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Nucleation and growth mechanism of ferroelectric domain-wall motion

Abstract
The motion of domain walls is critical to many applications involving ferroelectric materials, such as fast high-
density non-volatile random access memory. In memories of this sort, storing a data bit means increasing the
size of one polar region at the expense of another, and hence the movement of a domain wall separating these
regions. Experimental measurements of domain growth rates in the well-established ferroelectrics PbTiO3
and BaTiO3 have been performed, but the development of new materials has been hampered by a lack of
microscopic understanding of how domain walls move. Despite some success in interpreting domain-wall
motion in terms of classical nucleation and growth models, these models were formulated without insight
from first-principles-based calculations, and they portray a picture of a large, triangular nucleus that leads to
unrealistically large depolarization and nucleation energies. Here we use atomistic molecular dynamics and
coarse-grained Monte Carlo simulations to analyse these processes, and demonstrate that the prevailing
models are incorrect. Our multi-scale simulations reproduce experimental domain growth rates in PbTiO3
and reveal small, square critical nuclei with a diffuse interface. A simple analytic model is also proposed,
relating bulk polarization and gradient energies to wall nucleation and growth, and thus rationalizing all
experimental rate measurements in PbTiO3 and BaTiO3.
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LETTERS

; Nucleation and growth mechanism of ferroelectric
domain-wall motion
Young-Han Shin1{, Ilya Grinberg1, I-Wei Chen2 & Andrew M. Rappe1

The motion of domain walls is critical to many applications invol-
ving ferroelectric materials, such as fast high-density non-volatile
random access memory1. In memories of this sort, storing a data
bit means increasing the size of one polar region at the expense of
another, and hence the movement of a domain wall separating
these regions. Experimental measurements of domain growth
rates in the well-established ferroelectrics PbTiO3 and BaTiO3

have been performed, but the development of new materials has
been hampered by a lack of microscopic understanding of how
domain walls move2–11. Despite some success in interpreting
domain-wall motion in terms of classical nucleation and growth
models12–16, these models were formulated without insight from
first-principles-based calculations, and they portray a picture of a
large, triangular nucleus that leads to unrealistically large depo-
larization and nucleation energies5. Here we use atomistic mole-
cular dynamics and coarse-grained Monte Carlo simulations to
analyse these processes, and demonstrate that the prevailing
models are incorrect. Our multi-scale simulations reproduce
experimental domain growth rates in PbTiO3 and reveal small,
square critical nuclei with a diffuse interface. A simple analytic
model is also proposed, relating bulk polarization and gradient
energies to wall nucleation and growth, and thus rationalizing all
experimental rate measurements in PbTiO3 and BaTiO3.

Symmetry breaking by an external electric field on a 180u ferro-
electric domain wall leads to domain-wall motion. The domain-wall
speed has been found to be proportional to exp(2Ea/E) (Merz’s law),
where Ea is the ‘activation field’ and E is the applied electric field2. A
classic theory supporting Merz’s law was developed by Miller and
Weinreich15. They suggested that the critical nucleus is an atomically
thin triangular plate with a large aspect ratio, which then expands
laterally on the same atomic plane15. However, the experimental and
theoretical observations have shown that the Miller–Weinreich
theory overestimates the activation field by an order of magnitude5,17.
Thus, the details of the intrinsic properties and the mechanism of the
domain dynamics are still unclear. This is due to experimental lim-
itations in detecting rapid polarization changes in small regions and
the computational difficulty of accurately simulating a sufficiently
large supercell. Therefore, there is currently a gap between experi-
mental measurements that probe domain-wall propagation (the
result of nucleation and growth), and classical theories that focus
on nucleation. This has motivated us to study domain-wall motion
with molecular dynamics simulations18,19 and for longer times and
a larger length scale we model it with coarse-grained Monte Carlo
simulations. This approach enables us to obtain the domain-wall
speed in PbTiO3 without the effect of defects and grain boundaries,
giving the upper bound of the wall speed of real thin films.

Molecular dynamics simulations allow us precisely to isolate and
study the nucleation aspect of the domain-wall motion. When an

external field is applied (Fig. 1a and 1b), critical nuclei randomly
form on the domain wall. A critical nucleus corresponds to the tran-
sition state between the reactant (the domain-wall layer polarized
negatively, opposite to the applied field direction) and the product
(the domain-wall layer polarized positively, along the applied field
direction). This state of the system is found by analysing the traject-
ories of the positively polarized nuclei that appear on the domain
wall; for a critical nucleus, the probabilities of nucleus growth and
disappearance are the same. Nucleation was found to behave as a
Poisson process, in that the probability that no critical nucleus has
formed exponentially decreases with time t (Fig. 1c). This permits the
extraction of a nucleation rate J from the molecular dynamics data.

For small supercells, interaction between periodic images may give
rise to artefacts. To eliminate this problem, we carried out a series of
domain-wall motion studies on supercells, increasing the wall area from
(3 3 3)ac to (6 3 6)ac, where a and c are the lattice constants of tet-
ragonal PbTiO3. The third dimension was kept constant at 18a. For all
temperatures, the nucleation rate converges when reaching (6 3 6)ac
wall area (Fig. 1d). The rapid convergence of the nucleation rate J with
cell size allows us to determine the simulation-area-independent,
steady-state nucleation rate J(T,E) for various temperatures T and
applied electric fields E as presented in Table 1. Analysis of these results
reveals that nucleation follows Merz’s law with an activation field Ea,n of
1.2–6.7 MV cm21 over the 200–300 K temperature range.

Molecular dynamics simulations also show that the growth of
critical nuclei is two-dimensional, with activation barriers much
smaller than for nucleation. We identify six growth rates Gm,n, dis-
tinguished by the polarization of the four nearest neighbours around
each five-atom unit cell on the domain wall. In this notation, m (or n)
denotes the number of sideways (or forward) neighbours whose
polarity is the same as the field direction (Fig. 2a). These growth rates
are extracted from simulations with large domain-wall areas by digi-
tizing the local polarizations on the domain wall, treating all cells
with Pz $ 0 as positively polarized neighbours and Pz , 0 as nega-
tively polarized neighbours. We find that growth is also an activated
process following Merz’s law, with an activation field Ea,g around
0.6–1.1 MV cm21 over the 200–300 K temperature range for the
slowest growth rate G1,0 (Table 1).

Combining the molecular dynamics results for nucleation and
growth processes, we used coarse-grained Monte Carlo simulations
to model domain-wall propagation. We define the overall domain-wall
speed v as the rate of increase in up-polarized domain volume divided
by the wall area of the initial up-polarized domain. The obtained values
for the total domain-wall speed v are shown in Fig. 2b. The speed also
follows Merz’s law with an activation field Ea,t of 0.8–3.2 MV cm21

over the 200–300 K temperature range. At lower field strengths, we
find good agreement between our domain-wall velocities and room-
temperature experimental data5,8,11. Additionally, the activation fields
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Ea,t are in excellent accord with the experimental results of Tybell et al.5

for Pb(Zr0.2Ti0.8)O3 films (,1.0 MV cm21 at room temperature). The
activation field of the overall wall velocity also agrees with the Avrami
theory of transformation kinetics, which predicts the overall activation
field to be roughly the weighted average of the nucleation and growth
activation fields. That is, Ea,t 5 1/(d11)Ea,n1d/(d11)Ea,g, where d is
dimensionality, which is approximately 2 in our case13.

For the nucleation process, our results are in gross disagreement
with the Miller–Weinreich theory predictions (using Ps 5 0.76 C m22,
dielectric constant e 5 60 and a (100) domain-wall energy s100 5

0.11 J m22): critical width ly 5 43 Å, critical height lz 5 53 Å and
Ea,n 5 40 MV cm21 at E 5 0.5 MV cm21 and T 5 240 K. Such a high
activation field would lead to a domain-wall velocity many orders of
magnitude smaller than that observed in experiments or our simula-
tions. This reconfirms the well-known disagreement between the
Miller–Weinreich predictions of the activation energy and field and
the experimental observations. Detailed examination of the critical
nuclei using large 20 3 20 supercells reveals further significant dis-
crepancies between our molecular dynamics results and the tra-
ditional Miller–Weinreich model of nucleation. A snapshot of the
polarization reversal process (Fig. 1b) portrays a 12 Å 3 12 Å critical
nucleus that is nearly square, not triangular in shape. Figure 1b also

shows considerable diffuseness, in contrast to the sharp polarization
reversal in the nucleus assumed by the Miller–Weinreich theory.

We therefore develop an analytic model to relate computed and
experimental domain-wall velocities to material properties that are
easily obtained from bulk experimental data or from static density
functional theory (DFT) calculations. We base our nucleation model
on the Landau–Ginzburg–Devonshire approach. Here, the structure
at the domain wall is due to interplay between two energy terms. The
first term reflects the local energy cost for the polarization to deviate
from the spontaneous polarization Ps

Uloc(Pz )~Aloc 1{
Pz

Ps

� �2
" #2

ð1Þ

where the constant Aloc is 3.55 3 108 J m23 at 0 K for our atomistic
model and decreases with temperature as Ps

4(T). This term is zero for
a sharp polarization reversal from Ps to 2Ps, but rises with diffuse-
ness. The second term represents the preference of electric dipoles to
align, associating higher gradient energy with larger polarization
gradients

Um(Pz)~gm
LPz

Lm

� �2

ð2Þ
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Figure 1 | Molecular dynamics simulations of nucleation on 1806 domain
walls. a, A snapshot of the polarization from an molecular dynamics
simulation of PbTiO3 at 220 K and 0.5 MV cm21. The local polarization
vectors are shown by the red and blue arrows. The two domain walls are
outlined with red lines. b, A critical nucleus on the domain wall on the y–z

plane. The green solid line shows the boundary of the critical nucleus. c, The
fraction of the simulations exhibiting no nucleation by time t. The exponent
of the fit function corresponds to the nucleation rate J. d, Size dependence of
the nucleation rates on the (100) 180u domain wall.

Table 1 | Nucleation and growth rates and activation fields

T (K) E 5 0.45 MV cm21 E 5 0.50 MV cm21 E 5 0.55 MV cm21 E 5 0.60 MV cm21 E 5 0.65 MV cm21 Activation field
J G

1,0 J G
1,0 J G

1,0 J G
1,0 J G

1,0 Ea,n Ea,g Ea,t

200 1.9 12.4 5.8 13.7 6.7 1.1 3.2
220 3.2 13.2 8.5 14.7 18.2 16.4 29.9 20.1 4.9 0.9 2.1
240 5.0 12.3 11.0 15.8 22.5 17.6 33.6 20.9 47.6 23.3 3.3 0.9 1.5
260 14.7 16.9 25.2 18.4 38.8 20.6 50.0 21.4 62.5 24.0 1.9 0.5 1.0
280 27.6 17.8 40.4 19.0 51.3 22.9 63.8 23.9 1.5 0.6 0.9
300 40.2 21.0 55.2 23.7 65.9 25.7 77.7 29.0 1.2 0.6 0.8

The nucleation rate J is measured in 1023 ps21?per unit cell and the growth rate G1,0 is measured in ps21?per unit cell.
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where gm is the gradient coefficient along the m direction. According
to our molecular dynamics simulations, the coefficient along the
polar axis gz is 1.07 3 1011 m3 F21, and the coefficients normal to
the polar axis gx and gy are 0.63 3 10211 m3 F21 (see Methods). The
energy difference DU in a two-dimensional nucleus on the domain
wall relative to the domain wall without any nucleus can be expressed
as a function of its size ly and lz, and the z-component of the local
polarization Pz(x, y, z):

DU~DU vzDUi ð3Þ

DUv~{E

ð?
{?

dx

ð?
{?

dy

ð?
{?

dz Pz (x, y, z){P180
z (x, y, z)

� �
ð4Þ

DUi~

ð?
{?

dx

ð?
{?

dy

ð?
{?

dz Ux(Pz )zUy(Pz )zUz (Pz )zUloc(Pz )
� �

{
�

Ux(P180
z )zUloc(P

180
z )

� �� ð5Þ

Here Pz
180 is the polarization of the clean 180u domain wall without

any nucleus on it, and the reversal of Pz(x, y, z) around the nucleus is
spread across a diffuse interface with lateral diffuseness (dy and dz)
and transverse diffuseness (dx). The critical nucleus is then obtained
by numerically locating the saddle point of DU. Using the polari-
zation and Aloc values appropriate for our model potential, we
find ly 5 12 Å, lz 5 12 Å, dy 5 3.9 Å, dz 5 4.6 Å at T 5 240 K and
E 5 0.5 MV cm21 (Supplementary Fig. 5a), in agreement with the
microscopic nucleus structure shown in Fig. 1b. We also obtain the
activation fields Ea,n in excellent agreement with simulation results
for the whole 200–300 K range of simulations (Fig. 3c). We further
obtain dx 5 3.5 Å, indicating the nucleus is still very much limited to
one atomic plane despite lateral diffuseness.

The much smaller ly, lz and Ea,n are due to three new features, which
are absent in the Miller–Weinreich model. First, the amount of the
interface area for any nucleus is significantly less than the Miller–
Weinreich model estimate due to lateral diffuseness. In the Miller–
Weinreich model (Fig. 3a), nucleation creates additional domain-wall
area of Sa (lattice constants a 5 3.9 Å and c 5 4.15 Å, c/a < 1, and S is
the nucleus perimeter). The domain wall passes through all atoms
with Pz 5 0, and between neighbouring up- and down-polarized
atoms. In the new model, Pb off-centring (A–D in Fig. 3b) allows a
slanted (101) domain wall of area Sa!2 to replace the flat wall area
(Sa), resulting in net wall creation of Sa(!2 2 1) < 0.4Sa. Second, in
contrast to full up- and down-polarizations at two adjacent sites in the
Miller–Weinreich model, our model places smaller polarizations at
these sites, reducing the polarization gradient, and hence the gradient
energy, by 50%. The energy per unit area of the interface is lower than

in the Miller–Weinreich model because polarization changes with a
finite diffuseness dy and dz, and Pz is smaller than Ps. Taken together,
these effects show that for the same nucleus perimeter, the interface
energy cost is a factor of three to four lower than that estimated by the
Miller–Weinreich theory, directly leading to an order-of-magnitude
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Figure 3 | Landau-Ginzburg-Devonshire model of nucleation on 1806
domain walls. a, b, Schematic diagrams of the Miller–Weinreich model
(a) and the diffuse-boundary model (b) on the x–z plane, with Pz 5 0 marked
by circles and Pb off-centring at A–D. In the Miller–Weinreich picture, all
the Pb atoms at the nucleus boundary (circled in a) have no off-centre
displacement, as shown by the lack of arrows along the z direction. In the
Landau–Ginzburg–Devonshire model, the edge of the nucleus boundary
bypasses the Pb atoms (A–D in b) that are polarized in the asymmetric
environment. c, Comparison of the activation fields obtained from
simulations of PbTiO3 (squares) with the results of the Landau–Ginzburg–
Devonshire model (circles). d, Comparison of the activation fields obtained
experimentally (ref. 22) for BaTiO3 (squares) with the results of the
Landau–Ginzburg–Devonshire model (circles).

NATURE | Vol 000 | 00 Month 2007 LETTERS

3



reduction in critical nucleus area and energy. Third, since the critical
nucleus is small, the depolarization energy is not important during the
nucleation process. This enables the formation of square nuclei
instead of triangular ones.

Because our model can predict Ea,n without any molecular dynamics
simulation, we have extended it to BaTiO3 using only experimental Ps

and energies obtained by DFT calculations. In our theory, four para-
meters are necessary for modelling nucleation at a given temperature T:
gx, gz, Aloc and Ps(T). From five-atom bulk BaTiO3 DFT calculations
with the local density approximation in the literature, we obtain
Aloc 5 9.5 meV per unit cell20. The 180u (100) domain-wall energy is
s100 5 6–7.5 mJ m22 according to the DFT calculations in refs 17 and
21. The Ps of tetragonal BaTiO3 is 0.31 C m22 at 0 K and its temper-
ature dependence is given by ref. 22. From these data, we can obtain
gx 5 0.22 3 10211 m3 F21 (see Methods). Using this gx value for
BaTiO3 and the ratio between gx and gz determined for PbTiO3, we
estimate gz 5 0.38 3 10211 m3 F21. Our modified Landau–Ginzburg–
Devonshire model then predicts Ea,n values of 4.6–18.5 kV cm21 for the
298–371 K temperature range. According to the Avrami equation, Ea,t

should be larger than Ea,n/3. This allows us to obtain a lower bound for
Ea,t values that compares well with the experimental data of ref. 22,
as shown in Fig. 3d, indicating very fast growth in BaTiO3 in these
experiments. In contrast, using the DFT-obtained domain-wall energy,
the Miller–Weinreich theory would predict Ea,n 5 240 kV cm21 for
T 5 300 K, which is clearly out of the question.

In conclusion, our multi-scale modelling finds domain-wall velo-
cities in agreement with the most direct experimental evidence for
related materials. It also allows the construction of a general and
accurate model for a critical nucleus. Together, they provide micro-
scopic insight into how the changes in the nucleus shape and polar-
ization profile can dramatically lower activation barriers.

METHODS SUMMARY
We studied many PbTiO3 structures with first-principles DFT, and these pro-

vided a database of energies and forces for calibrating an inter-atomic potential

which was based on Brown’s rules of valence23. The molecular dynamics simula-

tions exhibited fundamental domain-wall processes, including critical nucleus

formation and growth. Initially, three layers were polarized up and 15 layers were

polarized down, and each layer had Ny 3 Nz unit cells. After equilibrating the

system, we applied the electric field in the range of 0.45 to 0.65 MV cm21 under

the Nosé–Hoover thermostat with a 1 fs time step. Nucleation is a stochastic

process, so nucleation rates were obtained from the statistics of molecular

dynamics simulations. Two hundred randomly dispersed initial coordinates

were used to determine each nucleation rate. To model larger-scale, longer-time

domain-wall motion processes, we simulated phase transformation of ferroelec-

tric domains with the nucleation-and-growth model13,19,24–26. The local polariza-

tion of each primitive five-atom PbTiO3 unit cell was chosen as a unit in this

coarse-grained Monte Carlo simulation, while the nucleation and growth rates
were obtained from the analysis of the molecular dynamics simulations.

The overall domain-wall speed v can be obtained from the Monte Carlo study

using the following relation v~ 1
NA

LVup

L t
~ d1

N
L
L t

P
l

ql (t), where Vup~Ad1

P
l

ql(t)

is the up-polarized domain volume, A is the wall area, d1 < a is the distance

between adjacent layers, ql is the normalized polarization fraction of the lth layer,

and N is the number of domain walls (N 5 2 owing to the periodic boundary

conditions in our coarse-grained Monte Carlo simulations). Such a multiscale

strategy enabled us to increase the system size to the micrometre scale and

accurately evaluate the overall domain-wall-motion speed.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Here we explain the details of the analytical model of the critical nucleus on the

ferroelectric domain wall, as well as our procedure for extracting the model

coefficients from molecular dynamics simulations. The model discussed here

closely follows the treatment in ref. 26.

Total free energy. The total free energy difference of a stripe domain is:

G{G0~WgzWEzWezWl ð6Þ

where G0 is the single domain free energy, Wg is the gradient energy due to the

dipole-dipole interaction, WE is the depolarizing energy, We is the elastic energy,

and Wl is the local energy contribution from the Landau–Ginzburg–Devonshire

phenomenological theory. Two minima of E(P) 5 1/2AP211/4BP4 where

A 5 A0(T 2 Tc), A0 . 0, and B . 0 are located at Ps 5 6!(2A/B), and the local

energy Wl can be expressed as:

Wl~

ððð
Uloc P(x,y,z)ð Þ dxdydz ð7Þ

where P(x, y, z) is the magnitude of a general polarization vector P(x, y, z), and

the local energy per unit cell Uloc(P) is:

Uloc P(x, y, z; T)ð Þ~E P(x, y, z; T )ð Þ{E Ps(T)ð Þ

~
1

2
AP2z

1

4
BP4

� �
{

1

2
AP2

s z
1

4
BP4

s

� �

~
1

2
({BP2

s )P2z
1

4
BP4

� �
{

1

2
({BP2

s )P2
s z

1

4
BP4

s

� �

~Aloc(T ) 1{
P(x, y, z; T )

Ps(T )

� �2
 !2

ð8Þ

where Aloc(T) 5 2E(Ps(T)) 5 1/4BPs
4(T) is the energy difference per unit cell

between the relaxed tetragonal ferroelectric phase and the high symmetric tet-

ragonal paraelectric phase, and Ps is the spontaneous polarization. For the 180u
(100) domain wall, only the gradient energy Wg and the local energy Wl remain if

we neglect the effect due to the free charge on the crystal surfaces.

Extracting model parameters from the (100) domain-wall energy.< The 180u
domain-wall energy s100 is given by

s100~
E2m | 1 | 1

100 {E2m | 1 | 1
mono

2A100

~
WgzWl

2A100

ð9Þ

where A100 is the area of the domain wall whose normal vector is [1 0 0]

(A100 5 ac for the 2m 3 1 3 1 supercell, and a and c are the lattice constants

(a , c)). E2m | 1 | 1
100 is the total energy of up–down domains, and E2m | 1 | 1

mono is

the total energy of a single domain. In the energy calculation, one supercell is

composed of 2m 3 1 3 1 unit cells. Because we used periodic boundary condi-

tions in this calculation, there are two domain walls in a supercell, which is the

reason for the 2 in the denominator of equation (9). The spontaneous polariza-

tion Ps of PbTiO3 is 0.89 C m22 at 0 K, and the polarization next to the domain

wall Pb is smaller than Ps; the domain-wall width is nearly two unit cells. The

polarization Pz(x) across the domain wall looks like 2Ps, …, 2Ps, 2Pb, 0, Pb, Ps,

…, Ps, where Ps 5 0.89 C m22 and Pb 5 0.73 C m22 (Supplementary Table 2).

From the Landau–Ginzburg–Devonshire model with gradient terms, the

polarization around the clean 180u (100) domain-wall boundary P0 can be

expressed with the hyperbolic function:

Po(x, y, z)~Ps tanh
x

dx=2

� �
~p(x) ð10Þ

which is shown in Supplementary Fig. 1. The parameter dx is the domain-wall width

found by fitting the polarization data across the domain wall to equation (10).

Following equations (8) and (10), s100 from the 2m 3 1 3 1 super cell can be

expressed as:

s100~ W 100
l zW 100

gx

	 

=(2A100) ð11Þ

W 100
l ~

ðma

{ma

dx

ða=2

{a=2

dy

ðc=2

{c=2
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{ma
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{Ps

dp

2
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p
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 !2
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2P3
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� �
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ð12Þ

W 100
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dx
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3dx

P2
s gx

ð13Þ

where the factor 2 in the denominator of equation (11) is due to two domain

walls per supercell. By Ls100=Ldx dx~d�x

�� ~0, the diffuseness dx* and the gradient

coefficient gx are

d�x~2Ps

ffiffiffiffiffiffiffiffi
gx

Aloc

r
ð14Þ

s100~
8Ps

3

ffiffiffiffiffiffiffiffiffiffiffiffi
gx Aloc

p
ð15Þ

gx~
3s100

8Ps

� �2
1

Aloc

ð16Þ

s100 and Ps are obtained from molecular dynamics simulations, and they are

0.125 J m22 and 0.89 C m22, respectively. We use Aloc 5 3.55 3 108 J m23 or

0.14 eV per unit cell for PbTiO3 at 0 K. From these values and from equation

(16), gx equals 0.63 3 10211 m3 F21. By integrating equation (13) numerically

with the polarization from molecular dynamics simulations, we obtain

gx 5 0.58 3 10211 m3 F21. We attribute the small discrepancy between the two

estimates to the difference between the continuous and discrete polarization.

Extracting model parameters from the (n01) domain-wall energy sn01. The

180u (n01) domain-wall energy sn01 of the higher-index interface is:

sn01~
E2m | 1 | n

n01 {E2m | 1 | n
mono

2An01

ð17Þ

where An01 is the area of the 2m 3 1 3 n stepped domain wall whose normal

vector is [n 0 1] and An01 5 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z(nc)2

p
. The 180u (n01) domain wall is shown

in Supplementary Fig. 2a. With an assumption that Px(x, y, z) 5 Py(x, y, z) 5 0,

sn01 can be expressed as:

sn01~(WlzWgxzWgz )=(2An01) ð18Þ

Wl~

ðma

{ma

dx

ða=2

{a=2

dy

ðnc

{nc

dz Uloc Pz (x, y, z)ð Þ ð19Þ

Wgx~gx

ðma

{ma

dx

ða=2

{a=2

dy

ðnc

{nc

dz
LPz (x,y,z)

Lx

� �2

, ð20Þ

Wgz~gz

ðma

{ma

dx

ða=2

{a=2

dy

ðnc

{nc

dz
LPz (x, y, z)

Lz

� �2

ð21Þ

where sn01 5 0.117 J m22. From the numerical calculations, we can determine

the gradient coefficient gz as a function of n. We find that gz converges to

1.07 3 10211 m3 F21 as n and m increase (Supplementary Fig. 2b).

Model of the nucleus on the domain wall. To describe the diffuse polarization

profile around the nucleus on the domain wall, equation (10) can be generalized

as:

Pz x, y, zð Þ~Ps f { x, lx , dxð Þ 2
f { y, ly , dy

� �
f { z, lz , dzð Þ

f { 0, ly , dy

� �
f { 0, lz , dzð Þ

{1

 !
zf z x, lx , dxð Þ

 !

<2Psf
{ x, lx , dxð Þf { y, ly , dy

� �
f { z, lz , dzð ÞzP180

z x { lx=2, y, zð Þ ð22Þ

where f +(a, b, c)~ 1
2

tanh
azb=2

c=2

	 

+ 1

2
tanh

a{b=2
c=2

	 

, lk corresponds to the

length of the nucleus to the k direction, and dk corresponds to the diffuseness

to the k direction. The polarization profile generated by equation (22) is shown

in Supplementary Fig. 4. When the external field E is applied to the 180u domain

wall, the free energy change DU from the formation of a nucleus is

DU~DUvzDUi ð23Þ
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where Uloc(p)~Aloc 1{ p=psð Þ2
� �2

and the subscripts n and i mean volume

and interface, respectively. We ignore the charge on the nucleus, which is justi-

fied, a posteriori, because the depolarization energy in the Miller–Weinreich

model is strongly dependent on size, and is negligible when the nucleus is very

small. Because we can also find the bulk polarization Ps from our model poten-

tial, the temperature dependence of Aloc(T) can be deduced from Aloc at 0 K and

Ps at finite temperature.

Using the gradient parameters from the (100) and (n01) domain walls

(gx 5 gy 5 0.63 3 10211 m3 F21 and gz 5 1.07 3 10211 m3 F21), we can obtain

the following results. The aspect ratio of the critical nucleus is close to 1.

Critical diffuseness along the polar axis dz* is 4.6 Å, while diffuseness along the

y axis dy* is 3.5 Å. The size of the critical nucleus from this model is 3 3 3 unit

cells and the activation barrier is 0.14 eV at 240 K and 500 kV cm21. This result is

consistent with the molecular dynamics simulations, where we found that the
activation energy is about 0.1 eV, and the critical nucleus was more diffuse along

the polar axis direction than along the normal to the 180u domain wall.

Nature nature06165.3d 4/9/07 13:44:08

doi:10.1038/nature06165

www.nature.com/doifinder/10.1038/nature06165
www.nature.com/nature
www.nature.com/nature


Author Queries
Journal: Nature
Paper: nature06165
Title: Nucleation and growth mechanism of ferroelectric domain-wall motion

Query
Reference

Query

1 AUTHOR:When you receive the PDF proofs, please check that the display items are as follows (doi:10.1038/
nature06165): Figs 1, 2, 3 (colour); Tables: 1; Boxes: None. Please check all figures (and table) very carefully
as they have been re-labelled, re-sized and adjusted toNature’s style. Please ensure that any error bars in the
figures are defined in the figure legends.

2 Author: when you get the PDF proofs, please shorten any subheadings that exceed one line.

For Nature office use only:

Layout % Figures/Tables/Boxes % References %

DOI % Error bars % Supp info (if applicable) %

Title % Colour % Acknowledgements %

Authors % Text % Author contribs (if applicable) %

Addresses % Methods (if applicable) % COI %

First para % Received/Accepted % Correspondence %

Display items % AOP (if applicable) % Author corrx %

Nature nature06165.3d 4/9/07 13:44:08

NATURE | Vol 000 | 00 Month 2007 LETTERS

7


	University of Pennsylvania
	ScholarlyCommons
	October 2007

	Nucleation and growth mechanism of ferroelectric domain-wall motion
	Young-Han Shin
	Ilya Grinberg
	I-Wei Chen
	Andrew M. Rappe
	Recommended Citation

	Nucleation and growth mechanism of ferroelectric domain-wall motion
	Abstract
	Comments


	Title
	Authors
	Abstract
	Figure 1 Molecular dynamics simulations of nucleation on 180&deg; domain walls.
	Table 1 Nucleation and growth rates and activation fields
	Figure 2 Coarse-grained Monte Carlo simulations of polarization switching.
	Figure 3 Landau-Ginzburg-Devonshire model of nucleation on 180&deg; domain walls.
	Methods Summary
	References
	Methods
	Total free energy
	Extracting model parameters from the (100) domain-wall energy
	Extracting model parameters from the (n01) domain-wall energy &sgr;n01
	Model of the nucleus on the domain wall


