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Social Inheritance Can Explain the Structure of Animal Social Networks

Abstract
The social network structure of animal populations has major implications to survival, reproductive success,
sexual selection, and pathogen transmission. Recent studies showed in various species that the structure of
social networks and individuals’ positions in it are influenced by individual traits such as sex, age, and social
rank, and can be heritable between generations. But as of yet, no general theory of social network structure
exists that can explain the diversity of social networks observed in nature, and serve as a null model for
detecting species and population-specific factors. Here we propose such a general model of social network
structure. We consider the emergence of network structure as a result of two types of social bond formation:
via social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds
randomly. We compare model output to data from several species, showing that it can generate networks with
properties such as those observed in real social systems. Our model demonstrates that some of the observed
properties of social networks, such as heritability of network position or assortative associations, can be
understood as a consequence of social inheritance. Our results highlight the need to consider the dynamic
processes that generate social structure in order to explain patterns of variation in social networks.
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Social inheritance can explain the
structure of animal social networks

Amiyaal Ilany1 and Erol Akcay1

1Department of Biology, University of Pennsylvania,
Philadelphia, PA USA

Abstract

The social network structure of animal populations has major im-
plications to survival, reproductive success, sexual selection, and path-
ogen transmission. Recent studies showed in various species that the
structure of social networks and individuals’ positions in it are influ-
enced by individual traits such as sex, age, and social rank, and can
be heritable between generations. But as of yet, no general theory of
social network structure exists that can explain the diversity of social
networks observed in nature, and serve as a null model for detecting
species and population-specific factors. Here we propose such a gen-
eral model of social network structure. We consider the emergence
of network structure as a result of two types of social bond forma-
tion: via social inheritance, in which newborns are likely to bond with
maternal contacts, and via forming bonds randomly. We compare
model output to data from several species, showing that it can gen-
erate networks with properties such as those observed in real social
systems. Our model demonstrates that some of the observed prop-
erties of social networks, such as heritability of network position or
assortative associations, can be understood as a consequence of social

1

. 

http://dx.doi.org/10.1101/026120
http://creativecommons.org/licenses/by-nc-nd/4.0/


inheritance. Our results highlight the need to consider the dynamic
processes that generate social structure in order to explain patterns of
variation in social networks.

The transition to sociality is one of the major shifts in evolution, and
social structure is an important and ever-present selective factor, affect-
ing both reproductive success [1] and survival [2, 3]. Sociality affects in-
dividual health and evolutionary fitness via multiple mechanisms in hu-
mans and other animals, including pathogen transmission [4–7] but also
through promoting or hindering particular social behaviors [8–11]. Social
bonds can both increase stress induced by competition [12], while at the
same time providing buffer for individuals against stressors and their ef-
fects [13, 14]. The social structure of a population summarizes the social
bonds of its members [15]. Hence, understanding the processes generat-
ing variation in social structure across populations and species is crucial to
uncovering the impacts of sociality.

Recent years have seen a surge in the study of the causes and conse-
quences of social structure in human and animal societies, based on theo-
retical and computational advances in social network analysis (SNA) [16].
The new interdisciplinary field of “Network Science” has provided many
tools to construct, visualize, quantify and compare social structures, facil-
itating advanced understanding of social phenomena. Researchers study-
ing a variety of species, from insects to humans, have used these tools to
gain insights into the factors determining social structure [17–20]. Further-
more, using SNA provided evidence for the effects of social structure on a
range of phenomena, such as sexual selection [21] and cultural transmis-
sion [22, 23].

Most applications of SNA to non-human animals have been at a static
and descriptive level, using various computational methods to quantify
features of social structure. These measurements, combined with increas-
ingly detailed data (“reality mining” [24]) about social interactions in na-
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ture, provided valuable insights about the complex effects of social inter-
action on individual behaviors and fitness outcomes. Yet, we still lack a
comprehensive theory that can explain the generation and diversity of so-
cial structures observed within and between species. There have been only
a few influential efforts to model animal social network structure. Notably,
Seyfarth [25] used a generative model of grooming networks based on in-
dividual preferences for giving and receiving grooming, and showed that
a few simple rules can account for complex social structure. This model
and related approaches [e.g., 26] have been very influential in the study of
social structure. At the same time, they mostly focused on primates and
were geared towards specific questions such as the effects of relatedness,
social ranks, or ecological factors in determining social structure.

A large body of theoretical work in network science aims to explain
the general properties of social networks through simple models of how
networks form. However, these models tend to focus either on networks
with a fixed set of agents [e.g. 27, 28], or on boundlessly growing networks
[e.g., 29, 30], with few exceptions [31, 32]. These network formation mod-
els therefore have limited applicability to animal (and many human) social
groups where individuals both join (through birth of immigration) and
leave (through death or emigration) the network. Furthermore, most work
in network science concentrates on the distribution of number of connec-
tions individuals have (the degree distribution). Models that fit the degree
distribution of real-world networks tend to be a poor fit to other important
properties, notably the tendency of social connections to be clustered [30],
i.e., two individuals to be connected with each other if they are both con-
nected to a third individual. Real-world human and animal networks ex-
hibit significantly more clustering than random or preferential attachment
models predict.

To overcome these limitations, we provide a general network forma-
tion model based on simple demographic and social processes. Despite
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being extremely simplistic, we demonstrate that our model can generate
networks that match both degree and local clustering distributions of real-
world animal social networks using only two parameters. We also show
that social heritability of connections can result in the appearance of genetic
heritability of connectivity traits, as well as assortativity in the absence of
explicit assortative preferences. Our approach highlights commonalities
among groups, populations, and species, and uncover general principles
underlying variation in social structure.

1 A general model of social structure

We model social structure as a result of demographic processes (birth and
death) and social processes, i.e. social inheritance and stochastic bond for-
mation. Our departure point for this model is the model by Jackson and
Rogers [30], which can reproduce many attributes of large-scale human
social networks. However, Jackson and Rogers’ model is based on a con-
stantly growing network with no death or emigration of agents. Since
we are interested in small-scale animal networks that do not grow un-
boundedly, we model a population where existing individuals die and get
replaced at an equal rate with newborn individuals [31]. We model bi-
nary undirected, implicitly cooperative networks, but our model can be
extended to weighted networks that describe the strength of each social
bond, and directed ones, such as agonistic networks.

Consider a social group of size N . Suppose that each time step, an in-
dividual is born to a random mother, and one individual is selected to die
at random. With probability pb, the newborn will meet and connect to its
mother (generally, pb will be close to one, but can be low or zero in species
such as many reptiles, where individuals might not meet their mothers).
A crucial component of our model is the general assumption that the like-
lihood of a newborn A connecting with another individual B depends on
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Figure 1: Graphical illustration of the model: a newborn individual is con-
nected to its parent with probability pb, to its parent’s connections with
probability pn, and to individuals not directly connected to its parent with
probability pr.

the relationship between A’s mother and B: the probability A will connect
to B is given by pn if A’s mother is connected to B, and pr if not (Figure 1).
Hence, pn is the probability an offspring “inherits” a given connection of
its parent. If pn > pr, the population exhibits a tendency for clustering, a
well-established and general phenomenon in social networks [20, 33]. In
the Supplementary Information (SI), we provide a mean-field approxima-
tion of the degree distribution of this model which shows an excellent fit
with our simulations (see Figure 3).

2 Results

We simulated social network dynamics to test how social inheritance and
stochastic social bonding affect network structure, heritability, and assor-
tativity. For all of our results, we assume pb = 1. As expected, the network
density (the number of edges out of all possible edges) depends on pn and
pr. The global clustering coefficient, a measure of the extent to which nodes
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Figure 2: The dependency of social network density and clustering coef-
ficient on social inheritance, pn, and probability of random bonding, pr.
Parameter values: simulation steps=2000, N = 100.

tend to cluster together, also depends on these parameters, but not mono-
tonically; high levels of clustering were observed in simulations with low
or high pr, but not at intermediate levels (Fig. 2).

We compared the output of our model with observed animal social net-
works of four different species. For this analysis we used data from pub-
lished studies of spotted hyena (Crocuta crocuta [20]), rock hyrax (Procavia
capensis [34]), bottlenose dolphin (Tursiops spp. [35]), and sleepy lizard
(Tiliqua rugosa [36]). We found species-specific values of pn and pr that
could generate networks similar to those observed with respect to the de-
gree and local clustering coefficient distributions. Figure 3 illustrates that
our model of social inheritance can produce networks with realistic social
structure. In particular, the good match of local clustering distributions
is an advance over network growth models based on preferential attach-
ment [30]. The values we found suggest that social inheritance is stronger
in hyena and hyrax than in dolphins and sleepy lizards (Table 1). We also
solved for the stationary distribution of the mean-field dynamics of the de-
gree distributions (Figure 3).

Next, we tested if social inheritance can generate heritability of indirect
network traits in social networks. Direct network traits, such as degree,
will by definition be heritable when pn is high and pr low. To see if this also
holds for emergent network traits, we measured the correlation between
parent and offspring betweenness centrality for a set of social inheritance
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Figure 3: Comparing model output to networks of four species. Upper
row: observed networks. Middle row: Cumulative degree distributions of
observed and simulated networks. Lower row: Cumulative clustering co-
efficient distributions of observed and simulated networks. Black dots rep-
resent observed values. Blue dots depict mean-field estimation (available
only for degree distribution). Red line notes mean values for 500 simulated
networks with the same species-specific pn and pr values (given in Table 1),
whereas light red area depicts 95% confidence intervals.

Species pn pr
Spotted hyena 0.90 0.010
Rock hyrax 0.80 0.009
Bottlenose dolphin 0.53 0.033
Sleepy lizard 0.57 0.005

Table 1: Parameter values used in the simulations for each species in Figure
3.
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Figure 4: The regression of betweenness centrality among parents and their
offspring as a function of the strength of social inheritance (pn). The bottom
and top of the box mark the first and third quartiles. The upper whisker
extends from the hinge to the highest value that is within 1.5*IQR of the
hinge, where IQR is the inter-quartile range, or distance between the first
and third quartiles. The lower whisker extends from the hinge to the lowest
value within 1.5*IQR of the hinge. Data beyond the end of the whiskers are
outliers and plotted as points. Ten replications were run for each pn value.
Parameter values: simulation steps=2000, N = 100, pr = 0.01.

(pn) values. As Fig. 4 shows, high probability of social inheritance (when
pn > 0.5) results in a pattern of heritability. In other words, when indi-
viduals are likely to copy their parents in forming social associations, the
resulting network will suggest heritability of centrality traits, although the
only heritability programmed into the model is that of social inheritance
and stochastic bonding. Similar patterns obtain for local clustering coeffi-
cient and eigenvalue centrality (results not shown).

Finally, we tested the effect of social inheritance on assortativity, i.e. the
preference of individuals to bond with others with similar traits. We simu-
lated networks where each individual had one trait with an arbitrary value
between 0 and 1. Newborns inherited their mother’s trait with probability
1−µ, where µ is the mutation rate. Individuals followed the same rules of
the basic model when forming social bonds. Hence, individuals did not ex-
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Figure 5: Illustration of assortativity without explicit assortative prefer-
ence. Dots and notches note assortativity coefficients and standard errors,
respectively, for model networks (red), and shuffled networks, where trait
values were reassigned randomly. Inset networks illustrate examples from
the two groups. Circle colors represent arbitrary continuous trait values.
Lines represent social bonds between individuals. Parameter values are
the same as in 4, with mutation probability µ = 0.05

plicitly prefer to bond with others with the same trait value. Nevertheless,
the rate of assortativity was significantly higher than in random networks,
in which the trait values were re-assigned randomly (Figure 5).

3 Discussion

Our model provides a step towards a general theory of social structure
in animals, and incorporates two main processes shaping social networks:
1) demography, which influences social structure as individuals gain con-
tacts when others join the population and lose contacts when individuals
die or leave; 2) “social inheritance” of connections, where individuals are
more likely to bond with individuals already connected to their parents
than to the rest of the population. This second process is crucial to the for-
mation of cohesive clusters in social networks. Notably, social inheritance

9

  

http://dx.doi.org/10.1101/026120
http://creativecommons.org/licenses/by-nc-nd/4.0/


usually depends on the mother-offspring unit, long viewed as the base of
social structure [37]. We showed that in four different species it is possi-
ble to identify parameter values to generate networks that are similar in
structure to the observed social networks, with respect to both the degree
distribution, and markedly also the clustering coefficient distribution, in
contrast to most studies of social network formation.

Clustering is an important feature of social networks, that distinguishes
them from other types of networks, such as transportation networks and
the internet [38]. Theory predicts that clustered networks are more con-
ducive to cooperation [39, 40], and empirical studies document a tendency
to close triads [20, 34], suggesting that it might be a generally adaptive fea-
ture of social structure. Nevertheless, most previous models of sociality
and network formation do not explicitly account for clustering. For exam-
ple, whereas preferential attachment can reconstruct the degree distribu-
tion of social networks, it fails to reconstruct their high degree of clustering
[30].

Our work shows that clustering can result from social inheritance, which
requires a behavioral mechanism that facilitates introduction of newborns
to their mother’s social partners. As in many species young individuals
tend to follow their mothers, it is easy to think about such a passive mech-
anism: young individuals are introduced to other individuals by spend-
ing time with their mother’s partners. Moreover, in some species current
group members show active interest in newborns [41], promoting the ini-
tiation of a social bond between newborns and their mother’s partners.
Further work could test if initial interest in newborns later translates to
stronger social bonds with individuals reaching adulthood.

Our model makes a number of simplifying assumptions such as no in-
dividual heterogeneity, or age- or stage-structure in our demography. We
also do not treat sex-specific dispersal, a mechanism that results in differ-
ent social environments for the two sexes. We do not argue that these as-
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sumptions actually hold in nature. However, we argue the fact that we can
produce realistic-looking networks using this very simple model indicates
that the social inheritance of connections is likely to be an important factor
structuring social networks. Our model can therefore serve as a departure
point to test the effect of additional factors. For example, after fitting the
model to an observed social network, one could test whether personality
can explain the variance not explained by social inheritance and stochas-
ticity. This can be attained by adding personality to the agent-based model
as a factor that influences individual bonding decisions.

Our model also has implications for how positions in social networks
can be inherited, which has important implications for social dynamics.
For example, Fowler et al. [42] found that in humans, network traits such
as degree and transitivity were heritable. In non-human primates, it was
suggested that indirect network traits such as betweenness are more herita-
ble than direct ones in rhesus macaques, Macaca mulatta [43]. In contrast, a
study of yellow-bellied marmots, Marmota flaviventris, presented evidence
for heritability of social network measures based on direct interactions [44],
but not indirect interactions. Taken together, these studies suggest network
position can be heritable, but have not been able to elucidate the mecha-
nism of inheritance. Our model suggests that much of the inheritance of
network position might be social (as opposed to genetic), from individuals
copying their parents (or other role models). Therefore, studies aiming to
get at genetic inheritance specifically need to control for social inheritance.

Another robust finding in network science and animal behavior is that
individuals tend to connect to others with traits similar to themselves (e.g.,
[45–47] for examples in animal behavior). This assortativity is crucial for
social evolutionary theory, as the costs and benefits of social interactions
depend on partner phenotypes. This is in line with other recent work [48]
that has found that assortative mating can arise without assortative pref-
erences, as a result of dynamic processes in a closed system. Our model
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provides another general mechanism, social inheritance, that can lead to
high assortativity in the absence of explicitly assortative preferences for
social bonding. Empirically, our results call for a careful assessment of net-
works with apparent phenotypic assortment, and controlling for social in-
heritance. This will be difficult to do with only static network data, but will
be feasible for species with long-term data on the network dynamics.

There are several interesting future avenues to be explored in future
research. First, we used binary networks to describe the strength of so-
cial bonds that are inherently on a continuous scale [49, 50]. Whereas our
model could generate networks similar in structure to observed networks,
weighted networks that can describe the delicate differences in the strength
of social bonds between individuals would be more relevant in some cases.
It would be straightforward to replace our binary bond generation with
a distribution of bond strength though that will come at the cost of ad-
ditional model complexity and parameters. Therefore, such an extension
might be best attempted in conjunction with a more mechanistic approach
to how social bonds are formed and maintained. Second, even though our
model is extremely simplistic, most of its mathematical properties (includ-
ing probability distributions over network measures such as the degree
distribution) are analytically intractable, which makes model-fitting a chal-
lenge. Methods such as approximate bayesian computation [51, 52], cou-
pled with dimensionality reduction techniques [53] can be used to develop
algorithms for estimating parameters of the model and also incorporate
more information about individual variation and environmental effects.
Additionally, long-term datasets on social network dynamics can allow es-
timation of the social inheritance and random bonding parameters pn and
pr directly. Lastly, our model does not consider changes in social bonds
after these were established. Although this assumption is supported by
empirical findings concerning bond stability in some species [20, 54], fu-
ture models in which this assumption is relaxed should be developed. We
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also assume a single type of bond between individuals, whereas in nature,
different social networks exist for different kinds of interactions (e.g., affil-
iative, agonistic, etc.). Such “multiplex networks” represent an important
future direction.

In conclusion, the theory we present here is based on the idea that any
snapshot of a social network should be regarded and analyzed as the result
of a dynamic process [55]. A social network is emergent in its nature, and
its structure depends on environmental, individual, and structural effects
[20] and as such, it can only be understood in the context of past events,
within a demographic framework.

4 Methods

4.1 Data

The Hyena social network was obtained from one of the binary networks
analyzed by [20], where details on social network construction can be found.
Briefly, the network is derived from association indexes based on social
proximity in a spotted hyena clan in Maasai Mara Natural Reserve, Kenya,
over one full year (1997). Similarly, the hyrax network was described by
[34], and is based on affiliative interactions in a rock hyrax population in the
Ein Gedi Nature Reserve, Israel, during a five-months field season (2009).
The dolphin network was published in [35], and is based on spatial prox-
imity. The lizard social network was published by [36], and is also based
on spatial proximity, measured using GPS collars. To get a binary network,
we filtered this network to retain only social bonds with association index
above the 75% quartile.
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4.2 Network measures

Network density is defined as D = T
N(N−1)

where T is the number of ties
(edges) and N the number of nodes. The global clustering coefficient is
based on triplets of nodes. A triplet includes three nodes that are con-
nected by either two (open triplet) or three (closed triplet) undirected ties.
Measuring the clustering in the whole network, the global clustering coef-
ficient is defined as

C =
closed triplets

triplets (1)

The local clustering coefficient measures the clustering of each node:

Ci =
number of edges among node i’s contacts

number of possible ties among node i’s contacts (2)

The betweenness centrality of a node v is given by

g(v) =

2
∑

s̸=v ̸=t

σst(v)
σst

(N − 1)(N − 2)
(3)

where σst is the total number of shortest paths from node s to node t and
σst(v) is the number of those paths that pass through v.
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Supplementary Information

SI 1 Mean-field approximation of the model

To characterize the expected dynamics of the degree distribution, consider
a focal individual that has degree d at time period t. In period t+1, the
probability that this individual increases its degree by one, p+d , is:

p+d =
(N − 1− d)

N

dpn + (N − d− 2)pr + pb
N − 1

. (4)

The first fraction in (4) is the probability that an individual not connected
to the focal individual is selected to die, while the second fraction is the
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average probability that the newborn individual becomes connected to the
focal individual.

The probability of a focal individual’s degree d (> 0) going down by
one, p−d , is likewise given by

p−d =
d

N

(
1− (d− 1)pn + (N − d)pr + pb

N − 1

)
, (5)

which is simply the probability one of the focal individual’s connections
dies times the newborn individual does not connect to the focal individual.

Denoting by ϕd
1 the probability that a randomly selected individual in

the population has degree d, we can write the following rate equation for
the mean-field dynamics of the degree distribution [31]:

dϕd

dt
= bd(ϕ) + p+d−1Nϕd−1 + p−d+1Nϕd+1 − (p+d + p−d )Nϕd − ϕd , (6)

where bd(ϕ) is the probability that a newborn is born with d connections
(itself a function of the degree distribution ϕ), and the last term in (6) is
the probability that a degree d individual dies, reflecting our assumption
that death occurs randomly with respect to degree. If we assume pb = 1,
so that the newborn always connects to its parent, then bd(ϕ) is given by
(for d ≥ 1; b0 = 0 in that case):

bd(ϕ) =
N−1∑
l=0

ϕl

Min(l,d−1)∑
i=0

(
l

i

)
pin(1− pn)

l−i

(
N − 2− l

d− 1− i

)
pd−1−i
r (1− pr)

N−1−l−d+i

(7)

where the inner sum is the probability that an offspring of a parent of de-
gree l is born with degree d, and the outer sum takes the expectation over
the degree distribution. Equation (6) is of an approximate nature, since
it assumes that death and birth events are uncorrelated between different

1for 0 ≤ d ≤ N − 1, with the convention that p+−1 = p−0 = 0
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degrees. Our simulations suggest that the approximation is good except
in very dense networks. Setting equation (6) equal to zero for all d and
solving the resulting N equations, we can obtain the stationary degree dis-
tribution. We were unable to obtain closed-form solutions to the stationary
distribution, but numerical solutions display good agreement with simu-
lation results (see Figure 3).
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