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Abstract

This paper incorporates a preference for distributive fairness (inequity aversion) into

the analysis on optimal redistributive taxation under uncertainty. We can show that

introducing or strengthening the taste for distributive fairness does not affect the socially

optimal tax rate (social insurance) directly. This merely works through a reduction in

individual risk taking (increase in self-insurance) induced by inequity aversion. If the

efficacy of self-insurance is sufficiently small, this renders taxation more desirable and

therefore enhances the socially optimal tax rate. In other words, self-insurance should

be complemented by social insurance in order to impair the psychic disutility stemming

from income inequality. Turning to the case of moral hazard it can be shown that

optimal self-insurance efforts are again increasing with the strength of inequity aversion

while the effect on the optimal tax rate remains unclear.
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1 Introduction

A growing number of empirical works has recently brought the relevance of distributive fairness

or income equity for individual decision making into the limelight (see e.g. Amiel et al., 1999;

Alesina et al., 2004; Schwarze and Härpfer, 2007 as well as Verme, 2011). Admittedly, a tradi-

tional grasp of income inequality restricts its focus on the dispersion of income. In this case, a

distribution’s standard deviation provides a frequently applied measure of income inequality in

the theory of optimal redistributive taxation under uncertainty (see e.g. Sinn, 1995, 1996).1

However, an increasing number of empirical and experimental studies reveals that in eco-

nomic decisions people generally exhibit fairness or equity concerns going beyond the plain

consideration of income dispersion (e.g. Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000).

Famous examples are given by the workhorses of ultimatum and dictator games. Their out-

comes suggest that constituting income inequality or fairness on standard deviation proves to

be a rather narrow approach.

Constitutional welfare state theories deal with optimal taxation and redistribution under

uncertainty (e.g. Domar and Musgrave, 1944; Eaton and Rosen, 1980a, 1980b, 1980c; Varian,

1980).2 In a risky setting redistributive taxation can be interpreted as a measure of social

insurance. Based on this point of view, Sinn (1995, 1996) analyzes the socially optimal degree

of individual risk taking (self-insurance) and the tax rate (social insurance). Behind the veil of

ignorance, a representative individual takes mean income and standard deviation into account.

Sinn (1995) shows that the confiscatorial tax rate would be socially optimal. By implementing

welfare costs Eichner and Wagener (2004) drop the unrealistic case of confiscatorial taxation.

It deserves to be mentioned that constitutional theories of redistributive taxation neglect social

and psychological aspects by focussing on egoistic, pecuniary motives underlying the preferences

for income redistribution.3

Sinn (1995) defines income inequality as the dispersion of income leading to a congruence

of income risk (ex ante) and income inequality (ex post). As mentioned above this seems to

be a quite restrictive view on inequality or distributive fairness, respectively. Thus, we aim

1More precisely, a distribution is defined as less equal if it has been generated by a mean-preserving spread
from another distribution.

2In a constitutional setting, individuals decide behind the so-called veil of ignorance where the future position
in society is uncertain. This concept goes back to the works of Harsanyi (1953, 1955), Buchanan and Tullock
(1962) and in particular to Rawls (1971).

3Linde and Sonnemans (2012) have already pointed out that social attitudes are typically ignored in theories
of individual decision making under risk or uncertainty.
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to interpret income inequality as the degree of income concentration which is characterized

by an income distribution’s asymmetry. This asymmetry is indicated by income skewness and

provides the foundation of how individuals perceive an income distribution as fair. Our approach

of distributive fairness could be interpreted as (altruistic) inequity aversion in the vein Fehr and

Schmidt (1999). They assume that an individual experiences a psychic disutility if her income

exceeds the income of other society members. The level of information could now be reduced to

two observations: mean and median income. For the case of right-skewed income distributions

mean income exceeds median income. Transferred to the case of uncertainty the representative

individual considers the difference between her expected income (mean income) and the income

of the society’s middle (median income). A raise in skewness would lead to a larger difference

between mean and median income. Proxying the mean-median ratio by skewness an income

distribution is perceived as less fair if it is more skewed to the right.4 A further interpretation

relies on a distributional norm which has also been pointed out by Elster (1989). In our setting

individuals are presumed to exhibit a preference for symmetric income distributions. Then,

deviation from symmetry give rise to a psychic disutility stemming e.g. from sympathy with

low-income earners.

In the following analysis we can drop the finding of Sinn (1995, 1996) whereupon confisca-

torial taxation is socially optimal. By assuming that income redistribution is costly the social

planner would set a tax rate below one (see also Eichner and Wagener, 2004). Further, we

illustrate that introducing or strengthening inequity aversion in the vein of Fehr and Schmidt

(1999) induces the socially optimal degree of risk taking to decrease. Higher self-insurance ef-

forts enhance distributive fairness and therefore reduce the psychic disutility experienced by

the individual. Beyond, we can show that the taste for distributive fairness does not affect

the socially optimal tax rate directly. However, introducing or strenghtening inequity aversion

reduces the degree of individual risk taking which in turn renders taxation more desirable if the

efficacy of self-insurance efforts is sufficiently small. As a main result we claim that governments

should complement higher self-insurance by enlarging social insurance or income redistribution

respectively when faced with inequity aversion.

Turning to the case of moral hazard where the representative individual does not anticipate

4This approach is also in line with the politico-economic approach of Meltzer and Richard (1981) where income
inequality is assumed to be represented by the ratio of mean and median income. Further, Alesina and Rodrik
(1991) or Bénabou (1996) apply similar types of income inequality. Instead of the median voter who considers
the deviation from mean income a representative agent decides on mean income and take the deviation to median
income into account.
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the balanced fiscal budget and therefore take income skewness as exogenously given we can show

that self-insurance efforts are again increasing in inequity aversion. However, it remains unclear

whether the optimal tax rate is increasing or decreasing with the taste for distributive fairness.

The remainder of this paper is organized as follows. In section 2 we set up the model and

introduce the concept of distributive fairness or inequity aversion, respectively. Then, in section

3 the socially optimal allocation regarding self-insurance and social insurance is analyzed. The

individual risk-taking decision and the optimal tax rate under moral hazard is considered in

section 4. Concluding remarks are offered in section 5.

2 The model

Post-tax income, taxes and transfers. We employ a welfare state model in the vein of

Sinn (1995, 1996) where a large number of homogenous individuals decide behind the veil of

ignorance.5 Since the future position in society is uncertain, a representative individual faces

the random post-tax lifetime income6

Y := m− λ(e)θ − e− T (e, τ) + p ≥ 0, (1)

where m ∈ R++ denotes the exogenous market income and L(e, θ) = λ(e)θ is the random

income loss due to e.g. productivity differences.7 We restrict our attention to strictly positive

realizations of the income loss, i.e. θ > 0. The representative individual is now able to hedge

this income risk by two measures.

First, self-insurance efforts e ∈ [0, ē] as first introduced by Ehrlich and Becker (1972) mitigate

the income loss (e.g. through investments in human capital) and therefore raise the lifetime

income. Efforts reduce the income loss by the twice differentiable efficacy function λ(e) ∈ [0, 1]

which is assumed to be decreasing and convex in self-insurance efforts, i.e. λ′(e) < 0 ≤ λ′′(e).

In turn, self-insurance causes linear costs in terms of foregone lifetime income such that the

individual’s pre tax income is given by X = m− λ(e)θ − e.

Second, the income loss is alleviated through a redistributive tax policy Π = (τ, p) with the

5After the veil of ignorance has lifted individuals differ with respect to the income. According to the law of
large numbers the probability distribution of Y turns out to be the ex post income distribution.

6In contrast to Sinn (1995, 1996) we abstract from non-market income which would not change the results
and provide new insights.

7We define R++ = R+\{0} throughout the paper.
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tax rate τ ∈ [0, 1]. Thus, the invididual’s income tax liability is given by

T := τ [m− λ(e)θ], (2)

which allows to finance the lump sum transfer p ∈ R+. Drawing on the optimal income taxation

literature (e.g. Mirrless, 1971) individual self-insurance activities are assumed to be private

information from the governmental perspective. Subsequently, self-insurance activities are not

deductible from the tax base. Further, following Eichner and Wagener (2004) a fraction c ∈ [0, 1)

of the tax revenue, e.g. due to costs of administration or simply waste of public funds, is not

available for income redistribution.8 Subsequently, the fiscal budget constraint is depicted by

p = (1− c)ET. (3)

According to (3), the lump-sum transfer has to match the expected tax liability net of the welfare

state costs.

The model in terms of pre-tax standard deviation. Following Sinn (1995, 1996) we

phrase the model in terms of pre-tax standard deviation which is given by

σX = λ(e)σθ, (4)

where σθ denotes the standard deviation of the random income loss θ. By using (4) and the

inverse of the efficacy function λ−1 we can eliminate self-insurance efforts e in X such that we

obtain

µ̄(σX) := m− kσX − λ−1

(
σX

σθ

)

, (5)

with k := µθ

σθ
which is referred to as self-insurance function. The self-insurance function is

concave in σX due to the convexity of λ in e. Next, the expected tax liability can be written as

ET := τ [m− σXk]. (6)

8Note that we abstract from the case c = 1 which connotes that the entire tax yield is sunk within the
redistribution process. Per se, such a system of tax collection could not be optimal.
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Based on this, the mean µY and standard deviation σX of post-tax income are given by:

µY =µ̄(σX)− τ [m− kσX ] + p (7)

σY =(1− τ)σX . (8)

Measure of distributive fairness. As outlined in the introduction we constitute distribu-

tive fairness on the measure of income skewness which is assumed to capture income inequality.

This could be related to the approach of Fehr and Schmidt (1999). An individual which is

(altruistic) inequity averse prefers a smaller difference between her income and the income of

others.9 This concept could be transferred to the constitutional level. Behind the veil of igno-

rance, the representative individual is mainly interested in her expected income (mean income).

Further, we could define the income of the society’s middle (median income) as reference level

the representative individual considers. By assuming a right-skewed income distribution mean

income exceeds median income. In this case, the difference between mean and median income

reflects the degree of income inequality experienced by the representative individual. It is worth

mentioning that this approach is also in line with the politico-economic framework of Meltzer

and Richard (1981).

If the mean-median income-ratio is presumed to be proxied by income skewness distributive

fairness or income inequality could be based on this measure.10 Then, a more right-skewed

income distribution reflects a larger difference between mean µY and median income Ỹ (sketched

by figure 1) and is thus perceived as less fair.11 In other words, the representative individual

exhibits a concern for the middle of the society. Hence, in our approach distributive fairness is

interpreted as inequity aversion in the vein of Fehr and Schmidt (1999). Conveyed to the case of

uncertainty, individuals perceive a more symmetric income (probability) distribution as rather

fair.

The skewness of the lifetime income is then defined as the (unstandardized) third central

9It deserves to be mentioned that we abstract from the case of inequity aversion based on envy which has also
been introduced by Fehr and Schmidt (1999).

10Income skewness is also defined as mean-median-ratio by the empirical study of You (2012). A multilevel
analysis based on World Values Survey and European Values Survey data shows that skewness affects income
inequality and subsequently social trust significantly.

11Although this relation is not constituted by a rigorous theoretical analysis numerical simulations with the
empirically relevant skew normal distribution reveal that increases in (unstandardized) skewness induce a larger
difference between mean and median income.
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µYµY ỸỸ

Figure 1: Skewness of income distributions

moment µ3[Y ] = E[(Y −EY )3] of the income distribution

sY (σX , τ) = −(1− τ)3
µ3(θ)σ

3
X

σ3
θ

≥ 0 (9)

which allows to quantify ceteris paribus deviations from symmetry. In this case, we are able

to separate changes in the concentration of an income distribution from shifts in income dis-

persion.12 Recall that we presumed the income loss distribution to be left-skewed (µ3[θ] < 0)

inducing a right-skewed income distribution. Differentiating (9) with respect to σX and τ yields:

∂sY

∂σX
> 0,

∂sY

∂τ
< 0. (10)

According to (10), skewness is increasing (decreasing) in the degree of individual risk taking

(self-insurance efforts) and decreasing in the tax rate. In other words, both insurance measures

are capable to reduce income inequality and therefore enhance distributive fairness.

Preferences. Individual preferences are represented by the continuous, twice differentiable

and additively-separable utility function u : R+ × R+ × R+ → R,

u(µY , σY , sY ) := U(µY , σY )− aV (sY ), (11)

which consists of two sub-functions. First, the representative individual generates utility U :

R+×R+ → R from expected post-tax income µ and the associated risk σ. Second, the individual

experiences a psychic disutility V : R+ → R+ depending on the degree of (expected) distributive

12A derivation of income skewness and its partial derivatives is delegated to the appendix. It is worth men-
tioning that we follow Arditty and Levy (1972), Ingersoll (1975) as well as Diacogiannis (1994) by applying the
unstandardized third central moment of the income distribution as skewness measure. Due to the location scale
property standardized skewness µ3[Y ]

σY
is constant in this framework.
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fairness which is characterized by unstandardized income skewness sY . We assume that the

disutility is increasing in skewness as a more right-skewed income distribution is perceived as

less fair:

V ′(sY ) > 0. (12)

Furthermore, the fairness functional is presumed to be convex in skewness, i.e. V ′(sY )
′′ ≥ 0.

Finally, preference parameter a in (11) reflects the strength of inequity aversion or the taste for

distributive fairness, respectively.

Further, it deserves to be mentioned that the mean-variance framework is taken as an ap-

proach which stand on its own.13 Let us assume positive but diminishing marginal utility of

expected income, i.e. Uµµ ≤ 0 < Uµ, as well as individual risk aversion, i.e. Uσ < 0. Then, for

the marginal rate of substitution (MRS) between σY and µY follows

i(µY , σY ) := −
Uσ(µY , σY )

Uµ(µY , σY )
> 0. (13)

According to (13) the marginal willingness to pay for lower risk (or insurance equivalently) in

terms of income is positive. Graphically, i(µY , σY ) captures the slope of the indifference curves

in (µY , σY )-space. In compliance with Sinn (1995, 1996) indifference curves exhibit the following

properties:

iµ(µY , σY ) ≤ 0, (14)

d2µY

dσ2
Y

= i(µY , σY ) · iµ(µY , σY ) + iσ(µY , σY ) > 0. (15)

Assumption (14) represents the property of non-increasing absolute risk aversion (Meyer 1987,

Lajeri-Chaherli 2003). Beyond, according to (15) indifference curves are assumed to be strictly

convex in the (µY , σY )-space. Eichner (2008) shows that d2µY

dσ2
Y

> 0 holds if agents are presumed

to behave risk averse.

3 Social optimum

In this section, we analyze the socially optimal degree of individual risk taking as well as the

socially optimal tax rate. This first-best allocation is achieved if the representative individual

13In our setting, the mean-variance approach could be considered as equivalent to the maximization of expected
utility. However, it is more convenient to compare our results immediately to the results of Sinn (1995). Further,
it allows us to express the results directly as a trade-off between expected income and income risk.
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anticipates that her choice of self-insurance efforts affects both the balanced fiscal budget as well

as the psychic disutility from income inequality. In this case the individual opportunity set is

given by

µY = µ̄(σX)− cτ(m− kσX), (16)

which is now referred to as redistribution function.14 Following this, we characterize the con-

stitutional choice of the tax-transfer policy which chould also be interpreted as the choice of a

social planner.15

3.1 Self-insurance efforts

The individual decision problem is given by

max
σX

U(µY , σY )− aV (sY ) s.t. µY = µ̄(σX)− cτ(m− kσX),

σY = (1− τ)σX ,

sY = sY (σX , τ). (17)

Restricting our attention to interior solutions, i.e. σX > 0, we obtain the first-order condition

−(1− τ)i(µY , σY )
︸ ︷︷ ︸

[1]

−
aV ′(sY )

Uµ
·
∂sY

∂σX
︸ ︷︷ ︸

[2]

+µ̄′(σX) + cτk
︸ ︷︷ ︸

[3]

= 0, (18)

which implicitly determines the socially optimal value σ∗

X as a function of the exogenous pa-

rameters c, τ and a.16 In (18), we are able to identify three effects of individual risk taking σX

on utility. The term [1] is negative and captures the risk effect of self-insurance. Increasing the

degree of individual risk taking is ceteris paribus associated with a higher post-tax income risk

σY . As we assumed risk averse agents (Uσ < 0 ⇒ i(µY , σY ) > 0) this marginal effect is negative.

Conversely, higher self-insurance efforts (lower pre-tax standard deviation) reduce post-tax risk

which is utility-enhancing. Beyond, the term [2] is negative due to V ′(sY ) > 0, Uµ > 0 as well

as ∂sY
∂σX

> 0 and is referred to as fairness effect of self-insurance. A higher pre-tax standard de-

viation ceteris paribus induces skewness and therefore income inequality to increase which then

goes along with a higher psychic disutility. Vice versa, raising self-insurance efforts enhances

14This follows by making use of (3) in (7).
15To put it in terms of a two-stage game, the tax rate is set on the first stage. Given the tax rate, self-insurance

efforts are chosen on the second stage. This game is then solved by backward induction.
16For details on the second-order conditions we refer to the appendix.
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distributive fairness and hence reduces the psychic disutility. Eventually, the term [3] represents

the income effect of self-insurance which has to be positive as terms [1] and [2] are negative.

Thus, increasing pre-tax standard deviation ceteris paribus induces mean post-tax income µY to

increase. Vice versa, higher self-insurance efforts decrease mean post-tax income which is utility

reducing.17 In a nutshell, terms [1] and [2] represent the marginal cost (benefit) while term [3]

captures the marginal benefit (cost) of individual risk taking (self-insurance). The first-order

condition (18) then requires that the marginal benefit and cost of self-insurance efforts balance

each other out. In other words, equation (18) describes the trade-off between expected income,

income risk and the fairness of an income distribution.

Graphical analysis. The first-order condition (18) is illustrated by figure 2. The concave

line depicts the redistribution curve which represents the opportunity frontier in the (µY , σY )-

space. In the absence of inequity aversion (a = 0), eq. (18) simplifies to i(µY , σY ) =
µ̄′(σX)+cτk

1−τ

G

S

σ, σX

µ, µ̄

redistribution curve

indifference curve

Figure 2: First-order condition

where the slope of the indifference curve equals the slope of the redistribution curve.18 This

condition is satisfied in equilibrium point G. Introducing inequity aversion (a > 0) leads to

equilibrium point S at which the redistribution curve’s slope exceeds the slope of the indifference

curve, i.e. i(µY , σY ) <
µ̄′(σX)+cτk

1−τ
. This relation is satisfied at a point left to the point G

and is caused by the negative fairness effect of self-insurance, c.f. term (2) in eq. (18). As

moving from the right to the left on the redistribution curve is associated with a lower pre-

17The sign of µ̄′(σX), however, is indeterminate in sign.
18Differentiation of µY = µ̄(σX) − cτ (m − kσX) where σX = σY

1−τ
with respect to σY yields the slope of the

redistribution curve µ̄′(σX)+cτk

1−τ
.
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tax standard deviation we can state that self-insurance efforts increase due to the existence of

inequity aversion.

Self-insurance efforts and inequity aversion. Formally, we differentiate (18) with re-

spect to the pre-tax standard deviation as well as the preference parameter to obtain

sgn
∂σ∗

X

∂a
= − sgn

[
V ′

Uµ
·
∂sY

∂σX

]

< 0, (19)

while taking the second-order condition for granted. Hence, pre-tax standard deviation is de-

creasing in preference parameter a. This result is summarized in the following proposition.

Proposition 1. The socially optimal degree of self-insurance (individual risk taking) is increas-

ing (decreasing) in the preference intensity of individual inequity aversion. Further, for any

preference intensity the society operates at a point on its opportunity frontier where an increase

in individual risk taking decreases mean post-tax income.

More precisely, introducing or increasing the aversion towards income inequity ceteris paribus

enhances the psychic disutility. Consequently, the social planner reduces individual risk taking

and therefore raises self-insurance in order to impair the disutility. In other words, increasing a

is associated with a larger fairness effect of self-insurance which in turn enhances its marginal

benefit. The individual is then willing to give up income for a reduction in the income risk and

an enlargement of distributive fairness.

Self-insurance and redistributive taxation. Next, we strive to analyze the effect of

a tax rate change on the degree of individual risk taking. Implicitly differentiating (18) with

respect to σ∗

X and τ leads to

sgn
∂σ∗

X

∂τ
= sgn

[

ck + i+ (1− τ)[iµc(m− kσX) + iσσX ]−
aV ′′

Uµ
·
∂sY

∂τ

−
aV ′

U2
µ

(

Uµ ·
∂2sY

∂σX∂τ
+
(
c[m− kσX ] + UµσσX

)
·
∂sY

∂σX

)]

> 0, (20)

which becomes positively signed for constant absolute risk aversion (CARA), i.e. iµ = 0, as

well as −Uµ ·
∂2sY
∂σX∂τ

>
(
c[m − kσX ] + UµσσX

)
·
∂sY
∂σX

.19 Expression (20) captures the effect of

a higher tax rate on the marginal cost and return of self-insurance efforts. Assuming CARA

ensures that the income loss in the course of a higher tax rate does not affect the degree of risk

19These are sufficient but not necessary conditions for a positive sign of (20). Further details on the derivation
of (20) could be found in the appendix.
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aversion. As a consequence, the individual is willing to increase the degree of risk taking when

the effect of taxation on the marginal effect of pre-tax standard deviation on income inequality is

sufficiently large. In other words, we get the intuitive result that the socially optimal level of self-

insurance efforts shrink in response to a more intense income redistribution. Thus, self-insurance

is substituted by social insurance.

3.2 Tax rate

We turn to the choice of the socially optimal tax rate where the social planner takes into account

the social optimal level of self-insurance efforts. Thus, the indirect utility function is given by

u∗ := U(µ∗

Y , σ
∗

Y )− aV (s∗Y ), (21)

where the asterisks are indicating pre-tax standard deviation to be chosen at the socially optimal

level σ∗

X .

We differentiate the indirect utility function (21) with respect to the tax rate τ . Focussing

on interior solutions and applying the envelope theorem the first-order condition is given by

∂u∗

Uµ∂τ
= −c(m− kσ∗

X)
︸ ︷︷ ︸

[1]

+σ∗

X · i(µ∗

Y , σ
∗

Y )
︸ ︷︷ ︸

[2]

−
a · V ′(s∗Y )

Uµ
·
∂sY

∂τ
︸ ︷︷ ︸

[3]

= 0. (22)

According to (22) we can disentangle three contrary marginal effects of the tax rate on optimal

utility. The first term [1] represents the income effect of social insurance. Increasing the tax rate

τ ceteris paribus directly leads to a lower expected income since the share c of tax revenues is

not available to finance the lump-sum transfer. Hence, [1] is negative and captures the marginal

costs of taxation. In opposition to the marginal costs, the second and third term are positive

and capture the marginal benefit of a higher tax rate. The second term [2] depicts the risk

effect of social insurance. The higher the tax rate is the lower is the post-tax income volatility

ceteris paribus. Due to risk aversion the utility enhances. Eventually, the third term [3] maps

the fairness effect of social insurance. By definition of (9) a higher tax rate ceteris paribus

induces a lower skewness (∂sY
∂τ

< 0) equivalent to a lower degree of income inequality. This in

turn reduces the pschycic disutility (V ′(sY ) > 0). However, we can show that the inequity effect

of social insurance plays no role for the decision on the optimal tax rate. Evaluating (18) at τ∗
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and substituting into (22) the first-order condition for τ∗ changes to:

−c
(
m− kσ∗

X

)
+

[
µ̄′(σ∗

X) + cτk
]
σ∗

X

1− τ
= 0. (23)

Equation (23) captures the net marginal cost and benefit of social insurance. There still remains

a net income effect, as captured by the first term in (23), caused by the shadow cost of public

funds. This net income effect is negative and hence constitutes the net marginal cost of taxation.

The second term depicts the marginal net benefit of social insurance. This effect depends on

the negative income effect of self-insurance as increasing self-insurance efforts goes along with a

reduction in mean income. Obviously, the strength of inequity aversion does not directly affect

the socially optimal tax rate since the equity effect of social insurance vanishes. It can be shown

that the marginal effects of individual risk taking as well as the tax rate on income inequality

and therefore on the psychic disutility compensate each other. Consequently, the net fairness

effect of social insurance in (23) gets zero.20

Redistributive taxation and inequity aversion. We now aim to analyze the effect of

inequity aversion on the socially optimal tax rate. Taken the second-order condition for granted

implicit differentiation of (23) with respect to the tax rate τ∗ and the preference parameter a

yields

sgn
∂τ∗

∂a
= sgn

([

ck +
µ̄′′(σ∗

X) · σ∗

X + µ̄′(σ∗

X) + cτk

1− τ

]

·
∂σ∗

X

∂a

)

> 0, (24)

which is positive for a sufficiently large efficacy loss of self-insurance efforts in terms of foregone

mean income.21 Expression (24) represents the effect of inequity aversion on the marginal net

cost and benefit of social insurance. As outlined above an increase in inequity aversion affects

the socially optimal tax rate only indirectly via a change in individual risk taking. We have

shown that strengthening the inequity aversion goes along with a lower degree of individual risk

taking or higher self-insurance efforts respectively, i.e.
∂σ∗

X

∂a
< 0. This in turn changes the net

maginal cost and benefit of social insurance.

First, a cut in individual risk taking enhances the mean income (by ck) and therefore boosts

the shadow cost of public funds. Hence, the negative net income effect of a higher tax rate gets

larger which renders redistributive taxation less desirable at the margin. Second, decreasing pre-

tax standard deviation affects the net marginal benefit of taxation as captured by the second

20For details we refer to the appendix.
21This is stringently satisfied if the second-order condition for the tax rate holds.
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term in squared brackets. Ceteris paribus, the induced reduction in expected post-tax income

(due to µ̄′(σ∗

X) + cτk > 0) renders redistributive taxation less desirable at the margin. In

contrast, a higher level of self-insurance efforts ceteris paribus results in a lower efficacy of self-

insurance (as µ̄′′(σ∗

X) ·σ∗

X < 0). This in turn enhances the net marginal benefit of redistributive

taxation. Hence, ceteris paribus social insurance gets more desirable at the margin.

As mentioned above, it can be shown that the overall effect of a more intense inequity

aversion on the tax rate is positive for a sufficiently large efficacy loss of self-insurance, i.e. if

µ̄′′(σ∗

X) is sufficiently large. Thus, we can state that

Proposition 2. The preference for distributive fairness does not affect the tax rate directly.

Introducing or strengthening inequity aversion indirectly induces the socially optimal tax rate

to increase via a change in individual risk taking if the efficacy of self-insurance is sufficiently

small.

In sum, strengthening inequity aversion enhances the net marginal benefit of taxation which

outweighs the larger marginal cost of taxation. We claim that governments should complement

the higher degree of self-insurance by enlarging the redistribution of income. Subsequently, in

the social optimum self-insurance and social insurance are complements when the preference for

income equality becomes larger.

4 Moral hazard

In this section we characterize the second-best allocation where the representative individual

does not anticipate the balance of public revenues and expeditures. This gives rise to moral

hazard effects as the individual ignores that her self-insurance behavior affects the lumpsum

transfer and therefore the fiscal budget. The individual opportunity set is then characterized by

(7) which constitutes the subjective redistribution curve.
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4.1 Self-insurance efforts

Again, we aim to determine the optimal degree of individual risk taking and therefore the optimal

level of self-insurance efforts. The individual optimization problem is given by

max
σX

U(µY , σY )− aV (sY ) s.t. µY = µ̄(σX)− τ [m− kσX ] + p,

σY = (1− τ)σX ,

sY = sY (σX , τ). (25)

Solving this decision problem and focussing on interior solutions yields the first-order condition

−(1− τ) · i(µY , σY )
︸ ︷︷ ︸

[1]

−
aV ′(sY )

Uµ
·
∂sY

∂σX
︸ ︷︷ ︸

[2]

+µ̄′(σX) + τk
︸ ︷︷ ︸

[3]

= 0. (26)

which determines the optimal pre-tax standard deviation σ̃X . Again, from equation (26) we

can identify three marginal effects of individual risk taking on utility. The effects [1] and [2]

correspond to the risk effect and the fairness effect of self-insurance as already shown in the

first-order condition (18) for the socially optimal pre-tax standard deviation. However, the

income effect of self-insurance [3] differs from that in (18) due to moral hazard. In case of moral

hazard the representative individual does not anticipate that her self-insurance decision affects

the fiscal budget. Hence, the lumpsum transfer is treated as exogenously given.

Graphical analysis. From the first-order condition (26) follows that the slope of the subjec-

tive redistribution curve exceeds the indifference curve’s slope. At the redistributive equilibrium

the first-order condition (26) together with the fiscal budget constraint (3) has to be satisfied.

Subsequently, the equilibrium point lies on the redistribution curve µY = µ̄(σX)− cτ(m−kσX).

The redistributive equilibrium is sketched by figure 3. It can be shown that without inequity

aversion (a = 0), as characterized by point N , the individual could end up at the descending

branch of the redistribution curve where increasing self-insurance efforts leads to a higher ex-

pected post-tax income (see Sinn, 1995, 4.2). Introducing a sufficiently strong inequity aversion

(a > 0) then shifts the equilibrium to the point M which is located at the ascending branch

of the redistribution curve. In this case, further increasing self-insurance would reduce mean

income. This result is constituted by the following comparative static.

Self-insurance efforts and inequity aversion. Implicitly differentiating (26) with respect
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N

M

σ, σX

µ, µ̄

subjective redistribution curve

Figure 3: First-order condition

to σ̃X and a we obtain:

sgn
∂σ̃X

∂a
= − sgn

[
V ′

Uµ
·
∂sY

∂σX

]

< 0, (27)

which equals expression (19) in the first-best optimum. Hence, self-insurance is again increasing

in the preference intensity of inequity aversion such that the first part of proposition 1 also holds

under moral hazard. However, we can state that

Proposition 3. For a sufficiently low fairness preference intensity the society operates at a

point on its opportunity frontier where an increase in self-insurance enhances mean post-tax

income. Assuming a sufficiently strong preference for distributive fairness it could be shown that

the redistributive equilibrium ends up in a situation where increasing self-insurance reduces mean

post-tax income.

This result contrasts the findings of Sinn (1995). Introducing a taste for distributive fairness

shifts the equilibrium point to the ascending branch of the redistribution curve. Under moral

hazard the individual is again willing to give up income in order to impair the income risk and

psychic disutility if the preference for distributive fairness is sufficiently strong.

Self-insurance efforts and taxation. To constitute the optimal taxation scheme in the

next section the comparative static effect of the tax rate on self-insurance has to be analyzed.
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Implicitly differentiating (26) we obtain:

sgn
∂σ̃X

∂τ
= sgn

[

k + i+ (1− τ)[c · iµ(m− kσ̃X) + σ̃X · iσ ]

−
a

U2
µ

(
[

V ′′
·
∂sY

∂σX
·
∂sY

∂τ
+ V ′

·
∂sY

∂σX∂τ

]

Uµ

+ V ′
·
∂sY

∂σX

[

cUµµ(m− kσ̃X) + σ̃X · Uµσ

]
)]

> 0. (28)

Again, for CARA as well as a sufficiently strong concavity of the utility function U(µY , σY )

in income we can constitute a positive effect of the tax rate on pre-tax standard deviation or

individual risk taking, respectively. In other words, a tax increase induces self-insurance efforts

to decrease.22 Hence, analogous to the first-best case social insurance and self-insurance are

substitutes.

4.2 Tax rate

After analyzing the decision on self-insurance we turn to the choice of the optimal tax rate where

the government anticipates the optimal individual self-insurance decision and ensures a balanced

fiscal budget. The government’s decision problem is then represented by

max
τ

U(µ̃Y , σ̃Y )− aV (s̃Y ) s.t. µ̃Y = µ̄(σ̃X)− cτ(m− kσ̃X),

σ̃Y = (1− τ)σ̃X ,

s̃Y = sY (σ̃X , τ). (29)

Solving this problem yields to the first-order condition

−c(m− kσ̃X)
︸ ︷︷ ︸

[1]

+i(µ̃Y , σ̃Y ) · σ̃X
︸ ︷︷ ︸

[2]

−
aV ′(s̃Y )

Uµ
·
∂s̃Y

∂τ
︸ ︷︷ ︸

[3]

+

[

µ̄′(σ̃X) + cτk − (1− τ) · i(µ̃Y , σ̃Y )−
aV ′(s̃Y )

Uµ
·
∂s̃Y

∂σX

]

·
∂σ̃X

∂τ
︸ ︷︷ ︸

[4]

= 0 (30)

which implicitly determines the optimal tax rate τ̃ set by the government. Equation (30) reveals

four marginal utility effects of taxation. The terms [1], [2] and [3] are already known as income

22Note that iµ = 0 (CARA) and Uµµ < −
σ̃X ·Uµσ

c(m−kσ̃X
(strong concavity in income) are sufficient but not necessary

conditions for a positive sign of the comparative static in (28).
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effect, risk effect and fairness effect of social insurance from equation (22) in the previous section.

Additionally, a new effect emerges in (30) under moral hazard which we will refer to as risk-

taking effect of social insurance. This effect works indirectly through a tax-induced change in

self-insurance efforts. As shown above, a higher tax rate increases the degree of individual risk

taking (∂σ̃X

τ
> 0) and therefore curbs self-insurance. A lower self-insurance exhibits three partial

welfare effects as captured by the terms in squared brackets. First, a higher degree of individual

risk taking ambiguously affects the post-tax income according to µ̄′(σ̃X) + cτk (indirect income

effect). Second, a higher income volatility follows from a higher pre-tax standard deviation as

represented by −(1 − τ) · i(µ̃Y , σ̃Y ) (indirect risk effect) which is welfare-reducing. Eventually,

a cut in self-insurance efforts raises income inequality and therefore the psychic disutility which

is welfare-reducing (indirect fairness effect). In the aggregate, the risk-taking effect of social

insurance is indeterminate in sign.

Analogous to the previous section we can constitute the net marginal effects of social insur-

ance on utility. By taking into account equation (26) evaluated at τ̃ the first-order condition

(30) reads:

−c(m− kσ̃X) +
σ̃X [µ̄′(σ̃X) + τk]

1− τ
− τk ·

∂σ̃X

∂τ
= 0. (31)

Again, the net fairness effect as well as the indirect net fairness effect of social insurance gets

zero.23 The first and third term of (31) are negative while the sign of the second term remains

indeterminate.

Redistributive taxation and inequity aversion. Increasing the preference parameter

a affects the marginal benefit and cost of social insurance. Unfortunately, the overall effect

of inequity aversion on the optimal tax rate remains indeterminate in sign. Hence, it remains

unclear whether the government redistributes more or less income in response to individual

inequity aversion.

5 Concluding remarks

The aim of the present paper is to shed some light on the role of inequity aversion or distributive

fairness concerning the optimal redistributive tax policy under uncertainty. For that purpose we

employ the welfare state theory of Sinn (1995, 1996) extended by welfare costs. In this light, we

implement (altruistic) inequity aversion in the vein of Fehr and Schmidt (1999) and take income

23For details we refer to the appendix.
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skewness as a proxy for income inequality.

We can show that introducing or strengthening inequity aversion inevitably induces the

socially optimal self-insurance (degree of individual risk taking) to increase (decrease). As (un-

standardized) skewness is endogenous in our framework income inequality and therefore the

psychic disutility can be reduced by raising self-insurance. Turning to the socially optimal redis-

tributive tax policy it can be clearly shown that the social planner chooses full tax-deductibility

of self-insurance efforts when faced with inequity aversion. Further, introducing or strengthening

inequity aversion implies a higher socially optimal tax rate. It is worth mentioning that inequity

aversion does not affect the socially optimal tax rate directly. The existence of inequity aversion

induces the degree of individual risk taking to shrink. Increasing self-insurance efforts renders

taxation more desirable at the margin if the efficacy of self-insurance is sufficiently small. As a

consequence, it is socially optimal to raise the tax rate. Thus, we claim that governments should

complement the higher degree of social insurance by enlarging the redistribution of income.

Turning to the case of moral hazard where the agent does not anticipate that her decision

affects the fiscal budget it can be shown that self-insurance efforts are again increasing with the

taste for distributive fairness. However, the effect on the optimal tax rate remains unclear.

Finally, we refer to some aspects which could be tackled in future research. First, we consider

an exogenous market income and therefore abstract from analyzing work incentives of inequity

aversion.24 Second, we presumed preferences concerning inequity aversion to be homogenous in

the population. It could be conceivable that individuals differ in their perception of distributive

fairness. At last, our model could be augmented by background risks. According to Eichner

and Wagener (2004) this kind of (non-insurable) risks becomes more important in a changing

environment, e.g. due to ecological or climatical risks.

24Note that self-insurance efforts could be interpreted as liftetime labor. However, endogenizing the market
income would allow for a thorough analysis how inequity aversion affects the incentives to work.
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Appendix

Derivation of income skewness sY (9)

Substituting (2) into (1) lifetime income is given by:

Y = m− λ(e)θ − e− τ [m− λ(e)θ] + p. (32)

Dissolving the bracket yields:

Y = m− λ(e) · θ − e− τ ·m+ τ · λ(e) · θ + p. (33)

Rearranging and using λ(e) = σX

σθ
(33) reads:

Y = (1− τ)m+ (τ − 1) ·
σX

σθ
· θ − e+ p. (34)

Based on (34) we can compute the skewness as third central moment of lifetime income Y .

Exploiting the translation-invariance of central moments we obtain:

µ3(Y ) = µ3

[

(τ − 1) ·
σX

σθ
· θ

]

(35)

Eventually, since the third central moment is homogeneous of degree 3 income skewness is given

by

µ3(Y ) = [(τ − 1) ·
σX

σθ
]3 · µ3(θ) (36)

= −(1− τ)3
µ3(θ)σ

3
X

σ3
θ

:= sY (σX , τ) (37)
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which constitutes (9). Differentiating s(σX , τ) with respect to σX and τ yields:

∂sY

∂σX
= −(1− τ)3

3µ3(θ)σ
2
X

σ3
θ

> 0, (38)

∂2sY

∂σ2
X

= −(1− τ)3
6µ3(θ)σX

σ3
θ

> 0, (39)

∂sY

∂τ
= (1− τ)2

3µ3(θ)σ
3
X

σ3
θ

< 0, (40)

∂2sY

∂τ2
= −(1− τ)

6µ3(θ)σ
3
X

σ3
θ

> 0, (41)

∂2sY

∂τ∂σX
= (1− τ)2

9µ3(θ)σ
2
X

σ3
θ

< 0. (42)

Hence, the income skewness raises with σX at an increasing rate and shrinks with τ at a de-

creasing rate. In addition, the cross (partial) derivative of sY with respect to σX and τ is

negative.

Second-order condition for σ∗

X and derivation of (19).

The first-order condition is given by

A := −(1− τ)i−
aV ′

Uµ
·
∂sY

∂σX
+ µ̄′ + cτk = 0. (43)

Differentiating (43) we yield:

AσX
= µ̄′′

− (1− τ)2
d2µY

dσ2
Y

−
aV ′

Uµ
·

[

(1− τ)iµ ·
∂sY

∂σX
+

∂2sY

∂σ2
X

]

−
aV ′′

Uµ
·

[
∂sY

∂σX

]2

+

[
aV ′

Uµ
·
∂sY

∂σX

]2

·
Uµµ

Uµ
−

iµ · (1− τ)aV ′

Uµ
·
∂sY

∂σX
(44)

Aτ = ck + i+ c(1 − τ)iµ(m− kσX) + (1− τ)iσσX −
aV ′′

U2
µ

·
∂sY

∂τ

−
aV ′

U2
µ

·

[
∂sY

∂σX
(c[m− kσX ] + UµσσX) + Uµ ·

∂2sY

∂σX∂τ

]

(45)

Aa =−
V ′

Uµ
·
∂sY

∂σX
< 0. (46)

AσX
follows by making use of the first-order condition (18), iµ · i + iσ = d2µY

dσ2
Y

and −
UµµUσ

Uµ
+

UµσUµ

Uµ
= −Uµiµ. Since all terms of AσX

except the second term are negative we can constitute

that iµ = 0 is a sufficient (but not necessary) condition to satisfy the second-order condition,

i.e. AσX
< 0. Then, expression (19) follows immediately from

∂σ∗

X

∂a
= −

Aa

AσX
.
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Derivation of first-order condition (23).

By using (43) in (22) we obtain

−c(m− kσ∗

X) +
(µ̄′ + cτk)σ∗

X

1− τ
−

aV ′

Uµ
·

[
σ∗

X

1− τ
·
∂sY

∂σX
+

∂sY

∂τ

]

= 0 (47)

Considering (38) and (40) we can clearly see that
σ∗

X

1−τ
·
∂sY
∂σX

= ∂sY
∂τ

. Hence, the terms in the

squared brackets cancel each other out such that we can write

B := −c(m− kσ∗

X) +
(µ̄′ + cτk)σ∗

X

1− τ
= 0. (48)

Second-order condition for τ∗ and derivation of (24).

We differentiate the first-order condition (48) in order to obtain

Bτ =
(1− τ)ckσ∗

X + (µ̄′ + cτk)σ∗

X

(1− τ)2
> 0 (49)

BσX
= ck +

σ∗

X · µ̄′′ + µ̄′ + cτk

1− τ
(50)

Ba = 0. (51)

The second-order condition for τ∗ is now given by

Bτ +BσX

∂σ∗

X

∂τ
< 0, (52)

which is satisfied for iµ = 0, µ̄′′(σ∗

X) < −
µ̄′(σ∗

X)
σ∗

X
and small welfare costs c (in this case BσX

< 0

as well as
∂σ∗

X

∂τ
= −

Aτ

AσX
> 0 hold). Then, (24) follows directly from ∂τ∗

∂a
= −

Ba+BσX
·
∂σ∗

X
∂a

Bτ+BσX

∂σ∗

X
∂τ

=

−
BσX

·
∂σ∗

X
∂a

Bτ+BσX

∂σ∗

X
∂τ

.

Second-order condition for σ̃X and derivation of (27).

The first-order condition is given by

C := −(1− τ)i−
aV ′

Uµ
·
∂sY

∂σX
+ µ̄′ + τk = 0. (53)
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Substituting µY = µ̄− cτ(m− kσX) and differentiating (53) we obtain:

CσX
= µ̄′′

− (1− τ)2
d2µY

dσ2
Y

−
aV ′

Uµ
·

[

(1− τ)iµ ·
∂sY

∂σX
+

∂2sY

∂σ2
X

]

−
aV ′′

Uµ
·

[
∂sY

∂σX

]2

+

[
aV ′

Uµ
·
∂sY

∂σX

]2

·
Uµµ

Uµ
−

iµ · (1− τ)aV ′

Uµ
·
∂sY

∂σX

− (1− c)τk [(1− τ)iµ + Uµµ] (54)

Cτ = k + i+ c(1 − τ)iµ(m− kσX) + (1− τ)iσσX −
aV ′′

U2
µ

·
∂sY

∂τ

−
aV ′

U2
µ

·

[
∂sY

∂σX
(c[m− kσX ] + UµσσX) + Uµ ·

∂2sY

∂σX∂τ

]

(55)

Ca =−
V ′

Uµ
·
∂sY

∂σX
< 0. (56)

CσX
follows by making use of the first-order condition (26), iµ · i + iσ = d2µY

dσ2
Y

and −
UµµUσ

Uµ
+

UµσUµ

Uµ
= −Uµiµ. Since all terms of CσX

except the second term are negative we can constitute

that iµ = 0 is a sufficient (but not necessary) condition to satisfy the second-order condition,

i.e. CσX
< 0. Then, expression (27) follows immediately from ∂σ̃X

∂a
= −

Ca

CσX
.
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