and no differences among the strata.

For K-strata, define the p log time-conditional survival probabilities for each of the K populations

as

θki = logCSki = log

(
S(bki)

S(aki)

)
, i = 1, . . . , p, k = 1, . . . ,K.

The null and alternative hypotheses are given by

H0 : log CS = Xβ and H1 : log CS = θ,

where

θ =
(
θ11, θ12, . . . , θk(p−1), θkp

)′
,

is the Kp × 1 vector of all p log time-conditional survival probabilities across K populations. As

previously, β is estimated by

β̂ =
[
X′Σ̂−1X

]−1

X′Σ̂−1 log ĈS,
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with the Kp× 1 design matrix of ones. Then Xβ̂ represents the single estimated horizontal profile

showing no change in time-conditional survival probabilities with additional time survived which is

the same across the K samples. The weighted multiple regression test statistic is given by

TS =
(

log ĈS−Xβ̂
)′

Σ̂−1
(

log ĈS−Xβ̂
)
,

where X is the p× 1 vector under the null hypothesis. For large samples, TS is approximately dis-

tributed as a central χ2 with degrees of freedom Kp− 1 under the null hypothesis and is distributed

as a non-central χ2 under the alternative hypothesis.

When the null hypothesis is rejected, we evaluate the hypothesis that there is an unspecified re-

lationship between additional time survived and time-conditional survival probabilities, but no dif-

ference among the profiles in the K strata. That is, the profiles among the K populations are the

same, but that common single profile shows some change in log time-conditional survival probabil-

ities with increasing time after diagnosis. For example, with two strata, this null hypothesis implies

that the two log time-conditional survival profiles have the same relationship between additional

time survived and time-conditional survival probabilities. The null hypothesis is given by

H0 : X log CS =


logCS11 − logCS21

...

logCS1p − logCS2p

 =


0

...

0

 ,

a p-length vector, and the alternative hypothesis is given by

H1 : X log CS = θ,

where

θ =
(
θ11, θ12, . . . , θk(p−1), θkp

)′
,

is the Kp× 1 vector of all p log time-conditional survival probabilities across K populations. Then,

the test statistic is given by

TS =
(
Xθ̂
)′ [

XΣ̂X′
]−1 (

Xθ̂
)
,

where the design matrix has dimensions p × Kp and θ̂ is a Kp-length vector of the p estimated
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log time-conditional survival probabilities for the K strata using the Kaplan-Meier survivor function

estimator, Ŝ(t) (see Equation 2.2). Under the null hypothesis, this test statistic is distributed as χ2

with p(K − 1) degrees of freedom. As an example where K = 2 and p = 3, the design matrix is

given by

X =


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

 ,

and the parameter vector is given by

log CS = (logCS11, logCS12, logCS13, logCS21, logCS22, logCS23)
′
.

Using a similar approach, we can consider a constant and fixed strata effect with additional time

survived. That is, whatever the relationship is between additional time survived and time-conditional

survival probabilities for the one stratum, the others will have a constant increase (or constant

decrease) with additional time survived. This results in profiles with the same profile pattern and

a fixed difference in magnitude with each additional unit of time survived. Statistically, this implies

that the vector of differences of time-conditional survival probabilities will be constant.

2.4.5. Multivariable models for time-conditional survival probabilities

Consider the scenario of two binary variables defined as X1 = 0, 1 and X2 = 0, 1. We are in-

terested in whether independent variable X1 has a different effect on log time-conditional survival

probabilities depending on values of X2. That is, we are interested in assessing whether there is

an interaction effect. Define k = 4 strata by {X1, X2} ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} and let p = 3,

indicating that for each strata there are three log time-conditional survival probability estimators.

Under this scenario, the Kp-length vector of log time-conditional survival probabilities is given by

log CS = (logCS11, logCS12, logCS13, . . . , logCS41, logCS42, logCS43)
′
.

We begin by defining the full saturated model given by

E(log ĈS) = Xfβf ,
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where Xf is a 12 × 12 design matrix and βf is a vector of length 12 × 1. For the full model, the

design matrix Xf is given by

Xf =



I3×3 03×3 03×3 03×3

I3×3 I3×3 03×3 03×3

I3×3 03×3 I3×3 03×3

I3×3 I3×3 I3×3 I3×3


, (2.13)

and βf is given by

βf = (β01, β02, β03, β11, β12, β13, β21, β22, β23, β31, β32, β33)
′
.

Then the expectation for a single log time-conditional survival probability is given by

E(logCSkp) = β0p + β1pI(X1 = 1) + β2pI(X2 = 1) + β3pI(X1 = 1)I(X2 = 1),

where I(·) is the indicator function defining the value of k = 1, 2, 3, 4. At time point p = 1, 2, 3 for this

example, the log time-conditional survival probability for each of the four strata as a function of p is

given by

E[logCS1p] = β0p

E[logCS2p] = β0p +β1p

E[logCS3p] = β0p +β2p

E[logCS4p] = β0p +β1p +β2p +β3p

. (2.14)

Similarly, for the reduced main effects model, the 12× 9 design matrix Xr is given by

Xr =



I3×3 03×3 03×3

I3×3 I3×3 03×3

I3×3 03×3 I3×3

I3×3 I3×3 I3×3


, (2.15)

and the 9× 1 vector, βr, is given by

βr = (β01, β02, β03, β11, β12, β13, β21, β22, β23)
′
.
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For this reduced model, the expectation for a single log time-conditional survival probability is given

by

E[logCSkp] = β0p + β1pI(X1 = 1) + β2pI(X2 = 1),

and, for each group, we have

E[logCS1k] = β0k

E[logCS2k] = β0k +β1k

E[logCS3k] = β0k +β2k

E[logCS4k] = β0k +β1k +β2k

. (2.16)

Now consider the generalization where X1, . . . , Xm represent discrete, categorical covariates. Let

the multiplicative model include all m covariates and their g interactions. The first consideration is

a hypothesis test of whether an interaction term is significant in the saturated model. To test this

hypothesis, we can compare the full saturated model to a reduced model without the interaction

terms. Then the expectation of log time-conditional survival probability under the full model is given

by

E[logCSij ] = β0 + β1I(X1 = 1) + β2I(X2 = 1) + · · ·+ βmI(Xm = 1)

+ · · ·+ βgI(X1 = 1)I(X2 = 1) · · · I(Xm = 1),

(Model 1)

where X1, . . . , Xm are binary variables. Note, g in the full model is determined by the number of the

main effects and all of the interaction terms. Define the expectation of log time-conditional survival

probability under a reduced model by

E[logCSij ] = β0 + β1I(X1 = 1) + β2I(X2 = 1) + · · ·+ βmI(Xm = 1), (Model 2)

which differs from the full saturated model by the exclusion of the interaction terms. Without loss

of generality, assume that the βf parameters have been arranged corresponding to the columns

of the design matrix, which allows for partitioning. In defining the model in this way, the model

parameters from the full model, βf , can be partitioned to include the main effects in the reduced

model, βr, and the parameters from the interaction terms, βint.
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We estimate the parameters, βf , in the full saturated model as β̂f with design matrix Xf using the

weighted least squares estimation given by

β̂f =
[
X′f Σ̂

−1Xf

]−1

X′f Σ̂
−1 log ĈS.

Similarly, we estimate the parameters, βr, in the reduced model as β̂r with design matrix Xr by

β̂r =
[
X′rΣ̂

−1Xr

]−1

X′rΣ̂
−1 log ĈS,

for the full and reduced models, respectively. To test the null hypothesis of no interaction, we define

the null hypothesis as

H0 : βint = 0.

We evaluate the null hypothesis that a subset of the parameters from full saturated model with the

interaction terms, βint, are not significant predictors in estimating log CS using the test statistic

given by

TS =
(
Xf β̂f −Xrβ̂r

)′
Σ̂−1

(
Xf β̂f −Xrβ̂r

)
.

This test statistic has a χ2 distribution with rank(Xf )−rank(Xr) degrees of freedom under the null

hypothesis. If the null hypothesis is rejected, we conclude that the full saturated model cannot be

represented by the reduced model with main effects only. In the case where a single interaction or

a single parameter such as a main effect is being tested, this becomes a 1 degree of freedom test

under the null hypothesis.

2.5. Simulation Studies

Simulations of 10,000 datasets were used to assess the type I error and power. We expect error

rates computed from 10,000 datasets will have a 95% confidence interval to be (0.0457, 0.0543). For

each dataset, we computed log 5-year time-conditional survival estimates given 0, 1, 2, and 3 years

of survival after diagnosis, which are common in the literature (Merrill and Hunter, 2010). Statistics

were based on point estimates and the estimated covariance matrix of the log time-conditional
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survival probabilities where the profile is given by

log ĈS =
(

log ĈS1, log ĈS2, log ĈS3, log ĈS4

)
.

Data for the type I error simulations were generated from an exponential distribution, exp(λ). We

used a mean parameter 1
λ = 1

7 and varied the sample sizes (n = 100, 150, 200, 300, 400, 500,

800, 1000). Three censoring mechanisms were considered: (1) complete data with no censoring,

(2) uniform random censoring at 10% in each sample, and (3) uniform random censoring at 35%

in each sample. Observed χ2 test statistics were compared to critical χ2 values at 3 degrees of

freedom for the GM null hypothesis and at 1 degree of freedom for each of the individual contrast

hypotheses (α = 0.05).

We determined the parameters of the uniform censoring distribution in order to achieve the speci-

fied percentage of censored observations for our simulation study. Let the event time, X, have an

exponential distribution with parameter λ, exp(λ), and the censoring time, Y , have a uniform distri-

bution with parameters a and b, Uniform(a, b), where X and Y are independent. The probability

of interest is the probability that the censoring time, Y , is less than the event time, X, P (Y < X).

Define a random variable transformation where Z = Y −X and W = Y . Then the joint distribution

of Z and W is given by

fZ,W (z, w) =
1

λ
exp

(
−w − z

λ
· 1

b− a

)
.

For the distribution of Z, integrate the joint distribution over W to get

fZ(z) =
1

b− a
exp

( z
λ

)(
exp

(
−a
λ

)
− exp

(
− b
λ

))
.

Using the distribution of Z, we can obtain P (Y < X) or equivalently P (Z < 0) given by

P (Z < 0) =
λ

b− a

(
exp

(
−a
λ

)
− exp

(
− b
λ

))
.

For known values of λ, P (Y < X), and a = 0, we solve this equation for b. For example, when

the time to the event is distributed as exp(λ = 7), the censoring distribution needed to achieve 20%

random uniform censoring is distributed as Uniform(a = 0, b = 34.7558).
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Data for the power simulations were generated using a Weibull distribution with scale parameter

λ = 7 such that the mean was equal to 1/7 and a varying shape parameter γ = 0.5, 0.65, 0.8.

Values of λ were chosen to be similar to those observed in the data analysis and were chosen

to reflect the SEER data. For this distribution, the probability of surviving beyond 1, 3, 5, and 10

years were 0.8669, 0.6514, 0.4895, and 0.2397, respectively. Values of γ were chosen to be less

than one, characterizing a decreasing failure rate over time. These distributions are relevant when

mortality is expected to be high after diagnosis and then decrease over time. When γ = 1, the

Weibull distribution simplifies to the exponential distribution with parameter λ. Therefore, the shape

parameter of 0.8 was closest to the null distribution of no increasing log time-conditional survival

probability with increasing time after diagnosis.

2.5.1. Type I Error

Global Mean and Omnibus Contrast. For the omnibus contrast or global mean test statistic, the

results of the type I error simulations are presented in Figure 2.1. In the complete data case, for

samples of size 200 and greater, the 95% confidence interval for the estimated type I proportion

included the 5% error rate. For uniform random censoring at 10%, the estimated type I error was

higher than that for the complete data case. The observed type I error for this test was slightly

higher than the 5% error rate for samples of size 100, 150, 200, 300, and 500. For uniform random

censoring at 35%, the 95% confidence interval for the observed proportion included 5% only for

sample sizes of 800. As the likelihood of uniform random censoring increased, the proportion

of test statistics that rejected the true null hypothesis also increased. Overall, with an increased

number of censored observations, information was lost and the estimated type I error of the global

mean and omnibus contrast tests became less stable and higher than the desired 5% error rate.

Independent Pairwise Contrasts. We defined the first contrast as

C1 = log ĈS(5 | 0)− log ĈS(6 | 1),

the second contrast as

C2 = log ĈS(6 | 1)− log ĈS(7 | 2),
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Figure 2.1: Expected type I error of 5% with the 95% confidence interval for 10,000 datasets and es-
timated type I error for the GM model test statistic (and 95% confidence intervals) for no censoring,
10%, and 35% uniform random censoring.

and the third contrast as

C3 = log ĈS(7 | 2)− log ĈS(8 | 3).

For the first contrast, C1, the estimated 95% confidence limits for the observed type I error included

5% when the sample size was 300 and greater. For the second contrast, C2, the estimated 95%

confidence limits for the observed type I error included 5% for all sample sizes considered, except

for 300 where it was higher than 0.05 (mean: 0.0571, 95% CI (0.0526, 0.0616)). Lastly, the 95%

confidence limits for the observed type I error for the C3 test statistic consistently include 5% for

sample sizes as small as 100.

2.5.2. Power

One-Sample LM and QM. Simulations were used to evaluate the power of the test statistics for the

one-sample linear model (LM) and quadratic model (QM). For the LM test, the null hypothesis was

that the profile has a linear relationship for log time-conditional survival probability and additional

time survived. The alternative hypothesis was that there was no relationship. The power of the

LM test was evaluated under an alternative Weibull (λ = 7, γ = 0.5) distribution versus the null
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hypothesis of a linear trend. Figure 2.2 shows the power of the LM test for the complete data

and for 35% uniform random censoring. For complete data, the LM test achieved 78% power at a

sample size of 150. With 35% censoring, we observed only 71% power at that same sample size,

although the power increased to 83% when the sample size was 200. For the QM test, the null

hypothesis was a quadratic model for the relationship. The alternative hypothesis was that there

was no relationship between log time-conditional survival probability and additional time survived.

In this situation, much larger sample sizes of 800 − 1000 were needed to achieve 80% power.

With censoring, even larger sample sizes were needed to achieve reasonable power (Figure 2.2).

Overall, the statistic evaluating the linear model had consistently higher power than the quadratic

model. Under both the LM and QM null hypotheses, uniform random censoring led to a decrease

in the observed power of the test.

Figure 2.2: Estimated power for the LM and QM test statistics with and without censoring.

Global Mean and Omnibus Contrast. Under the null hypothesis for both the global mean model

and the omnibus contrast tests, the more parsimonious fit to the data is a constant profile where

there is no change in log time-conditional survival with added time after diagnosis. Figure 2.3 shows

the results of the power simulations for the omnibus contrast test statistic and the global mean

model test statistic, which both evaluated this null hypothesis of no change. The data generated

from the Weibull (λ = 7, γ = 0.5) had a shape parameter that was most different from that of the

exponential null distribution (γ = 1). The power for this test was greater than 80% for sample sizes
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100 and greater. The data generated from the Weibull (λ = 7, γ = 0.8) distribution was closest to

the null distribution. The power of the test exceeded 78% for sample sizes of 500 and greater. For

data generated from the Weibull distribution (λ = 7, γ = 0.65), the power of the global mean model

was greater than 90% for sample sizes of 200 and greater.

Under uniform random censoring at 35%, power decreased when compared to no censoring in the

complete data case. Although the relationship among the three alternative hypothesis distributions

remained the same, there was an exception at sample sizes of 100 for γ = 0.8 (Figure 2.3). For

data where the underlying true distribution was close to the exponential distribution, a larger sample

size was required to detect a true difference for the global mean and omnibus contrast tests with

80% power. A larger sample size was required when there was censoring.

Figure 2.3: Estimated power for the GM model test statistic.

Independent Pairwise Contrasts. For data generated under the Weibull (λ = 7, γ = 0.8) distribu-

tion, the test statistic of the C1 contrast attained 80% power for samples of size 500 and greater.

The test for C2 only attained 45% power by a sample size of 1000 whereas the test for C3 attained

34% power at that sample size. As the distribution further deviated from the null distribution, under

the Weibull (λ = 7, γ = 0.65) 80% power was attained at samples of size 150 and 1000 for tests of

the contrasts C1 and C2, respectively. The test statistic for the C3 contrast only attained 51% power

by a sample size of 1000. When considering an alternative hypothesis distribution with γ = 0.5, the
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test of contrast C1 attained 96% power at a sample of size 100 and C2 attained 78% power for a

sample of size 500. The test of the last contrast, C3, reached 71% power at a sample of size 1000.

Similar to the global mean and omnibus contrast tests, we found a larger sample size was required

to achieve power above 80% as the alternative hypothesis distribution approached the exponential

null distribution.

2.6. Application: Staging Procedure and Time-Conditional Survival Probability for

Stage II Melanoma Patients

We illustrate our time-conditional survival methodology using population-based data on patients

with cutaneous melanoma from the Surveillance, Epidemiology, and End Results (SEER) program

(SEER, 2008). Our study included 5370 patients diagnosed in 2004–2008 with a single primary

melanoma and no palpable regional lymph nodes. These patients had Stage II disease defined by

the SEER Derived AJCC Stage Group variable (derived from the Collaborative Stage detailed site-

specific codes, using the Collaborative Stage algorithm) with or without lesional ulceration (Balch et

al., 2001, 2009). To obtain this study sample, we applied inclusion and exclusion criteria. Inclusion

criteria included: (1) primary site defined by ICD-O-2 coding under other malignant neoplasms

of skin (C44.0, C44.1, C44.2, C44.3, C44.4, C44.5, C44.6, C44.7, C44.8, C44.9), (2) histologic

type ICD-O-3 code describing the microscopic composition of the cells and/or tissue for a specific

primary ranging 8720 to 8799, (3) first malignant primary tumor using the behavior ICD-O-3 code

indicating a malignant primary site (invasive) tumor, (4) diagnostic confirmation microscopically

confirmed (positive histology or positive microscopic confirmation with the method not specified),

(5) survival time greater than 0 months, (6) exactly one primary lesion, (7) disease diagnosis in

years 2004-2008 inclusive, and (8) Derived AJCC Stage Group variable indicating Stage II disease

(including NOS, IIA, IIB, and IIC). Exclusion criteria included: (1) unknown ulceration status and (2)

unknown status, scope or pathological findings at regional lymph node surgery.

In this SEER-based study, patients were analyzed both as a single cohort and as multiple cohorts

classified by two variables: ulceration (yes or no) and staging (clinical or pathological). As in Gi-

motty et al., 2005, we assume that, if no nodes were surgically sampled, patients had no evidence

of nodal involvement by palpation (they were thus clinically staged as II). If they had a surgical

procedure(s) to examine their regional nodes they were pathologically staged as II when no nodes
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had histological evidence of metastases. The kind of nodal evaluation and its results are important

because of its relation to staging. In the AJCC staging system (Balch et al., 2001), the absence or

presence of metastases in regional nodes as determined by palpation or by a surgical procedure

is a key component of the TNM classification. In the SEER data, the pathological N classification

is determined by the number of regional lymph nodes removed and the number of positive lymph

nodes found. Similarly, ulceration of the primary lesion is one of the prognostic factors used in the

AJCC staging system. Ulceration is defined by SEER as the “absence of an intact epidermis over-

lying the primary melanoma based upon histopathological examination” (SEER, 2008). Patients

were classified into two groups defined by the presence or absence of ulceration.

The patients included in this study were stage II subjects who had their melanomas apparently con-

fined to the primary site with no evidence of palpable regional lymph nodes. In our data, differences

in patients may arise due to a mixture of clinical and pathological staging and a mixture of ulcera-

tion status. Clinically staged patients have only the absence of papably enlarged nodes to indicate

the absence of metastases; pathologically staged patients had this and histological evidence of

uninvolved nodes. We hypothesize that this heterogeneity will result in patients with clinical stage

II disease (who may have small amounts of metastatic disease in their regional nodes) having an

inferior survival experience to those with pathological stage II disease.

For patients presenting with clinical stage II melanoma, guidelines recommend that a surgical pro-

cedure called sentinel lymph node biopsy (SLNB) be offered to more accurately identify patients

with clinically not apparent (not palpable) metastasis to regional lymph nodes (Morton et al., 2006).

This is a powerful staging and prognostic procedure because it allows identification of metastases

that are not clinically observable. As SLNB is not always performed, we were able to examine

patients who had either clinical or pathological staging of disease. Three-year time-conditional sur-

vival probabilities were defined for time from diagnosis to melanoma-specific death estimated from

the Kaplan-Meier survival curves at 6, 12, and 18 months from diagnosis. We sought to investi-

gate patterns of 3-year time-conditional survival in patients who had clinical (no nodal procedure)

or pathological (some nodal procedure) evaluation of their regional nodes, controlling for ulcera-

tion (Gamerman et al., 2012). Future survival, beyond the time already survived, was captured by

estimating time-conditional survival probabilities.

For testing hypotheses related to a single profile, the first analysis approach evaluated changes
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in time-conditional survival as the time survived after diagnosis increased. The second analysis

approach investigated whether the relationship between time-conditional survival and increasing

time survived was different for patients with different types of tumors (ulcerated and not ulcerated)

and different types of nodal evaluation (clinical or pathological).

2.6.1. Estimation of a single time-conditional survival profile

We estimated time-conditional survival probabilities and their 95% confidence intervals (Equations

2.5 and 2.6) for all of the patients in our cohort with and without ulcerated lesions who had clinical or

pathological nodal staging. We found that 3-year time-conditional survival probabilities decreased

in the first 6 months after diagnosis, plateaued between months 6 and 12 after diagnosis, and then

increased 18 months after diagnosis. In Figure 2.4, the 3-year log time-conditional survival proba-

bility estimates and their 95% confidence intervals were -0.132 (-0.146, -0.118) at diagnosis, -0.143

(-0.159, -0.128) at 6 months after diagnosis, -0.144 (-0.162, -0.126) at 12 months after diagnosis,

and -0.128 (-0.147, -0.109) at 18 months after diagnosis. An analysis based only on confidence

intervals would be unable to show definitively any difference in the point estimates because their

confidence intervals overlap (Figure 2.4). This would imply that there was no difference in the

estimates and that additional time after diagnosis was not associated with changes in estimates

of 3-year log time-conditional survival probabilities. Appropriate simultaneous inference on multi-

ple estimates using data from the entire time-conditional survival profile would require their joint

distribution and would account for the correlation in point estimates.

2.6.2. Omnibus test of contrasts for a single profile

Using the omnibus contrast test, the null hypothesis was rejected, suggesting there were differ-

ences between adjacent 3-year log time-conditional survival probabilities with additional time sur-

vived (p = 0.0004). We investigated this relationship using independent pairwise contrasts. After

using the Bonferroni adjustment for multiple comparisons, two of the three tests were statistically

significant (Table 2.1). There was statistically significant change in 3-year log time-conditional sur-

vival probability between evaluation at diagnosis and 6 months (logCS1 − logCS2, p = 0.0075), as

well as a change between evaluation at 12 months and 18 months (logCS3 − logCS4, p = 0.0072).

The p-values were the Bonferroni-adjusted p-values corresponding to the unadjusted p-values in

Table 2.1. Therefore, the drop from -0.132 to -0.143 between diagnosis and 6 months demonstrated
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Figure 2.4: Nonparametric Kaplan-Meier estimated 3-year log time-conditional survival probabilities
given 0, 6, 12, and 18 months after diagnosis for Stage II patients.

a statistically significant decline in the 3-year log time-conditional survival probability. Additionally,

the observed change in the estimates from 12 to 18 months after diagnosis indicated a statisti-

cally significant increase in the 3-year log time-conditional survival probability at -0.144 and -0.128,

respectively (Figure 2.4).

In our cohort, the observation of an initial drop in log time-conditional survival probability estimates,

followed by an increase in these estimates was not surprising. The pattern in traditional Kaplan-

Meier survival of a decreasing failure rate over time, such that there was higher mortality after

diagnosis and then decreasing mortality over time, has been regularly observed for melanoma

patients (e.g., Balch et al., 2010; Xing et al., 2010). Clinical and pathological Stage II patients

included those with melanomas with classification N0, M0, T2b, T3a, T3b, T4a, and T4b where

N0 represented no apparent regional lymph node metastasis and M0 represented no apparent

distant (beyond the regional nodes) metastasis. The primary tumor (T) classification represented:

(1) melanoma 1.01 - 2.0 mm in thickness with ulceration (T2b), (2) melanoma 2.01 - 4.0 mm in

thickness with or without ulceration (T3), and (3) melanoma greater than 4.0 mm in thickness with

or without ulceration (T4). This variability in primary tumor thickness and ulceration of the primary

tumor were related to differences in observed survival (Balch et al., 2009).

Looking at 3-year estimates of time-conditional survival at diagnosis and 6, 12, and 18 months after

diagnosis in this study, we found that 3-year time-conditional survival at 6 months after diagnosis
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declined. After that, the outlook for future prognosis of 3 additional years begins to improve with

each additional 6 months.

2.6.3. Fitting a parsimonious regression model to the profile

To model the 3-year time-conditional survival probabilities, we fit the QM, LM, and GM models. The

parameter estimates from these three models are presented in Table 2.2. Under the alternative

H1, the estimated log time-conditional survival probabilities varied from −0.144 to −0.128. Also

presented is the estimated covariance matrix of the estimated log time-conditional survival prob-

abilities. The variances are shown down the diagonal, with the covariances in the upper triangle,

and the correlations in the lower triangle. Estimates of log-time conditional survival probabilities for

this profile were positively correlated (0.39− 0.95).

We found that the quadratic model was the most parsimonious model for these data (TS = 0.14, p =

0.7107). We could not simplify the model to the linear model (TS = 18.01, p = 0.0001) and global

mean model (TS = 18.36, p = 0.0004 for both). Comparing confidence intervals without accounting

for the correlation of the parameters would have concluded that increasing time after diagnosis did

not influence time-conditional survival.

2.6.4. Estimation of stratified time-conditional survival profiles

We were interested in whether patients with and without nodal procedure and with and without

ulcerated primary tumors would have different time-conditional survival profiles. The nonparametric

Kaplan-Meier log time-conditional survival probability estimates plotted against time since diagnosis

for the two independent groups defined by nodal procedure (clinical or pathological) are shown in

Figure 2.5 and ulceration status (not ulcerated or ulcerated) are shown in Figure 2.6. Figure 2.7

shows the nonparametric Kaplan-Meier log time-conditional survival probability estimates plotted

against time since diagnosis for the four independent groups defined by the two binary covariates,

nodal procedure (clinical or pathological) and ulceration status (present or absent). The objective

was to evaluate the relationship between 3-year time-conditional survival probability and additional

time survived after diagnosis for these groups.
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Figure 2.5: Nonparametric Kaplan-Meier estimated 3-year log time-conditional survival probabilities
given 0, 6, 12, and 18 months after diagnosis for patients by procedure: (1) Pathologically staged
(some nodal procedure) and (2) Clinically staged (no nodal procedure).

Figure 2.6: Nonparametric Kaplan-Meier estimated 3-year log time-conditional survival probabilities
given 0, 6, 12, and 18 months after diagnosis for patients by ulceration status: (1) Not ulcerated
and (2) Ulcerated.

2.6.5. Stratified time-conditional survival probabilities comparing two groups

As examples of the use of the two-sample methodology, we considered nodal procedure (Fig-

ure 2.5) and ulceration status (Figure 2.6) independently. Under the null hypothesis of no strata

effect and no effect of additional time after diagnosis, we would observe the two profiles overlap-

ping and no change in log time-conditional survival probabilities with additional months survived
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after diagnosis. Let X is a 16× 1 vector of ones. The null and alternative hypotheses are given by

H0 : log CS = Xβ and H1 : log CS = θ.

The parameter β is estimated by β̂ where

β̂ =
[
X′Σ̂−1X

]−1

X′Σ̂−1 log ĈS.

Under the null hypothesis, the parameter estimate, β̂ was −0.110. We concluded that there was

evidence to reject the null hypothesis of no nodal procedure strata effect and no change in log

time-conditional survival probabilities (p < 0.0001). The absolute difference between the two strata

was 0.122, 0.123, 0.090, and 0.052 at diagnosis, and at 6, 12, and 18 months after diagnosis,

respectively.

Similarly, we considered ulceration status of the tumor at diagnosis. Under the null hypothesis,

the parameter estimate, β̂ was −0.112. The absolute observed difference between the two strata

shown in Figure 2.6 was 0.096, 0.098, 0.099, and 0.074 at diagnosis, and at 6, 12, and 18 months

after diagnosis, respectively. For ulceration status, we rejected the null hypothesis of no effect of

either time after diagnosis or ulceration status and concluded that there is at least one non-zero

difference in probabilities (p < 0.0001).

To better understand the observed data, we considered the null hypothesis of no strata effect but

allowed for an effect due to additional time survived after diagnosis. The null and alternative hy-

potheses are given by

H0 :



logCS11 − logCS21

logCS12 − logCS22

logCS13 − logCS23

logCS14 − logCS24


=



0

0

0

0


,
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and

H1 :



logCS11 − logCS21

logCS12 − logCS22

logCS13 − logCS23

logCS14 − logCS24


=



∆1

∆2

∆3

∆4


,

where logCSkp represents the log time-conditional survival estimator in the k-th strata at the p-th

time already survived. Under this null hypothesis, we would observe the strata profiles overlap-

ping, however, the log time-conditional survival profile could increase or decrease with additional

time survived. The alternative hypothesis is that there exists some non-zero difference in log time-

conditional survival probabilities. For these data, we had evidence to reject the null and concluded

that there was at least one significant non-zero difference log time-conditional survival probabilities

(p < 0.0001 for nodal procedure). Similarly, we considered ulceration status of the tumor at diagno-

sis. For ulceration status, we rejected the null hypothesis of no effect of the ulceration strata. We

concluded that there was a significant non-zero difference in at least one time-conditional survival

probability (p < 0.0001).

Allowing for a relationship between time survived and 3-year log time-conditional survival probabil-

ities, we considered the hypothesis of a fixed strata effect. The null and alternative hypotheses are

given by

H0 :



logCS11 − logCS21

logCS12 − logCS22

logCS13 − logCS23

logCS14 − logCS24


=



∆

∆

∆

∆


,

and

H1 :



logCS11 − logCS21

logCS12 − logCS22

logCS13 − logCS23

logCS14 − logCS24


=



∆1

∆2

∆3

∆4


= ∆.

This null hypothesis states that, when comparing the strata of patients that are clinically or patho-

logically staged, the difference in 3-year log time-conditional survival probability is constant, inde-

pendent of how much time after diagnosis has passed (represented by ∆ in the null hypothesis

above).
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Under the null hypothesis of a fixed group effect, the estimated fixed difference in estimated log

time-conditional survival probabilities between the two strata was ∆̂ = −0.095. We rejected the

null hypothesis and found that at least one difference in log time-conditional survival probabilities

between the two groups was significantly different from the fixed difference (p < 0.0001). We con-

cluded that, while 3-year estimates changed with additional time survived, the significant strata

effect found in the previous hypothesis test was not a fixed strata effect for the two groups of

patients by nodal procedure. Similarly, to evaluate if there was a fixed difference in 3-year log

time-conditional survival probabilities for patients with ulcerated and non-ulcerated lesions, we con-

sidered the null hypothesis that there was a fixed difference in their estimates with increased time

survived after diagnosis. We failed to reject the null hypothesis that there was a fixed effect of

ulceration status estimated to be ∆̂ = 0.091 (p = 0.1128). We concluded that patients with ulcer-

ated lesions had poorer 3-year time-conditional survival prognoses as compared to patients with

non-ulcerated lesions. This difference was constant with additional time after diagnosis.

2.6.6. Omnibus test of contrasts by stratum

Next, we compared the estimated time-conditional survival probabilities for the four independent

profiles defined as (1) pathologically staged and not ulcerated (n = 1702), (2) pathologically staged

and ulcerated (n = 1915), (3) clinically staged and not ulcerated (n = 801), and (4) clinically staged

and ulcerated (n = 952) (Figure 2.7). With increasing time survived up to 18 months, there was

no significant change in the 3-year log time-conditional survival estimates for the cohort of patho-

logically staged patients with non-ulcerated lesions. For pathologically staged patients with ulcer-

ated lesions, the 3-year time-conditional survival estimates changed significantly with increased

time after diagnosis under the omnibus contrast test (p = 0.0089). None of the independent pair-

wise contrasts were significantly different from zero under the conservative Bonferroni adjustment

(pC1
= 0.0685, pC2

= 0.1813, pC3
= 0.0.2651).

For the cohort of clinically staged patients with non-ulcerated lesions, 3-year log time-conditional

survival increased from -0.162 at 12 months after diagnosis to -0.136 at 18 months after diagnosis

(p = 0.0010). On the time-conditional survival scale, the estimates increased from 85% to 87% at

12 and 18 months after diagnosis, respectively. Lastly, for clinically staged patients with ulcerated

lesions, the 3-year log time-conditional survival estimates for those who had survived 6, 12, or

18 months were -0.296, -0.251, -0.195, respectively. On the time-conditional survival scale, the
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estimates were 74%, 78%, and 82%, respectively. After the initial 6 months after diagnosis, there

was a significant change in 3-year log time-conditional survival having survived 6 versus 12 months

(p = 0.0044), as well as having survived 12 versus 18 months (p < 0.001).

Figure 2.7: Nonparametric Kaplan-Meier estimated 3-year log time-conditional survival probabilities
given 0, 6, 12, and 18 months after diagnosis for patients in one of four groups: (1) Pathologically
staged (some procedure) and not ulcerated, (2) Pathologically staged (some procedure) and ul-
cerated, (3) Clinically staged (no nodal procedure) and not ulcerated, and (4) Clinically staged (no
nodal procedure) and ulcerated.

Based on the estimated curves, for pathologically staged patients, we concluded that 3-year log

time-conditional survival did not change significantly with increasing time after diagnosis from 0

to 18 months. Clinically staged patients with non-ulcerated lesions had an increase in log time-

conditional survival from 12 to 18 months after diagnosis, while those with ulcerated lesions had

an increase in estimates as early as 6 months after diagnosis. Patients with pathologically staged

disease (some procedure) had better log time-conditional survival probability, indicative of better

survival, as compared to patients with clinically staged disease (no nodal procedure). Given these

individual results, we proceeded to build a multivariable model to assess the relationship between

3-year time-conditional survival probability and additional time survived after diagnosis as a function

of the nodal procedure and ulceration status.

2.6.7. Multivariable analysis

In the individual profiles, we observed differential profiles based on the covariate patterns. To

determine if the impact of nodal procedure on estimates of log time-conditional survival proba-
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bility depended on ulceration status (or, similarly, if the impact of ulceration status on estimates

of log time-conditional survival probability depended on nodal procedure), we built a model for

log time-conditional survival adjusting for these covariates and their interaction. Four independent

groups were defined by two binary covariates, X1 for nodal procedure (pathologically-staged versus

clinically-staged) and X2 for ulceration status (ulcerated versus not ulcerated). Let the k = 4 strata

be defined by {X1, X2} ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} such that they represent: (1) clinically-staged

patients with no ulceration of the lesion, (2) clinically-staged patients with an ulcerated lesion, (3)

pathologically-staged patients with no ulceration of the lesion, and (4) pathologically-staged pa-

tients with an ulcerated lesion. Let p = 4 indicate that for each stratum of patients there are 4

log time-conditional survival probability estimates defined by 3-year log time-conditional survival

probability given survival at diagnosis, 6, 12, and 18 months after diagnosis.

Define the full saturated model given by

E[log ĈS] = Xfβf ,

where Xf is a 16 × 16 design matrix and βf is a vector of length 16 × 1. For the full model, the

design matrix Xf is given by

Xf =



I4×4 04×4 04×4 04×4

I4×4 04×4 I4×4 04×4

I4×4 I4×4 04×4 04×4

I4×4 I4×4 I4×4 I4×4


,

and βf is given by

βf = (β01, β02, β03, β04, β11, β12, β13, β14, β21, β22, β23, β24, β31, β32, β33, β34)
′
.

Then the expectation for a single log time-conditional survival probability is given by

logCSkp = β0p + β1pI(X1 = 1) + β2pI(X2 = 1) + β3pI(X1 = 1)I(X2 = 1), (Model 1*)

where I(·) is the indicator function defining the value of k = 1, 2, 3, 4, and at time point p = 1, 2, 3, 4.
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For this data, the log time-conditional survival probability for each of the 4 strata as a function of p

is given by

logCS1p = β0p

logCS2p = β0p +β2p

logCS3p = β0p +β1p

logCS4p = β0p +β1p +β2p +β3p

.

We were interested in whether the interaction effect, β3 = (β31, β32, β33, β34)′, differed significantly

from a four dimensional zero vector. To test this hypothesis, we defined the reduced model

E[log ĈS] = Xrβr,

where Xr is a 12× 12 design matrix and βr is a vector of length 12× 1. For this reduced model, the

design matrix Xr is given by

Xr =



I4×4 04×4 04×4

I4×4 04×4 I4×4

I4×4 I4×4 04×4

I4×4 I4×4 I4×4


,

and βr is given by

βr = (β01, β02, β03, β04, β11, β12, β13, β14, β21, β22, β23, β24)
′
.

Then the expectation for a single log time-conditional survival probability is given by

logCSkp = β0p + β1pI(X1 = 1) + β2pI(X2 = 1). (Model 2*)

At time point p = 1, 2, 3, 4, the log time-conditional survival probability for each of the k = 1, 2, 3, 4

strata as a function of p is given by

logCS1p = β0p

logCS2p = β0p +β2p

logCS3p = β0p +β1p

logCS4p = β0p +β1p +β2p

.
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We evaluated this null hypothesis by comparing the full model (Model 1*) with the reduced model

(Model 2*). Table 2.3 presents parameter estimates of βf and βr and Table 2.4 represents the

estimates of log time-conditional survival probabilities under each model. We found that β3 was not

significant (p=0.0621). We did not reject the null hypothesis of no interaction at the α = 0.05 level.

Next, we considered removing one of the main effects from Model 2*. To test whether ulceration

status is significant in the model, we defined the first main effect model as

E[log ĈS] = XAβA,

where XA is a 8 × 8 design matrix and βA is a vector of length 8 × 1. For this main effect model,

the design matrix XA is given by

XA =



I4×4 04×4

I4×4 04×4

I4×4 I4×4

I4×4 I4×4


, (2.17)

and βA is given by

βA = (β01, β02, β03, β04, β11, β12, β13, β14)
′
.

Then the expectation for a single log time-conditional survival probability is given by

logCSkp = β0p + β1pI(X1 = 1). (Model 3*)

At time point p = 1, 2, 3, 4, the log time-conditional survival probability for each of the k = 1, 2, 3, 4

strata as a function of p is given by

logCS1p = β0p

logCS2p = β0p

logCS3p = β0p +β1p

logCS4p = β0p +β1p

. (2.18)

We evaluated the null hypothesis β2 = 0 by comparing the reduced model (Model 2*) with the main
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effects Model 3*. Table 2.3 presents parameter estimates of βf and βr, and Table 2.4 represents

the estimates of log time-conditional survival probabilities under each model. We found that β2

was significant (p < 0.0001). We rejected the null hypothesis of no effect of ulceration status at the

α = 0.05 level.

Similarly, we considered removing the second of the main effects from Model 2*. To test whether

nodal procedure status was significant in the model, we defined the second main effect model as

E[log ĈS] = XBβB ,

where XB is a 8 × 8 design matrix and βB is a vector of length 8 × 1. For this main effect model,

the design matrix XB is given by

XB =



I4×4 04×4

I4×4 I4×4

I4×4 04×4

I4×4 I4×4


, (2.19)

and βB is given by

βB = (β01, β02, β03, β04, β21, β22, β23, β24)
′
.

Then the expectation for a single log time-conditional survival probability is given by

logCSkp = β0p + β2pI(X1 = 1). (Model 4*)

At time point p = 1, 2, 3, 4, the log time-conditional survival probability for each of the k = 1, 2, 3, 4

strata as a function of p is given by

logCS1p = β0p

logCS2p = β0p +β2p

logCS3p = β0p

logCS4p = β0p +β2p

. (2.20)

We evaluated the null hypothesis β1 = 0 by comparing the reduced model (Model 2*) with the main

47



effects Model 4*. Table 2.3 presents parameter estimates of βf and βr, and Table 2.4 represents

the estimates of log time-conditional survival probabilities under each model. We found that β1

was significant (p < 0.0001). We rejected the null hypothesis of no effect of nodal procedure at the

α = 0.05 level.

We found that the most parsimonious model for these data included both main effects, but not

the interaction parameter. We concluded that both nodal procedure and ulceration status had

significant impact on estimates of log time-conditional survival probability. We built a model for log

time-conditional survival probability adjusting for these covariates (Model 2*), where we defined four

independent groups based on the two binary covariates. Table 2.3 shows the estimates resulting

from this model.

Three-year log time-conditional survival probabilities were estimated at diagnosis, 6, 12, and 18

months after diagnosis. We found that, for clinically staged patients with no ulceration of the lesion,

(k = 1), 3-year time-conditional survival probabilities started off lower and increased with increas-

ing time (probabilities ranging from 0.839 to 0.884). A similar pattern was observed for clinically

staged patients with an ulcerated lesion, (k = 2), with probabilities ranging from 0.767 to 0.825.

For patients with pathologically staged melanoma with no ulceration of the lesion, (k = 3), time-

conditional survival probabilities were higher at diagnosis and decreased with increasing time after

diagnosis (probabilities decreased from 0.948 to 0.929). Lastly, for pathologically staged patients

with an ulcerated lesion, (k = 4), time-conditional survival probability fluctuated about 0.86 (prob-

abilities ranging from 0.853 to 0.869). Overall, the range in time-conditional survival probabilities

was more than 2 times narrower for pathologically staged patients (0.019 for k=3 and 0.016 for k=4)

as compared to clinically staged patients (0.045 for k=1 and 0.058 for k=2).

2.7. Discussion

In this chapter, we proposed methods for investigating time-conditional survival probabilities as a

function of increasing time survived after diagnosis. Estimates of time-conditional survival probabil-

ities with 95% confidence intervals are commonly reported in medical literature. While standalone

estimated probabilities have a straightforward interpretation, the developed methodology is able to

address clinically relevant questions of interest such as “Does the expected probability that a pa-

tient will survive an additional 5 years significantly increase with increasing time post-diagnosis”?
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To evaluate these relationships, we derived the asymptotic joint distribution of the estimated log

time-conditional survival probabilities and developed hypothesis tests to address questions of inter-

est.

To explore whether there are differences in adjacent pairwise log time-conditional survival proba-

bilities, we developed an omnibus test and subsequent independent contrasts to identify pairwise

differences. This is an important issue when evaluating a single time-conditional survival proba-

bility profile for both researcher and patient because a constant profile indicates that increasing

time survived after diagnosis does not imply an increased (or decreased) likelihood of surviving an

additional number of years. On the other hand, determining that a profile is characterized by a lin-

ear or quadratic relationship provides additional prognostic information to the relationship between

time-conditional survival probabilities and additional time survived. We proposed three nested hy-

pothesis tests using the weighted least squares regression approach for a profile-based analysis

to identify linear and quadratic relationships between log time-conditional survival probabilities and

time survived after diagnosis.

The profile-based methods were extended by fitting models for log time-conditional survival prob-

ability profiles incorporating covariate information. Our regression modeling strategy can be used

to addresses questions about factors that affect the profiles, by comparing a particular (full) model

with a more parsimonious nested (reduced) model. Our regression framework can be used to

compare time-conditional survival probabilities from independent populations. Lastly, when pro-

files are determined from several categorical variables to create independent strata using covariate

patterns, we consider a multivariable multiplicative regression model framework to model the rela-

tionships between covariates and time-conditional survival probabilities, including the assessment

of interactions between covariates and main effects. More detailed investigations into the influ-

ence of continuous, as opposed to categorical, prognostic and treatment factors may add utility for

monitoring and understanding changes in time-conditional survival probabilities.

In simulations, we demonstrated that the test statistics for the global mean model had good statisti-

cal properties for samples of size 200 or greater. As the percentage of uniform censoring increases

from 0% to 35%, the sample size necessary for adequate type I error increases. The sample size

necessary to achieve adequate power also increased with an increasing percentage of uniform

random censoring. The LM test achieved adequate power for a sample size of 200, while the QM
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test needed much larger sample sizes to achieve power of 80%. Thus, one limitation of the current

hypothesis testing framework is the requirement of large sample sizes to ensure the asymptotic

properties of the test statistics.

These methods were applied to real-world survival data from SEER for patients with melanoma.

We found that the quadratic model was the most parsimonious model for these data since we could

not simplify it to a linear or global mean models (p < 0.0001 for both). Note that a limitation of this

application was the short interval of time from diagnosis (6, 12, and 18 months) when considering

3-year log time-conditional survival probabilities. Comparing confidence intervals without account-

ing for the correlation of the parameters would have failed to conclude that increasing time after

diagnosis influences time-conditional survival.

Our formal statistical methodology is an improvement upon the profile-based approach, where pro-

files are created based on the covariate patterns, as it allows for the evaluation of the statistical

significance of profiles and of factors. To name a few, our methods can (1) assess whether surviv-

ing an additional 6-months after diagnosis influences the likelihood of surviving 3 more years, (2)

whether a single profile fits a quadratic trend, (3) whether patients with and without nodal procedure

and ulceration of the lesion have differing profiles, and (4) whether profiles are the same showing

no change in time-conditional survival probabilities with additional time survived. The methodol-

ogy proposed here is robust and generalizable to other malignancies and diseases. For example,

we can consider either overall survival or progression-free survival and not just disease-specific

survival in samples ranging in sample size from 200 when there is no censoring, and from 800

when censoring is as high as 35%. In this way, this methodology can help patients and clinicians

weigh choices for surveillance for recurrent disease by adding conditional survival to risk predic-

tion, while adjusting for covariates in the evaluation of overall survival. The methodology described

here provides the clinician and the investigator with the ability to evaluate the clinical importance

of profiles and factors by assessing whether there is a statistically significant relationship between

time-conditional survival and additional time survived.
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Table 2.1: SEER melanoma contrasts of profile-based differences

Contrast Estimated Difference Test Statistic p-value†

Omnibus − 18.365 0.0004
logCS1 − logCS2 0.0113 9.179 0.0025
logCS2 − logCS3 0.0002 0.002 0.9670
logCS3 − logCS4 −0.0154 9.184 0.0024

† Bonferroni adjusted significance level is 0.0167
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Ĉ
S

2
-0

.1
43

0.
88

3
0.

63
2

0.
58

9
0.

52
1

-0
.1

44
-0

.1
30

-0
.1

29

lo
g
Ĉ
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Table 2.3: Parameter estimates for the multivariable analysis

Estimated Parameter (β) β̂†f β̂†r β̂†A β̂†B
β01 −0.148 −0.165 −0.197 −0.067

β02 −0.160 −0.176 −0.209 −0.078

β03 −0.162 −0.150 −0.188 −0.078

β04 −0.136 −0.123 −0.152 −0.069

β11 0.094 0.112 0.119

β12 0.095 0.113 0.119

β13 0.096 0.085 0.096

β14 0.062 0.048 0.062

β21 −0.134 −0.087 −0.092

β22 −0.136 −0.090 −0.094

β23 −0.090 −0.094 −0.092

β24 −0.059 −0.069 −0.073

β31 0.054

β32 0.054

β33 −0.014

β34 −0.022

† The strata are represented by {X1, X2} ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} defining clinically-staged patients with no ulceration
of the lesion (k = 1), clinically-staged patients with an ulcerated lesion (k = 2), pathologically-staged patients with no
ulceration of the lesion (k = 3), and pathologically-staged patients with an ulcerated lesion (k = 4), respectively
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CHAPTER 3

PARAMETRIC TIME-CONDITIONAL SURVIVAL PROBABILITY

3.1. Introduction

Time-conditional survival probability is defined as the probability of surviving an additional ∆ years

beyond a, given that survival is greater than a years and can be expressed as the ratio of the a-

and (a + ∆)-year survival probabilities. A majority of current medical literature on time-conditional

survival presents point estimates and confidence intervals using nonparametric estimates of sur-

vival time. In the nonparametric framework, numerator and denominator probabilities are typically

estimated from a single Kaplan-Meier survivor function (Kaplan and Meier, 1958). These nonpara-

metric methods stratify patients into groups based on categorical variables (requiring categorization

of continuous variables) to define covariate patterns.

We present a parametric approach to estimation of time-conditional survival analysis. In Section 3.2

we derive the large sample distribution for time-conditional survival probability estimated from the

Weibull survival distribution adjusting for continuous covariates and from a Logistic-Weibull cure

model adjusting for continuous covariates. The hypothesis testing framework used to compare

point estimates takes into account the correlation among the survival probabilities in the estimation

of time-conditional survival probability. In Section 3.3, we use this approach for time-conditional

survival probability estimated from the Weibull regression model and from the Logistic-Weibull cure

model. This methodology is applied to esophageal cancer and melanoma data in Section 3.4, with

discussion of findings in Section 3.5.

3.2. Parametric Time-Conditional Survival

We develop a general approach to derive parametric time-conditional survival probability estimators

and the approximate large sample distribution for these estimators. To estimate time-conditional

survival adjusting for continuous covariates, we provide an approach using a parametric regression

model and an approach using a cure model. Sections 3.2.1 and 3.2.2 define time-conditional

survival probability as a function of the maximum likelihood estimators of the model parameters and

covariate coefficients. Section 3.3 provides greater detail on the time-conditional survival probability
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maximum likelihood estimator under the Weibull survival model and the logistic-Weibull cure model.

3.2.1. Continuous Covariate-Adjusted Time-Conditional Survival Estimation

A strength of the parametric approach to time-conditional survival probability estimation is the ability

to incorporate information from multiple continuous covariates.

Let T denote the time to the event of interest. Then, let the survival data be captured for a sample

of n patients such that the ith individual contributes observation (ti, δi), i = 1, . . . , n. The indicator

function δi is set to unity when the observed survival time, ti, is an event time, and to zero when it

is a censored time.

The partial likelihood function is given by

n∏
i=1

(f(ti | θ))δi(S(ti | θ))1−δi ,

where f(·) is a probability density function and S(·) is a survivor function. These are written as

functions of a vector of distribution parameters, θ, which generally represents more than one pa-

rameter. The approximate large sample joint distribution of the maximum likelihood estimators, θ̂,

of the parameters from the survival distribution is given by

θ̂
d−→ N(θ,Σθ),

where Σθ is estimated by the inverse of the observed Fisher information (Efron and Hinkley, 1978).

Let Z denote a vector of continuous covariates. The accelerated failure time model is defined by

S(t | Z,β,θ) = S0(t exp(β′Z) | θ), (3.1)

for all values of time t, where β is a vector of regression coefficients. Alternatively, assuming a

linear relationship between log time and the continuous covariates, the linear model is given by

Y = log T = µ+ γ′Z + σW, (3.2)

where γ is a vector of regression parameters. The distribution of Y is determined by the (error)
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distribution given by W , or the choice of S0 in Equation 3.1 under the accelerated failure time

model.

The parametric covariate-adjusted time-conditional survival probability is expressed as transforma-

tions of the k parameters β and θ and is given by

CS(a+ ∆ | a,Z,β,θ) =
S(a+ ∆ | β,θ)

S(a | β,θ)
.

This represents the probability of surviving an additional ∆ time units beyond a, given that survival is

greater than time a. By the invariance property, the maximum likelihood estimator of the covariate-

adjusted time-conditional survival probability is given by

ĈS(a+ ∆ | a,Z, β̂, θ̂) =
Ŝ((a+ ∆) exp(β̂′Z) | θ̂)

Ŝ(a exp(β̂′Z) | θ̂)
.

By the δ-method, the large sample expectation and variance of this transformation are given by

E
(
ĈS(a+ ∆ | a,Z, β̂, θ̂)

)
= CS(a+ ∆ | a,Z,β,θ),

and

V ar
(
ĈS(a+ ∆ | a,Z, β̂, θ̂)

)
= J(β,θ)TΣβ,θJ(β,θ),

respectively, where J(β,θ) is the Jacobian k × 1 vector of first degree partial derivatives of time-

conditional survival probabilities,with respect to the k parameters, (β̂, θ̂)T , and is given by

J(β,θ) =



∂CS
∂β1

∂CS
∂β2

...

∂CS
∂βc1

∂CS
∂θ1
...

∂CS
∂θc2



,

where β = (β1, . . . , βc1)T , θ = (θ1, . . . , θc2)T and where c1 + c2 = k. By the multivariate δ-method

57



and Slutsky’s Theorem, the variance is estimated by

V̂ ar
(
ĈS(a+ ∆ | a,Z, β̂, θ̂)

)
= Ĵ(β̂, θ̂)T Σ̂β̂,θ̂Ĵ(β̂, θ̂)

and for the Weibull survival distribution, the partial derivatives are derived in the Appendix. The

large sample distribution of the maximum likelihood estimator of parametric time-conditional sur-

vival probability is given by

ĈS(a+ ∆ | a,Z, β̂, θ̂)
d−→ N

(
CS(a+ ∆ | a,Z,β,θ), J(β,θ)TΣβ,θJ(β,θ)

)
.

3.2.2. Cure Model Based Time-Conditional Survival Estimation

The cure model assumes that the underlying population is a mixture of subjects who will or will not

experience the event, where cured subjects will not experience the event. As with the parametric

regression model methods described in Section 3.2.1, the cure model can incorporate continuous

and categorical variables. A method for time-conditional survival probability analysis based on a

cure model adjusting for covariates follows.

Define T to be the time to the event of interest and let t be the observed time. Define E to be an

indicator of cure status such that E = 1 represents those individuals not cured of the event and

E = 0 represents those individuals cured of the event. The random variables T and E each follow

a parametric distribution. The mixture cure model is given by

S(t | ζ,η,x, z) = π(η, z)× Se(t | E = 1, ζ,x) + 1− π(η, z), (3.3)

where the continuous covariate vectors x and z may be the same or may differ. Here Se(t | E =

1, ζ,x) = P (T > t | E = 1, ζ,x) is the survival probability for individuals not cured of the event

given a vector of continuous covariates x and given a vector of regression parameters ζ. The

survival distribution for individuals not cured of the event is generally modeled using parametric or

semi-parametric survival models. The probability of observing an individual not cured is π(η, z) =

P (E = 1 | η, z) where z is the continuous covariate vector and where η is a function of regression

parameters. The influence of the continuous covariates on the probability of no cure is modeled

using a logistic regression model.
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The observed data take the form (ti, δi,xi, zi) for i = 1, . . . , n. Here, ti is the observed time on study

and δi is the censoring indicator. For individual i, when δi = 1, the contribution to the likelihood is

given by

πi(η, zi)fe(ti | E = 1,xi),

where fe(·) is the probability density function for time to an event for individuals not cured. When

δi = 0, the contribution to the likelihood is given by

(1− πi(η, zi)) + πi(η, zi)Se(ti | E = 1, ζ,xi).

Then the observed likelihood is given by

L(η, ζ) =

n∏
i=1

(πi(η, zi)fe(ti | E = 1, ζ,xi))
δi

× ((1− πi(η, zi)) + πi(η, zi)Se(ti | E = 1, ζ,xi))
1−δi .

Under this framework, time-conditional survival probability is defined as

CS(a+ ∆ | a,β,γ,η, ζ,x, z) =
S(a+ ∆)

S(a)

=
(1− π(η, z)) + π(η, z)Se(a+ ∆ | E = 1, ζ,x)

(1− π(η, z)) + π(η, z)Se(a | E = 1, ζ,x)
,

where η and ζ correspond to the regression parameters associated with the continuous covariate

vectors z and x and the survival distribution parameters β and γ, respectively. The large sample

distribution for an estimator of time-conditional survival probability is given by

ĈS(a+ ∆ | a, β̂, γ̂, η̂, ζ̂,x, z)
d−→ N

(
CS(a+ ∆ | a,β,γ,η, ζ,x, z), σ2

CS

)
.

The large sample variance of time-conditional survival probability, σ2
CS is given by J(θ)TΣθJ(θ)

with θ = (β,γ,η, ζ)T , where J(θ) is a vector of first degree partial derivatives given by

J(θ) =

((
∂CS

∂β

)T
,

(
∂CS

∂γ

)T
,

(
∂CS

∂η

)T
,

(
∂CS

∂ζ

)T)T
.
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By the multivariate δ-method and Slutsky’s Theorem, the variance is estimated by

V̂ ar
(
ĈS(a+ ∆ | a, β̂, γ̂, η̂, ζ̂,x, z)

)
= Ĵ(θ̂)T Σ̂θ̂Ĵ(θ̂)

and for the Logistic-Weibull cure model, the partial derivatives are derived in the Appendix.

3.2.3. Comparing Across Profiles

After a time-conditional survival probability function is defined, the maximum likelihood estimators

will be obtained and used to make inferences. For example, fixing some of the continuous covari-

ates and varying others can produce a series of profiles. A relevant question is whether these

profiles, which are estimated from a single sample using maximum likelihood theory, are signifi-

cantly different with respect to time-conditional survival. We can address this question by fixing the

time survived after diagnosis and comparing the profiles at a fixed point in time, as shown below.

Clinical studies of time-conditional survival have used a profile of estimated time-conditional survival

probabilities (shown here as a p× 1 vector) given by

ĈS =
(
ĈS1(b1 | a1), ĈS2(b2 | a2), . . . , ĈSp(bp | ap)

)T
.

When bj = aj + ∆ for j = 1, . . . , p, these estimators represent consecutive ∆-year time-conditional

survival probabilities. For example, 5-year time-conditional survival probabilities, given that survival

is greater than 1, 2, and 3 years after diagnosis, are consecutive estimators that can be expressed

as

ĈS3×1 =
(
ĈS1(6 | 1), ĈS2(7 | 2), ĈS3(8 | 3)

)T
.

To develop the methods in this section, it is helpful to keep in mind the following example. Suppose

there is a disease registry with patient-level data on age at diagnosis (continuous), sex (males/fe-

males), and three stages of the disease (denoted as Stage I, II, or III). This section discusses

estimation and hypothesis testing for 5-year time-conditional survival probability as a function of

time survived after diagnosis (denoted as a) and covariates.

Comparing two point estimates: an example. Suppose we are interested in whether the proba-

bility of surviving an additional 5 years differs for a 45 year old patient as compared to a 65 year old
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patient. To address this question we first obtain the maximum likelihood estimates for the paramet-

ric survival function. To obtain a point estimate of time-conditional survival, we fix sex and stage at

specific values and fix ∆ = 5.

By fixing time and covariates, point estimates for time-conditional survival probabilities obtained

from different profiles can be compared when a = 1. In this scenario, the 5-year time-conditional

survival probability, given that survival is greater than 1 year after diagnosis, is estimated for the 45

year old patients and for the 65 year old patients. The null hypothesis of no difference between the

two probabilities and the alternative hypothesis are given by

H0 : CSia − CSja = 0 and H1 : CSia − CSja 6= 0. (3.4)

Let the index i represent the 45 year old patients’ profiles, the index j represent the 65 year old

patients’ profiles, and let a represent the time alive after diagnosis. After fitting the survival model to

the data, we obtained estimates of the regression parameters. In order to visualize the results and

to conduct this hypothesis test, point estimates and their variances must be obtained by plugging

in certain values for the continuous covariate, time survived, and additional time survived.

Define the Wald χ2 test statistic given by

TS(CSia − CSja = 0) =

(
ĈSia − ĈSja

)2

V̂ ar(ĈSia − ĈSja)
∼ χ2

(1,α=0.05), (3.5)

where the estimated variance is given by

V̂ ar(ĈSia − ĈSja) = V̂ ar(ĈSia) + V̂ ar(ĈSja)− 2 · Ĉov(ĈSia, ĈSja).

This statistic allows the researcher to determine whether the two time-conditional survival estimates

are significantly different. For example, from the parametric regression model, the researcher can

evaluate whether 5-year time-conditional survival, given that survival is greater than 1 year, is sig-

nificantly different for a 45 year old male with stage II disease as compared to a 65 year old male

with stage I disease.

Comparing K point estimates. To describe the comparison of K point estimates, we consider
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tumor length as an example. Because patients are concerned about whether a tumor will shorten

their life (overall survival) as well as their future quality of life, their probability of future survival

may impact choices about timing and invasiveness of treatment. Tumor length may be the most

influential prognostic variable at diagnosis (Vollmer, 2008). Time-conditional survival probability

estimates from parametric models can be computed and compared for specific values of tumor

length to assess the impact of this continuous covariate.

Consider three possible profiles in which time survived after diagnosis may vary by tumor length.

Our methodology can be used to assess whether the probability of surviving an additional 5 years

varies for several patient-specific tumor lengths such as 1 mm, 2 mm, and 3 mm. In order to

draw these comparisons, we first obtain the estimates of the parameters for the survival distribution

and then estimates of time-conditional survival probability with fixed time survived (a) and other

covariates.

Generalizing to K groups (k = 1, . . . ,K), the null hypothesis is

H0 : CS1a = CS2a = . . . = CSKa.

In this example, the 3 groups (K = 3) are defined by tumor length (1 mm, 2 mm, and 3 mm), and a

represents the time alive after diagnosis, which is consistent with the notation for a in the estimation

of time-conditional survival probability. The null hypothesis in matrix notation is given by

H0 :


1 −1 . . . 0

...
...

...

1 0 . . . −1





CS1a

CS2a

...

CSKa


=



0

0

...

0


, (3.6)

where the design matrix, X, is (k − 1) × k and the time-conditional survival probability vector has

length k. In words is a test of whether these differences are all zero and, therefore, whether
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CS1a, CS2a, . . . , CSKa are all equal. The alternative hypothesis is given by

H1 :


1 −1 . . . 0

...
...

...

1 0 . . . −1





CS1a

CS2a

...

CSKa


=



δ1

δ2
...

δk−1


, (3.7)

i.e., at least one of the differences specified under the null hypothesis is not equal to zero and,

therefore, CS1a, CS2a, . . . , CSKa are not all equal.

K − 1 comparisons are created when using one group as the reference among the K groups. The

test statistic is given by

(
XĈS

)′ (
XΣ̂X′

)−1 (
XĈS

)
∼ χ2

(Rank(X),α=0.05) (3.8)

where Rank(X) represents the rank of X. For the example with three tumor lengths of interest, the

degrees of freedom are Rank(X) = 2. The elements of the estimated covariance matrix, Σ̂, are

derived in the Appendix and their functional form varies depending on whether the probabilities are

estimated from the covariate-adjusted survival model or the cure model.

A similar hypothesis testing framework can be applied to compare multiple profiles at a given point

in time for a covariate with multiple levels such as disease stage. Consider three profiles based

on disease stage in which time survived after diagnosis may vary. For this scenario, where stage

I is the referent group, we can assess whether the probability of surviving an additional 5 years

varies for patients with stage II disease as compared to those with stage I disease and, similarly,

whether the probability of surviving an additional 5 years varies for patients with stage III disease

as compared to those with stage I disease.

Contrasts between groups. Consider the probability of surviving an additional 5 years for patients

aged 45 versus 65 years old across the three tumor lengths (1, 2, and 3 mm). The analysis would

focus on six estimates of the same time-conditional survival probability model for patients in six

different groups (three tumor lengths for each of the two ages of interest) and, for a fixed value of

time survived from diagnosis, a = 1 using three comparisons, using the differences between the

time-conditional survival probability patients 45 years compared to 65 years for each level of tumor
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thickness.

The design matrix specifies the comparison of time-conditional survival probability across these six

estimators and the null hypothesis is given by

H0 :

CS111 − CS211 = 0

CS121 − CS221 = 0

CS131 − CS231 = 0

, (3.9)

and is written in matrix notation as

H0 :


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1





CS111

CS121

CS131

CS211

CS221

CS231


=


0

0

0

 . (3.10)

In this hypothesis test, the indices for CSija represent patients aged 45 (i = 1) or 65 (i = 2) years

old, j represents tumor length (j = 1, 2, 3 for tumor lengths 1 mm, 2 mm, and 3 mm, respectively),

and a represents time survived from diagnosis. This null hypothesis states that there is no difference

between 45 and 65 year old patients with the same tumor length of 1, 2, or 3 mm. By estimating

5-year time-conditional survival probability, given that survival is greater than 1 year after diagnosis,

it is possible to determine if, for at least one value of tumor length, there is a significant difference

in time-conditional survival probability for 45 year old patients as compared to 65 year old patients.

Comparing profiles of estimators over discrete time. Similar methods are used to compare

time-conditional survival probabilities across fixed times after diagnosis, a, for different patient pro-

files. For example, the 5-year profiles of time-conditional survival probability estimates for 45 and

65 year old patients can be compared using the following vector of time-conditional survival proba-

bilities

ĈS =
(
ĈS(1 + 5 | 1, θ̂), ĈS(2 + 5 | 2, θ̂), ĈS(3 + 5 | 3, θ̂)

)T
,

which denotes the 5-year time-conditional survival probabilities, given that survival is greater than
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1, 2, and 3 years after diagnosis, for fixed covariate values.

Under this framework, to compare profiles over discrete time, Equations 3.9 and 3.10 refer to the

null hypothesis that the estimates of time-conditional survival probabilities for 45 and 65 year old

patients are the same across these discrete time points where the indices for CSij represent 45

(i = 1) or 65 (i = 2) year old patients, but j now represents time alive after diagnosis in years

(j = 1, 2, 3). The alternative hypothesis is that at least one of these differences is not equal to zero,

meaning that the two profiles are different. The test statistic has the same functional form as in

Equation 3.8 and is distributed as χ2 with Rank(X) degrees of freedom and α = 0.05. We illustrate

this approach in Section 3.4.

3.3. An Example: The Weibull Distribution

To derive and demonstrate some of the relationships in the section above, let T have a Weibull

distribution. Then the continuous covariate-adjusted time-conditional survival estimation and the

Logistic-Weibull cure model based time-conditional survival estimation can be obtained.

3.3.1. Adjusted Weibull Time-Conditional Survival

Consider a vector of continuous covariates, z, and define the vector of survival distribution param-

eters as θ. We fit a log linear survival model for log time, adjusting for continuous covariates as

given by Equation 3.2 where W follows the extreme value distribution. (Estimates of the extreme

value distribution parameters are found numerically and exist in statistical software packages.) The

survival function of log T adjusting for the covariates, z, is given by

S(log t | z, µ, σ,γ) = exp

(
− exp

(
log t− µ− γ′z

σ

))
,

where γ represents the vector of regression coefficients on the log scale and µ and σ represent

the survival distribution parameters. The survival function can be written as a model for T when

α = 1/σ, λ = exp(−µ/σ), and βj = γj/σ and is given by

S(t | z, α, λ,β) = exp (−tα · λ · exp (β′z)) ,

(Klein and Moeschberger, 2005).
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We obtain maximum likelihood estimates of the parameters under the Weibull parametric model by

estimating the extreme value distribution model parameters and their covariance matrix given by

α̂ = 1/σ̂, λ̂ = exp(−µ̂/σ̂), β̂j = −γ̂j/σ̂, j = 1, . . . , p

V ar(α̂) =
V ar(σ̂)

σ4
,

V ar(λ̂) = exp

(
−2µ

σ

)
×
(
V ar(µ̂)

σ2
− 2µCov(µ̂, σ̂)

σ3

)
+
µ2V ar(σ̂)

σ4
,

Cov(α̂, λ̂) = exp
(µ
σ

)
×
(
Cov(µ̂, σ̂)

σ3
− µV ar(σ̂)

σ4

)
,

and for l,m = 1, . . . , k,

Cov(β̂l, β̂m) =
Cov(γ̂l, γ̂m)

σ2
− γlCov(γ̂l, σ̂)

σ3
− γmCov(γ̂m, σ̂)

σ3
+
γlγmV ar(σ̂)

σ4
,

Cov(β̂l, α̂) =
Cov(γ̂l, σ̂)

σ3
− γlV ar(σ̂)

σ4
,

Cov(β̂l, λ̂) = exp
(µ
σ

)
×
(
Cov(γ̂l, µ̂)

σ2
− γlCov(γ̂l, σ̂)

σ3
− µCov(µ̂, σ̂)

σ3

)
+
γlµV ar(σ̂)

σ4
.

Define the vector of parameters as given by θ∗ = (µ, σ, γ1, . . . , γp)
T . Then, the large sample joint

distribution is given by

θ̂∗ =



µ̂

σ̂

γ̂1

...

γ̂p


d−→ N


θ∗ =



µ

σ

γ1

...

γp


, Σθ∗


,

where

Σθ∗ =



V ar(µ̂) Cov(µ̂, σ̂) Cov(µ̂, γ̂1) · · · Cov(µ̂, γ̂p)

Cov(µ̂, σ̂) V ar(σ̂) Cov(σ̂, γ̂1) · · · Cov(σ̂, γ̂p)

Cov(µ̂, γ̂1) Cov(σ̂, γ̂1) V ar(γ̂1) · · · Cov(γ̂1, γ̂p)

...
...

...
. . .

...

Cov(µ̂, γ̂p) Cov(σ̂, γ̂p) Cov(γ̂1, γ̂p) · · · V ar(γ̂p)


,
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as n→∞, such that Σθ∗ is the inverse of the Fisher information. The maximum likelihood estimator

of time-conditional survival probability given continuous covariates z is given by

ĈS(a+ ∆ | a, z, α̂, λ̂, β̂) =
exp

(
−(a+ ∆)α̂ · λ̂ · exp

(
β̂′z
))

exp
(
−aα̂ · λ̂ · exp

(
β̂′z
))

= exp
(
λ̂ · exp

(
β̂′z
)
·
(
aα̂ − (a+ ∆)α̂

))
.

Covariance of two estimators. Define a Weibull time-conditional survival probability with a single

continuous covariate, z, in the model. To investigate whether a different value of the continuous

covariate has a significant influence on the time-conditional survival, consider an estimator with

fixed a and ∆. The covariance between time-conditional survival probabilities must be accounted

for in order to evaluate the relationship.

Define two estimators of time-conditional survival probability from a single sample at different values

of the continuous covariate, CSi = CS(bi | ai, zi,θ) where i = 1, 2 and θ = (α, λ, β)T , such that

CSi =
exp (−bαi λ exp(β · zi))
exp (−aαi λ exp(β · zi))

, (3.11)

and bi = ai + ∆. The large sample variance of time-conditional survival based on the Weibull

regression model is given by

V ar(CSi) = V ar(α̂)

(
∂CSi
∂α

)2

+ V ar(λ̂)

(
∂CSi
∂λ

)2

+ V ar(β̂)

(
∂CSi
∂β

)2

+ 2

(
∂CSi
∂α

∂CSi
∂λ

Cov(α̂, λ̂) +
∂CSi
∂α

∂CSi
∂β

Cov(α̂, β̂) +
∂CSi
∂λ

∂CSi
∂β

Cov(λ̂, β̂)

)
.

For any two time-conditional survival estimators obtained from this parametrization of the Weibull

regression model, the large sample covariance is given by

Cov(ĈS1, ĈS2) =
∂CS1

∂α

∂CS2

∂α
V ar(α̂) +

∂CS1

∂λ

∂CS2

∂α
Cov(α̂, λ̂)

+
∂CS1

∂β

∂CS2

∂α
Cov(α̂, β̂) +

∂CS1

∂α

∂CS2

∂λ
Cov(α̂, λ̂)

+
∂CS1

∂λ

∂CS2

∂λ
V ar(λ̂) +

∂CS1

∂β

∂CS2

∂λ
Cov(λ̂, β̂)

+
∂CS1

∂α

∂CS2

∂β
Cov(α̂, β̂) +

∂CS1

∂λ

∂CS2

∂β
Cov(λ̂, β̂)

+
∂CS1

∂β

∂CS2

∂β
V ar(β̂).
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Substituting the partial derivatives from Section B.1 of the Appendix, we obtain the estimator of the

large sample covariance of any two time-conditional survival probabilities based on this parameter-

ization of the Weibull distribution. The test statistic for the null hypothesis of no difference between

the estimators of time-conditional survival probabilities is given in Equation 3.8 and is distributed as

χ2 with degrees of freedom equal to Rank(X) and α = 0.05.

3.3.2. Logistic-Weibull Cure Model for Time-Conditional Survival

To estimate time-conditional survival probabilities using the Logistic-Weibull cure model, we first

obtain estimates of the parameters in the cure model. The probability of not being cured of the

event can be modeled using a binary regression model with a logit link given by

logit (π(η, z)) = η′z,

where z represents a vector of continuous covariates. The survival distribution for individuals who

are not cured can be modeled using the Weibull parametric regression model given by

S(t | E = 1, ζ,x) = exp

(
− exp

(
log t− ζ′x

σ

))
,

where ζ represents a vector of regression parameters. Using this parameterization of the mixture

cure model, we obtain the parameter estimates of the continuous covariates affecting the proportion

of not cured patients (z) and those affecting the survival distribution for not cured patients (x).

For this cure model, the survivor function is given in Equation 3.3 where x, z may represent vectors

of the same or different covariates. The functional form of these components is given by

π(η, z) =
exp(η′z)

1 + exp(η′z)
,

for the logit link and

Se(t | E = 1, ζ,x) = exp
(
− exp(−ζ′x/σ)t1/σ

)
,

for the Weibull survival distribution. Let α = 1/σ and λ = exp(−1/σ). Then the survivor function
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incorporating continuous covariates is given by

S(t | α, λ,η, ζ, z,x) =
exp(η′z) exp (−tαλ exp (ζ′x)) + 1

exp(η′z) + 1
. (3.12)

Adjusting for the continuous covariates, the time-conditional survival probability is given by

CS(b | a, α, λ,η, ζ, z,x) =
exp(η′z) exp (−bαλ exp (ζ′x)) + 1

exp(η′z) exp (−aαλ exp (ζ′x)) + 1
. (3.13)

Consider a single continuous covariate, z, that affects the proportion of individuals who are not

cured and a single continuous covariate, x, that affects the survival distribution of individuals who

are not cured. The time-conditional survival probability adjusting for the continuous covariates is

given by

CS(b | a, α, λ, η, ζ, z, x) =
exp(η0 + η1z) exp (−bαλ exp (ζx)) + 1

exp(η0 + η1z) exp (−aαλ exp (ζx)) + 1
.

We derive the form of the partial derivatives to estimate the large sample variance in Section B.2 of

the Appendix.

3.4. Application to Real-World Data

To demonstrate inclusion of a continuous risk factor in the model, we applied the parametric time-

conditional survival methodology to data from patients with esophageal cancer and with melanoma.

Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) registry,

we calculated survival time from the date of diagnosis to the date of last known follow-up or death.

Estimates of time-conditional disease-specific survival probabilities were computed. The author

developed SAS/IML macros for the analysis of time-conditional survival probabilities (SAS Insti-

tute Inc., 2008) and used the macro %PSPMCM developed by Corbière and Joly, 2007 for the

estimation of cure models.

3.4.1. Adjusted Time-Conditional Survival Estimation for Esophageal Cancer

Background. Cancers of the stomach, the small intestine, and the esophagus account for roughly

3% of the annual cancer diagnoses in the United States. These cancers of the upper gastroin-

testinal tract have low survival rates and comprise an estimated 4.7% of the cancer deaths in the

United States annually (American Cancer Society, 2006). Cancers with low survival rates can be

69



evaluated using parametric modeling (for example, exponential or Weibull distributions) because

the data meet the assumption that, as time increases, the probability of survival tends to zero.

Sample. A cohort of 9011 patients diagnosed with a primary invasive tumor of the esophagus

(ICD-O-2/3 site codes in C15.0–15.9) between 1988 and 2008 was identified from 9 SEER regions

within the United States (SEER, 2008). Disease-specific survival time was defined as time to death

due to esophageal cancer. In Figure 3.1, the empirical survival curve of time to death due to

esophageal cancer is overlain with the estimated unadjusted Weibull survival function given the

maximum likelihood estimates. This figure shows decreasing survival probabilities in the first 15

years after diagnosis.

Figure 3.1: The unadjusted survival estimate from the parametric Weibull distribution and the em-
pirical Kaplan-Meier survival function for the SEER esophageal sample.

Tumor length. The influence of tumor length on the survival of esophageal squamous cell carci-

noma patients who had surgical resection as the primary treatment has been studied (e.g., Wang

et al., 2011b). In this sample of patients, the tumor length variable was defined as the length of the

primary tumor (length of involved esophagus ranging from 1 cm to 20 cm). Mean tumor length for

patients in the study cohort was 5.2 cm (standard deviation = 2.80, median = 5.0 cm).
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The maximum likelihood estimates of the parameters (α, λ, βL) were 0.763, 0.340, and 0.095,

respectively, as given in Table 3.1 along with the estimated covariance matrix. The LIFEREG

procedure in SAS was used to fit a parametric Weibull model with a single continuous covariate.

The Wald test for the null hypothesis H0 : βL = 0 versus H1 : βL 6= 0 found that tumor length was a

significant predictor of disease-specific survival in the model (p < .0001).

Fixing future survival time. Using the maximum likelihood estimates from the survival model,

time-conditional survival was estimated using SAS/IML. The time-conditional survival estimator can

be written as a function of time survived from diagnosis, a, and future survival time, which is given

in Equation 3.11 as

CS(b | a) =
exp

(
−bα̂ · λ̂ · exp

(
β̂L ∗ L

))
exp

(
−aα̂ · λ̂ · exp

(
β̂L ∗ L

)) ,
where L is the continuous covariate representing tumor length. Section 3.2.1, and Section B.1 in

the Appendix, derive the variance of a time-conditional survival estimator and derive the covari-

ance between any two time-conditional survival estimators from a Weibull regression model with

covariates.

Figure 3.2: Estimated 5-year time-conditional survival probability given increasing time survived for
mean tumor length from the Weibull distribution based on the SEER esophageal sample.
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Fixing ∆, the estimated 5-year time-conditional survival probability is shown in Figure 3.2 as a

function of time survived after diagnosis (a) at the mean value for tumor length (L). The estimated

probability of surviving an additional 5 years after diagnosis increased from 0.19 to 0.34 as time

survived after diagnosis increased from 1 to 15 years.

Figure 3.3: Estimated 5-year time-conditional survival probability, given that survival is greater than
1, 2, and 3 years after diagnosis, for increasing tumor length from the Weibull distribution based on
the SEER esophageal sample.

Allowing tumor length to increase from 0 to 20 cm, Figure 3.3 plots the estimated 5-year time-

conditional survival probability, given that survival is greater than 1, 2, and 3 years after diagnosis.

Five-year time-conditional survival probability given survival greater than 1 year after diagnosis

dropped from 0.34 to 0.001 with increasing tumor length over the range of 0 to 20 cm. Similarly, the

probability dropped from 0.36 to 0.002 and from 0.38 to 0.003, given that survival is greater than 2

and 3 years, respectively. Figure 3.3 plots the estimated 5-year time-conditional survival probability,

given that survival is greater than 1, 2, and 3 years after diagnosis, as a function of increasing tumor

length. The 5-year time-conditional survival probability given that survival is beyond 3 years was

greater than survival beyond 2 years across all values of tumor length. Similarly, 5-year time-

conditional survival probability given that survival is beyond 2 years was greater than 5-year time-

conditional survival probability given that survival is beyond 1 year after diagnosis across all values
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of tumor length.

Figure 3.4: Estimated 5-year time-conditional survival probability given increasing time survived for
tumor length at 2, 5, 10, and 15 cm from the Weibull distribution based on the SEER esophageal
sample.

Including tumor length as a continuous covariate in the estimation of survival probability and in

the estimation of time-conditional survival probability allows for the presentation of time-conditional

survival estimates by profiles defined by values of the continuous covariate. Figure 3.4 plots the

estimated 5-year time-conditional survival probability profile given increasing survival after diagno-

sis for tumor lengths 2, 5, 10, and 15 cm. At 2 cm in length, the estimated time-conditional survival

probability ranged from 0.30 to 0.45 and was consistently greater than the estimates observed for

greater tumor lengths (0.20 to 0.35 for 5 cm; 0.08 to 0.18 for 10 cm; and 0.02 to 0.06 for 15 cm).

These changes in time-conditional survival probability for tumor lengths 2, 5, 10, and 15 cm are

clinically meaningful. For example, a patient who survives 15 years post diagnosis can be told that

she will have approximately a 45% likelihood of surviving an additional 5 years, if her tumor length

at diagnosis was 2 cm. In contrast, her chances of surviving an additional 5 years will be only

approximately 6%, if her tumor length at diagnosis was 15 cm.

Fixing time survived. Figure 3.5 shows the estimated time-conditional survival probability, given
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that survival is greater than 2 years after diagnosis, evaluated at mean tumor length. The probability

of surviving an additional 1 to 18 years beyond 2 years, given that survival is greater than 2 years,

decreased from 0.80 to 0.03. As a function of tumor length, Figure 3.6 plots the estimated 2-, 3-,

4-, and 5-year time-conditional survival probability, given that survival is greater than 2 years after

diagnosis, for increasing tumor length.

Figure 3.5: Estimated time-conditional survival probability, given that survival is greater than 2 years
after diagnosis, as a function of ∆ evaluated at mean tumor length from the Weibull distribution
based on the SEER esophageal sample.

Given survival 2 years after diagnosis, the probability of surviving an additional 2 years decreased

from 0.64 to 0.07, the probability of surviving an additional 3 years decreased from 0.53 to 0.02,

the probability of surviving an additional 4 years decreased from 0.44 to 0.01, and the probability

of surviving an additional 5 years decreased from 0.36 to 0.002. Across tumor length, 2-year time-

conditional survival probability was greater than the 3-year, the 3-year was greater than the 4-year,

and the 4-year was greater than the 5-year. Under this parametric framework, the figure shows

that the likelihood of surviving additional time beyond 2 years, given that survival is greater than

2 years, decreases irrespective of tumor length. We found that there is no significant difference

between 5-year time-conditional survival probability, given that survival is greater than 2 years, as

compared to 4-year time-conditional survival probability, given that survival is greater than 2 years
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(TS=1.86, p=0.1729).

Figure 3.6: Estimated 2-, 3-, 4-, and 5-year time-conditional survival probability, given that survival
is greater than 2 years after diagnosis, for increasing tumor length from the Weibull distribution
based on the SEER esophageal sample.

Hypothesis testing. To assess whether the likelihood of surviving an additional 5 years beyond 1

year, given that a patient has survived more than 1 year after diagnosis, varies for different tumor

lengths, we define CS1 as the 5-year time-conditional survival for those with a tumor length of 2 cm

at diagnosis and CS2 for those with tumor length of 5 cm at diagnosis. From Equation 3.11, the

5-year time-conditional survival probability given 1 year for those with a tumor length of 2 cm and 5

cm was 0.30 and 0.20, respectively. The estimated covariance matrix is given by

Σ̂ =

 V̂ ar(ĈS1) = 13.67 Ĉov(ĈS1, ĈS2) = 9.08

Ĉov(ĈS1, ĈS2) = 9.08 V̂ ar(ĈS2) = 6.75

× 10−5.

These estimates resulted from transforming the Weibull maximum likelihood estimates obtained

using the LIFEREG procedure in SAS.

As shown in Figure 3.4, with increasing tumor length from 2 cm to 15 cm, the time-conditional

survival probability decreased. Specifically, with increasing time after diagnosis from 1 year to
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15 years, patients with a tumor length of 2 cm had a 0.15 increase in the probability of surviving

an additional 5 years (estimated time-conditional survival ranged from 0.30 to 0.45). Alternatively,

patients with a tumor length of 15 cm had a 0.04 increase in the probability of surviving an additional

5 years (estimated time-conditional survival ranged from 0.02 at 1 year after diagnosis to 0.06 at

15 years after diagnosis).

We applied the hypothesis test shown in Equation 3.4 to evaluate the influence of tumor length

(2 cm vs 5 cm) on 5-year time-conditional survival probabilities, given that survival is greater than

1 year after diagnosis. The χ2 test statistic calculated from Equation 3.5 was 431.6, indicating a

significant difference (p < 0.0001). The likelihood of surviving an additional 5 years given survival

beyond 1 year after diagnosis is significantly better for those with tumor length of 2 cm as compared

with 5 cm. Refer to the Section B.1 of the Appendix for details on the calculations. In conclusion,

tumor length at diagnosis is an important continuous covariate to adjust for when estimating time-

conditional survival probabilities for patients with esophageal cancer.

3.4.2. Cure Model Based Time-Conditional Survival Estimation for Melanoma

Background. Unlike esophageal cancer, most cases of deaths due to melanoma of the skin are

preventable because of its readily recognizable lesions and improved morbidity and mortality due to

early detection and intervention (MacKie et al., 1997). As a result, time to disease-specific death in

this mixed cohort of individuals who are and are not at risk of dying from melanoma can be studied

with a cure model.

Sample. Population-based data from the SEER program were evaluated from a cohort of 3478

melanoma patients diagnosed between 1988 and 2003 and located in the original 9 SEER re-

gions (San Francisco-Oakland, Connecticut, Metropolitan Detroit, Hawaii, Iowa, New Mexico, Seat-

tle (Puget Sound), Utah, and Metropolitan Atlanta). Patients in this cohort had a first (and no other)

malignant primary skin melanoma confirmed microscopically (positive histology), tumor thickness

ranging from 1.01 to 9.90 mm, and follow-up time greater than zero months (to exclude patients who

were diagnosed at autopsy). They all had known age at diagnosis, ulceration status, and number

of regional lymph nodes examined. They also had no clinical/pathological lymph node involvement

and either had one or more (nonpalpable) nodes examined and determined to be negative or none

of their (nonpalpable) nodes examined. Based on the application of these inclusion/exclusion cri-
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teria for patients with no clinical/pathological lymph node involvement, this sample represents a

well-defined cohort of Stage II patients based on AJCC 6 with long-term follow-up.

Figure 3.7: Empirical survivor function for the SEER melanoma sample.

Figure 3.7 shows the empirical survival function where the survival probability in year 1 through year

25 after diagnosis is above 0.60. This suggested that a cure model approach would be appropriate

for this data analysis. The empirical survival estimate at 10, 15, and 20 years after initial diagnosis

was 67.6%, 64.8%, and 63.6%, respectively. This indicated that there were only small changes in

the survival curve with respect to disease-specific death for patients who survived 10 years after

diagnosis. Typical survival models for these data would assume that the underlying population is

susceptible to death due to disease if followed for a long enough period of time. Inspection of the

right tail of the figure suggested that this was not the case, which demonstrated the appropriateness

of exploring the mixture cure model approach for these data.

The research objective of this analysis was to estimate time-conditional survival probabilities using

a Logistic-Weibull cure model to compare the disease-specific survival of patients who are clinical

stage II (no regional nodes examined) with and without ulceration to patients who are pathological

stage II (nodes examined without evidence of metastasis) with and without ulceration. A measure of
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the generalizability of the methodology and hypothesis testing framework described in Section 3.2.3

is demonstrated here by comparing 5-year time-conditional survival probabilities among these four

cases of patients with varying staging intensity (clinical or pathological), number of nodes examined,

and ulceration status (with or without ulceration) given that survival is greater than 1 and 10 years

after diagnosis.

Covariate selection. The selection of appropriate covariates can help to obtain unbiased and accu-

rate estimates of the predictions of time-conditional survival probabilities. The approach to selecting

from among those available in SEER the appropriate covariates was based on prior knowledge of

the clinical literature. The underlying model framework was made up of two components. The first

component modeled the effect of ulceration, stage, gender, and the number of nodes examined

on the probability of patients being not cured of melanoma. For the AJCC staging system, the

presence or absence of ulceration of the primary tumor is an important prognostic factor in pa-

tients with stage I and II disease. Due to the pattern of upstaging by the presence of ulceration

in the AJCC 6 staging system, we consider ulceration status as informing the estimation of cure

probability. “Staging intensity” was defined by clinical stage II for patients with no regional nodes ex-

amined and pathological stage II for patients with 1 or more nodes examined and without evidence

of metastasis. As number of positive nodes is necessarily 0 for subjects to fall within this sample,

we consider number of nodes examined instead. Albeit indirect, this was used as another measure

of aggressiveness of disease in this analysis. As done in Gimotty et al., 2005, we assumed that

those patients with no nodes examined had no clinical evidence by palpation of nodal involvement

at diagnosis. Therefore, staging intensity and number of nodes examined were important prog-

nostic factors in determining the probability of patients being not cured of melanoma. Lastly, we

adjusted for gender as it is available in SEER and has been shown to be an important prognostic

factor (for example, Balch, 1992; deVries et al., 2008).

The second component modeled the effect of age at diagnosis and tumor thickness on the sur-

vival distribution for patients being not cured of melanoma. A well-known predictor of melanoma

outcome is tumor thickness, which is defined as the vertical thickness of the lesion as measured

in mm by light microscopy of the biopsy specimen. Tumor thickness is a strong, well validated

marker of disease and greater tumor thickness is associated with worse prognosis and survival

(Dennis, 1999). Gimotty et al., 2005 note that thickness is the best univariate predictor of disease-
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specific survival among patients with melanoma. In their validation of the AJCC melanoma staging,

citebalch2001final found that age was statistically significant and an independent measurement as-

sociated with clinical outcomes for patients with no evidence of metastatic disease. Therefore, in

the estimation of survival time, we include two continuous covariates that are available in SEER,

tumor thickness and age at diagnosis, as important factors with impact on survival.

Let the time-conditional survival probability be a function of the following dichotomous and continu-

ous covariates described above: ulceration status (z1), staging intensity (z2), gender (z3), number

of nodes examined (z4), age at diagnosis (x1), and tumor thickness (x2). This analysis evaluated

the effect of the first set of covariates on the proportion of individuals not cured and the effect of age

at diagnosis and tumor thickness on the survival distribution of those not cured. Then estimates of

time-conditional, disease-specific survival for stage II patients with varying values of nodes exam-

ined, clinical/pathologic staging, ulceration status, gender, age at diagnosis, and tumor thickness

were obtained.

Survival estimation. The %PSPMCM macro was used to obtain maximum likelihood estimates for

the mixture cure model in SAS (Corbière and Joly, 2007). In this macro, the maximization of the

likelihood function for the parametric model was carried out using the PROC NLMIXED procedure in

SAS. The data was entered with one record per patient, which contained observed time (either

censoring or failure time), a censoring indicator, and a vector of covariates.

The survivor function for the Logistic-Weibull cure model used for this analysis in Equations 3.3 and

3.12 is given by

S(t | x1, x2, z1, z2, z3, z4) =
exp(η0 + η1z1 + η2z2 + η3z3 + η4z4) exp(−tα · λ · exp(ζ1x1 + ζ2x2)) + 1

exp(η0 + η1z1 + η2z2 + η3z3 + η4z4)
.

All of the regression coefficients for the covariates were significant in the cure model (see Table 3.2).

Based on this model, the likelihood that a patient would not be cured was higher if their tumor had

ulceration as compared to patients without ulceration (η̂1 = 0.335, p = 0.0001), they were clinical

stage II as compared to pathological stage II (η̂2 = 0.636, p < 0.0001), and they were males as

compared to females (η̂3 = 0.503, p < 0.0001). The likelihood of not being cured increased with

increasing number of nodes examined (η̂4 = 0.014, p = 0.0314).
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Similarly, both tumor thickness and age at diagnosis influenced the survival of the not cured pa-

tients. There was significant evidence that disease-specific survival among patients who were not

cured was worse with increasing age at diagnosis (ζ̂1 = 0.009, p = 0.0012) and with increasing tu-

mor thickness (ζ̂2 = 0.092, p < 0.0001). The estimated covariance matrix for the parameters in this

model is presented in Table 3.3. This estimated matrix is important for hypothesis testing and eval-

uation of time-conditional survival probabilities estimated using this model because it is involved in

the computation of the test statistic.

Cure proportion. In general terminology, the cure proportion is given by 1− π̂(Z) where

π̂(Z = z) =
exp(β̂z)

1 + exp(β̂z)
,

is the estimated probability of the event of being not cured for those with Z = z. The proportion of

cured patients is a function of ulceration status, stage, gender, and the number of nodes examined.

For this sample of 3478 patients, the estimated cure proportion ranges from approximately 0.41 to

0.79 (mean = 0.64; median = 0.66). For example, the cure proportion for males with clinical stage

II disease (no nodes examined) and an ulcerated lesion was 0.46 and was smaller than the 0.61

cure proportion for males with pathological stage II, 1 node examined, and an ulcerated lesion.

CS estimation. From the output of the %PSPMCM macro used to obtain maximum likelihood estimates

for the mixture cure model in SAS (Corbière and Joly, 2007), maximum likelihood estimates were

transformed to the desired Weibull parametrization. The parameter transformations are given by

α = 1
σ , λ = exp(−µσ ), and ζi = −γiσ from the Weibull model. Under this transformation, as in

Equation 3.13, the time-conditional survival is defined by

CS(a+ ∆ | a, x1, x2, z1, z2, z3, z4)

=
exp(η0 + η1z1 + η2z2 + η3z3 + η4z4) exp(−(a+ ∆)α · λ · exp(ζ1x1 + ζ2x2)) + 1

exp(η0 + η1z1 + η2z2 + η3z3 + η4z4) exp(−aα · λ · exp(ζ1x1 + ζ2x2)) + 1
.

(3.14)

The variance of a time-conditional survival probability estimated from a cure model of a similar form

and the partial derivatives are found in Sections B.1 and B.2 of the Appendix.

Hypothesis testing. When a patient is evaluated, the clinician/researcher is interested in how the

patient and disease characteristics relate to survival. To evaluate this, she would estimate the sur-

vival probability for that patient. Both patient and physician are also interested in understanding

how the probability of survival for an additional 5-years (∆) changes the more time passes after
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diagnosis (further increasing a). This requires the estimation of time-conditional survival probabil-

ities based on the information and model relevant to that patient. In general, upon obtaining an

appropriate model for survival estimation and estimating the time-conditional survival, the hypoth-

esis testing framework is used to compare point estimates that account for the correlation in the

estimation of time-conditional survival probability. The question of whether profiles based on these

continuous covariates are significantly different was evaluated by fixing some of the covariates and

varying others to produce four time-conditional survival probability profiles.

Figure 3.8: Estimated 5-year time-conditional survival for the SEER melanoma sample with four
cases based on the logistic-Weibull cure model.

To address the research question around the potentially different survival of those with no palpable

nodes (clinical staging), with and without tumor ulceration, versus histologically proven negative

nodes (pathological staging), with and without ulceration, we evaluated 5-year time-conditional sur-

vival given survival beyond 1 year versus beyond 10 years after diagnosis for disease-specific

survival based on several patient and disease characteristics. Four cases were defined to repre-

sent patients with increasing disease severity hypothesized to result in worse survival. Each case

had varying values for the continuous and dichotomous covariates incorporated into the model to

demonstrate the statistical generalizability and usefulness of the approach.

Table 3.4 lays out the characteristics of these four cases defined as the following. Three of the
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model covariates were fixed: gender was fixed to be male, age at diagnosis was set to the mean of

the sample (60 years old), and tumor thickness was fixed to the mean of the sample at 3.58 mm.

The number of nodes examined was set to 0 (clinical stage II) or 1 (pathological stage II), where

cases with 1 node examined may be patients who have had a sentinel node biopsy to examine the

first node to be involved in lymphatic spread. Case 1 was representative of patients without ulcer-

ated tumors and clinical stage II (no nodes examined). Case 2 was representative of patients with

ulceration and clinical stage II (no nodes examined). Case 3 was representative of patients without

ulceration, pathological stage II disease and 1 node examined. Lastly, Case 4 was representative

of patients with ulceration, pathological stage II disease and 1 node examined. We would expect

the 5-year time-conditional survival probabilities given 1 and given 10 years after diagnosis to be

different upon evaluating these cases.

Figure 3.8 shows 5-year time-conditional survival probability estimates for up to 15 years after diag-

nosis across the four cases. To address the question of whether at least one of the time-conditional

survival estimates for these four cases was different at 1 year after diagnosis as compared to at 10

years after diagnosis, we used a model similar to that given in Equation 3.14. Define CSij as the

5-year time-conditional survival probability for Case i at a = 1 (j = 1) and a = 10 (j = 2) years after

diagnosis (i = 1, . . . , 4). Then, the vector of time-conditional survival probability estimates is given

by

(CS11, CS12, CS21, CS22, CS31, CS32, CS41, CS42)
T
,

and the estimates are given in Table 3.4.

A multivariate test of pairwise differences was used for this analysis to address the research ques-

tion and to avoid the problem of multiple testing when evaluating each pairwise comparison indi-

vidually. The null hypothesis is that the 5-year time-conditional survival is the same given survival

beyond 1 year versus beyond 10 years after diagnosis in each of the four cases representing pa-

tients with no palpable nodes (clinical staging), with and without ulceration, and negative nodes
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(pathological staging), with and without ulceration. This is given by

H0 :

CS11 − CS12 = 0

CS21 − CS22 = 0

CS31 − CS32 = 0

CS41 − CS42 = 0

and can be written in the form XCS as above. In this hypothesis testing setting, we adjusted for the

correlation among the differences. Here, the test statistic has the same functional form as in Equa-

tion 3.8. The original covariance matrix is shown in Table 3.3 and the estimated covariance matrix

for the differences shown in Table 3.4 has elements based on the computations from Appendix B.2.

Additional discussion on model building, covariate selection, and the impact on estimated time-

conditional survival probabilities is in Appendix B.3.

From Table 3.4, the estimated differences in 5-year time-conditional survival probabilities given sur-

vival beyond 1 versus beyond 10 years were 0.073 for Case 1, 0.098 for Case 2, 0.041 for Case

3 and 0.056 for Case 4. All of these estimates were positive and this indicated that, across all

four cases, estimated 5-year time-conditional survival probabilities, given that survival was beyond

10 years after diagnosis was greater than given 1 year after diagnosis. For example, the range in

estimated differences indicated that those patients with pathological stage II disease without ulcer-

ation had better 5-year prognosis both initially and 10 years after diagnosis as compared to those

with clinical stage II disease and ulceration (Case 3: ĈS(6 | 1) = 0.955 and ĈS(15 | 10) = 0.997;

Case 2: ĈS(6 | 1) = 0.893 and ĈS(15 | 10) = 0.991). Assessing the long-term time-conditional

survival, we found that pathological stage II patients have improved long-term disease-specific sur-

vival as compared to similar clinical stage II patients, irrespective of ulceration status with 95%

confidence intervals that account for the correlation of the time-conditional survival estimates for

Case 1 (0.0285, 0.1175), for Case 2 (0.0435, 0.1525), for Case 3 (0.0001, 0.0819), and for Case 4

(0.0125, 0.0995), respectively.

Based on the hypothesis test defined above, the test statistic was estimated to be 33.4 with degrees

of freedom equal to Rank(X) = 4. There was significant evidence to indicate that at least one

of the 5-year time-conditional survival probability estimates, given that survival is greater than 1

year as compared to 10 years after diagnosis, was different among Cases 1, 2, 3, and 4 (p <
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0.0001). Further, we investigated the independent pairwise contrasts. Table 3.5 shows the pairwise

comparisons for the change in 5-year time-conditional survival probability given 1 and given 10

years after diagnosis for each case with Bonferroni adjustment. The unadjusted p-values show

that all four cases are significant at the 0.05 α-level. Upon adjusting for multiple comparisons,

three of the four tests were significant. There was statistically significant change in 5-year time-

conditional survival probability between 1 year after diagnosis and 10 years after diagnosis for the

cases representing clinical stage II without ulceration (p = 0.0052), clinical stage II with ulceration

(p = 0.0020), and pathological stage II with ulceration (p = 0.0448). The estimated change in 5-year

time-conditional survival was not significant for the case representing pathological stage II without

ulceration (Bonferroni-adjusted p-value = 0.1916).

Overall, our analysis of the four cases found that at least one of the cases of pathological stage

II versus clinical stage II patients by ulceration status had improved long-term disease-specific

survival (p < 0.0001). From the pairwise contrasts, we found a significant increase in 5-year time-

conditional survival probability estimates for both cases of clinical stage II (with and without ul-

ceration) and for pathological stage II with ulceration, after the Bonferroni adjustment. The case

for pathological stage II without ulceration had the largest 5-year time-conditional survival proba-

bility estimates given both 1 and 10 years after diagnosis compared to the other cases and the

incremental estimated change was not significant.

3.5. Discussion

This chapter developed and demonstrated a methodology for the inclusion of multiple covariates,

including continuous covariates, in the estimation and analysis of parametric time-conditional sur-

vival probability. The approach for including continuous covariates was described under the Weibull

regression model and the Logistic-Weibull cure model. The Weibull regression model was ap-

plied to SEER esophageal cancer data and the cure model was applied to stage-specific SEER

melanoma data. We note that if a covariate is significant in the parametric survival model, it re-

mains significant in the time-conditional survival probability model reflecting the direct one to one

relationship between survival probability and time-conditional survival probability. While this para-

metric methodology is applied to SEER data, it could also be applied to any data with information

on the long-term follow-up of time to an event. Deriving the approximate large sample distribu-
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tion under each of these models allows the researcher to build time-conditional survival probability

profiles and use Wald χ2 test statistics to evaluate differences in estimates.

Using the data on patients with esophageal cancer, we fit a parametric Weibull regression model

assessing time to death due to this malignancy as a function of tumor length. There was significant

evidence to indicate that tumor length was a predictor of disease-specific survival in the survival

model, such that those with shorter tumor lengths had a better probability of survival (p < .0001).

Using the maximum likelihood estimates from the parametric survival model, time-conditional sur-

vival probability was expressed as a function of continuous tumor length, Weibull parameter esti-

mates, time survived, and future survival time. Including tumor length as a continuous covariate in

the estimation of parametric survival and subsequently in the estimation of time-conditional survival

probability allowed for the consideration of profiles defined by values of the continuous covariate.

Tumor length-specific profiles captured the relationship between future survival time and 5-year

time-conditional survival probability for any possible values of the continuous covariate. We con-

cluded that tumor length at diagnosis was an important continuous covariate to adjust for when

estimating time-conditional survival probabilities for patients with esophageal cancer.

For the melanoma data, we used the hypothesis testing framework to compare point estimates

that accounted for the correlation in the estimation of time-conditional survival probability from a

mixture cure model. Some of the questions evaluated in this real-world application include: (1)

understanding how the probability that a patient survived for an additional 5 years (∆) changed the

more time passed after diagnosis (further increasing a), (2) how patient age and tumor thickness at

diagnosis related to survival, and (3) whether estimates for the four cases described were different

1 year after diagnosis as compared with 10 years after diagnosis. Adjusting for patient and disease

characteristics, we found that a significantly larger proportion of patients were not cured when the

number of nodes examined increased. Further, the analysis indicated that disease-specific survival

among patients who were not cured worsened with increasing tumor thickness and with increasing

age. Lastly, we assessed several cases with respect to 5-year time-conditional survival probability

estimates to demonstrate the flexibility of the hypothesis testing framework. We found that patients

who were pathological stage II (nodes examined and without evidence of metastasis) had better

long-term time-conditional disease-specific survival probability as compared to patients who were

clinical stage II (no regional nodes examined). Specifically, given that survival is greater than 1 year
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as compared to greater than 10 years after diagnosis, there was significant evidence to indicate that

at least one of the estimates of 5-year time conditional survival probability among the four cases

was different (p < 0.0001).

There are some limitations to using methods that depend on the assumption of a parametric dis-

tribution. The use of parametric models may lead to more precise estimates as compared to their

nonparametric counterparts due to the loss of information and reduced power of a test that ignores

the variability within strata (Greenland, 1995). On the other hand, it is important to note that model

misspecification may lead to consistent estimation of a biased estimator. Although the parametric

assumptions may simplify a complex underlying disease mechanism, the proposed methodology

is highly useful in the circumstances where there is an adequate fit of the model to the data. The

cost of this additional information is, of course, the requirement that some parametric assumptions

be made. If these assumptions are not valid, then the cure model results are inaccurate. As with

other regression approaches, when comparing profiles the researcher must take care to avoid ex-

trapolating above and beyond the sample on which the model was built when looking to evaluate

realistic profiles.

Researchers must also be cautious when computing estimates of survival probability based on

sparse data. Such situations may result in larger variances and will directly impact the calculation

of the test statistic, which will lead to decreased power to reject the null hypothesis. Approaching

the problem from the perspective of the cure model provides additional information by comparing

groups in terms of both the proportion “cured” and the survival of those not “cured.” Further, looking

at time-conditional survival may be of greater interest among the subset of patients with a high

enough risk of death under the cure model. Likely the long-term follow-up among those who with a

higher probability of being cured will be less informative as their time-conditional survival probability

will be almost 1.

Researchers implementing methods in time-conditional survival probability should take care to en-

sure inverse stability in their computations. Our code incorporated several checks to assess the

potential inverse stability and that there were no computational problems such as mutli-collinearity.

We included two types of checks to ensure that the covariance matrix used was stable. First, a

user-defined function was used to compute the rank of the covariance matrix. The function was

written to be able to compute the rank of any matrix by performing elementary row operations to
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get the matrix into echelon form using the built-in SAS/IML command echelon() (SAS Institute Inc.,

2008). Then, in echelon form, the number of non-zero rows is the rank of the matrix. The rank is

computed for the vector of time-conditional survival probabilities, the design matrix for the relevant

hypothesis test, and the covariance matrix of the differences. The second check occurred during

the estimation of the inverse of the covariance matrix. The inverse of the covariance matrix is nec-

essary to compute the test statistic for the hypothesis tests defined in this chapter. The built-in

function SAS/IML function inv() is used to compute the inverse (SAS Institute Inc., 2008). This

function computes the inverse of a square, non-singular matrix. The matrix must be square and

non-singular for this function to run. If the matrix is singular, then no output will be produced in SAS,

an error will be produced in the log file, and the test statistic will not be computed.

As with the nonparametric methods, parametric time-conditional survival probability estimates can

help with shared decision making by patient and physician by providing relevant information on

future survival. In moving towards personalized medicine, the parametric estimation approach

evaluates time-conditional survival as a function of both categorical and continuous patient and

disease characteristics at continuous times after diagnosis. Survival statistics are of interest when

providing estimates of prognosis but most data are based on projections from survival at diagnosis

of a specific cohort. As noted by Bryant et al., 2012, a patient’s journey may improve with cancer

care and their survival probability may change and an example of this was shown in a wide range

of cancer diagnoses among Canadian patients (Ellison et al., 2011). This relationship can be

assessed for any possible value of future survival, given survival is greater than the current survival

time.

Time-conditional survival probability addresses this by providing estimates of the probability of sur-

viving beyond a given time point in the future having survived beyond various milestones of the

cancer experience. Estimates from parametric time-conditional survival allow the clinician/investi-

gator to adjust for continuous and discrete covariates in the calculation of time-conditional survival

relative to a specific set of patient characteristics of interest. Specifically, these estimates can be

personalized by allowing customization of the estimate of interest with the exact values relevant to

an individual patient.
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Table 3.1: Maximum likelihood estimates of the Weibull survival distribution for disease-specific
survival of esophageal cancer patients adjusting for tumor length.

Parameters Estimates Covariance Matrix

α 0.763 4.84×10−5 -2.08×10−5 3.37×10−6

λ 0.340 -2.08×10−5 1.65×10−5 -4.06×10−5

βL 0.095 3.37×10−6 -4.06×10−5 1.53×10−5
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Table 3.2: Maximum likelihood estimates of the Weibull mixture cure model for disease-specific
survival.

Variable Estimate Standard Error p-value

Logistic Model
Intercept -1.320 0.0934 < 0.0001

Ulceration (vs without) 0.335 0.0879 0.0001
Clinical Staging (vs Pathological) 0.636 0.0929 < 0.0001

Males (vs Females) 0.503 0.0832 < 0.0001
No. Nodes Examined 0.014 0.0063 0.0314

Weibull Survival Model
Intercept (Weibull) 2.262 0.1216 < 0.0001

Age at Diagnosis (years) 0.009 0.0026 0.0012
Thickness (mm) 0.092 0.0188 < 0.0001
Shape (Weibull) 0.684 0.0178 < 0.0001
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Table 3.4: Estimates of 5-year time-conditional survival probability from the Weibull mixture cure
model for disease-specific survival adjusting for fixed gender (male), fixed age at diagnosis (60
years), fixed tumor thickness (3.58 mm) and varying staging type (clinical versus pathological),
number of nodes examined, and ulceration status along with the estimated covariance and corre-
lation matrices for the alternative hypothesis.

Staging No. Nodes Ulceration ĈS(6 | 1) ĈS(15 | 10) Estimates
Case i Type Examined Status (j = 1) (j = 2) (H1)

1 Clinical 0 Without Ulceration 0.921 0.994 0.073
2 Clinical 0 With Ulceration 0.893 0.991 0.098
3 Pathologic 1 Without Ulceration 0.955 0.997 0.041
4 Pathologic 1 With Ulceration 0.939 0.995 0.056

Case i Estimated Matrix∗

1 5.150 5.929 3.475 3.904
2 0.939 7.736 3.602 5.325
3 0.734 0.621 4.354 3.730
4 0.775 0.863 0.806 4.924

∗ Covariances and variances of differences of time-conditional survival estimates are presented in the upper off-diagonal
and diagonal elements, respectively, and original variances and covariances were multiplied by a factor of 104. Lower
off-diagonal elements are correlations among estimates.
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Table 3.5: Change in 5-year time-conditional survival probability given 1 and given 10 years after
diagnosis from the Weibull mixture cure model for disease-specific survival with Bonferroni adjust-
ment.

Absolute Estimated Test Unadjusted Bonferroni-adjusted
Case i Change Variance∗ Statistic p-value p-value

1 0.073 5.150 10.33 0.0013 0.0052
2 0.098 7.736 12.31 0.0005 0.0020
3 0.041 4.354 3.92 0.0479 0.1916
4 0.056 4.924 6.44 0.0112 0.0448

∗Variance estimates were multiplied by a factor of 104.
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CHAPTER 4

ANALYSIS OF LONGITUDINAL COUNT DATA WITH SPECIFIED MARGINAL MEANS

AND FIRST-ORDER ANTEDEPENDENCE

4.1. Introduction

Longitudinal count data are often encountered in scientific studies. For example, Thall and Vail,

1990 analyzed repeated seizure counts on subjects in a clinical trial. Common features of serial

count data include intra-subject correlation that is due to similarity between the repeated mea-

surements on each participant. Over-dispersion, which occurs when the variance is larger than

expected for the assumed distribution of the outcome variable, is another common feature of longi-

tudinal count data (Efron, 1992). Poisson regression is often applied for analysis of count data but

is usually not appropriate for longitudinal studies because it ignores intra-subject correlations and

over-dispersion. Generalized Poisson regression (Consul and Famoye, 1992) allows for both over

and under dispersion but assumes independence of measurements.

In this chapter we implement a maximum-likelihood based method for analysis of longitudinal count

data with over-dispersion that is induced by the serial correlation of measurements. Key assump-

tions of the approach include the first-order Markov property and linearity of the expectations for

the conditional distributions, which are assumed to be Poisson. In addition, we assume that the

correlation between adjacent measurements on a subject is constant.

The assumptions of the first-order Markov property, linearity in the conditional expectations, and

constant adjacent correlations have been shown to induce a first-order autoregressive AR(1) corre-

lation structure for the repeated outcomes on each subject (Guerra and Shults, 2014). The AR(1)

structure is often applied for analysis of data that are equally spaced in time because the assump-

tion of constant adjacent correlations is most plausible when the temporal spacing of consecutive

measurements is constant. The AR(1) structure also forces a decline in the intra-subject correla-

tions with increasing separation in time that is plausible for longitudinal trials. Our method is there-

fore most appropriate for analysis of equally spaced longitudinal count data with over-dispersion.

Other approaches for analysis of over-dispersed longitudinal count data include semi-parametric
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approaches such as generalized estimating equations (GEE) (Liang and Zeger, 1986). GEE is

widely used because it does not require specification of the full likelihood that can be quite complex

for longitudinal discrete data. However, GEE does not account for over-dispersion. In addition,

the relative ease of application for GEE can also be a potential limitation for the approach for

discrete data. When only the first two moments of the distribution of the outcome variable are

estimated, as they are for GEE, it is possible to obtain estimates that are not compatible with any

valid parent distribution. In other words, it is possible to obtain estimates for which no corresponding

outcome distribution can be constructed. As cautioned by Molenberghs and Kenward, 2010, “the

parent provides a natural description of the framework into which the semi-parametrically specified

parameters fit. The implication is that such semi-parametric methods as GEE1, GEE2, ALR, etc.

can always be applied because there is always a valid parent, and hence a probabilistic basis.”

We will make comparisons with GEE because GEE is widely used for analysis of longitudinal dis-

crete data. We will also use GEE to obtain starting values for estimation. However, we will confirm

that the GEE estimates of the correlation parameters satisfy constraints that are compatible with

a valid parent distribution. We conduct simulations for moderately sized samples to demonstrate

that when the likelihood is correctly specified, we have improved efficiency in estimation of the

regression and correlation parameters for our approach relative to GEE.

Other models for longitudinal count data include generalized linear mixed-effects models that in-

corporate random effects in the linear predictor. However, the implementation of likelihood based

methods that involve random effects can be computationally challenging (p. 75 Fitzmaurice et al.,

2008). In addition and in contrast to GEE, for mixed models it is not straightforward to specify a par-

ticular working correlation structure for the repeated measurements on subjects. For example, the

AR(1) correlation structure is not among the covariance models that were suggested by Thall and

Vail, 1990. Mixed-effects models are typically employed when the goal is to estimate effects that

are subject specific, because the analysis results are conditional on the random effects (Gardiner,

Luo, and Roman, 2009).

In general, likelihood based approaches like the one we implement in this chapter enjoy several

general advantages. Unlike semi-parametric approaches, they yield an estimated likelihood that

can be used to conduct likelihood ratio tests and to compare the fit of nested models using criteria

such as the Akaike information (AIC) (Akaike, 1974) and Bayesian information (BIC) (Schwarz,
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1978) criteria. Maximum likelihood estimators are also most (asymptotically) efficient among a

wide class of estimators (Serfling, 2011). Our method in particular allows for specification of the

usual model for the marginal mean for Poisson data, while also accounting for over-dispersion and

serial correlation in the data via an induced AR(1) correlation structure.

In Section 4.2 we discuss the notation, model assumptions, the likelihood and likelihood equations.

We discuss an application of the methods in Section 4.3 followed by the simulation studies in

Section 4.4. We conclude with a discussion in Section 4.5.

4.2. Methods

4.2.1. Notation and Model Assumptions

The data comprise realizations yij of ordered discrete random variables Yij that are measured

on subject i at time tij (i = 1, . . . ,m and j = 1, . . . , ni). Associated with each yij is a vector of

explanatory variables (covariates) xij = (xij1, . . . , xijp)
′
. The expected value of measurement Yij

on subject i is given by

E(Yij) = µij = λij , (4.1)

and the variance by var(Yij) = σ2
ij .

We assume that observations on different subjects are independent. Further, the measurements

within subjects are correlated with a structure that depends on parameter α. Let cov(Yij , Yik)

represent the covariance and corr(Yij , Yik) represent the correlation between Yij and Yik.

We make three assumptions. First, we assume first-order antedependence, such that each Yij ,

given the immediate antecedent Yij−1, is independent of all further preceding variables (Gabriel,

1962). The joint probability mass function of Yi1, . . . , Yini can then be expressed as

P(Yi1 = yi1, Yi2 = yi2, . . . , Yini = yini) =

P(Yi1 = yi1)P(Yi2 = yi2|Yi1 = yi1) · · ·P(Yini = yini |Yin−1 = yin−1).

(4.2)

First-order antedependence is also referred to as the first-order Markov property in the literature

(Feller, 1968, p. 419).
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Second, we assume that the correlation between adjacent measurements on a subject is constant,

implying that

corr(Yij , Yij−1) = α

where i = 1 . . . ,m and j = 2, . . . , ni. Third, we assume that the conditional expectation of Yij given

Yij−1 is a linear function of Yij−1, such that

E(Yij | Yij−1) = aij + bijYij−1,

for i = 1 . . . ,m and j = 2, . . . , ni.

These three assumptions imply the following results. From Theorem 2.1 of Guerra and Shults,

2014, the conditional expectation is given by

E (Yij |Yij−1) = µij + ασij/σij−1 (Yij−1 − µij−1) , (4.3)

where µij = E(Yij), α = corr(Yij−1, Yij), σij
2 = var(Yij), and

σij
2 =

1

1− α2
E(var(Yij |Yij−1)), (4.4)

where i = 1, . . . ,m and j = 2, . . . , ni.

Next, from Theorem 2.2 of Guerra and Shults, 2014, the correlation corr(Yij , Yij+t) between Yij and

Yij+t for t > 0 can be expressed as

corr(Yij , Yij+t) =

j+t−1∏
k=j

corr(Yij , Yij+1)

=

j+t−1∏
k=j

α

= αt.

The induced correlation structure for (Yi1, . . . , Yini)
′ is therefore an AR(1) structure.

This AR(1) structure is plausible for longitudinal data because it requires the correlation between

measurements on a subject to decline with increasing separation in time. For example, if α = 0.5,
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then the correlation between the 1st and 2nd measurements is 0.5, while the correlation between

1st and 3rd measurements is (0.5)2 = 0.25.

4.2.2. Poisson Likelihood

We assume Poisson distributions for the marginal and conditional distributions in Equation 4.2. For

each i = 1, . . . ,m, the distribution of Yi1 is Poisson with µi1 = λi1 = exp (x′i1β) and σi12 = λi1, where

β is a p × 1 vector of regression parameters. Then, for j = 2, . . . , ni, the conditional distribution of

Yij given Yij−1 is Poisson with conditional mean E (Yij |Yij−1) = λij∗ given by Equation 4.3, with

µij = λij = exp
(
x′ijβ

)
, (4.5)

and

σij
2 = λij/(1− α2), (4.6)

for j = 2, . . . , ni and i = 1, . . . ,m. The Yij are over-dispersed relative to the Poisson distribution if

j ≥ 2 and α 6= 0, because in this case σij2 = φijλij , where φij > 1.

The likelihood can then be expressed as

L(β, α) =

m∏
i=1

P(Yi1 = yi1)P(Yi2 = yi2|Yi1 = yi1) · · ·P(Yini = yini |Yin−1 = yin−1)

=

m∏
i=1

exp(−λi1)λi1
yi1

yi1!

ni∏
j=2

exp(−λij∗)(λij∗)yij

yij !

=

m∏
i=1

exp (yi1ln(λi1)− λi1 − ln(yi1!))

ni∏
j=2

exp (yij ln(λij
∗)− λij∗ − ln(yij !)) .

Taking the natural logarithm then yields the log-likelihood,

ln (L(β, α)) =

m∑
i=1

(yi1θi1 − exp(θi1)− ln(yi1!)) +
ni∑
j=2

(yijθij
∗ − exp(θij∗)− ln(yij !)) ,

where θi1 = ln(λi1) = x′i1β and θij∗ = ln(λij
∗).

The following constraints must be satisfied in order for the constructed likelihood to be valid: (1)

λij > 0, (j = 1, . . . , ni); (2) −1 < α < 1 for (j = 2, . . . , ni), in order to achieve a positive-definite

correlation matrix; and (3) λij−ασij/σij−1(λij−1) > 0, for (j = 2, . . . , ni) (Guerra and Shults, 2014).
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4.2.3. Likelihood Equations

To obtain maximum likelihood estimates of β and α, we need to obtain simultaneous solutions to

the following estimating equations for β and α, respectively:

∂ln (L(β, α))

∂β
=

m∑
i=1

(yi1 − exp(θi1))
∂θi1
∂β

+

ni∑
j=2

(yij − exp(θij
∗))

∂θij
∗

∂β
(4.7)

= 0

and

∂ln (L(β, α))

∂α
=

m∑
i=1

(yi1 − exp(θi1))
∂θi1
∂α

+

ni∑
j=2

(yij − exp(θij
∗))

∂θij
∗

∂α
(4.8)

= 0.

The derivatives are given in Appendix Section C.1.

There is no explicit solution to the likelihood equations 4.7 and 4.8. We obtained solutions by max-

imizing the likelihood using an adaptive barrier algorithm as implemented in the constrOptim func-

tion in R (R Development Core Team, 2012). We applied the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) optimization method by Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, and Shanno, 1970;

Shanno and Kettler, 1970, which is implemented in constrOptim when the gradient is provided.

The following algorithm summarizes our estimation procedure for a particular model:

1. Choose initial estimates (starting values) of α and β. Starting values can be obtained using

GEE to fit a Poisson model with an AR(1) correlation structure; however, we should check

that the starting values satisfy the constraints (Section 4.2.2). If the estimates violate the

constraints, change the starting values by choosing a value for α that is closer to zero or by

applying Poisson regression, which is equivalent to assuming that α = 0.

2. Obtain solutions to the likelihood equations 4.7 and 4.8 using the adaptive barrier algorithm

that is implemented in the R package constrOptim. Refer to the Appendix C.2 for the log

likelihood function and Appendix C.3 for the gradient function, both of which are implemented

in the Application.

98



4.2.4. Asymptotic Distribution of the Estimators

If the model is correctly satisfied and standard regularity conditions are satisfied, the ML approach

described here will yield estimates that are consistent and asymptotically normal. Define the vector

of parameters as θ = (β, α)T and the maximum likelihood estimators as θ̂ = (β̂, α̂)T . The asymp-

totic covariance matrix of θ̂ is the observed information (i(θ̂))−1, which we estimated using the

inverse of the negative Hessian matrix (Appendix Section C.6).

4.3. Application

4.3.1. Doctor visits data

Here we consider an analysis of a subset of data from the German Socio-Economic Panel data

(Winkelmann, 2004) (http://www.stata-press.com/data/r13/drvisits) that we obtained within

Stata (StataCorp LP, 2013) and then exported as a comma delimited text-file for analysis in R.

These data were analyzed in the Stata 13 mixed-effects reference manual (StataCorp LP, 2013)

with generalized linear mixed-effects models that included subject level random intercepts. Here

we compare the results of an analysis using the proposed ML approach with the results obtained

using Poisson regression and GEE.

The goal of the analysis was to assess the impact of the 1997 health reform on the reduction of

government expenditures. A sample of 1518 women who were employed full time in the year before

or in the year after the reform was used to assess the impact on the number of doctor visits.

The outcome was the self-reported number of doctor visits in the three months prior to the interview.

The main covariate of interest was the indicator of whether the interview was before the reform or

after it. Additional covariate information was available on the women’s age, education, marital

status, self-reported health status, and the logarithm of the household income. Note that not every

woman was interviewed both before and after the reform went into effect. Of the 1518 women in

the dataset, 709 were interviewed both before and after the reform and the remaining 809 were

interviewed only once (391 women before and 418 after the reform went into effect). This resulted

in a total of 2227 observations available for the analysis.
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We assumed Model 4.5 with the following linear predictor:

xij = β0 + β1x1ij + β2x2ij + β3x3ij + β4x4ij + β5x5ij + β6x6ij ,

where xij1 was the indicator for reform, xij2 was age in years, xij3 was education in years, xij4

was marital status, xij5 was self-reported health status, and xij6 was the logarithm of household

income.

We first fit the above model using Poisson regression as implemented in the glm function in R.

This assumed that the longitudinal counts of doctor visits before and after the reform are indepen-

dent, given the covariates. Therefore, we did not account for the correlation among the repeated

measures of the doctor visit counts in the estimation, possibly leading to unreliable estimates of

the standard errors. Table 4.1 shows the estimated regression coefficients, standard errors, test

statistics, and p-values for this model. From the model, the expected change in log count of doctor

visits from before to after the reform was -0.140 (p < 0.0001).

Next, we applied the GEE approach to the analysis of this data using the geeglm function in R.

Table 4.1 shows the estimates and results for this model. As for Poisson regression, there was a

significant effect of the reform indicating a change in the count of the number of doctor visits from

before to after the reform (β̂ = −0.123, p = 0.0200). The estimated correlation parameter was 0.213.

When we fit the GEE model we assumed that the scale parameter φ is equal to one. After fitting

GEE, we can assess the adequacy of this assumption by obtaining an estimate of φ based on the

final GEE estimates of β:

φ̂ =
1

m

m∑
i=1

Zi(β̂)′Zi(β̂)

ni
,

where Zi(β̂) is the ni × 1 vector of Pearson residuals zij(β̂) with zij(β̂) = yij−λ̂ij√
λ̂ij

. The estimated φ

is φ̂ = 4.33, which is much greater than 1 and is therefore suggestive of over-dispersion in the data.

Lastly, we fit the proposed ML approach using the algorithm for estimation described in Sec-

tion 4.2.3. We obtained starting values for our approach using GEE, after first confirming that α̂

satisfied the necessary constraint to guarantee a valid parent distribution, which in this case was

α̂ < 0.4518.
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Table 4.1 shows the estimated regression coefficients, standard errors, test statistics, and p-values

for the ML approach. The estimated correlation parameter was 0.313 with a 95% confidence in-

terval of (0.272, 0.354). Although not customary for longitudinal data, a likelihood ratio test of the

null hypothesis α = 0 resulted in a p-value < 0.0001. After adjusting for the correlation among

the counts of doctor visits, for over-dispersion, and for the other covariates, we found that there

was a significant impact of the reform on the number of doctor visits based on the ML model

(β̂1 = −0.113, p < 0.0001).

Overall, the parameter estimates were similar for the proposed ML approach, GEE, and the Poisson

regression. While the impact of age was similar across the approaches, it was significant in both the

ML and Poisson approaches but not significant in the GEE model (ML p = 0.0005, GEE p = 0.1180,

and Poisson p = 0.0008). Similarly, the logarithm of household income was significant in both the

ML and Poisson approaches but not significant in the GEE model (ML p < 0.0001, GEE p = 0.0810,

and Poisson p < 0.0001).

With estimates of the log-likelihood for Poisson regression and the proposed ML approach, it was

possible to calculate the AIC and BIC criteria as measures of the relative quality of the models for

this set of data. Both BIC and AIC incorporate a penalty term for the number of parameters used in

the model because it is possible to increase the numerical value of the likelihood solely by including

additional parameters in the model, which may result in over-fitting the model to the data. This

penalty term is larger in the BIC as compared to the AIC.

The AIC was computed as 2 times the degrees of freedom represented by the number of parame-

ters in this model minus 2 times the estimated log-likelihood. The BIC was computed as the number

of parameters estimated times the logarithm of the sample size minus 2 times the estimated log-

likelihood.

For the Poisson regression model, the AIC and BIC values were 11899 and 1196, which were both

greater than the AIC and BIC values for the ML approach (AIC = 11707 and BIC = 11750), which

indicates that the ML approach had improved model fit over Poisson regression. R code for this

analysis is provided in the Appendix Section C.7.
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4.3.2. Epilepsy seizure data

Here we implement the proposed ML method and GEE for analysis of the epilepsy seizure data

(Farewell and Farewell, 2012) (Thall and Vail, 1990). We do not demonstrate the application of

Poisson regression as we did in the previous section. However, results for Poisson regression

(not shown) all confirmed the selection of the more general model assumed by the proposed ML

approach.

We assumed Model 4.5 with the following linear predictor:

x′ijβ = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4, (4.9)

where xij1 represents an indicator for treatment, xij2 represents baseline seizure count (number

of seizures in the 3 month time period prior to the start of the study), xij3 represents subject age

in years, and xij4 represents two-week time period (coded as 1,2,3,4). We initially included a time

period by treatment interaction term, but the interaction term was not significant for the proposed

approach or for GEE (all p-values > 0.05); we therefore initially focused on the simpler model 4.9

for this demonstration.

Table 4.2 shows the sample mean and variance of seizure counts at baseline and the four sub-

sequent two-week periods (denoted as Y1 through Y4) for the placebo and drug groups for the

seizure counts; it also displays the sample mean and variance of age at baseline. From the table,

the sample variance for the outcome variables, Y1 through Y4, were greater than their respective

means, which suggested that there was over-dispersion the seizure counts.

Table 4.3 shows the results of the analysis. The estimates were similar for the proposed ML method

and GEE. The estimate of treatment was negative for both approaches, which suggested that the

number of seizures was lower for subjects in the treatment group. However, treatment only differed

significantly from 0 for the proposed ML approach (p = 0.0127 for ML versus p = 0.3014 for GEE).

In addition, time period only differed significantly from 0 for the proposed ML approach (p = 0.0031

for ML versus p = 0.0580 for GEE).

The likelihood ratio test of the hypothesis that the regression parameter for time period is 0 also

suggested that time period should be retained in the model for the proposed ML approach (p =
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0.0030). However, since the GEE analysis suggested that time period might not be important, we

removed period from the GEE model. For comparison, we also removed period for the proposed

ML approach. The analysis results are shown in Table 4.4. Perhaps the most interesting feature

of these new results was that treatment no longer differed significantly from 0 for the proposed

ML approach (and was again not significant for GEE). This analysis demonstrated that removal of

a significant variable (time period) from the model for the proposed ML approach resulted in the

treatment effect no longer being significant.

A treatment effect whose significance depended on the inclusion of an additional variable in the

model should be assessed carefully. We therefore compared the AIC and BIC for the larger model

that included time period with the smaller model that does not include period. As shown in the

Tables, the AIC and BIC values were both smaller for the larger model. The respective AIC and BIC

values were 1566 and 1579 for the larger model, versus 1573 and 1583 for the smaller model. The

AIC and BIC values indicated that the fit was superior for the larger model, which lent additional

support for the larger model with its significant treatment effects.

4.4. Simulation Studies

In the previous section we identified significant treatment effects for the proposed ML approach that

were not observed for GEE. Since the results depended on choice of approach, it was of interest to

compare the performance of the methods for finite samples. We therefore performed simulations

to assess the properties of the estimators of α and β for the proposed ML approach and GEE.

4.4.1. Set-up

We compared the performance of the ML and GEE estimators for the final GEE model that was

implemented in the previous section; the linear predictor for this model was:

x′ijβ = β0 + β1xij1 + β2xij2 + β3xij3, (4.10)

where the xijk were defined in the previous section. The results shown here are based on R = 1000

simulation runs, β = (0.4467,−0.1659, 0.0232, 0.0258)′ equal group sizes m/2, and ni = 4 measure-

ments per subject. For this scenario, the correlation must satisfy the following constraints (see
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Section 4.2.2) to ensure the existence of a valid parent distribution:

α < 0.707.

We specified values of α ∈ {0.2, 0.4, 0.6, 0.7}.

Covariates were simulated based on the observed data in the previous section. Treatment was

specified as present (equal to 1) for one group and as absent (equal to 0) for the other group.

Baseline seizure count was simulated from a Poisson distribution with a random seed and mean

= 31.22 based on the mean baseline seizure counts from the epilepsy data. Similarly, age was

simulated from a normal distribution based on the epilepsy data for which the minimum age was

18, mean was 28.3, and the standard deviation was 6.261. Simulated age values below 18 were

discarded and the next simulated age value was assigned. Age was then rounded to a whole

number, as it was recorded in the epilepsy data.

The approach proposed by Guerra and Shults, 2014 was used to simulate the correlated Poisson

seizure counts with specified means, over-dispersion, and AR(1) correlation structure.

4.4.2. Assessments

We wrote code in R to evaluate percent bias, small sample efficiency, and 95% coverage proba-

bilities using the observed information matrix. Details on how these were calculated are provided

below.

Let θ represent a parameter of interest for the evaluation and θ̂ represent the estimator. The mean

square error (MSE) for estimator θ̂ is defined as

1

R

R∑
i=1

(θ − θ̂i)2,

where θ is the true value. The percent bias for estimator θ̂ is defined as

{
1

R

R∑
i=1

(θ − θ̂i)/θ

}
∗ 100.

Lastly, to evaluate the coverage probabilities, a 95% confidence interval was computed for each
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parameter estimate within each simulation run. The coverage probabilities represent the proportion

of the R simulation runs in which the true parameter fell within the 95% confidence bounds. GEE

coverage probabilities were computed similarly using the naı̈ve variance estimates obtained from

geeglm in R.

4.4.3. Results

Table 4.5 displays the MSE and Table 4.6 displays the percent bias for the simulations. For the ML

method, the MSE for β̂ and α̂ and the percent bias for α̂ decreased as m increased.

As compared to GEE, the ML approach had lower MSE and percent bias for all sample sizes for

α̂. For β̂, the percent bias was similar for ML and GEE; however, the MSE was slightly smaller for

ML than for GEE. For scenarios with high correlation (α = 0.6 or 0.7), the intercept and treatment

estimates, β̂0 and β̂1, had smaller MSE and percent bias for the proposed ML approach than for

GEE, for all samples sizes.

Table 4.7 then displays the estimated coverage probabilities. With respect to β̂, the coverage prob-

abilities were similar for the ML and GEE approach and were close to the nominal 95% level. With

respect to α̂, the ML approach model-based coverage probabilities were close to the nominal 95%,

which outperformed the GEE approach, whose model-based coverage probabilities were below the

nominal 95% level. Coverage probabilities for α were better for the ML based approach than GEE

across all sample sizes and correlations (α = 0.2, 0.4, 0.6, 0.7).

4.5. Discussion

We proposed an ML approach for analysis of equally spaced longitudinal count data that accounts

for intra-subject correlation of measurements and over-dispersion. Our application of the ML and

GEE approaches demonstrated significant treatment differences observed for some models for the

ML approach but not for GEE. The availability of the AIC and BIC criteria for the ML approach

was useful for selecting between nested models, when the significance of the treatment effects

depended on the inclusion of time in the model.

Our simulations demonstrated that the ML approach was similar to or slightly outperformed GEE

with respect to MSE, bias, and coverage probabilities, especially for higher values of the correlation
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(for β̂).

That the ML approach outperformed GEE for larger values of the correlation was not surprising.

We assumed over-dispersion that was induced by α and that was greater for larger values of α.

For α = 0 the assumed models for the marginal means and correlations would have been identical

for the ML approach and GEE. That the differences between the two approaches were largest for

larger values for the correlation was therefore to be expected.

Future work might be undertaken to compare the proposed approach with implementation of the

generalized Poisson distribution (Famoye, Okafor, and Adamu, 2011) that can be used to assess

over- and under-dispersion in correlated count data but that does not implement the usual model

for the marginal mean in Poisson regression. Extensions for unequally spaced data will also be

useful.

Our approach is also valid when data are missing at random, while the GEE approach assumes

the missing data mechanism to be missing completely at random which is more restrictive (Liang

and Zeger, 1986). Future work will include assessing the loss in efficiency for GEE relative to our

approach, when the data are missing at random. In addition, it will be useful to extend our approach

to allow for application of other correlation structures such as the Markov structure. The Markov

structure generalizes the AR(1) structure to take the spacing of measurements into account and is

therefore a plausible structure for data that are unequally spaced in time.
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Table 4.1: Estimated parameters from the ML, GEE, and Poisson models in the analysis of the
doctor visits data.

ML Approach (AIC = 11707;BIC = 11750)
Coefficients:

Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) -0.461 0.2811 2.69 0.1010
Reform -0.113 0.0241 21.99 < 0.0001

Age 0.005 0.0014 12.22 0.0005
Education -0.008 0.0064 1.54 0.2150

Marital Status 0.026 0.0294 0.75 0.3860
Health Status 1.100 0.0313 1238.28 < 0.0001
Log Income 0.150 0.0376 15.83 < 0.0001

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.313 0.0208
GEE Approach

Coefficients:
Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) -0.381 0.5767 0.44 0.5080
Reform -0.123 0.0530 5.40 0.0200

Age 0.005 0.0033 2.44 0.1180
Education -0.009 0.0118 0.61 0.4350

Marital Status 0.038 0.0698 0.30 0.5820
Health Status 1.105 0.0873 160.23 < 0.0001
Log Income 0.139 0.0798 3.05 0.0810

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.213 0.0238
Poisson Regression (AIC = 11899;BIC = 11936)

Coefficients:
Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) -0.414 0.2691 -1.54 0.1242
Reform -0.140 0.0266 -5.28 < 0.0001

Age 0.004 0.0013 3.35 0.0008
Education -0.011 0.0060 -1.78 0.0743

Marital Status 0.041 0.0278 1.49 0.1375
Health Status 1.133 0.0303 37.40 < 0.0001
Log Income 0.149 0.0361 4.14 < 0.0001
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Table 4.2: Mean and variance for the placebo and treatment groups.

Variable Placebo† Drug† Total†

(n=28) (n=31) (n=59)
Y1 9.86 (102.8) 8.58 (332.7) 8.95 (220.2)
Y2 8.29 ( 66.6) 8.42 (140.7) 8.36 (103.8)
Y3 8.79 (215.2) 8.13 (192.9) 8.44 (200.2)
Y4 7.96 ( 58.2) 6.71 (126.8) 7.31 ( 93.1)

Baseline 30.79 (681.2) 31.61 (782.9) 31.22 (722.5)
Age 29.00 ( 36.0) 27.74 ( 43.6) 28.34 ( 39.7)

† Values in the table represent the mean (variance).
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Table 4.3: Estimated parameters from the GEE and ML approaches for analysis of the epilepsy
data when Period is included in the models.

ML Approach (AIC = 1566;BIC = 1579)
Coefficients:

Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) 0.657 0.1957 11.26 0.0008
Treatment -0.166 0.0667 6.21 0.0127
Baseline 0.023 0.0007 1111.76 < 0.0001

Age 0.024 0.0056 17.94 < 0.0001
Period -0.064 0.0215 8.74 0.0031

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.416 0.0334
GEE Approach

Coefficients:
Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) 0.585 0.3491 2.81 0.0936
Treatment -0.164 0.1589 1.07 0.3014
Baseline 0.023 0.0012 350.97 < 0.0001

Age 0.026 0.0118 4.95 0.0261
Period -0.064 0.0340 3.59 0.0580

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.551 0.0656
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Table 4.4: Estimated parameters from the GEE and ML approaches for analysis of the epilepsy
data when Period is not included in the models.

ML Approach (AIC = 1572.99;BIC = 1583.39)
Coefficients:

Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) 0.5072 0.3829 1.75 0.1853
Treatment -0.1673 0.1521 1.21 0.2713
Baseline 0.0232 0.0012 351.45 < .0001

Age 0.0238 0.0127 3.51 0.0611

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.423 0.0668
GEE Approach

Coefficients:
Parameter Estimate Std.err Wald Pr(> |W |)

(Intercept) 0.4467 0.3621 1.52 0.2174
Treatment -0.1659 0.1593 1.09 0.2977
Baseline 0.0232 0.0012 353.32 < .0001

Age 0.0258 0.0117 4.86 0.0275

Correlation Parameters:
Parameter Estimate Std.err

alpha 0.544 0.0639
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Table 4.7: Coverage probabilities for the ML and GEE approaches with the AR(1) correlation struc-
ture for varying values of α and sample size per group.

Coverage Probability
m α Method R β̂0 β̂1 β̂2 β̂3 α̂

60 0.2 ML 1000 94.7 95.2 95.5 95.5 93.8

GEE 1000 94.4 95.0 94.8 95.1 91.1
0.4 ML 1000 93.8 94.6 95.9 93.0 94.6

GEE 1000 93.2 94.3 95.5 92.7 86.1
0.6 ML 1000 93.8 93.9 94.3 94.0 93.4

GEE 1000 94.1 93.6 95.1 93.1 83.2
0.7 ML 998 95.4 95.3 95.4 95.5 92.3

GEE 1000 95.0 94.9 94.0 95.7 84.6

120 0.2 ML 1000 94.7 95.2 95.2 94.8 92.9
GEE 1000 94.2 95.1 94.9 94.5 91.3

0.4 ML 1000 95.1 96.1 95.6 94.7 95.1
GEE 1000 95.2 96.0 95.5 94.5 85.4

0.6 ML 1000 95.9 94.5 95.3 94.9 95.5
GEE 1000 95.5 95.5 95.5 94.9 84.5

0.7 ML 1000 95.3 94.2 94.7 96.2 92.9
GEE 1000 95.3 94.2 95.0 95.9 87.2

300 0.2 ML 1000 95.2 95.0 94.7 94.7 94.5
GEE 1000 95.6 95.3 94.8 94.6 91.5

0.4 ML 1000 93.5 95.4 94.2 93.9 96.5
GEE 1000 93.7 96.0 94.9 94.3 86.2

0.6 ML 1000 93.2 95.4 94.9 94.0 95.2
GEE 1000 93.8 95.6 94.6 94.9 85.9

0.7 ML 1000 94.5 95.1 94.1 94.4 92.4
GEE 1000 94.8 95.9 94.6 94.8 88.0

Note: The true correlation structure is AR(1). There are equal sample sizes of m
2

per group and
β = (β0, βdrug , βbaseline, βage)

′ = (0.4467,−0.1659, 0.0232, 0.0258)′
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CHAPTER 5

DISCUSSION

The objective of this dissertation was to develop a new and potentially clinically useful methodol-

ogy for time-conditional survival probability analyzed under the nonparametric and the parametric

frameworks. Further, we addressed the problem of correlated longitudinal data with over-dispersion

by developing a maximum likelihood analysis of discrete count data with over-dispersed marginal

distributions relative to the Poisson distributions and an induced AR(1) correlation structure.

In Chapter 2, we developed the asymptotic distribution for the estimated log time-conditional sur-

vival probabilities. Weighted least squares methodology was used to develop a hypothesis testing

framework to address clinically relevant questions of interest, e.g. a multivariate omnibus test of

pairwise differences in time-conditional survival probabilities. We also fit regression models for the

log time-conditional survival probabilities as a function of time survived to explore the relationship

(quadratic, linear, global mean) between the probabilities and time survived as well as covariates.

In simulations, the test statistic for the global mean test had good statistical properties for samples

of size 200 or greater but the sample size necessary for good statistical properties increased as the

percentage of uniform random censoring increased. We found that the sample size necessary to

achieve adequate power for this test also increased with increasing percentage of uniform random

censoring.

Regression models were developed for the profile of log time-conditional survival probabilities as

a function of time survived after diagnosis and included adjustment for covariates. This modeling

approach is an improvement on profile-based methods, where disparate profiles are created based

on the covariate patterns, as it allows for the evaluation of the importance of profiles and factors.

Using our methodology, we explored time-conditional survival probability profiles developed using

a dataset of patients with malignant melanoma and their survival probabilities. Our formal statis-

tical methods allow researchers to identify when time-conditional estimates change in statistically

significant ways.

In Chapter 3, we developed methods for parametric time-conditional survival probability by incorpo-

rating multiple covariates, including continuous variables. We first described the general approach
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for including covariates under the parametric survival regression model framework and then im-

plemented this for the Weibull regression model and the Logistic-Weibull cure model. Further, we

presented methodology to evaluate time-conditional survival as a function of both categorical and

continuous covariates at continuous times after diagnosis for any possible value of future survival

beyond the current survival time.

When comparing methods in parametric and nonparametric survival, the choice of approach de-

pends on a variety of factors. It is well known that misspecification of the true underlying parametric

distribution can lead to a loss of power as compared with the nonparametric empirical survival distri-

bution (Hutton and Monaghan, 2002). Alternately, the product-limit method of estimating nonpara-

metric survival distributions only allows for the consideration of categorical covariates by estimating

survival probabilities based on the resulting covariate patterns. As a result, the full sample size is

reduced to the number of subjects that fall into each covariate pattern for estimation of the survival

probabilities. Further, it has been shown that with a limited follow-up of 5 years the nonparamet-

ric log-rank test has greater statistical power to reject the null hypothesis when it is false than its

parametric counterpart (Gamel and Vogel, 1997).

This advantage declines as follow-up time increases (Gamel and Vogel, 1997), which is an im-

portant consideration for time-conditional survival probability estimation. Although nonparametric

methods may be able to distinguish between groups, they may not help the researcher understand

the underlying relationships between covariates and the difference in survival. However, the cure

model can distinguish covariate effects on the survival time-to-an-event rather than on the propor-

tion cured of the event.

Incorporating this detailed covariate information adds an element of personalization to the estimates

by allowing clinicians and investigators to customize the estimate of interest to the characteristics

relevant to their patients and research subjects. In our example, patients with melanoma would not

need to be stratified into groups based on their age. Instead, the exact age could be used to esti-

mate time-conditional survival probability under the parametric approach. The Weibull distribution is

used in Chapter 3 to illustrate the methods as applied to SEER esophageal cancer data (Weibull re-

gression model with covariates) and to SEER melanoma data (Logistic-Weibull cure model). While

the nonparametric approach includes an overall test of significance in addition to pairwise com-

parisons, the parametric approach allows for the inclusion of this variable in its continuous form to
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address the preference of some researchers to analyze continuous variables in continuous rather

than categorical form (Bennette and Vickers, 2012; Greenland, 1995).

As we explored and developed the statistical framework around time-conditional survival probabil-

ities as they applied to lifetime data, many interesting questions arose. An alternative perspective

on this problem, which is of future interest, is the reversal of the statement of the problem. In this

dissertation we assumed a fixed choice for ∆ while varying a. The reverse question can be evalu-

ated by fixing a choice of time alive after diagnosis, a, and varying ∆. For example, this would allow

the researcher to get 1-, 2-, and 3-year time-conditional survival probability estimates given survival

beyond 3 years. Future research should further assess how to determine the ∆ for ∆-year time-

conditional survival probability estimation and how to determine the appropriate time survived (a)

to be evaluated. Some of our initial exploration in this area suggests that identifiability issues may

arise when trying to invert the covariance matrix for a profile of time-conditional survival probability

estimates obtained from a constant portion of the survival curve due to few events. Researchers

must also be cautious when computing estimates of survival probability based on sparse data as

the results may be misleading. Such situations may result in larger variances and will directly impact

the calculation of the test statistic, which will lead to decreased power to reject the null hypothesis.

In Chapter 4, we considered data from longitudinal studies where Poisson count outcomes are

measured repeatedly on subjects over time. Our objective was to fit a Poisson regression model to

relate the expected value of the outcomes with covariates, while also adjusting for over-dispersion

and the intra-subject correlation of measurements.

We presented a maximum-likelihood based method for analysis of longitudinal count data. Key

assumptions of our approach were the first-order Markov property; linearity of the conditional ex-

pectations; conditional distributions that were Poisson; and constant adjacent correlation of mea-

surements. These assumptions resulted in marginal distributions with the usual marginal means

for Poisson regression but with over-dispersion owing to variances that were inflated relative to

the Poisson distribution (Guerra and Shults, 2014; Guerra et al., 2012). The over-dispersion was

induced by the adjacent correlations, so that higher values for the correlation resulted in more

over-dispersion, while zero correlation yielded the usual model for Poisson regression. The as-

sumptions also induced an AR(1) correlation structure for the measurements pertaining to each

subject. Our approach could therefore be viewed as an extension of traditional Poisson regression
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for over-dispersed count data with an AR(1) correlation structure.

We provided an estimation algorithm and developed software in R to implement the algorithm that

we demonstrated in two analyses. We also performed simulations to compare our method with

GEE. Our simulations indicated that our approach had better small sample efficiency than GEE for

all simulation scenarios, and especially for higher values of the correlation.

An additional benefit of a maximum likelihood based approach relative to a semi-parametric ap-

proach like GEE includes access to the maximized log-likelihood that can be used to conduct like-

lihood ratio tests and to obtain measures such as the AIC and BIC that can be used to compare

nested models. If the model is correctly specified, the maximum likelihood estimators will also have

smallest asymptotic variance amongst a large class of estimators. Our maximum likelihood ap-

proach is also valid when data are missing at random, while the GEE approach requires the more

restrictive missing completely at random assumption regarding the missing data mechanism (Liang

and Zeger, 1986).

To encourage the use of the methodology for longitudinal count data by others, we plan to develop

an R package that will be based on the R code that we developed for this dissertation. Future

work is planned to translate this software to other software packages, including SAS and Stata.

Extensions to unequally spaced data and to other distributions might also be considered.
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APPENDIX A

CHAPTER 1

A.1. Estimated Variance of ĈS(b | a)

Define the estimated nonparametric time-conditional survival probability, ĈS(b | a), as in Equation

2.2 given by

ĈS(b | a) =
Ŝ(b)

Ŝ(a)
=

∏
j:t(j)≤b (1− π̂j)∏
j:t(j)≤a (1− π̂j)

=
∏

j:a<t(j)≤b

(1− π̂j) .

In this Appendix, we derive the formula currently used in the literature to estimate symmetric confi-

dence bands for ĈS(b | a).

Applying the natural logarithm transformation, log ĈS(b | a) =
∑
j:a<t(j)≤b(1− π̂j). By the δ-method,

V ar
(

log ĈS(b | a)
)
≈

∑
j:a<t(j)≤b

(
∂log(1− πj)

∂πj

)2(
V ar(π̂j)

)

=
∑

j:a<t(j)≤b

(
1

1− πj

)2(
πj(1− πj)

nj

)

=
∑

j:a<t(j)≤b

πj
nj(1− πj)

.

Using the MLE for πj , π̂j =
dj
nj

, an estimator of V ar
(

log ĈS(b | a)
)

is given by

V̂ ar(log ĈS(b | a)) =
∑

j:a<t(j)≤b

dj
nj(nj − dJ)

.

Using the δ-method and the relationship ĈS(b | a) = exp[log ĈS(b | a)], the variance for the estima-

tor is given by

V ar(ĈS(b | a)) ≈
(
∂ exp[log ĈS(b | a)]

∂ log ĈS(b | a)

)2

V [log ĈS(b | a)]

=

(
exp[log ĈS(b | a)]

)2 ∑
j:a<t(j)≤b

πj
nj(1− πj)

,

and is a variation of Greenwood’s formula (Greenwood, 1926). This quantity is consistently esti-
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mated by

V̂ ar
(
ĈS(b | a)

)
=
[
ĈS(b | a)

]2 ∑
j:a<t(j)≤b

dj
nj(nj − dj)

,

and provides a large sample variance of the estimator of time-conditional survival probability. This

estimated variance can be used to provide symmetric confidence bands for ĈS(b | a).
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A.2. Estimated Covariance of CS1(b1 | a1) and CS2(b2 | a2)

In this Appendix, we derive the covariance of two time-conditional survival probabilities. First,

consider the covariance between two log time-conditional survival probabilities given by

log
[
ĈS1(b1 | a1)

]
=

∑
j:a1<t(j)≤b1

log(1− π̂j),

and

log
[
ĈS2(b2 | a2)

]
=

∑
j:a2<t(j)≤b2

log(1− π̂j).

We consider two cases for the relationships between a1, a2, b1, and b2. The first case is for two

non-overlapping log time-conditional survival probabilities and the second is for two overlapping log

time-conditional survival probabilities.

Case 1. For two non-overlapping log time-conditional survival probability estimators, define fixed

event times a1, b1, a2, b2 such that 0 ≤ a1 < b1 < a2 < b2 ≤ t(J). Then, the covariance of these

estimators is given by

Cov

(
log
[
ĈS1(b1 | a1)

]
, log

[
ĈS2(b2 | a2)

])
= Cov

( ∑
j:a1<t(j)≤b1

log(1− π̂j),
∑

j:a2<t(j)≤b2

log(1− π̂j)
)

= Cov

(
log(1− π̂a1) + log(1− π̂a1+1) + · · ·+ log(1− π̂b1),

log(1− π̂a2) + log(1− π̂a2+1) + · · ·+ log(1− π̂b2)
)

= Cov(log(1− π̂a1), log(1− π̂a2)) + Cov(log(1− π̂a1), log(1− π̂a1+1))

+ · · ·+ Cov(log(1− π̂b1), log(1− π̂b2))

= 0,

since Cov(π̂j , π̂k) = 0,∀j 6= k (Lachin, 2000). That is, if (a1, b1) and (a2, b2) are chosen such

that these log time-conditional survival proportions sum over non-overlapping intervals, then the

time-conditional survival proportions obtained from these fixed event times are uncorrelated.

Case 2. For two overlapping log time-conditional survival proportions, consider fixed event times

a1, b1, a2, b2 such that 0 ≤ a1 ≤ a2 ≤ b1 ≤ b2 ≤ t(J). The covariance between these estimators is
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given by

Cov

(
log
[
ĈS1(b1 | a1)

]
, log

[
ĈS2(b2 | a2)

])
= Cov

( ∑
j:a1<t(j)≤b1

log(1− π̂j),
∑

j:a2<t(j)≤b2

log(1− π̂j)
)

= Cov

( ∑
j:a1<t(j)≤a2

log(1− π̂j) +
∑

j:a2<t(j)≤b1

log(1− π̂j),

∑
j:a2<t(j)≤b1

log(1− π̂j) +
∑

j:b1<t(j)≤b2

log(1− π̂j)
)

= Cov

( ∑
j:a1<t(j)≤a2

log(1− π̂j),
∑

j:a2<t(j)≤b1

log(1− π̂j)
)

+ Cov

( ∑
j:a1<t(j)≤a2

log(1− π̂j),
∑

j:b1<t(j)≤b2

log(1− π̂j)
)

+ Cov

( ∑
j:a2<t(j)≤b1

log(1− π̂j),
∑

j:a2<t(j)≤b1

log(1− π̂j)
)

+ Cov

( ∑
j:a2<t(j)≤b1

log(1− π̂j),
∑

j:b1<t(j)≤b2

log(1− π̂j)
)

= V ar

( ∑
j:a2<t(j)≤b1

log(1− π̂j)
)

= V ar(log ĈS(b1 | a2)) =
∑

j:a2<t(j)≤b1

πj
nj(1− πj)

,

and this is estimated by

V̂ ar(log ĈS(b1 | a2)) =
∑

j:a2<t(j)≤b1

dj
nj(nj − dj)

.

This is the covariance formula given by Equation 2.11 in Section 2.3.

When considering the covariance between two estimators of time-conditional survival probabilities,

we use the δ-method and the relationship,

ĈS(b1 | a2) = exp[log ĈS(b1 | a2)],
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to obtain the variance given by

V ar(ĈS(b1 | a2)) ∼=
(
∂ exp[log ĈS(b1 | a2)]

∂ log(ĈS(b1 | a2)

)2

V ar[log ĈS(b1 | a2)]

=

(
exp[log ĈS(b1 | a2)]

)2 ∑
j:a2<t(j)≤b1

πj
nj(1− πj)

,

which is estimated by

V̂ ar(ĈS(b1 | a2)) =
[
ĈS(b1 | a2)

]2 ∑
j:a2<t(j)≤b1

dj
nj(nj − dj)

as in Equation 2.3.
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A.3. Estimated Mean and Variance of log ĈS

The Central Limit Theorem, the Law of Large Numbers, and Slutsky’s Theorem are used to derive

the large sample distribution of log ĈS. Define a sample of observations (ti, δi), i = 1, . . . , n,

observed at J distinct times, t(1) < t(2) < · · · < t(J) where the underlying survival distribution is a

step function that has points of discontinuity at these event times. Then the likelihood is given by

L(π1, π2, . . . , πJ) ∝
J∏
j=1

π
dj
j (1− πj)(nj−dj),

where πj is the conditional probability of an event at t(j), nj is the number of subjects at risk or still

under observation at time t(j), and dj is the number of events observed at time t(j) among the nj

subjects at risk at time t(j). Information on censoring is accounted for by defining wj as the number

of observations that are right censored at times after the jth event time, but prior to the (j + 1)th

time. From the log likelihood, l(π1, . . . , πJ), the estimating equation for πj is given by

∂l(π1, . . . , πJ)

∂πj
=
dj
πj
− nj − dj

1− πj
= 0,

for 1 ≤ j ≤ J . Then the maximum likelihood estimator of the jth conditional probability is obtained

by solving the above estimating equation and is given by

π̂j =
dj
nj
.

Using the Central Limit Theorem, as nj approaches infinity, the maximum likelihood estimator π̂j

has an asymptotic distribution given by

√
nj (π̂j − πj)

d−→ N (0, πj(1− πj)) .

Define time-conditional survival probability, CS(b | a) for fixed times a and b such that a < b, as

CS(b | a) =
∏

j:a<t(j)≤b

(1− πj) .

Note that this has the same functional form that is used in the Kaplan-Meier estimator defined over
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the range a < t(j) ≤ b. Like the survival function, the time-conditional survival estimator is a product

of probabilities. We use the log transformation to obtain the mean and variance of the estimate.

Define log time-conditional survival probability, for fixed times a and b such that a < b, as

logCS(b | a) =
∑

j:a<t(j)≤b

log (1− πj) ,

as a sum of probabilities.

Applying the Taylor Series expansion to the log transformation given by log(1− πj), we have

log(1− π̂j) = log(1− πj)−
1

1− π
(π̂j − πj) +R2(a),

where

R2(a) = (π̂j − πj)2 · −1

2(1− πj)2
.

Asymptotically, as nj approaches infinity, R2(a) → 0, since π̂j is consistent for πj . We derive the

asymptotic distribution of this transformation by applying the Taylor Series expansion from the log

transformation, log(1− πj), and, asymptotically, we have

√
nj (log(1− π̂j)− log(1− πj)) =

√
nj ·

(πj − π̂j)
1− πj

+
√
nj ·R2(a), (A.1)

where R2(a) is defined above. Since π̂j follows an asymptotically normal distribution, the first term

in Equation A.1 also follows an asymptotically normal distribution. Further, Lachin, 2000 shows that
√
n · R2(a)

p−→ 0 by defining a sequence of values pn as n → ∞ and showing that pn is a sample

mean of n Bernoulli variables making it an
√
n-consistent estimator of π implying that (pn−π)2 → 0

faster than
√
n. Using this information, we define √nj (log(1− π̂j)− log(1− πj)) as the sum of two

random variables shown above (Equation A.1). Of these, the first term converges in distribution to

the normal distribution while the second term converges in probability to a constant of zero.

From Slutsky’s Theorem for convergence in distribution, we have

√
nj (log(1− π̂j)− log(1− πj))

d−→ N

(
0,

(
d log(1− πj)

dπj

)2

· πj(1− πj)

)
,
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where we have consistency given by

log(1− π̂j)
p−→ log(1− πj).

Then, by the δ-method, we have derived the first two large sample moments of this non-linear

transformation as

E(log(1− π̂j)) ∼= log(1− πj),

and

V ar(log(1− π̂j)) ∼=
πj

nj(1− πj)
.

To derive the large sample asymptotic distribution for time-conditional survival probability, let nj and

n be large such that nj/n converges in probability to ωj , nj/n
p−→ ωj . Under this convergence in

probability, the asymptotically normal distribution for the estimator of log time-conditional survival

probability is given by

√
n

(∑
j:a<t(j)≤b log(1− π̂j)−

∑
j:a<t(j)≤b log(1− πj)

)
√∑

j:a<t(j)≤b
π̂j

ω̂j(1−π̂j)

d−→ N(0, 1).

Substituting the maximum likelihood estimator, π̂j , gives the estimated mean and variance as

Ê
(

log ĈS(b | a)
)

=
∑

j:a<t(j)≤b

log

(
1− dj

nj

)
,

and

V̂ ar
(

log ĈS(b | a)
)

=
∑

j:a<t(j)≤b

dj
nj(nj − dj)

,

respectively. From the consistency of the MLE for πj , a consistent estimator for the variance of

time-conditional survival probability is given by

V̂ ar[log ĈS(b | a)]
p−→

∑
j:a<t(j)≤b

πj
ωj(1− πj)

.

Peterson Jr, 1977 showed that, under random censoring, whatever the form of the true underlying
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survival distribution, it is given that

lim
n→∞

Ŝ(t)
p−→ lim

n→∞
S(t).

Then, applying the logarithm transformation,

lim
n→∞

log Ŝ(t)
p−→ lim

n→∞
logS(t).

For two time points, a and b such that b > a where a, b ≥ 0, it holds that,

lim
n→∞

log Ŝ(b)− log Ŝ(a)
p−→ lim

n→∞
logS(b)− logS(a),

and this is re-written to show

lim
n→∞

ĈS(b | a)
p−→ lim

n→∞
CS(b | a).

This implies that, as the number of observations and, therefore, the number of events becomes

larger, the intervals between steps in the nonparametric Kaplan-Meier step function estimating the

probability become smaller and converge to the true underlying distribution. The successive con-

ditional probabilities that estimate the conditional probability of surviving beyond an instant of time

given survival up to that time, denoted as π̂j , are not statistically independent, but they are uncor-

related (Lachin, 2000). Further, this vector of probabilities is multivariate normally asymptotically

distributed. In addition, the successive probabilities are asymptotically conditionally independent,

that is, conditional on the numbers at risk at the preceding event times.

Define the general p-vector profile of log time-conditional survival probability estimators given by

log ĈS =
(

log ĈS1(b1 | a1), log ĈS2(b2 | a2), . . . , log ĈSp(bp | ap)
)
.

This profile is defined by a fixed difference between time bi and time ai where i = 1, . . . , p such that

bi − ai = c, ∀i. Then the large sample asymptotic distribution for an estimated p-vector profile is

given by

log ĈS d−→ N
(
E[log ĈS], V ar[log ĈS]

)
,
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such that

E[log ĈS] ∼= log CS,

and

V ar[log ĈS] ∼= Σ,

where Σ is estimated as shown in Equations 2.10 and 2.11 and are derived below. The estimated

mean and the estimated variance are above.

To determine the terms of the covariance matrix, Equations 2.8 and 2.9 define any two estimators

of log time-conditional survival probabilities by

log ĈSl(bl | al) and log ĈSm(bm | am),

where 1 ≤ l,m ≤ J and where al, bl, am, bm are fixed times such that 0 ≤ al ≤ am ≤ bl ≤ bm ≤ t(J).

The elements of the covariance matrix, Σ, for l = m are given by

Σll = V ar
(

log ĈSl(bl | al)
)

=
∑

j:al<t(j)≤bl

πj
nj(1− πj)

,

and for l 6= m are given by

Σlm = Cov
(

log ĈSl(bl | al), log ĈSm(bm | am)
)

=
∑

j:am<t(j)≤bl

πj
nj(1− πj)

.

The covariance matrix, Σ, is consistently estimated by Σ̂ where the elements of Σ̂ for l = m are

given by

Σ̂ll = V̂ ar
(

log ĈSl(bl | al)
)

=
∑

j:al<t(j)≤bl

dj
nj(nj − dj)

, (A.2)

as shown earlier in Appendix A.2 and for l 6= m are given by

Σ̂lm = Ĉov
(

log ĈSl(bl | al), log ĈSm(bm | am)
)

=
∑

j:am<t(j)≤bl

dj
nj(nj − dj)

. (A.3)

See Appendix Section A.2 for a detailed derivation. The covariance is 0 if al, bl, am, bm are non-

overlapping fixed times such that 0 ≤ al < bl < am < bm ≤ t(J).
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APPENDIX B

CHAPTER 3

B.1. Partial derivatives for the Weibull distribution with continuous and categorical

covariates

Below are partial derivatives of the parametric time-conditional survival probability for the Weibull

distribution for a vector of covariates, z = (z1, z2, . . . , zp)
T , where β = (β1, β2, . . . , βp)

T . Define

time-conditional survival from this distribution by

CS =
exp (−bαλ exp(β′z))

exp (−aαλ exp(β′z))

then the first degree partial derivatives are given by

∂CS

∂α
=

(
exp (−bαλ exp(β′z)) · log(b) · (−bαλ exp(β′z)) · exp (−aαλ exp(β′z))

− exp (−aαλ exp(β′z)) · log(a) · (−aαλ exp(β′z)) · exp (−bαλ exp(β′z))

)
× (exp (−2aαλ exp(β′z)))

−1

=

(
exp (−bαλ exp(β′z)) · log(b) · (−bαλ exp(β′z))

− exp (−bαλ exp(β′z)) · log(a) · (−aαλ exp(β′z))

)
× (exp (−aαλ exp(β′z)))

−1

=
exp (−bαλ exp(β′z))λ exp(β′z) (aα log(a)− bα log(b))

exp (−aαλ exp(β′z))
,

∂CS

∂λ
=

(
− bα exp(β′z) exp (−bαλ exp(β′z)) exp (−aαλ exp(β′z))

+ aα exp(β′z) exp (−aαλ exp(β′z)) exp (−bαλ exp(β′z))

)
× (exp (−2aαλ exp(β′z)))

−1

=
aα exp(β′z) exp (−bαλ exp(β′z))− bα exp(β′z) exp (−bαλ exp(β′z))

exp (−aαλ exp(β′z))

=
exp(β′z) exp (−bαλ exp(β′z)) (aα − bα)

exp (−aαλ exp(β′z))
,
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and

∂CS

∂β
=

(
(−bαλz) exp (−bαλ exp(β′z) + β′z) exp (−aαλ exp(β′z))

− (−aαλz) exp (−aαλ exp(β′z) + β′z) exp (−bαλ exp(β′z))

)
× (exp (−2aαλ exp(β′z)))

−1

=
aαλz exp(β′z) exp (−bαλ exp(β′z))− bαλz exp(β′z) exp (−bαλ exp(β′z))

exp (−aαλ exp(β′z))

=
λz exp(β′z) exp (−bαλ exp(β′z)) (aα − bα)

exp (−aαλ exp(β′z))
.

These partial derivatives are used to derive the large variance of an estimate of time-conditional sur-

vival probability and to find the large sample covariance between any two distinct time-conditional

survival probability estimates from the same sample.
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B.2. Extending computations for the Logistic-Weibull with covariates

Below are the partial derivatives necessary to carry out the derivations described in Section 3.4

(based on Equation 3.13 and Equation 3.14). Define a time-conditional survival estimate from the

Logistic-Weibull cure model extended to include multiple covariates as given by

CS(b | a,x, z)

=
exp(η′z) exp(−bα · λ · exp(ζ′x)) + 1

exp(η′z) exp(−aα · λ · exp(ζ′x)) + 1

where b = a + ∆, z = (1, z1, z2, . . . , zp)
T , η = (η0, η1, η2, . . . , ηp)

T , x = (x1, x2, . . . , xk)T , and

ζ = (ζ1, ζ2, . . . , ζk)T . Then the partial derivatives are given by

∂CS

∂η
=

(
z exp

(
−bαλ exp

(
ζ′x
))

exp
(
η′z
)

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)

− z exp
(
−aαλ exp

(
ζ′x
))

exp
(
η′z
)

×
(
exp

(
η′z
)

exp
(
−bαλ exp

(
ζ′x
))

+ 1
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)−2

,

∂CS

∂λ
=

(
− exp

(
η′z
)
· bα · exp

(
ζ′x
)

× exp
(
−bαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)

+ exp
(
η′z
)
· aα · exp

(
ζ′x
)

× exp
(
−aαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−bαλ exp

(
ζ′x
))

+ 1
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)−2

,
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∂CS

∂α
=

(
− exp

(
η′z
)
λ exp

(
ζ′x
)

× bα · log b exp
(
−bαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)

+ exp
(
η′z
)
λ exp

(
ζ′x
)

× aα · log a exp
(
−aαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−bαλ exp

(
ζ′x
))

+ 1
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)−2

,

and

∂CS

∂ζ
=

(
− exp

(
η′z
)
· bα · λ · x · exp

(
ζ′x
)

× exp
(
−bαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)

+ exp
(
η′z
)
· aα · λ · x · exp

(
ζ′x
)

× exp
(
−aαλ exp

(
ζ′x
))

×
(
exp

(
η′z
)

exp
(
−bαλ exp

(
ζ′x
))

+ 1
))

×
(
exp

(
η′z
)

exp
(
−aαλ exp

(
ζ′x
))

+ 1
)−2

.
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B.3. Cure model sensitivity analyses

The objective of the sensitivity analyses was to assess the effect of including a covariate in the

survival and/or the probability components of the cure model on the time-conditional survival prob-

ability estimates. While we assessed several models, the results from four models are presented

here to illustrate the relationship.

• M1: Thickness (Logistic and Weibull)

• M2: Thickness (Logistic and Weibull) and Ulceration (Weibull)

• M3: Thickness (Logistic and Weibull) and Ulceration (Logistic)

• M4: Thickness (Logistic and Weibull) and Ulceration (Logistic and Weibull)

We first start by looking at the estimated β values from the cure model (Table B.1). In looking at the

Logistic component of the cure model, the range of estimates for thickness was from 0.1264 (M1) up

to 0.1337 (M4). For the Weibull component of the cure model, the range of estimates for thickness

was from 0.0771 (M2) up to 0.0788 (M3). After including ulceration in the Weibull component only

(M2), the estimate of thickness in the Weibull component was the smallest among the 4 models and

the estimate of thickness in the Logistic component increased slightly from M1. Including ulceration

in the Logistic component only (M3), the estimate of thickness in the Weibull component was the

largest among the 4 models and the estimate of thickness in the Logistic component was greater

than in M1 and in M2.

After including ulceration in both components of the model (M4), the estimate of thickness in the

Weibull component was greater than in M1 and M2 and the estimate of thickness in the Logistic

component was the largest among the four models. Thickness remained significant in all four

models (all p < .0001) irrespective of the inclusion of ulceration. Ulceration was significant in all four

models though the p-value was slightly greater (closer to the critical value of 0.05) when included

in both components in M4 (p < .0001 in the Logistic component in M3 versus p = 0.0018 in M4 and

p < .0001 in the Weibull component in M2 versus p = 0.0007 in the Weibull component in M4).

Assessing the Akaike information criterion (AIC) and Bayesian information criterion (BIC) mea-

sures of the four models, M4 (ulceration in both components) had the smallest AIC at 8751.7 and
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the smallest BIC at 8794.8. The largest estimated AIC and BIC were for M1 (thickness in both

components) at 8774.7 and 8805.4, respectively. M2 had the second smallest estimated AIC and

BIC at 8759.4 and 8796.3, respectively, and M3 has the second largest estimated AIC and BIC at

8760.6 and 8797.6, respectively.

As these models are nest, we computed the likelihood ratio test given by

G = −2 ∗ (logL(reducedmodel)) + 2 ∗ (logL(fullmodel)).

Table B.2 shows the results of the calculations. When the model with ulceration in both components

(M4) was compared to the model with ulceration in the Logistic component of the cure model

only (M3), the test statistic was 10.9 and the p-value was 0.0010. Similarly, when the model with

ulceration in both components (M4) was compared to the model with ulceration in the Weibull

component of the cure model only (M2), the test statistic was 9.7 and the p-value was 0.0018. This

indicated that the model with ulceration in both components is better than each of the models with

ulceration in just one component.

Further, we compared the model without ulceration (M1) to the model with ulceration in the Logis-

tic component of the cure model only (M3) and found the test statistic was 16.1 and the p-value

was ¡.0001. Similarly, when the model without ulceration (M1) was compared to the model with

ulceration in the Weibull component of the cure model only (M2), the test statistic was 17.3 and the

p-value was ¡.0001. This indicated that the model without ulceration has poorer fit to these data

than each of the models with ulceration in just one component.

Next, we assessed the effect of ulceration across these four models on the estimates of time-

conditional survival. As in the analysis presented in the chapter, we fixed tumor thickness at 3.58

mm and varied ulceration status (with and without ulceration). We present the estimated 5-year

time-conditional survival probabilities given survival beyond 1 and beyond 10 years after diagno-

sis in Table B.3. For these data, we found the pairwise comparisons of 5-year time conditional

survival given survival beyond 1 year versus given survival beyond 10 years after diagnosis were

significantly different in all the models evaluated.
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From the 7 comparisons, the estimate of 5-year time-conditional survival given survival beyond 1

year after diagnosis and also the smallest estimate given survival beyond 10 years after diagnosis

was smallest for comparison 5 under M3 (ulceration in the Logistic component of the cure model

only) with ulceration present (0.9068 and 0.9935, respectively). The estimated difference in 5-

year time-conditional survival given 1 and given 10 years after diagnosis was the largest among

the 7 comparisons at 0.0867 and the hypothesis test indicated there was a significant difference

in the two time-conditional survival estimates (p < .0001). The largest estimate of 5-year time-

conditional survival given 1 year after diagnosis and also the largest estimate given 10 years after

diagnosis was for comparison 3 under M2 (ulceration in the Weibull component of the cure model

only) with ulceration present (0.9389 and 0.9966, respectively). The estimated difference in 5-

year time-conditional survival given 1 and given 10 years after diagnosis was the smallest for this

comparison among all 7 comparisons at 0.0577 and the hypothesis test indicated there was a

significant difference in the two time-conditional survival estimates (p < .0001).

While the smallest observed difference in 5-year time-conditional survival estimates was observed

for comparison 3 for M2 with ulceration present (ulceration in the Weibull component), this was

closest in magnitude to the three comparisons for patients without ulceration ranging at 0.0636 for

comparison 4 (M3: ulceration in the Logistic component only), 0.0641 for comparison 6 (M4: ulcer-

ation in both components), and 0.0693 for comparison 2 (M2: ulceration in the Weibull component

only). The larger estimated differences in 5-year time-conditional survival given survival beyond 1

and 10 years after diagnosis were 0.0701 for comparison 1 (M1: thickness in both components),

0.0707 for comparison 7 (M4: ulceration in both components), and 0.0867 for comparison 5 (M3:

ulceration in the Logistic component only).

Overall, for M2 with ulceration in the Weibull component only, patients with a tumor thickness of 3.58

mm (the sample average) and with ulceration saw a smaller increase in estimated time-conditional

survival relative to those without ulceration (0.0577 for comparison 3 versus 0.0693 for comparison

2). All models for patients with a tumor thickness of 3.58 mm and without ulceration saw a smaller

difference in 5-year time-conditional survival relative to the model with tumor thickness only (com-

parisons 4, 6, and 2 had smaller estimates relative to comparison 1). Further, for M3 with ulceration

in the Logistic component only, patients with a tumor thickness of 3.58 mm and without ulceration

had a higher initial estimated 5-year time-conditional survival probability given 1 year after survival
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and saw a smaller increase in estimated difference in time-conditional survival relative to those with

ulceration (0.0636 for comparison 4 versus 0.0867 for comparison 5). For M4 with ulceration in both

components, patients with a tumor thickness of 3.58mm and without ulceration also had a higher

initial estimated 5-year time-conditional survival probability given 1 year after survival and saw a

smaller increase in estimated difference in time-conditional survival relative to those with ulceration

(0.0641 for comparison 6 versus 0.0707 for comparison 7).
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Table B.1: Maximum likelihood estimates from four Weibull mixture cure models for disease-specific
survival.

Variable M1 M2 M3 M4

Logistic Model
Intercept −1.0310∗ −1.0373∗ −1.1555∗ −1.142∗

Thickness (mm) 0.1264∗ 0.1289∗ 0.1323∗ 0.1337∗

Ulceration (vs without) – – 0.3472∗ 0.2743∗∗

Weibull Survival Model
Intercept (Weibull) 1.8716∗ 1.9446∗ 1.8787∗ 1.9301∗

Thickness (mm) 0.0773∗ 0.0771∗ 0.0788∗ 0.0774∗

Ulceration (vs without) – 0.3293∗ – 0.2753∗∗∗

Shape (Weibull) 0.6915∗ 0.6882∗ 0.6920∗ 0.6870∗

∗p-value < .0001, ∗∗p-value = 0.0018, ∗∗∗ p-value = 0.0007
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Table B.2: Results from the likelihood ratio test for nested models.

Reduced Model Full Model Test Statistic p-value

M3 M4 10.9 0.0010
M2 M4 9.7 0.0018
M1 M3 16.1 < .0001
M1 M2 17.3 < .0001
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Table B.3: Estimates of 5-year time-conditional survival probability from four Weibull mixture cure
models for disease-specific survival adjusting for fixed tumor thickness (3.58mm) and varying ul-
ceration status.

Ulceration ĈS(6 | 1) ĈS(15 | 10) Estimates
Comparison i Status (j = 1) (j = 2) (H1) p-value

1 (M1) – 0.9248 0.9949 0.0701 < .0001
2 (M2) 0 0.9248 0.9941 0.0693 < .0001
3 (M2) 1 0.9389 0.9966 0.0577 < .0001
4 (M3) 0 0.9318 0.9954 0.0636 < .0001
5 (M3) 1 0.9068 0.9935 0.0867 < .0001
6 (M4) 0 0.9306 0.9947 0.0641 < .0001
7 (M4) 1 0.9249 0.9956 0.0707 < .0001
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APPENDIX C

CHAPTER 4

C.1. Partial derivatives

Recall that our assumed likelihood is given by,

L(β, α) =

m∏
i=1

exp (yi1ln(λi1)− λi1 − ln(yi1!))

ni∏
j=2

exp (yij ln(λij
∗)− λij∗ − ln(yij !)) .

Define `(β, α) = Ln(L(β, α)). Taking natural logs then yields,

`(β, α) = Ln(L(β, α))

=

m∑
i=1

(yi1θi1 − exp(θi1)− ln(yi1!))

+ (yi2θi2
∗ − exp(θi2

∗)− ln(yi2!))

+

ni∑
j=3

(yijθij
∗ − exp(θij

∗)− ln(yij !)) ,

(C.1)

where θi1 = ln(λi1) = x′i1β and θij∗ = ln(λij
∗) for j = 2, . . . , ni.

As noted earlier, to obtain maximum likelihood estimates of β and of α we need to solve the following

estimating equations:

∂ln (L(β, α))

∂β
= 0

and

∂ln (L(β, α))

∂α
= 0.
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The partial derivative for the estimating equations with respect to β is given by,

∂

∂β
`(β, α) =

m∑
i=1

yi1xi1 − λi1xi1

+

(
xi2λi2 +

α√
1− α2

√
λi2
2

(
yi1√
λi1

(xi2 − xi1)−
√
λi1(xi2 + xi1)

))

×

(
yi2

(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)

)−1

− 1

)

+

ni∑
j=3

(
xijλij +

α
√
λij

2

(
yij−1√
λij−1

(xij − xij−1)−
√
λij−1(xij + xij−1)

))

×

yij (λij + α

√
λij
λij−1

(yij−1 − λij−1)

)−1

− 1

 ,

(C.2)

and the partial derivative with respect to α is given by

∂

∂α
`(β, α) =

m∑
i=1

(
(1− α2)−3/2

√
λi2
λi1

(yi1 − λi1)

)

×

yi2(λi2 +
α√

1− α2

√
λi2
λi1

(yi1 − λi1)

)−1

− 1


+

ni∑
j=3

(√
λij
λij−1

(yij−1 − λij−1)

)

×

yij (λij + α

√
λij
λij−1

(yij−1 − λij−1)

)−1

− 1

 .

(C.3)

The elements of the matrix of second-order partial derivatives of the log likelihood, called the Hes-
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sian matrix, are given by,

∂2`(β, α)

∂β∂β′
=

m∑
i=1

(−xi1xi1λi1)

+

(
xi2xi2λi2 +

(
α√

1− α2

√
λi2
2

xi2
2

)
×
(
yi1(xi2 − xi1)√

λi1
− (xi2 + xi1)

√
λi1

)

−
(
yi1(xi2 − xi1)xi1

2
√
λi1

+
(xi2 + xi1)xi1

√
λi1

2

)
×
(

α√
1− α2

√
λi2
2

))

×
(
yi2
(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)
)−1

− 1
))

−

(
yi2
(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)
)−2

×
(
xi2λi2 +

α√
1− α2

(1
2

√
λi2
λi1

(xi2 − xi1)(yi1 − λi1)− xi1λi1
√
λi2
λi1

)))

×

((
xi2λi2 +

α√
1− α2

√
λi2
2

(
yi1√
λi1

(xi2 − xi1)−
√
λi1(xi2 + xi1)

)))

+

ni∑
j=3

xijxijλij +

(
α

√
λij

2

xij
2

)
×

(
yij−1(xij − xij−1)√

λij−1

− (xij + xij−1)
√
λij−1

)

−

(
yij−1(xij − xij−1)xij−1

2
√
λij−1

+
(xij + xij−1)xij−1

√
λij−1

2

)
×

(
α

√
λij

2

)

×
(
yij
(
λij + α

√
λij
λij−1

(yij−1 − λij−1)
)−1

− 1
))

−

(
yij
(
λij + α

√
λij
λij−1

(yij−1 − λij−1)
)−2

×

(
xijλij + α

(
1

2

√
λij
λij−1

(xij − xij−1)(yij−1 − λij−1)− xij−1λij−1

√
λij
λij−1

)))

×

(
xijλij + α

√
λij

2

(
yij−1√
λij−1

(xij − xij−1)−
√
λij−1(xij + xij−1)

))
,

(C.4)
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∂2`(β, α)

∂β∂α
=

m∑
i=1

(
(1− α2)−3/2

(
1

2

√
λi2
λi1

(xi2 − xi1)(yi1 − λi1)− xi1λi1
√
λi2
λi1

))

×

(
yi2

(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)

)−1

− 1

)

−

(
yi2

(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)

)−2

×

(
xi2λi2 +

α√
1− α2

(
1

2

√
λi2
λi1

(xi2 − xi1)(yi1 − λi1)− xi1λi1
√
λi2
λi1

)))

×

(
(1− α2)−3/2

√
λi2
λi1

(yi1 − λi1)

)

+

ni∑
j=3

((
1

2

√
λi2j
λij−1

(xij − xij−1)(yij−1 − λij−1)− xij−1λij−1

√
λij
λij−1

))

×

yij (λij + α

√
λij
λij−1

(yij−1 − λij−1)

)−1

− 1


−

(
yij

(
λij + α

√
λij
λij−1

(yij−1 − λij−1)

)−2

×

(
xijλij + α

(
1

2

√
λij
λij−1

(xij − xij−1)(yij−1 − λij−1)− xij−1λij−1

√
λij
λij−1

)))

×

(√
λij
λij−1

(yij−1 − λij−1)

)
,

(C.5)

and

∂2`(β, α)

∂α2
=

m∑
i=1

(√
λi2
λi1

(yi1 − λi1)
3α

(1− α2)5/2

)

×

(
yi2

(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)

)−1

− 1

)

− yi2

(
λi2 +

α√
1− α2

√
λi2
λi1

(yi1 − λi1)

)−2

×

(√
λi2
λi1

(yi1 − λi1)(1− α2)−3/2

)

×

(
(1− α2)−3/2

√
λi2
λi1

(yi1 − λi1)

)

+

ni∑
j=3

(
− yij

(
λij + α

√
λij
λij−1

(yij−1 − λij−1)

)−2

×

(√
λij
λij−1

(yij−1 − λij−1)

))

×

(√
λij
λij−1

(yij−1 − λij−1)

)
.

(C.6)
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C.2. R function for log likelihood

1 # ###################################################################

2 ## Log Likelihood function

3 ## This function was written by Victoria Gamerman

4 # ###################################################################

5

6 logl3 <- function(start.values){

7 alpha <- start.values [1]

8 beta <- start.values [2: length(start.values)]

9 formula <- y ~ trt + base + age

10 # id <- epil$id

11 # time <- epil$period

12 d <- dim(epil)

13 k <- length(all.vars(formula))-1

14 dt.fm<- data.frame(epil)

15

16 dataset <- data.proc(data=dt.fm,formula=formula ,time=time ,id=id,del.n=0)

17 m<- dataset$m

18 n<- dataset$n

19 id<- dataset$id

20 time <- dataset$time

21

22 l_beta_a <- 0

23 l_beta_b <- 0

24 l_beta_c <- 0

25 for (i in 1:m){

26 data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data)[2])

27 data_i[1:n[i],1:dim(dataset$data)[2]] <- dataset$data[which(id==i),]

28 data.end <- ncol(data_i)

29 x_i <- matrix(NA, nrow=n[i], ncol=k+1)

30 x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]

31 y_i<- data_i[,data.end]

32 n_i <- nrow(data_i)

33

34 for (j in 1:n_i){

35 if (j == 1){

36 lam_ij <- exp(t(beta)%*%x_i[j,])

37 lam_ij <- lam_ij[1]

38 l_beta_a <- l_beta_a + y_i[j]*log(lam_ij) - exp(log(lam_ij)) - log(factorial(y_i[j]))

39 }

40 if (j == 2){

41 lam_ij <- exp(t(beta)%*%x_i[j,])

42 lam_ij <- lam_ij[1]
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43 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

44 lam_ij_1 <- lam_ij_1[1]

45 lamdot_i2 <- lam_ij + (alpha / sqrt(1-alpha ^2))*sqrt(lam_ij / lam_ij_1)*(y_i[j-1] - lam_ij_

1)

46 if(is.finite(lamdot_i2) == FALSE){ lamdot_i2 <- 0.2} # constraint check

47 if(lamdot_i2 < 0){lamdot_i2 <- 0.2} # constraint check

48 l_beta_b <- l_beta_b + y_i[j]*log(lamdot_i2) - exp(log(lamdot_i2)) - log(factorial(y_i[j]))

49 }

50 if (j > 2){

51 lam_ij <- exp(t(beta)%*%x_i[j,])

52 lam_ij <- lam_ij[1]

53 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

54 lam_ij_1 <- lam_ij_1[1]

55 lamdot_ij <- lam_ij + alpha *sqrt(lam_ij / lam_ij_1)*(y_i[j-1] - lam_ij_1)

56 if(is.finite(lamdot_ij) == FALSE){ lamdot_ij <- 0.2} # constraint check

57 if(lamdot_ij < 0){ lamdot_ij <- 0.2} # constraint check

58 l_beta_c <- l_beta_c + y_i[j]*log(lamdot_ij) - exp(log(lamdot_ij)) - log(factorial(y_i[j]))

59 }

60 }

61 }

62 loglik <- l_beta_a + l_beta_b + l_beta_c

63 return(loglik)

64 }
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C.3. R function for gradient

1 # ###################################################################

2 ## Gradient function: It should take arguments matching those of f

3 ## and return a vector containing the gradient.

4 ## This function was written by Victoria Gamerman

5 # ###################################################################

6

7 ml.grad <- function(start.values){

8 alpha <- start.values [1]

9 beta <- start.values [2: length(start.values)]

10 data <-epil

11 # formula <- y_sim ~ trt + base + age

12 # time <- data$time

13 # id <- data$id

14 d <- dim(data)

15 k <- length(all.vars(formula))-1

16 dt.fm<- data.frame(data)

17 dataset <- data.proc(data=dt.fm,formula=formula ,time=time ,id=id,del.n=0)

18 m<- dataset$m

19 n<- dataset$n

20 id<- dataset$id

21 time <- dataset$time

22 autotime <- dataset$autotime

23

24 l_beta_a <- matrix(0,nrow=k+1, ncol =1)

25 l_beta_b <- matrix(0,nrow=k+1, ncol =1)

26 l_beta_c <- matrix(0,nrow=k+1, ncol =1)

27 l_alpha_a <- matrix(0,nrow=1, ncol =1)

28 l_alpha_b <- matrix(0,nrow=1, ncol =1)

29

30 for (i in 1:m){

31 data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data)[2])

32 data_i[1:n[i],1:dim(dataset$data)[2]] <- dataset$data[which(id==i),]

33 data.end <- ncol(data_i)

34 x_i <- matrix(NA, nrow=n[i], ncol=k+1)

35 x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]

36 y_i<- data_i[,data.end]

37 n_i <- nrow(data_i)

38

39 if (n_i>=1){

40 for (j in 1:n_i){

41 if (j == 1){

42 lam_ij <- exp(t(beta)%*%x_i[j,])

43 lam_ij <- lam_ij[1]

44 l_beta_a <- l_beta_a + y_i[j]*x_i[j,]-x_i[j,]*lam_ij
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45 }

46 if(j==2){

47 lam_ij <- exp(t(beta)%*%x_i[j,])

48 lam_ij <- lam_ij[1]

49 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

50 lam_ij_1 <- lam_ij_1[1]

51 l_alpha_a <- l_alpha_a + y_i[j]*(lam_ij + (alpha/sqrt(1-alpha ^2))*sqrt(lam_ij/lam_ij_1)*(

y_i[j-1]-lam_ij_1))^(-1)*

52 (sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1- alpha ^2)^(-3/2)))-(sqrt(lam_ij/lam_ij_1)

*(y_i[j-1]-lam_ij_1)*((1-alpha ^2)^(-3/2)))

53 l_beta_b <- l_beta_b + y_i[j]*(lam_ij+(alpha/sqrt(1-alpha ^2))*sqrt(lam_ij/lam_ij_1)*(y_i[

j-1]-lam_ij_1))^(-1)*

54 (x_i[j,]*lam_ij+(alpha/sqrt(1-alpha ^2))*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*

(y_i[j-1]-lam_ij_1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-

55 (x_i[j,]*lam_ij+(alpha/sqrt(1-alpha ^2))*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y

_i[j-1]-lam_ij_1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

56 }

57 if(j>2){

58 lam_ij <- exp(t(beta)%*%x_i[j,])

59 lam_ij <- lam_ij[1]

60 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

61 lam_ij_1 <- lam_ij_1[1]

62 l_alpha_b <- l_alpha_b + y_i[j]*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)

)^(-1)*

63 (sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)) -(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

64 l_beta_c <- l_beta_c + y_i[j]*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

^(-1)*

65 (x_i[j,]*lam_ij+alpha*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y_i[j-1]-lam_ij_

1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-

66 (x_i[j,]*lam_ij+alpha*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y_i[j-1]-lam_ij_1)-

x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

67 }

68 }

69 }

70 }

71 l_alpha <- l_alpha_a+l_alpha_b

72 l_beta <- l_beta_a+l_beta_b+l_beta_c

73 out <-t(t(c(l_alpha ,l_beta)))

74

75 return(out)

76 }
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C.4. R function for score

1 # ############################################################################

2 ## Score Squared function

3 ## This function was written by Victoria Gamerman

4 # ############################################################################

5

6 score_squared <- function(formula , data , id, time , alpha , beta){

7 formula <- y ~ trt + base + age

8 data <-epil

9 id<-epil$subject

10 time <-epil$period

11 alpha <-mle.alpha

12 beta <-mle.beta

13

14 d <- dim(data)

15 k <- length(all.vars(formula))-1

16 dt.fm<- data.frame(data)

17 dataset <- data.proc(data=dt.fm,formula=formula ,time=time ,id=id,del.n=0)

18 m<- dataset$m

19 n<- dataset$n

20 id<- dataset$id

21 time <- dataset$time

22 autotime <- dataset$autotime

23 p <- length(beta) + 1

24 squared <- matrix(0, nrow=p, ncol=p)

25

26 out.score <- matrix(NA , nrow=m, ncol=p+1)

27

28 for (i in 1:m){

29 l_beta_a <- matrix(0,nrow=k+1, ncol =1)

30 l_beta_b <- matrix(0,nrow=k+1, ncol =1)

31 l_beta_c <- matrix(0,nrow=k+1, ncol =1)

32 l_alpha_a <- matrix(0,nrow=1, ncol =1)

33 l_alpha_b <- matrix(0,nrow=1, ncol =1)

34 data_i <- matrix(NA, nrow=n[i], ncol=dim(dataset$data)[2])

35 data_i[1:n[i],1:dim(dataset$data)[2]] <- dataset$data[which(id==i),]

36 data.end <- ncol(data_i)

37 x_i <- matrix(NA, nrow=n[i], ncol=k+1)

38 x_i[1:n[i],1:(k+1)] <- data_i[,-data.end]

39 y_i<- data_i[,data.end]

40 n_i <- nrow(data_i)

41 if (n_i>=1){

42 for (j in 1:n_i){

43 if (j == 1){

44 lam_ij <- exp(t(beta)%*%x_i[j,])
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45 lam_ij <- lam_ij[1]

46 l_beta_a <- l_beta_a + y_i[j]*x_i[j,]-x_i[j,]*lam_ij

47 }

48 if(j==2){

49 lam_ij <- exp(t(beta)%*%x_i[j,])

50 lam_ij <- lam_ij[1]

51 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

52 lam_ij_1 <- lam_ij_1[1]

53 l_alpha_a <- l_alpha_a + y_i[j]*(lam_ij + (alpha/sqrt(1-alpha ^2))*sqrt(lam_ij/lam_ij_1)*(

y_i[j-1]-lam_ij_1))^(-1)*

54 (sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)*((1- alpha ^2)^(-3/2)))-(sqrt(lam_ij/lam_ij_1)

*(y_i[j-1]-lam_ij_1)*((1-alpha ^2)^(-3/2)))

55 l_beta_b <- l_beta_b + y_i[j]*(lam_ij+(alpha/sqrt(1-alpha ^2))*sqrt(lam_ij/lam_ij_1)*(y_i[

j-1]-lam_ij_1))^(-1)*

56 (x_i[j,]*lam_ij+(alpha/sqrt(1-alpha ^2))*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*

(y_i[j-1]-lam_ij_1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-

57 (x_i[j,]*lam_ij+(alpha/sqrt(1-alpha ^2))*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y

_i[j-1]-lam_ij_1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

58 }

59 if(j>2){

60 lam_ij <- exp(t(beta)%*%x_i[j,])

61 lam_ij <- lam_ij[1]

62 lam_ij_1 <- exp(t(beta)%*%x_i[j-1,])

63 lam_ij_1 <- lam_ij_1[1]

64 l_alpha_b <- l_alpha_b + y_i[j]*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)

)^(-1)*

65 (sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1)) -(sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

66 l_beta_c <- l_beta_c + y_i[j]*(lam_ij + alpha*sqrt(lam_ij/lam_ij_1)*(y_i[j-1]-lam_ij_1))

^(-1)*

67 (x_i[j,]*lam_ij+alpha*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y_i[j-1]-lam_ij_

1)-x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))-

68 (x_i[j,]*lam_ij+alpha*(0.5*sqrt(lam_ij/lam_ij_1)*(x_i[j,]-x_i[j-1,])*(y_i[j-1]-lam_ij_1)-

x_i[j-1,]*lam_ij_1*sqrt(lam_ij/lam_ij_1)))

69 }

70 }

71 }

72 l_beta <- l_beta_a+l_beta_b+l_beta_c

73 l_alpha <- l_alpha_a+l_alpha_b

74 score_i <- rbind(l_alpha , l_beta)

75 out.score[i,1] <- i

76 out.score[i,2:6] <- t(score_i)

77 }

78 return(out.score)

79 }
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C.5. Supporting R functions

1 # ################################################################

2 ## Supporting functions called in Likelihood function

3 ## Functions written by Matthew Guerra et al. (2012):

4 ## Guerra , M.W., Shults , J., Amsterdam , J., and Ten -Have , T. (2012).

5 ## The analysis of binary longitudinal data with time -dependent covariates .

6 ## Statistics in medicine 31, 931 -948.

7 # ################################################################

8

9 cluster.size <- function(id){

10 clid <- unique(id)

11 m<- length(unique(id))

12 n<- rep(0,m)

13 autotime <- rep(0,0)

14 for(i in 1:m){

15 n[i]<- length(which(id==clid[i]))

16 autotime <- c(autotime ,1:n[i])

17 }

18 id<- rep(1:m,n)

19 return(list(m=m,n=n,id=id ,autotime=autotime))

20 }

21

22 data.proc <- function(data ,formula ,time=NULL ,id ,del.n){

23

24 dat <- data.frame(data)

25 col.name <- names(dat)

26 #cat ("1\n")

27 #print(dat)

28

29 cluster <- cluster.size(id)

30 m<- cluster$m

31 n<- cluster$n

32 id<- cluster$id

33 if(length(time)==0){

34 time <- cluster$autotime

35 }

36 autotime <- cluster$autotime

37 index <- order(id,time)

38 #cat (" index",index ,"\n")

39 #print(dat)

40 #cat (" ncol.dat",ncol(dat) ,"\n")

41 if(ncol(dat)==1){

42 dat <- dat[index ,]

43 }else{

44 dat <- dat[index ,]
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45 }

46 dat <- data.frame(dat)

47 names(dat)<- col.name

48

49

50 del <- which(n<=del.n)

51 if(length(del) >0){

52 n<- n[-del]

53 m<- length(n)

54 mtch <- match(id ,del)

55 del.id<- which(mtch!="NA")

56 #cat (" ncol(dat)",ncol(dat) ,"\n")

57 dat <- dat[-del.id ,]

58 dat <- data.frame(dat)

59 names(dat)<- col.name

60 row.names(dat)<- 1:nrow(dat)

61 time <- time[-del.id]

62 autotime <- autotime[-del.id]

63 id<- rep(1:m,n)

64 }

65

66 formula <- as.formula(formula)

67 fml <- as.formula(paste("~",formula [3],"+",formula [2],sep=""))

68 #print(fml)

69 #print(dat)

70 dat <- model.matrix(fml ,data=dat)

71

72 return(list(data=dat ,time=time ,autotime=autotime ,id=id,m=m,n=n))

73 }
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C.6. R code for the epileptic seizure data application

The following appendix contains additional information to reproduce the analysis in the Applica-

tion Section 4.3 for the epilepsy data. Thall and Vail, 1990 present data from a randomized,

placebo-controlled study on 59 epileptic patients with seizure counts measured every 2 weeks

over an 8 week period. Patients were randomized to drug treatment or placebo alongside stan-

dard chemotherapy treatment and measured the outcome as the count of the number of seizures.

Additional covariates include information on patient treatment (placebo or drug), baseline seizure

counts, and age in years. Of the 59 patients, 28 were randomized to placebo and 31 were random-

ized to drug treatment.

We begin by loading the data in the long data frame. An excerpt of the data is shown in Table C.1.

The code is below.

1 #long data frame

2 library(MASS)

3 data(epil)

4 names(epil)

5 y<-epil$y

6 trt <-epil$trt

7 base <-epil$base

8 age <-epil$age

9 time <-epil$period

10 id<-epil$subject

We analyze the data using GEE and first run the model including the interaction term.

1 library(geepack)

2 #Run full model with interaction and get p-value of interaction

3 epil_gee_int <- geeglm(y ~ trt + period + base + age + trt*period ,

4 data=epil , id = subject , family = poisson(link = "log"), corstr = "ar1")

5 summary(epil_gee_int)

The relevant output of interest from the model with the interaction term is shown below.

1 Call:

2 geeglm(formula = y ~ trt + period + base + age + trt * period ,
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3 family = poisson(link = "log"), data = epil , id = subject ,

4 corstr = "ar1")

5

6 Coefficients:

7 Estimate Std.err Wald Pr(>|W|)

8 (Intercept) 0.55485 0.33661 2.72 0.099 .

9 trtprogabide -0.10390 0.20229 0.26 0.607

10 period -0.05141 0.05391 0.91 0.340

11 base 0.02323 0.00124 351.21 <2e-16 ***

12 age 0.02625 0.01178 4.96 0.026 *

13 trtprogabide:period -0.02572 0.06638 0.15 0.698

14 ---

15 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

16

17 Estimated Scale Parameters:

18 Estimate Std.err

19 (Intercept) 5.06 1.62

20

21 Correlation: Structure = ar1 Link = identity

22

23 Estimated Correlation Parameters:

24 Estimate Std.err

25 alpha 0.552 0.0652

26 Number of clusters: 59 Maximum cluster size: 4

We then fit a GEE model that drops the interaction term using the following.

1 #Run reduced model without interaction

2 epil_gee_main2 <- geeglm(y ~ trt + base + age + period , data=epil , id = epil$subject ,

3 family = poisson(link = "log"), corstr = "ar1")

4 summary(epil_gee_main2)

The relevant output from GEE is shown below.

1 Call:

2 geeglm(formula = y ~ trt + base + age + period , family = poisson(link = "log"),

3 data = epil , id = epil$subject , corstr = "ar1")

4

5 Coefficients:

6 Estimate Std.err Wald Pr(>|W|)

7 (Intercept) 0.58548 0.34913 2.81 0.094 .

8 trtprogabide -0.16422 0.15892 1.07 0.301
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9 base 0.02322 0.00124 350.97 <2e-16 ***

10 age 0.02627 0.01181 4.95 0.026 *

11 period -0.06445 0.03400 3.59 0.058 .

12 ---

13 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

14

15 Estimated Scale Parameters:

16 Estimate Std.err

17 (Intercept) 5.07 1.64

18

19 Correlation: Structure = ar1 Link = identity

20

21 Estimated Correlation Parameters:

22 Estimate Std.err

23 alpha 0.551 0.0656

24 Number of clusters: 59 Maximum cluster size: 4

Lastly, we run the GEE model with treatment, baseline seizure count, and age only removing the

time variable (period) from the model.

1 #Remove time variable from model

2 epil_gee_main1 <- geeglm(y ~ trt + base + age , data=epil , id = epil$subject ,

3 family = poisson(link = "log"), corstr = "ar1")

4 summary(epil_gee_main1)

The relevant output is shown below.

1 Call:

2 geeglm(formula = y ~ trt + base + age , family = poisson(link = "log"),

3 data = epil , id = epil$subject , corstr = "ar1")

4

5 Coefficients:

6 Estimate Std.err Wald Pr(>|W|)

7 (Intercept) 0.44670 0.36212 1.52 0.217

8 trtprogabide -0.16588 0.15928 1.08 0.298

9 base 0.02316 0.00123 353.32 <2e-16 ***

10 age 0.02576 0.01169 4.86 0.028 *

11 ---

12 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

13

14 Estimated Scale Parameters:
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15 Estimate Std.err

16 (Intercept) 5.07 1.57

17

18 Correlation: Structure = ar1 Link = identity

19

20 Estimated Correlation Parameters:

21 Estimate Std.err

22 alpha 0.544 0.0639

23 Number of clusters: 59 Maximum cluster size: 4

Next, we analyze the epilepsy data using the ML approach described. For demonstrating the code

in detail, we begin with the model with the main effects of treatment, baseline seizure counts, and

age. After loading the data, we ran the GEE model with these main effects and will use these

starting values. The output from the GEE model is shown above and includes the vector of starting

values to be used for the ML approach.

1 # Step 1: Run the epil data (see above)

2 # Step 2: Obtain starting values by fitting a GEE model

3 # Step 3: Set starting values

4 beta.start <- epil_gee_main1$geese$beta

5 alpha.start <- epil_gee_main1$geese$alpha

6 start.values <- t(t(c(alpha.start ,beta.start)))

After checking that the constraints defined in Section 4.2.2 are met, we next define the starting

values. Consider the vector of parameters to be defined as θ = (α, β0, β1, β2, β3)T . Our algorithm

uses starting values from the function geeglm in the package geepack. The R code for the model

and starting value assignment would be given by

1 model <- geeglm(y ~ x1 + x2 + x3, data=indata , id = indata$subject , family = poisson(link = "

log"), corstr = "ar1")

2 beta.start <- model$geese$beta

3 alpha.start <- model$geese$alpha

4 start.values <- t(t(c(alpha.start ,beta.start)))

Next, we define the feasibility region constraints to run the constrOptim function for the vector of

parameters for the linear predictor. For the epilepsy data, we implement Model 4.5 with the following
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linear predictor:

x′ijβ = β0 + β1xij1 + β2xij2 + β3xij3, (C.7)

where xij1 represents an indicator for treatment, xij2 represents baseline seizure count, and xij3

represents subject age.

Define ui as the k× p constraint matrix and ci as the constraint vector of length k. Then, the linear

inequality constraints, or feasibility region, is defined by ui% ∗ % theta − ci≥ 0 where the p × 1

vector of parameters is represented by theta. This vector of parameters is also an argument in the

function representing the numeric p× 1 vector of initial values, which must be on the interior of the

earlier defined feasibility region.

In matrix notation, for a model with parameters θ = (α, β0, β1, β2, β3)T , this constraint is given by

 1 0 0 0 0

−1 0 0 0 0





α

β0

β1

β2

β3


−

 −1

−1

 ≥
 0

0

 .

Then, we get α+1 ≥ 0 and −α+1 ≥ 0, , which can be written as α ≥ −1 and as α ≤ 1, respectively.

In R, the feasibility region is specified by

1 # constraints

2 ui <- rbind(c(1,0,0,0,0), c(-1,0,0,0,0))

3 ci <- c(-1,-1)

4 full.ml <- constrOptim(start.values , logl3 , grad=ml.grad , ui = ui, ci = ci, mu = 1e-04, control

=list("fnscale"=-1), outer.iterations = 100, outer.eps = 1e-05, hessian = TRUE)

With the log-likelihood function written and input into the constrained maximization, we check the

constraint λij −ασij/σij−1(λij−1) > 0, for (j = 2, . . . , ni). This is evaluated within the log likelihood

function when determining values for λ∗ij , where j = 2, . . . , ni.

Refer to Appendix C.2 for the log likelihood function for this data and Appendix C.3 for the gradient

function. These functions each take the vector of starting values and should be programmed out-
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side of the function call. This allows the specification hessian=TRUE to be used, which is necessary

in order to return the numerical Hessian matrix and is used to obtain the estimated covariance ma-

trix of the maximum likelihood estimates. As noted previously, since the log likelihood is provided,

the option control = list(‘‘fnscale’’ = −1) must be added to maximize the objective function.

Both the objective function f and the gradient function grad take the argument theta, the vector

of parameters over which the maximization is to take place. The function f returns a scalar result

while the function grad returns the gradient for the BFGS method.

We specify the maximum number of iterations of the barrier algorithm to 100 (in the code this is

given by outer.iterations = 100) and the relative convergence tolerance of the barrier algorithm

to 0.00001 (in the code this is given by outer.eps = 1e-05) for the constrOptim function to run.

The output from the starting values and the constrained optimization for the maximum likelihood

approach are shown below.

1 start.values

2 [,1]

3 alpha 0.5443

4 (Intercept) 0.4467

5 trtprogabide -0.1659

6 base 0.0232

7 age 0.0258

8

9 > full.ml

10 $par

11 [,1]

12 alpha 0.4227

13 (Intercept) 0.5072

14 trtprogabide -0.1673

15 base 0.0232

16 age 0.0238

17

18 $value

19 [1] -781

20

21 $counts

22 function gradient

23 60 10

24

25 $convergence

26 [1] 0

27
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28 $message

29 NULL

30

31 $hessian

32 [,1] [,2] [,3] [,4] [,5]

33 [1,] -902.9 211 97.6 13626 6272

34 [2,] 210.6 -999 -501.4 -62587 -27916

35 [3,] 97.6 -501 -501.4 -35825 -13040

36 [4,] 13626.4 -62587 -35825.0 -6372318 -1628104

37 [5,] 6272.2 -27916 -13039.8 -1628104 -820673

38

39 $outer.iterations

40 [1] 2

41

42 $barrier.value

43 [1] 1.84e-05

We compute the AIC and BIC for this model.

1 mle.beta <- full.ml$par [2:5]

2 mle.alpha <- full.ml$par[1]

3 # log likelihood :

4 mle.full <- full.ml$value

5 AIC <- 2*(length(mle.beta)+1) -2*(mle.full)

6 BIC <- log(length(unique(id)))*(length(mle.beta)+1) -2*(mle.full)

7 > AIC

8 [1] 1573

9 > BIC

10 [1] 1583

For the score estimation and the covariance matrix, we use the following code.

1 # covariance matrix from the constrOptim output

2 mle.cov <- solve(-full.ml$hessian)

3 #returns matrix for score of each subject i=1,m in rows

4 out.score <- try(score_squared(formula=formula , data=data , id=id , time=time , alpha=mle.alpha ,

beta=t(mle.beta)))

5 p <- length(mle.beta) + 1

6 score.sq <- matrix(0, nrow=p, ncol=p)

7 for (i in 1:m){

8 score.sq <- score.sq + out.score[i ,2:6]%*%t(out.score[i ,2:6])

9 }
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10 sq_cov <- (solve(score.sq))

11

12 #ob = observed information = 1/i(hat(theta))

13 std.err <- "ob"

14 if (std.err=="ob"){

15 mle_cov <- mle.cov

16 }

1 # Observed information

2 > mle_cov

3 [,1] [,2] [,3] [,4] [,5]

4 [1,] 1.17e-03 -1.95e-04 1.08e-07 8.88e-07 1.38e-05

5 [2,] -1.95e-04 3.59e-02 -4.78e-03 -6.72e-05 -1.01e-03

6 [3,] 1.08e-07 -4.78e-03 4.44e-03 -3.13e-06 9.81e-05

7 [4,] 8.88e-07 -6.72e-05 -3.13e-06 4.83e-07 1.38e-06

8 [5,] 1.38e-05 -1.01e-03 9.81e-05 1.38e-06 3.15e-05

Lastly, we conduct the hypothesis testing using either the estimated covariance matrix.

1 Stderr <- matrix(NA , nrow=pp, ncol =1)

2 Wald <- matrix(NA, nrow=pp , ncol =1)

3 pval <- matrix(NA, nrow=pp , ncol =1)

4 for (p in 1:pp){

5 Stderr[p,] <- sqrt(mle_cov[(p+1) ,(p+1)])

6 Wald[p,] <- (mle.beta[p]/sqrt(mle_cov[(p+1) ,(p+1)]))^2

7 pval[p,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE , log.p = FALSE)

8 }

9 results <- cbind(mle.beta ,Stderr , Wald , pval)

10 alpha_results <- cbind(mle.alpha ,sqrt(mle_cov [1 ,1]))

The output from the hypothesis testing is shown below.

1 > print(results)

2 Estimate Std.err Wald Pr(>|W|)

3 [1,] 0.5072 0.189399 7.17 7.41e-03

4 [2,] -0.1673 0.066661 6.30 1.21e-02

5 [3,] 0.0232 0.000695 1113.57 0.00e+00

6 [4,] 0.0238 0.005609 17.99 2.22e-05

7 > alpha_results

8 Estimate Std.err
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9 alpha 0.423 0.0342

Next, we fit the model with period included.

1 #Run reduced model without interaction and get loglik

2 #y ~ trt + period + base + age

3

4 beta.start3 <- epil_gee_main2$geese$beta

5 alpha.start3 <- epil_gee_main2$geese$alpha

6 start.values3 <- t(t(c(alpha.start3 ,beta.start3)))

7

8 # constraints

9 ui <- rbind(c(1,0,0,0,0,0), c(-1,0,0,0,0,0))

10 ci <- c(-1,-1)

11

12 ml.full.time <- constrOptim(start.values3 , logL.time , grad=ml.grad.time , ui = ui, ci = ci , mu =

1e-04, control=list("fnscale"=-1), outer.iterations = 100, outer.eps = 1e-05, hessian =

TRUE)

The relevant output from this model is shown below.

1 > ml.full.time

2 $par

3 [,1]

4 alpha 0.4159

5 (Intercept) 0.6569

6 trtprogabide -0.1661

7 base -0.0635

8 age 0.0232

9 period 0.0238

10

11 $value

12 [1] -777

13

14 $counts

15 function gradient

16 120 17

17

18 $convergence

19 [1] 0

20

21 $message
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22 NULL

23

24 $hessian

25 [,1] [,2] [,3] [,4] [,5] [,6]

26 [1,] -934.6 163 74.8 476 10479 4939

27 [2,] 162.9 -998 -501.8 -2286 -62510 -27905

28 [3,] 74.8 -502 -501.8 -1150 -35796 -13052

29 [4,] 476.1 -2286 -1150.0 -7412 -142770 -63939

30 [5,] 10479.0 -62510 -35795.7 -142770 -6361288 -1625952

31 [6,] 4939.2 -27905 -13052.5 -63939 -1625952 -820229

32

33 $outer.iterations

34 [1] 2

35

36 $barrier.value

37 [1] 1.78e-05

Using this output, we compute the AIC, BIC, and model statistics as described in detail for the

previous model.

1 ##Fit statistics

2 formula <- y ~ trt + period + base + age

3

4 mle.beta <- ml.full.time$par [2:6]

5 mle.alpha <- ml.full.time$par[1]

6 mle.full <- ml.full.time$value #this is the log likelihood

7 mle.cov <- solve(-ml.full.time$hessian) # covariance matrix

8

9 AIC <- 2*(length(mle.beta)+1) -2*(mle.full)

10 BIC <- log(length(unique(id)))*(length(mle.beta)+1) -2*(mle.full)

11 pp <- length(all.vars(formula))

12

13

14 #Score estimation :

15 out.score <- try(score_squared.time(formula=formula , data=data , id=id , time=time ,

16 mle.alpha , t(mle.beta)))

17 #returns matrix for score of each subject i=1,m in rows

18 p <- length(mle.beta) + 1

19 score.sq <- matrix(0, nrow=p, ncol=p)

20 for (i in 1:m){

21 score.sq <- score.sq + out.score[i ,2:7]%*%t(out.score[i ,2:7])

22 }

23 sq_cov <- (solve(score.sq))

24

160



25 std.err <-"ob"

26 if (std.err=="ob"){

27 mle_cov <- mle.cov

28 }

29

30 ## Hypothesis testing

31 Stderr <- matrix(NA , nrow=pp, ncol =1)

32 Wald <- matrix(NA, nrow=pp , ncol =1)

33 pval <- matrix(NA, nrow=pp , ncol =1)

34 for (p in 1:pp){

35 Stderr[p,] <- sqrt(mle_cov[(p+1) ,(p+1)])

36 Wald[p,] <- (mle.beta[p]/sqrt(mle_cov[(p+1) ,(p+1)]))^2

37 pval[p,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE , log.p = FALSE)

38 }

39 results <- cbind(mle.beta ,Stderr , Wald , pval)

40 alpha_results <- cbind(mle.alpha ,sqrt(mle_cov [1 ,1]))

41 fit_stats <- rbind(mle.full ,AIC ,BIC)

42

43 #format output

44 rownames(fit_stats) <- c("Log -Likelihood:", "AIC:", "BIC:")

45 colnames(results) <- c("Estimate", "Std.err", "Wald", "Pr(>|W|)")

46 rownames(results) <- c("(Intercept)", "trt", "period", "base", "age")

47 colnames(alpha_results) <- c("Estimate", "Std.err")

48 rownames(alpha_results) <- c("alpha") #only if corr ==" ar1"

49

50 print(fit_stats)

51 print(results)

52 print(alpha_results)

The output is shown below.

1 > print(fit_stats)

2 [,1]

3 Log -Likelihood: -777.10421

4 AIC: 1566.20842

5 BIC: 1578.67365

6 > print(results)

7 Estimate Std.err Wald

8 (Intercept) 0.65688 0.19575 11.261174

9 trt -0.16611 0.06666 6.210783

10 period -0.06352 0.02149 8.736366

11 base 0.02317 0.00069 1111.759676

12 age 0.02376 0.00561 17.937422

13 Pr(>|W|)
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14 (Intercept) 7.9145e-04

15 trt 1.2697e-02

16 period 3.1193e-03

17 base 0.0000e+00

18 age 2.2829e-05

19 > print(alpha_results)

20 Estimate Std.err

21 alpha 0.41587 0.03336

Here, the AIC is approximately 1566.208 and the BIC is approximately 1578.674.

We then do a likelihood ratio test for the time variable.

1 #LR Test Statistic

2 #G = -2*(logL(reduced) - logL(full))

3 G.time <- -2*( ml.full.notime$value - ml.full.time$value)

4 pval.time <- 1-pchisq(G.time , df=1, lower.tail = TRUE , log.p = FALSE)

5 #assuming reduced model (null) is correct , the sampling distr of G is approx

6 # chi -squared with df=1 if only 1 interaction term

Next, we fit the model with the interaction term.

1 #Run full model with interaction and get loglik

2

3 beta.start2 <- epil_gee_int$geese$beta

4 alpha.start2 <- epil_gee_int$geese$alpha

5 start.values <- t(t(c(alpha.start2 ,beta.start2)))

6

7 # constraints

8 ui <- rbind(c(1,0,0,0,0,0,0), c(-1,0,0,0,0,0,0))

9 ci <- c(-1,-1)

10

11 ml.full.int <- constrOptim(start.values , logL.int , grad=ml.grad.int , ui = ui, ci = ci, mu = 1e

-04, control=list("fnscale"=-1), outer.iterations = 100, outer.eps = 1e-05, hessian = TRUE

)

The relevant output is shown below.

1 > ml.full.int
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2 $par

3 [,1]

4 alpha 0.4162

5 (Intercept) 0.6569

6 trtprogabide -0.1225

7 period -0.0634

8 base 0.0232

9 age 0.0238

10 trtprogabide:period -0.0443

11

12 $value

13 [1] -777

14

15 $counts

16 function gradient

17 61 10

18

19 $convergence

20 [1] 0

21

22 $message

23 NULL

24

25 $hessian

26 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

27 [1,] -935.2 163 74.6 477 10493 4948 74.6

28 [2,] 163.2 -998 -501.3 -2285 -62476 -27891 -501.3

29 [3,] 74.6 -501 -501.3 -1149 -35763 -13040 -501.3

30 [4,] 477.0 -2285 -1148.8 -7409 -142687 -63905 -1148.8

31 [5,] 10492.9 -62476 -35762.9 -142687 -6357559 -1625171 -35762.9

32 [6,] 4947.7 -27891 -13039.7 -63905 -1625171 -819850 -13039.7

33 [7,] 74.6 -501 -501.3 -1149 -35763 -13040 -501.3

34

35 $outer.iterations

36 [1] 2

37

38 $barrier.value

39 [1] 1.79e-05

As shown above, the following formulas are used to compute the AIC and BIC.

1 AIC <- 2*(length(mle.beta)+1) -2*(mle.full)

2 BIC <- log(length(unique(id)))*(length(mle.beta)+1) -2*(mle.full)
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For the model with the interaction term, the AIC is 1568.208 and the BIC is 1582.751.

The code to conduct the likelihood ratio test is shown below.

1 > options(digits =20)

2 > ml.full.time$value

3 [1] -777.10421068667892541

4 > ml.full.int$value

5 [1] -777.10409476684776564

6 #LR Test Statistic

7 #G = -2*(logL(reduced) - logL(full))

8 G.int <- -2*( ml.full.time$value - ml.full.int$value)

9 pval.int <- 1-pchisq(G.int , df=1, lower.tail = TRUE , log.p = FALSE)

10

11 > G.int

12 [1] 0.00023183966231954400428

13 > pval.int

14 [1] 0.98785165411905362
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C.7. R code for the doctor visits data application

The following appendix contains additional information to reproduce the analyses in the Application

Section 4.3.1 for the doctor visits data. We analyzed a subset of data from the German Socio-

Economic Panel data (Winkelmann, 2004) (http://www.stata-press.com/data/r13/drvisits)

that we obtained within Stata and then exported as a comma delimited text-file for analysis in R

(StataCorp LP, 2013). Here we compare the results of an analysis using the proposed ML approach

with the results obtained using Poisson regression and GEE.

The goal of the analysis was to assess the impact of the 1997 health reform on the reduction of

government expenditures. A sample of 1518 women who were employed full time in the year before

or in the year after the reform was used to assess the impact on the number of doctor visits. The

outcome was the self-reported number of doctor visits in the most recent three months prior to the

interview. The main covariate of interest was the indicator of whether the interview was before the

reform or after the reform and covariate information was available on the women’s age, education,

marital status, self-reported health status, and the logarithm of the household income.

We begin by loading the data into R.

1 drvisits_raw <- read.table("C:/Users/Victoria/Desktop/Post_Mtg_20150623/drvisits.raw", header=

TRUE , sep=",")

2 summary(drvisits_raw)

Next, we run the Poisson regression using the following code.

1 drv_poi <- glm(numvisit ~ reform + age + educ + married + badh + loginc , data=drvisits_raw ,

family = poisson)

2 summary(drv_poi)

The relevant output is shown below.

1 > summary(drv_poi)

2

3 Call:

4 glm(formula = numvisit ~ reform + age + educ + married + badh +

5 loginc , family = poisson , data = drvisits_raw)
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6

7 Deviance Residuals:

8 Min 1Q Median 3Q Max

9 -3.963 -1.934 -0.672 0.550 12.659

10

11 Coefficients:

12 Estimate Std. Error z value Pr(>|z|)

13 (Intercept) -0.41367 0.26909 -1.54 0.1242

14 reform -0.14015 0.02655 -5.28 1.3e-07 ***

15 age 0.00437 0.00130 3.35 0.0008 ***

16 educ -0.01072 0.00601 -1.78 0.0743 .

17 married 0.04135 0.02784 1.49 0.1375

18 badh 1.13317 0.03030 37.40 < 2e-16 ***

19 loginc 0.14923 0.03605 4.14 3.5e-05 ***

20 ---

21 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

22

23 (Dispersion parameter for poisson family taken to be 1)

24

25 Null deviance: 8848.8 on 2226 degrees of freedom

26 Residual deviance: 7419.9 on 2220 degrees of freedom

27 AIC: 11899

28

29 Number of Fisher Scoring iterations: 5

Next, we use GEE to analyze this data.

1 drv_gee <- geeglm(numvisit ~ reform + age + educ + married + badh + loginc , data=drvisits_raw ,

id = id,family = poisson(link = "log"), corstr = "ar1")

2 summary(drv_gee)

The relevant output is shown below.

1 > summary(drv_gee)

2

3 Call:

4 geeglm(formula = numvisit ~ reform + age + educ + married + badh +

5 loginc , family = poisson(link = "log"), data = drvisits_raw ,

6 id = id, corstr = "ar1")

7

8 Coefficients:

9 Estimate Std.err Wald Pr(>|W|)
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10 (Intercept) -0.38146 0.57665 0.44 0.508

11 reform -0.12300 0.05295 5.40 0.020 *

12 age 0.00522 0.00334 2.44 0.118

13 educ -0.00920 0.01178 0.61 0.435

14 married 0.03842 0.06983 0.30 0.582

15 badh 1.10549 0.08733 160.23 <2e-16 ***

16 loginc 0.13920 0.07976 3.05 0.081 .

17 ---

18 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19

20 Estimated Scale Parameters:

21 Estimate Std.err

22 (Intercept) 4.33 0.369

23

24 Correlation: Structure = ar1 Link = identity

25

26 Estimated Correlation Parameters:

27 Estimate Std.err

28 alpha 0.213 0.0238

29 Number of clusters: 1518 Maximum cluster size: 2

After checking that the constraints defined in Section 4.2.2 are met, we next define the starting

values from GEE that are used for the ML approach.

1 alpha <- start.values [1]

2 beta <- start.values [2: length(start.values)]

3

4 #to be updated by user:

5 formula <- numvisit ~ reform + age + educ + married + badh + loginc

6 id <- drvisits_raw$id

7 time <- drvisits_raw$visit

8 d <- dim(drvisits_raw)

9 k <- length(all.vars(formula))-1

10 dt.fm<- data.frame(drvisits_raw)

We then specify the feasibility region and call the ML approach.

1 # constraints

2 ui <- rbind(c(1,0,0,0,0,0,0,0), c(-1,0,0,0,0,0,0,0))

3 ci <- c(-1,-1)

4
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5 full.ml2 <- constrOptim(start.values , logl3 , grad=ml.grad , ui = ui , ci = ci , mu = 1e-04,

control=list("fnscale"=-1), outer.iterations = 100, outer.eps = 1e-05, hessian = TRUE)

6 full.ml2

The relevant output is shown below.

1 $par

2 [,1]

3 alpha 0.313022

4 (Intercept) -0.461286

5 reform -0.113059

6 age 0.004914

7 educ -0.007953

8 married 0.025525

9 badh 1.100140

10 loginc 0.149758

11

12 $value

13 [1] -5845

14

15 $counts

16 function gradient

17 69 12

18

19 $convergence

20 [1] 0

21

22 $message

23 NULL

24

25 $hessian

26 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

27 [1,] -2490.4 422.9 539.2 17021 5150 145.9 -145.4 3266

28 [2,] 422.9 -4911.4 -2182.6 -188698 -55905 -2520.7 -1484.8 -37923

29 [3,] 539.2 -2182.6 -2754.6 -85547 -25212 -1148.6 -570.8 -16878

30 [4,] 17020.7 -188698.1 -85547.3 -7862830 -2126640 -105187.7 -64147.6 -1458400

31 [5,] 5150.3 -55904.9 -25211.7 -2126640 -663877 -27784.6 -16238.9 -432853

32 [6,] 145.9 -2520.7 -1148.6 -105188 -27785 -2583.1 -857.1 -19501

33 [7,] -145.4 -1484.8 -570.8 -64148 -16239 -857.1 -1597.5 -11417

34 [8,] 3265.9 -37923.3 -16877.7 -1458400 -432853 -19500.7 -11417.1 -293595

35

36 $outer.iterations

37 [1] 2

38

168



39 $barrier.value

40 [1] 9.965e-06

Using this information we compute the score function and the observed information.

1 out.score <- try(score_squared(formula=formula , data=data , id=id , time=time , mle.alpha=mle.

alpha , mle.beta=mle.beta))

2 #returns matrix for score of each subject i=1,m in rows

3 p <- length(mle.beta) + 1

4 score.sq <- matrix(0, nrow=p, ncol=p)

5 for (i in 1:m){

6 score.sq <- score.sq + out.score[i ,2:9]%*%t(out.score[i ,2:9])

7 }

8 sq_cov <- (solve(score.sq))

9 std.err <- "ob"

10 if (std.err=="ob"){

11 mle_cov <- mle.cov

12 }

The covariance matrix is shown below.

1 > mle_cov

2 [,1] [,2] [,3] [,4] [,5] [,6]

3 [1,] 4.324e-04 5.686e-05 7.788e-05 2.093e-06 3.039e-06 -2.870e-05

4 [2,] 5.686e-05 7.901e-02 -8.847e-05 -3.724e-05 -1.886e-05 1.532e-04

5 [3,] 7.788e-05 -8.847e-05 5.812e-04 -2.024e-06 -7.919e-06 -1.219e-05

6 [4,] 2.093e-06 -3.724e-05 -2.024e-06 1.976e-06 1.171e-06 -1.102e-05

7 [5,] 3.039e-06 -1.886e-05 -7.919e-06 1.171e-06 4.119e-05 2.254e-05

8 [6,] -2.870e-05 1.532e-04 -1.219e-05 -1.102e-05 2.254e-05 8.652e-04

9 [7,] -1.063e-04 -4.929e-04 3.548e-05 -1.151e-05 1.058e-05 1.310e-05

10 [8,] -1.585e-05 -9.978e-03 4.273e-08 -5.411e-06 -6.552e-05 -5.584e-05

11 [,7] [,8]

12 [1,] -1.063e-04 -1.585e-05

13 [2,] -4.929e-04 -9.978e-03

14 [3,] 3.548e-05 4.273e-08

15 [4,] -1.151e-05 -5.411e-06

16 [5,] 1.058e-05 -6.552e-05

17 [6,] 1.310e-05 -5.584e-05

18 [7,] 9.774e-04 6.313e-05

19 [8,] 6.313e-05 1.417e-03
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Next, we conduct the hypothesis testing using the observed information matrix.

1 Stderr <- matrix(NA , nrow=pp, ncol =1)

2 Wald <- matrix(NA, nrow=pp , ncol =1)

3 pval <- matrix(NA, nrow=pp , ncol =1)

4 for (p in 1:pp){

5 Stderr[p,] <- sqrt(mle_cov[(p+1) ,(p+1)])

6 Wald[p,] <- (mle.beta[p]/sqrt(mle_cov[(p+1) ,(p+1)]))^2

7 pval[p,] <- 1-pchisq(Wald[p,1] , df=1, lower.tail = TRUE , log.p = FALSE)

8 }

9 results <- cbind(mle.beta ,Stderr , Wald , pval)

10 alpha_results <- cbind(mle.alpha ,sqrt(mle_cov [1 ,1]))

11 colnames(results) <- c("Estimate", "Std.err", "Wald", "Pr(>|W|)")

12 rownames(results) <- c("(Intercept)", "reform", "age", "educ", "married", "badh", "loginc")

13 colnames(alpha_results) <- c("Estimate", "Std.err")

14 rownames(alpha_results) <- c("alpha") #only if corr ==" ar1"

15 fit_stats <- rbind(mle.full ,AIC ,BIC)

16 print(fit_stats)

17 print(results)

18 print(alpha_results)

The relevant output is shown below.

1 > print(fit_stats)

2 [,1]

3 Log -Likelihood: -5845

4 AIC: 11707

5 BIC: 11750

6 > print(results)

7 Estimate Std.err Wald Pr(>|W|)

8 (Intercept) -0.461286 0.281089 2.693 1.008e-01

9 reform -0.113059 0.024107 21.994 2.735e-06

10 age 0.004914 0.001406 12.220 4.727e-04

11 educ -0.007953 0.006418 1.536 2.153e-01

12 married 0.025525 0.029415 0.753 3.855e-01

13 badh 1.100140 0.031264 1238.276 0.000e+00

14 loginc 0.149758 0.037641 15.829 6.932e-05

15 > print(alpha_results)

16 Estimate Std.err

17 alpha 0.313 0.02079

Lastly, we include the code to conduct a likelihood ratio test for the correlation parameter. Note that
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the log-likelihood values are obtained from the ML and Poisson models above.

1

2 #number estimated parameters in Poisson (p.noalpha) vs ML (p.alpha)

3 p.alpha <- 8

4 p.noalpha <- 7

5

6 #log likelihood in Poisson (p.noalpha) vs ML (p.alpha)

7 ml.noalpha <- -5942.5

8 ml.alpha <- -5845.5

9

10 #LR Test Statistic

11 #G = -2*(logL(reduced) - logL(full))

12 G.alpha <- -2*( ml.noalpha - ml.alpha)

13 pval.alpha <- 1-pchisq(G.alpha , df=1, lower.tail = TRUE , log.p = FALSE)

14 #assuming reduced model (null) is correct , the sampling distr of G is approx

15 # chi -squared with df=1 if only 1 interaction term

16 > G.alpha

17 [1] 194

18 > pval.alpha

19 [1] 0
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Table C.1: An excerpt of the data from a randomized, placebo-controlled study on 59 epileptic
patients with seizure counts measured every 2 weeks over an 8 week period (Thall and Vail, 1990).

ID Week 2 Week 4 Week 6 Week 8 Baseline Age Treatment
1 104 5 3 3 3 11 31 placebo
2 106 3 5 3 3 11 30 placebo
3 107 2 4 0 5 6 25 placebo
4 114 4 4 1 4 8 36 placebo
5 116 7 18 9 21 66 22 placebo
6 118 5 2 8 7 27 29 placebo
7 123 6 4 0 2 12 31 placebo
8 126 40 20 23 12 52 42 placebo
9 130 5 6 6 5 23 37 placebo
10 135 14 13 6 0 10 28 placebo
...

...
...

...
...

...
...

...
...

29 101 11 14 9 8 76 18 progabide
30 102 8 7 9 4 38 32 progabide
31 103 0 4 3 0 19 20 progabide
32 108 3 6 1 3 10 30 progabide
33 110 2 6 7 4 19 18 progabide
34 111 4 3 1 3 24 24 progabide
35 112 22 17 19 16 31 30 progabide
36 113 5 4 7 4 14 35 progabide
37 117 2 4 0 4 11 27 progabide
38 121 3 7 7 7 67 20 progabide
39 122 4 18 2 5 41 22 progabide
40 124 2 1 1 0 7 28 progabide
...

...
...

...
...

...
...

...
...
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