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Abstract 

This article is focused on the economic impact assessment of Internet of Things (IoT) and its 

associated cyber risks vectors. We report the results of an empirical study that correlates 

cyber risk impact assessment approaches with academic literature and IoT risks vertices. We 

adapt the Cyber Value at Risk model and the MicroMort for cyber risk assessment of IoT 

risks vertices. From the findings, we build a new impact assessment model for the IoT cyber 

risk. We therefore advance the efforts of integrating cyber risk impact assessment standards 

and offer a better understanding of economics impact assessment of cyber risk. 

Keywords: IoT Cyber Risk; IoT risk analysis; IoT cyber insurance; IoT MicroMort; Cyber 

Value-at-Risk. 
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1 Introduction 

The IoT term was created in 1999 (Ashton 2011) and the first IoT principles were published 

shortly after in the book ‘When Things Start to Think’ (Gershenfeld 1999). According to 

Gartner’s IT Hype Cycle, the IoT market adoption should take 5-10 years, as of 2012 (Gubbi 

et al. 2013). The increased adoption of the IoT represents multiple categories of cyber-

physical systems (Orojloo and Azgomi 2017), integrating technologies related to smart grids, 

smart homes, intelligent transportation, manufacturing and supply chain and smart cities, to 

name a few. Such new technologies come with new types of risks that existing risk 

assessment/management methods are not designed to anticipate or predict. Safeguarding an 

IoT deployment, while simultaneously harnessing its economic value, requires systematic 

consideration of multiple risk factors. Cyber-attacks are increasing in frequency, and the and 

increasingly target IoT devices (for example the Mirai botnet). The severity of future attacks 

could be much greater than what has been observed to date. 

A critical question for government policy and for private sector business strategies for IoT 

connected products, platforms and services is the sufficiency of cyber security to minimise 

cyber risk that accompanies IoT deployments. This answer must be partially addressed by 

economic analysis, such as cost and frequency analysis of cyber-attacks (P. Radanliev, De 

Roure, Cannady, et al. 2018). Such analysis would complement the process of building 

frameworks and methodologies for mitigating the economic impact of cyber risk of 

commercial use of deployments of IoT connected products and services (P. Radanliev, De 

Roure, Nurse, et al. 2018).  

The research methodology in this article proposes adopting the Cyber Value at Risk (CyVaR) 

and the MicroMort (MM), and evaluating other cyber risk assessment approaches, to build a 

new model for calculating the economic impact of IoT cyber risk. There is a limited research 

on the economic impact of cyber risk. There is even less research on the economic impact 
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related to cyber risks from different IoT verticals. The economic impact of IoT related cyber 

risks in present time are assessed by applying methodologies established before the 

development of IoT verticals (ex. automated, digital, social machines, cyber-physical and 

coupled systems). Present day critical infrastructure systems are far more complex, creating 

new risks for failures. Further, risk in an IoT deployment might extend to many entities. An 

interruption in services delivered by a smart grid or smart city would impact many 

businesses, agencies and individuals. For example, failure in MY IoT deployment might cost 

millions due to interrupted services. This creates the rationale that a new impact model and 

assessment methodology are needed that would anticipate economic impact of cyber risks 

and benefits from the IoT ecosystem. This research would build upon existing cyber risk 

models (e.g. VaR, Cyber VaR). The research aim is to develop a robust economic model to 

estimate the economic impact in IoT verticals (ex. communications network, or critical 

infrastructure).  

2 Literature review 

The literature review is probing the essence of impact measurements and sources of 

probabilistic data of cyber risk impact assessment methods. Taxonomic classification is 

applied for identifying and grouping impact measurement units into an intuitive scheme and 

to categorise IoT cyber risk vertices.  

2.1 Cyber risk impact assessment  

The IoT security enables a trustworthy IoT  (Yan, Zhang, and Vasilakos 2014; Sicari et al. 

2013) with minimal human intervention (Ashraf and Habaebi 2015). Such autonomous IoT, 

requires a risk-based adaptive assessment framework (J. R. C. Nurse et al. 2018) for risk 

analysis (Abie and Balasingham 2012; Balasingham et al. 2012). Risk-based adaptive 

assessment involves ability to predict problems; ability to predict impact; ability to 
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implement planned actions, ability to maintain focus on risk mitigation, and ability to reduce 

risk exposure (Abie and Balasingham 2012). Since cyber risk is constantly changing, the risk 

has not been clearly quantified through historical measures (DiMase et al. 2015). The 

common figure stated is a loss of $1 trillion to cybercrime, but estimates range from: 300bn 

and $1tn (Biener, Eling, and Wirfs 2014), $400bn to over $575bn (DiMase et al. 2015), or 

$400bn to over $2tn (Shackelford 2016). The difference in these figures shows that the 

numbers are rough estimates at best, and the real economic impact of cyber risk remains 

unknown (Shackelford 2016). The main difficulties in calculating the economic impact of 

cyber risk are the lack of suitable data and the lack of universal standardised framework to 

assess cyber risk (Koch and Rodosek 2016). Adding to these, there is the need to quantify 

accumulated risk on a shared technology platform (such as cloud computing) and the digital 

supply chain (Ruan 2017).  

2.2 Economic Impact from the Internet of Things 

The world is experiencing the fourth industrial revolution (Rajkumar et al. 2010; Wahlster et 

al. 2013; Jazdi 2014), where the IoT real-time enabled platforms (Marwedel and Engel 2016) 

represents the foundation for digital industry (Wahlster et al. 2013; Carruthers 2016). Digital 

industry would be supported with more intelligent, resilient and interconnected 

manufacturing equipment (Lee, Bagheri, and Kao 2015; Leitão, Colombo, and Karnouskos 

2016; Marwedel and Engel 2016). The integration of artificial intelligence and machine 

learning (Francalanza, Borg, and Constantinescu 2017), the cloud (Babiceanu and Seker 

2016) and IoT has created systems of machines capable of interacting with humans 

(Carruthers 2016; Marwedel and Engel 2016). The application of behavioural economics into 

these systems of machines (Leonard 2008) already enables market speculation on human 

behaviour (Rutter 2015) and even neuromarketing (Lewis and Brigder 2004) to determine 
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consumer purchasing behaviour. We can expect to see autonomous machines adopting to 

predetermine human behaviour (Carruthers 2016).  

Technologies that would enable the integration of IoT in the digital industry include software 

defined networks (Kirkpatrick 2013) and software defined storage (Ouyang et al. 2014). The 

IoT and industrial integration are built upon cloud hosting (Carruthers 2016), automation 

(Leitão, Colombo, and Karnouskos 2016), robots and artificial intelligence (Khalid et al. 

2018), machine learning (Kambatla et al. 2014) and mesh networks (Wark et al. 2007). The 

IoT creates security and risk management vulnerabilities from integrating less secured or 

unsecured systems, triggering liability for breaches or damages (Carruthers 2016).  

IoT is essential for future economic competitiveness, but technological innovations are 

necessary for harnessing the economic value (Leitão, Colombo, and Karnouskos 2016; 

Biennier and Favrel 2005; Nicolescu et al. 2018b). Maximising the economic impact of IoT 

requires energy-aware buildings and cities (Rajkumar et al. 2010; Marwedel and Engel 2016), 

with preventive maintenance and self-correcting systems (Rajkumar et al. 2010; Leitão, 

Colombo, and Karnouskos 2016). On the other hand, the electric power grid represents one of 

the largest complex interconnected networks (Leitão, Colombo, and Karnouskos 2016), and 

under stressed conditions, even a single failure can trigger complex cascading effects, 

creating wide-spread failure and blackouts (Rajkumar et al. 2010). Distributed energy 

resource technologies such as wind power, create additional stress and vulnerabilities 

(Rajkumar et al. 2010; Leitão, Colombo, and Karnouskos 2016; Marwedel and Engel 2016). 

In terms of data ownership, data privacy and Economic lifespan of digital assets, it has 

already been established that digital assets can outlive humans (Ruffle et al. 2014), triggering 

the question of data ownership after end of data owners’ life. Some studies have simplified 

the topic with the assumption of a limited economic lifespans for all classes of digital assets 

(Ruan 2017). The literature reviewed is organised in a taxonomic classification of cyber risk 
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assessment requirements in Table 1. The categorisation follows recommendations from 

earlier literature (J. Nurse, Creese, and De Roure 2017) and separates IoT cyber risk 

assessment requirements into (1) risk identification assessment strategy, (2) risk estimation 

strategy, and (3) risk prioritisation strategy.  

Taxonomic classification of IoT cyber risk assessment requirements 

Risk 
identification 
assessment 
strategy 

Identification  assessment strategy should cover: espionage, theft, or 
terrorist attacks, which in effect requires electronic and physical security 
(Rajkumar et al. 2010; Leitão, Colombo, and Karnouskos 2016), to 
anticipate and mitigate any risks (Penas et al. 2017). 
Risk identification should be supported with forensics, prognostics, and 
recovery plans, for analysis of cyber-attacks and for coordination with 
agencies responsible to identify external cyber-attack vectors (DiMase et 
al. 2015). 

Risk 
estimation 
strategy  

A cyber risk estimation strategy should cover information assurance, data 
security and protection for data in transit, from physical and electronic 
domains and storage facilities (Longstaff and Haimes 2002; DiMase et al. 
2015; Marwedel and Engel 2016).  
A cyber risk estimation strategy also requires supply chain risk analysis 
of components introduced in the supply chain (Hofmann and Rüsch 
2017), modified from its original design to enable a disruption or an 
unauthorised function (Evans and Annunziata 2012; DiMase et al. 2015).  

Risk 
prioritisation 
strategy 

Risk prioritisation strategy should limit the source code access to crucial 
personal provides software assurance and application security is 
necessary for eliminating deliberate flaws and vulnerabilities (Rajkumar 
et al. 2010). 
To prevent continuation of cyber-attacks, risk prioritisation should focus 
on information sharing and reporting, fast cyber-attack reporting and 
shared database resources should also be developed (Wahlster et al. 2013; 
DiMase et al. 2015).  

Table 1: Taxonomic classification of cyber risk assessment requirements 

The IoT creates new types of cyber risk which are not anticipated or considered in existing 

cyber risk assessment standards (J. Nurse, Creese, and De Roure 2017). To adapt the current 

cyber security models, firstly the specific IoT cyber risk vertices are identified in Table 1. By 

risk vertices, we refer to IoT attack vectors from particular approach used, to exploit IoT 

vulnerabilities. Subsequently, these specific risk vertices need to be integrated in a holistic 
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cyber risk impact assessment model, because IoT technologies have already been integrated 

into traditional computer networks. Integrating IoT technology in the communications 

networks of critical infrastructure implies major ethical aspects that humans should be able to 

sense and understand, while benefiting of maximum possible levels of trust and privacy. This 

concern is represented by the needs that different IoT risk vertices have to be integrated in 

reliable cyber security frameworks; such would prevent abuse from malicious interventions, 

including those originated by organised crime, terror organisations or state-sponsored 

aggressors. Analysis of the complete economic impact of data compromise would empower 

the communications network providers to create clear, rigorous, industry-accepted 

mechanisms to measure, control, analyse, distribute and manage critical data needed to 

develop, deploy and operate cost-effective cyber security for critical infrastructure. 

3 Research methodology 

This section outlines the research methodology applied in the research. The methodology 

starts with a literature review to create a taxonomical categorisation of impact assessment 

classes. Then the complexities of designing a new impact assessment model are discussed 

through SWOT analysis of the existing frameworks, methods and models. Finally, a new 

quantitative model is developed, by adopting the Cyber Value-at-Risk (CyVaR) and 

MicroMort (MM) for impact assessment of IoT cyber risk.  

The CyVaR model has been promoted for standardisation of language, models and methods 

(World Economic Forum 2015). This model attempts to understand the economic impact of 

cyber risk for individual organisations (Koch and Rodosek 2016). Building upon the CyVaR, 

a unifying economic framework proposed measurement units for cyber risk (Ruan 2017). 

Other cyber value analysis methods have advanced to calculate the cost of different cyber-

attack types (Roumani et al. 2016), but the same problem with lack of data to validate the 

model persists. This lack of data has motivated the development of a proof of concept method 
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(Koch and Rodosek 2016) that is based on data assumptions. The weakness in this approach 

is that economic impact is calculated on organisations’ ‘stand-alone’ cyber risk, because data 

assumptions can only be made on individual cases. However, Business impact for the same 

risk can vary widely between companies based on the specific circumstances of each 

company. Furthermore, that approach ignores the correlation effect of organisations sharing 

infrastructure and information, and by default, sharing cyber risk exposure. Cyber risk exists 

in multiple physical, information, cognitive, and social domains, (software, hardware, 

firmware, adjacent systems, energy supplies, supply chains) and the economic impact is 

related to these closely interconnected systems. This close interconnection of disparate 

systems increases the probability of ‘cascading impacts’ (DiMase et al. 2015). This article 

applied multidisciplinary methodologies, along with established risk measurement methods 

e.g. MicroMort (MM) to define individual risk units and Value-at-Risk (VaR) for measuring 

market cyber risk 

4 Strengths, weaknesses, opportunities and threats (SWOT) analysis of Cyber 

Risk Frameworks, methods, systems and models 

Earlier literature suggested methods based on Return on Investment (ROI) and Net Present 

Value (NPV), have been proposed to assess the information security investment, that include 

broad set of criteria, including ‘economics of privacy’ (Anderson and Moore 2006), ‘optimal 

amount to invest’ (Gordon and Loeb 2002), ‘risk averseness’ (Rodewald and Gus 2005), but 

these methods are not validated with real data. In addition, cyber risk covers more elements 

than information security financial cost, and a method is needed that would integrate cyber 

risk directly with economics (Ruan 2017). Because the motivation for cyber risk can be 

different than purely financial (ex. espionage), and yet still creating economic impact. 

Therefore, the impact should be calculated in terms of average and in the most severe 

scenario (Koch and Rodosek 2016).  
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To make such calculations with a reasonable precision of the impact assessment, different 

modelling approaches need to be integrated in a new and more reliable impact assessment 

model. Such integration is important, because the diversity of approaches for impact 

assessment, complicates the process of performing cyber risk assessment for the insurance 

companies. This diversity, found in different frameworks, methods, systems and models, is 

evaluated with strengths, weaknesses, opportunities and threats (SWOT) analysis in Table 2. 

The SWOT analysis of the reviewed frameworks, methods, systems and models is 

summarised in the Table 2.  

The 
strengths 

• OCTAVE has developed a standardised questionnaire that can be applied 
to investigate and categorise recovery impact areas. 

• TARA is a predictive framework that enables targeting of the most crucial 
exposures, as opposed to promoting the defence of all possible 
vulnerabilities.  

• CVSS is relatively easy to use and translate results. Moreover, it is based 
on input and feedback from various sources and can be used to translate 
simple qualitative input into a numerical score reflecting severity and 
characteristics of a vulnerability. 

• Exostar System enables enterprises to assess, measure, and mitigate risk in 
real-time across multi-tier partner and supplier networks and determines 
the gaps between cybersecurity posture and regulatory compliance. 

• CMMI combines set of best practices in the disciplines of systems analysis 
and design, software engineering and management. CMMI can 
simultaneously address multiple as opposed to stand alone improvements. 
This enables improvement in the entire enterprise risk and the full product 
development life cycle risk. 

• The NIST framework is valuable in assessing cyber risk, but more valuable 
in managing cyber risks. NIST is also the most advanced framework in 
terms of disaster and recovery planning.  

• FAIR model promotes a quantitative, risk based, acceptable level of loss 
exposure.  

• ISO promotes standardisation of cyber risk and reflects international 
experience and knowledge. ISO provides standards for cyber risk and 
disaster recovery.  

• RiskLense presents a quantitative assessment with Monte Carlo 
simulations. 

• CyVaR presents a method to quantitatively assess risk with Monte Carlo 
simulations. 

The 
weaknesses 

• OCTAVE fails to provide a quantification method for calculating the 
required level of recovery. 

• TARA fails to quantify the impact of cyber risks, which is crucial for 
deciding on appropriate recovery planning. 
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• CVSS contains scoring range between 0.0 to 10.0, but is based on a 3-level 
system and because the score is derived from a limited number of variables, 
it creates dissimilar vulnerabilities receiving similar score. 

• Exostar System does not assess enterprises own cyber risk exposure. 
Instead, it helps enterprises to manage risk by understanding the strengths 
and vulnerabilities of their supply chain partners.  

• CMMI does not explain how to implement improvements, but only 
indicates where improvements are needed. The improvements are not 
methodological processes and the actual processes an enterprise chooses 
depend on multiple factors. The CMMI may simply not map the processes 
in a specific enterprise.  

• NIST framework is documented, not an automated tool and does not 
contain an impact assessment model for quantifying cyber risk. 

• FAIR framework promotes standardisation of quantitative models, but is 
difficult to use and is not as documented as other frameworks, e.g. 
OCTAVE. The greatest shortcoming is the lack of access to current 
information about the methodology and examples of how the methodology 
is applied.  

• ISO is based on voluntary shared knowledge and is consensus based. 
International standardisation requires a level of compulsory compliance.  

• RiskLense contains a lack of details on the algorithm supporting its risk 
assessment.  

• CyVaR has the potential issue of a lack of the required risk data to perform 
adequate and comprehensive assessments. 

The 
opportunities 

• OCTAVE is aimed at companies with limited resources, it is free and can 
be used as the foundation risk-assessment component or process for other 
risk methodologies. 

• TARA is a methodology that can be implemented as a complementary 
method, in combination with other risk assessment processes.  

• CVSS currently has a 3-level scoring system, and as such the biggest 
opportunity is to integrate more levels in the calculator to represent cyber 
risk with greater precision. Since the numbers are based on experts’ opinion 
and do not represent an ultimate precision, the calculator represents a 
guiding point. As such, colour coded system with more risk categories 
could be easier to understand than a number. Numbers may also provide a 
fake sense of precision, while the numbers in the calculator are not based 
on established mathematical or statistical probabilistic data. 

• Exostar System could evolve into a system that assesses enterprises own 
cyber risk exposure, while enabling the assessment of cyber risk from 
supply chain partners. 

• CMMI is related to ISO 9001. The ISO 9001 specifies a minimal acceptable 
quality level, while CMMI specifies continuous process improvement. 
Biggest opportunity is to adapt CMMI with continuous updates from ISO 
9001 and other standards.  

• The NIST is based on an extensive use of acronyms, which can be 
confusing and require a detailed understanding of the standards referred to 
in the acronyms. Hence, the greatest opportunity would be changing and 
simplifying the design. This could be done by replacing the acronyms with 
a new user friendly tool to incorporate a fully automated guidance process 
(e.g. such as CVSS calculator).  
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• FAIR is complementary to existing risk frameworks and applies knowledge 
from existing quantitative models. This represents an opportunity for 
developing a standardisation reference architecture.  

• ISO could evolve into an international standardisation of cyber 
risk/security frameworks, models and methodologies.  

• RiskLense could evolve into the first standardised quantitative model for 
cyber risk assessment. More academic research is required on this model 
to define and disclose the algorithm. This would increase the acceptance of 
this model, as academic research would enable the model to be verified and 
validated.  

• CyVaR needs to be adapted and modified to include units of measurement 
for IoT cyber risk vectors. 

The threats • OCTAVE method is complex and takes time to understand. This is the 
main weakness as it is a qualitative method that does not provide 
mathematical or financial modelling.  

• TARA focuses on reducing cost by covering only the exposures that are 
most likely to occur. Considering that not all exposures are covered, greater 
focus should be on recovery planning. TARA promotes and facilitates 
system recovery, but does not address the level of cyber risk impact.   

• CVSS converting qualitative data into a quantitative result, with relatively 
low level mathematical approximation, could create a false level of 
security.  

• Exostar System uses third-party sources to provide insights in the cyber 
health and viability of supply chain partners. The validity of the data 
depends on the third-party sources and if this cyber data is incomplete or 
compromised, the insights would also be compromised.  

• CMMI measures are easy to recognise but difficult to develop. For 
instance, CMMI does not provide guidance on how to implement 
improvements, it simply indicates where improvements are required.  

• NIST as a documented model, depends on many documents being 
continuously updated. Unless it evolves into a more automated process, the 
framework would need constantly to be reviewed and updated as new 
technology and laws emerge. 

• FAIR depends on a computational engine for calculating risk and a model 
for analysing complex risk scenarios RiskLens (RiskLens 2017). RiskLens 
(RiskLens 2017) is a commercial product and the software comes at a cost. 
Standardisation of commercial products could create disadvantages for 
small enterprises that lack resources of large enterprises. Small enterprises 
may choose free models such as OCTAVE. 

• ISO contains members from 161 countries and 778 technical committees 
and subcommittees. This presents a major challenge in coordination and 
integration of specific standards. 

• RiskLense, without the academic peer-review rigour and industry expert 
review, represents a model that is very difficult to verify and validate. 
Without such validation, the results would be questionable.  

• CyVaR is a fairly complicated approach and unless simplified, in a 
software format, similar to the CVSS, it could be difficult to implement as 
a standard model for cyber impact risk assessment. 

Table 2: SWOT analysis of cyber risk frameworks, methods, systems and models 
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The SWOT analysis in Table 2 explains multiple issues in building one quantitative model 

that would rule all of the complexities of cyber risk assessment. Existing cyber risk 

frameworks and methodologies are constrained by a number of limitations. For instance, 

cyber risk assessment frameworks are based on security control domains and assess security 

posture, but are not effective in assessing high risk loss scenarios developed around critical 

digital assets (Ruan 2017). Furthermore, cyber risk assessment methodologies have created 

an inconsistency in measuring cyber risk, because of the absence of a common point of 

reference (Ruan 2017).  

There are additional complexities not discussed in the SWOT analysis in Table 2, because 

they are almost impossible to quantify. For example, in information assets such as intellectual 

property of digital information, the future value is lost regardless of early detection (Koch 

and Rodosek 2016). Therefore, the economic value of digital assets has to reflect their 

economic functions first before their value can be properly assigned (Ruan 2017). In addition, 

analysing the economic impact of cyber risk is also complicated because of the impact on 

brand reputation, the cost of downtime, legal liability, cost of intellectual property loss, and 

many other variables. Merely the media coverage of cyber risk has created such significant 

economic impact that managing risk has become ‘imperative’ (Biener, Eling, and Wirfs 

2014). The following section, proposes a design of a holistic model for calculating the 

economic impact of IoT cyber risks.  

5 The model  

We need a reliable model for costing cybercrime (Armin et al. 2015) and the first step in 

developing a costing model for IoT cyber risk, is to determine the cybercrime units of 

costings. To determine the risk of cybercrime, we refer to established methods for calculating 

risk.  

Risk = Likelihood × Consequences, and cyber-risk can be defined as a function of:  
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R = {si, pi, xi }, i = 1, 2, ... , N,  

R – risk;	s – the description of a scenario (undesirable event);	p – the probability of a 

scenario;	x – the measure of consequences or damage caused by a scenario; N – the number 

of possible scenarios that may cause damage to a system. 

To build a model for calculating the impact of IoT cyber risk, we need to combine established 

risk models (Ruan 2017), such as MicroMort (MM) and Value-at-Risk (VaR) for measuring 

market risk and adapt a new cyber risk units for IoT MicroMort (IoTMM) and IoT 

MicroMort2 (IoTMM2) as the value of reducing the risk by a given IoTMM.  

The economic functions of IoT assets requires an International IoT Asset Classification 

(IIoTAC). The term is chosen to be compliant with the proposed International Digital Asset 

Classification (IDAC) (Ruan 2017).  

IoT digital assets can be categorised as: (1) IoT core value assets (IoTCA), where digital 

assets which are directly part of goods or services that T profits from; (1a) IoT digitised 

assets (IoTDA), where goods and services digitised from traditional goods and services; (1b) 

IoT assets born digital, representing things and services that are intrinsically digital; and (2) 

IoT operational assets (IoTOA), representing assets that support the creation, consumption 

and distribution of IoT goods and service. 

Thing’s (T) IoT composition can be described by the ratio of its core value assets to 

operational assets: CA:OA={ci,pi}:{oj,qj} i=1,2,...,Nc, j=1,2,....,No where  

IoTCA – T’s core value assets;	IoTOA – T’s operational assets; c – a type of asset listed in 

IDAC which is of core value to T;	p – T’s core digital asset c; o – a type of asset listed in 

IDAC which is of operational value to T;	q – T’s operational asset o; Nc – the number of 

core value assets in T;	No – the number of operational assets in T.  

By using the same formula, T’s DA (digitised assets) to AD (assets born digital) ratio can 

also be calculated. T’s digital value composition describes its nature of innovation, e.g. 
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traditional goods have a high OA:CA ratio, while software has a high CA:OA ratio and a 

high AD:DA ratio. Other valuation parameters are: Intrinsic value of IoT digital asset can be 

determined through fundamental analysis without reference to its market value. Market value 

of IoT digital asset is the price at which the digital valuable would trade in a competitive 

market. Subjective value of IoT digital asset is determined by the importance the T places on 

it.  

Following these valuation parameters, the value of (1a) IoT assets is directly converted from 

their physical equivalents. The value of (1b) IoT assets requires their own valuation analyses. 

(2) IoT assets can be valued with Business Impact Analysis (BIA). According to this formula 

of the existing economic theory of value to digital asset, the T’s total digital value can be 

calculated as: 

 

where:  

V – total digital value of T; cv – value of core value asset c of T;	ov – value of operational 

asset o of T;	Nc – the number of core value assets in T; No – the number of operational 

assets in T.  

This valuation requires Key IoT Cyber Risk Factors (KIoTCRF) correlated with a T’s risk 

profile. Established Key Cyber Risk Factors (KCRF) risk categorisations (Ruan 2017) can be 

adopted to IoT, where: Technological factors are related to the usage of technology. Non-

technological factors are related to: people, process, socio- economic, geo-political factors. 

Inherent factors are related to T’s nature of business, industry, core operations, goods and 

services. Control factors represent T’s control effectiveness against cyber loss. Therefore, the 

T’s residual cyber risk can be calculated as:	Residual cyber risk = inherent risk ÷ control 

effectiveness. This valuation allows for MM to be applied to define cyber risk units for class 

D assets and to define IoT MicroMortD (IoTMMD) for a given class D digital assets as 1 in a 
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million probability of its digital death, where the value of 1 IoTMMD is the amount of money 

T is willing to pay to reduce 1 IoTMMD for its class D assets. 

Since IoT residual risk IoTMM is not statistically available, when it becomes statistically 

available for various types of IoT assets, it could be aggregated with asset values to generate 

a cyber VaR curve, representing T’s residual cyber risk: 

 

To compute the cyber VaR curve, historical simulation and Monte Carlo simulation can be 

used, where VaR is Value-at-Risk for all IoT digital assets of T; T’s digital asset inventory D 

= {D1, D2, ..., Dn}; the value of each asset V = {V1, V2, ..., Vn}; and fDi is the amount of 

residual risk Di is exposed to, measured in IoTMMD is. Monte Carlo can generate a large 

number of paths using repeated random sampling to produce a probability distribution. In this 

scenario, the risk measure IoTMM2 can be defined as a 12-month IoTMM2 VaR representing 

the loss limit T can afford from cyber incidents. Where IoTMM2 is the cost T is willing to 

pay to reduce its IoTMM2 by 1% for the same loss limit. The VaR can be calculated for 12 

months to represents cyber risk exposure over one financial year, required for budget 

planning in ERM frameworks.  

The proposed valuation depends on advanced data analytics, capable to support a trajectory 

of exponential growth. We have the advantage of storing and processing large datasets, hence 

the main obstacle is not the lack of capabilities to compute datasets, but to break down non-

technological barriers and establish a wide range of data points in the proposed categories. It 

may take years or decades to validate the economic impact of IoT cyber risk, because of the 

time required for data collection. However, it is important to set the categories in order for the 

data collection to be performed in a structured manner. 
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6 Applying the proposed model for IoT MicroMort calculations   

To test, validate and verify the findings of the new model, (a) the IoTMM for 2017 is 

calculated; and (b) for 2020 is forecasted, from the following data. There are estimated 378 

Million Devices Potentially Vulnerable to Hacking in 2017 out of 8.4 billion connected 

things (Lipman Paul 2017). These numbers emerged from the BullGuard's IoT Scanner, 

where 310,000 users scanned their network for vulnerabilities and 4.5 percent (nearly 14,000 

devices), were reported as ‘could be easily hacked’. This data is combined with Garner report 

that 8.4 billion connected things will be in use worldwide in 2017 (Meulen 2017). To forecast 

the IoTMM for 2020, the forecasted data is used from the same report showing that the 

number of IoT connected devices will reach 20.4 billion by 2020, with more than 900 million 

potentially vulnerable devices by 2020.  

Therefore, (a) the IoTMM for 2017 is calculated as 0.045 

and (b) the IoTMM for 2020 is calculated as 0.044 

The next step is to calculate the enterprises ‘willingness to pay’ to reduce 1 IoTMM. This is 

representative of the cost sum for an enterprise to accept a one-in-a-million IoTMM, or the 

cost sum that enterprise might be willing to pay to avoid a one-in-a-million chance of 

IoTMM. For the purposes of testing this model, we could apply a nominal Value of a 

Statistical Life (VSL) or the Value for Preventing a Fatality (VPF) to evaluate the cost-

effectiveness of expenditure on cyber security. The IoT security spending is estimated to 

increase to $840.5 million in 2020 (Savage 2017). This would IoT market value of 1 IoTMM 

in 2020 as $840.5. However, it is important to understand what does the value of 1 IoTMM 

represent in this scenario. We can explain this with an example, e.g. each T in a sample of 

100,000 T’s willingness to pay for a reduction in their individual IoT risk of 1 in 100,000, or 

0.001%, over the next year. Since this reduction in risk would mean that we would expect 

one fewer IoTMM among the sample of 100,000 T’s over the next year on average. 
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Supposing that the answer was $840.5, then the total dollar amount that the group would be 

willing to pay to save one statistical life in a year would be $840.5 per T × 100,000 T’s, or 

$84,050,000 million. This is a very generic estimate that cannot be used by governments as 

guidance point for creating standards and governance. Calculating the IoTMM for 8.4 billion 

connected things would result with a number far greater than the estimated IoT security 

spending of $840.5 million in 2020. Unfortunately, we have no data as to how the experts 

estimated the IoT security spending, and the utility functions in such estimates are often not 

linear. Therefore, the economic value of 1 IoTMM does not represent a precise calculation of 

the value and risk. It represents more of a guidance point to show that as more IoT devices 

become connected, their cyber security is not competitively priced, which increases the risk, 

and we need to be aware that we have no precise calculation of the IoT cyber risk, or cyber 

risk in general.  

Enterprises can obtain a valuation more precise to their T’s by assessing the previously 

described valuation formula where T’s digital asset inventory D = {D1, D2, ..., Dn}; 

combined with the value of each asset V = {V1, V2, ..., Vn}; and fDi is the amount of 

residual risk Di is exposed to, measured in IoTMMD is. Resulting with the calculation of the 

value of 1 IoTMMD in 2020 as the amount of money T is willing to pay to reduce 1 

IoTMMD for its class D assets, valued with:  

 

7 Analysis of results  

The figures we are applying are just to verify the new model. Since there is no International 

IoT Asset Classification (IIoTAC) and no established Key IoT Cyber Risk Factors 

(KIoTCRF), the calculations of the new model serve just to verify the new model. After the 
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establishment of IIoTAC and KIoTCRF, the new model could be applied to calculate more 

precise ‘willingness to pay’ that T is willing to pay to reduce 1 IoTMMD. 

We need to mention that the local linearity of the utility curve means that the MicroMort is 

useful for small incremental risks and rewards, not necessarily for large risks. Therefore, the 

IoTMM is not an ideal measure to calculate the IoT risk. Instead, IoTMM is better placed to 

measure for a given T willingness to pay to reduce 1 IoTMMD for its class D assets.  

Finally, we need to discuss the lack of IoT data. For example, the latest forecast from Gartner 

Inc. says worldwide information security spending will reach $86.4 billion (USD) in 2017 

and $93 billion in 2018. That forecast doesn’t cover the IoT, ICS (Industrial Control Systems) 

and IIoT (Industrial Internet of Things) security (Morgan 2017). Given the lack of data on 

IoT cyber risk, cyber loss, or profits from different IoT vectors, it is extremely difficult to 

conduct IoT cyber risk analysis and argue on the soundness of the analysis. Since the cyber 

insurance is in its infancy, insurance companies have not mastered the valuation of cyber risk 

in general. For example, Target was insured for $100 millions of cyber risk in 2017, and 

suffered over $450 millions of loss, with estimated to total at $1 billion by the end of 2017 

(Skroupa 2017). This example clearly states that cyber insurance needs a lot more data to 

calculate, correlated and transfer risk with an acceptable degree of certainty. While general 

cyber risk cannot be calculated, the emergence of IoT has created new IoT risk verticals that 

are not at all defined in the cyber insurance policies.  

8 Discussion 

The research problem investigated in this article was the present lack of standardised 

methodology that would measure the cost and probabilities of cyber-attacks in specific IoT 

related verticals (ex. connected spaces or commercial and industrial IoT equipment) and the 

economic impact (IoT product, service or platform related) of such cyber risk. As a result of 

the fast growth of the IoT, cyber risk finance and insurance markets are lacking empirical 
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data to construct actuarial tables. Despite the development of models related to the impact of 

cyber risk, there is a lack of such models related to specific IoT verticals. Hence, banks and 

insurers are unable to price IoT cyber risk with the same precision as in traditional insurance 

lines. Even more concerning, the current macroeconomic costs estimates of cyber-attacks 

related to IoT products, services and platforms are entirely speculative. The approach by 

‘early adopters’ that IoT products are ‘secure by default’ is misleading. Even governments 

advocate security standards ex. standards like ISA 99, or C2M2 (U.S. Department of Energy 

2015; U.S. Department of Energy 2014) that accept that the truth on the ground is that IoT 

devices are unable to secure themselves, so the logical placement of security capability is in 

the communications network.  

The findings from this research lead to the conclusion that there many challenges in 

understanding the types and nature of cyber risk and their dependencies/interactions in this 

new space. This article informs on how one may assess economic impact with mathematical 

formalisms. The mathematical formalisms in the article are focused on IoT risk assessment 

CyVaR approach that would change the future, not explain the past with historical analysis.  

9 Conclusion  

The multiple complexities explained in the study, in terms of calculating the economic impact 

of IoT cyber risk, lead to the conclusion that impact can only be assessed with (1) new risk 

metrics, and (2) a new valuation method specific for the new risk metrics, combined with (3) 

new regulatory framework and standardisation IoT data bases with (4) new risk vectors as 

defined in the form of International IoT Asset Classification (IIoTAC) and Key IoT Cyber 

Risk Factors (KIoTCRF). 

This article presents new risk metrics, by adapting established methods for calculating risks 

and uncertainties, and identifies some specific grand challenges for calculating the economic 

impact of IoT cyber risk. The article combined common basic terminology, common 
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approaches and incorporated existing standards into a new model for calculating the 

economic impact of IoT cyber risk. The new risk metrics enable measuring the IoT risk, 

while the risk model enables establishing an acceptable IoT risk level. The adapted CyVaR 

determines the maximum loss sensitivity and enables adjusting the acceptable IoT risk level, 

by calculating the risk metrics from new operating conditions.  

The new model provides an overall understanding of the design, development, and evolution 

of IoT cyber risks. The model integrates theories of IoT, control of physical systems, and the 

interaction between the physical and the digital worlds. (Nicolescu et al. 2018a; P. Radanliev, 

De Roure, Nurse, et al. 2018; Petar Radanliev, De Roure, Nurse, Montalvo, and Burnap 

2019a; Petar Radanliev et al. 2019; Petar Radanliev et al. 2019; Petar Radanliev, De Roure, 

Nurse, Montalvo, Burnap, et al. 2019; P. Radanliev et al. 2019; Petar Radanliev, De Roure, 

Nurse, Montalvo, and Burnap 2019b; Petar Radanliev et al. 2019; J. R. C. Nurse et al. 2018; 

Petar Radanliev 2014; Nicolescu et al. 2018b; Petar Radanliev 2015; Taylor, P., Allpress, S., 

Carr, M., Lupu, E., Norton, J., Smith et al. 2018; Petar Radanliev et al. 2019; Petar 

Radanliev, Rowlands, and Thomas 2014; Petar Radanliev et al. 2019; Petar Radanliev et al. 

2019; Petar Radanliev, De Roure, Maple, et al. 2019) 
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