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Diabetes Mellitus 

Diabetes mellitus was identified as early as 1550 BC, when ancient Egyptians described 

the symptoms and recommended a treatment of boiled wheat and lead[1]. Diabetes is also 

referenced in 5th century Indian medical texts, 9th century Arabic texts, and 16th century 

European writings, including those of the famous Swiss physician Paracelsus[1, 2]. 

 

The classic symptoms of diabetes are extreme thirst, polyuria, weight loss, vision 

deterioration, and, in severe forms, ketoacidosis[3], the accumulation of keto acids in the 

blood. Left untreated, diabetes is fatal. 

 

The cause of diabetes was unknown until 1889, when Oskar Minkowski and Josef Von 

Mering removed the pancreas from a dog and discovered that the dog subsequently 

displayed the typical symptoms of diabetes[1].  Nearly 3000 years after the first recorded 

reference to diabetes, the pancreas was established as the origin of the disease. As 

research progressed, pancreatic extracts from healthy animals were used to lower blood 

glucose in diabetic animals, and it was believed that the decrease in blood glucose was 

due to a hypothetical hormone, named “insuline[4].”  

 

The existence of insulin was confirmed in 1921, when insulin was discovered and 

purified[4]. In January of 1922, one of the first children treated with insulin was 6 year 

old Theodore Ryder. Until this moment in history, a diagnosis of diabetes was a death 

sentence. For Ryder, insulin was a lifesaving reprieve, and he lived until 1993[5]. 
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Today, we have a much better understanding of the etiology and pathophysiology of 

diabetes. Diabetes is caused by an inability to properly regulate blood glucose due to a 

defect in insulin secretion or insulin resistance, resulting in chronic hyperglycemia. In the 

United States, the National Institutes of Health (NIH) has three diagnostic criteria for 

diabetes mellitus[6]: 

 

1. Blood glucose concentration of 126 mg/dL after an 8 hour fast 

2. Blood glucose concentration of 200 mg/dL or higher two hours  

after a 75 g oral glucose challenge 

3. A random blood glucose concentration of 200 mg/dL or higher 

 

All of these symptoms come from either the inability of the pancreas to produce insulin, 

or a systemic resistance to insulin action, usually caused by chronic hyperglycemia. In 

order to introduce the pathophysiology of diabetes, this chapter first describes normal 

metabolism and insulin signaling, followed by a description of the disease. 
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Metabolism and Insulin Signaling 

Metabolic control of blood glucose is vital for survival. Glucose is used by skeletal 

muscle as an energy source, and is stored as glycogen for further use[1]. Adipose tissue 

stores excess glucose as fatty acids and triglycerides[1]. The human brain is especially 

dependent on glucose as its primarily source of fuel[7, 8]. Although the brain represents 

only 2% of human body mass, the brain utilizes approximately 25% of all metabolic 

glucose[8]. In times of starvation or extremely low blood glucose the brain can derive 

energy from ketone bodies[8]. 

 

The pancreas regulates blood glucose mainly through the secretion of two hormones, 

insulin to lower blood glucose, and glucagon to raise blood glucose. These two hormones 

are produced in the pancreas in substructures referred to as “Islets of Langerhans.” 

Within the islets, insulin is produced in the β-cells and glucagon is produced in the α-

cells[9]. Insulin is released from the pancreas in response to a rise in blood glucose 

concentrations, such as those experienced after a meal. 

 

Ingested food is broken down into its most basic components, including glucose. Glucose 

then passes through the gut and is absorbed into the blood stream, resulting in an increase 

in blood glucose concentration. As the blood glucose concentration rises, glucose diffuses 

into the pancreatic β-cells through the glucose receptor GLUT2 [10]. The increase in 

intracellular glucose stimulates an increase in cellular metabolism, resulting in an 

increase in ADP conversion to ATP[10]. The increase in ATP closes ATP-sensitive 

potassium channels in the cell membrane, which depolarizes the membrane[10]. In 
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response to this depolarization, calcium-channels open, flooding the cell with calcium, 

which in turn stimulates insulin release[10].   

 

Insulin released from the pancreas travels through a hepatic duct to the liver, which 

means that the liver receives higher doses of insulin than any other organ. In the liver, 

insulin promotes glycolysis and glycogen synthesis, and inhibits glycogenolysis, 

gluconeogenesis, and ketogenesis[9]. In skeletal muscle, insulin signals for increased 

glucose uptake, increased glucose oxidation, and increased glycogen synthesis[9]. In 

adipose tissue, insulin signals to increase glucose uptake, decrease lipolysis and increase 

lipogenesis[9]. In more simplistic terms, insulin signals to store blood glucose, and not to 

replenish it.  

 

Insulin is a two-chain peptide hormone. It consists of 51 amino acid residues and three 

disulfides (Figure 1).  It is synthesized as a single chain precursor called proinsulin, 

which contains a “C-peptide” between the A and B chains (Figure 2). Proinsulin is 

metabolically inactive, although it can bind to the insulin receptor[11]. The mature 

hormone is created when proinsulin is cleaved post-translationally by prohormone 

convertase 1 (PC-1), prohormone convertase 2 (PC-2), and carboxypeptidase E 

(CPE)[12]. First, PC-1 cleaves the junction between the B and C chains, leaving two 

basic residues at the C terminus of the B chain[13]. These residues are removed by 

CPE[13]. Finally, PC-2 cleaves the junction between the A and C chains, yielding the 

mature hormone, insulin[13]. The C-peptide is released along with insulin, and is 

believed to have some role in glucose metabolism, although it has been shown that it does 
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not bind to the insulin receptor[14]. Incomplete cleavage of proinsulin can lead to 

heritable metabolic disorders, such as familial hyperproinsulinemia[12, 15], which can 

result in mild diabetes[12]. Mature insulin is stored in the pancreas as zinc-stabilized 

hexamers[16]. The propensity of insulin to self-aggregate has pharmacological affects, 

which will be discussed later. 

 

 

 

Figure 1: Sequence of native, human insulin, shown with disulfides. The C-peptide, 
which is cleaved post-translationally, is not shown [17]. 

 

 

 

Figure 2: Sequence of proinsulin. A and B chains in black, C-peptide in white [17]. 
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Insulin shares significant sequence homology with the hormones insulin-like growth 

factor 1 and 2 (IGF-1 and 2) in their A and B chains (Figure 3). However, IGF-1 has a 

dramatically different C-domain, which is not cleaved from the molecule. Both insulin 

and IGF-1 can bind to either set of receptors[18], resulting in signaling overlap. Insulin 

analogs with elevated binding to the IGF receptors have increased mitogenic potential in 

vitro[18].  

 

 

Figure 3: Sequence homology between human proinsulin (HPI) and IGF-1[19]. 
Mature IGF-1 retains its C-peptide (middle), insulin does not. 

 

Native human insulin has two binding sites for the insulin receptor, referred to as site 1 

and site 2. Site 1 is composed of residues GlyA1, IleA2, ValA3, GlnA5, ThrA8, TyrA19, 

AsnA21, ValB12, TyrB16, GlyB23, PheB24, PheB25, and TyrB26, and represents the dimer 

forming face of insulin[16]. Binding site 2 is composed of residues SerA12, LeuA13, 

GluA17, HisB10, GluB13, and LeuB17, and represents the hexamer forming face[16].  The 

secondary structure of native insulin consists of two α-helixes in the A chain, which 

extend from residues A1-A8 and A12-A18[20]. In the B chain, insulin has an α-helix from 
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residues B9-B19[20], as well as a β-sheet in residues B24-B28[21]. The B chain can exist in 

two physical states – tense (T), and relaxed (R). In the relaxed state the α-helix in the B 

chain extends to include residues B1-B19[21]. Insulin undergoes this T-to-R transition 

when binding to the insulin receptor. In addition, flexibility at the C-terminus of the B 

chain is required, since binding to the insulin receptors causes insulin B chain residues 

B26-B30 to be displaced away from the hydrophobic core of insulin[20]. Altering the 

sequence of the C-terminus of the B chain has resulted in several pharmacologically 

relevant insulin analogs, such as “fast-acting” insulin lispro, which is the result of 

switching the order of the C-terminal proline and lysine residues of the B chain, 

disrupting the ability of the molecule to self-associate[22]. Deletion of the last five amino 

acids of the insulin B chain (B26-B30) has no effect on biological activity[23], however, 

deletion of the last eight amino acids of the insulin B-chain results in a peptide referred to 

as “desoctapeptide insulin,” which retains less than 1% of native insulin biological 

activity[24]. 

 

Insulin binds to its receptor, the insulin receptor (IR).  The insulin receptor is part of a 

family of receptor tyrosine kinases (RTK), which includes the IR, the type-1 insulin-like 

growth factor receptor (IGF-1R) and the insulin receptor related receptor (IRR)[25]. Most 

RTKs function by dimerizing in the presence of their ligand, bringing the two tyrosine 

kinase domains in close proximity in order to participate in trans-phosphorylation, which 

activates the receptor and induces downstream signaling. The insulin receptor, however, 

is constitutively dimerized and held together by disulfide bonds in the presence or in the 

absence of a ligand. 
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The insulin receptor, from N- to C-termini, consists of several domains (Figure 4). The 

first is a leucine rich domain (L1), followed by a cysteine rich domain (CR), and then a 

second leucine rich domain (L2). The L2 domain is followed by three fibronectin-type III 

(Fn) domains. In the literature, the Fn domains are referred to as either FnIII-0, FnIII-1, 

and FnIII-2, or alternatively FnIII-1, FnIII-2, FnIII-3. The former will be used in this 

paper. The FnIII-1 domain contains an insert domain (ID) that is cleaved post-

translationally[26], creating the alpha and beta subunits of the insulin receptor. The beta 

subunit is composed of the remainder of the FnIII-1 domain, followed by the FnIII-2 

domain, transmembrane domain (TM), juxtamembrane domain (JM), tyrosine kinase 

domain (TK), and the C-terminus (CT). Alpha and beta subunits are held together by a 

disulfide bond between the FnIII-1 domain on the alpha subunit and the FnIII-2 domain 

on the beta subunit. 

 

There are two splice variants of this receptor, which create the insulin receptor A and B 

isoforms. The insulin receptor A isoform lacks exon 11, a twelve residue sequence at the 

C-terminus of the alpha domain[26]. The physiological significance of the two different 

isoforms is under debate, but several key observations have hinted at specific and defined 

roles for each isoform. The two isoforms are not uniformly or evenly expressed in all 

tissues. For example, insulin receptors in liver cells consist of 75% IRB and 25% IRA 

receptors, whereas in adipose tissues the expression is 60% IRB and 40% IRA[27].  IRA 

is also implicated in mitogenic signaling and cancer[28, 29], potentially due to its affinity 

for non-native ligands, such as the growth factor IGF-1. Compared to IRB, IRA has a ten-
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fold increase in affinity for IGF-1 and a five-fold increase in affinity for IGF-2[29, 30].  

IRA can also heterodimerize with the growth factor receptor IGF1-R, and these hybrid 

receptors activate mitogenic pathways[31]. Therefore, any drug that aims to mimic the 

metabolic action of insulin should exhibit preferential binding affinity and signaling at 

IRB.  

 

 

Figure 4: Cartoon illustrating the extended conformation of the insulin receptor, 
with the exons numbered on the left, and the domains labeled on the right[32]. 

Orange arrows represent N-glycosylation sites. Green arrowheads represent ligand 
binding sites. The black bar represents the major immunogenic region[32]. 
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The mechanism by which insulin binding activates the receptor is unclear. Unlike most 

RTKs, the insulin receptor is constitutively dimerized and therefore dimerization of the 

receptor is not sufficient to induce signaling. In the absence of ligand, the tyrosine kinase 

auto-phosphorylation of the insulin receptor is likely inhibited by one or more of the 

following mechanisms: juxtamembrane inhibition, activation-loop auto-inhibition, and C-

tail inhibition[16].  Juxtamembrane inhibition refers to the juxtamembrane domain (JM), 

which lies adjacent to the N-terminus of the tyrosine kinase domain. Evidence suggests 

this JM domain adopts a conformation that, in the absence of ligand, precludes tyrosine 

kinase auto-phosphorylation by sterically hindering both lobes of the kinase domain[16]. 

In particular, the Y984 residue in the JM domain is vital for stabilizing this conformation, 

and mutation of this residue leads to an increase in basal auto-phosphorylation[16].  

Activation loop auto-inhibition and the C-terminus of the alpha subunit may also play a 

role in preventing signaling in the absence of ligand[16]. 

 

Overall, the suggested mechanism of action is that insulin binding induces enough of a 

conformational change to bring the two intracellular kinase domains into the correct 

proximity to induce trans-phosphorylation in the activation loop of the kinase 

domain[26]. This activation induces the activation loop to move away from the kinase 

catalytic site, allowing insulin receptor substrates to bind[26].  Cis-phosphorylation in the 

juxtamembrane domain has also been observed in response to insulin, as well as the 

previously described trans-phosphorylation in the tyrosine kinase domain[26]. In total, 

seven tyrosine residues experience phosphorylation, although not all seven tyrosine 

residues are required to propagate the signal. Therefore, variations in phosphorylation of 
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the receptor may allow for attenuation of the downstream signaling cascade. In support of 

this hypothesis, mutating individual tyrosines has differential effects on the metabolic and 

mitogenic insulin receptor signals[26]. Mutating the first tyrosine in the kinase domain 

leads to an increase in glycogen synthesis, but a decrease in DNA synthesis[26]. In 

contrast, mutating the second and third tyrosines in the kinase domain leads to a decrease 

in both glycogen synthesis and DNA synthesis[26].   

 

What is clear is that the binding of the ligand induces some type of conformational 

change, which activates the receptor. Once phosphorylated, the insulin receptor induces a 

diverse signaling cascade (Figure 5).  

 

Figure 5: The insulin receptor signaling pathway[33]. 
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Once the IR is phosphorylated, insulin receptor substrate (IRS) proteins interact with the 

activated receptor via their phosphotyrosine binding domains, and are phosphorylated on 

up to 20 tyrosine residues by the receptor[34]. The IRS proteins also contain pleckstrin 

homology (PH) domains that increase their affinity for the IR[34].There are many 

different isoforms of the IRS proteins, referred to as IRS1-6. IRS 1 and 2 are the most 

abundant, but isoforms vary from tissue to tissue[34]. IRS 3 is found exclusively in fat 

adipocytes and neuronal tissue, and IRS 5 and 6 have very limited expression[34]. 

Knockout studies in mice have shown that the IRS proteins are not redundant, and that 

knocking out specific isoforms results in varied physiological consequences[33].  

 

In general, the IRS proteins bind to adapter molecules that contain Src-homology 2 (SH2) 

domains[34], such as the adapter molecule Grb2[34]. Once phosphorylated by IRS, Grb2 

complexes with Sos[34]. This complex activates Ras, which activates Raf, Mek, and the 

MAPK pathway[34]. The MAPK pathway ultimately leads to control of gene expression. 

The insulin receptor also activates the MAPK pathway by phosphorylating Shc, which 

activates Ras and again leads to MAPK activation. All of these signaling cascades are 

halted by the action of protein tyrosine phosphotase 1B (PTP1B), which 

dephosphorylates the insulin receptor[34].  

 

The IRS proteins also activate phosphoinositide 3-kinase (PI3K). Activated PI3K 

generates PIP3, which in turn activates both the atypical PKCs and Akt[34]. Akt has 

several key roles. Akt induces the translocation of the glucose transport GLUT4 from 

internally sequestered vesicles to the cell surface to allow for glucose uptake[34]. Akt 
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also phosphorylates glycogen synthase kinase 3 (GSK-3)[34]. GSK-3, when 

unphosphorylated, is a repressor of glycogen synthesis[34]. When Akt phosphorylates 

GSK-3, it no longer suppresses glycogen synthesis and therefore glycogen synthesis 

proceeds[34]. Akt also inhibits FOXO1, which prevents FOXO1 from inducing 

gluconeogensis[34], and activates mTOR, which leads to protein synthesis[34]. In this 

manner, PI3K is responsible for the majority of the metabolic signaling of the insulin 

receptor. This pathway can be inactivated by the proteins PTEN and SHIP2, which 

dephosphorylate and inactivate PIP3[34], and by the proteins PP2A and Tribbles-3, which 

dephosphorylate and inactivate Akt[34].  

 

There are also several negative feedback mechanisms that regulate insulin signaling 

through these pathways. The IRS proteins can be serine phosphorylated, which in turn 

down-regulates signaling[34].  The c-Jun-N-terminal (JNK) kinase pathway is activated 

by insulin as well and also phosphorylates serine residues on IRS proteins, indicating a 

potential negative feedback mechanism[34]. Increased serine phosphorylation of the IRS 

proteins is also implicated in disease states of insulin resistance[34].  SHP2 also binds to 

the insulin receptor[34], and activates the Ras/MAPK pathway[33], but dephosphorylates 

some of the residues on the IRS proteins that mediate binding with Grb2 and PI3K[34]. 

 

The insulin receptor also directly activates the membrane bound protein Cbl, which forms 

a complex with the adapter protein CAP[33]. CAP binds to the proline-rich regions of 

Cbl through its SH3 domains[33].  The Cbl:CAP complex then associates with lipid rafts 

in the cell membrane and activates the adapter protein CrkII[33]. CrkII activates C3G and 
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recruits it to the lipid rafts[33]. Once in the lipid rafts, C3G is able to activate  TC10, a 

GTPase[33]. TC10 has been implicated in inducing the transportation of the glucose 

receptor GLUT4 to the outer membrane[34].  

 

Overall, these pathways represent the main metabolic and mitogenic signaling pathways 

of the insulin receptor. These signaling pathways are vital to human metabolism, and the 

absence of or resistance to insulin results in either type 1 or type 2 diabetes. 

  

Type 1 Diabetes 

Type 1 diabetes is also called insulin-dependent diabetes, since it must be treated with 

exogenously administered insulin. Type 1 diabetes is caused by autoimmune T-cell 

degradation of β-cells in the pancreas[35], resulting in the partial or complete absence of 

insulin secretion[36]. Type 1 diabetes usually presents itself in childhood, but the onset of 

the disease can occur at any age[36].  It is believed that both environmental as well as 

genetic factors play a role in the progression of the disease[37]. There is a substantial 

genetic component to type 1 diabetes, as shown in high concordance rates in families. It 

has been found that if one monozygotic (identical) twin develops diabetes, there is a 30-

50% chance their identical twin will develop the disease[1], and the risk increases as they 

age[38].  

 

One purported genetic cause of the destruction of β-cells is variation in the human 

leukocyte antigen (HLA) region of chromosome 6[1, 35]. This region is responsible for 

producing major histocompatibility complex (MHC) proteins, which are part of the 
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immune system. MHC proteins are displayed on the cell surface and are responsible for 

presenting foreign particles to the immune system and activating an immune 

response[39]. One theory is that the alleles in the HLA region associated with diabetes 

present self-antigens to the immune system, triggering β-cell destruction[1]. 

Another purported genetic cause of type 1 diabetes is a single nucleotide polymorphism 

that affects the lymphoid-specific phosphatase, a protein expressed in human 

lymphocytes that mediates T-cell antigen receptor signaling pathways[40].  In addition, 

single nucleotide polymorphisms in the IL15RA region of the genome, which encodes for 

proteins that suppress cell death, have been implicated in type 1 diabetes[41]. These 

potential genetic causes of diabetes are indicative of the varied and multifaceted nature of 

the disease.  

 

However, it is unlikely that genetic inheritance is the sole cause of diabetes. The majority 

of patients who have the HLA variations associated with diabetes do not develop 

diabetes[37]. Also, as referenced in the twin studies, identical twins have, at maximum, a 

50% chance of concordant diabetes – therefore, genetics alone is not sufficient to explain 

the onset of disease. One theory is that a viral infection results in viral particles similar to 

β-cell constituents being displayed by the MHC proteins, triggering the immune system 

to attack β-cells[39]. It is interesting to note that there is a 10% concordance rate for 

diabetes between non-identical twins, indicating that they may be exposed to the same 

environmental stimuli[42]. 
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Type 2 Diabetes 

Type 2 diabetes is the result of genetic predisposition, usually coupled with chronic, 

severe hyperglycemia. Type 2 diabetes results in an intolerance or relative deficiency of 

insulin[36], resulting in abnormally high blood glucose.  Type 2 diabetes is the most 

prevalent type of diabetes, accounting for over 90% of cases globally[43]. Like type 1 

diabetes, there are genetic predispositions to type 2 diabetes. In one study, monozygotic 

twins had a 91% concordance rate, many with abnormalities in insulin secretion[1].  

 

Non-genetic components also heavily influence type-2 diabetes. Obesity is a major risk 

factor for type 2 diabetes[44], and most patients with type 2 diabetes do suffer from 

obesity, or an increased percentage of abdominal fat[36], with one study demonstrating 

that obesity preceded diabetes occurrence 77% of the time[45].  Obesity is often 

accompanied by increased circulating leptin and cytokine levels, which have been shown 

to negatively affect pancreatic β-cells[44]. Adipose (fat) tissue itself is a source of 

inflammatory factors and free fatty acids, which can bind to the Toll-like receptor (TLR), 

resulting in the activation of the inflammatory transcription factor NF-kB[46].  NF-kB 

can also be stimulated by interleukin-1β (IL-1β), which is secreted by pancreatic β-cells 

as a response to chronically elevated blood glucose[44]. Low levels of IL-1β and NF-kB 

are necessary for proper β-cell function, but overstimulation by elevated blood glucose 

cases IL-1β and NF-kB to trigger β-cell apoptosis[47]. As β-cells are destroyed, the 

symptoms of diabetes begin to appear. 
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In addition to disregulating cytokines, free fatty acids (from adipose tissue) can also 

result in the down-regulation of PI3K and Akt, proteins involved in the insulin signaling 

pathway[46]. This down regulation results in desensitization to normal insulin 

signaling[46].  

 

The connection between obesity and diabetes is especially troubling, since there has been 

a 74% increase in obese adults in the United States from 1991 to 2001[48]. Other lifestyle 

factors such as smoking, alcohol use, lack of physical exercise, and lack of vitamin D 

have all been implicated as risk factors for diabetes[45]. In isolation, smoking has been 

independently correlated with diabetes, however, these risk factors are more dangerous 

when in combination, and the co-occurrence of all of the risk factors greatly elevates the 

risk for diabetes[45]. 

 

In addition, ethnic backgrounds and cultural differences have been implicated as diabetes 

risk factors. In the United States, compared to people of Caucasian descent, people of 

African descent are twice as likely to develop type 2 diabetes, people of Hispanic descent 

are 2.5 times as likely, and people of Native American descent are five times more 

likely[49]. This disparity remains even when adjusting for body-mass index, physical 

activity, and diet[49]. Concordant with ethnic and cultural differences, low 

socioeconomic status has also been shown to be a risk factor for diabetes[49]. 

 

Diabetes is often described as a part of the metabolic syndrome. The term “metabolic 

syndrome” describes a number of frequently concordant metabolic complications, such as 



19 
 

obesity, insulin resistance, dyslipidaemia, and hypertension[50]. The combined effect of 

these disorders puts patients at increased risk for cardiovascular disease and type 2 

diabetes[50].  

 

Type 2 diabetes was previously referred to as “adult onset diabetes,” indicative of the fact 

that this was a progressively acquired disease that manifested later in life. However, due 

to an increasingly obese society, type 2 diabetes is increasingly found in young children. 

This is especially alarming since many type 2 diabetes therapies have not been tested or 

approved for children[43]. 

 

Consequences of the Disease 

Diabetes leads to many short- and long-term health complications, caused by both 

hypoglycemia and hyperglycemia. Patients with diabetes often spend significant amounts 

of time at both hyper- and hypoglycemic levels of blood glucose. Insulin is administered 

to decrease blood glucose and reach euglycemia. However, insulin therapy comes with 

the constant threat of insulin overdose and subsequent hypoglycemia. Hypoglycemic 

complications can be generally grouped into neurogenic symptoms and neuroglycopenic 

symptoms[51].  

 

Neurogenic symptoms are the psychological results of hypoglycemia, and can include 

anxiety, palpitations, tremors, sweating, and parethesia, a “pins and needles” sensation in 

the skin[51].  
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Neuroglycopenic symptoms are the result of low blood glucose in the brain[51]. 

Examples of neuroglycopenic symptoms are cognitive impairment, behavioral changes, 

confusion, and, during severely low blood glucose, seizure and death[51]. A patient 

experiencing a severe hypoglycemic episode may need assistance from another person to 

return to euglycemic levels.  Of patients that manage their diabetes with insulin, over 

30% will experience a hypoglycemia-induced coma at least once, and 10% will suffer a 

diabetic coma in any given year[1].  Insulin-induced hypoglycemia results in the death of 

approximately 3-4% of diabetic patients[1]. Due to the immediate and deadly danger of 

insulin overdose, many patients with diabetes err on the side of caution when 

administering insulin, and as a consequence suffer from chronic hyperglycemia.  

 

However, chronic hyperglycemia has its own long term complications. Chronic 

hyperglycemia over-stimulates the PKC metabolic pathway, which ultimately results in 

the production of reactive oxygen species (ROS)[46]. An overabundance of  ROS results 

in an imbalance in nitric oxide bioavailability by converting NO into the highly reactive 

peroxynitrite ion, which is a powerful oxidant[46]. This anion has the ability to cross 

phospholipid membranes and results in nonspecific protein nitrosylation[46]. This can 

block the ability of cellular enzymes, such as NO synthase[46]. In addition, ROS can 

trigger vascular inflammation and the up-regulation of inflammatory factors[46]. Chronic 

hyperglycemia also leads to unwarranted glycosylation of enzymes and proteins, which 

can result in metabolic dysfunction[46]. The totality of these metabolic imbalances 

results in long term complications that can be broadly described as either macrovascular 

or microvascular. Macrovascular complications include cardiovascular complications 
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such as angina pectorsis (chest pains), myocardial infarction (heart attack), strokes[52], 

and renal failure as a result of decreased angiogenesis[53]. In total, the risk of 

cardiovascular disease in patients with type 2 diabetes is two to five times as great as 

their non-diabetic peers[54]. Microvascular complications include neuropathy, poor 

circulation in the extremities, and retinal disease due to pathological proliferation of 

retinal vessels[53]. Diabetes alone is the leading cause of kidney failure, lower limb 

amputations, and blindness in adults in the United States[55]. It is estimated that by the 

year 2030, 7% of deaths in the United States will be the result of diabetes[56].  

 

In addition to the physiological complications of the disease, there are several 

psychological consequences. In one study of both male and female type 1 and type 2 

diabetes patients, 35% self-reported anxiety and depression[52]. It has been found that 

depression is roughly twice as common in patients with diabetes than in the general 

public[57], which can dramatically alter a patient’s ability to maintain good glycemic 

control. 

 

Along with the physiological consequences of the disease, there are social and economic 

consequences as well. In some cases, patients with diabetes are explicitly forbidden from 

certain careers, such as flying a commercial aircraft in the United States[58]. In other 

cases, the discrimination is more subtle. In a study based on young adults ages 15-34 in 

Sweden, it has been found that patients with type 1 diabetes will experience a significant 

earnings reduction[59]. Despite no difference in earnings prior to the onset of diabetes, it 

was found that ten years after the onset of type 1diabetes, young adults earned 4.0% less 
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than their non-diabetic peers, and twenty years after the onset of diabetes, 10% less[60]. 

There is considerable debate as to the cause of this earnings reduction, as it may result 

from workplace discrimination or as the result of increased absenteeism due to decreased 

overall health[59]. 

 

Prevalence of the Disease 

In the United States, there are 25.8 million people in a diabetic or pre-diabetic state, 

which accounts for 8.3% of the population[55]. In addition, diabetes is becoming more 

and more prevalent. The Centers for Disease Control and Prevention found that from 

between 1980 to 2011, the number of adults in the United States with diabetes has more 

than tripled (Figure 6)[61]. Diabetes is also a serious global health problem, affecting 

6.4% of adults, which represents 285 million people. Over the next two decades, these 

numbers are projected to increase by 69% in developing countries and 20% in developed 

countries[62]. This epidemic means that 5.2% of deaths, globally, can be attributed to 

diabetes[63]. By 2030, it is projected that the total number of patients with diabetes will 

rise, with some estimates at 370 million[52] and others at 439 million[62]. These 

statistics highlight the growing epidemic of diabetes, and emphasize the need for better 

management of the disease. 
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Figure 6: "Number (in Millions) of Civilian, Noninstitutionalized Adults with 
Diagnosed Diabetes, United States, 1980-2011." Provided by the Centers for Disease 

Control and Prevention [61]. 
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Management of Diabetes Mellitus 

Diabetes therapies aim to improve insulin sensitivity, or in the absence of insulin, provide 

exogenous insulin to mimic native metabolism. 

 

For type 2 diabetes, the first goal may be to improve insulin sensitivity. Early 

intervention in diabetes mellitus is crucial. Patients with type 2 diabetes are often 

encouraged to change their diet and exercise habits in order to restore insulin 

sensitivity[64]. It has been shown that diet and exercise can have a beneficial effect on 

the amount of glycosylated hemoglobin (A1C) in patients with diabetes[64]. For type 2 

diabetes, pharmacological interventions are also available, such as metformin, 

thiazolidinediones, sulfonylurea derivates and glucagon-like peptide 1 (GLP-1) 

analogs[3].  Metformin is one of the earliest prescribed diabetes medications, first 

appearing in Europe over 40 years ago[65]. Metformin suppresses endogenous glucose 

production and decreases fasting blood glucose[65]. 

 

Thiazolidineodiones are a newer class of anti-diabetic therapy which improve insulin 

sensitivity, lower fasting and postprandial glucose concentrations, and decrease the 

concentration of free fatty acids[66].  The mechanism of thiazolidinodiones is believed to 

be a “fat-stealing” mechanism, where the thiazolidinediones increase fatty acid uptake, 

relieving non-adipose tissues from fatty acid stress[66]. Unfortunately, this causes weight 

gain[66]. Another side effects of thiazolidineodiones is osteopenia, a reduction in bone 

mineral density, and specific thiazolidineodiones have been linked to liver failure, 

bladder cancer, and cardiovascular morbidity[67].  
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Another target for anti-diabetic drugs is the sulfonylurea receptor isoform SUR1, which 

is found in pancreatic β-cells and serves as a regulatory subunit for ATP-sensitive 

potassium ion channels (KATP)[68]. Mutations in SUR1 are associated with chronic 

hyperinsulinism and neonatal diabetes[69]. SUR1 is a member of the ATP-binding 

cassete family and is sensitive to blood glucose levels[69]. As blood glucose increases, 

glucose metabolism results in increased concentration of ATP[69]. ATP binds to SUR1, 

and closes the KATP membrane channels, resulting in membrane depolarization, and a 

subsequent influx of calcium ions[69]. The influx of calcium ions stimulates insulin 

release[69]. Sulfonylurea-based drugs bind to SUR1 and stimulate insulin secretion 

through the same mechanism of membrane depolarization, influx of calcium ions, and 

insulin release[69, 70].  However, it has been shown in vitro in rodent and human β-cells 

that prolonged treatment with sulfonylurea derivatives can actually reduce the number of 

functional KATP channels[68], and induce β-cell apoptosis[68, 71, 72]. This may be the 

cause of clinically observed phenomenon called “secondary failure,” where sulfonylurea 

drugs lose their effectiveness after prolonged exposure[68]. 

 

Another important class of pharmacological diabetes therapy is GLP-1 and GLP-1 

derivatives. GLP-1 is part of the incretin family of hormones, which includes GLP-1, 

GLP-2, glucagon, and glicentin[73]. These peptides are produced by L-cells, found 

mainly in the distal gut, and are released in response to the ingestion of nutrients such as 

glucose, triacylglycerol, and fructose[73]. GLP-1 lowers blood glucose by stimulating 

insulin secretion, suppressing gluconeogenesis, delaying gastric emptying and acting as 
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an appetite suppressor[67, 74].  Exenatide is a GLP-1 analog, and it has been shown to 

improve glycemic control and reduce body weight[54]. In addition, there is evidence that 

patients managing their diabetes with exenatide, in conjunction with other anti-diabetic 

therapies, have a lower risk of cardiovascular disease[54]. However, GLP-1 based 

therapies have their own set of side-effects and potential consequences. GLP-1 is a 

growth factor, and in addition to the pancreas, GLP-1 receptors are found in the thyroid, 

kidneys, bone, and other tissues[67]. A major concern is that the GLP-1 therapies 

promote pancreatitis, which may in turn lead to pancreatic cancer[67].  However, the 

evidence for the oncogenic effects of GLP-1 therapy is debatable, especially because it 

has been shown that pancreatitis is more prevalent in patients with type 2 diabetes, 

regardless of the type of pharmacological intervention[67]. 

 

Despite potential side effects and consequences, all of these therapies are beneficial for 

patients with type 2 diabetes, since insulin is still being produced by the pancreas. 

However, these therapies are ineffective for patients with type 1 diabetes, for whom the 

beta cells of the pancreas may be partially or completely destroyed. Therefore, patients 

with type 1 diabetes do not have the luxury of trying to restore insulin sensitivity and 

must rely on exogenously administered insulin. Unfortunately, exogenously administered 

insulin will never be a perfect mimic of native insulin. One difference between native and 

exogenous insulin is that exogenously administered insulin is injected subcutaneously 

and therefore targets all the peripheral tissues equally, as opposed to native insulin 

secretion through the hepatic portal, which initially targets the liver[1]. Secondly, injected 
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insulin is subject to a significant lag phase, during which the insulin dissociates from 

biologically inactive hexamers and dimers into biologically active monomers[75]. 

 

However, by using a combination of basal (long acting) and post-prandial (bolus) insulin, 

patients can achieve near-normal blood glucose[75]. A continuous, low level of insulin 

secretion is necessary to counteract endogenous gluconeogenesis in the liver[76]. In 

addition to basal insulin, bolus insulin is used to manage spikes in blood glucose after a 

meal (post-prandial)[76]. Different synthetic insulins and insulin analogs have been 

created to address these needs. Long-acting insulins are used to mimic basal insulin 

secretion. These insulins include neutral protamine Hagedorn (NPH) insulin, insulin 

glargine, and insulin detemir.  NPH insulin has a duration of action of 8-12 hours[77]. 

Insulin detemir has a duration of action of 12-16 hours, and insulin glargine approaches a 

24 hour duration of action[77]. As with every insulin-based therapy, there is the 

possibility of insulin-induced hypoglycemic events[76], and there is some evidence that 

insulin glargine is safer, in terms of hypoglycemic events, than insulin NPH[77].   

 

Fast acting insulins, used to manage post-prandial blood glucose spikes, include insulin 

lispro and insulin aspart. These insulins are “fast-acting” because they dissociate more 

rapidly from a hexamer to monomers. Fast-acting insulins have been shown to reduce the 

risk of hypoglycaemia compared to exogenous but otherwise native human insulin[75]. 

 

It is only through a combination of slow- and fast-acting insulin that insulin replacement 

therapy can begin to mimic natural insulin secretion. It has been found that this basal-
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bolus therapy, also referred to as “intensive” insulin therapy, is beneficial for patients 

with type 1 diabetes, and helps prevent retinopathy, neuropathy, and nephropathy[78]. 

However, this therapy is challenging due to significant variation between patients and 

even within patients. In one study, it was found that there was a 30% variation in 

interpatient insulin absorption of fast-acting insulins and 50% interpatient absorption of 

intermediate insulin (insulin NPH)[75]. In the same study, it was found that intrapatient 

variability was 10-13% for fast acting, and 25% for intermediate acting[75]. This 

variability makes using insulin to achieve euglycemia a very daunting task. 

 

While achieving euglycemia using exogenous insulin is difficult due to the logistics of 

basal and bolus injections, insulin itself is very dangerous and mismanaged insulin can be 

fatal, due to its very narrow therapeutic index. The therapeutic index is defined as the 

effective dose (ED) divided by the lethal dose (LD)[79].  The narrow therapeutic index of 

insulin means that patients face the possibility of unintended overdose. In fact, in 2001, 

the Joint Commission on the Accreditation of Healthcare Organizations, an organization 

within the United States, identified insulin as one of the top five most dangerous 

medications, on par with opiates and narcotics[80]. 

 

To summarize all of these consequences, insufficient amounts of insulin result in long 

term complications, while insulin overdose can be fatal immediately. Fear of 

hypoglycemia represents a significant factor in dose determination for patients that 

manage their diabetes with insulin[81, 82].  Therefore, the goal of this research is to 

create a “safer” insulin analog that has a reduced risk of hypoglycemia. An insulin analog 
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that lacks or reduces the threat of an insulin overdose would simultaneously eliminate the 

risk of hypoglycemia and also result in less time spent at hyperglycemic levels through 

increased and more rigorous glycemic control.  

 

Properties of Insulin 

This research aims to create an insulin analogue with an improved therapeutic index. 

Currently, exogenously administered insulin carries the danger of overdose. Normal 

metabolism is an interplay between insulin, which lowers blood glucose, and glucagon 

and other counter-regulatory hormones that raise blood glucose. Exogenously 

administered insulin, however, can “overpower” the normal counter-regulatory action of 

glucagon and other hormones and cause blood glucose to plummet to hypoglycemic or 

even fatally low levels (Figure 7, curve 1). 

 
Ideally, this work will address this danger by creating an insulin analog with a shallower 

response gradient, resulting in a larger range of concentrations that provide glucose 

reduction without inducing hypoglycemia (Figure 7, curve 2). 

 
 The most desirable outcome would be the creation of an insulin analog that lowers blood 

glucose to normal ranges, but is subsequently opposed by the counter-regulatory 

hormones (Figure 7, curve 3). This would create an insulin analog where overdose is 

“impossible.” Not only would this eliminate the dangers of overdose, it would result in 

better glycemic control and subsequently eliminate the dangers of chronic 

hyperglycemia.  



30 
 

 

Figure 7: Stylized insulin dose-response as a function of blood glucose versus 
peptide concentration (S. Brandt). Curve 1 represents native insulin action. Curve 2 

represents a shallower dose-response. Curve 3 represents the most ideal insulin 
therapy, where blood glucose is lowered but opposed by metabolic counter-

regulation. 

 

When describing the characteristics of insulin and insulin analogs, there are two 

important in vitro characteristics, potency and maximal activity, which are quantified in 

this research by receptor phosphorylation. Potency refers to the concentration of peptide 

required for a half-maximal response, also referred to as the EC50 value. Maximal activity 

represents the upper plateau in a sigmoidal shaped dose-response curve, after which 

additional peptide does not elicit any increase in phosphorylation. Native insulin has a 

very high maximal activity, although the physiological significance of this is not known, 

since in vivo insulin levels approaching the maximal activity are fatal. It is possible that 

an insulin analog with reduced maximal activity would result in a shallower or opposable 

dose-response curve. This work aims to create an analog with the same potency as native 

insulin, but with reduced maximal activity. A matched set of analogs, with multiple and 

varied maximal activities (Figure 8), would allow investigations into the effect of 



31 
 

maximal activity on in vivo activity. Maintaining the potency of these analogs at the same 

level as insulin will allow us to isolate the effect of maximal activity alone, and 

potentially allow for the rational design of insulin analogs with a specific or desired 

maximal activity.  

 

 

Figure 8: Typical sigmoidal dose response for native insulin (black squares) with 
stylized theoretical dose response curves for insulin analogs with similar potency but 

decreased maximal activity, relative to native insulin. 

 

 
In order to create peptides with decreased maximal activity, this work will exploit a 

unique feature of the insulin / insulin receptor interaction: supersaturating the insulin 

receptor with insulin results in a decrease in receptor activation. First, this work will 

describe normal receptor/ligand interactions, and then progress to the unique case of 

insulin and the insulin receptor.  
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Receptor/Ligand Interactions[39] 

A simple model of receptor/ligand interactions is to examine the association of free 

ligand (L) with that of the free receptor (R) to that of the bound complex (R*L): 

  

Equation 1 

 

The association constant is therefore  

 

Equation 2 

  

In biochemistry, it is often more useful to discuss the dissociation constant, which is 

simply the inverse of Equation 2: 

 

 

Equation 3 

 

 

We further define the free receptor R as a function of the total receptor concentration, RT, 

minus the concentration of bound receptor, R*L: 

 

Equation 4 
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Equation 4 into the dissociation constant expression, we obtain 

  

 

Equation 5 

 

Equation 5 can be rearranged to yield 

 

 

Equation 6 

Or 

 

Equation 7 

 

The rationale behind this rearrangement stems from a common way of analyzing 

receptor/ligand interactions as a fraction (Y) of bound receptor, [R*L], to total receptor, 

[RT].  

 

Equation 8 
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By substituting the expression for RT obtained in, Equation 7, we can solve for the 

fraction of bound receptor as a function of ligand (L) and dissociation constant (Kd). 

 

  

Equation 9 

Which can be further simplified to 

 

 

Equation 10 

Or 

 

  

Equation 11 

 

This relationship between the fraction of receptor bound with ligand and total receptor 

(Y) can be analyzed by plotting Y versus the concentration of free ligand (L), which in a 

simple protein/ligand interaction yields a hyperbolic plot, where at Y=0.5,  L=Kd (Figure 

9).  
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Figure 9: An analysis of the binding of a truncated human IgG protein (hFc) to its 
binding domain in Protein G (GB1) as well as a mutant binding domain (NuG2). 

The authors of this study used a single-molecule binding model to determine the Kd 
for hFc to GB1 (2.2 ± 0.4 µM) and for hFc to NuG2 (12.6 ± 0.9 µM)[83]. 

 

Another method for analyzing protein/ligand interactions is a Scatchard plot, which 

represents the linear form of binding analysis. First, a rearrangement of Equation 5 yields 

 

Equation 12 

 

For a Scatchard plot, the bound receptor [R*L] is customarily defined as B (bound), the 

free ligand L is defined as F (free), and the total receptor concentration is defined as Bmax, 

the maximal amount of bound receptor. Therefore Equation 12 is rewritten as 

 

Equation 13 
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Or in its linear form: 

 

Equation 14 

 

Therefore for simple receptor/ligand interactions, a plot of the fraction of bound to free 

ligand versus the concentration of bound ligand will yield a straight line with a slope 

equal to -1/Kd, an x intercept equal to Bmax and a y intercept equal to Bmax/Kd (Figure 10, 

inset).  

 

Figure 10: An analysis of the binding of bradykinin (BK) to its receptors on cell 
surface membranes[22]. A Scatchard plot is seen in the inset, showing the linear 

relationship between the B/F ratio and bound bradykinin. 
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When a Scatchard plot is not linear it is indicative of the presence of high and low 

affinity binding sites on the receptor[32].  A Scatchard plot of insulin binding to its 

receptor is not linear (Figure 11).  This observation was initially dismissed as the result of 

insulin degradation products obtained in the process of lysing cells. However, after 

chromatographically separating insulin degradation products as well as using an inhibitor 

of insulin degradation (bacitracin), the Scatchard plot of insulin binding remained 

curvilinear[84].  In addition, the dissociation of radiolabeled insulin from its receptor is 

accelerated by the addition of unlabeled insulin, whereas it is not accelerated by dilution 

alone (Figure 12). These two observations suggest that insulin displays negative 

cooperativity at the insulin receptor, where the binding of the ligand decreases the affinity 

for additional ligands.  

 

 

Figure 11: Scatchard plots for radiolabeled human growth hormone bound to its 
receptor (left) and radiolabeled porcine insulin (right) to its receptor[23]. Human 

growth hormone shows a linear relationship between B/F and bound ligand, 
whereas insulin does not. This is indicative of negative cooperativity at the insulin 

receptor. 
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Figure 12: a: Scatchard plot demonstrating the curvilinear relationship between B/F 
and bound insulin[32]. b: Accelerated dissociation of radiolabeled insulin in the 

presence of additional unlabeled insulin (orange) compared to dissociation due to 
dilution alone (green)[32]. This acceleration is indicative of negative cooperativity. 

 

A third and critical argument for negative cooperativity is the bell-shaped curve of insulin 

binding studies (Figure 13).  It was observed that increasing concentrations of cold 

insulin induce dissociation of bound radiolabeled insulin (Figure 13). However, at higher 

concentrations the disappearance of radiolabeled insulin is diminished (Figure 13).  

 

Figure 13: Dose-response curve analyzing the percent of radiolabeled insulin bound 
as a function of increasing amounts of cold (unlabeled) insulin[17]. 
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Initially, this observation was thought to be the result of insulin dimerizing at high 

concentrations, where the dimerization somehow precluded binding to the insulin 

receptor[85]. However, modern crystal structures and a better understanding of the 

insulin receptor have led to a more appropriate interpretation.  

 
The ectodomain of the insulin receptor exists in a folded-over conformation[86], like an 

inverted “V” (Figure 14).  Electron micrographs of the insulin receptor, in conjunction 

with monoclonal antibodies, have demonstrated that the two halves of the insulin receptor 

are also arranged in an anti-parallel fashion[32]. This means that the L1 domain of one 

half of the receptor is near the fibronectin type III domains of the other half of the 

receptor, and vice-versa (Figure 14).  

 
The insulin receptor has two binding sites for insulin, which have been identified as the 

L1 and C-terminus of the alpha domain (site 1), and the junction between the first and 

second fibronectin-type III domains (site 2). Because of the anti-parallel arrangement of 

the ectodomains, these binding sites are also arranged in an anti-parallel fashion (Figure 

15).  Insulin will bind to site 1 of one half of the insulin receptor, and site 2 of the other 

half of the receptor, cross-linking the two ectodomains.  
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Figure 14: Crystal structure of the insulin receptor ectodomain, shown as a 
monomer, with insulin bound (left)[24], and as an anti-parallel dimer (right)[16]. 

 

 

Figure 15: A “top down” view of the insulin receptor ectodomains, with one half of 
the receptor in green and the other half in blue[15]. Binding sites 1 and 2 of insulin 
are shown in yellow. The anti-parallel arrangement of the ectodomains results in an 

anti-parallel arrangement of binding sites. 
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Therefore, when a single insulin monomer binds to the insulin receptor, it occupies 

binding site 1 on one half of the receptor, and binding site 2 on the other half of the 

receptor, leaving two unoccupied binding sites available. As the concentration of insulin 

monomers increases, additional insulins can bind to the unoccupied sites, and the 

resulting signal decreases. This is proposed as the basis of the negative coopertivity 

observed at the insulin receptor. In regards to the binding assay, bound insulin is initially 

displaced by additional insulin binding to unoccupied binding sites, however, as insulin 

concentration increases the receptor becomes saturated with 3 insulins, one in the 

“original” crosslink, and two on each of the unoccupied binding sites, resulting in the 

maintenance of bound radiolabeled insulin at high concentrations of cold insulin (Figure 

16)[25].  

 

 

Figure 16: Schematic illustrating a stylized binding curve of radiolabeled insulin 
versus increasing concentrations of cold insulin[25]. 
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The effect of “supersaturating” the insulin receptor can be seen in in vitro studies of 

insulin. At concentrations above 100  nM, the activation of the receptor, as measured by 

phosphorylation of the tyrosine kinase domain, begins to diminish (Figure 17). Therefore, 

if supersaturating the receptor with insulin monomers leads to diminished signal, it was 

hypothesized that covalently dimerized insulins might have unique and interesting 

activity at the insulin receptors. 

 

 

 

Figure 17: Phosphorylation assay demonstrating the activation of insulin receptor 
isoform B in response to native human insulin, where OD 450 is a measure of 

receptor phosphorylation. There is a decrease in signal at insulin concentrations 
greater than 100 nM (S. Brandt, unpublished data). 
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The research group of Dietrich Brandenburg explored this possibility by creating insulin 

homodimers, linking two identical insulins with a bis(p-nitrophenyl) ester[87]. The 

insulin dimers were linked at either the A1, B1 or B29 positions (Figure 18). Therefore, the 

Brandenburg group created an A1-A1’, B1-B1’, B29-B29’, A1-B1’, A1-B29’, and B1-B29’ 

dimers (Figure 18). All of these dimers exhibited the same maximal activity as native, 

monomeric insulin, as measured by an in vitro fat cell assay (Figure 19)[87]. However, 

the potency of these analogs, relative to insulin, varied between 1-60% (Figure 19)[87].  

 

 

Figure 18: Schematic of insulin homodimers, dashed line representing suberoyl 
ester linker. 
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The Brandenburg group successfully demonstrated that this is not simply the result of 

differences in binding affinity. The B29-B29’ linked dimer, while only mildly stimulating 

glucose uptake, bound to the insulin receptors with similar binding affinity as native 

insulin[88](Figure 20).  

 

Figure 19: Stimulation of lipogenesis by insulin and insulin dimers. Insulin is 
represented by X's (far left), B1-B29’ dimer (open circles), B1-B1’ dimer (open 

squares) and B29-B29’ (closed triangles). 

 

 
 

Figure 20: (Right) Binding assay demonstrating that monomeric insulin (white 
circles) and B29-B29’ dimerized insulin (black circles) have similar affinities for the 
insulin receptor [27]. (Left) Fat cell assay analyzing glucose uptake by monomeric 

insulin (white circles) and B29-B29 dimerized insulin (black circles)[88]. 
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This was an exciting observation because it implied that the diminished activity at the 

insulin receptor was not the result of a lack of binding by the dimer, but rather an inherent 

effect of the dimer. Therefore the Brandenburg research group demonstrated that it is 

possible to alter the maximal activity and potency of an insulin-based analog not by 

altering the binding affinity but by altering how the ligand interacts with the receptor. It is 

possible that the insulin dimer is a mimic of the receptor supersaturation seen at high 

concentrations of insulin monomers.  

 
More recently, Dr.Yan Zhao in the DiMarchi research group investigated insulin dimers, 

observing the effect of linker position, linker type, and linker length. In insulin dimers 

linked at the B1 position, the dimer was a full agonist of the insulin receptors, regardless 

of linker length[3]. In B29 linked insulin dimers, Dr. Zhao observed a partial agonist with 

low potency[3]. In B29 linked IGF-based dimers, potency and activity at the insulin 

receptor was restored[3]. Linking two insulin dimers together through a polyethylene 

glycol (PEG) C-domain resulted in a partial agonist with a bell-shaped curve, and 

introducing a larger PEG linker between the dimers restored activity[3]. 

 
All of these results suggest that we can alter the potency and maximal activity of an 

insulin dimer. Our goal, as previously stated, is to create a series of dimerized peptides 

that have a range of maximal activities, but maintain potency, as compared to native 

insulin. 
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Prior to this research, all insulin and insulin-mimetic dimers have been homodimers, with 

the two halves of the dimer being chemically identical. However, an insulin heterodimer 

may be equally useful at altering activity and potency at the insulin receptor. The 

heterodimers presented in this research will consist of insulin or a fully potent insulin 

analog, and an insulin receptor antagonist. The inclusion of an antagonist in a 

heterodimer will provide additional binding sites, but the antagonist will not possess any 

inherent ability to activate the receptor itself, and therefore we anticipate that these 

heterodimers will have diminished activity at the insulin receptor. Several potentially 

useful antagonists were identified in the work of Schaffer, et al. The Schaffer research 

group used a peptide phage library to screen for random peptides with affinity at the 

insulin receptor ectodomain[89, 90]. By optimizing these peptides the Schaffer group was 

able to identify several binding motifs (Table 1)[91]. These peptides were categorized as 

binding to the insulin receptor binding sites 1 and 2 (the classical binding sites of native 

insulin), as well as binding site 3, a region of the insulin receptor ectodomain not 

associated with native insulin binding[91]. 

 

Table 1: Binding motifs identified by Schaffer, et al., where X represents an 
unspecified amino acid. 

IR Binding Site Motif 

1 
FYXWF 

FYWW(L/I)XXL 
LXXLXXYF 

2 Cysteine loops 
3 ACVWPTYWNCG 
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In summary, there have been three key observations that lay the foundation of this work. 

First, that supersaturating the insulin receptor with insulin results in a decrease in receptor 

activation. Second, that insulin-insulin homodimers result in variable maximal activity, 

and third, that there are synthetically derived peptides capable of binding to the insulin 

receptor. Based on these observations, we hypothesize that it is possible to create a 

heterodimer capable of varied maximal activity at the insulin receptor, by dimerizing an 

insulin receptor agonist and antagonist. 

 

The creation of these heterodimers requires several unique chemistries and skills. First, 

an appropriate peptide must be identified, characterized, and optimized for inclusion in a 

heterodimer. Chapter 2 will discuss the creation and characterization of several 

previously identified insulin receptor antagonists using synthetic chemistry. It will 

discuss solid phase peptide chemistry as a synthetic tool, and show through in vitro 

phosphorylation assays that we have created peptides capable of antagonizing native 

insulin at both the insulin receptor A and B isoforms. In addition, structure-activity 

relationship studies allowed for the optimization of these peptides, where structural 

complexity was minimized without loss of function. 

 

Building from our optimized antagonists, Chapter 3 will discuss the creation of insulin 

receptor agonist/antagonist heterodimers through the use of a biosynthetic protocol, 

where heterodimers were expressed in E. coli, purified, and then tested for agonism and 

antagonism at both insulin receptor isoforms. A heterodimer with the desired decrease in 

maximal activity was identified, and it represents the first instance of a heterodimer with 
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altered maximal activity but unaltered potency. This breakthrough confirmed our 

hypothesis that heterodimers are a viable way to alter the maximal activity of insulin-

based molecules. In addition, the successful creation of this heterodimer allowed for 

further structure-activity relationship studies into the role and effect of antagonists within 

a heterodimer. 

 

Chapter 4 discusses the use of a semisynthetic approach to create and optimize a series of 

heterodimers, with varied maximal activities. The semisynthetic approach allowed for the 

creation of a set of heterodimers with tunable maximal activity. Most importantly, these 

heterodimers vary in a single amino acid, and therefore represent a tunable and rationally 

designed set of molecules, and are the first instance of heterodimers with directed 

maximal activity at the insulin receptors. 

 

This research concludes with a discussion on the relevance and potential therapeutic 

benefits of these unique heterodimers, and emphasizes the need for continuing research 

into a promising field of peptide therapy.   
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Chapter 2 

Synthesis, Characterization, and Optimization of Insulin 
Receptor Antagonists



57 
 

ABSTRACT 

This chapter seeks to identify, characterize, and optimize peptides to be used as 

antagonists in our putative agonist/antagonist heterodimers. Previously reported insulin 

receptor agonists and antagonists were created using synthetic Boc or Fmoc solid phase 

peptide chemistry. These peptides were tested in an in vitro phosphorylation assay for 

agonism at both insulin receptor isoforms, and were tested for their ability to antagonize 

native insulin at these receptors. The peptides consist of either a single or a pair of 

binding motifs known to bind to the insulin receptor. None of the single binding motif 

peptides were able to agonize the insulin receptors or antagonize native insulin. However, 

two previously reported antagonists, S597 and S661, each containing two binding motifs, 

were shown to be effective antagonists of the insulin receptor isoforms. Both of these 

peptides contained a disulfide bond, but structure/activity analyses demonstrated that the 

disulfide is not necessary for in vitro antagonism. Based on this observation, antagonists 

#4-6 and #6-4 were created, each consisting of two binding motifs. It was found that the 

relative order of the binding motifs within these peptides does not affect their in vitro 

antagonism. It was also found that within the #4-6 peptide, the N-terminal residues were 

necessary for antagonism, however, C-terminal truncations can maintain their 

antagonism.  In addition, it was found that ligating a 20 kDa polyethylene glycol 

molecule to the N-terminus of peptide #4-6 resulted in a decrease in potency but did not 

affect its ability to antagonize native insulin.  
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INTRODUCTION 

As stated in the introductory chapter, this research aims to create heterodimers, consisting 

of an insulin receptor agonist and antagonist. We hypothesize that the inclusion of an 

antagonist in a heterodimer will result in variable maximal activity. Therefore, the first 

step of this research is to identify and optimize an insulin receptor antagonist. Beginning 

with peptides originally identified by the Schaffer research group[1], structure/activity 

analyses were used to further optimize insulin receptor antagonists. 

 

These antagonists are synthetic peptides, since there are no known naturally occurring 

insulin receptor antagonists[2]. Using synthetic strategies to create novel agonists for a 

given receptor has been successful in other ligand/receptor systems. For example, the 

research groups of Wrighton and Livnah, et al., created a synthetic agonist of the 

erythropoietin receptor that was capable of fully activating the receptor, without any 

sequence similarity to the native ligand[1]. However, the insulin receptor has historically 

resisted attempts at synthetic antagonists. No known native antagonists of the insulin 

receptor exist, and, in contrast to other receptor/ligand systems, truncated versions of the 

native ligand do not act as antagonists[3]. 

 

Despite these limitations, several potentially useful peptides were identified in the work 

of Schaffer, et al. The Schaffer research group used a peptide phage library to screen for 

random peptides with affinity for the insulin receptor ectodomain[3, 4]. As stated in the 

introductory chapter, the Schaffer group identified several motifs that bind to the insulin 

receptor (Table 1)[1]. The Schaffer research group posits that the site 1 motif yields 
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peptides capable of partially or fully activating the insulin receptor, as shown by uptake 

of radiolabeled glucose into mouse epididymal adipocytes[1], whereas the site 2 and 3 

motifs act as antagonists to the insulin receptors[1]. A limitation of these binding motifs 

is that peptides containing a single binding motif had very low affinity for the insulin 

receptors, with dissociation constants on the order of 1 µM[1].  However, by creating 

heterodimers of binding motifs, the Schaffer group created peptides with increased 

affinity and activity at the insulin receptors[4].  

 

Table 1: Binding motifs identified by Schaffer, et al., where X represents an 
unspecified amino acid. 

IR Binding Site Motif 
1 FYXWF 

FYWW(L/I)XXL 
LXXLXXYF 

2 Cysteine loops 
3 ACVWPTYWNCG 

 

We recreated several of these potentially antagonistic peptides by synthesizing them 

using solid phase peptide chemistry. After synthesis and purification, the peptides were 

analyzed for agonism and antagonism in a receptor tyrosine phosphorylation assay in 

human embryonic kidney (HEK) cells.  These cells overexpress either the insulin 

receptor A (IRA) or insulin receptor B (IRB) isoform, and phosphorylation of the 

receptors is measured using phosphotyrosine antibodies. These antibodies are conjugated 

to horse radish peroxidase, an enzyme that induces a color change in the presence of 

peroxide and a chromaphore. Therefore, the optical density at 450 nm (OD 450) is a 

measure of receptor phosphroylation. Agonism of the peptide was measured as a function 
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of receptor phosphorylation in response to a range of peptide concentrations. Antagonism 

was measured as a function of receptor phosphorylation in response to a range of peptide 

concentrations, in the presence of constant 1 nM native insulin. 

  

Single site peptides #1, #2, and #3 (Table 2) were identified as good candidates for 

inclusion in a heterodimer. Peptides #1-3 were  reported to be agonists at the insulin 

receptor[5]. These peptides are relatively short, which simplifies their synthesis. In 

addition, these peptides contain a lysine residue at their C-terminus. Since the lysine side 

chain has unique chemical reactivity, the inclusion of this residue allows for subsequent 

chemical modification, a feature that is useful in the creation of heterodimers. Also 

chosen for investigation were the single site putative agonists #4, a short peptide that 

contains a site 1 binding motif, and peptide #5, a short peptide that contains a site 2 

binding motif (Table 2).  

 
In addition, we also investigated longer peptides that contain two binding site motifs,  

peptides #7-9.  Peptide #7, known as S597 in the literature[6, 7], contains a site 2 motif 

and a site 1 motif (Table 2), and was shown in the literature to bind to the insulin receptor 

isoforms[6]. Peptide #8, referred to in the literature as S961[3], is composed of a binding 

site 1 motif and a binding site 2 motif connected by the flexible linker GGSGGS (Table 

2). We investigated a variant of #8, peptide #9 (Table 2). Peptide #9, also known as 

S661[3], is identical in sequence to #8 but contains a C-terminal amide.   

 
To investigate the significance of the disulfide bond within the site 2 motifs of these 

peptides, oxidized and reduced forms of #9 were tested. In addition, mutant versions of 
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#7 and #9 were synthesized, where the two cysteine residues were mutated to serines. 

These mutants are #10 and #11 (Table 2).  

 
To control for any steric effects or non-specific binding to the insulin receptor, we also 

investigated the first 31 residues of the insulin C-peptide, #12, a 33 residue peptide that 

does not bind to the insulin receptor[8]. 

 

Once we had characterized all of these peptides, we explored whether additional amino 

acids such as cysteine and lysine could be incorporated into these peptides without 

altering their antagonistic properties. As stated previously, the goal of this work is to 

create heterodimers of insulin receptor agonists with insulin receptor antagonists. 

Therefore, we anticipated the need to create a covalent bond between our synthesized 

antagonists and subsequent agonists. One highly efficient way to promote the formation 

of a covalent bond is to exploit the unique reactivities of amino acids such as cysteine and 

lysine. Cysteine and lysine contain nucleophilic functional groups in their side chains, 

which can act as chemical “handles” and facilitate covalent linkages. In addition, lysine is 

also a cleavage site for the enzyme lys-C, a property that will be important in our 

biosynthetic studies, discussed in chapter 3. Therefore we created peptides with 

additional cysteine and lysine residues.  

 

This research identified the #4-6 peptide as the most likely candidate for inclusion in a 

heterodimer. Therefore, to further explore the relationship between structure and activity 

in this peptide, we conducted N-terminal alanine scan and synthesized several truncation 

peptides (Table 2). 
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Finally, we investigated a 20 kDa PEGylated version of #4-6. Polyethylene glycol, or 

PEG, is a polymer made of repeating ethylene oxide units, and can be used to increase the 

stability, aqueous solubility, and alter the pharmacokinetics of a peptide[9].  PEG 

provides stability to a peptide by protecting it from proteolytic degradation[9], and since 

PEG itself is very water soluble, it can increase the aqueous solubility of the peptide. In 

addition, PEG units can be many times larger than the peptide, which means that 

attaching PEG greatly increases the total size of the peptide. As peptide size increases, 

filtration by the kidneys decreases, and therefore adding PEG can extend the amount of 

time the peptide spends in circulation, dramatically altering the pharmacokinetics of the 

peptide[9].  One disadvantage of incorporating PEG is the possibility of destroying the 

activity of the peptide of interest by directly or indirectly interfering with receptor 

binding. In order to test if PEGylation would interfere with the antagonism of #4-6, a 

20kDa PEG was ligated to the N-terminus of peptide #4-6 by reacting the free peptide 

with an N-hydroxysuccinimide (NHS) ester of a 20 kDa PEG molecule. 

 
In summary, the research presented in this chapter demonstrates our ability to synthesize, 

purify, and modify peptides that are reported to be agonists and antagonists of the insulin 

receptor isoforms. In addition, structure activity analyses allowed us to further optimize 

these peptides, introduce useful chemical reactivity with additional cysteine and lysine 

residues, and modify an antagonist with PEG in order to potentially alter its 

pharmacokinetics.   
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Table 2: Sequence of Peptides 

Reference 
Number 

Literature 
Reference 

Name 
Sequence Synthetic 

Chemistry C-terminus 

1 - DYKDLCQSWGVRIGWLAGLCPKK Boc Amide 

2 - KVRGFQGGTVWPGYEWLRNAAKK Boc Amide 

3 - KSMFVAGSDRWPGYGVLADWLKK Boc Amide 

4 - GSLDESFYDWFERQLG Boc Amide 

Cys-4 - CGSLDESFYDWFERQLG Boc Amide 

4-Cys - GSLDESFYDWFERQLGC Boc Amide 

5 - SLEEEWAQIQCEVWGRGCPSY Boc Amide 

6 - SLEEEWAQIQSEVWGRGSPSY Boc Amide 

Cys-6 - CSLEEEWAQIQSEVWGRGSPSY Boc Amide 

6-Cys - SLEEEWAQIQSEVWGRGSPSYC Boc Amide 

7 S597 SLEEEWAQIECEVYGRGCPSESFYD
WFERQL Boc Amide 

8 S961 GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQCEVWGRGCPSY Fmoc Acid 

9 S661 GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQCEVWGRGCPSY Boc Amide 

10 - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVWGRGSPSY Boc Amide 

11 - SLEEEWAQIESEVYGRGSPSESFYD
WFERQL Boc Amide 

12 C Peptide RREAEDLQVGQVELGGGPGAGSLQ
PLALEGSLQ Boc Amide 

4-6 - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVWGRGSPSY Boc Amide 

Cys-4-6 - CGSLDESFYDWFERQLGGGSGGSSL
EEEWAQIQSEVWGRGSPSY Boc Amide 

4-6-Cys - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVWGRGSPSYC Boc Amide 
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4-6-Lys - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVWGRGSPSYK Boc Amide 

4(des1-4)-6 - ESFYDWFERQLGGGSGGSSLEEEW
AQIQSEVWGRGSPSY Boc Amide 

4(des1-8)-6 - DWFERQLGGGSGGSSLEEEWAQIQ
SEVWGRGSPSY Boc Amide 

4(des1-12)-6 - RQLGGGSGGSSLEEEWAQIQSEVW
GRGSPSY Boc Amide 

4(A1)-6-Lys - ASLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVWGRGSPSY Boc Amide 

4(A2)-6-Lys - GALDESFYDWFERQLGGGSGGSSL
EEEWAQIQSEVWGRGSPSY Boc Amide 

4(A3)-6-Lys - GSADESFYDWFERQLGGGSGGSSL
EEEWAQIQSEVWGRGSPSY Boc Amide 

4(A4)-6-Lys - GALDESFYDWFERQLGGGSGGSSL
EEEWAQIQSEVWGRGSPSY Boc Amide 

4-6(des28-43) - GSLDESFYDWFERQLGGGSGGSSLE
EE Boc Amide 

4-6(des31-43) - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQI Boc Amide 

4-6(des36-43) - GSLDESFYDWFERQLGGGSGGSSLE
EEWAQIQSEVW Boc Amide 

6-4 - SLEEEWAQIQSEVWGRGSPSYGGS
GGSGSLDESFYDWFERQLG Boc Amide 

Cys-6-4 - CSLEEEWAQIQSEVWGRGSPSYGGS
GGSGSLDESFYDWFERQLG Boc Amide 

6-4-Cys - SLEEEWAQIQSEVWGRGSPSYGGS
GGSGSLDESFYDWFERQLGC Boc Amide 

6-4-Lys - SLEEEEWAQIQSEVWGRGSPSYGGS
GGSGSLDESFYDWFERQLGK Boc Amide 

- DP8 

 
GEEEEEKGPEHLCGAHLVDALYLV
CGDRGFYGYGSSSRRAPQTGIVDEC
CHRSCDLRRLENYCN 

Bio-
synthesized 
in E. coli 

Acid 

- Insulin 

 
GIVEQCCTSICSLYQLENYCN 
FVNQHLCGSHLVEALYLVCGERGF
FYTPKT 

Commerical
ly available 
from Eli 
Lilly & Co. 

Acid 
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RESULTS 

Peptides sequences #1-5 were tested for agonism at the insulin receptor A and B 

isoforms. These peptides did not display any agonism (solid lines) or any antagonism 

(dashed lines) at either receptor isoform (Figure 1, Figure 2).  
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Figure 1: Phosphorylation assay demonstrating the lack of agonism (solid) and 
antagonism (dashed) of peptides #1-3. 
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Figure 2: Phosphorylation assay demonstrating the lack of agonism (solid) and 

antagonism (dashed) of peptides #4 and #5. 
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Peptide #7 was tested for agonism at both the IRA and IRB isoforms, but did not display 

any significant agonsim at the tested concentrations (Figure 3). In addition, the #10 

mutant, in which the cysteines were replaced with serines, was also analyzed, and it was 

found that there was no significant change in agonism, relative to the disulfide-containing 

peptide (Figure 3). In light of the low activity at both receptor isoforms, peptides  #7 and 

#10 were tested for antagonism at both receptor isoforms. Despite being reported as 

agonists, both #7 and #10 displayed slight antagonism at both receptor isoforms (Figure 

4).  
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Figure 3: Phosphorylation assay demonstrating the agonism of peptides #7 and #10.  
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Figure 4: Phosphorylation assay demonstrating the antagonism of peptides #7 and 
#10. 
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Peptide #9, which contains a site 1 and site 2 motif, was tested for agonism and 

antagonism at the IRA and IRB isoforms, in both its oxidized form, where the site 2 motif 

contains a disulfide bond (Figure 5), and its reduced form, where the site 2 motif 

cysteines are present as free sulfhydryls (Figure 6). It was found that in its oxidized form, 

peptide #9 was able to completely antagonize 1 nM native insulin with IC50 values of 

7.25 nM at the IRA isoform and 3.99 at the IRB isoform (Figure 5). In its reduced form, 

peptide #9 was not an agonist at either receptor isoform, but was able to completely 

antagonize 1 nM native insulin to basal levels of phosphorylation, with IC50 values of 

2.75 nM at the IRA isoform and 5.08 nM at the IRB isoform (Figure 6). In addition, the 

mutant #11 was tested, where the site 2 motif cysteines were mutated to serines (Table 2). 

To illustrate the identical behavior of all three peptides, #9 (oxidized), #9 (reduced), and 

#11 were tested in the same phosphorylation assay. It was found that each peptide was 

capable of antagonizing native insulin to basal levels at both receptor isoforms (Figure 7), 

all with similar IC50 values (Table 3). 
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Figure 5: Phosphorylation assay demonstrating the agonsim (solid) and antagonism 
(dashed) of peptide #9, in its oxidized form.  
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Figure 6: Phosphorylation assay demonstrating the agonism (solid) and antagonism 
(dashed) of peptide #9, in its reduced form.  
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Figure 7: Phosphorylation assay demonstrating the antagonism of peptides #9 
(oxidized), #9 (reduced), and #11. IC50 values listed in Table 3. 

 

Table 3: IC50 values of peptides #9, 11. 

Reference 
Number 

IC50 (nM) 

IRA IRB 

9 (oxidized) 2.41 7.35 

9 (reduced) 5.38 9.04 

11 5.27 8.87 
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As the characterization of peptides #7-11 has shown, the disulfide bond in the site 2 

motif, previously reported as necessary for antagonism, is not necessary for antagonism 

in our in vitro assay. Therefore, we created two optimized antagonists, each containing a 

site 1 motif, peptide #4, and a site 2 motif, peptide #6. Peptide #6 is a variant of the #5 

motif, with the cysteine residues mutated to serines. To investigate whether the relative 

orientation of the binding motifs affected agonism and antagonism, we created an 

antagonist where the binding motifs were arranged site 1 to site 2 in an N- to C-terminal 

direction (#4-6), and an antagonist where the binding motifs were arranged site 2 to site 1 

in an N- to C-terminal direction (#6-4) (Table 2). In both antagonists, the binding site 

motifs are connected by the flexible linker GGSGGS.  These peptides were tested for 

agonism and antagonism at both receptor isoforms, and it was found that neither 

displayed any agonism, but both were capable of antagonizing native insulin (Figure 8), 

with similar IC50 values (Table 4). In anticipation that our biosynthetic heterodimers will 

include the insulin receptor agonist DP8 (Table 2), peptides #4-6 and #6-4 were also 

tested for antagonism against 1 nM DP8 at the IRA isoform and were found to have IC50 

values of 5.33 nM and 12.33 nM, respectively (Figure 9).  

 

To ensure that none of the antagonism observed was the result of non-specific binding or 

inhibition, the insulin C-peptide #12 was also analyzed for agonism and antagonism at 

the insulin receptors. It was found that pepitde #12 does not display any agonism or any 

antagonism at either receptor isoform (Figure 10). 
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Figure 8: Phosphorylation assay demonstrating the lack of agonism (solid) and 
antagonism (dashed) of peptides #4-6 and #6-4. IC50 values listed in Table 4. 

 

 

 
Table 4: IC50 values of peptides #4-6 and #6-4 

 
Reference Number IC50 (nM) 

IRA IRB 
#4-6 19.1 14.9 
#6-4 35.8 14.2 
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Figure 9: Phosphorylation assay demonstrating the ability of peptides #4-6 and #6-4 
to antagonize 1 nM DP8 at the IRA isoform. Peptide #4-6 displays an IC50 of 5.33 

nM and peptide #6-4 displays an IC50 of 12.34 nM. 
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Figure 10: Phosphorylation assay demonstrating the inability of peptide #12 to 
agonize or antagonize native insulin at both insulin receptor isoforms. 
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Introduction of Additional Residues for Chemical Conjugation  

The next step in this research is to incorporate unique chemical functionality into our 

peptides. This was accomplished through the addition of cysteine and lysine residues, 

since the nucleophilic side chains of these amino acids can be exploited as conjugation 

sites. Single site peptides #4 and #6 were synthesized with a cysteine at either the N- or 

C-terminus. These are referred to as #Cys-4, #4-Cys, #Cys-6, #6-Cys (Table 2). These 

peptides were found to have no agonism at either insulin receptor, and very little 

antagonism at either insulin receptor (Figure 11). We also investigated whether a C-

terminal or N-terminal cysteine affected the antagonism of the #4-6 and #6-4 antagonists. 

It was found that the addition of cysteines at either the N- or C-terminus of these peptides 

did not significantly influence their antagonism (Figure 12, Figure 13).  
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Figure 11: Phosphorylation assay demonstrating the agonism (solid) and 
antagonism (dashed) of peptides #4 and #6, with cysteine placement variations. 

None of the peptides displayed any agonism at either receptor isoform. 
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Figure 12: Phosphorylation assay demonstrating the lack of agonism (solid) and the 
antagonism (dashed) of peptide #4-6 cysteine variants. Peptide #Cys-4-6 displays an 
IC50 of  65.73 nM (IRA) and 57.57 (IRB). Peptide #4-6-Cys displays an IC50 of 30.11 

nM (IRA) and 29.90 (IRB). 
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Figure 13: Phosphorylation assay demonstrating the lack of agonism (solid) and the 
antagonism (dashed) of peptide #6-4 cysteine variants. 
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The next chemical handle investigated was lysine. Anticipating that subsequent 

biosynthetic molecules would contain lysine at the C-terminal position of the #4-6 and 

#6-4 antagonists, we investigated whether this modification would affect the antagonism 

of these peptides as monomers.  It was found that the C-terminal lysine had no effect on 

the ability of the #4-6 and #6-4 peptides to antagonize native insulin (Figure 14). In 

addition, we further investigated the #4-6-Lys antagonist by creating truncated versions, 

where the first 4, 8, and 12 N-terminal residues were deleted from the #4 peptide (Table 

2). These peptides were tested for agonism and antagonism at the insulin receptor 

isoforms (Figure 15). None of the peptides displayed any agonism (Figure 15). It was 

found that none of the truncated antagonists were able to antagonize native insulin at the 

concentrations tested (Figure 15). Noting that the loss of even the first four N-terminal 

residues of the #4-6-Lys peptide resulted in a loss of antagonistic activity, an alanine scan 

of the first four residues was conducted (Table 2). These peptides were tested for 

antagonism at the insulin receptors, and it was found that all of the alanine scan peptides 

were able to antagonize native insulin (Figure 16), with similar IC50 values (Table 5). 



77 
 

1E-3 0.01 0.1 1 10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Insulin
 #4-6-Lys

O
D

 4
50

Peptide concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 

1E-3 0.01 0.1 1 10 100

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 Insulin
 #6-4-Lys

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 
 

Figure 14: Phosphorylation assay demonstrating the antagonism of the peptides  
#4-6-Lys and #6-4-Lys. 
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Figure 15: Phosphorylation assay demonstrating the agonism (top) and antagonism 
(bottom) of N-terminal shortened antagonists. None of the shortened antagonists 

displayed any agonism or antagonism at either receptor isoform. 
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Figure 16: Phosphorylation assay demonstrating the antagonism of #4(AX)-6-Lys 
peptides, where X is the position of the alanine mutation.  

 

 

Table 5: IC50 values of the #4-6-Lys N-terminal alanine scan. 

Reference Number 
IC50 (nM) 

IRA IRB 

4(A1)-6-Lys 11.3 9.74 

4(A2)-6-Lys 15.2 15.1 

4(A3)-6-Lys 12.7 34.1 

4(A4)-6-Lys 13.8 18.8 

4-6-Lys 20.7 26.4 
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The importance of the C-terminal residues was also explored. Peptides were synthesized 

composed of the first 27, 31, and 36 residues of the #4-6 antagonist (Table 2), and these 

peptides were tested for antagonism at the insulin receptor isoforms (Figure 17). Both the 

full length #4-6-Lys and the truncated #4-6(des37-43) peptides were able to antagonize 

native insulin at both receptor isoforms with equal potency. Peptides #4-6(des28-43) and 

#4-6(des32-43) appeared to have some antagonistic activity, although only at the IRB 

isoform and at a higher concentration than either #4-6(des37-43) or #4-6-Lys. 
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Figure 17: Phosphorylation assay demonstrating the antagonism of C-terminal 
shortened antagonists. 

 

Table 6: IC50 values of C-terminal shortened #4-6-Lys antagonists. 

Reference Number 
IC50 (nM) 

IRA IRB 

#4-6(des28-43) - 1110 

#4-6(des32-43) - 1160 

#4-6(des37-43) 28.1 8.40 

#4-6-Lys 21.8 7.86 
 



81 
 

PEGylation of Peptide #4-6 

PEGylated #4-6 was created by covalently linking a 20 kDa PEG molecule to the N-

terminus of the peptide. The PEGylated and unPEGylated peptides were assayed for 

antagonism at both insulin receptor isoforms (Figure 18). It was found that PEGylation 

resulted in an approximately 5 fold reduction in potency (Table 7). 

 

1E-3 0.01 0.1 1 10 100 1000 10000
0.3

0.4

0.5

0.6

0.7

0.8

 Insulin
 #4-6
 PEGylated #4-6

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100 1000 10000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 

Figure 18: Phosphorylation assay demonstrating the antagonism of peptide #4-6 
peptide and PEGylated peptide #4-6. 

 

Table 7: IC50 values of peptide #4-6 and PEGylated peptide #4-6. 

Peptide IC50 (nM) at IRA IC50 (nM) at IRB 

4-6 9.30 11.4 

PEGylated 4-6 30.3 59.9 
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In order to demonstrate that the PEG modification was stable, analytical HPLC was used 

to monitor the peptide in ammonium bicarbonate at room temperature, phosphate 

buffered saline (PBS) at room temperature, and PBS at 37oC. Since PEG does not absorb 

light at 214 nm, but does dramatically affect the hydrophobicity of the modified peptide, 

the degradation of the peptide would result in two peaks, one for the PEGylated peptide 

and one for the unmodified peptide. Since this was not observed, we concluded that the 

PEGylated molecule is stable at room temperature and at 37oC (Table 8). 

Table 8: Analytical HPLC traces demonstrating the stability of the PEGylated 
peptide #4-6. 

Buffer 
Conditions 

t=0 t=1hr t=12 hrs 

  
25 mM 
ammonium 
bicarbonate, 
pH 8, room 
temp. 

  

 

 
PBS, pH 7, 
room temp. 

   
 
PBS, pH 7, 
37oC 
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DISCUSSION 

The peptides containing a single binding site motif, #1-5, were not capable of agonism at 

the insulin receptor isoforms, and were incapable of antagonizing 1 nM native insulin, 

and thus are unlikely candidates for inclusion in an agonist/antagonist heterodimer. The 

ideal antagonist would be capable of antagonizing insulin at a 1 to 1 molar ratio, 

however, the single binding motif peptides were incapable of antagonizing native insulin 

at even a 200:1 ratio. This may be the result of the low IR binding affinities of single 

motif containing peptides. However, peptides #7 and #9, each containing a site 1 motif 

and a site 2 motif, were capable of antagonizing native insulin, demonstrating the 

importance of multivalency in ligand/receptor interactions.  

Peptide #7 was also compared to its mutant, #10, where the two cysteine residues were 

mutated to serine residues. Peptide #10 did not display any agonism but was capable of 

antagonizing native insulin. These results demonstrate that the disulfide bond, previously 

reported as a necessary component of site 2 binding motifs, is not necessary for 

antagonism in our in vitro assay. This observation was repeated with peptide #9. The 

oxidized form of #9, in which a disulfide bond exists between the cysteines in the site 2 

motif, did not display any agonism at the insulin receptors, but was capable of fully 

antagonizing native insulin. The reduced form of this peptide, where the cysteines were 

present as free sulfhydryls, was also able to antagonize native insulin. In addition, 

mutating the two cysteine in #9 to serines, resulting in #11, did not affect the ability of 

#11 to antagonize native insulin.  
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While it was possible that the antagonism we observed was the result of non-specific 

binding to the insulin receptor, we eliminated this concern by demonstrating that the C-

peptide, #12, similar in size to the antagonists and known not to bind to the insulin 

receptor, was incapable of antagonizing native insulin.  

The observation that the disulfide bond is not necessary for antagonism is in contrast to 

the conclusions drawn by Schaffer, et al[1, 3, 4]. However, the disulfide bond motif was 

discovered as the result of a random peptide phage display screening. It is possible that 

within the context of the screening process, a disulfide provided stability or affinity, but 

that the disulfide is not necessary for in vitro antagonism. Whatever advantage or 

selection bias the disulfide presented in the screening process is lost in our in vitro 

analysis. The most important aspect of this discovery is that it allows additional cysteine 

residues to be used as orthogonal chemical handles for chemical conjugation.  

Having successfully shown that the disulfide bond is not necessary for antagonism, but 

that both a site 1 and site 2 motif are necessary, we created peptides #4-6 and #6-4, which 

contain a site 1 motif and the mutated site 2 motif. These peptides do not contain any 

cysteine residues.  We have shown that #4-6 and #6-4 are both capable of antagonizing 

native insulin. These optimized peptides are good candidates for inclusion into 

agonist/antagonist heterodimers. While the most ideal antagonist would be capable of 

antagonizing native insulin in a 1:1 ratio, peptides #4-6 and #6-4 are effective in a 10:1 

ratio. However, we anticipate that within the context of a covalently linked heterodimer, 

these antagonists will be more effective since they will be recruited to the insulin receptor 

by the binding of the insulin receptor agonist. 
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Having created effective, cysteine-free antagonists we then created variations of the #4, 

#6, #4-6 and #6-4 peptides, to show that the inclusion of a non-native cysteine at either 

terminus did not affect their agonistic or antagonistic properties. It was found that the 

inclusion of cysteine residues at either terminus did not affect their activity. Another 

potentially useful modification, lysine, was also investigated. Anticipating that 

subsequent biosynthetic heterodimers would include a C-terminal lysine residue, peptides 

#4-6-Lys and #6-4-Lys were investigated. Both peptides continued to be effective at 

antagonizing native insulin at both receptor isoforms, thus confirming their potential to 

act as antagonists in a biosynthetic heterodimer. 

 
It was also investigated whether peptides #4-6-Lys and #6-4-Lys could be further 

optimized by deletion studies. It was demonstrated that within the #4-6-Lys peptide, the 

first four residues of the #4 site 1 motif peptide are crucial for antagonism, although not 

in a residue specific manner. It may be that the first four amino acids help stabilize the 

secondary structure of the peptide. It may also be possible that the full length peptide 

presents the N-terminal amine in the correct position, relative to the rest of the peptide, 

for antagonism. 

 

Deletion studies from the C-terminus of the #6 site 2 motif demonstrated that only the 

first 36 residues are necessary for full antagonism. This may be an important for atom 

economy and optimization in subsequent heterodimers.  
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PEGylation of the #4-6 antagonist demonstrated that an N-terminally linked PEG 

molecule does not dramatically affect antagonism, and therefore demonstrated that 

PEGylated #4-6 antagonist is viable candidate for an extended-action antagonist.  

 

The next chapter of this research will describe the creation of heterodimers through 

biosynthetic means. These heterodimers will consist of an insulin receptor agonist and 

several of the peptides characterized and optimized in this chapter.  

 

METHODS  

Historical Perspective 

Whereas this research has focused on peptides as insulin receptor antagonists, peptides 

and proteins are ubiquitous in life, providing structural support, enzymatic activity, and 

hormonal signaling, and represent both therapeutic targets and therapeutic agents.  

 

In both prokaryotic and eukaryotic systems, proteins and peptides are synthesized by 

ribosomes, which utilize tRNA to promote the formation of peptide bonds between the N- 

and C-terminus of amino acids[10]. This synthesis proceeds from the N- to C-terminus of 

the protein or peptide[10]. While prokaryotic systems such as E. coli can and have been 

exploited for eukaryotic peptide synthesis, this “biosynthesis” is limited to naturally 

occurring amino acids, and the resultant peptide must be purified from the cell lysate.  

Synthetic chemistries are also available for peptide synthesis. The most notable and 

widely used approach for synthetic peptide synthesis is referred to as solid phase peptide 

synthesis.  
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Solid phase peptide chemistry is robust and practical methodology, but it represents the 

culmination of decades of research and refinement. In solid phase, the first amino acid of 

the peptide is anchored to an insoluble resin through its C-terminus. The next amino acid 

forms a peptide bond with the first, and amino acids are added sequentially until the 

synthesis is complete. While superficially simplistic, solid phase peptide synthesis 

requires four distinct and orthogonal chemistries. First, the N-terminus of each incoming 

amino acid requires a reversible protecting group. This protecting group ensures that 

incoming amino acids form a peptide bond with the nascent peptide chain and do not 

polymerize. Secondly, each incoming amino acid requires activation at the C-terminus, to 

promote the formation of the peptide bond. Third, any side chains with reactive 

functional groups must also be reversibly protected, to prevent interference with peptide 

bond formation. Finally, the resin itself requires chemical functionality such that once 

synthesis is complete, the peptide can be liberated from the solid support, and any 

remaining protecting groups removed.  

 

All of these chemistries now exist, but their development has been a long and laborious 

process. Prior to their advent, the synthesis of even a dipeptide was exceedingly difficult. 

In 1882, Theodor Curtius published the first known peptide synthesis, which resulted in a 

benzoylglycylglycine dipeptide[11, 12].  It was not until 1901 that the first free dipeptide, 

glycyl-glycine, was synthesized by Emil Fischer, who went on to win the 1902 Nobel 

Prize in Chemistry[11].  The  first major breakthrough in synthetic protein chemistry was 

the creation of an N-terminal reversible protecting group,  the benzyloxycarbonyl group, 
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also called the Cbz or Z group (Figure 20)[11]. This protecting group was invented by 

Max Bergmann and his student Leonidas Zervas in 1922[11]. In 1957 a new reversible 

protecting group, tert-butyloxycarbonyl (Boc), was introduced by Carpino, McKay and 

Albertson[12]. This protecting group is acid-labile, and was used in combination with 

Cbz groups to synthesize peptides up to 39 residues in length[12] (Figure 21). Currently, 

when Boc is used as the N-terminal protecting group, the side chains are protected with 

benzyl-based groups (Table 9), which are removed at the end of the synthesis by 

treatment with anhydrous HF.  

O Cl

O
 

Figure 19: Benzyloxycarbonyl (Cbz) reversible protecting group. 
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Figure 20: Acid promoted deprotection of tert-butyloxycarbonyl protected amino 
acid. 

 

Another advance in the field of solid phase peptide chemistry was the introduction of 9-

fluorenylmethyloxycarbonyl (Fmoc), a base-labile N-terminal protecting group, in 

1970[13] (Figure 22). When Fmoc is used as the N-terminal protecting group, reactive 

side chains are protected with t-butyl based protecting groups (Table 9), which are acid 

labile and removed at the end of the synthesis by treatment with TFA.  
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Figure 21: Deprotection of an Fmoc-protected amino acid. The Fmoc protecting 
group is deprotonated with a mild base, shuch as piperdine (shown here), which 
leads to an intramolecular rearrangement that generates carbon dioxide and the 

free amine. 

 

In addition to N-terminal protecting groups, solid phase peptide synthesis requires 

coupling reagents that activate the C-terminus of the incoming amino acid. Historically, 

the first coupling reagents were carbodiimides. Carbodiimides react with the C-terminus 

of amino acids to yield a labile ester that is activated for nucleophilic attack by a free 

amine (Figure 23).  
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Figure 22: Carbodiimide activation of a deprotonated amino acid, followed by 
nucleophilic attack. 
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Carbodiimides have one key disadvantage: the intermediate O-acyl urea can rearrange to 

an inert N-acyl urea (Figure 24), which results in inefficient coupling. This disadvantage 

was overcome by the introduction of triazole-based coupling reagents, which react with 

the activated amino acid to form an ester (Figure 25)[12].  Many current solid phase 

peptide syntheses utilize a carbodiimide/triazole coupling scheme. In addition, there are 

some triazole based coupling reagents, such as 3-(Diethoxyphosphoryloxy)-1,2,3-

benzotriazin-4(3H)-one, also known as DEPBT, which do not require carbodiimide 

activation (Figure 26).  
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Figure 23: A deprotonated amino acid reacts with a carbodiimide coupling reagent, 
forming an activated O-acyl urea. This intermediate can undergo a rearrangement 

to produce an N-acyl urea, which is inactive. 
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Figure 24: Reaction of a triazole based coupling reagent (HOBt) with a 
carbodiimide activated amino acid. 
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Figure 25: Reaction of DEPBT with deprotonated amino acid, resulting in a reactive 
ester. 

 
Despite the introduction of a reversible protecting group and triazole-based coupling 

reagents, peptide synthesis remained a laborious process, due to the need to isolate 

products from excess reagents after every cycle, a process during which loss of product 

compounded. The field of peptide chemistry leapt forward in 1963, when Bruce 

Merrifield published his first paper introducing solid phase peptide synthesis[11, 12, 14]. 

Ultimately, his invention would lead to automated synthesis of large peptides with 

increased purity, an achievement worthy of the Nobel Prize in 1984[11]. 

 

In the Merrifield synthesis, the growing polypeptide is tethered at its C-terminus to an 

insoluble resin. This allows for a greater excess of reagents to drive the reaction, since 

excess reagents can be rinsed away while the resin is filtered and washed.  

 

There are two possible ways to grow a peptide on a solid support – either by anchoring 

the peptide through the N- or through the C-terminus of the growing chain. Both 

methodologies were initially explored, anchoring through the N-terminus by the 

Merrifield research group[11], and anchoring through the C-terminus by Letsinger and 

Kornet[15].  Ultimately, anchoring through the C-terminus was abandoned, due to a base-

promoted side reaction that results in racemized peptides (Figure 27). 
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Figure 26: Base (B) promoted racemization due to intramolecular cyclization. This 
occurs exclusively in N- to C-terminal peptide synthesis. 

 

Merrifield created the first insoluble resin appropriate for Boc solid phase synthesis, 

chloromethylpolystyrene, also referred to as the “Merrifield Resin” (Figure 28)[16]. 

Other Boc-compatible resins with improved stability and performance were quickly 

introduced. In 1974, Merrifield and Mitchell introduced the tert-

butoxycarbonylaminoacyl-4-(oxymethyl)-phenylacetamidomethyl resin, the PAM resin 

(Figure 29), which is more stable under the acidic conditions required for Boc 

removal[17]. The next noteworthy resin to be developed was the benzydrylamine (BHA) 

resin[18], which was quickly followed by the methylbenzydralamine (MBHA) resin[19]. 

These resins allow for the creation of C-terminal amide peptides, which is relevant since 

many biologically active peptides are present as C-terminal amides[18].  

polystyrene

Cl
 

Figure 27: Chloromethylpolystyrene, the Merrifield resin. 

 

HO

N
H

O

polystyrene  

Figure 28: tert-butoxycarbonylaminoacyl-4-(oxymethyl)-phenylacetamidomethyl 
(PAM) resin. 
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H2N

polystyrene

X  

Figure 29: BHA (X=H) and MBHA (X=CH3) resins. 

 

Resins used in Fmoc solid phase peptide synthesis must be base-stable and acid-labile.  

The first Fmoc compatible resin, the Wang resin (Figure 31)[20], results in peptides with 

a C-terminal acid. Other notable resins include the peptide amide linker (PAL) resin[21], 

and the Rink amide resin[22], both of which result in a peptide with a C-terminal amide 

(Figure 32).   
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Figure 30: Wang resin. 
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Figure 31: (Left) PAL resin. (Right) Rink amide resin. 
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Currently, the combination of reversible N-terminal protecting groups, effective C-

terminal activation, and insoluble resins make both Boc and Fmoc effective ways to 

create peptides of interest.  

 

Current Research Protocols 

All peptides were synthesized using either Boc or Fmoc chemistry (Table 2). All peptides 

were created using automated synthesis. For Boc chemistry, synthesis was run on 

Applied Biosystems 430A Peptide Synthesizers. Peptides were synthesized on MBHA 

resin (Midwest Bio-Tech), 0.70 mmol reactive amines per gram. Protected amino acids 

(Midwest Biotech, Table 9 ) were added in 2 mmol aliquots, and 0.28 g of resin was used 

to achieve a 10:1 substitution ratio. All amino acids were L isomers unless otherwise 

specified. Standard reaction cycle consisted of 2 flow washes of dimethylformamide 

(DMF), 2 flow washes of 100% trifluoroacetic acid (TFA), and 1 min batch wash with 

TFA. Amino acid activation is performed separately, where 3.8 mL of 0.5 M DEPBT and 

1 mL of diisopropylethylamine (DIEA) is added to 2 mmol of amino acid, and mixed by 

nitrogen bubbling for 1 minute. Activated amino acid is then transferred to the reaction 

vessel containing the resin and coupled for 15 minutes with vortexing. After coupling, 

resin is washed with 3 flow washes of DMF.   

 

Peptides were cleaved from the resin using gaseous HF. The resin, with covalently bound 

peptide, was placed inside a Kel-F (polychlorotrifluoroethene) reaction vessel, 0.5 mL of 

p-cresol (scavenger) was added, and the reaction vessel evacuated. Gaseous HF was 
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introduced to the reaction vessel and condensed by cooling the exterior of the vessel with 

a mixture of solid CO2 and methanol. Once ~10 mL of HF condensed in the bottom of the 

reaction vessel, the reaction vessel was sealed and the resin/HF mixture was stirred for 1 

hour. During this time the reaction vessel was kept at 4oC using a water/ice bath. After 1 

hour, the reaction vessel was evacuated. Anhydrous diethyl ether was introduced to the 

vessel, resulting in the precipitation of the cleaved peptide. Ether was then filtered from 

the resin and free peptide precipitate. The resin and peptide mixture was then stirred in 

20% acetonitrile, 1% acetic acid. Peptides dissolve in the 20% acetonitrile solution, and a 

second round of filtration separates the resin from the peptide in solution. The peptide 

solution could then be analyzed for mass and hydrophobicity, on Beckman System Gold 

qualitative HPLC followed by MALDI-TOF on a Bruker Autoflex III spectrometer 

(Figure 33), or on Agilent C8 / Quadripole LC/MS (Figure 36). The peptide solution was 

then lyophilized. For Boc syntheses, the  percent yield of crude product varied between 

10 and 30%. After lyophilization, peptides were purified using reverse phase 

chromatography, where the A buffer consisted of 0.1% aqueous TFA and the B buffer 

consisted of 90% acetonitrile, 0.1% TFA (Figure 34). Most peptides were purified on a 

10-40% B gradient over 1 hour, although shallower gradients and longer run times were 

occasionally used to ensure pure product, as judged by LC/MS or analytical HPLC and 

MALDI (Figure 35). The stationary phase column used during purifications was a 

Phenomenex Luna silica-based C8 column. Fractions were collected in 30 second 

intervals and analyzed for purity using LC/MS or analytical HPLC and MALDI. Pure 

fractions were pooled and lyophilized. Purification typically resulted in a ~50% loss of 

peptide. Lyophilized peptides were dissolved in 50 mM ammonium bicarbonate buffer, 
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pH 8, and analyzed for absorbance at 280 nm using UV-Vis spectroscopy on a Thermo 

Scientific Nano-Drop 1000 spectrophotometer. Extinction coefficients for each peptide 

were calculated as the sum of the number of trptophan residues and tyrsonine residues 

multiplied by their respective molar extinction coefficients (Equation 1). 

 

Molar extinction coefficient = (Trp x 5500) + (Tyr x 1490)   Equation 1 

 

 

For Fmoc chemistry, syntheses were run on Applied Biosystems 433A Peptide 

synthesisizers. Peptides were synthesized on H-Rink-Amide-Chemmatrix resin (PCAS 

BioMatrix, Inc). Resin contained 0.45 mmol reactive amines per gram, and 0.22 g was 

used to achieve a 10:1 substitution ratio. On the Applied Biosystems machine, the 

chemical reactions of  Fmoc synthesis are each referenced by a mode (Table 10). Repeats 

of the modes (Table 11) result in peptide synthesis. For  Fmoc synthesis, the percent yield 

varied between 15 and 25%. After synthesis, resin was cleaved from the peptide using 

90% TFA, with 2.5% each of H2O, β-mercaptoethanol, thioanisol and triisopropylsilane 

to function as scavengers for carbocations and free t-butyl groups, and to prevent cysteine 

oxidation. Cleavage reaction was mixed for 2 hours. After cleavage, the peptidyl-TFA 

solution was filtered from the resin. Addition of  diethyl ether precipitated the peptides. 

Ether was removed by centrifugation and decanting. The peptide was then dissolved in 

20% acetonitrile, 1 % acetic acid, analyzed by LC/MS (Figure 36) and lyophilized. After 

lyophilization peptide was purified with reverse phase chromatography, under the same 
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conditions as Boc synthesized peptides. Purification typically resulted in a 40% loss of 

peptide. 

 

For peptides containing a disulfide bond, the disulfide was formed in the presence of 

Clear-Ox resin (Peptides International). Clear Ox resin was washed sequentially with 

DCM, DMF, methanol, deionized water, and 50% acetonitrile solution. Peptides with 

cysteine residues were then dissolved in 50% acetonitrile and added to the resin, and 

stirred at room temperature for 2 hours. LC/MS and Elmann’s reagent were used to test 

for the presence of the disulfide. If successful, Clear-Ox resin is filtered from the solution 

and the peptide solution is lyophilized to recover the oxidized peptide. 

 

For the the #4-6 peptide modified by PEGylation, 2 mg of of pure peptide #4-6 was 

reacted with 2x molar equivalent of  20 kDa PEG-SCM (Creative PEGWorks) in 500 µL 

of 50 mM sodium bicarbonate buffer, pH 9, and monitored with analytical HPLC and 

MALDI. Analytical HPLC demonstrated the appearance of a peak with a later retention 

time. Preparative HPLC was used to purify the PEGylated peptide, which was then 

lyophilized. After lyophilization, the peptide was dissolved in 50 mM ammonium 

bicarbonate buffer for phosphorylation assay analysis, as well as in PBS buffer for the 

stability study. 
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Table 9: Protecting groups for reactive side chains in Boc and Fmoc chemistries. 

Amino acid / Single letter 

abbreviation 

Side chain protecting group, 

Boc 

Side Chain protecting 

group, Fmoc 

Alanine / A - - 

Cysteine / C 4-MeBzl Trt 

Aspartic acid / D OcHx OtBu 

Glutamic acid / E OcHx OtBu 

Phenylalanine / F - - 

Glycine / G - - 

Histidine / H BOM Trt 

Isoleucine / I - - 

Lysine / K Cl-Z Boc 

Leucine / L - - 

Methionine / M - - 

Asparagine / N Xan Trt 

Proline / P - - 

Glutamine / Q - Trt 

Arginine / R Tos Pbf 

Serine / S Bzl tBu 

Threonine / T Bzl tBu 

Valine / V - - 

Trptophan / W CHO Boc 

Tyrosine / Y Br-Z tBu 
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Figure 32: (Left) Analytical HPLC of crude peptide #Cys-4 synthesized via Boc 
chemistry. (Right) MALDI of crude peptide #Cys-4 demonstrating the correct 

molecular weight of 2052 has been acheived. 

 

 

Figure 33: Purification of peptide #Cys-4 on a C8 column, 10-80%B, 75 minutes, 
with fractions collected every 30 seconds. Fractions 48-49 were judged to be pure by 
analytical HPLC and MALDI and were lyophilized. Representative of all peptides 

synthesized via Boc chemistry. 

 



100 
 

 

 

Figure 34: (Top) Analytical HPLC of purified peptide #Cys-4. (Bottom) MALDI of 
purified peptide #Cys-4. Representative of all peptides synthesize via Boc chemistry 

and purified via reverse phase HPLC. 
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Table 10: Description of modes of Fmoc synthesis. 

Mode Description 

a Activation: previous amino acid cartridge is ejected. 2.1 mL of NMP solvent 
and 1 mL of 1 M 6-Cl-HOBt is added to cartridge and mixed for 15 minutes. 

After mixing, 1 mL of 1 M DIC is added. 
b Piperidine deprotection: NMP wash followed by 3 minute wash of 20% 

piperidine / NMP, then an additional 15 min wash. Reaction vessel is then 
drained and washed with NMP. 

c DCM washes: 8 DCM washes 

d NMP washes: 6 NMP washes 

e Transfer and washing: transfers the activated amino acid to the reaction vessel 

f Coupling: 20 minutes of vortexing to mix resin and incoming amino acid. 

g Resin wash: reaction vessel is washed with NMP. 

 

Table 11: Fmoc synthesis of a peptide of n amino acids in length using previously 
described modes. 

Cycle Repeats Mode 

1 1 d 

2 1 aibde 

3 n-1 afgbde 

n 1 fffbdc 
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Figure 35: LC/MS analysis of crude peptide #6. Top to bottom: absorbance at 214 
nm, ion counts, and observed m/z values at t=5.6 minutes. The molecular weight of 
peptide #6, 2470, is represented by charge states 1235 and 823. This LC/MS trace is 

typical of peptides synthesized using Fmoc chemistry. 

 

Figure 36: Reverse phase HPLC purification of peptide #6, 10-40% acetonitrile, 
0.1% TFA, 1 hr, fractions collected every 30 seconds. Fractions 90-105 were judged 

to be pure by LC/MS. Representative of all peptides synthesized via Fmoc 
chemistry. 
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Figure 37: LC/MS analysis of pure peptide #6, as synthesized using Fmoc chemistry 
and purified using reverse phase HPLC. Top to bottom: absorbance at 214 nm, ion 

counts, and observed m/z values at 6.1 minutes. This LC/MS trace is typical of 
peptides synthesized by Fmoc chemistry and purified via HPLC. 
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In vitro analysis 

Phosphorylation assays were run in human insulin receptor-transfected HEK293 cells in 

DMEM high glucose medium, supplemented with 10% bovine growth serum (BGS, 

HyClone), antibiotics (gentamicin, hygromycin B) and 10 mM HEPES. Cells were plated 

4 x 104 cells/80 μL well in DMEM in a poly-L-lysine coated 96 well tissue culture plate. 

Cells were checked for adherence under a microscope. The peptides to be investigated 

and the control peptide, native insulin, were dissolved in bicarbonate and diluted to 1 μM 

concentration in DMEM 0.5% BSA. Through serial dilution, a gradient of peptides was 

prepared in a 96 well polypropylene plate. 20 μL of each peptide concentration was 

added to the cell plate. If the assay is investigating the antagonism of the peptide of 

interest, 20 μL of media is removed from the cell plate and 20 μL 5x (5 nM) concentrated 

insulin is added to the cell plate, prior to the addition of peptide of interest. Next, the cells 

are incubated for 15 minutes at 37oC, 5% CO2. After incubation, the cells were fixed by 

the addition of 10% formalin, 100 μL/well, and incubated for 20 minutes at room 

temperature. The liquid contents of each well are then removed by inverting the plate. 

The wells are then washed 2x with 200 μL/well PBS-0.1% Triton X-100. Next, 200 μL 

blocking buffer (2% BSA in PBS-0.1% Triton X-100) is added to each well and 

incubated for 1 hour at room temperature. Plates are then washed twice with PBS-0.1% 

Triton X-100. Anti-phospho-insulin receptor 4G10-HRP (UBI) was prepared at a 

1:10000 dilution in blocking buffer, and 50 μL was added to each well and incubated 3h 

at room temperature or overnight at 4 oC. Plates are then washed 4x with PBS-0.1% 

Triton X-100. Finally, 100 μL/well of room temperature TMB single solution is added to 

each plate, and incubated for 5 minutes, after which 50 μL of stop solution (1 M HCl) 
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was added to each well. The optical density of each well at 450 nm was monitored using 

a Titertek Multiskan MCC/340 plate reader. Optical density at 450 nm was analyzed as a 

function of the concentration of peptide using Origin Pro 9.0 graphing software. EC50 and 

IC50 values were determined using a sigmoidal fit for all data points. 

Chemical reactions and schematics displayed in this chapter were created with 

ChemBioDraw Ultra 13.0. 
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Chapter 3 

Biosynthetic Heterodimers 
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ABSTRACT  

This chapter discusses the creation and analysis of biosynthetic heterodimers. These 

heterodimers are expressed in E. coli, and consist of an A, B, and C domain. The A and B 

domains are identical in sequence to DP8, an insulin receptor agonist. The C domain of 

these constructs contains one of the previously characterized peptides of interest. Based 

on the synthetic studies in chapter 2, peptides #4, #6, #4-6, #6-4, and #12 were chosen for 

incorporation into heterodimers. In order to facilitate lys-C cleavage, these peptides 

contained either a lysine residue at the N-terminus, C-terminus, or both termini. Based on 

the position of the lysine residues, treatment with lys-C resulted in a two chain 

heterodimer, or released the C domain entirely. Heterodimers were analyzed in a 

phosphorylation assay for agonism and antagonism at both insulin receptor isoforms. It 

was found that heterodimers with fully removable C domains yielded an agonist molecule 

that is fully potent and active at the insulin receptor, indicating that the agonist portion of 

the heterodimers is formed correctly. Heterodimers with partially cleavable C domains 

were also investigated. Many of these peptides displayed reduced potency, or no activity. 

However, the #6-4 peptide, when positioned at the C-terminus of the B chain, displayed 

reduced activity without a decrease in potency. This represents the first instance of a 

potent, reduced activity heterodimer, and confirms our hypothesis that heterodimers can 

be used to alter the maximal activity of insulin-based analogs.  
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INTRODUCTION 

While solid phase peptide synthesis represents an effective way to create peptides, it is 

limited both in maximal size and in the formation of disulfide bonds. As stated 

previously, our goal is to create heterodimers consisting of an insulin receptor agonist and 

an insulin receptor antagonist. Solid phase synthesis is sufficient to create the antagonist 

portion of the heterodimer, but the agonist portion is more complex. Native insulin 

contains three disulfide bonds, two of which are between chains and one of which is 

intrachain. While it is possible to create A and B chains separately and use orthogonal 

protecting schemes to promote disulfide bond formation[1], this is a laborious process 

and requires careful separation of isoforms, since a single disulfide mis-match results in 

an inactive peptide.  

 

In addition, native insulin is relatively insoluble in aqueous solutions, and therefore we 

chose to begin our investigations into heterodimers with a more practical insulin receptor 

agonist, DP8 (Table 1), which is an “insulinized” version of insulin growth factor 1 (IGF-

1). Native IGF-1 displays a roughly two fold decrease in potency at the insulin receptor, 

relative to native insulin (Figure 1)[1]. Due to modifications such as eliminating the C 

domain and introducing the two key residues TyrB16 and LeuB17[1], DP8 has full activity 

and potency at the insulin receptor isoforms (Figure 1). In this chapter, DP8 was used as 

the agonist portion of our heterodimers.  
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Table 1: Insulin, IGF-1 and DP8 sequence comparison. DP8 represents and “insulinized” IGF-1 peptide, where the IGF-1 A and B 

chains have been mutated at key residues so that DP8 has full activity and potency at the insulin receptor. Native IGF-1 also contains a 

C chain, which is omitted in DP8. 

A 
chain 

Insulin G I V E Q C C T S I C S L Y Q L E N Y C N  

 IGF-1 G I V D E C C F R S C D L R R L E M Y C A 
 DP8 G I V D E C C H R S C D L R R L E N Y C N 
 
B 
chain 

Insulin F V N Q H L C G S H L V E A L Y L V C G E R G F F Y T P K T 

 IGF-1  G P E T L C G A E L V D A L Q F V C G D R G F Y F N K P T 
 DP8  G P E H L C G A H L V D A L Y L V C G D R G Y       
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Figure 1: Phosphorylation assay demonstrating the relative potency and activity of 
native human insulin, native human IGF-1, and DP8. 

 

The heterodimers presented in this chapter were produced in E. coli.  E. coli has long 

been used for biosynthesis, due to the propensity of the bacteria to engage in lateral gene 

transfer. Lateral gene transfer is the transfer of genetic material between species of 

bacteria, as opposed to between generations of bacteria. These transfers can result in 

increased metabolic capabilities, pathogenicity, or antibiotic resistance. Lateral gene 

transfer has been recognized since as early as the 1950s and is responsible for some of the 

antibiotic resistance seen today[2]. The propensity of bacteria to engage in lateral gene 

transfer can be exploited to introduce plasmids coding for a protein of interest.  In 1977, 

the first human protein created using E. coli biosynthesis was somatostatin, a 14 amino 

acid hormone[3]. Interestingly, somatostatin suppresses the secretion of a number of 

other hormones, including insulin[3]. Insulin itself was subsequently produced in E. coli, 

although initially the A and B chains were synthesized separately, in separate bacterial 

strains[4].  This reflects one of the original drawbacks of using E. coli as a vehicle for 

biosynthesis – the cytoplasm, where proteins are produced, is a highly reducing 
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environment. For proteins containing disulfide bonds, such as insulin and the insulinized 

IGF proteins used in this research, a reducing environment can render the proteins 

inactive or promote disulfide shuffling. It was shown, however, that mutations which 

disrupted the natural reducing pathways of thioredoxin and glutathione reductase in E. 

coli resulted in an increase in disulfide bond formation in biosynthetic peptides[5]. This 

research utilized a strain of E. coli referred to as OrigamiDE3, which contains mutations 

in the thioredoxin reductase and glutathione reductase pathways. Genes coding for our 

peptides were introduced in a plasmid, downstream of a lac promoter, which makes the 

cells responsive to induction with IPTG, a lactose analog[6]. 

A potential setback in E. coli biosynthesis is the propensity for recombinant proteins to 

aggregate, sometimes in conjunction with a lack of solubility within the cellular 

environment. The solution to this problem is to introduce a small ubiquitin-related 

modifier (SUMO) protein at the N-terminus of the recombinant proteins, which also 

includes a TEV protease cleavage site. This results in an increase in protein folding as 

well as an increase in solubility[7]. In addition, inclusion of a poly-histidine tag in the 

SUMO fusion protein allows for nickel-column purification of the protein of interest. 

After induction and sonication, the cell lysate is poured over a resin that contains nickel 

ions. The poly histidine tag binds reversibly to the column, while the remaining cell 

lysate is washed away. The protein of interest can then be eluted with a concentrated 

imidizole solution. After elution, the peptide is treated with TEV protease, which cleaves 

the SUMO/polyhisitidine tag.  The peptide can then be purified and assayed in vitro.  
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In order to create heterodimers, we designed DP8 molecules that contain a peptide of our 

choosing as the C domain. These molecules are expressed in E. coli as a single chain 

construct. A lysine residue was included at either the N-terminus, C-terminus, or at both 

termini of the C domain. Since DP8 does not include any additional lysine residues, 

treatment with the endopeptidase lys-C results in two chain construct with the peptide of 

interest bound, via a peptide bond, to the N-terminus of the A chain, the C-terminus of 

the B chain, or removed from the construct entirely.  

 

Based on our results from chapter 2, we chose the site 1 binding motif #4, the site 2 

binding motif #6, the two-motif constructs #4-6 and #6-4, and the negative control #12 as 

C domain peptides. These peptides were placed as the C domain, with lysines at their N-, 

C-, or at both termini. This results in peptides with fully lys-C removable domains (Table 

2), peptides where lys-C cleavage results in the antagonist positioned at the N-terminus of 

the A chain (Table 3), and peptides where lys-C cleavage results in the antagonist 

positioned at the C-terminus of the B chain (Table 4). These peptides were tested for 

agonism and antagonism as a single chain construct, as well as in their lys-C treated two-

chain form. 

 

We anticipate that this approach will be successful for several reasons. We will be 

introducing non-native C domains into DP8, but C domains occur naturally in both 

insulin and IGF-1, which is the molecular basis of DP8[8, 9]. Even though the C domain 

of insulin is removed post-translationally[10], it plays a critical role in proper disulfide 
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formation by maintaining unimolecularity during folding[11]. Thus, our heterodimers are 

a mimic of naturally occurring peptides and will likely be properly folded. 

 

Assuming that our heterodimers fold correctly, there are still a few potential obstacles in 

the creation of a high potency, lowered activity dimer. Some of our dimers are analogous 

to split proinsulin, in which the C domain is not completely removed from the proinsulin 

molecule. Split proinsulin exhibits reduced potency but full activity[12]. It is possible that 

our heterodimers will merely exhibit split-proinsulin-like reductions in potency without 

reductions in maximal activity. Another potential limitation is that small C domains can 

diminish the ability of insulin like molecules to signal, due to a lack of flexibility in the 

C-terminus of the B chain[13]. 

 

In spite of these potential difficulties, we investigated the ability of E. coli to create 

biosynthetic heterodimers, and tested these dimers for activity at the insulin receptor A 

and B isoforms. 

 

Table 2: Heterodimers with fully lys-C removable C domains 

Peptide Domains Sequence 
DP38 A: DP8 

B: DP8 
C: #4-6 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKGSL
DESFYDWFERQLGGGSGGSSLEEEWAQIQSEVWGR
GSPSYKGIVDECCHRSCDLRRLENYCN 

DP72 A: DP8 
B: DP8 
C: #12 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKRRE
AEDLQVGQVELGGGPGAGSLQPLALEGSLQKGIVD
ECCHRSCDLRRLENYCN 
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Table 3: Heterodimers, where lys-C cleavage results in antagonists positioned at the 
N-terminus of the A chain. 

Peptide Domains Sequence 
DP66 A: DP8 

B: DP8 
C: #4 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKGSL
DESFYDWFERQLGGIVDECCHRSCDLRRLENYCN 

DP68 A: DP8 
B: DP8 
C: #6 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKSLE
EEWAQIQSEVWGRGSPSYGIVDECCHRSCDLRRLEN
YCN 

DP37 A: DP8 
B: DP8 
C: #4-6 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKGSL
DESFYDWFERQLGGGSGGSSLEEEWAQIQSEVWGR
GSPSYGIVDECCHRSCDLRRLENYCN 

DP51 A: DP8 
B: DP8 
C: #6-4 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKSLE
EEWAQIQSEVWGRGSPSYGGSGGSGSLDESFYDWF
ERQLGGIVDECCHRSCDLRRLENYCN 

DP70 A: DP8 
B: DP8 
C: #12 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYKRRE
AEDLQVGQVELGGGPGAGSLQPLALEGSLQGIVDEC
CHRSCDLRRLENYCN 

 
 

Table 4: Heterodimers, where lys-C cleavage results in antagonists positioned at the 
C-terminus of the B chain. 

Peptide Domains Sequence 
DP67 A: DP8 

B: DP8 
C: #4 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGYGSLDE
SFYDWFERQLGKGIVDECCHRSCDLRRLENYCN 

DP69 A: DP8 
B: DP8 
C: #6 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYSLEEE
WAQIQSEVWGRGSPSYKGIVDECCHRSCDLRRLEN
YCN 

DP36 A: DP8 
B: DP8 
C: #4-6 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYGSLD
ESFYDWFERQLGGGSGGSSLEEEWAQIQSEVWGRG
SPSYKGIVDECCHRSCDLRRLENYCN 

DP50 A: DP8 
B: DP8 
C: #6-4 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYSLEEE
WAQIQSEVWGRGSPSYGGSGGSGSLDESFYDWFER
QLGKGIVDECCHRSCDLRRLENYCN 

DP71 A: DP8 
B: DP8 
C: #12 

GEEEEEKGPEHLCGAHLVDALYLVCGDRGFYRREA
EDLQVGQVELGGGPGAGSLQPLALEGSLQKGIVDEC
CHRSCDLRRLENYCN 
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RESULTS  
 
Heterodimers, with fully lys-C removable C domains  

DP38 and DP72 contain identical DP8 A and B chains. These peptides also include the 

short sequence GEEEEEK, at the N-terminus of the A chain, in order to increase 

solubility. DP38 and DP72 each contain a peptide in the C domain, flanked by lysine 

residues. In DP38, the C domain is composed of the #4-6 antagonist (Table 2). In DP72, 

the C domain is composed of the #12 insulin C peptide (Table 2).  As a single chain 

molecule, DP38 does not display any agonism at either receptor isoform (Figure 2).  

However, the single chain DP72 construct does display full activity at the insulin receptor 

isoforms, albeit with greatly reduced potency (Figure 3). This is reasonable, since DP72 

is analogous to human proinsulin, which is known to activate the insulin receptors with 

reduced potency[14].  

 

DP38 and DP72 were subsequently treated with lys-C. In both constructs, the peptide 

within the C chain is flanked by lysine residues, and therefore treatment with lys-C 

liberates the C domain. The only additional lysine in the construct is in the GEEEEEK 

solubility sequence, and therefore treatment with lys-C also removes the solubility 

sequence. The result of the enzymatic cleavage is a two chain form of DP8, as well as 

either free #4-6 antagonist or free C peptide. The lys-C treated peptides were purified in 

order to isolate the two chain agonist. The agonists isolated from both these constructs 

(DP38” and DP72”) were fully potent and fully active at both insulin receptor isoforms 

(Figure 4, Figure 5).  
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Figure 2: Phosphorylation assay demonstrating the agonism of DP38. 
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Figure 3: Phosphorylation assay demonstrating the agonism of DP72. 
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Figure 4: Phosphorylation assay demonstrating the activity of  DP38".  
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Figure 5: Phosphorylation assay demonstrating the activity of DP72”.  
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Heterodimers, where lys-C cleavage results in antagonists positioned at the N- 
terminus of the A chain 

The next sequence of peptides was also synthesized biosynthetically as a single chain 

peptide, with the A and B chains consisting of DP8, and the C domain consisting of either 

the site 1 binding motif #4 (DP66), the site 2 binding motif #6 (DP68), the two site 

antagonist #4-6 (DP37), the two site antagonist #6-4 (DP51), or the #12 insulin C-peptide 

(DP70) (Table 3). These peptides also contained the GEEEEEK solubility sequence and a 

single additional lysine residue, such that treatment with lys-C results in a heterodimer 

where the peptide of interest is positioned at the N-terminus of the A chain (Figure 6).   

 

DP66 contains the site 1 binding motif #4 in the C chain, and as a single chain molecule 

it shows slight agonism at either insulin receptor isoform (Figure 7). Treatment with lys-

C creates the two chain form of the molecule, with the site 1 motif #4 bound to the N-

terminus of the A chain. The two chain form is also slightly active at both insulin 

receptor isoforms (Figure 7). 

 

DP68 contains the site 2 binding motif #6 within the C domain. As a single chain 

molecule, DP68 displays agonism at the IRA and IRB isoforms, although with greatly 

reduced potency (Figure 8). The lys-C treated two-chain form of the molecule displays 

even less agonism at the receptor isoforms (Figure 8).  
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Figure 6: Schematic representing the transition from a single chain molecule to a 
two chain heterodimer via treatment with lys-C. Dotted lines represent a peptide 

bond, solid lines represent a disulfide bond. 
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Figure 7: Phosphorylation assay demonstrating the agonism of the single chain 
DP66 and the lys-C treated, two chain form of DP66. 

 

1E-3 0.01 0.1 1 10 100

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
 Insulin
 DP68
 DP68 + lys C

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 

Figure 8: Phosphorylation assay demonstrating the agonism of the single chain 
DP68 and the lys-C treated, two-chain form of DP68.  
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The next pair of heterodimers contains the antagonists with two binding motifs as the C 

domain. In DP37, the C domain is antagonist #4-6 (Table 3). In DP51, the C domain is 

antagonist #6-4 (Table 3). Both constructs contain a single lysine residue such that 

treatment with lys-C results in a two chain molecule with the antagonist positioned at the 

N-terminus of the A chain.  

 

As single chain constructs, neither DP37 nor DP51 display any agonism at either insulin 

receptor (Figure 9, Figure 10). Treatment with lys-C creates the two chain form of these 

molecules, but again, no agonism was detected at either insulin receptor isoform (Figure 

9, Figure 10).  

 

The final heterodimer in this series contains the #12 peptide as the C domain, with a 

single lysine residue such that treatment with lys-C results in a two chain molecule with 

peptide #12 positioned at the N-terminus of the A chain (Table 3).  As a single chain 

molecule, this heterodimer displays full activity at both insulin receptor isoforms, 

although with reduced potency (Figure 11). Treatment with lys-C does not result in any 

increase in activity or potency (Figure 11).  

 



123 
 

1E-3 0.01 0.1 1 10 100

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
 Insulin
 DP37
 DP37 + lys C

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100

0.1

0.2

0.3

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 

Figure 9: Phosphorylation assay demonstrating the agonism of the single chain 
DP37 and the lys-C treated, two chain form of DP37.  
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Figure 10: Phosphorylation assay demonstrating the agonism of the single chain 
DP51 and the lys-C  treated, two chain form of DP51. 
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Figure 11: Phosphorylation assay demonstrating the agonsim of the single chain 
DP70 and the lys-C treated, two chain form of DP70. 
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Heterodimers, where lys-C cleavage results in antagonists positioned at the C-
terminus of the B chain 

The next series of peptides were also synthesized as a single chain constructs, where the 

A and B chains consist of DP8, and the C domain consists of #4 (DP67), #6 (DP69), #4-6 

(DP36), #6-4 (DP50), or #12 (DP71) (Table 4). These peptides contained the GEEEEEK 

solubility tag and a single additional lysine residue, such that treatment with lys-C results 

in a heterodimer where the peptide of interest positioned at the C-terminus of the B chain 

(Figure 12).   

 

DP67 contains the #4 site 1 binding motif in the C domain. It is identical to DP66 except 

for the placement of the key lysine residue.  Much like DP66, as a single chain DP67 

shows full activity but reduced potency at the insulin receptor A isoform, and reduced 

activity at the B isoform (Figure 13). However, treatment with lys-C creates a two chain 

molecule where the #4 binding motif is positioned at the C-terminus of the B chain. As a 

two chain molecule, DP67 has full activity and only slightly reduced potency at both 

insulin receptor isoforms (Figure 13).  

 

DP69 contains the #6 site 2 binding motif in the C domain, and is identical to DP68 

except for the placement of the single lysine residue. As a single chain peptide, DP69 

shows full activity but reduced potency at both receptor isoforms (Figure 14). Treatment 

with lys-C results in a two chain molecule, with the #6 motif positioned at the C-terminus 

of the B chain, but there was no change in the potency or activity, relative to the single 

chain molecule (Figure 14). 
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Figure 12: Schematic representing the transition from a single chain molecule to a 
two chain heterodimer via treatment with lys-C. Dotted lines represent a peptide 

bond, solid lines represent a disulfide bond. 
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Figure 13: Phosphorylation assay demonstrating the agonism of the single chain 
DP67 and the lys-C treated, two chain form of DP67. 

1E-3 0.01 0.1 1 10 100
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55 Insulin
 DP69
 DP69 + lys C

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRA

1E-3 0.01 0.1 1 10 100

0.15

0.20

0.25

0.30

0.35

0.40

O
D

 4
50

Peptide Concentration (nM)

Phosphorylation at IRB

 

Figure 14: Phosphorylation assay demonstrating the activity of the single chain 
DP69 and the lys-C treated two chain form of DP69. 
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The next set of biosynthetic heterodimers contained the two binding motif antagonists in 

the C domain. DP36 contained the #4-6 antagonist. DP50 contained the #6-4 antagonist. 

DP36, as a single chain molecule, shows a small amount of agonism at both insulin 

receptor isoforms (Figure 15). Treatment with lys-C results in the two chain form of the 

molecule, which shows no agonism at either receptor isoform (Figure 15). It was also 

investigated whether the two chain form of DP36 was able to antagonize native insulin. 

When titrated against constant 1 nM insulin, high concentrations of lys-C treated DP36 

show antagonism at both receptor isoforms (Figure 16).  

 

DP50, identical to DP36 except for the relative order of the binding sites within the C 

domain, has radically different activity. As a single chain molecule, it is inactive at both 

insulin receptor isoforms (Figure 17). However, treatment with lys-C creates the two 

chain form of the molecule, and a significant increase in activity is seen at both insulin 

receptor isoforms (Figure 17). This observation was further validated by comparing the 

lys-C treated forms of DP36 and DP50 within the same phosphorylation assay (Figure 

18). This demonstrates the significant difference in activity between these two dimers.  

 

The final heterodimer in this series is DP71, which contains the #12 peptide in the C 

domain.  As a single chain molecule, DP71 shows reduced potency but full activity at the 

insulin receptor (Figure 19). When treated with lys-C the two chain form of the molecule 

is generated, with the insulin C peptide ligated to the C-terminus of the B chain. The lys-

C treated form of the peptide regains some, but not all of the potency of native insulin 

(Figure 19). 
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Figure 15: Phosphorylation assay demonstrating the agonism of the single chain 
DP36 and the lys-C treated, two chain form of DP36. 
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Figure 16: Phosphorylation assay demonstrating the antagonism of the two chain 
form of DP36 by titrating lys-C treated DP36 against constant 1 nM insulin. 
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Figure 17: Phosphorylation assay demonstrating the agonism of single chain DP50 
and the lys-C treated, two chain form of DP50. 
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Figure 18: Phosphorylation assay demonstrating the agonism of the lys-C treated, 
two chain forms of DP36 and DP50.  
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Figure 19: Phosphorylation assay demonstrating the agonism of the single chain 
DP71 and the lys-C treated, two chain form of DP71.  
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DISCUSSION 

Heterodimers DP38 and DP72 yielded two key observations. First, and most importantly, 

when the C domain of these heterodimers is completely removed, the resultant agonist 

portion of the molecule is a fully active and potent agonist of the insulin receptor 

isoforms. This observation demonstrates that the agonist portion is formed correctly, and 

therefore biosynthesis is a viable method for creating heterodimers. Secondly, DP38 and 

DP72 demonstrate that activity of a heterodimer as a single chain entity can be influenced 

by the peptide present in the C domain. DP72 is capable of fully activating the insulin 

receptors, albeit with reduced potency. However, DP38, as a single chain entity, displays 

no activity at the insulin receptor. There are several possible explanations for this 

observation. First, it is possible that DP38 is also capable of activating the insulin 

receptors, but that a decrease in potency has put the activity outside of the range of tested 

concentrations. Another explanation is that the specific C domain, in this case peptide #4-

6, sterically precludes binding, or does not allow sufficient flexibility in the B chain of 

DP8 to accommodate binding. A third possibility is that the peptide #4-6 is itself binding 

to the insulin receptor and precluding the agonist portion of the molecule from activating 

the receptor. Regardless of the mechanism of action, DP38 shows that the activity of a 

heterodimer can be influenced by the C domain in a sequence specific manner. 

 

Subsequent heterodimers offer additional insight. Heterodimers DP66 and DP68 each 

contain a single binding motif in the C domain. As single chain molecules, they show 

some activity at the highest concentrations assayed. This suggests that as a single chain 

molecule, a single binding motif in the C domain is capable of affecting potency. The 
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relatively small size of the #4 and #6 motifs may also be responsible for the decrease in 

potency, since previous research has shown that single chain insulins with small C 

domains lose activity at the insulin receptor[13]. The constrained nature of the small C 

domain, however, is removed by treatment with lys-C, which results in a two chain 

molecule with the binding motif positioned at the N-terminus of the A chain. However, as 

two chain molecules, a decrease in activity is observed. It is ambiguous whether this 

decrease is the result of specific binding to the insulin receptor by the #4 or #6 peptide, or 

whether it is simply the result of hindering the binding of the agonist portion of the 

molecule. The N-terminal residues of the agonist A chain are critical for binding[1], at it 

may be that the additional flexibility granted by cleavage with lys-C allows the #4 and #6 

peptides to disrupt binding. Regardless, these heterodimers do not display the desired 

characteristics of high potency but lowered maximal activity. 

 

DP37 and DP51 contain two binding motifs within the C domain, either as #4-6 or #6-4. 

As single chain molecules, both constructs are inactive at the insulin receptor isoforms. 

Treatment with lys-C, which results in the antagonists positioned at the N-terminus of the 

A chain, does not result in any increase in agonism. As with the single-site heterodimers, 

these peptides are precluding insulin receptor activation, either through a sequence 

specific antagonism or through non-specific steric preclusion.  

 

DP70, the heterodimer with the #12 insulin C peptide as the C domain, begins to address 

the question of whether the previous heterodimers were acting in a sequence specific or a 

non-specific manner. It has been shown that the C peptide alone does not bind to the 
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insulin receptor[15], and our research has shown that the #12 C peptide alone is neither 

an agonist nor an antagonist at the insulin receptor isoforms (chapter 2). Also, the C 

peptide is similar in length to the two binding motif antagonists used in DP37 and DP51. 

As a single chain construct, DP70 displays full activity at the insulin receptors, with 

reduced potency. This is not unexpected, because DP70 is a mimic of proinsulin, which is 

also known to activate the receptor with reduced potency[14]. When treated with lys-C, 

resulting in the #12 peptide positioned at the N-terminus of the A chain, DP70 does not 

gain any activity or potency. Lys-C treated DP70 is analogous to split proinsulin, which is 

known to have reduced biological activity[12]. Therefore, the fact that we see reduced 

potency in both the single chain and two chain forms of DP70 conforms to previous 

observations of proinsulin and split proinsulin.   

 

By comparing the activity of all the other heterodimers to DP70, we have evidence that 

lack of agonism in these heterodimers is sequence specific. It appears that single binding 

site motifs are capable of dramatically decreasing the potency of these molecules relative 

to insulin, whether the binding motif is present as the C domain or is positioned at the N-

terminus of the A chain. Dimers containing the two binding site motif antagonists, #4-6 

and #6-4, are completely inactive at the insulin receptor, regardless of whether the 

antagonist is present as the C domain or is positioned at the N-terminus of the A chain, 

although it appears that the antagonist is slightly more effective at suppressing activity 

when positioned at the A chain. 
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Heterodimers where the peptide of interest is positioned at the C-terminus of the B chain 

yielded more illuminating results. DP67, which contains the #4 binding site 1 motif, was 

fully active but displayed decreased potency as a single chain molecule. Treatment with 

lys-C, however, restored nearly all of the potency, resulting in a two chain molecule with 

full potency and full activity. This demonstrates that it is the restricted nature of the 

single chain molecule that is responsible for the suppressive action of the binding site 1 

motif #4. In contrast, DP69, which contains the site 2 motif #6, displayed full activity and 

reduced potency whether the #6 motif was present as the C domain, or positioned at the 

C-terminus of the B chain. Again, regardless of the mechanism of action, the decreased 

potency but full activity of these peptides makes them fall short of our aim of high 

potency, but lowered activity.  

 

Heterodimers DP36 and DP50 both contain two binding site motifs in the C domain. 

DP36 contained the #4-6 antagonist. As a single chain molecule, it displayed no agonism. 

As a two chain molecule, where the #4-6 antagonist is positioned at the C-terminus of the 

B chain, it also displayed no agonism. The two chain form was capable of antagonizing 

native insulin, indicating that despite the lack of agonism, two chain DP36 is binding to 

the insulin receptor isoforms. This indicates that the lack of activity of DP36 is not 

simply due to a lack of binding.  

 
DP50 contains the #6-4 antagonist as the C domain. As a single chain molecule, it 

displayed no agonism. As a two chain molecule, with the #6-4 antagonist positioned at 

the C-terminus of the B chain, a significant increase in maximal activity was observed. 

This is in contrast to DP36, and indicates that the relative orientation of the binding sites 
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within the antagonist portion of the heterodimer affects the maximal activity of the 

heterodimer.  The mechanism of action of this reduced activity is unclear, and the 

phosphorylation assay alone does not offer mechanistic insight. However, there are 

several plausible explanations. First, it is possible that the antagonist portions of these 

heterodimers are binding to unoccupied binding sites in the insulin receptor, and that the 

#4-6 orientation is more effective than the #6-4 orientation. Secondly, it is possible that 

the antagonist portion of these molecules is “folding back” and interacting with the DP8 

portion of the dimer. This would most likely be a non-specific hydrophobic interaction, 

and it may be possible that the #4-6 antagonist binds more tightly, thus more effectively 

suppressing activity. Despite the ambiguity of the mechanism, the results of DP71, which 

contains the #12, non-binding peptide, demonstrate that this is a sequence-specific effect.  

 
The sequence-specific reduced activity of DP50 is groundbreaking for several reasons. 

First, this represents the first instance of a heterodimer displaying full potency but 

reduced maximal activity at the insulin receptor isoforms. This is both a fusion of 

previous insulin research as well as a technical achievement. Our observations with DP50 

validate our hypothesis and simultaneously open up a new avenue of research for insulin-

based therapies.  

Despite this achievement, there is room for advancement. The lowered activity of DP50 

represents a single alternative maximal activity. Ideally, we would like to be able to direct 

maximal activity to a range of values. In addition, the agonist portion of our 

heterodimers, DP8, is not the ideal candidate for a heterodimer-based insulin therapy, 

since DP8 has the potential to induce mitogenic effects through the IGF-1 receptor. 
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Therefore, the next step in this research is to create heterodimers where native insulin 

functions as the agonist. 

 

METHODS 

Biosynthesis occurred in E. coli OrigamiDE3 cells, by transfection and induction of 

plasmids coding for the peptide of interest. OrigamiDE3 cells are resistant to kanamycin 

and tetracycline. Plasmids were created using a modified version of the Clontech “In-

fusion” protocol[16], where overlapping primers and PCR were used to create the gene of 

interest, which was then incorporated into a plasmid. Primers were designed by Dr. 

Pengyun Li of the DiMarchi lab and were purchased from IDT technologies. PCR was 

used to amplify plasmids for transfection. DNA sequencing was performed by the IU 

biotechnology center to confirm that the sequence was correct. Every plasmid encoded 

for resistance to ampicillin. The plasmids also encoded for the protein of interest, along 

with an N-terminal SUMO/polyhistidine tag. The SUMO/polyhistidine/protein coding 

region was downstream of a lac promoter, in order to induce protein expression. The 

plasmid was then inserted into competent cells via heat shock in a 40oC water bath for 1 

minute, followed by incubation on ice for 30 minutes. After transformation, these cells 

were introduced to 10 mL of LB media, with the antibiotics kanamaycin, tetracycline and 

ampicillin. After 1 hour of aerobic growth at 37oC, with shaking, the entire media was 

added to 200 mL of LB media, with antibiotics, and shaken at 37oC overnight. Next, the 

200 mL culture was added to a 1 L culture, with antibiotics, which was allowed to grow 

to an optical density of 0.8, after which it incubated with shaking for 1 hr at 18oC, and 

then induced with 400 µL of 0.2 mM IPTG (a lactose analog), to promote protein 
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synthesis. The induced culture was incubated with shaking overnight at 18oC, after which 

the culture was spun down by centrifugation and the excess media decanted and 

discarded. The pellet of cells was then sonicated in a 10mM imidizol buffer (50 mM 

sodium phosphate, 300 mM NaCl) to lyse the cells. The cell lysate was then poured over 

a nickel affinity column containing Ni-NTA agarose matrix (Qiagen). Due to the 

polyhistidine tag, the protein of interest is removed from the cell lysate by binding to the 

nickel column. The column was then washed with 30 mL aliquots of increasing 

concentrations of imidazole in 50 mM sodium phosphate, 300 mM NaCl, pH 8. 

Sequentially, 10, 15, and 40 mM imidazole solutions were used. The biosynthetic peptide 

was then eluted from the affinity column with 50 mL of 500 mM imidazole buffer.  The 

eluent was then treated with TEV protease to remove the SUMO tag. In order to purify 

the peptide, the peptide/SUMO mixture was first desalted on a G-25 Sephadex matrix 

with 25 mM sodium bicarbonate buffer. Next, the protein mixture was purified via anion 

exchange with Q-Sepharose tertiary amine matrix, with an increasing gradient of 20 mM 

tris(hydroxymethyl)aminomethane (Tris), 300 mM NaCl, 10% glycerol (Figure 20).  
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Figure 20: Anion exchange purification of peptide DP50. Fractions 46-48 were 
analyzed with HPLC and MALDI and found to contain peptide of the correct 

hydrophobicity and mass. 

 
Peptides were analyzed for purity using analytical HPLC and MALDI. To generate the 

two chain form of the peptide, an aliquot of endopeptidase lys-C was added to 

concentrated (~500 µM) peptide solutions in 50 mM ammonium bicarbonate buffer, pH 

8. Cleavage of the peptide was confirm with MALDI.  

 
Activity of the heterodimers was investigated in vitro using a phosphorylation assay, as 

described in chapter 2. Optical density at 450 nm was graphed as a function of peptide 

concentration in OriginPro 9.0 graphing software. Schematics presented in this chapter 

were created using ChemBioDraw Ultra 13.0. 
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Chapter 4 

Semisynthetic Heterodimers 
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ABSTRACT 

This chapter describes semisynthetic heterodimers created by linking previously 

investigated insulin receptor antagonists to native insulin via a disulfide bond. Native 

insulin was modified at the B29 residue to contain an activated thiol group, which reacts 

with any free sulfhydryl. Therefore, the introduction of a peptide with a cysteine residue 

results in disulfide bond formation and creates a heterodimeric complex with insulin. It 

was found that a specific insulin heterodimer, with previously characterized peptide #6 

chemically conjugated through a C-terminal cysteine, displayed only 20-30% of the 

maximal activity of native insulin. This implies that the binding motif of peptide #6 is 

sufficient to suppress the ability of native insulin to activate its receptors. An alanine scan 

of the #6 peptide revealed that the leucine residue at position two is a key regulator of the 

maximal activity of the heterodimer. Mutating this leucine residue resulted in a series of 

peptides with similar EC50 values, but varying levels of maximal activity. It was found 

that the maximal activity correlated with hydrophobicity of the side chain at position two. 

This set of heterodimers represents an tunable molecular tool for investigations of the 

biological significance of the in vitro maximal activity, as it relates to the in vivo 

pharmacology and regulation of  blood glucose by insulin-based peptides.  
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INTRODUCTION 

This chapter describes the synthetic heterodimers created by conjugating insulin receptor 

antagonists to native insulin. In the previous chapter, the agonist portion of the 

heterodimer was DP8, a biosynthetic insulin analog. DP8 was used due to its increased 

aqueous solubility and served as a useful proof of concept that heterodimers could 

display altered maximal activity. However, native insulin is the most physiologically 

relevant agonist of the insulin receptor, and one goal of this research is to minimize the 

number of chemical differences necessary to achieve altered pharmacology. Therefore, 

we created semisynthetic heterodimers, where the agonist portion of the molecule is 

native insulin.  Based on the biosynthetic observations, we chose to position the 

antagonist at the C terminus of the B chain of insulin, as this is the orientation that 

resulted in variable maximal activity in the DP8-based biosynthetic heterodimers. 

 

There are several synthetic chemistries that can be utilized to conjugate peptides to one 

another. The largest challenge in creation of these specific heterodimers is the 

identification of chemistry that is specific, irreversible, and occurs under conditions that 

do not disrupt the native structure of insulin, which has three disulfide bonds. The field of 

peptide chemistry encompasses many conjugation techniques, such as native chemical 

ligation, click chemistry, the Staudinger ligation, and disulfide bond formation, all of 

which are described below. However, due to the chemically delicate nature of native 

insulin, only disulfide bond formation was used to create the desired heterodimers. 
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The beginnings of what is now called native chemical ligation can be traced as far back 

as 1953 to a report by Wieland, et al[1]. They report the ligation of two peptides through 

an N-terminal cysteine and a C-terminal thioether. After displacement of the thiolate by 

the nucleophilic N-terminal amine, an intramolecular S to N acyl transfer forms a native 

peptide bond (Figure 1). One disadvantage of native chemical ligation is the necessity of 

a cysteine residue, which may not be native to a convenient ligation position. Another, 

more significant disadvantage is the potential for disulfide bond-scrambling under 

reaction conditions. Insulin, one of the targets for ligation, contains 3 disulfide bonds and 

the scrambling of even a single bond results in an inactive molecule.  
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H2N
peptide fragment 2

SH

O

peptide fragment 1 S

O

H2N
peptide fragment 2
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peptide fragment 1 N
H

SH

peptide fragment 2

O

 

Figure 1: Native chemical ligation. 

 

Another conjugation chemistry currently utilized is expressed protein ligation. This 

synthetic methodology is a mimic of a naturally occurring peptide element, an intein. An 

intein is a self-splicing unit of a protein, analogous to a genetic intron, in that it is not 

incorporated into the final product. Inteins are spliced similarly to the mechanism of 

native chemical ligation. Due to the constrained and twisted nature of the intein 

secondary structure, an intramolecular N to S acyl shift occurs, followed by a 

transthioesterification and S to N acyl shift, which results in the excision of the intein and 

the formation of an amide bond (Figure 2)[2]. This approach is often used to introduce 

differently labeled protein segments or unnatural amino acids. While an effective ligating 
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method, this chemistry is not the best for our heterodimers because it requires the 

synthesis of the intein, and the preponderance of thioethers could lead to disulfide bond 

shuffling. 
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Figure 2: Schematic of expressed protein ligation. 

 

Another  relatively new but commonly used ligation method is termed “click chemistry.” 

It employs an alkyne and an azide to form a stable triazole ring (Figure 3). Click 

chemistry can be performed at room temperature and under mild conditions, although it 

does require a copper catalyst, which can present challenges in complete removal prior to 

in vivo study[3]. 
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Figure 3: Click chemistry. 
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A fourth ligation chemistry is the Staudinger ligation, which was introduced in 2000 by 

Saxon and Bertozzi[4]. In this reaction, a bond is formed between an azide and a triaryl 

phosphine (Figure 4). The intermediate in this reaction is an aza-ylide, which is 

susceptible to hydrolysis. However, the inclusion of an electrophilic “trap” promotes an 

intramolecular cyclization that ultimately yields a stable amide bond. The triaryl 

phosphine can be used as a chemical handle, although this does incorporate an 

intervening triaryl phosphine oxide group between the two moieties[5]. A variation on 

this reaction can provide a “traceless” ligation, where the phosphine is hydrolyzed, 

leaving a simple amide bond[5]. A disadvantage of the Staudinger ligation is that it does 

have cross-reactivity with lysine residues[6].  
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Figure 4: The Staudinger ligation. 
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Figure 5: The traceless Staudinger ligation. 

 

While all of these chemistries represent potential methodologies for forming 

heterodimers, in this research, we chose to promote the formation of a disulfide bond 

between native insulin and our antagonist peptides. To do so, we first chemically 

modified native human insulin by exploiting the unique reactivity of its only lysine 

residue, which is at position B29. Since the B chain has only 30 residues, this lysine is 
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ideally situated near the C terminus of the B chain and is not involved in receptor 

binding. We were able to modify this residue by reacting native insulin with an N-

hydroxysuccinimide (NHS) ester at an aqueous pH of 10. At this pH, only the ε-amine of 

the lysine residue reacts with the ester, sparing reactivity at the two unprotected N-

terminal amines. The NHS ester contains a trityl-protected thiol at the other end of the 

reagent, such that native insulin can be modified to form an amide at B29 that extends to 

include the protected thiol function group. Removal of the trityl-protecting group, 

followed by activation with 2,2′-dithiobis(5-nitropyridine) (DTNP) yields an insulin 

analog that will readily react with free thiols in aqueous solution at relatively low pH to 

form a disulfide bond. Therefore, an array of heterodimers could by synthesized by 

reacting the activated insulin with peptides that contain a single cysteine residue (Table 

1). The advantage of this approach is that it minimizes the number of modifications 

required to covalently bond unique antagonist peptides to insulin. It is also highly 

specific, and compatible with peptides created by solid phase peptide synthesis. The 

heterodimers created using this approach were tested for the degree of biological action at 

the insulin receptor isoforms. Further optimization of the specific sequence of the 

antagonist followed by analogous conjugation to insulin led to the discovery of a library 

of heterodimers possessing high potency and variable maximal activity.  
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O S
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S
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pH 10.2

 

Figure 6: Reaction scheme illustrating the chemical modification of the insulin B29 
residue to generate an analog with a trityl-protected thiol group. 
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Table 1: Names and sequences of peptides containing single cysteine residues 

Peptide Reference Number Sequence 

Cys4 CGSLDESFYDWFERQLG 

4Cys CGSLDESFYDWFERQLGC 

Cys6 CSLEEEWAQIQSEVWGRGSPSY 

6Cys CSLEEEWAQIQSEVWGRGSPSYC 

6(des1-5)Cys CSLEEEWAQIQSEVWGRGSPSYC 

6(A1)Cys CALEEEWAQIQSEVWGRGPSYC 

6(A2)Cys CSAEEEWAQIQSEVWGRGSPSYC 

6(A3)Cys CSLAEEWAQIQSEVWGRGSPSYC 

6(L2)Cys* CSLEEEWAQIQSEVWGRGSPSYC 

6(dL2)Cys** CSLEEEWAQIQSEVWGRGSPSYC 

6(I2)Cys CSIEEEWAQIQSEVWGRGSPSYC 

6(V2)Cys CSVEEEWAQIQSEVWGRGSPSYC 

6(F2)Cys CSFEEEWAQIQSEVWGRGSPSYC 

6(W2)Cys CSWEEEWAQIQSEVWGRGSPSYC 

6(Y2)Cys CSYEEEWAQIQSEVWGRGSPSYC 

6(Q2)Cys CSQEEEWAQIQSEVWGRGSPSYC 

 

*Identical to #6Cys, renamed to emphasize the identity of the residue at position two. 

**dL refers to the d-stereochemistry of the leucine residue at position two. All other 
amino acids are of l-sterochemistry.  
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RESULTS 

Native insulin was modified through the use of a specific NHS ester to create an insulin 

molecule with one additional thiol functional group at the B29 lysine (Figure 6). In order 

to ensure that this modification did not interfere with binding to the insulin receptor, the 

modified insulin was tested for agonism at both insulin receptors (Figure 7). It was found 

that the modified insulin was still capable of fully activating the insulin receptor 

isoforms, although with slightly reduced potency.  

 

The modified insulin was chemically activated for thiol-conjugation by removing the 

trityl protecting group with TFA and reacting the resulting free thiol with DTNP. The 

activated insulin was purified and subsequently conjugated to peptides containing a free 

thiol to yield a specific disulfide bond. 

 

The first set of heterodimers consisted of the modified insulin and the site 1 binding motif 

possessed by peptide #4 (Table 1). Insulin conjugated to #Cys4 (#Insulin-Cys-4) 

displays only a small change in maximal activity and a small decrease in potency when 

compared to native insulin (Figure 8). However in contrast the insulin conjugated to 

#4Cys (#4-Cys-Insulin) does display some degree of antagonism at both receptor 

isoforms at higher peptide concentrations (Figure 8). 
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Figure 7: Phosphorylation assay demonstrating the agonism of the B29 modified 
insulin.   
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Figure 8: Phosphorylation assay demonstrating the agonism of #Insulin-Cys-4 and 
#4-Cys-Insulin. 
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The next set of heterodimers prepared and biologically characterized contains the site 2 

binding motif possessed by peptide #6 (Table 1). When the heterodimer is conjugated to 

#Cys-6 (#Insulin-Cys-6), there appears a slight decrease in both potency and maximal 

activity (Figure 9). However, when insulin is conjugated to #6-Cys, the heterodimer is 

completely inactive at both insulin receptor isoforms (Figure 10). This is not merely the 

result of a lack of receptor binding, since this peptide, #6-Cys-Insulin, is capable of fully 

antagonizing exogenously added native insulin (Figure 10). This was a surprising result, 

since our previous work has shown that single binding site motifs, including #6Cys, are 

incapable of antagonizing native insulin when applied as a non-covalent addition (in 

trans). Therefore, the inclusion of this peptide into a heterodimer results in a molecule 

that has emergent antagonism, relative to what is observed for the individual constituent 

peptides.  

 

We further investigated the activity of the #6-Cys-Insulin heterodimer by creating a 

truncated version of the #6 motif, #6(des1-5)-Cys, which is devoid of the first five N-

terminal amino acids (Table 1). The #6(des1-5)-Cys-Insulin heterodimer was tested for 

activity at the insulin receptor isoforms, and it was found that removal of the N-terminal 

pentapeptide of the #6 binding motif restored the heterodimer to full activity, and full 

potency (Figure 11). This astonishing result demonstrates that the antagonistic activity of 

this heterodimer can be completely controlled by the first five residues of the #6 motif. 
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Figure 9: Phosphorylation assay demonstrating the agonism of #Insulin-Cys-6. 
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Figure 10: Phosphorylation assay demonstrating the agonism (solid) and 
antagonism (dashed) of #6-Cys-Insulin. 
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Figure 11: Phosphorylation assay demonstrating the agonism of the #6-Cys-Insulin 
heterodimer and the truncated version, #6(des1-5)-Cys-Insulin. 
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To interrogate this structure-activity relationship further, an alanine scan of the N-

terminal residues of the #6 motif was employed to create heterodimers with site-specific 

mutation of the conjugated #6-Cys. Relative to the N-terminus of the #6 sequence, an 

alanine in the first position had almost no effect upon bioactivity, relative to the unaltered 

heterodimer (Figure 12). An alanine in the second position, however, restored almost all 

of the potency and activity to the heterodimer (Figure 12).  An alanine in the third 

position seemed to shift the potency of the heterodimer, but had little effect on maximal 

activity (Figure 12). Based on these results, we shifted the attention to the second amino 

acid in the site 2 binding motif, a leucine. A series of mutations to the second position of 

the #6-Cys antagonist were made (Table 1) and these peptides were similarly conjugated 

via a disulfide to B29 modified insulin. Most of these mutations affected the maximal 

activity of the heterodimer without a large shift in potency. It was found that leucine and 

isoleucine had very similar, low activities (Figure 13). However, substituting d-leucine at 

position two resulted in a low activity heterodimer with decreased potency (Figure 14).  

This suggests that there is an appropriate size, hydrophobicity and chirality that results in 

low activity heterodimers.  
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Figure 12: Phosphorylation assay demonstrating the agonism of the #6-Cys-Insulin 
alanine scans. 
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Figure 13: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(I2)-Cys-Insulin. 
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Figure 14: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(dL2)-Cys-Insulin. 
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Based upon the observations with leucine, isoleucine, and d-leucine, we decided to 

further explore hydrophobic residues at position two.  Substituting to valine at position 

two results in a slight increase in activity (Figure 15). Substituting to phenylalanine at 

position two results in a further increase in activity, and begins to approach 50% activity 

at both receptor isoforms (Figure 16).  Substituting to tryptophan at position two results 

in a heterodimer with approximately 60% the activity of native insulin (Figure 17), and 

the final substitution to tyrosine, results in a heterodimer with approximately 70% the 

activity of native insulin (Figure 18).  The introduction of a more hydrophilic residue, 

glutamine, was also investigated at position two (Figure 19). This mutation resulted in a 

shift in potency, without a significant decrease in maximal activity. The most satisfying 

aspect of these modifications is that all of the heterodimers with hydrophobic residues at 

position two maintain a high inherent potency. This represents the discovery of a library 

of peptides with high inherent potency, but variable maximal activity, as was the primary 

goal of this research.  
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Figure 15: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(V2)-Cys-Insulin. 
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Figure 16: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(F2)-Cys-Insulin. 
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Figure 17: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(W2)-Cys-Insulin. 
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Figure 18: Phosphorylation assay demonstrating the agonism of #6(L2)-Cys-Insulin 
and #6(Y2)-Cys-Insulin. 
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Figure 19: Phosphorylation assay demonstrating the decrease in potency but high of 
maximal activity of #6(Q2)-Cys-Insulin. 
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DISCUSSION 

The first and most important observation in this chapter is that, in contrast to previous 

studies with monomeric peptides (chapter 2) and biosynthetic heterodimers (chapter 3), it 

was found that a single binding site motif, #6, is sufficient to suppress the activity of 

native insulin, when positioned at the C terminus of the insulin B chain. This was 

unexpected, since in chapter 2, it was demonstrated that the #6 peptide was incapable of 

antagonizing native insulin on a 1:1 ratio.  In chapter 3 it was demonstrated that the #6 

peptide, positioned at the C-terminus of the B chain, decreased the potency but did not 

affect the maximal activity of the heterodimer. Operating under the assumption that two 

binding motifs, such as #4-6, were required at the C terminus of the B chain, the 

heterodimer #6-Cys-Insulin was originally envisioned as a negative control. However, 

after observing the low activity of #6-Cys-Insulin, further investigation into the #6 motif 

was conducted. It was found that removing the first five N-terminal residues resulted in a 

fully active molecule, indicating that the first five residues were necessary for 

suppressing activity. An alanine scan revealed that the most important residue, in terms 

of maximal activity, is the leucine at position two. 

 

The introduction of alternate hydrophobic amino acids at position two in the #6 motif 

created a set of peptides that do not vary greatly in their potency, compared to native 

insulin. Every peptide containing a hydrophobic residue at position two had a potency, as 

measured by EC50 values, near to the potency of native insulin (Figure 20). However, 

comparing the maximal activity, as a function of percent maximal activity of native 

insulin, we see that we have created a range of peptides from low to high maximal 
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activity (Figure 21). The peptides with mutations most similar to the original leucine 

residue (isoleucine and valine) show no significant increase in maximal activity. 

However, a valine residue begins to increase in maximal activity, while phenylalanine, 

tryptophan, and tyrosine all increase in maximal activity, with tyrosine achieving nearly 

70% the activity of native insulin. An alanine mutation results in 80% of the maximal 

activity of insulin. This suggests that there is an appropriate size and hydrophobicity 

required for antagonism at the insulin receptors. Deviating too far in size, such as the 

much larger tyrosine and tryptophan, or the much smaller alanine, results in an increase 

in activity at the insulin receptors.  
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Figure 20: Comparative EC50 values, as a percentage of native insulin, of #6(X2)-
Cys-Insulin heterodimers, where X represents the amino acid at position two. Data 

shown for both receptor isoforms. 

 

 

Figure 21: Comparative maximal activity, as a function of percentage of native 
insulin, of #6(X2)-Cys-Insulin heterodimers, where X represents the amino acid at 

position two. Data shown for both receptor isoforms. 
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The dependence on side chain hydrophobicity suggests that some form of non-specific 

hydrophobic binding is occurring to alter the maximal activity of these molecules at the 

insulin receptor isoforms. Under this hypothesis, the trend observed in the maximal 

activity of our mutants is easily explained. The isoleucine, leucine, and d-leucine mutants 

all contain the same number of methylene groups and comparable hydrophobic radii. 

They therefore appear to hydrophobically bind to either the insulin receptor or the 

conjugated insulin partner to comparably disrupt signaling. Valine, which differs by one 

less methylene group, is almost as effective at suppressing activity. More significant 

structural deviations from leucine, such as phenylalanine and tryptophan, result in higher 

maximal activity. Phenylalanine and tryptophan are both relatively hydrophobic residues, 

but they are larger and contain conjugated aromatic rings. The in vitro results show that 

these larger hydrophobic side chains are less effective at suppressing maximal activity, 

presumably due to a less effective hydrophobic association to whichever site is mediating 

this disruption in activity. When comparing phenylalanine and tyrosine, it can be seen 

that the inclusion of a hydroxyl group greatly impairs the suppression of activity. Even 

more dramatically, a glutamine side chain does not suppress activity but does decrease 

inherent potency. Taken together, these results show that suppression of activity is 

modulated by position two in the site 2 binding motif, and that hydrophobic residues at 

this position are the most effective suppressive agents.  

 

These results, while powerful in illustrating the ability to create heterodimers with 

tunable maximal insulin receptor activity, do not address the underlying mechanism of 
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this phenomena. There are several reasonable possibilities, and the actual mechanism 

may be a combination of several of the following.  

 

First, it is possible that the agonist and the antagonist are themselves interacting through a 

non-specific hydrophobic interaction. Support for this hypothesis comes from the 

biosynthetic and synthetic heterodimers. In our biosynthetic heterodimers, it was found 

that the orientations of the binding sites influenced maximal activity. Later, in our 

synthetic heterodimers, it was found that the leucine in position two of the #6 site 2 

binding motif was critical to the degree of maximal activity. Applying the lessons learned 

from the synthetic heterodimers, we can examine the relative position of the leucine 

residue in the biosynthetic heterodimers. In DP37, where the antagonist was arranged in a 

#4-6 orientation, the key leucine was distal to the native insulin agonist portion of the 

molecule. This heterodimer exhibited very low maximal activity. In contrast, DP50 

contained #6-4, where the key leucine residue is more proximal to the insulin agonist, and 

this heterodimer was a partial agonist. If the key interaction is a hydrophobic binding 

between the #6 motif and the insulin agonist, DP37 may contain sufficient flexibility to 

allow for the leucine residue to “fold back” upon itself. DP50, however, may not contain 

sufficient flexibility to completely fold back to present this hydrophobic interaction. 

 

The same analysis could explain the difference between the synthetic heterodimers where 

the #6 motif was ligated through either a C- or N-terminal cysteine. In #Insulin-Cys-6, 

the important leucine residue is held closely to the B29 residue of insulin, whereas in the 
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#6-Cys-Insulin, the leucine residue has more rotational freedom, relative to the insulin 

agonist. 

 

This interpretation would also account for the fact that leucine, isoleucine, and d-leucine 

are all sufficient to suppress the activity of the heterodimer, by participating in a non-

specific hydrophobic interaction. It is possible that in folding upon itself, the heterodimer 

is altered in its ability to bind to and signal through the insulin receptor.  

 

However, there is also evidence to suggest that the antagonist portion of the heterodimer 

may be interacting with the insulin receptor itself. We created a set of heterodimers that 

do not vary in potency, but vary in maximal activity. The lack of activity is not simply 

due to a lack of binding, since these peptides have EC50 values similar to insulin. Since 

the heterodimers are binding but not signaling, it is possible that the antagonist portion of 

the heterodimer may be interacting with the insulin receptor and mimicking negative 

cooperativity. The heterodimer, as a whole, may be inefficiently crosslinking the two 

halves of the insulin receptor, or it may be occupying more than the usual number of 

receptor binding sites.  

 

The actual mechanism may be a combination of these two hypotheses, therefore the 

reduction in maximal activity may be the result of interactions between the agonist and 

the antagonist, the receptor and the agonist, and the receptor and the antagonist.  

 



162 
 

The most important aspect of this research the creation of a set of peptides with similar 

potencies but varying maximal activities at the insulin receptors. In addition, these 

maximal activities are tunable by a single point mutation within the antagonist portion of 

the heterodimer. The side chain at position two in the antagonist determines the maximal 

activity in a way that is both predictable and in keeping with current understanding of 

hydrophobicity and binding. These analogs will serve as useful tools in determining the 

physiological significance of maximal activity within insulin receptor analogues, and 

may eventually serve as the basis for tunable medicines aimed at treating diabetes 

mellitus. 

 

The overarching hypothesis of this research is that heterodimers with altered maximal 

activity may have beneficial pharmacological properties. The next chapter will discuss 

the future directions of this work, specifically with the potential of these analogs to offer 

altered pharmacology in vivo.  
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METHODS 

The heterodimers presented in this chapter were created by ligating antagonists to a 

modified insulin through a disulfide bond. Native insulin contains three primary amines, 

one at the N-terminus of the A chain, one at the N-terminus of the B chain, and a third 

present in the side chain of the only native lysine residue, the B29 position. The difference 

in reactivity between the N-terminal amines and the lysine side chain amine allows for 

the specific functionalization of the lysine residue. Native insulin (Eli Lilly and Co), was 

reacted with a specific NHS ester. The ester itself was created by reaction of S-trityl-β-

mercaptopropionic acid (National Biochemicals Corporation) with N-hydroxy 

succinimide (Chem Impex International) and diisopropylcarbodiimide (Aldrich) in a 

1:1:0.9 ratio in anhydrous DMF (Aldrich) (Figure 22). After centrifuging to precipitate 

unwanted side products, the NHS ester was reacted in a 1:1 molar ratio with native 

insulin in 25 mM boric acid buffer, 50% acetonitrile, pH 10.2 (Figure 23). The 

modification was confirmed by LC/MS, which shows a single modification by mass. This 

peptide was purified using reverse phase chromatography with a silica based C8 column. 

The trityl protecting group was then removed with anhydrous TFA. The specificity of the 

B29 modification was determined by subjecting the modified peptide to a trypsin digest, 

which removes the last eight residues of the B chain, including the B29 lysine residue. 

The corresponding decrease in mass demonstrated that the N-terminal amines of the A 

and B chain remained unmodified (Figure 24).  
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Figure 22: Reaction of S-trityl-β-mercaptopropionic acid with 
diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide. 
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Figure 23: Reaction scheme illustrating the modification of the B29 residue of 
insulin, resulting in a trityl-protected sulfide. 

 

Figure 24:  MALDI analysis demonstrating the specificity of the B29 residue 
modification. The peak at 4867 represents an unmodified A chain and an 

unmodified B chain without the final eight C-terminal residues of the B chain. The 
peak at 5897 represents the mass of a mono-modified insulin. These two peaks 

demonstrate that the B29 modification is specific to the B29 lysine residue. 
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The trityl-protecting group of the modified insulin can subsequently be removed with 

anhydrous TFA and activated with 20 molar equivalents of 2,2′-dithiobis(5-nitropyridine) 

(DTNP), to yield an activated disulfide (Figure 25). 5% triisopropylsilane was included in 

this reaction to quench the trityl cations. The peptide was then purified using reverse 

phase chromatography. This peptide contains an activated disulfide that reacts with any 

free sulfhydryl group to create a disulfide bond. This enables the formation of a disulfide 

bond between the activated insulin and any peptide that contains a single free sulfhydryl.  
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Figure 25: Reaction scheme demonstrating the activation of the B29 modified insulin. 

 

All other peptides presented in this chapter were synthesized using Fmoc chemistry on a 

Chemmatrix rink amide resin. Peptides were cleaved from the resin in a cleavage cocktail 

of 2.5% triisopropylsilane, β-mercaptoethanol, thioanisol, and H2O in TFA. Crude 

peptides often contained multiple peaks as shown by LC/MS (Figure 26). This was 

thought to be the result of incompletely deprotected side chains, most likely due to acetyl 

groups on tryptophan residues. Stirring the crude peptide in a dilute acid solution, such as 

2% acetic acid or 1% acetic acid, 20% acetonitrile overnight resolved the crude peptide 

into a single peak with the correct charge to mass ratio, as shown by LC/MS (Figure 27).   
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Figure 26: LC/MS analysis of crude peptide #6-Cys Fmoc synthesis. Absorbance at 
214 nm (A) shows multiple peaks. Ion counts shown in (B), mass/charge ratios 

shown in (C-E). Peptide #6-Cys has molecular weight of 2540, therefore the charge 
states should appear as 1270 and 847. The presence of multiple peaks suggested 

incomplete side chain deprotection. The presence of the 1293 charge state suggests 
an acetyl group. 

 



167 
 

 

Figure 27: LC/MS depicting the same crude peptide #6-Cys as in Figure 26, after 
stirring in 2% acetic acid for 12 hours. Absorbance at 214 nm is depicted in (A), ion 

count in (B) and mass/charge ration in (C). Peptide resolved into a single peak at 
t=5.7 minutes with the correct mass to charge ratio. Peptide was then purified and 

used in ligation reactions. 

 

 After Fmoc synthesis and cleavage, peptides were precipitated with ether, dissolved in 

20% acetonitrile, 1% acetic acid solution and stirred overnight to remove any remaining 

protecting groups. Peptides were then lyophilized and subsequently purified using reverse 

phase chromatography. LC/MS was used to confirm the purity and accuracy of the 

synthesis. 

 

Ligation reactions occurred in 50 mM sodium phosphate buffer, 20% acetonitrile, pH 6.0 

- 7.0. A peptide containing a single free thiol group and activated insulin were mixed in a 

6:1 molar ratio and dissolved in 50 mM sodium phosphate / 20% acetonitrile buffer to a 

concentration of 20 mg/mL. Reaction was monitored by LC/MS. The ligated peptide was 

subsequently purified using reverse phase FPLC with an Amberchrome XT-20 
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divinylbenzyl polystyrene column. LC/MS was used to confirm the mass and analyze the 

purity of the ligated peptides. The ligated peptides were then dissolved in 25 mM 

ammonium bicarbonate buffer, pH 8, and analyzed for concentration using UV-Vis 

nanodrop spectroscopy. These peptides in solution were subsequently analyzed in a 

phosphorylation assay for activity at the insulin receptor A and B isoforms, as described 

in chapter 2. Optical density at 450 nm was graphed as a function of peptide 

concentration using Origin Pro 9.0 graphing software. Chemical reactions and schematics 

in this chapter were created with ChemBioDraw Ultra 13.0.  
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Chapter 5 

Future Directions 
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FUTURE DIRECTIONS 

The primary objective of this thesis research was directed at the synthesis, in vitro 

biochemical characterization, and further chemical optimization of insulin heterodimers 

of full inherent potency but of partial maximal activity. The next step in this research is to 

begin to investigate the relative in vivo activity of these peptides. While our research lab 

at Indiana University is not equipped to conduct in vivo analyses, we benefit from a 

collaboration with Dr. Diego Perez-Tilve at the University of Cincinnati. The following 

results represent initial in vivo research in mouse model systems, conducted at the 

University of Cincinnati, to which I have provided collaborative assistance. 

 

Mice are often used to test metabolic drugs, due to the highly conserved nature of insulin 

and the insulin receptor. There are numerous mouse models available, either as mimics of 

healthy metabolism (lean, normal mice), or as a model of type 1 or type 2 diabetes. A 

model of type 1 diabetes can be chemically induced in mice, most often by treatment with 

streptozotocin (STZ) or alloxan[1, 2]. These toxins target pancreatic beta cells in the 

animals to induce a diabetic state. There are also mouse model systems that exhibit 

spontaneous autoimmune destruction of pancreatic beta cells[1, 3], as well as virus-

inducible mouse models of type 1 diabetes[1]. Type 2 diabetes is often induced in mouse 

model systems by offering a high-fat diet[4], although there are also less-obese model 

systems available[1].  

 

Initial in vivo investigations were conducted in lean, normal mice. Chapter 2 of this 

research described the creation of an optimized antagonist, #4-6. In order to investigate 
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whether this antagonist is capable of antagonizing native insulin in vivo, pre-formulated 

mixtures of native human insulin and the #4-6 antagonist  were created in 1:1, 1:10, and 

1:100 ratios. Mice were fasted for three hours, and then given a single subcutaneous 

injection containing both peptides. Insulin was administered in 3 nmol/kg doses, and the 

#4-6 antagonist was therefore simultaneously administered in 3, 30, and 300 nmol/kg 

doses. Blood glucose was measured with a commercially available blood glucose meter 

at 0.5, 3, and 6 hours after injection. It was found that the antagonist was only capable of 

opposing insulin (and thereby raising blood glucose), in the highest ratio of 100:1 (Figure 

1). This effect was short lived, as it was only observable at 0.5 hours after injection. At 

the next data point, 3 hrs after injection, there was no remaining antagonistic effect.  

 

In order to better characterize the short-lived antagonistm, the #4-6 antagonist was 

investigated at 3,10, 30, and 300 nmol/kg doses, in the absence of competing insulin 

(Figure 2). This experiment was also conducted with a shorter 3 hour duration of 

investigation. In this more sensitive assay, it was determined that the antagonist was 

capable of raising blood glucose levels at 30 nmol/kg and above, although the antagonism 

was again short lived.  
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Figure 1: Blood glucose (BG) concentrations, in normal, lean mice in response to 
1:1, 1:10, and 1:100 ratios of human insulin:#4-6 antagonist. 

 

 

 

Figure 2: Blood glucose (BG) concentrations, in normal, lean mice in response to 3, 
10, 30, and 300 nmol/kg doses of the #4-6 antagonist. 
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The in vivo effects of the PEGylated #4-6 antagonist, described in chapter 2, were also 

investigated. In our in vitro assay, we found that the PEGylated version was still capable 

of antagonizing native insulin, although with decreased potency. It was hypothesized that 

the increased molecular size of this peptide, due to the PEG modification, would result in 

increased duration of action in vivo. Therefore both the PEGylated and unmodified #4-6 

antagonist were tested in lean, normal mice. The antagonists were delivered either as a 

daily subcutaneous injection, or as a continuous infusion from a surgically implanted 

pump. Regardless of the mechanism of delivery, each mouse was dosed with a total of 20 

nmol/mouse per week, for one week.  

 

Based on the hypothesis of PEG-dependent extended action, it was anticipated that the 

PEGylated peptide would antagonize native insulin, thereby creating “diabetic-like” 

symptoms, including an increase in blood glucose and decrease in body weight. 

However, it was found that the PEGylated and unmodified antagonists had no significant 

effect on either blood glucose (Figure 3) or body weight (Figure 4), relative to the vehicle 

(PBS).  
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Figure 3: Blood glucose (BG) concentrations in normal, lean mice in response to the 
#4-6 and PEGylated #4-6 antagonists, measured over the course of seven days. All 

peptides were administered at 20nmol/mouse/week doses, either as a daily 
subcutaneous injection or through a surgically implanted pump. The spike in blood 

glucose at day 7 was reported as the direct result of a change in housing and diet. 

 

 
 

Figure 4: Body weight (BW) in grams, in lean, normal mice, measured in response 
to the #4-6 antagonist and PEGylated #4-6 antagonist over the course of seven days. 

All peptides were administered at 20 nmol/mouse/week doses, either as a daily 
subcutaneous injection or through a surgically implanted pump. 
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These results show that the antagonist, both in its PEGylated and unmodified form, is 

incapable of significantly affecting blood glucose and weight in lean, normal mice.  The 

significance of these results is uncertain. We have shown that the #4-6 antagonist, while 

capable of affecting blood glucose at very high doses, does not have measureable effects 

at the low dose of 20 nmol/week, either in PEGylated or in its unmodified form. 

However, this may be a consequence of the choice of model system. All of the mice 

tested were lean, normal mice. In mice where insulin tolerance is impaired, it may be 

possible to observe antagonism. The conclusions we can draw, at this time, from the in 

vivo analyses of the #4-6 antagonist is that it is capable of effecting physiological change 

in the short term, but is an unlikely candidate for long term antagonism in normal mice, 

due to the high doses required.  

 

The initial in vivo results also include two of the heterodimers synthesized and 

characterized in chapter 4, #6(L2)-Cys-Insulin and #6(A2)-Cys-Insulin. The peptides 

were tested in STZ-mice, due to their high fasting blood glucose levels. The heterodimers 

#6(L2)-Cys-Insulin and #6(A2)-Cys-Insulin were chosen for study, since these were the 

lowest and highest activity heterodimers in our library, and therefore represented the 

greatest possible dynamic range. Mice were fasted for 2 hours prior to the injection of 

native human insulin, #6(L2)-Cys-Insulin, or #6(A2)-Cys-Insulin. Insulin and #6(A2)-

Cys-Insulin were administered at 10 nmol/kg doses. In addition, #6(L2)-Cys-Insulin 

was administered at 10, 30, and 100 nmol/kg doses. Each data point represents the 

average of 8 mice. It was found that the high-activity #6(A2)-Cys-Insulin heterodimer 

behaved identically to an equivalent dose of native insulin (Figure 5).  
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However, the low activity heterodimer, #6(L2)-Cys-Insulin, also behaved identically to 

an equivalent dose of native insulin (Figure 5). Further increases in dosing led to delayed 

decreases in blood glucose, to the extent that some of the animals exhibited signs of 

hypoglycemia (seizures, hypothermia), and had to be rescued with exogenous glucose.  

 

 

Figure 5: Blood glucose concentrations of STZ diabetic mice in response to human 
insulin, #6(L2)-Cys-Insulin and #6(A2)-Cys-Insulin. 

 

These results suggest that diminished activity at the insulin receptor in vitro does not 

translate to diminished activity in vivo. However, this may be due to peptide instability in 

this in vivo assay. The in vitro phosphorylation assay does not fully mimic a plasma 

expsoure, which can contain reduction cofactors, and enzymes that can participate in the 

reduction of disulfide bonds. If the insulin heterodimers are not stable in vivo, then the 
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breakage of the disulfide bond would result in a fully potent agonist, and the #6-Cys 

antagonist, which is incapable of antagonism in vitro, as shown previously in chapter 2.  

 

To address the possibility of disulfide instability, a slightly modified version of the 

#6(L2)-Cys-Insulin molecule was created, where the cysteine residue has been replaced 

by penicillamine, which is simply a gem-dimethyl form of cysteine (Figure 6). This new 

heterodimer, #6(L2)-Pen-Insulin, behaves identically to its cysteine counterpart in the in 

vitro assays (Figure 7). The di-methylation should yield the disulfide bond additional in 

vivo stability, since it is less susceptible to enzymatic degradation, and disulfides 

containing a penicillamine residue are approximately three times less susceptible to 

reduction by glutathione, a cellular reducing agent[5].  
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Figure 6: Penicillamine. 
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Figure 7: Phosphorylation assay demonstrating the agonism (solid) and antagonism 
(dashed) of #6(L2)-Pen-Insulin. 
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Despite this modification, the #6(L2)-Pen-Insulin heterodimer also lowers blood glucose 

in STZ mice (Figure 8). While this may indicate that diminished in vitro activity does not 

result in diminished in vivo activity, there are a few interesting characteristics of this 

study. First, despite the dramatic drops in blood glucose, none of the animals in this study 

displayed the typical symptoms of hypoglycemia, seizures and hypothermia. Therefore, 

none of the animals needed to be rescued with glucose injections. In addition, while the 

25 nmol/kg dose induced low blood glucose in these animals, no additional drops in 

blood glucose were observed when the dose was increased from 25 to 50 nmol/kg. It can 

also be seen that the #6(L2)-Pen-Insulin heterodimer has a significantly extended 

duration of action, relative to native insulin. These observations may indicate that despite 

lowering blood glucose, the #6(L2)-Pen-Insulin heterodimer appears to represent a 

“safer” insulin therapy. 

 

 

Figure 8: Blood glucose concentrations of STZ diabetic mice in response to human 
insulin, and #6(L2)-Pen-Insulin. 
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Therefore, the future direction of this work will focus on further characterization of the 

#6(L2)-Pen-Insulin heterodimer. Currently, the in vivo results are all the result of a 

single subcutaneous dose, bolus injection of peptide. This results in a sudden spike in the 

plasma concentration of peptide, which if consistent with native insulin time action, 

would peak between 30 and 60 minutes and clear from circulation within 2-4 hours. 

Peptides can also be delivered as an infusion, which minimizes the pharmacokinetic 

effects upon the pharmacodynamics effects of the administered drug. It is possible that 

delivering our heterodimers as an infusion might reveal a more subtle difference in 

activity, relative to native insulin.  

 

In addition, a glucose clamp technique can used to further characterize our heterodimers. 

A glucose clamp experiment infuses insulin and simultaneously provides exogenous 

glucose in order to maintain a predetermined blood glucose concentration.  Therefore, the 

amount of exogenous glucose required is a measure of insulin sensitivity. It is possible 

that a glucose clamp experiment may reveal differences in our heterodimers, relative to 

insulin, that explain the lack of hypoglycemic symptoms (seizures, hypothermia) in mice 

treated with #6(L2)-Pen-Insulin. 

 

Despite the indications that #6(L2)-Pen-Insulin may be a safer therapy, we have shown 

that the decrease in receptor activation we observed in vitro does not translate to reduced 

activity in vivo. There are two possible explanations for this phenomenon. First, it is 

possible that full metabolic signaling can be induced by a molecule that is only 20-30% 

active at insulin receptor isoforms. In living systems, the insulin receptor is expressed in 
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excess of the concentration required for full signaling. This is referred to as receptor 

reserve. Therefore, 20-30% activity at the insulin receptors may be sufficient to fully 

activate the insulin signaling pathway.  

 

Another explanation for the discrepancy between our in vivo and in vitro results is that 

the decrease in activity observed in our in vitro assays may be the result of selective 

phosphorylation of the insulin receptor itself.  The insulin receptor has multiple tyrosines 

that are phosphorylated in response to insulin, and it has been shown that differential 

mutation of these tyrosines leads to different metabolic and mitogenic effects[6]. For 

example, a tyrosine to phenylalanine mutation at the insulin receptor Tyr-1146 (IRA 

isoform numbering) does not inhibit in vitro metabolic responses to insulin, such as 

glycogen synthase stimulation[7]. However, this mutation does suppress the insulin-

stimulated incorporation of radiolabeled thymidine into DNA, an in vitro measure of 

mitogenic potential[7]. It is possible that our heterodimers might also exhibit position-

specific effects on receptor tyrosine phosphorylation.  The phosphorylation assay utilized 

in this research is incapable of discriminating between the multiple tyrosines which are 

present on the insulin receptor. However, there are commercially available antibodies that 

do differentiate between insulin receptor tyrosine residues. Therefore, investigating our 

heterodimers with position-specific phosphotyrosine antibodies might yield more insight 

into the physiological significance of reduced maximal activity. If the low-activity 

heterodimers preferentially phosphorylate the metabolic tyrosines, it may explain the 

discrepancy between the in vitro and in vivo effects. In addition, it is possible that one of 
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our higher activity analogs may represent the “safest” maximal activity due to its tyrosine 

phosphorylation profile.  

 

In addition to these specific avenues of inquiry, the heterodimers that we have created 

within this research open a new avenue of inquiry entirely. We have shown that peptides 

previously dismissed as potential antagonists, such as the #6 peptide, can function within 

a heterodimer to effect meaningful change in receptor activation. Therefore, other 

peptides that have been dismissed from this and other research may actually represent 

viable therapeutic tools. The most important conclusion of this research is that we have 

validated the hypothesis that diminished maximal activity can be achieved through the 

creation of agonist/antagonist heterodimers. Most satisfyingly, we have identified an 

antagonist that is tunable, through a single site mutation, such that we can direct an array 

of maximal activities.  

 

The antagonist that is responsible for this modulated activity contains a single binding 

site motif. This is in contrast to a number of published works that suggest only a two-site 

peptide is capable of antagonism. This illustrates the dramatic effect of mutlivalency 

within a heterodimer. The observed suppression of agonistic activity is more than the sum 

of agonist and antagonistic properties, but instead represents the emergent activity of a 

molecule that modulates its own activity. These observations have implications in all 

multivalent systems, and demonstrate the scientific basis for the truism that we are more 

than the sum of our parts. 
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TABLE OF ABBREVIATIONS 
 

Abbreviations Full name, description 

µM Micromolar 

4-MeBzl 4-methyl-benzyl, acid labile protecting group, used to protect cysteine 
residues during Boc SPPS 

A1C Glycosylated hemoglobin 

ADP Adenosine diphosphate 

Ala, A Alanine 

Arg, R Arginine 

Asn, N Asparagine 

Asp, D Aspartic acid 

ATP Adenosine triphosphate 

B Concentration of bound ligand 

BG Blood glucose 

BGS Bovine growth serum 

BHA resin Benzydrylamine resin 

Bmax Total maximal amount of bound receptor 

Boc Tert-butyloxycarbonyl protecting group, acid labile, used to protect N 
terminal amines during Boc SPPS and lysine  and tryptophan residues 
during Fmoc SPPS 

BOM Benzyloxymethoxy, acid labile protecting group used to protect 
histidine residues during Boc SPPS 

Br-Z 2-Bromobenzyloxycarbonyl, acid labile protecting group, used to 
protect tyrosine residues during Boc SPPS 

BSA Bovine serum albumin, fraction V 

Bzl Benzyl acid labile protecting group, used to protect serine and 
threonine residues during Boc SPPS 
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C8 Hydrocarbon chain containing 8 carbon atoms, used in silica based 
columns for HPLC purification 

Cbz, Z Benzyloxycarbonyl acid labile protecting group 

CHO Formyl, acid labile protecting group, used to protect tryptophan 
residues during Boc SPPS 

CR Insulin receptor cysteine rich domain 

CT Insulin receptor C-terminus 

Cys, C Cysteine 

DCM Dichloromethane 

DEPBT 3-(Diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one, coupling 
reagent 

des Without, removed, usually in reference to a number of residues within 
a peptide 

DIC Diisopropylcarbodiimide 

DIEA Diisopropylehtylamine 

dL  Deciliter  

DMEM Dulbecco’s modified Eagle’s medium 

DMF Dimethylformamide 

DNA Deoxyribonucleic acid 

DPX DiMarchi Peptide, where X represents an internal numbering system 
in the DiMarchi laboratory 

DTNP 2,2’-dithiobis(5-nitropyridine) 

EC50 The concentration at which a drug elicits half the maximal response 

ED Effective dose 

ELISA Enzyme-linked immunosorbent assay 

F Concentration of free ligand 
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Fmoc 9-fluorenylmethyloxycarbonyl, base labile protecting group, used to 
protect N terminal amines during Fmoc SPPS 

Fn Fibronectin type III domain 

FPLC Fast protein liquid chromatography 

FPLC Fast protein liquid chromatography 

Gln, Q Glutamine 

GLP-1 Glucagon-like peptide 

Glu, E Glutamic acid 

Gly, G Glycine 

GSK-3 Glycogen synthase kinase 3 

HCl Hydrochloric acid 

HEK cells Human embryonic kidney cells 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HF Hydrofluoric acid 

His, H Histidine 

HLA Human leukocyte antigen 

HOBt Hydroxybenzotriazole, coupling reagent 

HOBt Hydroxybenzotriazole 

HPLC High pressure liquid chromatography 

HRP Horse radish peroxidase 

IC50 The concentration at which a drug is inhibited to half the maximal 
response 

ID Insulin receptor insert domain 

IGF-1 Insulin-like growth factor 1 

IGF-2 Insulin-like growth facter 2 
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IL-1β Interleukin-1 

Ile, I Isoleucine 

IR Insulin receptor 

IRA Insulin receptor A isoform, lacks exon 11 

IRB Insulin receptor B isoform, retains exon 11 

IRS Insulin receptor substrate proteins 

IU Indiana University 

JM Juxtamembrane domain 

Ka Equilibrium association constant 

KATP ATP-sensitive potassium ion channels 

Kd Equilibrium dissociation constant 

kDa kilodalton 

kg kilogram 

L Ligand 

L1 Insulin receptor leucine rich domain 1 

L2 Insulin receptor leucine rich domain 2 

LB Lysogeny broth, nutrient rich media for bacterial growth 

LC/MS Liquid chromatography / mass spectrometry 

LC/MS Liquid chromatography / mass spectrometry 

LD Lethal dose 

Leu, L Leucine 

Lys, K Lysine 

Lys-C Endopeptidase Lys-C, hydrolyzes peptide bonds at the C terminal of 
lysine residues 

M Molar 
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MALDI-TOF Matrix assisted laser desorption /ionization – time of flight 

MAPK Mitogen-activated protein kinase 

MBHA resin Methylbenzydralamine resin 

Met, M Methionine 

mg Milligrams 

MHC Major histocompatibility complex proteins 

mmol Millimole 

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHS  N-hydroxysuccinimide 

NIH National Institutes of Health 

nM Nanomolar 

nm Nanometers 

nmol Nanomole 

NMP N-methyl-2-pyrrolidone 

NPH Neutral protamine hagedorn insulin 

OcHx Cyclohexyl ester, acid labile protecting group used to protect aspartic 
acid and glutamic acid residues during Boc SPPS 

OD 450 Optical density, 450 nm 

OtBu t-Butyl ester, acid labile protecting group used to protect aspartic acid 
and glutamic acid residues during Fmoc SPPS 

PAL resin Peptide amide linker resin 

PAM resin tert-butoxycarbonylaminoacyl-4-(oxymethyl)-
phenylacetamidomethyl resin 

PBS Phosphate buffered saline 

PCK Protein kinase C 

PCR Polymerase chain reaction 
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PEG Polyethylene glycol 

pH -log[H+], indicative of the acidity or basicity of a solution 

PH Pleckstrin homology domains 

Phe, F Phenylalanine 

PI3K Phosphoinositide 3-kinase 

PIP3 Phosphatidylinositol (3,4,5)-triphosphate 

Pro, P Proline 

R Receptor 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RT Total receptor Concentration 

RTK Receptor tyrosine kinase 

SCM Succinimidyl carboxy methyl 

Ser, S Serine 

SH2 Src-homology 2 domains 

SPPS Solid phase peptide synthesis 

STZ Streptozotocin 

SUMO Small ubiquitin-related modifier 

SUR1 Sulfonylurea receptor isoform 1 

tBu t-Butyl acid labile protecting group, used to protect serine, threonine 
and tyrosine residues during Fmoc SPPS 

TFA Trifluoroacetic acid 

Thr, T Threonine 

TK Tyrosine kinase comain 

TLR Toll-like receptor 
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TMB 3,3’,5,5’-tetramethylbenzidine 

Tos Tosyl acid labile protecting group, used to protect arginine residues 
during Boc SPPS 

Trp, W Trptophan 

Trt Trityl, acid labile protecting group used to protect cysteine residues 
during Boc SPPS and histidine, asparagine, and glutamine  residues 
during Fmoc SPPS 

Tyr, Y Tyrosine 

UV-Vis Ultraviolet – visibile 

UV-Vis Ultra violet – visible 

Val, V Valine 

Xan Xantyl acid labile protecting group, used to protect asparagine 
residues during Boc SPPS 

Y Fraction of bound receptor concentration  to total receptor 
concentration 
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