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Abstract 
We present a framework for recognizing isolated and 

continuous American Sign Language (ASL) sentences from 
three-dimensional data. The data are obtained by us- 
ing physics-based three-dimensional tracking methods and 
then presented as input to Hidden Markov Models (HMMs) 
for recognition. To improve recognition pelformance, 
we model context-dependent HMMs and present a novel 
method of coupling three-dimensional computer vision 
methods and HMMs by temporally segmenting the data 
stream with vision methods. We then use the geomet- 
ric properties of the segments to constrain the HMM 
framework for recognition. We show in experiments 
with a 53 sign vocabulary that three-dimensional features 
outperform two-dimensional features in recognition per- 
formance. Furthermore, we demonstrate that context- 
dependent modeling and the coupling of vision methods 
and HMMs improve the accuracy of continuous ASL recog- 
nition. 

1 Introduction 
American Sign Language (ASL) is the primary mode of 

communication for many deaf people in the USA. It is a 
highly inflected language with sophisticated grammatical 
properties, which constrain strongly the order and appear- 
ance of signs. Because of the constraints, it provides an ap- 
pealing test bed for understanding more general principles 
governing human motion and gesturing, including human- 
computer gesture interfaces. Such interfaces are essential 
in virtual reality applications, where the user must be able 
to manipulate virtual objects by gesturing. A working ASL 
recognition system could also facilitate interaction of deaf 
people with their surroundings. 

To date, most attempts at ASL recognition have ei- 
ther used only two-dimensional computer vision meth- 
ods, or they have used other input devices, such as data- 
gloves, instead of computer vision, to collect input from 
the signer [18, 3, 231. In this paper we present a new ap- 
proach to ASL recognition. First, we use computer vision 
methods to extract the three-dimensional parameters of a 
signer's arm motions. We then use Hidden Markov Mod- 
els (HMMs) to recognize isolated and continuous ASL ut- 
terances from the three-dimensional input. We develop 
context-dependent modeling of HMMs and methods for 

coupling the application of HMMs and the application 
of three-dimensional computer vision methods to improve 
continuous recognition performance. Our approach at- 
tempts to overcome some of the limitations of the previous 
approaches that use two-dimensional visual input, do not 
use context-dependent modeling, or do not couple com- 
puter vision methods with HMMs [18, 3, 17, 121. 

Three-dimensional image-based shape and motion 
tracking of a human's arm and hand is difficult because 
of the complexity of the motions and occlusion effects. 
Recently, a methodology has been developed [8, 101 that 
allows three-dimensional tracking of human motion from 
multiple images. In this paper we augment this methodol- 
ogy to track the three-dimensional motion of a subject's 
arms and hands from multiple images. This method is 
based on the use of deformable models, whose shape and 
motion fits the given image sequences based on occlud- 
ing contour information and theorems from projective ge- 
ometry. The output of this method consists of the three- 
dimensional motion parameters of the subject's arms. For 
efficiency reasons, and because arm movements already 
carry much of the information needed for recognizing ASL 
signs, we do not use the hand information in this paper. 

Apart from obtaining accurate data, ASL recognition 
is difficult, because there are always statistical variations 
in the way humans perform motions, even with identical 
meaning. In addition, in continuous utterances, there are 
no clear boundaries between individual signs. HMMs pro- 
vide a framework for capturing statistical variations in both 
position and duration of the movement, as well as implicit 
segmentation of the input stream. Furthermore, continuous 
recognition is complicated by coarticulation effects, that is, 
the pronunciation1 of a sign is influenced by the preceding 
and following signs. Coarticulation effects can be partly 
alleviated by training context-dependent HMMs. 

The theory behind HMMs makes several assumptions 
that are often not valid in practice. For this reason, we de- 
velop a new approach that couples computer vision meth- 
ods with HMM modeling. It is based on a temporal seg- 
mentation process that operates by extracting geometric 
properties of the three-dimensional computer vision pa- 

l~~ "pronunciation" we mean motion. We follow the terminology of 
spoken language linguistics where applicable. 



rameters. These properties are obtained independently 
from the HMM algorithms and are used to impose addi- 
tional constraints on HMM-based recognition. 

To test our algorithms and assumptions, we performed a 
series of experiments based on a vocabulary consisting of 
53 different signs that make extensive use of space. We ex- 
perimented with both isolated and continuous ASL recog- 
nition for both three-dimensional and two-dimensional 
data. As HMMs require large amounts of training data 
and the computer vision process is computationally expen- 
sive, we used data from an Ascension Technologies Flock 
of Birds and computer vision processes interchangeably. 

Our goal is to discover and analyze a usable framework 
for both isolated and particularly continuous ASL recogni- 
tion. We do not address more general gesture recognition 
topics and signer independence in this paper. Neither do 
we address the involved aspects of ASL linguistics [19] at 
this point, but obviously, a viable future ASL recognition 
system should be able to handle them. 

In the following sections, we discuss related work and 
give an overview on the theory behind the vision meth- 
ods and HMMs. Afterward, we address the use of HMMs 
for isolated and continuous ASL recognition, and coupling 
computer vision processes with the HMM algorithms. Fi- 
nally, we outline data collection and provide experimenta- 
tion results for isolated and continuous recognition and the 
coupling of computer vision and HMMs. 

2 Previous Work 
Previous work on sign language recognition focuses 

primarily on fingerspelling recognition and isolated sign 
recognition. Some work uses neural networks [3, 221. 
For this work to apply to continuous ASL recognition, the 
problem of explicit temporal segmentation must be solved, 
which is a limitation that HMM-based recognition does not 
have. Mohammed Waleed Kadous [23] uses Power Gloves 
to recognize a set of 95 isolated Auslan signs with 80% ac- 
curacy, with an emphasis on computationally inexpensive 
methods. Kirsti Grobel and Marcel1 Assam [4] use HMMs 
to recognize isolated signs with 91.3% accuracy out of a 
262 sign vocabulary. They extract the features from video 
recordings of signers wearing colored gloves. 

There is very little previous work on continuous ASL 
recognition. Thad Starner and Alex Pentland [18] use a 
view-based approach to extract two-dimensional features 
as input to HMMs with a 40 word vocabulary. Yanghee 
Nam and Kwang Yoen Wohn [12] use three-dimensional 
data as input to HMMs for continuous recognition of a very 
small set of gestures. 

3 Model-based 'I'racking of a Human's Arms 
In this section we give a brief overview of our formula- 

tion that allows the three-dimensional arm shape and mo- 

tion estimation from multiple images [6,7, 8, 101. 

Our approach consists of two parts. The first part [6,7] 
consists of an active, integrated approach that identifies re- 
liably the parts of a moving articulated object and estimates 
their shape and motion from a controlled set of motions 
that reveal the object's structure. We use the algorithm de- 
veloped in [6, 71, which segments the apparent body con- 
tour of a moving human into the constituent parts. Initially, 
a single deformable model is used in order to fit the image 
data. As the model deforms to fit the deformed (due to the 
motion of the human) subsequent image contours, a novel 
Human Body Part Identification Algorithm (HBPIA) is 
developed to identify all the body parts. By applying the 
HBPIA iteratively over the subsequent frames, all the mov- 
ing parts are identified. In addition, we have extended this 
algorithm to allow the estimation of the three-dimensional 
shape of a subject's body parts, based on the integration of 
images taken from three orthogonally placed cameras. We 
used this methodology to estimate the three-dimensional 
shape of the subject's arms shown in the examples in Sec- 
tion 7. It is worth noting that we have recovered the lower 
arm and the hand as one part, since in our ASL recognition 
experiments we did not use the motion of the lower arm 
and the hand relative to each other. 

The second part of the algorithm consists of using the 
extracted three-dimensional shape of the arm to track the 
three-dimensional position and orientation of a subject's 
body parts [8]. To alleviate difficulties arising from occlu- 
sion and degenerate views during the unconstrained move- 
ment of the arm, we use three calibrated cameras placed 
in a mutually orthogonal configuration. At every image 
frame and for each body part, we derive a subset of the 
cameras that provide the most informative views for track- 
ing. This active and time varying selection is based on 
the visibility of a part and the observability of its predicted 
motion from a certain camera. Once a set of cameras has 
been selected to track each part, we use concepts from pro- 
jective geometry to relate points on the occluding contour 
to points on the three-dimensional shape model. Using a 
physics-based modeling approach, we transform this cor- 
respondence, in addition to two-dimensional forces aris- 
ing from the discrepancy between the model's occluding 
contour and the image data, into generalized forces that 
are applied to the model to estimate the model's transla- 
tional and rotational degrees of freedom. To improve the 
tracking results further, the dynamic system is embedded 
within an extended Kalman filter framework, and we use 
the predicted motion of the model at each frame to es- 
tablish point correspondences between occluding contours 
and the three-dimensional model. 

We used this two-step approach to track the motion of 
the subject's arms performing the ASL gestures, as shown 



in Section 7. The output of the system is a set of rotation, 
q,, and translation, q,, parameters that we use as input to 
the HMMs and the vision-based segmentation algorithm 
presented in the following sections. 

4 Hidden Markov Models 
Hidden Markov Models (HMMs) are a type of statis- 

tical model. They have been used successfully in speech 
recognition, and recently in handwriting, gesture, and sign 
language recognition. We now give a summary of the basic 
theory behind HMMs, which is covered in detail in [15]. 

4.1 Definition of HMMs 
An HMM consists of a number N of states S1, S2,  . . . , 

S N ,  together with transitions between states. The system is 
in one of the HMM's states at any given time. At regularly 
spaced discrete time intervals, the system takes an outgoing 
transition from its current state to a new state. 

Each transition from Si to S j  has an associated proba- 
bility aij of being taken. Hence, Ci aij = 1. Each state 
Si also has an initial probability .rri of the system starting 
in Si. In addition, each state Si generates output lc E R, 
which is distributed according to a probability distribution 
function bi(k) = P{Output is klSystem is in Si). An ex- 
ample is given in Figure 1. The model depicted there is also 
an example of a left-right model; that is, aij > 0 implies 
j  2 i. In other words, transitions only flow forward from 
lower states to the same state or higher states, but never 
backward. This topology is the most commonly used one 
for modeling processes over time. 

Figure 1: Example left-right HMM with its transition and 
output probabilities. "Left-right" means that transitions oc- 
cur only from left to right, and never backward. 

4.2 The Three Fundamental HMM Problems 
There are three fundamental problems in HMM theory: 

(1) For a sequence of observations 0 = 01, . . . , OT, 
Oi E R, compute the probability P(0IX) that an 
HMM A generated 0. 

(2) For some 0 and an HMM A, recover the most likely 
state sequence S l ,  . . . , ST that generated 0. 

(3) Adjust the parameters of an HMM A such that they 
maximize P ( 0  1 A) for some 0. 

The first problem corresponds to maximum likelihood 
recognition of an unknown data sequence with a set of 
HMMs, each of which corresponds to a sign. For each 
HMM, the probability P(0IA) is computed that it gener- 
ated the unknown sequence, and then the HMM with the 
highest probability is selected as the recognized sign. For 
computing P(OIA), let Q = Q1, Q2,. . . , QT be a state 
sequence in A: 

at ( i)  = P(01,02, .  . . , Ot , Qt = Si 1 A) 1 F i  5 N ,  (1) 

These equations assume that the Oi are independent, and 
they make the Markov assumption that a transition de- 
pends only on the current state, a fundamental limitation 
of HMMs. This method is called the forward-backward 
algorithm and computes P(O(X) in O ( N 2 T )  time. 

The second problem corresponds to finding the most 
likely path Q through an HMM A, given an observation 
sequence 0 ,  and is equivalent to maximizing P(Q, 0 I X ) .  
Let 

dt (i) corresponds to the maximum probability of all state 
sequences that end up in Si at time t. Equations 6 and 7 
follow from Equation 5 by induction on t .  The Viterbi 
algorithm is a dynamic programming algorithm that, us- 
ing Equation 7, computes both the maximum probability 
P(Q,  OIX) and the state sequence Q in O ( N 2 T )  time. 

The recovery of the state sequence makes the Viterbi al- 
gorithm invaluable for continuous recognition, since it by- 
passes the difficult problem of segmenting the utterances 
into its individual parts. Instead, a sequence of HMMs cor- 
responding to individual signs is concatenated into a net- 
work, as schematically depicted in Figure 2. Thus, the 
most likely state sequence recovers the sequence of signs. 

The Viterbi algorithm also has the property that it can 
be optimized with the beam-searching algorithm. While 
updating St+l ( i ) ,  this optimization considers only those 
states S j  in the HMM network for which Jt( j )  is above 
a threshold value. The assumption is that if the probability 
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Figure 2: Concatenation of HMMs into a network 

of a partial path through the network becomes too low, it 
cannot contribute to the most likely path. Beam-searching 
is essential for making large-scale applications tractable. 

The third problem corresponds to training the HMMs 
with data, such that they are able to recognize previously 
unseen data correctly after the training phase. There exists 
no analytical solution for maximizing P(0IX) for given 
observation sequences, but an iterative procedure, called 
the Baum-Welch procedure, maximizes P(O(X) locally. 
In the case of continuous density output probabilities, the 
reestimation process works as follows. 

Define b j ( 0 )  as bj (0 )  = c:=, cjmG(O, pjm,  Ujm),  
where M describes the number of mixtures, j is the state 
number, c describes the weight of mixture m in state j, 
and G is a Gaussian density with mean p, and covariance 
matrix U .  Define the backward variable P as 

Pt (i) = P(Ot+lOt+z, . . . , OT IQt = Si, A ) ,  (8) 

Furthermore, define 5 and y as 

Ct &(i, j) can be interpreted as the expected number 
of transitions from Si to S j ;  likewise C,  yt(i) can be in- 
terpreted as the expected number of transitions taken from 
Si. With these interpretations, the reestimation formulae 
for the transitions and output probabilities are 

Repeated use of this procedure converges to a maximum 
probability [15], typically after 5-1 0 iterations. 

5 Use of HMMs for ASL Recognition 
In the previous section we reviewed the extraction of 

three-dimensional features from computer vision and the 
HMM theory. We now discuss how they fit in the frame- 
work of ASL recognition. 

HMMs are an attractive choice for processing three- 
dimensional sign data, because their state-based nature en- 
ables them to describe how a sign changes over time and 
to capture variations in the duration of signs, by remaining 
in a state for several time frames. 

There are two ways to approach the recognition prob- 
lem that pose very different research problems. Isolated 
recognition attempts to recognize one single sign at a time. 
Hence, it is based on the assumption that each sign can be 
individually extracted and then individually recognized. 

Continuous recognition, on the other hand, attempts to 
recognize an entire stream of signs, without any artificial 
pauses or any other form of marked boundaries between 
the individual signs. Clearly, continuous recognition is de- 
sirable for the most natural interaction possible between 
humans and machines, but it is also much more difficult to 
tackle than isolated recognition. The next two subsections 
discuss each of the two approaches in detail. 

5.1 Isolated Recognition 
Isolated sign recognition assumes that each sign can 

be extracted individually. This requires clearly marked 
boundaries between signs. Such a boundary could sim- 
ply be silence, that is, a brief resting phase after each sign, 
during which the signer performs no movements. Silence 
is easily detected through an analysis of the global variance 
over the hand movements. 

Once there are clearly marked boundaries between 
signs, HMM recognition is comparatively straightforward. 
The recognition process extracts the signal corresponding 
to each sign individually. It then picks the HMM that yields 
the maximum likelihood for that signal as the recognized 
sign. 

Training the HMMs to maximize recognition perfor- 
mance is also comparatively straightforward. Initially, all 
signs in the training set are labeled. For each sign in 
the dictionary, the training procedure then computes the 



mean and covariance matrix over the data available for 
that sign and assigns them uniformly as the initial out- 
put probabilities to all states in the corresponding HMM. 
It also assigns initial transition probabilities uniformly to 
the HMM's states. Unlike the initial output probabilities, 
initial transition probabilities do not influence the perfor- 
mance of the fully trained HMMs greatly. 

The training procedure then runs the Viterbi algorithm 
repeatedly on the training samples, so as to align the train- 
ing data along the HMM's states. The aligned data are 
then used to estimate better output probabilities for each 
state individually. This realignment yields major improve- 
ments in recognition performance, because it increases the 
chances of the Baum-Welch reestimation algorithm con- 
verging to an optimal or a near-optimal maximum. After 
constructing these bootstrapped HMMs, the training pro- 
cedure finishes by reestimating each HMM in turn with 
the Baum-Welch reestimation algorithm outlined in Sec- 
tion 4.2. 

The by far most challenging problem in isolated recog- 
nition is extracting a feature vector that optimizes recog- 
nition performance. Even after obtaining accurate three- 
dimensional data from our computer vision method de- 
scribed in Section 3, we found that the features used for 
recognition - and the way that they are represented - 
greatly influence recognition performance. The experi- 
mental results given in Section 8.1 demonstrate how the 
feature vector affects performance. 

There are several reasons why performance is so sen- 
sitive to choosing the type of feature vector: First, some 
features carry more information than others; for exam- 
ple, three-dimensional features are more reliable than two- 
dimensional ones. Second, some features are more invari- 
ant to changes in orientation and position than others; for 
example, polar coordinates are more invariant to rotations 
than Cartesian coordinates [I].  Third, the statistical prop- 
erties of some features change, depending on the duration 
of a sign. For this reason, the positions of the hands in 
three-dimensional space perform better than the velocities 
of the hands (see also Section 8.2). Fourth, the statisti- 
cal distribution of the features during the course of a sign 
seems to play a role. For some features, their distribution 
fits Gaussian densities naturally, whereas for others it does 
not. 

If the latter explanation holds true, we should see a ma- 
jor improvement in recognition performance from using 
multiple Gaussian mixtures as the output probabilities for 
HMMs, instead of using just one single Gaussian density. 
However, we did not experiment with multiple mixtures 
because of the lack of sufficient training data. 

The number of states and the topology used for the 
HMMs is also important. Sign language as a time-varying 

process lends itself naturally to a left-right model topology. 
Finding the optimum number of states, which depends on 
the frame rate and on the complexity of the signs involved, 
is an empirical process. We used the same model topology 
for all signs, and determined experimentally that for our 
task a model with 9 states was sufficient, which is depicted 
in Figure 3. The output probabilities were single Gaussian 
densities with diagonal covariance matrices, because we 
had insufficient training data for multiple mixtures. 

Figure 3: Left-right HMM topology for isolated ASL 
recognition. 

5.2 Continuous Recognition 
Continuous sign recognition, on the other hand, is much 

harder than isolated sign recognition. There is no silence 
between the signs, so the straightforward method of us- 
ing silence to distinguish boundaries fails. Here HMMs 
offer the compelling advantage of being able to segment 
the streams of signs automatically with the Viterbi algo- 
rithm. Coarticulation effects further complicate continuous 
recognition. We now discuss them in detail, before we de- 
scribe the techniques needed to train HMMs for continuous 
recognition. 

5.2.1 The Coarticulation Problem 
Coarticulation means that the pronunciation of a sign is 

influenced by the preceding and following signs. One of 
the most visible effects of coarticulation in ASL is that a 
wide range of movements are inserted between signs. 

For example, the sign for "FATHER is performed by 
repeatedly tapping the forehead, and the sign for "READ 
is performed in neutral space in front of the chest. If these 
two signs are performed in succession, an extra movement 
from the forehead to neutral space appears (Figure 4). This 
phenomenon is called movement epenthesis [ 5 ] .  We dis- 
cuss its implications for ASL recognition more thoroughly 
in [20]. 

Figure 4: Movement epenthesis. The arrow in the middle 
picture indicates an extra movement between the signs for 
"FATHER" and "READ that is not present in their lexical 
forms. 



Speech recognizers handle coarticulation by training 
phoneme context-dependent HMMs. They train a separate 
model for each possible combination of three phonemes in 
sequence that could occur during natural speech. In princi- 
ple, the same idea applies to sign language recognition, and 
we performed some experiments to verify the applicability, 
see Section 8.3. 

A possible way to train context-dependent models for 
ASL recognition is to use whole signs as the phonologi- 
cal unit in ASL.~  Thus, triphone context-dependent mod- 
els from speech recognition correspond to tri-sign context- 
dependent models in ASL recognition. In other words, a 
separate model is trained for each combination of three 
signs in sequence. The first and the third sign in the se- 
quence form the context for the middle sign, with which 
the model is associated. 

Tri-sign context-dependent modeling, however, is pro- 
hibitively expensive, because it requires O(W3) models 
overall, where W is the vocabulary size. Collecting such 
a large amount of training data necessary to obtain reli- 
able estimates for the models is intractable even for small 
vocabulary sizes. This intractability is a negative conse- 
quence of using whole signs as the phonological unit. Un- 
like for speech recognition, which has to handle only ap- 
proximately 40 classes of allophones, there is no upper 
bound on the number of models required for ASL recog- 
nition with whole signs as the smallest unit. 

Therefore, we used only bi-sign context-dependent 
models, which require a model for every possible combina- 
tion of two signs. The model is associated with the second 
sign, and the first sign forms its preceding context. 

Bi-sign context-dependent modeling requires O(W2) 
models. Although this complexity is an improvement over 
O(W3), it is still too large for anything but a small vocab- 
ulary. Speech recognizers reduce the number of models re- 
quired by using the observation that many contexts are very 
similar. Therefore, they tie the parameters of the models 
corresponding to similar contexts, such that the transition 
and output probabilities are shared between these models. 
This technique significantly reduces the number of distinct 
models. 

Parameter tying is also applicable to ASL recognition, 
but it is not as effective as for speech recognition. The 
main reason for the reduced effectiveness is that move- 
ment epenthesis inserts many movements unrelated to the 
signs' lexical forms. The implication is that context- 
dependent models will work well only with prohibitively 
large amounts of training data. 

In fact, it is questionable whether context-dependent 
modeling is a good solution to the coarticulation prob- 

Z ~ h i s  assumption is not correct: Whole signs are not the smallest unit 
in ASL phonology, but this topic is beyond the scope of this paper. 

lem in ASL recognition at all. Movement epenthesis is 
a phonological process in ASL and should be treated as 
such; that is, the movements induced by epenthesis are sep- 
arate phonemes. Using context-dependent models to cap- 
ture them is implausible from a phonological point of view. 
It seems to make more sense to model the movements ex- 
plicitly. We follow up on this idea in [20] and show that it 
leads to better recognition performance. 
5.2.2 The Training Procedure 

A sign in our data collected at natural signing speeds 
was between 10 and 45 frames long, not counting the 
frames needed for the transition between signs. Because 
of the movements between signs, the HMM topology must 
be more flexible than the one described for isolated recog- 
nition in Section 5.1. These considerations led us to using 
the left-right model shown in Figure 5. 

Figure 5: Topology of the context-dependent model. The 
arcs that skip states allow the modeling of variabilities in 
the duration of different signs. 

Like for isolated recognition, we determined the opti- 
mal number of states experimentally. For the output prob- 
abilities, we chose a single Gaussian density with diagonal 
covariance, as we had insufficient training data for estimat- 
ing full-rank covariance matrices. 

Training continuous recognition models is much harder 
than training isolated recognition models, because it is dif- 
ficult to obtain good initial estimates of the HMM param- 
eters. Viterbi realignment (see Section 5.1) works only if 
the training data is accurately labeled, including the bound- 
aries between the individual signs. Obtaining these bound- 
aries is very difficult and time-consuming; even humans 
have trouble determining where a sign ends and the next 
one starts. 

The alternative to using Viterbi realignment is using a 
flat-start scheme. It consists of computing the global mean 
and covariance matrix over the entire training data set and 
assigning these as the initial output probabilities to the 
HMMs. We used this scheme to initialize the HMMs. 

We then used embedded training [24] to reestimate the 
HMMs. Each iteration of this procedure concatenates the 
HMMs corresponding to the individual signs in a training 
sentence into a single large HMM. It then reestimates the 
parameters of the large HMM with a single iteration of the 
Baum-Welch algorithm described in Section 4.2, as usual. 
The reestimated parameters, however, are not immediately 
applied to the individual HMMs. Instead, they are pooled 



in accumulators, and applied to the individual HMMs only 
after the training procedure has iterated over all sentences 
in the training set. 

Hence, embedded training effectively trains all mod- 
els in parallel with the entire training set. It yields bet- 
ter parameter estimates than training the HMMs indepen- 
dently [24]. 

In the case of context-independent models, using the 
flat start scheme followed by several embedded training 
runs is all that is necessary to train HMMs for recognition. 
Context-dependent models are more difficult to train than 
context-independent models, because the training involves 
two extra steps. These consist of generating the context- 
dependent models, and tying the parameters of HMMs 
with similar contexts (see also Section 5.2.1). 

The first extra step, which consists of generating 
the context-dependent models, requires care, because for 
context-dependent models there exist far fewer training 
examples per model than for context-independent mod- 
els. In this case, embedded training is likely to yield the 
best parameter estimates for context-dependent models if 
they have already been initialized with better values than 
the global mean and covariance matrix from the flat-start 
scheme. 

Therefore, we ran several embedded training runs on the 
context-independent models and then generated context- 
dependent models with the same parameters as the context- 
independent models. It is vital to avoid overtraining the 
context-independent models by keeping the number of ini- 
tial training passes low. The probabilities should not have 
fully converged yet. Otherwise, using context-dependent 
models actually decreases recognition performance. 

The second extra step, which consists of tying the pa- 
rameters, is also vital to the context-dependent models' 
performance, especially because of our relative lack of 
training data. Tying parameters reduces the number of 
models, as signs with similar contexts then share a com- 
mon model. As a result, more training data per model be- 
comes available. 

Unfortunately, parameter tying is a highly empirical 
process. Our experiments indicated that tying the transition 
probabilities properly had the greatest influence on recog- 
nition results. We used the ending locations of the signs 
in the preceding context to decide on the tying. For ex- 
ample, the signs for "BROTHER" and "SISTER" end in 
the same location. As a result, the two models for a sign 
occurring after the signs for "BROTHER or "SISTER," 
such as "LIKE," can share the same transition probabili- 
ties. We also used the ending locations to decide on tying 
the output probabilities. For our data set, the tying pro- 
cess reduced the number of models to less than one sixth 
of their original number. 

6 Coupling of Vision and HMMs 
In the preceding section we reviewed how HMMs can 

be used for ASL recognition. The use of HMMs alone, 
however, imposes some limitations, one of which is insuf- 
ficiency of training data, especially while training context- 
dependent models. Furthermore, the probability theory as- 
sumptions underlying the HMM theory, as described in 
Section 4.2, are often not valid: Successive observations 
are often not independent, the transition from one state to 
the next often depends not only on the current state, but 
also on the state history, and the distribution of observa- 
tions does not necessarily resemble a normal density. 

Another problem is that the HMM theory does not pro- 
vide for any dynamic weighting of features depending on a 
sign's context. For example, the invariant features for some 
signs, such as "I," are the endpoints of their movements 
with respect to a body part, and the movements are unim- 
portant. For other signs, only the movements are invariant. 
The parts of the feature set that should be examined and 
ignored for each class of signs are mutually exclusive. 

To alleviate these limitations, we investigated the cou- 
pling of the HMM recognition process with an indepen- 
dent computer vision-based motion analysis that tempo- 
rally segments the signal and extracts its geometric prop- 
erties. The idea is that a sign can be described in terms of 
one or more geometric primitives, such as hand movements 
along a line, in a plane, or a circle. This idea is supported 
by the existence of transcription systems, such as the Ham- 
NoSys [14], that base the description of the movements on 
geometric primitives. 

The presence of three-dimensional information is cru- 
cial for the coupling to work. In the past, geometric fit- 
ting of planes has already been used for rough segmen- 
tation [12], but not for providing additional information 
about the nature of the fits to the HMM recognition pro- 
cess. 

6.1 Segmentation of the Signal 
To extract the geometric properties of the continuous 

signal estimated with our computer vision methods, it must 
first be segmented temporally into its parts. Any change of 
the type of arm movement is likely to be accompanied by 
a dip in the velocity. Thus, minima in the absolute val- 
ues of the velocity vector provide strong hints at segmen- 
tation boundaries. However, there are typically many more 
velocity minima than segmentation boundaries. Thus, the 
segmentation process must provide facilities to merge ad- 
jacent segments. 

After performing initial segmentation based on veloci- 
ties, our algorithm attempts to fit geometric primitives to 
the individual segments. These currently consist of lines, 
planes, and holds3 at a position in space. 

3~ hold is a short period of time, during which no hand movements 



The fit of a hold is determined by computing the co- 
variance matrix over the segment's position data. If there 
is little movement, the eigenvalues of the matrix in every 
direction are small, and consequently its trace is small. 

The least-squares fit of a line is governed by 

where ei is the distance of pi to the line, and d is the line's 
unit direction vector. Let P be a matrix containing the 
points pi in the segments as its row vectors. Minimiz- 
ing Equation 19 with respect to d corresponds to maxi- 
mizing dTpTpd. By Rayleigh's principle, the maximal- 
eigenvalue eigenvector of PTP maximizes this equation, 
which is equivalent to the maximal-eigenvalue eigenvector 
of the points' covariance matrix. This eigenvector is the 
line's direction vector. The other two eigenvalues indicate 
the goodness of fit - the smaller they are with respect to 
the largest eigenvalue, the better the fit. 

The least-squares fit of a plane is governed by 

where ei is the distance of pi to the plane, and n is the 
plane's unit normal vector. If P is a matrix containing the 
points pi as its row vectors, the minimal-eigenvalue eigen- 
vector of P ~ P  minimizes Equation 20 with respect to n. 
Hence, minimizing this equation is equivalent to finding 
the minimal-eigenvalue eigenvector of the points' covari- 
ance matrix. The other two eigenvalues indicate the good- 
ness of fit - the larger they are with respect to the smallest 
eigenvalue, the better the fit. 

Using least-squares fitting is based on the assumption 
that the signal noise term is captured by a normal distri- 
bution. If this assumption is not valid, the least-squares 
estimator is likely to yield poor results, because of its sen- 
sitivity to outliers. On the other hand, in three-dimensional 
space, the least-squares estimator is much easier to com- 
pute than more robust estimators. It would be interesting 
to compare its performance on temporal segmentation to 
the performance of robust regression estimators [13], such 
as the least median of squares estimator [2, 111, or the re- 
peated median estimator [16, 91. 

After the initial fit, the algorithm pools the primitives 
into a directed acyclic graph (DAG), schematically de- 
picted in Figure 6. Note that the individual segments are 
not mutually exclusive; for example, data can fit both a 
line and a plane. 

If the algorithm fails to fit any geometric primitives to 
some segment, it inserts the segment into the DAG as a 

take place. 

"wild card," which is defined conservatively to match any 
kind of geometric primitive. It then attempts to merge ad- 
jacent segments if they are compatible, in an attempt to 
eliminate spurious segmentation boundaries. 

We defined adjacent segments to be compatible for a 
merge if they shared the same type of geometric primitive 
in similar orientations, and if the merged segment still fit 
the same type of geometric primitive as its constituting seg- 
ments. In addition, we considered a wild card to be com- 
patible with another geometric primitive if this primitive 
also fit the merged segment. 

Line 

Figure 6: Geometric primitives pooled into a DAG. Cir- 
cles denote segmentation boundaries. Dotted arcs denote 
possible null transitions; they are necessary to compensate 
for spurious segments. Sometimes data can fit multiple ge- 
ometric primitives; in this DAG the data of the first two 
segments fit both a hold followed by a line, and a simple 
line. 

The DAG now gives all possible segment sequences that 
are a valid representation of the signal. If a sequence is to 
be valid, it must be obtainable by tracing a path through the 
DAG from the leftmost segmentation boundary to the right- 
most segmentation boundary. In the example given in Fig- 
ure 6 the sequences "Hold, Line, Plane," and "Line, Plane" 
would both be valid sequences, but "Plane, Plane" would 
not, because the latter does not lie on any path through that 
DAG. 

This discussion has so far ignored the possibility of spu- 
rious segments arising from the vision analysis. That is, the 
analysis might recognize a segment that should be part of 
another, but the merge process fails to merge it into an- 
other segment. The main reason for the existence of spu- 
rious segments is undersampling. If a segment consists of 
very few samples, it is often impossible to extract reliable 
information from it. Our algorithm attempts to solve this 
problem by adding arcs to the DAG from each segmenta- 
tion boundary to the next (represented by the dotted arcs 
in Figure 6). Thus, a path through the DAG can optionally 
skip these spurious segments. 

6.2 Using the Motion Analysis with HMMs 
Each sign in the vocabulary has associated one or more 

templates that comprise the sign's geometric primitives 
with weights of each feature's relative importance. These 



primitives are matched against those in the DAG. Assum- 
ing that the segmentation process yields correct results, the 
following must be true: If a sequence of signs is repre- 
sented by the input signal, the sequence of geometric prim- 
itives corresponding to the signs must form a path through 
the DAG. We call such a sequence of signs valid with re- 
spect to the computer vision DAG. 

This observation suggests an application of the motion 
as a backup check for the HMM framework. First rec- 
ognize a candidate sentence from the input signal via the 
Viterbi algorithm. Then generate all possible sequences of 
geometric primitives corresponding to the recognized signs 
and construct another DAG from them. Using dynamic 
programming, match the two DAGs against each other. If 
the two DAGs share a common path, accept the candidate 
sentence as correct. Otherwise, reject the candidate sen- 
tence as incorrect. 

The justification for this algorithm comes from the fol- 
lowing properties of the DAGs: If the two DAGs share a 
common path, there is a sequence of geometric primitives 
that forms a path through the computer vision DAG. Fur- 
thermore, this sequence of geometric primitives is one of 
the possible sequences generated from the candidate sen- 
tence. Thus, the candidate sentence is valid with respect 
to the computer vision DAG. Conversely, if no such com- 
mon path exists, none of the sequences of geometric prim- 
itives generated from the candidate sentence forms a path 
through the computer vision DAG. Thus, the candidate 
sentence is not valid with respect to the computer vision 
DAG and should be rejected. 

6.3 Discussion of the Coupling 
The HMM recognition algorithm and the vision match- 

ing algorithm complement each other. The advantages of 
the HMM recognition method are automatic segmentation 
during both training and recognition, and a fully formal- 
ized training procedure. The disadvantages are poor per- 
formance in the presence of insufficient training data, no 
formal way to weight features dynamically, and possible 
violations of the stochastic independence assumptions. 

The advantages of the vision matching method are the 
possibility of weighting the relative importance of features 
dynamically, and independence from insufficient training 
data. A significant disadvantage is that estimating the ge- 
ometric properties of the signs in the vocabulary requires 
manual labeling and analysis of the data. Furthermore, seg- 
mentation must be done explicitly, which raises the possi- 
bility of spurious segments, as described in Section 6.1, or 
the possibility of missing segments. Coarticulation some- 
times also changes the geometric properties of the signal, 
such that the templates for the correct sequence of sign no 
longer match the actual signal. Coping with the changes 
in the geometric properties is an important task for future 

research. 

7 Data Collection 
For our experiments we collected data, using both our 

computer vision system, and an Ascension Technologies 
Flock of Birds. The reason for using the latter was that it 
is faster at this point than the computer vision system, and 
hence more suitable for prototyping. 

The computer vision system yields rotation, q e ,  and 
translation, q,, of each segment of the arm, as described in 
Section 3. Figure 7 gives an example of the computer vi- 
sion tracking process. The images show the high accuracy 
of the computer vision system; in fact, it is comparable to 
the accuracy achieved by the Flock of Birds system. 

The Flock of Birds system consists of a magnet and six 
sensors that detect their rotation, fie, and translation, fit, 
with respect to the magnet at 25 frames per second. We 
used the data from both systems interchangeably with a 
simple alignment of coordinate systems. The coordinate 
system was right-handed, with the origin at the base of the 
signer's spine and the x axis facing up. 

Figure 7: Fitting the three-dimensional models to the 
signer's arms. From top to bottom, the signs for "FA- 
THER,'' "I," and "MAIL" are displayed. From left to right, 
the front, side, and top views are displayed. 

We used the 53-sign vocabulary listed in Table 1. 
Their pronunciations followed the ASL dialect used in the 
Philadelphia, PA, area. The goals in choosing the vocab- 
ulary were to be able to express sentences that could have 
occurred in a natural conversation, and to make intensive 
use of the signing space, so as to demonstrate the advan- 
tages of three-dimensional data over two-dimensional data. 
We collected 486 continuous ASL sentences, each between 



Category Signs used Features p 0 B W N  
Nouns America, Christian, Christmas, book, x, y,z 98.42% 0.99% 100.0% 93.8% 463 

brother, chair, college, family, fa- r x y  ,  OX^ , 
ther, friend, interpreter, language, mail, 
mother, name, paper, president, school, 
sign, sister, teacher 

Pronouns I, my, you, your, how, what, where, why 
Verbs act, can, give, have, interpret, like, make, 

read, sit, teach, try, visit, want, will, win 
Adiectives deaf, good, happy, relieved, sad 
Other if, from, for, hi 

Table 1 : The complete 53 sign vocabulary 

2 and 12 signs long, with a total of 2345 signs. The only 
constraints on the order and occurrence of signs were those 
dictated by the grammar of ASL [19]. 

Furthermore, we collected examples of each sign for 
isolated recognition. Because part of the data were cor- 
rupted during the collection process, we discarded all signs 
for which we did not have enough intact training examples. 
This left 656 examples over a range of 40 signs. Each sign 
had at least 6 examples available for the training set, and 2 
examples available for the test set. 

8 Experiments 
We performed isolated, continuous, and vision-HMM 

coupled ASL recognition experiments. We used Entropic's 
Hidden Markov Model Toolkit (HTK) Version 2.02 for 
training and testing in all of our experiments. 

8.1 Isolated Recognition Experiments 
The goal of the isolated recognition experiments was to 

discover a set of features that maximizes HMM recogni- 
tion performance. We used different features in our exper- 
iments, including wrist position coordinates of both hands 
(denoted by x, y, z) ,  wrist position expressed in polar co- 
ordinates in the x-y plane (denoted by rX,,8,,), polar 
coordinates in the x-z plane (denoted by r,,, Ox,), wrist 
position expressed in spherical coordinates (denoted by 
r, 8, $), and wrist orientation angle (denoted by 6), as well 
as derivatives of these (denoted by a dot). We also com- 
bined several features in some experiments. 

We ran repeated experiments, more than 10,000 total, 
with different features and randomly selected training and 
test sets on a per-experiment basis. Three quarters of the 
examples for each sign were in the training set and the rest 
were in the test set. Each selection yielded 178 test exam- 
ples per experiment. Some typical results are given in Ta- 
ble 2. In addition, we performed experiments to compare 
the merits of using three-dimensional coordinates versus 
two-dimensional coordinates by projecting the coordinates 
on planes. The results are shown in Table 3. 

Table 2: Results of isolated sign recognition with three- 
dimensional features. p, u, B, W, and N correspond to 
the average percentage of correctly recognized signs, stan- 
dard deviation, best case, worst case, and number of exper- 
iments, respectively. All experiments used a test set of 178 
signs. 

Features u (T B W N  

Table 3: Results of isolated sign recognition with two- 
dimensional features. The meaning of the columns is the 
same as in Table 2. 

8.2 Analysis of Isolated Recognition 
The low error rates of the best feature sets show that 

with a good selection of features, the hand movements 
alone, without hand configuration information, carry suf- 
ficient information to discriminate among many different 
signs. Polar coordinates slightly outperformed Cartesian 
coordinates. A combination of both yielded the best re- 
sults, although the difference is not significant. However, 
the standard deviation of the combined feature set was low- 
est, indicating that a complex feature vector is more robust 
than a simple feature vector. 

Position coordinates significantly outperformed veloc- 
ities. The reason for the poor performance of velocity 
features is that the statistical properties of the velocities 
change with variations in the sign's duration. In contrast, 
the statistical properties of position coordinates are largely 
unaffected by the duration of signs, because HMMs absorb 
variations in duration through transitions looping back to 
the same state. Yet, position coordinates have the signif- 
icant disadvantage that they are not invariant with respect 
to location. The lack of invariance will cause problems for 
future applications that attempt to capture commonalities 
between movements at different locations in space. 



Three-dimensional features performed better than two- Type of Word 
dimensional features, although the difference is not large. experiment accuracy Details 
The difference would probably become more significant 3D context 87.71% H=416, D=8, S=32 
with a larger vocabulary. The differences in standard de- independent I=16, N=456 
viation, however, indicate that three-dimensional features 3D context 89.91% H=424, D=6, S=26 
are more robust than two-dimensional features. 

It is an important consequence of the experiments' re- 
sults that the performance of the feature vectors depends 
on the actual examples in the training set, all other factors 
being equal. Thus, only performing a large number of ex- 
periments yields reliable estimates of the relative merits of 
different features. 

8.3 Continuous Recognition Experiments 
We split the 486 sentences randomly into a training set 

with 389 examples and a test set with 97 examples (con- 
taining 456 signs). Each sign in the vocabulary occurred 
at least once in the test set. The training and test sets 
were the same throughout all experiments, and no portion 
of the test set was used for training in any way. We ran 
three-dimensional experiments with and without context- 
dependent HMMs, and two-dimensional experiments (by 
projecting the data on planes; the results given are the best 
that we found). 

In accordance with the results from isolated experi- 
ments that position coordinates perform better than ve- 
locities, and that a complex feature vector is more ro- 
bust than a sparse one, we chose our feature vector to be 
(x, y ,  z,  Ox,, Ox,, x, y ,  f ,  S) for both hands. That is, it con- 
sisted of Cartesian and polar position coordinates, veloci- 
ties, and wrist orientation angles. The task grammar was a 
simple word loop, so every sign was equally likely at any 
time in the HMM network. 

Table 4 shows the experimental results. We use word 
accuracy as our evaluation criterion. It is computed by sub- 
tracting the number of insertion errors from the number of 
correctly spotted signs. The number of words in the result 
for two-dimensional data is lower than in the other results, 
because for one sentence the Viterbi beam-searching opti- 
mization pruned all paths through the HMM network (see 
also Section 4.2). 

8.4 Analysis of Continuous Recognition 
The results are clearly in favor of using three-dimen- 

sional data over two-dimensional for continuous recogni- 
tion. The 6.3 percent difference is large, although, accord- 
ing to our experiences with isolated recognition, one exper- 
iment is not enough to estimate the real difference reliably. 

Context-dependent models outperformed context-inde- 
pendent models, but the increase in performance was 
small, probably to a large extent because of insufficient 
training data - context-dependent modeling requires huge 
amounts of data to become effective. Also, cross-sign 
context-dependent modeling for ASL is implausible from 

dependent I=14, N=456 
2D context 83.63% H=394, D=14, S=44 
dependent I=16, N=452 

Table 4: Results of continuous recognition experiments. 
H denotes the number of correct signs, D the number of 
deletion errors, S the number of substitution errors, I the 
number of insertion errors, and N the total number of signs 
in the test set. 

a phonological point of view (see Section 5.2.1). The al- 
ternative is modeling movement epenthesis directly, and it 
appears to perform better [20]. 

More than half of the substitution errors in each experi- 
ment were confusions between "I" and "MY," and " Y O U  
and "YOUR," which differ only in hand configuration. We 
expect that adding features describing the hand configura- 
tion will improve recognition performance significantly. 

Repeating the context-dependent experiment with five- 
best recognition showed that the absence of a strong gram- 
mar for constraining the HMM network degrades recogni- 
tion performance significantly. In many cases, the correct 
sentence was the only grammatical sentence among the five 
best candidates. In other cases, all five candidates were un- 
grammatical. 

Unfortunately, using a strong grammar for a test set 
as diverse as ours is not practical, because the size of an 
HMM network grows exponentially with the number of 
rules present in the grammar. Statistical language models, 
such as bigram models, have proved to be an effective solu- 
tion to this problem in speech recognition. We show in [20] 
that bigram language models are promising for ASL recog- 
nition as well. However, they require a large corpus of la- 
beled real-world data to become truly effective. Presently, 
no such corpus exists for ASL. 

8.5 Coupling Experiments 
To investigate the effects of coupling the three-dimen- 

sional motion analysis with the HMM framework, we per- 
formed two experiments. In the first experiment, we ana- 
lyzed all sentences in the test set with our motion analysis, 
so as to provide an upper bound on its performance. If the 
motion analysis had worked perfectly, it should have ac- 
cepted all of these 97 test sentences. In reality, however, it 
rejected 10 out of these 97 sentences. 

A closer look at the 10 rejected sentences revealed that 
five of these were not recognized correctly by the context- 
dependent HMMs either. Thus, it is likely that these five 



sentences were not signed precisely enough during the data 
collection process. The other five rejected sentences indi- 
cate that the motion analysis still needs improvement. 

In the second experiment, we ran the coupling algorithm 
on the actual recognition hypotheses from the context- 
dependent HMMs in the experiments in Section 8.3. This 
time, the algorithm also eliminated 10 sentences out of 97. 
Five of these were correctly rejected; that is, the HMM 
framework had provided incorrect results for them. Thus, 
at the current moment, coupling HMMs with motion anal- 
ysis breaks even with using the HMM framework by itself. 
The word accuracy achieved by the coupling was 90.10%, 
which is slightly better than the 89.91% word accuracy 
achieved by the context-dependent models alone. 

As we have used only a small part of the full power 
of computer vision motion analysis so far, we see these 
results as evidence that coupling will eventually be able to 
outperform either method independently. 

9 Summary 
We have developed a framework for recognizing Amer- 

ican Sign Language from three-dimensional data obtained 
with computer vision techniques. We showed how to col- 
lect three-dimensional data from computer vision and use 
them as input to Hidden Markov Models. We also de- 
termined that three-dimensional features are superior over 
two-dimensional ones. 

By using context-dependent modeling, we improved 
recognition performance. Through coupling vision pro- 
cesses with Hidden Markov Models, we took a first step 
toward overcoming the limitations of either method by it- 
self. 

10 Future work 
The collection of a standardized corpus of real-world 

ASL conversations and story telling should be a high pri- 
ority for future work. The current lack of such a corpus 
makes it impossible to compare results from different re- 
searchers. Furthermore, it makes the development of sta- 
tistical language models for ASL difficult. Such language 
models are necessary for large-scale applications. 

Testing the algorithms described in this paper and 
in [20,21] with a larger vocabulary is also important. Only 
then it will be possible to judge how well these algorithms 
scale. 

On the linguistic side of ASL recognition, future work 
should incorporate facial expressions and other phonolog- 
ical processes in ASL into the recognition framework. It 
also needs to address how to make use of hand configura- 
tion information; using this information effectively seems 
to be nontrivial. Furthermore, future work has to find ways 
to use statistical language models, so as to counterbal- 
ance the impracticability of using strongly constrained task 

grammars. 
On the computer vision side of ASL recognition, future 

work should elaborate on the coupling of computer vision 
and HMMs and make the computer vision analysis more 
robust. This work should consist of recognizing more dif- 
ferent geometric properties, fine-tuning the sign templates, 
and fine-tuning the dynamic weighting of features based 
on the properties of each sign that is matched to the signal. 
It also needs to address coarticulation effects, which it has 
ignored so far. 

It is also necessary to to develop an anthropometrically 
correct model of the human hand, so that the computer vi- 
sion tracking process can make hand configuration infor- 
mation available to the recognition framework. 
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