
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College
Computer Science Faculty Research and
Scholarship Computer Science

1999

The World Wide Web
H. Berghel

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci_pubs

Part of the Computer Sciences Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/22

For more information, please contact repository@brynmawr.edu.

Custom Citation
Berghel, H. and D. Blank. (1999). The World Wide Web, in M. Zelkowitz (ed.), Advances in Computing, v. 48, Academic Press, pp.
178-218.

http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/22
mailto:repository@brynmawr.edu

Berghel, H., and Blank, D. (1999) The World Wide Web. In Advances in Computing, M. Zelkowitz (Ed).
Academic Press, NY.

THE WORLD WIDE WEB
Hal Berghel & Douglas Blank

PREPRINT

Department of Computer Science
University of Arkansas

ABSTRACT
This article provides a high-level overview of the World Wide Web in the context of a wide range of other
Internet information access and delivery services. This overview will include client-side, server-side and
"user-side" perspectives. Underlying Web technologies as well as current technology extensions to the Web
will also be covered. Social implications of Web technology will also be addressed.

TABLE OF CONTENTS
1. INTRODUCTION
2. THE INTERNET INFRASTRUCTURE
3. THE SUCCESS OF THE WEB
4. PERSPECTIVES

4.1 END USERS' PERSPECTIVE
4.2 HISTORICAL PERSPECTIVE

5. THE UNDERLYING TECHNOLOGIES
5.1 HYPERTEXT MARKUP LANGUAGE (HTML)
5.2 HYPERTEXT TRANSFER PROTOCOL (HTTP)

6. DYNAMIC WEB TECHNOLOGIES
6.1 COMMON GATEWAY INTERFACE
6.2 FORMS
6.3 HELPER-APPS
6.4 PLUG-INS
6.5 EXECUTABLE CONTENT
6.6 PROGRAMMING
6.7 DHTML
6.8 SERVER SIDE INCLUDES
6.9 PUSH TECHNOLOGIES
6.10 STATE PARAMETERS

7. SECURITY and PRIVACY
7.1 SECURE SOCKET LAYER
7.2 SECURE HTTP (S-HTTP)
7.3 COOKIES

http://cs.brynmawr.edu/~dblank/papers/www/#INTRODUCTION
http://cs.brynmawr.edu/~dblank/papers/www/#THE%20INTERNET%20INFRASTRUCTURE
http://cs.brynmawr.edu/~dblank/papers/www/#THE%20SUCCESS%20OF%20THE%20WEB
http://cs.brynmawr.edu/~dblank/papers/www/#PERSPECTIVES
http://cs.brynmawr.edu/~dblank/papers/www/#END%20USERS'%20PERSPECTIVE
http://cs.brynmawr.edu/~dblank/papers/www/#HISTORICAL%20PERSPECTIVE
http://cs.brynmawr.edu/~dblank/papers/www/#THE%20UNDERLYING%20TECHNOLOGIES
http://cs.brynmawr.edu/~dblank/papers/www/#HYPERTEXT%20MARKUP%20LANGUAGE%20(HTML)
http://cs.brynmawr.edu/~dblank/papers/www/#HYPERTEXT%20TRANSFER%20PROTOCOL%20(HTTP)
http://cs.brynmawr.edu/~dblank/papers/www/#DYNAMIC%20WEB%20TECHNOLOGIES
http://cs.brynmawr.edu/~dblank/papers/www/#COMMON%20GATEWAY%20INTERFACE
http://cs.brynmawr.edu/~dblank/papers/www/#FORMS
http://cs.brynmawr.edu/~dblank/papers/www/#HELPER-APPS
http://cs.brynmawr.edu/~dblank/papers/www/#PLUG-INS
http://cs.brynmawr.edu/~dblank/papers/www/#EXECUTABLE%20CONTENT
http://cs.brynmawr.edu/~dblank/papers/www/#PROGRAMMING
http://cs.brynmawr.edu/~dblank/papers/www/#DHTML
http://cs.brynmawr.edu/~dblank/papers/www/#SERVER%20SIDE%20INCLUDES
http://cs.brynmawr.edu/~dblank/papers/www/#PUSH%20TECHNOLOGIES
http://cs.brynmawr.edu/~dblank/papers/www/#STATE%20PARAMETERS
http://cs.brynmawr.edu/~dblank/papers/www/#SECURITY%20and%20PRIVACY
http://cs.brynmawr.edu/~dblank/papers/www/#SECURE%20SOCKET%20LAYER
http://cs.brynmawr.edu/~dblank/papers/www/#SECURE%20HTTP%20(S-HTTP)
http://cs.brynmawr.edu/~dblank/papers/www/#COOKIES

8. THE WEB AS A SOCIAL PHENOMENON
9. CONCLUSION

1. INTRODUCTION
The World Wide Web, or "the Web," is a "finite but unbounded" collection of media-rich digital resources
which are connected through high-speed digital networks. It relies upon an Internet protocol suite (see, [9]
[19]) which supports the cross-platform transmission and rendering of a wide variety of media types (i.e.,
multimedia). This cross-platform delivery environment represents an important departure from more
traditional network communications protocols like Email, Telnet and FTP because it is content-centric. It is
also to be distinguished from earlier document acquisition systems such as Gopher and WAIS (Wide Area
Information Systems) which accommodated a narrower range of media formats and failed to include
hyperlinks within their network navigation protocols. Following Gopher, the Web quickly extended and
enriched the metaphor of integrated browsing and navigation. This made it possible to navigate and peruse a
wide variety of media types on the Web effortlessly, which in turn led to the Web's hegemony as an Internet
protocol.

Thus, while earlier network protocols were special-purpose in terms of both function and media formats, the
Web is highly versatile. It became the first convenient form of digital communication which had sufficient
rendering and browsing utilities to allow any person or group with network access to share media-rich
information with their peers. It also became the standard for hyper- linking cybermedia (cyberspace
multimedia), connecting concept to source in manifold directions identified primarily by Uniform Resource
Locators (URLs).

In a formal sense, the Web is a client-server model for packet-switched, networked computer systems defined
by the protocol pair Hypertext Transfer Protocol (HTTP) and Hypertext Markup Language (HTML). HTTP is
the primary transport protocol of the Web, while HTML defines the organization and structure of the Web
documents to be exchanged. At this writing, the current HTTP standard is at version 1.0, and the current
HTML version is 4.0.

HTTP and HTML are higher-order Internet protocols specifically created for the Web. In addition, the Web
must also utilize the lower-level Internet protocols, Internet Protocol (IP) and Transmission Control Protocol
(TCP). The basic Internet protocol suite is thus designated TCP/IP. IP determines how datagrams will be
exchanged via packet-switched networks while TCP builds upon IP by adding control and reliability checking
[9][20].

According to NSFNET Backbone statistics, the Web moved into first place both in terms of the percentage of
total packets moved (21%) and percentage of total bytes moved (26%) along the NSF backbone in the first
few months of 1995. This placed the Web well ahead of the traditional Internet activity leaders, FTP
(14%/21%) and Telnet (7.5%/2.5%), as the most popular Internet service. A comparison of the evolutionary
patterns of the Web, Gopher and FTP are graphically depicted in Figure 1.

http://cs.brynmawr.edu/~dblank/papers/www/#THE%20WEB%20AS%20A%20SOCIAL%20PHENOMENON
http://cs.brynmawr.edu/~dblank/papers/www/#CONCLUSION
http://cs.brynmawr.edu/~dblank/papers/www/#9
http://cs.brynmawr.edu/~dblank/papers/www/#19
http://cs.brynmawr.edu/~dblank/papers/www/#9
http://cs.brynmawr.edu/~dblank/papers/www/#20

Figure 1: Merit NIC Backbone statistics for the Web, Gopher and FTP from 1993-1995 in terms
of both packet and byte counts. (source: Merit NIC and Jim Pitkow [18], used with permission)

2. THE INTERNET INFRASTRUCTURE
The Web evolution should be thought of as an extension of the digital computer network technology which
began in the 1960's. Localized, platform-dependent, low-performance networks became prevalent in the
1970's. These LANS (local area networks) were largely independent of, and incompatible with, each other. In
a quest for technology which could integrate these individual LANs, the U.S. Department of Defense, through
its Advanced Research Projects Agency (ARPA, nee DARPA), funded research in inter-networking - or inter-
connecting LANS via a Wide Area Network (aka WAN). The first national network which resulted from this
project was called, not surprisingly, ARPANET. For most of the 1970's and 1980's ARPANET served as the
primary network backbone in use for interconnecting LANs for both the research community and the U.S.
Government.

At least two factors considerably advanced the interest in the ARPANET project. First, and foremost, it was an
"open" architecture: its underlying technological requirements, and software specifications were available for
anyone to see. As a result, it became an attractive alternative to developers who bristled at the notion of
developing software which would run on only a certain subset of available platforms.

Second, ARPANET was built upon a robust, highly versatile and enormously popular protocol suite: TCP/IP
(Transmission Control Protocol / Internet Protocol). The success and stability of TCP/IP elevated it to the
status as the de facto standard for inter-networking. The U.S. military began using ARPANET in earnest in the
early 1980's, with the research community following suit. Since TCP/IP software was in essence in the public
domain, a frenzy of activity in deploying TCP/IP soon resulted in both government and academe. One
outgrowth was the NSF-sponsored CSNET which linked computer science departments together. By the end
of the 1980's, virtually every one who wanted to be inter-networked could gain access through government of
academic institutions. ARPANET gradually evolved into the Internet, and the rest, as they say, is history.

Not unexpectedly, the rapid (in fact, exponential) growth produced some problems. First and foremost was the
problem of scalability. The original ARPANET backbone was unable to carry the network traffic by the mid-

http://cs.brynmawr.edu/~dblank/papers/www/merit_nic.gif
http://cs.brynmawr.edu/~dblank/papers/www/#18

1980's. It was replaced by a newer backbone supported by the NSF, a backbone operated by a consortium of
IBM, MCI and Merit shortly thereafter, and finally by the privatized, not-for-profit corporation, Advanced
Networks and Services (ANS), which consisted of the earlier NSFNET consortium members. In the mid
1990's, MCI corporation deployed the high-speed Backbone Network System (vBNS) which completed the
trend toward privatization of the digital backbone networks. The next stage of evolution for inter-network
backbones is likely to be an outgrowth of the much-discussed Internet II project proposed to the U.S. Congress
in 1997. This "next generation" Internet is expected to increase the available bandwidth over the backbone by
two orders of magnitude.

Of course, there were other network environments besides the Internet which have met with varying degrees
of success. Bitnet was a popular alternative for IBM mainframe customers during the !970's and early 1980's,
as was UUCP for the Unix environment and the Email-oriented FIDONET. Europeans, meanwhile, used an
alternative network protocol, D.25, for several of their networks (Joint Academic Network -JANET, European
Academic and Research Network (EARN). By 1991, however, the enormous popularity of the Internet drove
even recalcitrant foreign network providers into the Internet camp. High-speed, reliable Internet connectivity
was assured with the European Backbone (EBONE) project. At this writing all but a handful of developing
countries have some form of Internet connectivity. For the definitive overview of the Internet, see [9].

3. THE SUCCESS OF THE WEB
It has been suggested [2] that the rapid deployment of the Web is a result of a unique combination of
characteristics:

1. the Web is an enabling technology - The Web was the first widespread network technology to extend the
notion of "virtual network machine" to multimedia. While the ability to execute programs on, and
retrieve content from, distributed computers was not new (e.g., Telnet and FTP were already in wide use
by the time that the Web was conceived), the ability to produce and distribute media-rich documents via
a common, platform-independent document structure, was new to the Web.

2. the Web is a unifying technology - The unification came through the Web's accommodation of a wide
range of multimedia formats. Since such audio (e.g., .WAV,.AU), graphics (e.g., .GIF,.JPG) and
animation (e.g., MPEG) formats are all digital, they were already unified in desktop applications prior to
the Web. The Web, however, unified them for distributed, network applications. One Web "browser", as
it later became called, would correctly render dozens of media formats regardless of network source. In
addition, the Web unifies not only the access to many differing multimedia formats, but provides a
platform-independent protocol which allows anyone, regardless of hardware or operating system, access
to that media.

3. the Web is a social phenomena - The Web social experience evolved in three stages. Stage one was the
phenomenon of Web "surfing". The richness and variety of Web documents and the novelty of the
experience made Web surfing the de facto standard for curiosity-driven networking behavior in the
1990's. The second stage involved such Web interactive communication forums as Internet Relay Chat
(IRC), which provided a new outlet for interpersonal but not-in-person communication. The third stage,
which is in infancy as of this writing, involves the notion of virtual community. The widespread
popularity and social implications of such network-based, interactive communication is becoming an
active area in computing research.

4. PERSPECTIVES

4.1 END USERS' PERSPECTIVE

http://cs.brynmawr.edu/~dblank/papers/www/#9
http://cs.brynmawr.edu/~dblank/papers/www/#2

Extensive reporting on Web use and Web users may be found in a number of Web survey sites. Perhaps the
most thorough of which is the biannual, self-selection World Wide Web Survey which began in January, 1994
(see reference, below). As this article is being written, the most current Web Survey is the eighth (October,
1997). Selected summary data appear in the table, below:

TABLE 1. Summary Information on Web use

average age of Web user = 35.7 years
male:female ratio of users = 62:38
% users with college degrees = 46.9
% in computing field = 20.6; 23.4% are in education; 11.7% in management
% of users from U.S. = 80.5 (and slowly decreasing)
% of users who connect via modems with transmission speeds of 33.5Kb/sec or less = 55
% of respondents reported who use the Web for purchases exceeding $100 = 39
% of users for whom English is the primary language = 93.1
% of users who have Internet bank accounts = 5.5
% of Microsoft Windows platforms = 64.5 (Apple = 25.6%)
% of users who plan to use Netscape = 60 (Internet Explorer = 15%)

Source: GVU's WWW User Surveys, http://www.cc.gatech.edu/gvu/user_surveys/. Used with permission.

Of course a major problem with self-selection surveys, where subjects determine whether, or to what degree,
they wish to participate in the survey, is that the samples are likely to be biased. In the case of the Web survey,
for example, the authors recommend that the readers assume biases towards the experienced users. As a
consequence, they recommend that readers confirm the results through random sample surveys. Despite these
limitations, however, the Web Surveys are widely used and referenced and are among our best sources of
information on Web use.

An interesting byproduct of these surveys will be an increased understanding of the difference between
traditional and electronic surveying methodologies and a concern over possible population distortions under a
new, digital lens. One may only conjecture at this point whether telephone respondents behave similarly to
network respondents in survey settings. In addition, Web surveyors will develop new techniques for non-
biased sampling which avoids the biases inherent in self-selection. The science and technology behind such
electronic sampling may well be indispensable for future generations of Internet marketers, communicators,
and organizers.

4.2 HISTORICAL PERSPECTIVE

The Web was conceived by Tim Berners-Lee and his colleagues at CERN (now called the European
Laboratory for Particle Physics) in 1989 as a shared information space which would support collaborative
work. Berners-Lee defined HTTP and HTML at that time. As a proof-of- concept prototype, he developed the
first Web client navigator-browser in 1990 for the NeXTStep platform. Nicola Pellow developed the first
cross-platform Web browser in 1991 while Berners-Lee and Bernd Pollerman developed the first server
application - a phone book database. By 1992, the interest in the Web was sufficient to produce four additional
browsers - Erwise, Midas, and Viola for X Windows, and Cello for Windows. The following year, Marc
Andreessen of the National Center for Supercomputer Application (NCSA) wrote Mosaic for the X Windows
System which soon became the browser standard against which all others would be compared. Andreessen
went on to co-found Netscape Communications in 1994 whose current browser, Netscape Navigator, remains
the current de facto standard Web browser, despite continuous loss of market share to Microsoft's Internet
Explorer in recent years (see, Figure 2). Netscape has also announced plans to license without cost the source
code for version 5.0 to be released in Spring, 1998. At this point it is unclear what effect the move to "open

http://www.cc.gatech.edu/gvu/user_surveys/

sources" may have. (see Figures 2 and 3).

Figure 2: Market share of the three dominant Web browsers from 1994 through 1997.

Despite the original design goal of supporting collaborative work, Web use has become highly variegated. The
Web has been extended into a wide range of products and services offered by individuals and organizations,
for commerce, education, entertainment, "edutainment", and even propaganda. A partial list of popular Web
applications includes:

individual and organizational homepages
sales prospecting via interactive forms-based surveys
advertising and the distribution of product promotional material
new product information, product updates, product recall notices
product support - manuals, technical support, frequently asked questions (FAQs)
corporate record-keeping - usually via local area networks (LANs) and intranets
electronic commerce made possible with the advent of several secure HTTP transmission protocols and
electronic banking which can handle small charges (perhaps at the level of millicents)
religious proselytizing
propagandizing
digital politics

Figure 3: Navigator 4.x is a recent generic
"navigator/browser" from Netscape Corporation.
Displayed is a vanilla "splash page" of the World
Wide Web Test Pattern - a test bench for
determining the level of HTML compliance of a
browser.

Most Web resources at this writing are still set up for non-interactive, multimedia downloads (e.g., non-
interactive Java [21] animation applets, movie clips, real-time audio transmissions, text with graphics). This
will change in the next decade as software developers and Web content-providers shift their attention to the
interactive and participatory capabilities of the Internet, the Web, and their successor technologies. Already,
the Web is eating into television's audience and will probably continue to do so. Since it seems inevitable that
some aspects of both television and the Web will merge in the 21st century, they are said to be convergent
technologies. But as of this writing, the dominant Web theme seems to remain static HTML documents and
non-interactive animations.

As mentioned above, the uniqueness of the Web as a network technology is a product of two protocols: HTML
and HTTP. We elaborate on these protocols below.

5. THE UNDERLYING TECHNOLOGIES

5.1 HYPERTEXT MARKUP LANGUAGE (HTML)

HTML is the business part of document preparation for the Web. Two not-for-profit organizations play a major
role in standardizing HTML: the World Wide Web Consortium (www.w3.org) and the Internet Engineering
Task Force (www.ietf.org). Any document which conforms to the W3C/IETF HTML standards is called a Web
message entity. HTML is about the business of defining Web message entities.

The hypertext orientation of HTML derives from the pioneering and independent visions of Vannevar Bush [8]
in the mid-1940's, and Doug Englebart [10] and Ted Nelson [14] in the 1960's. Bush proposed mechanical and
computational aids in support of associative memory - i.e., the linking together of concepts which shared
certain properties. Englebart sought to integrate variegated documents and their references through a common
core document in a project called Augment. Nelson, who coined the terms "hypertext" and "hypermedia,"

http://cs.brynmawr.edu/~dblank/papers/www/net_4_browser.jpg
http://cs.brynmawr.edu/~dblank/papers/www/#21
http://cs.brynmawr.edu/~dblank/papers/www/#8
http://cs.brynmawr.edu/~dblank/papers/www/#10
http://cs.brynmawr.edu/~dblank/papers/www/#14

added to the work of Bush and Englebart the concept of non-linear document traversal, as his proposed project
Xanadu (www.xanadu.net/the.project) attempted to "create, access and manipulate this literature of richly
formatted and connected information cheaply, reliably and securely from anywhere in the world."
Subsequently, Nelson has also defined the notions of "transclusion," or virtual copies of collections of
documents, and "transcopyright" which enables the aggregation of information regardless of ownership by
automating the procedure by means of which creators are paid for their intellectual property. We won't
comment beyond saying that the Web is an ideal test bed for Nelson's ideas.

From an technical perspective, HTML is a sequence of "extensions" to the original concept of Berners-Lee -
which was text-oriented. By early 1993, when the NCSA Mosaic navigator- browser client was released for
the X Windows System, HTML had been extended to include still-frame graphics. Soon audio and other forms
of multimedia followed.

After 1993, however, HTML standards were a moving target. Marc Andreesen, the NCSA Mosaic project
leader, left the NCSA to form what would become Netscape Corporation. Under his technical supervision,
Netscape went its own way in offering new features which were not endorsed by W3C/IETF, and at times
were inconsistent with the Standard Generalized Markup Language (SGML) orientation intended by the
designers of HTML. SGML is a document definition language which is independent of any particular structure
- i.e. layout is defined by the presentation software based upon Under pressure to gain market share,
navigator/browser developers attempted to add as many useful "extensions" to the HTML standards as could
be practicably supported. This competition has been called the "Mosaic War," [3] which persists in altered
form even to this day.

Although not complete, Table 1 provides a technical perspective of the evolution of HTML.

Table 1: HTML Evolution.

note: (1) Version 3.2 is actually a subset of Version 3.0, the latter of which failed to get endorsed by
W3C/IETF. (2) Dates are only approximate because of the time lag between the introduction of the technology
and the subsequent endorsement as a standard. In some cases this delay is measured in years.

GML - Generalized Markup Language
 Developed by IBM in 1969 to separate form from content in displaying documents

SGML - ISO 8879 Standard Generalized Markup Language
 Adopted 1986

HTML Version 1 (circa 1992-3)
 basic HTML structure
 rudimentary graphics
 hypertext

HTML Version 2 (circa 1994)
 forms
 lists

HTML Version 3.2 (circa 1996-7)
 tables
 applets
 scripts
 advanced CGI programming
 security
 text flow around graphics

HTML Version 4.x (early 1998)
 inline frames

http://cs.brynmawr.edu/~dblank/papers/www/#3

 format via cascading style sheets (vs. HTML tags)
 compound documents with hierarchy of alternate rendering strategies
 internationalization
 tty + braille support
 client-side image maps
 advanced forms/tables

XML (1998)
 Extensible Markup Language. Subset of SGML

Among the many Netscape innovations are: typographical enhancements and fonts alignment and colorization
controls for text and graphics dynamic updating (continuous refresh without reload) server push/client pull
frames cookies plug-ins scripts frames Java applets layers Many of these have become part of subsequent
HTML standards. In addition to these formal standards, discussion is already underway for a radical extension
of HTML called XML (www.w3.org/XML/Activity). In many ways, HTML evolved away from its nicely
thought-out roots. GML, or Generalized Markup Language, was developed in the 1960's at IBM to describe
many different kinds of documents. Standard Generalized Markup Language, or SGML, was based on GML
and became an ISO standard years later in the 1980's. SGML still stands today as the mother of all markup
languages. Its designers were very careful to not confuse form and content, and created a wonderfully rich
language. HTML became a patchwork of ideas as it quickly evolved over the last few years, and mudied the
difference between form and content.XML is an effort to reunite HTML with its SGML roots. The
development of XML, which began in late 1996, deals with the non-extensibility of HTML to handle
advanced page design and a full range of new multimedia. XML will accomplish this by using

1. a more SGML-like markup language (vs. HTML) allows "personal" or "group" -oriented tags, and
2. a low-level syntax for data definition

To see how XML differs from HTML, we examine a page of HTML code:

<html>
<head>
 <title>Bibliography</title>
</head>
<body>
 <p>Smith, Aaron S. (1999). <i>Understanding the Web</i>.
 Web Books, Inc. </p>
</body>
</html>

This code, when rendered by an appropriate browser, would appear similar to the following:

Smith, Aaron S. (1999). Understanding the Web. Web Books, Inc.

Tags are special symbols in HTML and XML, and are indicated by the surrounding less-than and greater-than
symbols. The majority of tags are paired - i.e., they surround the text that they affect. For example, <I> and
</I> indicate that the italics should be turned on and off, respectively.

Now, contrast the HTML example with sample XML code:

<?XML version="1.0" ?>
<xmldoc>
<bibliography>
 <ref-name> Smith-1999b </ref-name>
 <name>
 <last> Smith </last>
 <first> Aaron </first>
 <mi> S </mi>

 </name>
 <title> Understanding the Web </title>
 <year> 1999 </year>
 <publisher> Web Books, Inc. </publisher>
 <type> Book </type>
</bibliography>
</xmldoc>

Like the HTML code, XML is made up of tags. However, XML does not describe how to render the data, it
merely indicates the structure and content of the data. HTML does have some of these kinds of tags (for
example, <title> in the above HTML example) but, for the most part, HTML has evolved completely away
from its SGML roots.

XML was designed to be compatible with current HTML (and SGML, for that matter). Today's most common
web browsers (Microsoft's Internet Explorer and Netscape's Navigator) do not support XML directly. Instead,
most XML processors have been implemented as Java applications or applets (see the Web Consortium's
website for a list of XML processors at www.w3.org). Such a Java processor could be instructed to render the
XML inside the browser exactly like the rendered HTML.

One of the nice properties of XML is the separation of content and format. This distinction will surely help
tame the Wild Web as it will allow easier searching, better structuring, and greater assistance to software
agents in general. However, this isn't XML's greatest virtue: what makes XML a great leap forward for the
Web is its ability to create new tags. Much like a modern database management system can define new fields,
XML can create a new tag. In addition, XML tags can also have structure like the name field above was
composed of first, last, and middle initial. As long as client and server agree on the structure of the data, they
can freely create and share new data fields, types, and content via XML.

Some have said that XML "does for data what Java does for programs." Examples of XML applications are
the math-formula markup language, MathML (http://www.w3.org/TR/WD-math/), which combines the ability
to define content with a less-powerful suite of features to define presentation. Another example is RDF, a
resource description format for meta-data (http://www.w3.org/RDF/Overview.html), which is used in both
PICS, the Platform for Internet Content Selection (http://www.w3.org/PICS/) and SMIL, the Synchronized
Multimedia Integration Language, which is a declarative language for synchronizing multimedia on the Web.
The XML prototype client is Jumbo (http://www.venus.co.uk/omf/cml).

Although XML will help make marking up Web pages easier, there is still a battle raging over which system
should be responsible for the details of rendering pages. Current HTML coders must take responsibilty for
exact placement over page layout, and getting a standard look across browsers is non-trivial. However, SGML
leaves the page layout details up to the browser. Exactly how this important issue will play out remains to be
seen.

5.2 HYPERTEXT TRANSFER PROTOCOL (HTTP)

HTTP is a platform-independent protocol based upon the client-server model of computing which runs on any
TCP/IP, packet switched digital network - e.g., the Internet. HTTP stands for Hyper Text Transfer Protocol and
is the communication protocol with which browsers request data, and servers provide it. This data can be of
many types including video, sound, graphics, and text. In addition, HTTP is extensible in that it can be
augmented to transfer types data that do not yet exist.

HTTP is an application layer protocol, and sits directly on top of TCP (Transmission File Protocol) . It is
similar to in many ways to the File Transmission Protocol (FTP) and TELNET. HTTP follows the following
logical flow:

http://www.w3.org/TR/WD-math/
http://www.w3.org/RDF/Overview.html
http://www.w3.org/PICS/
http://www.venus.co.uk/omf/cml

1. A connection from the client's browser is made to a server, typically by the user having clicked on a
link.

2. A request is made of the server. This request could be for data (i.e., a "GET") or could be a request to
process data (i.e., "POST" or "PUT").

3. The server attempts to fulfill the request. If successful, the client's browser will receive additional data
to render. Otherwise, an error occurs.

4. The connection is then closed.

HTTP uses the same underlying communication protocols as do all the applications that sit on top of TCP. For
this reason, one can use the TELNET application to make an HTTP request. Other TCP-based applications
include FTP, TFTP (Trivial File Transfer Protocol), and SMTP (Simple Mail Transfer Protocol) to name just a
few. Consider the following example:

% telnet www.uark.edu 80
GET / HTTP/1.0
Accept: text/html
Accept: text/plain
User-Agent: TELNET/1.0

This command made from any operating system with access to the TELNET program requests to talk to port
80, the standard HTTP port, of a machine running a web server (TELNET normally uses port 23). A request is
made to get the root document (GET /), in a particular protocol (HTTP/1.0), and accepting either text or
HTML. The data (i.e., HTML codes) are returned, and the connection is closed. Note: the ending empty line is
required.

Conversely, consider:

HTTP/1.0 200 OK
Server: Netscape-Enterprise/3.0K
Date: Sun, 03 May 1998 22:25:37 GMT
Content-type: text/html
Connection: close

<HTML>
<HEAD>
...

These are the data returned from the previous request. First, the server responds with the protocol (HTTP/1.0
in this example), gives the corresponding code (200 OK), provides details of the server (Netscape-Enterprise),
date and time, and the format of the following data (text/html). Finally, an empty line separates the header
from the actually HTML code.

This type of processing is called "stateless". This makes HTTP only slightly, yet importantly, different from
FTP. FTP has "state"; an FTP session has a series of settings that may be altered during the course of a dialog
between client and server. For example, the "current directory" and "download data type" settings maybe be
changed during an FTP dialog. HTTP, on the other hand, has no such interaction---the conversation is limited
to a simple request and response. This has been the most limiting aspect of HTTP. Much current Web
development has centered around dealing with this particular limitation of the protocol (i.e., cookies).

Although HTTP is very limited, it has shown its flexibility through what must be one of the most explosive
and rapidly changing technological landscapes ever. This flexibility is made possible via the protocol's format
negotiations. The negotiation begins with the client identifying the types of formats it can understand. The

server responds with data in any of those formats that it can supply (text/html in the above example). In this
manner, the client and server can agree on file types yet to be invented, or which depend on proprietary
formats. If the client and server cannot agree on a format, the data is simply ignored.

6. DYNAMIC WEB TECHNOLOGIES
Web technologies evolved beyond the original concept in several important respects. We examine HTML
forms, the Common Gateway Interface, plug-ins, executable content, and push technologies.

6.1 COMMON GATEWAY INTERFACE

The support of the Common Gateway Interface (CGI) within HTTP in 1993 added interactive computing
capability to the Web. Here is a one-line C program that formats the standard greeting in basic HTML. (Note:
make sure the binary is marked executable. Also, often the binary will need to have a .cgi extension to tell the
HTTPD server that it should be executed rather than simply displayed). Any program capable of reading from
"standard input" and writing to "standard output" can be used as a CGI program, although the interpreted
language Perl has, by far, been the most used.

main() {
 printf("Content-type: text/html\n\n<html><body>
 <h1>Hello World\!</body></html>\n");
}

Many are surprised to find the amount of data a CGI program has access to from the apparent anonymous
browser (more on this later). For example, a CGI program can identify what Web page referred the user to this
site, the browser the user is using, the user's IP address, and a host of other information (including the host)
(see below).

DOCUMENT_ROOT /home/csci/public_html
GATEWAY_INTERFACE CGI/1.1
HTTP_ACCEPT image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
HTTP_ACCEPT_CHARSET iso-8859-1,*,utf-8
HTTP_ACCEPT_LANGUAGE en
HTTP_CONNECTION Keep-Alive
HTTP_HOST entropy.uark.edu
HTTP_REFERER http://dangermouse.uark.edu/~dblank/samples/
HTTP_USER_AGENT Mozilla/4.04 [en] (X11; I; Linux 2.0.33 i686)
PATH /sbin:/usr/sbin:/bin:/usr/bin
QUERY_STRING
REMOTE_ADDR 130.184.201.233
REMOTE_HOST dangermouse.uark.edu
REQUEST_METHOD GET
SCRIPT_FILENAME /home/dblank/public_html/scm.cgi
SCRIPT_NAME /~dblank/scm.cgi
SERVER_ADMIN root@localhost
SERVER_NAME entropy.uark.edu
SERVER_PORT 80
SERVER_PROTOCOL HTTP/1.0
SERVER_SOFTWARE Apache/1.2.5

In general, a CGI program has access to environment information regarding the network transaction. This
browser data is relayed to the CGI program via environment variables.

A CGI program may create a specialized Web page that is based on any of the above variable values. For

example, if a user did not come from a specific Web page, then the user could be rejected. In the example
below, one could test HTTP_REFERER to see if it equals "http://dangermouse.uark.edu/~dblank/samples/". If
it does, more data would be shown; otherwise a message indicating inappropriate access could be displayed.

#include <stdlib.h>
main() {
 if (strcmp(getenv("HTTP_REFERER"),
 "http://dangermouse.uark.edu/~dblank/samples/") == 0)
 printf("Content-type:
text/html\n\n<html><body><h1>Welcome\!");
 else
 printf("Content-type: text/html\n\n<html><body><h1>Access
 Denied<p>");
 printf("</body></html>\n");
}

In this case, "more data" is a dynamic Web page. This CGI C program tests to make sure that the user is
coming from a particular HTTP referrer.

Perhaps the most important use of CGI to this point has been the dynamic processing of CGI forms which
enable input from the Web user-client to be passed to the server for processing (discussed below). While, in
theory, CGI programs can provide server-side programming for virtually any Web need, network bandwidth
constraints and transmission delays may make some heavily interactive and volumetric applications infeasible.

6.2 FORMS

Forms were added to HTML version 2 around 1994. Forms allow users to give feedback to servers through
standard GUI objects: text boxes, check boxes, buttons, etc. (see Figure 4).

Figure 4: Screen dump of Secure File Viewer form.

http://dangermouse.uark.edu/~dblank/samples/

The HTML code below produced the screen in Figure 4. Sections of HTML code are marked between the
<FORM> and </FORM> tags. In this example, the CGI program (discussed below) is executed when the
"View" button is clicked. Three additional pieces of data are sent to the executing program via environment
variables: passwd, file, and html. Passwd and file are both textual, and html is a boolean check box. Notice
that passwd is of type "password" which makes text typed into the area appear as asterisks. The word
"checked" appearing at the end of the checkbox tag indicates that is initially true (i.e., checked).

<HTML>
<BODY>
<h1>Secure File Viewer</h1>
<HR>
<FORM METHOD="POST" ACTION="access.cgi">
Password:
<input type=password name=passwd value="" size=10></input>
File: <input type=text name=file value="" size=50></input>

View as html: <input type=checkbox name=html checked>

<input type="submit" name="submit" value=" View ">
</FORM>
<HR>
</BODY>
</HTML>

The final piece of this form is the actual program that is run when "View" is pressed. This program, access.cgi,
is shown below:

#!/usr/bin/perl
require "cgi-lib.pl";
&ReadParse(*input);
if ($input{'passwd'} eq 'himom') {
 if ($input{'html'}) {
 exec "echo Content-TYPE: text/html; echo; cat "
.$input{'file'} || die;
 } else {
 exec "echo Content-TYPE: text/plain; echo; cat "
.$input{'file'} || die;
 }
} else {
 print "Content-type: text/html\n\n";
 print "<HTML><BODY><HR>";
 print "Error not the correct password!\n";
}
print "<HR></BODY></HTML>\n";
1;

We observe that this is a simple Perl script that checks a password before viewing a source file. This program
should be marked as executable, and requires the standard Perl library cgi-lib.pl.

Access.cgi is a CGI program (described below) written in Perl that checks for a password ("himom" in this
case), and displays a file either as HTML or as plain text depending on the checkbox. This method of
password protecting files is not secure: anyone with access to the file system can read access.cgi and therefore
view the password (read access is required in order to execute a CGI script on most Web servers). Currently,
there is not a foolproof method for allowing password-bearing Web surfers to have access to files while
preventing general file system users. Many sites have a dedicated server with no general-purpose users for just
this purpose, thereby making this form secure.

Forms were a welcome addition to early HTML standards. However, the amount of dynamic interaction

allowed is quite limited.

6.3 HELPER-APPS

So called "Helper apps" are extensions of the network browser metaphor which diminished the browser-
centricity by supporting multimedia through separate, special-purpose "players." In this way, a wider range of
multimedia could be rendered than could be economically and practicably built in to the browser itself.

This trend toward helper apps began in 1994. By year's end most Web browsers included generic launchpads
which could spawn pre-specified multimedia players based on the filetype/file extent (.WAV designated MS
Window's audio file, .QT designated Quicktime, etc.). In practice, one simply downloaded the autonomous
helper apps which could cover the range of multimedia desired.

The generic launchpad was a significant technological advance for two reasons. First, it de-coupled the
evolutionary paths, and hence the development paces, of browsers and multimedia. The first multimedia Web
browsers relied entirely on internal media perusers, thereby creating a bottleneck as the pace of development
of new multimedia formats exceeded that of the internal perusers. By de-coupling, both browser and
multimedia developers could advance independently without fear of incompatibility.

Second, generic launchpads spawn external processes which execute independently of the Web browser and
hence render the multimedia in an external window. This process-independence discourages the development
of helper apps that are proprietary to a particular browser, which led to the rapid growth of freeware,
shareware and commercial helper apps that are now available for popular client platforms. That the helper
apps could be used in isolation of the browser became a collateral advantage for easy perusal of local
multimedia files as well.

This generic, browser-independent approach toward rendering multimedia would be challenged twice in 1996,
first by "plug-ins" and then by "executable content."

6.4 PLUG-INS

"Plug-in" (alt. "Add-on") technology increased the media-rendering capability of browsers while avoiding the
time-consuming spawning of so-called "helper apps" through the browser's launchpad. The speed advantage of
the plug-ins, together with the tight coupling that exists between the plug-ins and the media formats which
they render, made them a highly useful extension.

Plug-ins, as the name implies, are external applications which extend the browser's built-in capability for
rendering multimedia files. However, unlike helper apps plug-ins render the media "inline" - that is, within the
browser's window in the case of video, or with simultaneous presentation in the case of audio. In this way the
functionality of the plug-in is seamlessly integrated with the operation of the browser. Plug-ins are often
proprietary and browser-specific because of this tight integration. Some of the more popular current plug-in
technologies are Web telephony, virtual reality and 3-D players, and real-time (or, "streaming") audio and
video. (n.b.: The word "streaming" has come to mean the ability of a multimedia file to begin to be
experienced by the user before the entire file has completely downloaded. For example, an hour-long audio file
may begin playing after a few seconds of downloading and continue playing while the rest of the file is
downloaded. This works by having the plug-in download a buffer of data prior to execution, thereby keeping
just ahead of the player.)

Plug-ins proved to be a useful notion for creating extendable browsers. However, there was a rub: plug-in
developers must write and compile code for each target platform. Although most modern platforms support C
and C++ compilers, porting plug-in applications is still non-trivial. This requirement was eliminated through

the notion of executable content.

6.5 EXECUTABLE CONTENT

Executable content continues the theme of tight integration between multimedia peruser and browser, but with
a slight twist. In the case of executable content, the multimedia and the peruser are one. That is, an enabled
browser will download the executable files which render the multimedia and execute them as well, all within
the browser's own workspace on the client.

The advent of executable content added a high level of animated media rendering and interactive content on
the client side. There are many methods with which to implement data in an executable content paradigm. One
example is to simply use the plug-in technology described above. However, this method requires that the user
previously download the necessary plug-in. In addition, developers would be required to write and maintain
their code on all platforms that they want to support, as mentioned.

A better solution was to provide a standard environment for programming so that programs could be treated as
ubiquitously as HTML. While there are several competing paradigms for Web-oriented executable content,
including JavaScript, Telescript, and Active-X, the cross-platform language, Java ([21][26]), was the clear
environment of choice by early 1997. Sun Microsystems created Java so that developers could produce
platform-independent modules that are executable on enabled Web browsers. A Java program run on the Web
is called an applet.

public class HelloWorld extends java.applet.Applet {
 public void paint(java.awt.Graphics g) {
 g.drawString("Hello World!");
 }
}

This applet is a sample program written in Java and stored with the filename HelloWorld.java. It displays the
standard greeting.

The development and use of a Java Applet runs as follows:

1. A programmer writes an object-oriented program (ending with .java; see above)
2. A compiler (Sun's version is written in Java) translates the source code into Java byte-code (also called a

class file as they end with .class).
3. A Java virtual machine (JVM), usually located in a browser, interprets the byte-code into machine-

specific commands.

Java has probably sparked more activity in computer science than the Web itself. In one important sense, Java
is a computer. The Java language has commands for performing normal operations, but also includes methods
for rendering graphical objects. The concept of "Java" actually has three, very different parts. These are: the
JVM, the Java syntax, and the Java byte code compiler. Currently, all of these are tightly integrated, but are
slowly becoming three distinct parts. For example, any language could (theoretically) be compiled for the
JVM. Programmers could continue to write in (a subset) of C++ or COBOL, and their code would live on
running in modern browsers. Also, browsers are utilizing the concept of "Just-in-time" (JIT) compilation. This
allows the server computer to compile the Java byte code to native code right after downloading. The Java
syntax is also being compiled directly to native code so that it may act as a "regular" general-purpose language
as well.

These issues are further complicated by a huge amount of research in related areas. For example, Sun has
recently developed a chip that actually implements the JVM in hardware.

http://cs.brynmawr.edu/~dblank/papers/www/#21
http://cs.brynmawr.edu/~dblank/papers/www/#26

Not surprisingly, this latest extension of the Web that involves executing foreign programs downloaded across
the networks, is not without security risk. However, Java has been designed from the ground up with security
issues in mind.

Currently, Java runs in one of two modes: application or applet. In application mode, Java has full access to
one's system (printers, drives, monitor, etc.) - there are no security limitations. This allows programmers to
write general-purpose applications. Corel has written versions of their popular office suite is such a manner,
which allows it to run on any machine with a JVM.

However, most of the interest in Java has been in its applet mode. The designers of Java were sensitive to
security issues, and therefore general access to the client's system could not be permitted. Although this
greatly restricts what Java applets can do, it is a relatively secure system [13]. For the first time, such applets
offer the ability for safe executable content. (n.b.: Java 1.1 permits a user to allow Java applets to have full or
partial control of the client's machine, disks, etc. This greatly enhances the power of applets, but creates a
more complex security control system for the user.)

Java has been the most successful executable content language, but there are many others. Tcl ([17],[24];
pronounced "tickle") has also become a popular scripting language for executable content, but does require a
plug-in in order to operate as it is not built into the current browsers. Tcl was "retrofitted" for Web use with
security features (the so-called "Safe Tcl" version). Tcl, like Java, supports basic programming functions as
well as a graphical user interface (GUI).

Probably the second most successful technology for executable content is Microsoft's Active-X. Active-X is
not a language, but rather a method for dynamically downloading and using shared libraries. Active-X is
generally a Windows-only solution that requires programmers to build the executable content under that OS.
However, a third party developer, Ncompass (www.ncompass.co.uk) has developed a method for Unix
systems running Netscape's Navigator to execute Active-X executables. This technique shows Active-X's
similarity to plug-ins, as NCompass has been implemented as such.

However, unlike Java, Active-X has no security model. An Active-X program in execution has the full range
of OS functions available to it as would any typical application [13]. This illustrates the trade-off between
providing applets with greater power and flexbility on the one hand and providing the host with greater
security on the other. Java and Active-X take different approaches to this dilemma.

To minimize the potentially disastrous security problem with Active-X, Microsoft attempts to deal with the
security issue with "certification". Certification is the formal procedure of listing your company and programs
with an official registrar (Verisign is one such company). Internet Explorer (the only current browser
supporting Active-X) will only allow Active-X applets that have been certified and accepted by the user to be
downloaded and executed (Java 1.1 applets may also be certified.) Of course, there is nothing to prevent a
programmer from doing devious acts once their Active-X control has been installed on one's machine once it
has been certified. Certification does not prevent evil-doers, but at least one knows where the harm came from
afterwards. Because of these properties, Active-X is really only a choice for Windows-only Intranets where
clients can faithfully trust their servers.

As can be seen, browsers are a complex environment supporting many kinds of interacting scripts, plug-ins,
etc. As of early 1998, many security problems were still being reported in the media.

6.6 PROGRAMMING

Java can also be used as a server scripting language (such a server side program is sometimes called a
"servlet"). Usually, one wants server code to be as small and fast as possible, and Java doesn't currently meet

http://cs.brynmawr.edu/~dblank/papers/www/#13
http://cs.brynmawr.edu/~dblank/papers/www/#17
http://cs.brynmawr.edu/~dblank/papers/www/#24
http://cs.brynmawr.edu/~dblank/papers/www/#13

these criteria. However, it makes a good prototyping language as it has many built-in functions that make it
extremely useful for Web-based server applications (see source code, below.) When there are native compilers
(i.e., compilers that produce machine code rather than byte code) for server machines, Java will not only be
the best prototyping language for these applications, but will be the best Rapid Application Development
(RAD) tool as well.

*********************** File Httpdaemon.java
import java.net.*;
import java.io.*;
import java.util.*;

public class Httpdaemon {
 public static void main (String argv[]) throws IOException {
 ServerSocket ss = new
 ServerSocket(Integer.parseInt(argv[0]));
 while (true) {
 new HttpdConnection(ss.accept());
 }
 }
}

class HttpdConnection extends Thread {
 Socket sock;

 HttpdConnection(Socket s) { // constructor
 sock = s;
 setPriority(NORM_PRIORITY - 1);
 start();
 }

 public void run() {
 try {
 OutputStream out = sock.getOutputStream();
 String req = new
DataInputStream(sock.getInputStream()).readLine();
 System.out.println("Request: " + req);
 StringTokenizer st = new StringTokenizer(req);
 if ((st.countTokens() >= 2) &&
st.nextToken().equals("GET")) {
 if ((req = st.nextToken()).startsWith("/"))
 req = req.substring(1);
 if (req.endsWith("/") || req.equals(""))
 req = req + "index.html";
 try {
 FileInputStream fis = new FileInputStream(req);
 byte [] data = new byte [fis.available()];
 fis.read(data);
 out.write(data);
 } catch (FileNotFoundException e) {
 new PrintStream(out).println("404 Not Found");
 }
 } else
 new PrintStream(out).println("400 Bad Request");
 sock.close();
 } catch (IOException e) {
 System.out.println("I/O error " + e);
 }
 }
}

This is a very small (insecure) web server written in Java (after Neimeyer and Peck, 1996). This program runs
on a server and retrieves HTML files to standard browsers. Warning: this little server can serve up any file on
your computer, so don't use it on a machine containing sensitive data.

6.7 DHTML

The idea of Dynamic HTML is to expose the set of events that allows a Webmaster to program a page to
respond to many common interactions between the user and the document. The proposed Dynamic HTML
event model is based on two powerful features for controlling the document's behavior: event bubbling and
default actions. Whenever the user interacts with the page an event is fired. The user generates events in the
standard ways: moving the mouse, clicking a mouse button, or typing on the keyboard within a document.
Changes in document state can also fire events include the loading of the document, images, or objects.

DHTML is similar to JavaScript, except DHTML is even less stable, neither Microsoft nor Netscape support
it, and neither Microsoft nor Netscape have determined exactly how it should work. Future browser support
for DHTML is unknown [12].

Scripting Language
Advantages
Disadvantages
Source

1. JavaScript
Standard in browsers
only works in browsers
http://developer.netscape.com/one/javascript

2. MetaCard
Easy for nonprogrammers to learn
Very small customer base
http://www.metacard.com

3. Perl
Widely used and dominant in CGI; specialized extensions are available
GUI, Windows, Mac OS maintenance given less attention
http://www.perl.org/

4. Python
A clean, portable, maintainable language
Base of Python expertise still small
http://www.python.org/

5. Rexx
Available for and well integrated with all IBM OSes, including mainframes
Impoverished library of facilities compared to Perl, Python, and Tcl
http://www.rexxla.org/

6. Tcl
Simple syntax, easily learned, extensible
Clumsy for arithmetic and some other operations
http://tclconsortium.org/

7. VBScript
Resembles Visual Basic
single source; useful only with Microsoft Web products
http://www.microsoft.com/scripting/vbscript/default.htm

Figure 5: Summary of Scripting Languages (after Laird and Soraiz, 1998).

http://cs.brynmawr.edu/~dblank/papers/www/#12
http://developer.netscape.com/one/javascript
http://www.metacard.com/
http://www.perl.org/
http://www.python.org/
http://www.rexxla.org/
http://tclconsortium.org/
http://www.microsoft.com/scripting/vbscript/default.htm

6.8 SERVER SIDE INCLUDES

Server-Side Includes (SSI) are another method of dynamically creating webpage content. SSI's are commands
which are parsed and processed by the web server. SSI's may be the easiest method for the web master to
create dynamic Web pages. Consider this simple HTML code:

<HTML>
<BODY>
<!--#echo var="LAST_MODIFIED" -->
</BODY>
</HTML>

To automatically add a "last modified" date to a page requires a simple #echo SSI command as shown above.
This web page would display text in the form of "Monday, 15-Jun-98 03:09:31 CDT". Notice that the SSI
command is sandwiched between <!-- and -->. These HTML tags signal a comment, and therefore, are ignored
by browsers if the server does not support SSI.

SSIs are useful for several reasons:

1. creates easy to maintain code; all commands stay in the HTML files
2. helps create structured, uniform sites
3. easy for non-programmers to use

SSI is composed of four main commands #config, #echo, #include, and #exec which allow a webmaster to
config settings, display information, include source files, and execute programs respectively. For example, one
could include a standard footer with the SSI <!--#include virtual="footer.txt" -->.

However, the SSI directives have recently been further enhanced. SSI now includes: #set, #if, #else, and
#endif. This creates a powerful programming environment for creating dynamic HTML pages as the program
below illustrates:
<HTML>
<!-- #if expr="$HTTP_USER_AGENT = /^Mozilla/" -->
You are using a Netscape Browser
<!-- #else -->
You are using another browser
<!-- #endif -->
</HTML>

Figure 6: Sample HTML page which uses the environment
variable HTTP_USER_AGENT to dynamically determine
what text to display.

6.9 PUSH TECHNOLOGIES

An interesting technology "about face" occurred in the mid-1990's. The Web witnessed the deployment of
information acquisition tools which went beyond the original "information-pull" concept behind the Web.
"Push technology," or "push-phase technology," (see, [4]) found wide use in 1996-7 - to the regret of many
MIS managers who watched their corporate bandwidth wither away under the strain! In it's most basic form,
push technology is an automated delivery environment which produces timely downloads of information
without end-user involvement. In this capacity, it is seen as the most recent offshoot of an evolutionary path
which begins with telegraphy.

http://cs.brynmawr.edu/~dblank/papers/www/#4

Early wire services (e.g., Associated Press, Reuters) were also "pushy" in the same sense as modern push
clients. Both distribute information automatically without requiring end-user requests. Email is pushy in this
regard as well - 1:1 in the interpersonal case, and 1:many when done with distribution lists and alias files.
Television and radio are also pushy. Like email, Web push is inherently digital and network-based, and like
television and radio and the wire services, it supports a wide range of broadcasting and narrowcasting
applications.

The most recent incarnation of push technology is a close descendent of the "server push" concept developed
by Netscape in 1995. The principle behind this Web extension was "dynamic updating." It was thought that
there were likely to be many situations in which it is desirable to continuously update Web browser windows
with volatile information. Over the past few years, server push has been used to produce multi-cell animations,
slide shows, "ticker tapes," automatic pass-through of Web splash pages, and so forth. Dynamic updating was
a way of overcoming the "stateless" protocol of the Web, which disconnects the client-server connection
immediately after each transaction cycle, as previously described.

Actually, server push was just one-half of Netscape's dynamic updating duo. The other half was client pull.
Server push refreshed information displayed on the client through pre-determined, timed, server-initiated
transmissions of HTML documents. However, this approach is server- invasive, requiring special server-side
executables to create and deliver the refresh stream, and accordingly server push has fallen into disuse (a
"deprecated feature", in Web terminology).

Client pull, on the other hand, remains in use within the Netscape community for the display of constantly-
updated HTML pages. Unlike server push, client pull requires no special programs to operate. The Web
browser client initiates an HTTP connection and request for information from a server when it sees a particular
token of the <META> tag in an HTML document. To illustrate, the tag <META http-equiv="refresh"
content="5;url=http://www.widget.com"> would cause a pull-compliant browser to refresh the current
browser window with the document at http://www.widget.com 5 seconds after loading the current page.
Without a URL specified, the browser will refresh itself with a re-load of the current page. The "pull" is shut
off as soon as a document is reached which does not have a refresh <META> tag.

For both server-push and client-pull, the idea is a simple one: provide data downloads without requiring user
intervention. However, early server-push and client-pull technologies were deficient in one major respect: they
were both context- and content-insensitive. That is, all accesses to a URL - whether pushed or pulled -
produced the same results for all users at any given moment in time. This context/content insensitivity became
the bete noir of Netscape's dynamic updating technology because it produced an information access and
delivery system that wasn't scalable - the delivery of numerous, complex, timely and personalized documents
require as many URL's as there are documents. In order to minimize information overload, some mechanism
needed to be created to build the content and context sensitivity into the push technology, itself.

SELECTED PUSH TECHNOLOGY VENDORS (programs) - Client-Side Only

 BackWeb www.backweb.com
Global Village(NewsCatcher) www.globalvillag.com
 inCommon(Downtown) www.incommon.com
 Intelliserv www.verity.com
 Intermind (Communicator) www.intermind.com
 Lanacom (Headliner) www.lanacom.com (now part of BackWeb)
 NewsEDGE www.newsedge.com
 Pointcast www.pointcast.com
 Marimba (Castanet) www. marimba.com
 Wayfarer(Incisa) www.wayfarer.com

Current push client-server environments (see TABLE, above) have many characteristics in common. For one,
they are set up to distribute both internal (to the vendor) and 3rd party information. Second, most push

environments require proprietary clients which operate independently of any Web browser. Third, they mainly
rely on a "client-polling" (aka, "smart pulling") model of triggering downloads (counterintuitive as it seems,
most "push" environments are not technically push at all, but are called push because the client-polling is user-
transparent).

However, push clients also differ in some respects. For one thing, some produce revenue by subscription while
others (e.g., Pointcast) achieve revenue through advertising. Though most of the clients, are built around Java
and HTML, some rely on Microsoft's Channel Definition Format and XML. Some support SQL database
interface, where others support some mix of Common Gateway Interface (CGI), SQL, Open Database
Connectivity, and so forth. All environments vary with respect to the type and variety of end-user filtering
tools.

Though no silver bullet, modern push technology holds out promise of several advantages:

1. automatic downloads - in some cases "differential downloading" which only downloads the files that
have changed

2. automated announcements of updated content
3. coherent information streaming via content channels
4. delivery and rendering independence from browser
5. automated but interactive Web document management
6. managed delivery
7. server-side information filtering and screening

Currently, hundreds, if not thousands, of media-rich (if not content-rich) channels are available for push
technology use. That these channels provide useful information to some end-user communities is beyond
dispute. What remains to be seen is whether future push development will develop end-user controls and
filters adequate to the challenge of accommodating each information consumer's personal bandwidth.

6.10 STATE PARAMETERS

A method of keeping track of state in the client-server communication is by passing message via additional
arguments. For example, one can pass additional parameters to a CGI program via the URL by placing a
question mark followed by a list of messages (strings) which are separated by plus signs:

dangermouse.uark.edu/samples/params.cgi?hithere+whatsup?+buddy The Perl code below would give
the following results:

 hithere
 whatsup\?
 buddy

which are stored in the normal command line variables (@ARGV in Perl's case). Notice that the second
question mark is treated as data. The program, params.cgi, below is a Perl [22][23] script, which illustrates
how one could keep track of state via additions to the URL and environment variables.

#! /usr/bin/perl
print "Content-type: text/html\n\n";
print "<html>\n";
print "<head>\n";

print "$ARGV[0]
\n";
print "$ARGV[1]
\n";
print "$ARGV[2]
\n";
print "</body></html>\n"

http://dangermouse.uark.edu/samples/params.cgi?hithere+whatsup?+buddy
http://cs.brynmawr.edu/~dblank/papers/www/#22
http://cs.brynmawr.edu/~dblank/papers/www/#23

Another method whereby allowing client and server to communicate information such as state is the use of
hidden fields. This method uses fields in a Web form. As stated, a form is Web page that accepts user input.
Input can be given in text boxes, check boxes, or button selects. There can be many forms per Web page. Here
is a section of a Web page that defines a form and two input fields: id and password:
...
<form method=post>
Enter ID: <input name="id">

Enter password: <input type=password name="password">

<input type=hidden name="date" value="01/06/1999">

<input type="submit" name="continue">
</form>
...

Figure 7: Part of a web page that defines a form.

There are actually four types of fields on this form: a text box (id), a password-type text box such that text
typed appears as asterisks (password), a hidden field (date), and a button (continue). All field values are stored
in operating system environment variables which can then be accessed by CGI programs. For example, the
program in Figure 7 would create 3 environment variables named id, password, and date.

As with most new technology, we trade a little privacy for ease of use. This will probably always be the case
on the Internet.

7. SECURITY and PRIVACY
To the average user, the Internet and its protocols seem very safe. However, this is far from the case. The
Internet was set up in a cooperative environment, and still remains so to this day. For example, IP relies on
servers all over the world acting as a giant bucket-brigade to pass message packets around from place to place.
There is barely anything except ethics keeping advanced users from "peeking" at messages as they go by one's
server on their way to other destinations.

Two technologies that have emerged to fix this major security hole are the Secure Socket Layer (SSL) and S-
HTTP.

7.1 SECURE SOCKET LAYER

Secure Sockets Layer is a security protocol that sits on top of TCP/IP to prevent eavesdropping, tampering, or
message forgery over the Internet. The latest version of the SSL protocol (Version 3.0) has been submitted to
the IETF and is available as an Internet Draft.

7.2 SECURE HTTP (S-HTTP)

Secure HTTP was developed by Enterprise Integration Technologies (www.eit.com) to keep commercial
transactions protected. S-HTTP is a secure protocol over HTTP for identification when entering into a server.
Both the server and the client identifies each other using a public key system. S-HTTP encrypts certain pages
that flow between the web server and the client. This encryption is usually only done to pages that contain
sensitive information, such as your credit card number. That means that if anyone attempts packet sniffing or
eavesdropping in any way, the intruder will see only the encoded message.

For the Web to become a medium for commonplace commerce, security and privacy must become seemlessly
integrated into it. Currently, it takes extra effort for Web users and servers to insure they are communicating
over a secure line. When secure communication is the default, we expect on-line electronic transactions to be

the most common method of paying bills, buying products, and performing most other types of commercial
interactions.

7.3 COOKIES

A cookie is another technique for allowing clients and servers to keep track of state. Cookies were created by
Netscape corporation. The program below is a Perl script that attempts to set a cookie on any client that reads
the web page (given that the client's browser is cookie-capable, and that the user accepts it). The cookie will
automatically be retrieved from the client's machine and stored in the HTTP_COOKIE environment variable
whenever a page is accessed from the DOMAIN specified in the META tag.
#! /usr/bin/perl

print "Content-type: text/html\n\n";
print "<html>\n";
print "<head>\n";
print "<META HTTP-EQUIV=\"Set-Cookie\" ";
print " CONTENT=\"CODENAME=Smith; ";
print " EXPIRES=Mon, 01-06-99 12:00:00 GMT;";
print " PATH=/;DOMAIN=.uark.edu\">\n";
print "<body><h1>";

print $ENV{'HTTP_COOKIE'};
print "
\n";
print $ENV{'SERVER_NAME'};
print "
\n";

print "</body></html>\n"

Figure 8: A perl script used to set a cookie on the
client.

Cookies are composed of two parts: the field name, and the field data. In this example, the field name is
CODENAME and the data is "Smith". Whenever a page is accessed at the .uark.edu domain, the
HTTP_COOKIE environment variable will contain "CODENAME=Smith" and possibly other cookie
field/data pairs, separated by semicolons. This particular cookie will expire on June 1, 1999 as specified in the
EXPIRES clause. Until then, the cookie's information will be stored on the user's disk. Netscape's Navigator
stores cookie information in a file called "cookies" -- e.g., \Programs\Netscape\Navigator\cookies.txt in the
case of Netscape running under Windows. After accessing the above web page, there would be an entry in the
cookie file similar to:

.uark.edu TRUE / FALSE 915624000 NAME Smith

If the EXPIRES clause is not given, the cookie will expire when the browser is exited and will never be stored
on disk.

There is an additional keyword that may appear in the META clause for use with Netscape browsers:
SECURE. If the SECURE keyword appears, then the Netscape client will only send the field/data pair back if
the client and server are communicating over a secure protocol, such as the Secure Socket Layer (SSL). Of
course, the field/data pair could be encoded on the server, thereby protecting sensitive information even
without SSL.

Because of privacy issues, the use of cookies continues to be hotly debated. According to the most recent Web
survey [18] only 22% of the Web users surveyed accept cookies from any source, while 23% receive a
warning before cookies are set, allowing them to make a decision on a case-by-case, and approximately 6%
refuse all cookies. Surprisingly, the remaining survey participants either didn't know what a cookie was or

http://cs.brynmawr.edu/~dblank/papers/www/#18

didn't care about having a policy.

Cookies can help make the Web experience more useful by recording information on individual network
transactions, which can streamline subsequent interactions. Despite this advantage, many remain concerned
about the potential loss of privacy by allowing Web servers to "track" them.

Factors which mitigate against privacy concerns include:

1. Only the domain that sets a cookie can read that cookie.
2. Sites can only set cookies for their domain.
3. All of the information that is stored in the cookie on the client's machine could easily be stored on the

server.
4. There is a hard limit to how many cookie field/data pairs a client can store (Netscape's Navigator can

hold 300 total) and a limit per domain (20 for Navigator). This guards against "denial of services"
attacks so that wayward servers can't gobble up a clients' diskspace by giving it too many cookies to eat.

5. Cookie data is typically encoded or is composed of a random site-based database key.

Given these points, one realizes that cookies might be the lesser of two evils: having the client store tracking
data or having the server store tracking data. If the server keeps tabs on the browsers, the end-user might never
know. Of course, the volume of data collected by highly- active servers would discourage un-refined cookie
collection. Since servers do keep tabs of network transactions (e.g., in the form of values of environment
variables) perhaps not much privacy is breeched.

Here is a typical entry that was generated when the above webpage was accessed (from the Apache Web
server's default settings for logging):

dangermouse.uark.edu - - [31/May/1998:22:01:19 -0500] "GET /samples/hw.cgi HTTP/1.0" 200 194

If the client stores the data, one could change it, delete it, and generally be aware of what sites are openly
keeping track of state. Anonymous browsing is impossible, although there are some steps one can take to be
less obvious:

1. Use an "anonymizer." An anonymizer is a "go-between" web site. A user asks the anonymizer to
retrieve a webpage, the anonymizer does so, and returns the HTML data back to the user. Unfortunately,
one must trust the anonymizer, for it knows who is accessing what pages.

2. Physically move to a different computer. This prevents web sites from having accurate data. Of course,
this is not always a possibility.

3. Use dynamically assigned IP numbers.

Although cookies can't get to data on your hard drive, they can be used to track you. For example,
DoubleClick Corporation (http://www.doubleclick.com/) uses cookies to keep track of your browsing from
many thousands of websites. This data can then be sold to marketing companies. Whenever a DoubleClick ad
appears, a request is made from their site for the advertising graphic. Doing so not only retrieves the image,
but allows them to check your cookies, and assign you an ID if you haven't been to a DoubleClick-sponsored
site before. Afterward, whenever you go to a site with a DoubleClick ad, they can keep statistics on your
visits.

The latest versions of Netscape Navigator provide a method of refusing cookies that are issued from sites
other than the one that you currently are viewing. This will foil most global tracking schemes (such as
DoubleClick's) without interfering with the more useful cookies that keep track of local state (i.e., for
shopping carts). Of course, one could also simply delete the cookie file thus throwing a monkey wrench into
the usefulness of the cookie technology. (On systems supporting symbolic links, one can simply ln -s /dev/null

http://www.doubleclick.com/

cookies and cookies are automatically sent to the void.)

In addition to server logs, security issues also include the client machine. One should consider that typical
modern browsers leave a trail of exactly what has been viewed over the Internet. Such evidence can be found
in a browser's cache, a directory of temporary files documenting every graphic and HTML page viewed.

The interactions between all of the types of scripting and dynamic Web technologies is still not well defined.
For example, the code below is a JavaScript program that discovers a visitors IP address. Although this
information can also be found in a CGI's environment variables, as well as a server's access log files, if
JavaScript could access more personal data (such as the user's email address) and give that to the server, then
privacy is further lost.

<html>
<head>
<title>Get IP Address</title>
</head>
<HR>Getting IP Address...</HR>
<SCRIPT LANGUAGE="JavaScript">
<!--
function getIP() {
 if (navigator.javaEnabled()) {
 baseAddress = java.net.InetAddress.getLocalHost()
 userDomain = baseAddress.getHostName()
 return (userDomain.toString())
 } else {
 return null
 }
}
domainName = getIP()

alert('You are ' + domainName + ' and I now know it!')
// -->
</SCRIPT>
</body>
</html>

8. THE WEB AS A SOCIAL PHENOMENON
The social effect of the Web is not well understood. Not surprisingly, the zeal to harness and exploit the
richness of Web resources and technology, combined with the desire to capitalize on commercial Web
services, have taken precedence over efforts to understand the social dimensions of Web use.

Much of what little we know of Web behavior seems to be derived from two disparate sources. Descriptive
statistics produced by the Web surveys are most useful to measure isolated events and independent activities -
e.g., how many Windows users use Netscape.

The second source is the study of the use of Email. Email's status as a de facto paradigm of "interpersonal
though not-in-person communication" makes it a useful testbench for testing hypotheses about network
behavior, generally. Since Email and the Web share several characteristics, e.g. they both minimize the effects
of geographical distance between users, they are both based on user-centric models of communication, both
rely on self-imposed interrupts, both are paperless and archivable by default, both create potential security and
privacy problems, and neither requires continuous endpoint-to-endpoint network connectivity, Email can teach
us something about Web behavior.

However, both sources provide incomplete views of Web behavior. Descriptive statistics tell us little about

either the causes of emerging trends or the connections and associations between various aspects of Web use
(e.g., to what extent, if any, do anonymous Web engagements promote discussion of controversial topics?)

There are differences between Email and the Web as well. Email deals with network, peer-to-peer
communication partnerships, where the present Web remains primarily an information-delivery system. Email,
in its most basic form at least, exemplifies push-phase technology, while the current Web is mostly pull-phase
in orientation. Of course, the onset of new technologies such as Web teleconferencing and virtual
communities, will change the nature of such comparisons.

While definitive conclusions about the social aspects of Web use remain elusive, some central issues have
been identified for future study (see Table 2).

TABLE 2. Social issues and Web behavior

How central is location transparency to Web use? To what extent will Web "communities" be used to
replace or enhance veridical counterparts?
How will future Web technologies deal with information overload?
To what extent will interactive and participatory Web engagement become enticing and immersive?
What are the benefits and weaknesses of anonymous engagement and relative identity environments.
Will relative identity havens create new problems for law enforcement?
To what extent will Web engagement enhance or supplement alternative modes of information exchange
What technologies will emerge to reduce Web transaction friction.
etc.

We are slowly coming to understand the capabilities of the Web for selected applications and venues. To
illustrate, early use convincingly demonstrated that the Web was a popular and worthwhile medium for
presenting distributed multimedia, even though we can't as yet quantify the social benefits and institutional
costs which result from this use. As CGI was added to the Web, it became clear that the Web would be an
important location-independent, multi-modal form of interactivity - although we know little about the
motivations behind such interactivity, and even less about how one would measure the long-term utility for the
participants and their institutions.

8.1 VIRTUAL COMMUNITIES

As mentioned above, the Web's primary utility at the moment is as an information delivery device - what some
authors have called the "document phase" of the Web. However, more powerful and robust Web applications
will soon begin to take hold. Perhaps the most significant future application will involve the construction of
virtual communities.

Virtual, or electronic, communities, are examples of interactive and participatory forums conducted over
digital networks for the mutual benefit of the participants and sponsors. They may take on any number of
forms. The first attempts to establish virtual communities dates back to the mid-1980's with the community,
"freenet" movement. While early freenets offered few services beyond Email and Telnet, many quickly
expanded to offer access to documents in local libraries and government offices, Internet relay chats,
community bulletin boards, and so forth, thereby giving participants and enhanced sense of community
through another form of connectivity.

Virtual communities of the future are likely to have both advantages and disadvantages when compared to
their veridical counterparts (Table 3).

TABLE 3. Potential Advantages and Disadvantages of Electronic Communities

Advantages

potential for dynamic involvement where membership may be transitory and the infrastructure of the
community informally defined
location transparency for members, as all electronic communities are potentially global
capability of self-administration and self-organization by a membership in continuous flux
creation of "thought swarms" through the continuous, interactive stimulation of participants
increased attention on content

Disadvantages

quality of experience may not justify the participation, or may degrade over time
potential loss of privacy by invasive Web technologies such as global tracking via cookies, CGI
environment variable recording, and the like
some forms of electronic communication lack intensity, and some may lack content (e.g., more
information exchange doesn't imply better information exchange)
not all experiences translate well into the electronic realm, as documented by the easy misinterpretation
of Email and the "flaming" that can ensue

9. CONCLUSION
The World Wide Web represents the closest technology to the ideal of a completely distributed network
environment for multiform communication. As such, it may be though of as a paradigm shift away from
earlier network protocols.

Many feel that the most significant impact of the Web will not be felt until the 21st century, when technologies
are added and converged to make the Web a fully interactive, participatory and immersive medium by default.

Security and privacy will undoubtedly continue to be important issues as new methods are integrated into
current Web technologies. The complexity of interacting components is nearly out of hand at this point; future
Web protocols may help create the appropriate structure necessary for continued robust Web development.

The world will continue to become a smaller place as cultures continue to be only a click away. The Web
promises to have one of the largest impacts on general society of any technology thus far created. For a more
thorough-going analysis of the Web's future by its founder, see references [6] and [7].

Acknowledgements

We wish to thank Marvin Zelkowitz and anonymous reviewers for their comments on earlier drafts of this
chapter.

FOR FURTHER READING
[1] ACM Electronic Communities Project, http://www.acm.org/~ccp/ (information on the use of the Web for
Electronic Communities)

[2] Berghel, H. (1998). "The Client Side of the World Wide Web", Encyclopedia of Computer Science (4th
edition). Edited by Anthony Ralston, Edwin Reilly, and David Hemmendinger, Petrocelli [forthcoming].

http://cs.brynmawr.edu/~dblank/papers/www/#6
http://cs.brynmawr.edu/~dblank/papers/www/#7
http://www.acm.org/~ccp/

[3] Berghel, H., (1998) "Who Won the Mosaic War?," Communications of the ACM. [October, 1998 - in the
press]

[4] Berghel, H., (1998). "Push Technology," Networker 2:3, ACM Press (1998), pp. 28-36.

[5] Berghel, H., (1997). "Email: the Good, the Bad and the Ugly," Communications of the ACM, 40:4, pp. 11-
15.

[6] Berners-Lee, T., (1996). "WWW: Past, Present and Future," Computer, 29:10, pp. 69-77.

[7] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H., and Secret, A. (1994). "The World Wide Web". In
Communications of the ACM 37, 8, pp. 76-82.

[8] Bush, Vannevar. As We May Think, Atlantic Monthly, July, 1945. (Online at
http://www.isg.sfu.ca/~duchier/misc/vbush/)

[9] Comer, D. (1997). The Internet book: everything you need to know about computer networking and how
the internet works. Prentice-Hall, Inc. Upper Saddle River, NJ.

[10] Englebart, D. (1986). "The Augmented Knowledge Workshop," in K. Anderson, The history of personal
workstations: Proceedings of the ACM Conference," ACM Press, New York, pp. 73-83.

[11] Flanagan, D. (1996). Java in a nutshell. O'Reilly & Associates, Inc. Sebastopol, CA.

[12] Laird C., and Soraiz, K. (1998). Get a grip on scripts. June 1998 BYTE. The McGraw- Hill Companies,
Inc. New York, NY.

[13] McGraw, G., and Felten, E.W. (1997). Java Security: Hostile Applets, Holes, and Antidotes. John Wiley
and Sons, Inc.

[14] Nelson, T., (1995) "The heart of connection: hypermedia unified by transclusion," Communications of the
ACM, 38:8, pp. 31-33.

[15] Niemeyer, P., and Peck, J. (1966). Exploring Java. O'Reilly & Associates, Inc. Sebastopol, CA.

[16] NSFNET Backbone Traffic Distribution Statistics, April, 1995.
http://www.cc.gatech.edu/gvu/stats/NSF/merit.html.

[17] Ousterhout, J. (1994). Tcl and the Tk toolkit. Addison-Wesley Publishing Company. Reading, MA.

[18] Pitkow, J., et al, GVU's WWW User Surveys, http://www.cc.gatech.edu/gvu/user_surveys/.

[19] Quercia, V. (1997). Internet in a nutshell. O'Reilly & Associates, Inc. Sebastopol, CA.

[20] Roberts, D. (1996). Internet Protocols. Coriolis Books, Scottsdale, AZ.

[21] Sun Microsystems (1995). The Java language: a white paper. Web document. URL http://java.sun.com/.

[22] The Perl Journal. (http://tpj.com/) Readable Publications, Inc. Somerville, MA.

[23] Wall, L., and Schwatz, R. (1991). Programming perl. O'Reilly & Associates, Inc. Sebastopol, CA.

[24] Welch, B. (1997). Practical Programming in Tcl and Tk. Prentice-Hall, Inc. Upper Saddle River, NJ.

http://www.isg.sfu.ca/~duchier/misc/vbush/
http://www.cc.gatech.edu/gvu/stats/NSF/merit.html
http://www.cc.gatech.edu/gvu/user_surveys/
http://java.sun.com/
http://tpj.com/

[25] WWW Security FAQ http://cip.physik.uni-wuerzburg.de/www-security/wwwsf6.html

[26] "Java for 1998," PC Magazine, April 7, 1998.

http://cip.physik.uni-wuerzburg.de/www-security/wwwsf6.html

	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	1999

	The World Wide Web
	H. Berghel
	Doug Blank
	Custom Citation

	tmp.1489255493.pdf.hBFyq

