
A LANGUAGE FOR GENERIC PROGRAMMING

Jeremy G. Siek

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University

August, 2005

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Andrew Lumsdaine, Ph.D.

R. Kent Dybvig, Ph.D.

Daniel P. Friedman, Ph.D.

Steven D. Johnson, Ph.D.

Amr Sabry, Ph.D.

August, 2005

ii

Copyright 2005
Jeremy G. Siek

All rights reserved

iii

This dissertation is dedicated to my wonderful wife Katie who was next to me every step of
this journey.

iv

Acknowledgements

First and foremost I thank my parents for all their love and for teaching me to enjoy learn-

ing. I especially thank my wife Katie for her support and understanding through this long

and sometimes stressful process. I also thank Katie for insisting on good error messages

for G! My advisor, Andrew Lumsdaine, deserves many thanks for his support and guidance

and for keeping the faith as I undertook this long journey away from scientific computing

and into the field of programming languages. I thank my thesis committee: R. Kent Dybvig,

Daniel P. Friedman, Steven D. Johnson, and Amr Sabry for their advice and encourage-

ment. A special thanks goes to Ronald Garcia, Christopher Mueller, and Douglas Gregor

for carefully editing and catching the many many times when I accidentally skipped over

the important stuff. Thanks to Jaakko and Jeremiah for hours of stimulating discussions

and arguments concerning separate compilation and concept-based overloading. Thanks to

David Abrahams for countless hours spent debating the merits of one design over another

while jogging through the hinterlands of Norway. Thanks to Alexander Stepanov and David

Musser for getting all this started, and thank you for the encouragement over the years.

Thanks to Matthew Austern, his book Generic Programming in the STL was both an inspi-

ration and an invaluable reference. Thanks to Beman Dawes and everyone involved with

the Boost libraries. The collective experience from Boost was vital in the creation of this

thesis. Thanks to Vincent Cremet and Martin Odersky for answering questions about Scala

and virtual types.

v

Abstract

The past decade of software library construction has demonstrated that the discipline of

generic programming is an effective approach to the design and implementation of large-

scale software libraries. At the heart of generic programming is a semi-formal interface

specification language for generic components. Many programming languages have fea-

tures for describing interfaces, but none of them match the generic programming specifi-

cation language, and none are as suitable for specifying generic components. This lack of

language support impedes the current practice of generic programming. In this dissertation

I present and evaluate the design of a new programming language, named G (for generic),

that integrates the generic programming specification language with the type system and

features of a full programming language. The design of G is based on my experiences,

and those of colleagues, in the construction of generic libraries over the past decade. The

design space for programming languages is large, thus this experience is vital in guiding

choices among the many tradeoffs. The design of G emphasizes modularity because generic

programming is inherently about composing separately developed components. In this dis-

sertation I demonstrate that the design is implementable by constructing a compiler for G

(translating to C++) and show the suitability of G for generic programming with prototypes

of the Standard Template Library and the Boost Graph Library in G. I formalize the essential

features of G in a small language and prove type soundness.

vi

Contents

Chapter 1. Introduction 1

1.1. Lowering the cost of developing generic components 5

1.2. Lowering the cost of reusing generic components 7

1.3. G: a language for generic programming 9

1.4. Related work in programming language research 10

1.5. Claims and evaluation 11

1.6. Road map 12

Chapter 2. Generic programming and the STL 13

2.1. An example of generic programming 15

2.2. Survey of generic programming in the STL 21

2.3. Relation to other methodologies 49

2.4. Summary 54

Chapter 3. The language design space for generics 55

3.1. Preliminary design choices 55

3.2. Subtyping versus type parameterization 59

3.3. Parametric versus macro-like type parameterization 65

3.4. Concepts: organizing type requirements 73

3.5. Nominal versus structural conformance 83

3.6. Constrained polymorphism 85

vii

3.7. Summary 89

Chapter 4. The design of G 90

4.1. Generic functions 92

4.2. Concepts 95

4.3. Models 96

4.4. Modules 98

4.5. Type equality 98

4.6. Function application and implicit instantiation 101

4.7. Function overloading and concept-based overloading 108

4.8. Generic user-defined types 110

4.9. Function expressions 112

4.10. Summary 114

Chapter 5. The definition and compilation of G 118

5.1. Overview of the translation to C++ 120

5.2. A definitional compiler for G 133

5.3. Compiler implementation details 160

5.4. Summary 162

Chapter 6. Case studies: generic libraries in G 163

6.1. The Standard Template Library 164

6.2. The Boost Graph Library 174

6.3. Summary 180

Chapter 7. Type Safety of FG 184

7.1. FG = System F + concepts, models, and constraints 185

7.2. Translation of FG to System F 192

7.3. Isabelle/Isar formalization 201

7.4. Associated types and same-type constraints 204

7.5. Summary 213

viii

Chapter 8. Conclusion 215

Appendix A. Grammar of G 219

A.1. Type expressions 220

A.2. Declarations 221

A.3. Statements and expressions 221

A.4. Derived forms 223

Appendix B. Definition of FG 224

Appendix. Bibliography 228

Appendix. Index 247

ix

Software production in the large would be enormously helped by the
availability of spectra of high quality routines, quite as mechanical
design is abetted by the existence of families of structural shapes,
screws or resistors...
One could not stock 300 sine routines unless they were all in some
sense instances of just a few models, highly parameterized, in which
all but a few parameters were intended to be permanently bound
before run time. One might call these early-bound parameters ‘sale
time’ parameters...
Choice of Data structures... this delicate matter requires careful plan-
ning so that algorithms be as insensitive to changes of data structure
as possible. When radically different structures are useful for similar
problems (e.g., incidence matrix and list representations for graphs),
several algorithms may be required.

M. Douglas McIlroy, 1969 [126]

1
Introduction

A decade or two ago computers were primarily the tools of specialists and the toys of hobby-

ists. Now they are a part of everyday life: they are used to create the family photo albums,

make travel reservations, communicate with friends, and get directions for a trip. Despite

the advances in computer science and software engineering, computers still must be told

what to do in excruciating detail. Thus, the production of software to control our computers

is an important endeavor, one that affects more and more aspects of our lives.

Producing software is hard: massive amounts of time and money go into creating the

software applications we use today. This cost affects the prices we pay for shrink wrapped

software and factors into the prices of many other goods and services. Further, software

1

1. INTRODUCTION 2

quality affects our lives: buggy software is a constant annoyance and software bugs some-

times cause or contribute to more serious harm

The 1968 NATO Conference on Software Engineering popularized the terms “software

crisis” and “software engineering”. The crisis they faced was widespread difficulties in

the construction of large software systems such as IBM’s OS/360 and the SABRE airline

reservation system [64, 154]. The conference attendees felt it was time for programmers

and managers to get more serious about the process of producing software. McIlroy gave

an invited talk entitled Mass-produced Software Components [126]. In this talk he proposed

the systematic creation of reusable software components as a solution to the software crisis.

The idea was that most software products are created from building blocks that are quite

similar, so software productivity would be increased if a standard set of blocks could be

shared among many software products.

Barnes and Bollinger define a simple equation that summarizes the savings that can be

achieved through software reuse [15]. Let D stand for the cost of developing a reusable

component and n be the number of uses of the component. The savings is calculated by:

(1)

(
n∑

i=1

(Ci −Ri)

)
−D

where Ci is the cost of writing code from scratch to solve a problem and Ri is the cost of

reusing the component. A particularly interesting aspect of this equation is that if Ci > Ri,

then as n tends to infinity so does the savings from reuse. On the other hand, if n is small,

then the benefits of reuse may be outweighed by the initial investment D of developing the

reusable component. Studies by Margono and Rhoads have shown that a typical value for

D is twice the cost of building a non-reusable version of the component [125].

In addition to the savings in software production, reuse can increase software quality.

One of the reasons given by Lim [116] is that the more a piece of software is used, the

faster the bugs in the software are found and fixed. Further, the bugs need only be fixed in

one place, in the reusable component, and then all uses of the component benefit from the

increase in quality.

1. INTRODUCTION 3

Today we are starting to see the benefits of software reuse: Douglas McIlroy’s vision is

gradually becoming a reality. The number of commercial and open source software com-

ponent libraries has steadily grown and it is commonplace for application builders to turn

to libraries for user-interface components, database access, report creation, numerical rou-

tines, and network communication, to name a few. In addition, many software companies

have benefited from the creation of in-house domain-specific libraries which they use to

support entire software product lines. The software product lines approach is described by

Clements and Northrop in [46]. One of the strengths of the Java language is its large suite

of standard libraries developed by Sun Microsystems. Software libraries have also seen par-

ticularly heavy use in scripting languages such as Visual Basic, Perl, Python, and PHP, and

for a long time there has been considerable library building activity in C, C++, and Fortran

for systems-level and performance-oriented domains. There is also a growing number of

libraries available for research languages such as Objective Caml and Haskell.

As the field of software engineering progresses, we learn better techniques for build-

ing reusable software. In 1994, Stepanov and Lee [181] presented a library of sequential

algorithms and data structures to the C++ standards committee that was immediately rec-

ognized as a leap forward in library design. The Standard Template Library (STL), as it was

called, was the product of a methodology called Generic Programming developed during the

1980’s by Stepanov, Musser, and colleagues [103–105, 137–139, 179]. The term “generic

programming” is often used to mean any use of “generics”, i.e., any use of parametric poly-

morphism or templates. The term is also used in the functional programming community

for function generation based on algebraic datatypes, i.e., “polytypic programming”. This

thesis uses the term “generic programming” solely in the sense of Stepanov and Musser.

The main idea behind generic programming is the separation of algorithms from data-

structures via abstractions that respect efficiency. For example, instead of writing functions

on arrays we write generic functions implemented in terms of abstract iterators. The iter-

ator abstraction can be implemented in terms of arrays, linked-lists, and many other data-

structures that represent sequences of elements. The advantage of generic programming

is that it greatly increases the number of situations in which a component may be used,

1. INTRODUCTION 4

thereby increasing n in Equation 1. Generic programming accomplishes this by making

components more general while retaining the efficiency of specialized components. Chap-

ter 2 describes how this is done.

The STL was accepted as part of the C++ Standard Library [86] thereby introducing

generic programming to mainstream programmers. Since 1994 generic programming has

been successfully applied in domains such as computer vision [108], computational ge-

ometry [21], bioinformatics [152], geostatistics [156], physics [190], text processing [55,

122], numerical linear algebra [174, 198], graph theory [113, 169], and operations re-

search [12].

My interest in generic programming began in 1998, with work on the Matrix Template

Library [166, 174] with Andrew Lumsdaine and Lie-Quan Lee, building on earlier work

by Andrew Lumsdaine and Brian McCandless [120, 121]. We were successful in produc-

ing numerical routines that could compete with Fortran codes in terms of performance and

that offered greater functionality and flexibility. In 1999, motivated by the need for sparse

matrix reordering algorithms, we turned our attention to graph theory and developed a

library of generic graph algorithms and data structures [113]. With this library we ex-

ceeded the expectations expressed by McIlroy in the quote at the beginning of this chapter:

we implemented algorithms that were insensitive to whether an incidence matrix or list

representation is used to represent graphs.

In 2000 we began collaborating with the Boost open source community [22] and our

graph library evolved into the Boost Graph Library (BGL) [169]. Boost is an on-line com-

munity founded by members of the C++ standards committee to foster the development of

modern C++ libraries with an emphasis on generic programming. The Boost library collec-

tion currently contains 65 peer reviewed libraries (it is continuously growing) and there

were over 90,000 downloads of the latest release. The C++ Standards Committee is ex-

panding the C++ standard library with the publication of a technical report on C++ library

extensions [10]. Most of the libraries in that report started as Boost libraries.

I found the construction and maintenance of generic libraries in C++ to be both reward-

ing and frustrating. It was rewarding because we were able to deliver highly reusable and

1. INTRODUCTION 5

efficient software and received positive feedback from users. On the other hand, it was frus-

trating because constructing libraries in C++ was difficult and the resulting libraries were

not as easy to use or as robust in the face of user error as we would have hoped. The

methodology of generic programming is effective, and while C++ provides good support for

generic programming, it is not the ideal language for this purpose. In terms of Equation 1,

both the cost of developing reusable components and the cost of reusing a component were

higher than they should be, thereby reducing the savings from reuse.

Our frustration with C++ motivated several of us at the Open Systems Lab to study

to what extent other programming languages support generic programming. In 2003 we

analyzed six programming languages: C++, Standard ML, Haskell, Eiffel, Java, and C#.

We implemented a subset of the BGL in each of these languages and then evaluated them

with respect to how straightforward it was to express and use the BGL algorithms and ab-

stractions [69]. Since then we have evaluated several more languages, including Cecil and

Objective Caml [70]. All of these languages provide some support for generic programming

but none is ideal.

Given the state of the art in programming languages, it is time to incorporate what we

have learned from the past decade of generic library construction back into the design of

programming languages. In this dissertation, I present and evaluate the design of a lan-

guage named G that provides improved support for generic programming with the goal

of lowering the cost of developing reusable components and lowering the cost of reusing

components. The next section summarizes the problems we encountered with generic pro-

gramming in C++ and the proposed solutions for G.

1.1. Lowering the cost of developing generic components

Generic programming in C++ is considered an advanced technique because the construc-

tion of generic libraries requires the use of many advanced idioms. There is a cost associated

with translating the intent of the programmer to the appropriate idiom. Further, the idioms

require an in-depth knowledge of language features such as partial template specialization,

partial ordering of function templates, and argument dependent lookup. The acquisition

1. INTRODUCTION 6

and maintenance of this knowledge is expensive. Nonetheless, generic libraries created

using these idioms have proved exceeding useful despite the extra cost. The language G

instead provides direct and simple language mechanisms that fulfill the same purposes.

Testing and debugging generic functions in C++ is difficult. C++ does not perform type

checking on definitions of templates. Thus, a generic library developer does not enjoy

the usual benefits of a static type system. Type checking is performed on the result of

instantiating a template with particular type parameters. A library developer can test the

generic function on particular types, but this does not guarantee that the generic function

will work for other types and, in general, a generic function is supposed to work for an

infinite number of types. The language G type checks the definition of a generic function

independently of any of its instantiations. A generic function that passes type checking is

guaranteed to be free of type errors when instantiated with type arguments that satisfy the

requirements of the generic function.

Most generic functions make some assumptions about their type parameters, such as the

assumption that an is defined for the type. From the user’s point of view, these

assumptions are requirements. Since type requirements are not directly expressible in C++,

library authors instead state the type requirements in the documentation for the generic

function. It is important that the documented assumptions be complete, otherwise a user

may attempt to apply a generic function in a situation it is not equipped to handle. The

author of a C++ generic library must manually compare the documented assumptions to the

implementation of the generic function. This process is time consuming and error prone.

The language G provides the means to express type requirements as part of the interface

of a generic function, and the type checker ensures that the assumptions are complete with

respect to the implementation.

Another problem that plagues generic library developers in C++ is that namespaces do

not provide complete protection from name pollution, so library developers must go out of

their way to ensure that their calls to internal helper functions do not accidentally resolve

to functions in other libraries. The language G provides complete name protection.

1. INTRODUCTION 7

Developing high-quality generic libraries in C++ is costly, much more so than it should

be, thereby reducing the savings from reuse (Equation 1). The design of G reduces the

cost of generic library development by simplifying the language mechanisms for generic

programming, by introducing static error detection for generic functions, and by making

generic libraries more robust.

The next section discusses costs associated with using generic components. Many

generic components use other generic components, so reductions in the cost of using generic

components also reduces the cost of producing generic components.

1.2. Lowering the cost of reusing generic components

The productivity gains due to reuse are highly sensitive to the cost of using a generic

component because this cost is multiplied by n in Equation 1. This section discusses factors

that affect the cost of using generic components.

A strength of the C++ template system is that calling a generic function is syntactically

identical to calling a normal function. Many alternative approaches to generics require the

user to explicitly provide the type arguments for the generic function or explicitly provide

the type-specific operations needed by the generic function. The C++ compiler, in contrast,

deduces the type arguments for a function template from the types of the normal arguments.

I refer to this as implicit instantiation. C++ also provides an implicit mechanism for re-

solving type-specific operations within a template. The language G retains these strengths

of C++, although the mechanism for resolving type-specific operations is much different.

The most visible disadvantage of generic programming in C++ is the infamous error

messages that a user experiences after making mistakes. The error messages are long, hard

to understand, and do not point to the source of the problem. Instead the error messages

point deep inside the implementation of the generic library. The problem is that the C++ type

system does not know the type requirements for the generic function (they are written in

English in the documentation) and therefore cannot warn the user when the requirements

are violated. As mentioned above, in the language G, the interface of a generic function

includes its type requirements. The type checker uses this information to verify whether

1. INTRODUCTION 8

the requirements are satisfied at a particular use of the generic function. In this thesis I use

the term separate type checking to mean that type checking the use of a generic function

is independent of the generic function’s implementation, and conversely, type checking the

implementation of a generic function is independent of its uses.

Another disadvantage of C++ is that the time to compile a program is a function of the

size of the program plus the size of all generic components used by the program (and all

the generic components used by those generic components, etc.). This has proven to be a

serious problem in practice: compile times become prohibitive when several large generic

libraries are used in the same program. This problem is especially acute during development

and debugging, when the compilation time becomes the bottleneck in the compile-run-

debug cycle. In C++, the size of non-generic components used in a program does not factor

into the compile time because the non-generic components can be separately compiled to

object code. The addition of the facility of C++ [86] does not provide true separate

compilation for templates because the compile time of a program remains a function of all

the generic components it uses. The language G provides separate compilation for both

generic and non-generic components. As we shall see, there is a run-time cost associated

with separate compilation so G provides the programmer with the choice of whether to

compile modules together or separately.

As described in the previous section, G aids in the discovery of bugs and inconsistencies

in generic functions. This improvement in quality translates into saving for users of generic

libraries because bugs in libraries are extremely costly to users.

Many generic functions are higher-order functions: they take functions as parame-

ters. The function arguments are typically task-specific and only used in a single place

in a program. Thus it is convenient to define the function in place with an anonymous

function expression. C++, however, does not have a facility for creating function expres-

sions: instead, function objects are used. A function object is an instance of a class with

an member function. Creating a class is more work than writing a function

expression so this adds to the syntactic cost of calling a generic higher-order function. The

language G provides function expressions (as is common in functional languages).

1. INTRODUCTION 9

1.3. G: a language for generic programming

The primary challenge in the design of G is resolving the tension between modularity

and interaction. A component is trivially modular if it has no inputs or outputs and oper-

ates only on private data. Of course, such a component is useless. On the other hand, a

system with unrestrained interaction between components is difficult to debug and main-

tain. Thus the challenge is to allow for rich interactions between components so that they

may accomplish useful work while at the same time protecting the components from one

another.

G ensures modularity for generic components by basing its design on parametric poly-

morphism, which by default severely restricts interaction. G makes rich interactions possible

by providing an expressive language for describing contracts between generic components.

The contracts, or interface specifications, are used by the type system to govern the inter-

actions between components. For the generic components of G, contracts mainly consist of

requirements on their type parameters. I refer to language mechanisms that provide type

parameterization and requirements on type parameters as generics.

The primary influence on the design for generics in this dissertation is the semi-formal

specification language currently used to document C++ libraries [11, 86, 169, 176]. I per-

formed a thorough survey of the documentation of the STL (Chapter 2), recording what

kinds of requirements were expressed, and then incorporated each kind of requirement

into the design of G. Another influence on G is the Tecton specification language by Kapur,

Stepanov, and Musser [101, 102] and related work [164, 200] that formalizes the generic

programming specification language.

The non-generic language features of G are borrowed from C++, though the design

for generics mandated modifications to non-generic parts of the language. The design for

generics in G could be applied to other programming languages, such as Java or C#. We

chose C++ because it would facilitate the evaluation of G, easing the translation of the STL

and BGL from C++.

1. INTRODUCTION 10

A secondary challenge faced in the design of G is the tension between run-time efficiency

and fast compile times. To achieve fast compile times, separate compilation of components

is needed. However, to produce the most optimized code, the compiler must have access to

the whole program. For example, the C++ compilation model for function templates stamps

out a specialized version of the function for each set of type arguments, producing highly

efficient code but forcing templates to be compiled with their uses. If a C++ programmer

wants separate compilation, then a generic function must be expressed using classes and

subtype polymorphism instead of using templates. Providing both versions of a generic

function is a costly endeavor and is seldom done in practice.

Compilers for languages such as Java and Standard ML typically produce a single set

of instructions for a given generic function, thereby achieving fast compile times but sac-

rificing efficiency. However, this second approach leaves open the door to allowing the

programmer or compiler to choose when run-time efficiency is favored over compile-time

efficiency. A compiler (or just-in-time compiler) may perform function specialization and

inlining as an optimization (without changing the semantics of the program) and gain the

efficiency of C++ templates. The design of G is similar to Java and Standard ML: a generic

function may be separately compiled to single set of instructions or it may be compiled to a

specialized function. The compiler for G described in Chapter 5 does not perform function

specialization or inlining but these optimizations are well-known and the relevant literature

is discussed in Section 3.3.

1.4. Related work in programming language research

The design for generics in G is most closely related to type classes in Haskell: there

is an analogy between the and features of G and the and

features of Haskell [196], respectively. However, many of the design goals and details differ.

There are also some similarities between ML signatures and G concepts and we have applied

several compilation techniques developed for ML to the compilation of G. Both Haskell and

ML are based on the Hindley-Milner type system whereas G is based on the polymorphic

lambda calculus of Girard and Reynolds [71, 157].

1. INTRODUCTION 11

Chapter 3 gives an in-depth discussion of language mechanisms for generics and surveys

the various forms of polymorphism in programming languages.

1.5. Claims and evaluation

The following points list the concrete claims of this thesis and the methods used to

substantiate the claims.

(1) The type system of G separately type checks definitions and uses of generic com-

ponents. This is verified in Chapter 5 by inspection of the type rules for G.

(2) G is not type safe because it inherits type safety holes from C++, such as the po-

tential to dereference dangling pointers. However, the design for generics does

not contain type holes. Chapter 7 verifies this claim with a type safety proof for

the language FG which captures the essence of the generics of G in a small formal

language.

(3) G provides implicit instantiation of generic functions. Chapter 5 defines the static

semantics of G including how implicit instantiation is performed. The algorithm is

based on the variant of unification used in MLF, which was proved effective and

sound [24].

(4) G provides a mechanism for implicitly satisfying the type requirements of a generic

function at its point of instantiation. The static semantics of G described in Chap-

ter 5 demonstrates how this is accomplished by translating definitions into

function dictionaries and by explicitly passing dictionaries to generic functions

with type requirements.

(5) G provides separate compilation of both generic and non-generic functions. This

is demonstrated with the construction of a compiler for G that in fact compiles

generic functions to object code. Chapter 5 describes the compilation of G to C++.

1. INTRODUCTION 12

(6) G provides complete namespace protection. That is, the author of a module has

complete control over which names and model definitions are visible to the mod-

ule and which names are exported from the module. The module author can de-

termine the bindings of all variable references in the module by static inspection

of the module code.

(7) G supports the common idioms [11] of generic programming and formalizes the

specification language used to document generic libraries. We substantiate this

claim by implementing prototypes of the Standard Template Library and the Boost

Graph Library and verifying that G provides all the necessary language facilities

for their expression, which is described in Chapter 6.

1.6. Road map

Chapter 2 is an introduction to generic programming and to the Standard Template

Library of C++, which is representative of current practice in generic C++ libraries. The cur-

rent practice of generic programming is directly supported and formalized in the design of

G. Chapter 3 is a survey and evaluation of programming language mechanisms that support

generic programming, describing various forms of polymorphism and ways to constrain it.

This evaluation establishes the foundation for the design of G and explains the inherent

tradeoffs in the solution space. Chapter 5 describes the design and implementation of G.

This includes an introduction to generics in G and the rationale for the design. Chapter 5

then covers the type system of G in detail and the translation of G to C++, which serves to

define the semantics of G and shows how to compile G. Chapter 6 evaluates the suitabil-

ity of G for generic programming with two case studies: prototype implementations of the

STL and the BGL. Chapter 7 formalizes the essential features of G, defining a core calculus

named FG and proves type safety for FG . Chapter 8 concludes this dissertation.

To become a generally usable programming product, a program must
be written in a generalized fashion. In particular the range and form
of inputs must be generalized as much as the basic algorithm will
reasonably allow.

Frederick P. Brooks, Jr., [64]

That is the fundamental point: algorithms are defined on algebraic
structures.

Alexander Stepanov [160]

2
Generic programming and the STL

This chapter reviews the generic programming methodology of Stepanov and Musser and

how this methodology is applied in modern C++ libraries, with the Standard Template Li-

brary (STL) as the prime example. This chapter starts with a short history of generic pro-

gramming and a description of the methodology. The description is made concrete with a

small example: the development of an algorithm for accumulating elements of a sequence.

The design and implementation of the STL is then discussed, with emphasis placed on how

the STL components are specified and on which C++ features are used in the implemen-

tation. The generic programming facilities of C++ are analyzed so that the design of G

may build on the strengths and improve on the weaknesses. This chapter concludes with a

comparison of generic programming to other programming methodologies.

13

2. GENERIC PROGRAMMING AND THE STL 14

Generic programming has roots in mathematics, especially abstract algebra. Abstraction

plays an important role in mathematics: it helps mathematicians capture the essence of the

entities they study and makes theorems more general and therefore more widely applicable.

In the 1800’s Richard Dedekind and Emmy Noether began to distill algebra into fundamen-

tal abstract concepts such as Group, Ring, and Field. These concepts were generalizations of

the mathematical entities they were studying; they captured the essential properties needed

to prove their theorems. Noether’s student van der Waerden popularized these ideas in his

book Modern Algebra [192].

In the early 1980’s, Alexander Stepanov and David Musser, with several colleagues,

discovered how to use algebraic structures, and similar abstractions, to organize programs

to enable a high degree of reuse [104]. (There were similar developments around the

same time in a language for computer algebra by Jenks and Trager [93].) Stepanov and

Musser drew ideas from research on abstract data types [32, 77, 118, 185, 203], functional

programming languages [13, 61, 87], and mathematics [25]. Their initial idea was to use

“operators” (higher-order functions) to express generic algorithms, and to organize function

parameters along the lines of algebraic structures.

In the late 1980’s Stepanov and Musser applied their ideas to the creation of libraries

for processing sequences and graphs in the Scheme programming language [105, 180] and

also in Ada [138]. Their work came to fruition in the early 1990’s with the C++ Standard

Template Library [181], when generic programming began to see widespread use.

Figure 1 reproduces the standard definition of generic programming from Jazayeri,

Musser, and Loos [92]. In the next section we show how this methodology can be ap-

plied to implement a generic algorithm in Scheme [3, 56, 65]. The generic programming

methodology always consists of the following steps: 1) identify a family of useful and ef-

ficient concrete algorithms with some commonality, 2) resolve the differences by forming

higher-level abstractions, and 3) lift the concrete algorithms so they operate on these new

abstractions. When applicable, there is a fourth step to implement automatic selection of

the best algorithm, as described in Figure 1.

2. GENERIC PROGRAMMING AND THE STL 15

Generic programming is a sub-discipline of computer science that deals with find-
ing abstract representations of efficient algorithms, data structures, and other soft-
ware concepts, and with their systematic organization. The goal of generic pro-
gramming is to express algorithms and data structures in a broadly adaptable,
interoperable form that allows their direct use in software construction. Key ideas
include:

• Expressing algorithms with minimal assumptions about data abstractions,
and vice versa, thus making them as interoperable as possible.

• Lifting of a concrete algorithm to as general a level as possible without
losing efficiency; i.e., the most abstract form such that when specialized
back to the concrete case the result is just as efficient as the original
algorithm.

• When the result of lifting is not general enough to cover all uses of an
algorithm, additionally providing a more general form, but ensuring that
the most efficient specialized form is automatically chosen when applica-
ble.

• Providing more than one generic algorithm for the same purpose and at
the same level of abstraction, when none dominates the others in effi-
ciency for all inputs. This introduces the necessity to provide sufficiently
precise characterizations of the domain for which each algorithm is the
most efficient.

FIGURE 1. Definition of Generic Programming from Jazayeri, Musser, and Loos[92]

2.1. An example of generic programming

Figure 2 presents a family of concrete functions that operate on lists and vectors, com-

puting the sum or product of the elements or concatenating the elements (which in this

case are lists). These functions share a common control-flow; at some level of abstraction

these functions are essentially the same. Each of these functions is recursive, with a base

case that returns an object and a recursion step that combines the current element of the

sequence with the result of applying the function to the rest of the sequence.

There is a special relation between the base case object and the combining function

used in each algorithm. The following equations express the relationship: an application of

the combining function to the base object and an arbitrary value yields . Thus the base

object is the identity element.

=
=

2. GENERIC PROGRAMMING AND THE STL 16

FIGURE 2. A family of related algorithms implemented in Scheme.

λ

λ

λ

λ
λ

λ
λ

λ
λ

=

This grouping of an identity element, binary operator, and a set of values (e.g., integers or

strings), is traditionally called a Monoid. The first step of lifting the algorithms in Figure 2

2. GENERIC PROGRAMMING AND THE STL 17

is to recognize that they operate on Monoids. Thus, we can reduce the six algorithms to just

two by writing them in terms of an arbitrary and . We use the more generic

name for these algorithms and pass the and in as parameters.

λ

λ
λ

In the generic programming literature, abstractions such as Monoid [11, 103] are called

concepts. There are two equivalent ways to think about concepts. First, a concept can be

thought of as a list of requirements. The requirements include things like function signa-

tures and equalities. The following table shows the requirements for the Monoid concept.

We use as a place-holder for a type that satisfies the Monoid concept and is an arbitrary

value of type .

Monoid concept
× →

= =
=

The Monoid concept includes the requirement that the binary operator be associative.

While this is not strictly necessary for the function it is a useful requirement

because it would allow us to change the implementation later on to process portions of the

sequence in parallel.

The second way to think about a concept is as a set of types. This is equivalent to

thinking of a concept as a list of requirements because a type is in a concept (a set of

types) if and only if it satisfies the list of requirements. When a type satisfies a concept,

2. GENERIC PROGRAMMING AND THE STL 18

we say that the type models the concept. Sometimes it is useful to generalize the notion of

a concept from a set of types to a relation on types, functions, and objects. For example,

with the Monoid concept, there are multiple ways in which the type can satisfy the

requirements, for example, with and or with and .

Getting back to the accumulate example, the two new algorithms still differ in the data

structures they process: a linked list and a vector. However, both data structures represent

a sequence. When viewed at this higher level of abstraction the algorithms can be seen to

perform the same operations:

• Access the element at the current position (for lists and for ar-

rays).

• Move the position to the next element (for lists and for arrays).

• Check if the position is past the end of the sequence (for lists and for

arrays).

There is a concept named Input Iterator in the STL that groups together these operations. The

following table describes the requirements for the Input Iterator concept (loosely translated

into Scheme).

Input Iterator concept
type
type

models the Signed Integral concept
→
→
× →

implies
, , and must be constant time

The and types that appear in the requirements for Input Iterator are

helper types. A type is needed for the return type of and a type

is needed for measuring distances between iterators of type . The type is

required to be an appropriate integer type. The helper types may vary from iterator to

iterator and are determined by the iterator type. We refer to such helper types as associated

types.

2. GENERIC PROGRAMMING AND THE STL 19

FIGURE 3. A generic accumulate function in Scheme.

λ
λ

λ

The Input Iterator concept also includes complexity guarantees about the required opera-

tions: they must have constant time complexity. Such complexity guarantees are important

for describing the time complexity of algorithms. For example, our accumulate algorithms

are linear time provided that the iterator and monoid operations are constant time.

Lifting the accumulate algorithms with respect to Input Iterator produces the generic

function in Figure 3. The function is curried according to the two

different times at which the inputs are available. The client of first supplies

the Monoid and Input Iterator operations and in return gets a concrete function, where the

meaning of , , , etc. is fixed. This corresponds to McIlroy’s notion of “sale

time” parameters in the quotation from Chapter 1. Iterators can be fed into the concrete

function to compute a result.

The original concrete functions can be recovered by applying the generic to

the appropriate type-specific operations. The following code implements the list processing

algorithms using cons-lists directly as iterators.

λ
λ

λ

The iterators for vectors are pairs consisting of the vector and the index of the current

position. The following functions implement the iterator operations in terms of these pairs.

λ

2. GENERIC PROGRAMMING AND THE STL 20

λ
λ

The vector processing algorithm can then be implemented using the generic

and the vector iterator functions.

λ

λ

λ

With the generic we can implement a potentially infinite number of con-

crete algorithms with very little effort. Granted, because is only a few lines of

code, this is not a huge gain, but many of the STL and BGL algorithms are hundreds of lines

long, encapsulating large amounts of domain knowledge and expertise. Reusing that code

results in a significant savings. In general, if we wish to implement M algorithms for N

data structures we would need M times N concrete algorithms. With generic programming

we write M generic functions plus N data structure implementations. Thus we get a multi-

plicative amount of functionality for an additive amount of work. M and N do not have to

grow very large before the generic programming approach realizes significant savings.

The approach used in this section to implement generic functions, passing concept oper-

ations as parameters, was one of the first language mechanisms used by Stepanov, Musser,

and Kershenbaum to implement generic algorithms [105, 180] and it remains an important

tool for building modern generic libraries. However, we do not use function parameters

as the primary mechanism for providing access to concept operations. The reason is that

generic functions can become difficult to use due to the large number of parameters. In

some cases, a library author can supply specific versions of the algorithms, as we did above.

However, a user may wish to apply the generic algorithm to some new data type.

Ideally, we would like calls to generic algorithms to be uncluttered by concept operation

parameters. Instead, if the author of a data type registers which concepts the data type

models and then the programming language can take care of passing the concept operations

2. GENERIC PROGRAMMING AND THE STL 21

Iterator ConceptsAlgorithms Containers

partition

merge

stable_sort

sort_heap

binary_search

Forward
Bidirectional

Random Access

list

vector

map

set

T[]

AdaptorsFunction Objects

multiplies

binder1st

mem_fun reverse_iterator

back_insert_iterator

stack

priority_queue
...

...
...

...

...

FIGURE 4. High-level structure of the STL.

into a generic function. The language Haskell has a type class feature that provides this

capability as does the language G of this thesis.

2.2. Survey of generic programming in the STL

The high-level structure of the STL is shown in Figure 4. There are five categories

of components in the STL, but of primary importance are the algorithms. The STL con-

tains over fifty classic algorithms on sequences including sorting, searching, binary heaps,

permutations, etc. The STL also includes a handful of common data structures such as

doubly-linked lists, resizeable arrays, and red-black trees.

Many of the STL algorithms are higher-order: they take functions as parameters, al-

lowing users to customize the algorithm to their own needs. The STL includes function

objects for creating and composing functions. For example, the function object adds

two numbers and the function object combines two function objects, f and

g, to create a function that performs the computation f(g(x)).

The STL also contains a collection of adaptor classes. An adaptor class is parameterized

on the type being adapted. The adaptor class then implements some functionality using

the adapted type. The adapted type must satisfy the requirements of some concept and the

adaptor class typically implements the requirements of another concept. For example, the

adaptor is parameterized on a Back Insertion Sequence and imple-

ments Output Iterator. Adaptors play an important role in the plug-and-play nature of the

2. GENERIC PROGRAMMING AND THE STL 22

STL and enable a high degree of reuse. One example is the algorithm which is

implemented using the algorithm and the adaptor.

The rest of this section takes a closer look at the STL components, reviewing how they

are implemented in C++ and highlighting the interface specification elements used in the

STL documentation. The goal is to come up with the list of language features that are

needed in G to allow for a straightforward implementation of the STL.

2.2.1. Generic algorithms and STL concepts. The algorithms of the STL are orga-

nized into the following categories:

(1) Iterator functions

(2) Non-mutating algorithms

(3) Mutating algorithms

(4) Sorting and searching

(5) Generalized numeric algorithms

In this context, “mutating” means that the elements of an input sequence are modified in-

place by the algorithm. Most of the algorithms operate on sequences of elements, but a few

basic algorithms operate on a couple of elements.

We look in detail at a selection of algorithms from the STL, at least one from each of

the above categories. Algorithms were selected to demonstrate all the C++ techniques and

specification elements that are used in the STL.

: (sorting) This simple function makes for a good starting point to talk about C++

function templates, type requirements, and the Less Than Comparable concept.

: (non-mutating) This algorithm operates on iterators, so we introduce the

Input Iterator concept and describe the STL’s iterator hierarchy. An important but

unusual aspect of concepts (for those unfamiliar to generic programming) is the

notion of associated types. We introduce the C++ traits idiom that is used to access

associated types.

2. GENERIC PROGRAMMING AND THE STL 23

: (mutating) A generic algorithm usually places constraints on its type pa-

rameters. In this algorithm (and many others) constraints are also placed on as-

sociated types.

: (sorting) We show a misuse of this algorithm and the resulting C++

error message. This leads to a short discussion of C++ techniques for improving

error messages and for checking whether an algorithm’s implementation is consis-

tent with its documented interface.

: (sorting) This algorithm demonstrates the need for another kind of constraint

which we call same-type constraints. The algorithm also shows the need to

generalize concepts so that they can place requirements on multiple types instead

of just a single type (not counting associated types).

: (generalized numeric) Like most STL algorithms, there are two ver-

sions of . One of the versions takes an extra function parameter and

is therefore an example of a higher order function. We discuss function objects,

function concepts like Binary Function, and conversion requirements.

: (iterator functions) This function uses a C++ idiom called tag dispatching

to dispatch to different implementations depending on the capabilities of the iter-

ator.

2.2.1.1. , function templates, and type requirements. Perhaps the simplest of STL

algorithms is , which returns the smaller of two values. The STL algorithms are imple-

mented in C++ with function templates. The template is parameterized on type .

The function template does not work on an arbitrary type ; the STL SGI documentation

lists the following restriction:

• is a model of Less Than Comparable.

2. GENERIC PROGRAMMING AND THE STL 24

The C++ Standard defines concepts with requirements tables. The table below defines

when a type is a model of Less Than Comparable. The values and have type .

expression return type semantics
convertible to is a strict weak ordering relation

FIGURE 5. Requirements for Less Than Comparable

In C++ documentation, valid expressions are used to express requirements instead of func-

tion signatures. The reason is that in C++ a function signature would be more restrictive,

ruling out other function signatures that could also be used for the same expression. For

example, the signature

would require a free function, ruling out less-than operators implemented as member func-

tions.

A function template is instantiated by binding concrete types to the type parameters,

thereby creating a concrete function, The following program shows two instantiations of

the template. The first instantiation is explicit, with applied to the type argument

. The second instantiation is implicit: the type argument is deduced by the C++

compiler from the types of and .

Name lookup in C++. In C++, uses of names inside of a template definition, such as the

use of inside of , are resolved after instantiation. For the instantiation

2. GENERIC PROGRAMMING AND THE STL 25

, overload resolution looks for an defined for .

There is no such function defined in the scope of , but the C++ compiler also

searches the namespace where the arguments’ types are defined, so it finds the

in namespace . This rule is known as argument dependent lookup (ADL).

The combination of implicit instantiation and ADL makes it convenient to call generic

functions. This is a nice improvement over passing concept operations as arguments to a

generic function, as in the example from Section 2.1. However, ADL has two

flaws. The first problem is that the programmer calling the generic algorithm no longer

has control over which functions are used to satisfy the concept operations. Suppose that

namespace is a third party library and the application programmer writing the

function has defined his own for . ADL does not find this new .

The second and more severe problem with ADL is that it opens a hole in the protec-

tion that namespaces are suppose to provide. ADL is applied uniformly to all name lookup,

whether or not the name is associated with a concept in the type requirements of the tem-

plate. Thus, it is possible for calls to helper functions to get hijacked by functions with the

same name in other namespaces. Figure 6 shows an example of how this can happen. The

function template calls with the intention of invoking .

In we call with an object of type , so in the call to , also

has type . Thus, argument dependent lookup also consider namespace when

searching for . There happens to be a function named in namespace , and it

is a slightly better match than , so it is called instead, thereby hijacking the call to

.

2.2.1.2. , iterator concepts, and associated types. Most STL algorithms operate on

sequences of elements and access to the sequence is expressed in terms of iterator concepts.

The algorithm is a simple example but touches many aspects of generic program-

ming in C++. This algorithm counts hows many elements in the sequence are equal to the

parameter. The sequence is delimited by the pair of iterators and , where

points to the first element of the sequence and points “one past the end” of the

sequence.

2. GENERIC PROGRAMMING AND THE STL 26

FIGURE 6. Example problem caused by ADL.

The following are the type requirements for this function template.

• is a model of Input Iterator.

• An object of ’s value type can be compared for equality with an object of type

.

Figure 7 shows the definition of the Input Iterator concept following the presentation style

used in the SGI STL documentation [9, 176]. The definition says that Input Iterator is a

refinement the Trivial Iterator concept.1 Thus, all of the requirements of Trivial Iterator are

1The specification of Input Iterator in the SGI STL documentation differs somewhat from the C++ Standard.

2. GENERIC PROGRAMMING AND THE STL 27

included in the requirements for Input Iterator and any type that models Input Iterator must

also model Trivial Iterator.

The Input Iterator concept also includes requirements for several associated types: the

, , and the . The Input Iterator concept re-

quires that these associated types be accessible via the class. The return

type of the function is an example of using to map from the

type to its :

The reason the uses the iterator specific instead of is to

accommodate iterators that traverse sequences that may be too long to be measured with

an .

Traits classes and template specialization. A traits class [140] maps from a type to

other types or functions. Traits classes rely on C++ template specialization to perform this

mapping. The following is the main template definition for .

A template specialization is defined by specifying particular type arguments for the tem-

plate parameter and by specifying an alternate body for the template. When a programmer

creates a new iterator class, such as the class below, the tem-

plate can be specialized to specify the , etc., for the new iterator. In this case

the of should be to match the return type of .

2. GENERIC PROGRAMMING AND THE STL 28

Input Iterator

Description
An Input Iterator is an iterator that may be dereferenced to refer to some object, and
that may be incremented to obtain the next iterator in a sequence. Input Iterators are
not required to be mutable. The underlying sequence elements is not required to be
persistent. For example, an Input Iterator could be reading input from the terminal. Thus,
an algorithm may not make multiple passes through a sequence using an Input Iterator.

Refinement of
Trivial Iterator.

Notation
A type that is a model of Input Iterator
The value type of
Objects of type
Object of type

Associated types

The type of the value obtained by dereferencing an Input Iterator

A signed integral type used to represent the distance from one iterator to another, or
the number of elements in a range.

A type convertible to .

Definitions
An iterator is past-the-end if it points beyond the last element of a container. Past-the-end
values are nonsingular and nondereferenceable. An iterator is valid if it is dereference-
able or past-the-end. An iterator is incrementable if there is a "next" iterator, that is,
if is well-defined. Past-the-end iterators are not incrementable. An Input Iterator
is reachable from an Input Iterator if, after applying to a finite number of
times, . The notation refers to a range of iterators beginning with and
up to but not including . The range is a valid range if both and are valid
iterators, and is reachable from .

Valid expressions
In addition to the expressions in Trivial Iterator, the following expressions must be valid.
expression return type semantics, pre/post-conditions

Convertible to pre: is incrementable
pre: is dereferenceable, post: is dereferenceable
or past the end
Equivalent to .
Equivalent to

Complexity guarantees
All operations are amortized constant time.

Models

FIGURE 7. Input Iterator requirements

2. GENERIC PROGRAMMING AND THE STL 29

When is used in other parts of the program it refers to the

above specialization, whereas refers to the main

template definition.

For parameterized types, partial template specialization can be used to define a trait. A

partial specialization still has template parameters but restricts which types it applies to. For

example, the following is the partial specialization of for all pointer types,

as specified by the . The rules for template instantiation ensure that the specialization

that best matches the type arguments is used.

Template specialization is a form of dispatching on types and therefore the use of spe-

cialized class templates inside of function templates relies on the C++ compilation model:

template definitions are type checked, etc., after instantiation, when all type arguments are

known. For the return type of , the type is analyzed after

instantiation, when it is known that .

Requirements on associated types in concept definitions. The Input Iterator concept re-

quires that the associated be a signed integral type. This requirement

is needed in , for example, because it applies the increment operator to . Placing

requirement on associated types is fairly common in concept definitions. Another example

is the Container concept, with its associated type that is required to be a model of

Input Iterator.

The iterator concept hierarchy. The Input Iterator concept provides limited functionality:

the ability to read elements from a sequence in a single pass. More iterator concepts are

needed to fulfill the needs of other sequence algorithms. For example, the algorithm

copies one sequence into another and therefore needs an Output Iterator to accommodate

2. GENERIC PROGRAMMING AND THE STL 30

Random Access Bidirectional Forward

Input

Output

FIGURE 8. The refinement hierarchy of iterator concepts.

writing values. Another example is the algorithm which finds occurrences of a

particular subsequence within a larger sequence. To accomplish this, must make

multiple passes through the sequence. This capability is captured in Forward Iterator. The

algorithm needs to move backwards and forwards through the sequence,

so it requires Bidirectional Iterator. And finally, the algorithm needs to jump arbitrary

distances within the sequence, so it requires Random Access Iterator. (The function

uses the introsort algorithm [133] which is based on quicksort [83].)

The Forward Iterator concept is a refinement of (includes the requirements of) Input It-

erator and Output Iterator. Likewise, Bidirectional Iterator refines Forward Iterator and Random

Access Iterator refines Bidirectional Iterator. The refinement hierarchy for this family of iterator

concepts is shown in Figure 8.

2.2.1.3. and requirements on associated types. The algorithm removes

subsequences of duplicate elements, replacing them with a single occurrence of the element.

The following is the signature and type requirements for .

• is a model of Forward Iterator.

• ’s value type is a model of Equality Comparable.

Here we see a requirement placed on the associated type of a type parameter. The above

language is a slightly informal way of saying that the type

must model the Equality Comparable concept.

2. GENERIC PROGRAMMING AND THE STL 31

2.2.1.4. , error messages, and concept checking. The algo-

rithm sorts a sequence in place into ascending order according to the value type’s .

Also, preserves the original ordering of equivalent elements, that is, an and

are equivalent if neither nor .

The type requirements for are:

• is a model of Random Access Iterator.

• is mutable.

• ’s value type is Less Than Comparable.

C++ template libraries have become infamous for their hard to understand error mes-

sages. When the user of an algorithm makes a mistake, such as accidentally attempting to

use the algorithm with the wrong kind of iterator. The resulting compiler error is usually

quite long and points into the internals of the template library. The following code tries to

use with the iterators from .

Figure 9 shows the error message from GNU C++. The error message mentions lots of

functions and types that the user should not know about such as

and . Further, it is not clear from the error message who is responsible for

the error. The error message is pointing inside the STL so the user might conclude that

there is an error in the STL.

Concept checking. We developed a C++ idiom to combat the error message problem. The

basic idea was to exercise all of the requirements of a function template at the beginning of

the function using concept checking classes [170]. Thus, if a user sees errors coming from

a concept checking class, then the user knows he made a mistake and sees the name of

2. GENERIC PROGRAMMING AND THE STL 32

stl_algo.h: In function ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’:

stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’

stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2345: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2349: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2352: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2352: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’:
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2497: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2498: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2507: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2507: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__insertion_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’:
stl_algo.h:2346: instantiated from ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2095: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int’ operator
stl_algo.h:2346: instantiated from ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2099: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int’ operator
stl_algo.h: In function ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’:
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2457: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__chunk_insertion_sort(_RandomAccessIter, _RandomAccessIter, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Distance = int]’:
stl_algo.h:2461: instantiated from ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2431: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2432: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2433: error: no match for ‘std::_List_iterator<int, int&, int∗>& += int&’ operator
stl_algo.h: In function ‘void std::__merge_sort_loop(_RandomAccessIter1, _RandomAccessIter1, _RandomAccessIter2, _Distance)

[with _RandomAccessIter1 = std::_List_iterator<int, int&, int∗>, _RandomAccessIter2 = int∗, _Distance = int]’:
stl_algo.h:2464: instantiated from ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2388: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2392: error: no match for ‘std::_List_iterator<int, int&, int∗>& += int&’ operator
stl_algo.h:2395: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2396: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2396: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator

FIGURE 9. Error message from a misuse of .

2. GENERIC PROGRAMMING AND THE STL 33

the concept that was not satisfied. The main trick is to get the compiler to exercise all the

requirements without creating run-time overhead. This is achieved by writing expressions

for the requirements in a separate function and creating a pointer to this function inside the

generic algorithm (but the function is not called).

The following is a concept checking class for the Less Than Comparable concept. It

contains a method that uses on two variables of type and checks

that the return type is convertible to .

The function listed below is annotated with concept checks. The Boost Con-

cept Checking library [167] provides pre-defined concept checking classes for the STL con-

cepts and the utility that triggers the concept checking.

The concept checking idiom has been applied in the SGI STL implementation and the

GNU C++ standard library. With concept checking, error messages are much more informa-

tive but they are still confusing and hard to read. The following is the error message with

concept checking.
concept_check.h:48: instantiated from ‘void boost::function_requires(boost::mpl::identity<T>∗)

[with Concept = boost::Mutable_RandomAccessIteratorConcept<std::_List_iterator<int, int&, int∗> >]’
stable_sort_error.cpp:16: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
concept_check.h:665: error: no match for ‘std::_List_iterator<int, int&, int∗>& [ptrdiff_t&]’ operator
...

2. GENERIC PROGRAMMING AND THE STL 34

Completeness of type requirements and archetype classes. Concept checking helps to

find and understand errors in the use of generic functions, but it does not check whether

the documented type requirements of a generic function are enough to cover the needs

of the implementation. If the documented type requirements are not enough, a user may

experience compiler errors despite having satisfied the requirements.

The common practice for ensuring that all operations used in a generic function are

covered by the type requirements is to manually inspect the implementation. This is tedious

and error prone. A more automated approach is to create classes that minimally satisfy

concepts, we call them archetype classes, and then see if the function template compiles

when used with the archetype class [170]. The generic library author no longer needs to

manually inspect each algorithm, but creating correct archetype classes is non-trivial and

error prone.

The following is an archetype class for the Less Than Comparable concept.

The only function required by Less Than Comparable is the . One minor compli-

cation in this archetype is that the return type is declared to be instead

of . The reason is that Less Than Comparable does not require that return

, but only that the return type be convertible to , which satis-

fies. The type parameter is to allow for the composition of archetype classes.

2.2.1.5. , same-type constraints, and multi-parameter concepts. The algo-

rithm combines two sorted ranges into a single sorted range.

2. GENERIC PROGRAMMING AND THE STL 35

The following are the type requirements for . An interesting aspect of these require-

ments is the use of a same-type constraints that requires two type expressions to refer to

the same type.

• is a model of Input Iterator.

• is a model of Input Iterator.

• ’s value type is the same type as ’s value type.

• ’s value type is a model of Less Than Comparable.

• is a model of Output Iterator and ’s value type is a type in ’s

set of value types.

With the same type constraint, an expression of the form is valid since

both sides of the equality have the same type, and that type is a model of Less Than Compa-

rable.

Another interesting aspect of the type requirements for is the requirement that

be a model of Output Iterator. The Output Iterator concept has an associated set of

types that are writable to the iterator. Instead of using the notion of a set of types, Output

Iterator can be formulated as a multi-parameter concept. The following is the concept

checking class for this two-parameter version of Output Iterator. The parameter is for the

iterator and is for the value type.

The requirements on the parameter of can then be written as follows.

2. GENERIC PROGRAMMING AND THE STL 36

• and ’s value type together model Output Iterator.

The algorithm only uses the output iterator with a single value type, so one

might wonder why the Output Iterator concept is not formulated with a single value type.

There are other algorithms, such as , that use an output iterator with multiple

value types. The following is the interface and type requirements for . This

algorithm uses another multi-parameter concept: Equality Comparable2 which requires an

that works on arguments of different types.

• is a model of Input Iterator.

• and together model Output Iterator.

• and ’s value type together model Output Iterator.

• ’s value type and together model Equality Comparable2.

The multiple value types formulation of Output Iterator would be useless if there were

no concrete iterator classes that could output multiple value types. However, there are

examples of such iterator classes. The example in Figure 10 shows an output iterator that

writes to an output stream. It has an member template that may be used with

any value type accepted by .

2.2.1.6. , function objects, and conversion requirements. The al-

gorithm of the STL combines the elements of a sequence with the function, starting

with . Like many STL algorithms, there are two versions of , one that

relies on an operator (in this case) and the other that has an extra function parameter.

The type requirements for the second version of are:

• is a model of Input Iterator.

2. GENERIC PROGRAMMING AND THE STL 37

FIGURE 10. An output stream iterator that can output values of multiple types.

• is a model of Assignable.

• is a model of Binary Function.

• is convertible to Fun’s first argument type.

• The value type of is convertible to ’s second argument type.

• ’s return type is convertible to .

Function objects. The second version of can be adapted to solve more prob-

lems than the first version, but the user must do a little more work by supplying the binary

operator. Typically, the binary operator is a function object: an instance of a class with a

call operator (which is written). The STL includes many predefined function

classes. There is a function class for each built-in operator, such as the class for

, and there are function combinators, such as and . The

following example computes the product of an array of integers. The standard

function object is used for the binary operation and for the identity element.

2. GENERIC PROGRAMMING AND THE STL 38

If there is no combination of predefined function objects that meet the user’s need, or if the

combination is too complex, then the user may instead write a custom function object. The

following example sums the elements of an array, modulo 10.

The type requirements for state that the type parameter must model

the Binary Function concept. Figure 11 shows the requirements for this concept. Basically,

any function pointer or class with an that takes two parameters is a model of

Binary Function.

Function objects have a few disadvantages. The class typically needs to be defined at

global scope, which fragments the code. Also, when the function object needs to refer to

a variable from the surrounding scope, such as in the above example, the variable must

be passed to the function object. Finally, the syntactic overhead associated with function

objects is significant.

Conversion requirements. The type requirements for require that the type

of the identity element be convertible to the first argument type of Fun. A conversion

requirement says there must be an implicit conversion from one type to another. Many STL

algorithms use conversion requirements instead of same-type constraints to provide more

flexibility.

2.2.1.7. and tag dispatching. One of the main points in the definition of generic

programming in Figure 1 was that it is sometimes necessary to provide more than one

generic algorithm for the same purpose. When this happens, the standard approach in C++

2. GENERIC PROGRAMMING AND THE STL 39

Binary Function

Description
A Binary Function is a kind of function object: an object that is called as if it were an
ordinary C++ function. A Binary Function is called with two arguments.

Refinement of
Assignable, Copy Constructible.

Notation
A type that is a model of Binary Function
The first argument type of
The second argument type of
The result type of
Object of type
Object of type
Object of type

Associated types
First argument type
The type of the Binary Function’s first argument.
Second argument type
The type of the Binary Function’s second argument.
Result type
The type returned when the Binary Function is called

Definitions
The domain of a Binary Function is the set of all ordered pairs that are permissible
values for its arguments. The range of a Binary Function is the set of all possible value that
it may return.

Valid expressions
In addition to the expressions in Trivial Iterator, the following expressions must be valid.
expression return type semantics, pre/post-conditions

Calls with arguments . pre: is in the
domain of , post: The return value is in ’s range.

Complexity guarantees
None.

Models
•
•
•

FIGURE 11. Binary Function requirements

2. GENERIC PROGRAMMING AND THE STL 40

FIGURE 12. The algorithm and the tag dispatching idiom.

libraries is to provide automatic dispatching to the appropriate algorithm using the tag dis-

patching idiom or [90]. Figure 12 shows the algorithm of the STL as it

is typically implemented using the tag dispatching idiom. The algorithm moves an

iterator forward (or backward) positions. There are three overloads of ,

each with an extra iterator tag parameter. The C++ Standard Library defines the following

iterator tag classes, with their inheritance hierarchy mimicking the refinement hierarchy of

the corresponding concepts.

The main function obtains the tag for the particular iterator from

and then calls . Normal static overload resolution then chooses the ap-

propriate overload of .

2. GENERIC PROGRAMMING AND THE STL 41

2.2.2. Generic containers. The STL container classes include some of the most com-

mon data structures for representing sequences of elements, though they are not a compre-

hensive collection.

: is a resizeable array.

: is a doubly-linked list.

: is a container with fast insertion and removal at the beginning and end of

the sequence in addition to fast access to arbitrary elements.

: is a container of sorted elements.

: is a container of sorted elements that permits multiple equivalent ele-

ments.

: is an associative container that maps keys to values.

: is an associative container that allows multiple values with the same key.

The C++ committee’s official Technical Report on C++ Library Extensions [10] adds hash

tables to the above selection. Also, many STL implementations include a singly-linked

class.

The class is typical of the STL containers. The following is an outline of class

template. is parameterized on two types: is the element type, and is a policy

class that determines how elements of the list are allocated.

Just as the function templates of the STL have type requirements, so do the container

classes. The type requirements for the template are:

• must model Copy Constructible and Assignable.

• must model Allocator.

The member functions of the class rely on these type requirements. For example, the

copy constructor of the class uses the copy constructor for .

2. GENERIC PROGRAMMING AND THE STL 42

There are many helper types that play a role in the functionality of the class. The

class contains type definitions for each of the helper types, so for example, a program-

mer can access the iterator type for a list with a type expression such as .

The identities of many of the helper types are intended to be hidden implementation de-

tails. The C++ does not make them truly hidden, but it is good programming style

to treat them as if they were. The following are the nested type definitions within :

As is usual for C++ classes, has several constructors, a destructor, and an assign-

ment operator. These member functions are vital for allowing a user to treat an object of

type as if it were a built-in type, giving the object value semantics. For example, just

like an object of type , a list object may be declared as a local variable (allocated on the

stack), it may be assigned and copied, and when the variable goes out of scope, the lifetime

of the object ends.

2. GENERIC PROGRAMMING AND THE STL 43

The list object contains a pointer to heap allocated nodes, so the implicit call to the de-

structor is needed to allow for the manual deletion of this memory. The following are the

constructors, destructors, and related member functions for .

Two of the above members are of interest because they are member function tem-

plates parameterized on an type. The type requirements for are:

• must be a model of Input Iterator.

• ’s value type must be convertible to the value type of the list.

The class provides iterators so that it may be used with the STL sequence algo-

rithms. The iterators are models of the Bidirectional Iterator concept; the nodes are

doubly-linked so they enable both forward and backward traversal. The and

member functions return iterators pointing to the first elements and pointing just after the

last element, respectively. There are constant iterators for read-only access and mutable

iterator for read-write access. The class also provides reverse iterators that flip the di-

rection of traversal. These iterators are implemented using the adaptor

which is described in Section 2.2.3.

2. GENERIC PROGRAMMING AND THE STL 44

The rest of the member functions of are typical of a container class. We list them

below for completeness.

2. GENERIC PROGRAMMING AND THE STL 45

2.2.3. Adaptors and container concepts. An adaptor class transforms the interface or

behavior of other classes. The adapted class is typically assumed to satisfy the requirements

of some concept and the adaptor class usually implements the requirements of another

concept. The STL has several adaptors, listed below, that implement iterator concepts on top

of containers. Thus, a family of container concepts are needed to express the requirements

of these adaptors. Figure 13 shows the refinement hierarchy for the container concepts.

: adapts a Back Insertion Sequence and implements Output It-

erator.

: adapts a Front Insertion Sequence and implements Output

Iterator.

: adapts a Container and implements Output Iterator.

The following example computes the set difference of two arrays of integers using the

generic algorithm. The output is stored in a vector and the vector is

2. GENERIC PROGRAMMING AND THE STL 46

ContainerForward ContainerReversible Container

Random Access Container Sequence

Front Insertion Sequence

Back Insertion Sequence

FIGURE 13. The refinement hierarchy of container concepts.

adapted to the expected Output Iterator interface using . The function

provides a convenient way to create a .

The Container concept and same-type constraints. The Container concept requires a mod-

eling type to provide several associated types, including a and an type

that models Input Iterator. The type has its own associated . The Con-

tainer concept requires that the ’s be the same type as the container’s

.

The Sequence concept and parameterized function requirements. The Sequence concept

includes the requirement for an function that inserts a range of elements from

another sequence. The range is specified as a pair of arbitrary Input Iterators. Thus, a class

that models Sequence must implement as a template member function. The

class, for example, includes an member function template.

Reverse iterators and conditional models. The class template adapts

a Bidirectional Iterator and implements Bidirectional Iterator, flipping the direction of traver-

sal, so goes backwards and goes forwards. An excerpt from the

class template is shown below.

2. GENERIC PROGRAMMING AND THE STL 47

The class template is an example of a type that models a concept

conditionally: if the type models Random Access Iterator, then so does .

The definition of defines all the operations, such as , required

of a Random Access Iterator. The implementations of these operations rely on the Random Ac-

cess Iterator operations of the underlying . One might wonder why

can be used on iterators such as that are bidirectional but not ran-

dom access. The reason this works is that a member function such as is type

checked and compiled only if it is used.

The algorithm is a nice example of the reuse enabled by adaptors such as

. The algorithm searches within the first sequence (

and) for the last subsequence that matches the second sequence (and).

Figure 14 shows the version of the algorithm for Bidirectional Iterators. This ver-

sion is implemented with and . The algorithm finds the

first matching subsequence, so applying this algorithm in reverse finds the last matching

subsequence.

Container adaptors. The STL contains the following three container adaptors.

: adapts a Back Insertion Sequence and implements a last-in-first-out interface.

: adapts type that models both Back Insertion Sequence and Front Insertion Se-

quence and implements a first-in-first-out interface.

2. GENERIC PROGRAMMING AND THE STL 48

FIGURE 14. The algorithm implemented with and .

: adapts a Random Access Container and a comparison function and

implements a queue interface where the element with the highest priority is first

to leave the queue.

2.2.4. Summary of language requirements. In this chapter we surveyed how generic

programming is accomplished in C++, taking note of the variety of language features and

idioms that are used in current practice. In this section we summarize the findings as a list

of requirements for a language to support generic programming.

(1) The language provides type parameterized functions with the ability to express

constraints on the type parameters. The definitions of parameterized functions

are type checked independently of how they are instantiated.

(2) The language provides a mechanism, such as “concepts”, for naming and grouping

requirements on types, and a mechanism for composing concepts (refinement).

Concepts should be allowed to have multiple parameters.

2. GENERIC PROGRAMMING AND THE STL 49

(3) Type requirements include:

• requirements for functions and parameterized functions

• associated types

• requirements on associated types

• same-type constraints

• conversion requirements

(4) The language provides an implicit mechanism for providing type-specific opera-

tions to a generic function, but this mechanism should maintain modularity (in

contrast to argument dependent lookup in C++).

(5) The language implicitly instantiates generic functions when they are used.

(6) The language provides a mechanism for concept-based dispatching between algo-

rithms.

(7) The language provides function expressions and function parameters.

(8) The language supports conditional modeling.

(9) The language provides a mechanism for creating abstract data types, such as ,

that manage some private resources. It should be possible to implement ADT’s that

behave like built-in types in that they have value semantics.

2.3. Relation to other methodologies

This section describes the place of generic programming within the larger realm of

software engineering. The relationship between generic programming and other software

construction techniques and methodologies is discussed.

Object-Oriented Programming. Definitions of object-oriented programming vary, but the

equation

object = data + functions

is central to all of them: an object consists of data fields and pointers to functions. In

generic programming there is also a connection between data and operations on the data,

but the operations are not physically attached to the data. Instead, generic programming

adheres to the view that data types and operations on those types are grouped (usually in

2. GENERIC PROGRAMMING AND THE STL 50

a module) to form an abstract data type. Instead of physically attaching functions to data,

they are merely logically attached.

abstract data type = representation types + functions

This subtle difference has many repercussions, both in program design and in program-

ming language design. When designing a program using object-oriented techniques, there

is a strong motivation to assign each function to a particular class. This is difficult to do

when there are multiple classes in tight collaboration. With generic programming, such

classes are simply placed in the same module together with free-standing functions.

Another repercussion on language design concerns data-encapsulation and information

hiding. In object-oriented languages, protection is associated with classes, whereas with

abstract data types the information hiding occurs at the module level. Again, in the situation

where multiple classes are in tight collaboration, module level protection is a better fit; with

class level protection one is forced to bypass the protection by granting friendship. It makes

sense to ask the question, who do we need to deny access to? It is certainly important to

protect the internals of a module from users of the module, but why protect two different

parts of a module from each other, especially when the two parts are either implemented

by the same programmer or by programmers working in close collaboration?

Another idea central to object-oriented programming is late binding (dynamic dis-

patch). This allows object-oriented programs to be extremely flexible. Dynamic dispatch

provides a mechanism for data-directed programming [4]: dispatching to different routines

based on the run-time type of the data.

Generic programming, with its emphasis on libraries, more often relies on static binding:

fixing generic parameters and operations at “sale time” (when the application program is

compiled and the library linked in). One interesting question is whether polymorphism

based on concepts can be extended to allow for run-time dispatch. Indeed, this is the case,

through the use of existential types [111, 130]. For a long time existential types were a

research language novelty but they are starting to see more widespread use [42, 107, 111].

2. GENERIC PROGRAMMING AND THE STL 51

It is also interesting to ask whether generic programming can be accomplished in object-

oriented languages. The answer is yes. For example, the Template Method design pat-

tern [68] can be used to define generic algorithms. However, object-oriented languages

are not a particularly good fit for generic programming, which is discussed in depth in

Section 3.2.

Perhaps the most important difference between generic programming and object-oriented

programming is the emphasis that generic programming places on algorithms. Generic al-

gorithms are separated from objects and classes; this separation allows for the high degree

of reuse in generic libraries. Object-oriented libraries often attach algorithms to particular

classes and in doing so miss opportunities for reuse.

Functional Programming. There are two characteristics that are often associated with

functional programming: higher-order functions and a lack of side-effects. As mentioned

at the beginning of this chapter, generic programming was inspired by ideas from func-

tional programming languages. In particular, the appearance of higher-order functions

(then called operators) in early functional languages such as FP [13] and APL [61, 87] in-

spired the higher-order approach to generic programming used by Stepanov and Musser in

their generic Scheme libraries [180].

At first, Stepanov was fond of the absence of side-effects in some functional languages.

However, he was soon convinced by Aaron Kershenbaum that side effects were necessary

because many efficient algorithms and data-structures are deeply imperative [105, 169].

For example, the best purely functional implementation of Dijkstra’s single-source shortest

paths is O((V + E) log V) [82] while the best imperative implementation is O(V log V +

E) [49]. Generic programming methodology places a high priority on efficiency, so the most

efficient algorithm (including constant factors) is always chosen, regardless of whether it is

imperative or pure-functional.

Generative Programming. is an approach to the automatic generation of families of soft-

ware components developed by Czarnecki and Eisenecker [51]. Generative programming

concerns the construction of generators whose inputs are specifications expressed in a do-

main specific language (DSL) and whose outputs are software components assembled from

2. GENERIC PROGRAMMING AND THE STL 52

many pre-built components based on some configuration knowledge. Generic program-

ming is one of the key implementation technologies used to build the components within a

generative system (Czarnecki and Eisenecker dedicate a chapter to generic programming in

their book). Metaprogramming techniques can be used to automatically select and compose

generic components. Both generic and generative programming place a strong emphasis on

domain engineering and on the analysis of the common and variable properties of elements

in a domain. Closely related to generative programming is the Intentional Programming of

Simonyi, also described by Czarnecki and Eisenecker in [51]. The main idea behind Inten-

tional Programming is the use of structured editors to lower the cost of creating new DSLs

and to make it possible to use several DSLs together (similar to the use of several software

libraries in an application). The underlying representation for DSLs is abstract syntax trees

which are manipulated and transformed within the Intentional Programming framework.

Software Product Lines. The Software Engineering Institute has developed a framework,

called Software Product Lines [46], for managing software product lines that target specific

market segments or problem domains. The key to this approach is improving the time to

market and quality of the product lines by building on a shared set of software libraries and

frameworks. As in generic programming, there is an emphasis on domain engineering and

the systematic organization of the libraries. Thus, generic programming can be seen as an

enabling technology for software product lines.

Aspect-Oriented Programming. AOP [106] consists of methodologies and tools for sep-

arating the cross-cutting concerns of a program into aspects. Each aspect is programmed

separately and then combined to form the program using an aspect weaver. Generic pro-

gramming traditionally deals with the separation of concerns through function parameter-

ization, separating data structure concerns from algorithm concerns. However, function

parameterization is not ideal for other cross-cutting concerns. Thus, generic libraries could

benefit from aspect-oriented programming. At the same time, aspects can benefit from the

abstraction and parameterization afforded by generic programming. Some work in this vein

has already begun [119, 175].

2. GENERIC PROGRAMMING AND THE STL 53

Parameterized Programming. This is a programming methodology developed by Goguen

and colleagues [72, 74]. It is very similar to generic programming: it emphasizes abstrac-

tion and the construction of parameterized components. For example, the analogue of a

concept in parameterized programming is a theory. Parameterized programming has not

been applied to the same extent as generic programming to the construction of libraries of

algorithms, such as the STL, nor does parameterized programming have the same emphasis

on efficiency that is characteristic of generic programming. Also, parameterized program-

ming traditionally uses parameterized modules whereas generic programming more often

relies on parameterized functions.

Metaprogramming. There is a close relationship between metaprogramming and generic

programming, and they are often confused, especially with regards to C++ template metapro-

gramming [5]. Metaprogramming, in general, deals with various programming techniques

and language features for code generation and for compile-time (or more generally, staged)

computation [75, 165, 183]. Template metaprogramming is used in generic C++ libraries to

generate customized implementations of data-structures [6, 51, 169, 174] and sometimes

to specialize parts of algorithms. Generic programming and template metaprogramming,

however, are distinct in that generic programming is primarily concerned with construct-

ing type-independent components whereas template metaprogramming usually consists of

type-dependent computations.

Model Driven Architecture. The Object Management Group has coined the phrase Model

Driven Architecture (MDA) [177] to refer to a style of software development that empha-

sizes the modeling of both problem domain abstractions, with high-level platform inde-

pendent models (PIMs), and solution domain abstractions, with mid-level platform specific

models (PSMs), using the Unified Modeling Language [145] and similar standards. Associ-

ated with MDA are tools for generating executable specifications, or even programs, from

UML models. There are links between MDA and generative programming: UML can be

viewed as a particular framework for defining domain specific languages which can then be

used within a generative system to construct components.

2. GENERIC PROGRAMMING AND THE STL 54

In generic programming, the results of domain engineering are usually captured with

concept definitions, using the semi-formal specification language of generic programming.

It is possible to embed concept definitions in UML. For example, Eichelberger modeled the

STL in UML [57] but found it is necessary to extend the basic UML constructs because the

built-in features of UML are biased towards object-oriented designs.

2.4. Summary

This chapter introduced the generic programming methodology of Stepanov and Musser

by stepping through the process of creating a generic function. We then ana-

lyzed the language features needed to implement the Standard Template Library (STL). Our

goal is to meet these needs in the design of G. The last section of the chapter described the

relationship between generic programming and other programming methodologies.

polymorphism: the quality or state of existing in or assuming different
forms

Webster’s Dictionary

Parametric polymorphism is obtained when a function works uni-
formly on a range of types; these types normally exhibit some com-
mon structure. Ad-hoc polymorphism is obtained when a function
works, or appears to work, on several different types (which may not
exhibit a common structure) and may behave in unrelated ways for
each type.

Christopher Strachey [182]

3
The language design space for generics

This chapter surveys and evaluates the design space of generics, that is, language features

relating to the parameterization of components on types. I evaluate the points in this de-

sign space with respect to how well they support generic programming, and in particular,

whether they meet the requirements discussed in Chapter 1 and in Section 2.2.4. This

evaluation serves as the rationale for the fundamental design decisions of G. This chapter

includes material from our earlier study of language support for generic programming [69].

3.1. Preliminary design choices

The focus on generics presupposes several design decisions, such as whether to use static

typing or dynamic typing and whether to use type parameters or subtype polymorphism.

55

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 56

Thus, this chapter begins with a brief discussion of higher-level design decisions before

analyzing the design space for generics.

Types as contracts. A large part of this chapter is dedicated to discussing type systems.

Type systems are typically used to detect errors and to aid the compiler in producing efficient

executables. My interest in types is primarily as a lightweight language for expressing

contracts between generic components and their users.

With the types-as-contracts view, the type system plays the role of the contract enforcer:

it identifies errors (contract violations) and determines which piece of code is responsible,

either the user’s code or the library code. This role is vital, for without it, when something

goes wrong during the use of a component, the user may find it difficult to determine the

problem. For example, to understand the problem, the user may need knowledge of the

component’s implementation. This is knowledge the user should not be expected to have.

Thus I view a type system as a tool that facilitates black-box reuse.

There are many semantic aspects of a component’s interface that are not easily captured

with types. Nevertheless, types are a convenient way to express some basic assumptions

about the input and output of a component.

Semantic and behavioral contracts. There is a considerable body of research on express-

ing semantic contracts and putting them to use. There are numerous specification languages

that employ some form of logic, such as Larch [76], Z [178], CASL [47], Tecton [101],

OBJ [73], and ANNA [109, 194]. There are also many languages and tools for annotating

programs with assertions such as Eiffel’s support for Design by Contract [127].

Semantic specifications can be put to use in a number of ways. One straightforward use

of specifications is to generate run-time checks [62, 63, 159, 162]. Such checks can help

identify who is to blame when a contract violation occurs during program execution.

Another use of specifications is in formal program verification. There is ongoing work

to develop formal methods for verifying generic algorithms by Musser [134, 135] using

the Athena theorem prover [7]. Several other theorem provers also show promise for for-

mal generic programming with their support for concept-like abstractions: axiomatic type

classes in the Isabelle-Isar system [143, 144, 199] and theory parameters in PVS [161].

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 57

Despite the advances in tool support there are a number of hurdles to overcome before for-

mal program verification can be directly applied to generic algorithms. One of the hurdles

is dealing with pointers and arrays in a way that scales to complex algorithms. There has

been recent progress in this area, for example, the work by Bornat [23] and the develop-

ment of separation logic by Reynolds and colleagues [158]. However, much more research

is needed to scale these ideas up to production languages.

Another use of semantic specifications is in optimizing compilers. Many compilers apply

simplifications and rewrites based on properties they know to be true of scalar types such

as and . With the appropriate semantic specifications, these compiler optimiza-

tions can also be applied to user-defined types, as shown by Schupp, Gregor, Musser, and

Liu [163]. Extending G with semantic contracts is a promising area of future research, but

it is beyond the scope of this thesis.

Static vs. dynamic type checking. Type checking can be performed during compilation,

in which case a type is attached to each program point. Type checking can also happen

during execution, by examining type tags that are attached to an object. Either of these

approaches is compatible with the use of types as contracts. In the dynamic setting, a type

annotation in the interface of a function would correspond to a run-time guard that would

be checked during calls to the function.

Static type checking has benefits and costs: it aids with the early detection of bugs but

forces the programmer to type check the entire program before running and testing parts

of the program. It would be nice to have a single language that provides both static and

dynamic type checking, allowing the programmer to gradually add type annotations and

type check more of the program as development progresses. There has been some work on

integrating static and dynamic type systems. For example, the soft types of Cartwright and

Fagan [36] and dynamic types [2]. However, there has been little work on implicitly mixing

static and dynamic type checking within a single program.

It would be interesting to integrate both static and dynamic checking in the design

for G. However, this integration would be non-trivial to implement because G relies on

many forms of complex type-based dispatching. With a static type system, the dispatching

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 58

is resolved during compilation and therefore no run-time support is needed. However, if

type checking were delayed until runtime, a complex run-time system would be needed to

perform type-based dispatching. Because the integration of static and dynamic typing is

non-trivial and not central to the goals of this thesis, I leave this for future research. In this

thesis I restrict my attention to static type systems.

Explicit vs. implicit type annotations. Many languages allow the programmer to omit

type annotations for function parameters, local variables, etc. while retaining static type

safety. The type of every declaration and expression is instead inferred by the type system.

This provides some of the convenience of dynamically typed languages.

However, type inferencing has some disadvantages:

• Type inferencers often produce error messages that are difficult to understand. In

particular, the messages sometimes point to a line that is not the real cause of the

type error. There has been work on improving error reporting [19, 43, 80, 201],

but these approaches add yet more complication to the type inferencing system.

• The programming language is often constrained to make type inferencing tractable.

For example, function overloading (not type classes but the conventional overload-

ing of a function name) and first-class polymorphism are two features typically not

included in languages with type inferencing. Adding support for first-class poly-

morphism is an active area of research [24, 97, 112, 148, 150, 155].

In the design of G we balance the complexity and usability of the type system with the

convenience of omitting type annotations. We allow programmers to omit annotations in

frequently occurring locations: we infer the types of local variables from their initializing

expression and we perform implicit instantiation of polymorphic functions. Neither of these

forms of inference require Hindley-Milner style inferencing and can be incorporated into a

conventional type system (similar to that of System F) that produces easy to understand

error messages. We do require type annotations on function parameters. Function param-

eters occur less frequently in code and are a valuable form of specification. A programmer

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 59

can write down the type signature of a function and then check whether the implementa-

tion matches the intended specification. Also, the type annotations are a valuable source

of documentation and making it part of the type system allows for automatic consistency

checking.

3.2. Subtyping versus type parameterization

The decision to focus on static type systems poses a challenge because simple static type

systems, such as those of Pascal and Fortran, inhibit the expression of generic functions.

Each parameter of a function has a particular concrete type, preventing a function from

being used with any other data types. There are two approaches to enabling the use of

a function with different types: subtype polymorphism and type parameterization. In this

section I present reasons for preferring type parameterization to subtyping for the purposes

of generic programming.

With subtype polymorphism, a function’s parameter types are base classes (interfaces).

A call to the function is valid so long as the argument types are subtypes of the parameter

types, respectively. To enable this, the type system includes a rule known as the subsump-

tion principle: an expression of type σ may be implicitly coerced to type τ if σ is a subtype

of τ . The following small Java program demonstrates subtype polymorphism. The function

is used with two different types, and , both of which are subtypes of .

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 60

With type parameterization, the function’s parameter types are themselves parameters.

The following Java 1.5 program shows the function parameterized on type .

When is called with (which is an instance of), then is substituted for ,

whereas when is called with , is substituted for . Thus, instead of the argu-

ment changing its type to match the function as with subtyping, the function is instantiated

to match the type of the argument.

The return type of the parameterized function is more accurate than the return

type of the that uses subtyping. The lack of accuracy with subtyping leads to

significant difficulties in using subtyping to implement generic algorithms.

3.2.1. The binary method problem. The well known binary method problem [29] is

particularly problematic for generic algorithms. For example, the accumulate example from

Section 2.1 includes two instances of the binary method problem, one of them concerning

the Monoid concept. The following is a Java interface definition for this concept.

The problem arises when we try to define a class, such as the following , that

is a subtype of .

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 61

The Java type system rejects the above definition because fails to override the

method of . The method in is not an override because

the parameter type differs from the parameter type in .

The language rules can not be changed to allow covariant parameters (parameter types

that change with the method’s class) without either making the type system unsound or

relying on whole program checks [28, 48, 85]. To see how allowing covariance makes a

type system unsound, consider the following program. We define another derived class of

and then assign instances of and to variables of

type and invoke the method.

The method call will resolve to the in which tries to use member

of object as an , but this member is a , so there is a type error. A sound type

system must catch such problems during type checking.

Type soundness can be regained with whole program checks, but this is incompatible

with the goal of providing separate type checking for individual functions and modules

within a program.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 62

The workaround for the binary method problem is to use as the parameter for

and then cast to .

However, this introduces clutter and opens the door to run time errors. Methods with

covariant parameters, such as , are pervasive so this is a serious problem for imple-

menting and using generic algorithms based on subtype polymorphism.

In contrast to covariant argument types, covariant return types cause no type soundness

problems and are allowed in Java 1.5.

3.2.2. Associated types. Many object-oriented languages lack a facility for dealing

with associated types, so for example, the interface would have to use the

type for the return type of the method instead of the precise type of its elements.

This forces the user of the iterator to insert casts, again cluttering the code and opening the

door to run-time errors.

The following is the definition of the generic accumulate algorithm using subtyping.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 63

One minor irritation in the above definition is handling the case for an empty sequence. We

need to invoke the method but have no elements on which to invoke it, hence the

extra parameter.

3.2.3. Virtual types. One of the proposed solutions for dealing with binary methods

and associated types in object-oriented languages is virtual types, that is, the nesting of

abstract types in interfaces and type definitions within classes or objects. The beginning

of this line of research was the virtual patterns feature of the BETA language [110]. Pat-

terns are a generalization of classes, objects, and procedures. An adaptation of virtual pat-

terns to object-oriented classes, called virtual classes, was created by Madsen and Moller-

Pedersen [123] and an adaptation for Java was created by Thorup [186]. These early

designs for virtual types were not statically type safe, but relied on dynamic type checking.

However, a statically type safe version was created by Torgersen [189]. A statically type safe

version of BETA’s virtual patterns was developed for the gbeta language of Ernst [58, 59];

the Scala programming language also includes type safe virtual types [146, 147].

It turns out that virtual types can be viewed as a kind of type parameterization. To give

an intuition for this, we show an implementation of the accumulate example in Scala using

virtual types. The following are Scala traits (interfaces) for the Iterator and Monoid concepts.

The accumulate algorithm can now be written as follows. We encapsulate the generic

accumulate function in an abstract class with virtual types and , which effectively serve

as type parameters. The and value parameters are used here analogously

to structures in ML with subtyping playing the role that signature matching plays in ML.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 64

The type of the parameters and is and the return type is , so here we are

relying on type parameterization instead of subtype polymorphism.

The notation

creates an anonymous class derived from with type bound to the abstract type .

To use accumulate, we must first provide bindings for the abstract types and to obtain a

concrete class. We then create an instance object and invoke the method.

The virtual types and act just like type parameters and the process of creating an

anonymous derived class with bindings for the virtual types is just like instantiating a pa-

rameterized class. So virtual types can be seen as one approach to adding type parameteri-

zation to object-oriented languages.

3.2.4. Evaluation. Some form of polymorphism is necessary to enable the expression

of generic algorithms in a statically typed language. The two main forms of polymorphism

are subtype polymorphism and type parameterization. This section showed that subtype

polymorphism is not suitable for expressing generic algorithm due to its imprecision. In

particular, it suffers from the binary method problem and does not provide a way to accu-

rately track relationships between types. Given the problems with subtype polymorphism,

we focus on type parameterization as the mechanism for polymorphism in G.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 65

3.3. Parametric versus macro-like type parameterization

There are subtle and important differences from language to language in the meaning

of type parameterization. It is useful to distinguish between parameterization that relies on

parameteric polymorphism versus macro-like parameterization mechanisms.

Parametric polymorphism. With parametric polymorphism, a parameterized function

is a single object that can be viewed as having many types. For example, the following

function (written in ML) can have the type or or any

type of the form where is a type variable.

A polymorphic function such as is like a chameleon, it can change it’s color (type) at will.

The reason that may take on different types is that parametric polymorphism requires

the body of the function to take a “hands off” approach with any object whose type is a

type parameter. Type-specific operations may not be applied to such objects. Therefore, the

computation of the function is independent of the type parameters.

This “hands off” restriction seems rather stringent at first, but it is not as bad as it

seems. A parametric function may be passed function parameters that perform type-specific

operations. For example, the following function applies the -specific function to

every element of a list.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 66

Macro-like type parameterization. The macro-like approach to type parameterization is

exemplified by C++ templates. An early precursor to templates can be seen in the definition

facility in ALGOL-D [66, 67] of Galler and Perlis. In C++ a function template is not itself a

function, nor does it have a type. Instead, a function template is a generator of functions.

In the following program, the compiler generates two functions from the original template,

one for and one for .

Whereas a parametric polymorphic function is like a chameleon that can change its color, a

function template is like a lizard farm, producing lizards of many different but fixed colors.

A function template produces different functions for different type arguments. This be-

havior is often used to produce more optimized versions of a function for specific types. For

example, the class in the Boost libraries [22] converts between two numbers of

different type. Normally, the checks to make sure the input number is repre-

sentable in the output type. However, if the range of the output type encloses the range

of the input type, no check is needed and so the check is omitted for the sake of efficiency.

The following program shows a simple use of the class to flip a pair of numbers

inside a function template.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 67

The template produces functions that performs different actions given differ-

ent type arguments. The function (to)

performs a check whereas the function does not. In

contrast, this kind of compile-time type-dispatching can not be expressed using parametric

polymorphism because a polymorphic function has uniform behavior for all type arguments.

C++ templates are often categorized as a form of parametric polymorphism. Indeed, a

common use of templates is to write type independent code. However, C++ templates are

closer to ad-hoc polymorphism as defined by Strachey [182]: they may behave in different

ways for different types.

3.3.0.1. First-class polymorphism. A strength of parametric polymorphism over macro-

like parameterization is that polymorphic functions can be treated as first-class: they can be

passed to functions and stored in data structures. The following program, written in System

F [71, 157], passes the polymorphic function as a parameter to the function , which

then views its polymorphic argument at several different types. In System F, a λ expression

creates a function and Λ parameterizes an expression on a type. A parameterized object

can be viewed at a particular type by providing type arguments in square brackets.

≡ λ ∀ →
≡ Λ λ

Many interesting uses of first-class polymorphism (also referred to as higher-rank polymor-

phism) may be found in an annotated bibliography by Shan [42].

Under restricted circumstances, the above can be achieved with the macro-like ap-

proach. However, if is compiled separately from the application , then the macro-

like approach does not work. When compiling , all that is known about is its type

∀ → → . It is not known how parameter is used inside of , so

the instantiations of for and cannot be generated when compiling . On the

other hand, when compiling , it is not known that will be bound to , so the instantia-

tions of can not be produced while compiling . Of course, the instantiation of could

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 68

be done at run-time, using just-in-time compiler technology, but this would incur significant

run-time overhead and complicates the run-time system.

3.3.1. Separate type checking. As described in Chapter 1, separate type checking is

vital because it lowers the cost of using generic components and improves the quality of

generic components by catching errors in the implementation and by catching inconsisten-

cies in the interface.

Separate type checking is straightforward with parametric polymorphism. To type check

a polymorphic function, the type system treats type parameters as abstract types, different

from any other type. Another way to say this is that a polymorphic function is type checked

under the conservative assumption that the type parameter could be instantiated with any

type. Once a polymorphic function has passed type checking, it is guaranteed to be well-

typed for any type argument.

With C++ templates, type checking is performed after instantiation, once the type argu-

ments are known, so templates are not type checked separately from their use. However,

it is possible for a macro-like system to type check a template prior to instantiation. We

took this approach in our proposal for extending C++ with support for concepts [168]. To

ensure type soundness, some restrictions must be placed on type-dispatching. This is analo-

gous to object-oriented method dispatch where the type system must ensure that overriding

methods in derived classes conform to the method signature in the base class. Such restric-

tions block most kinds of metaprogramming but allows for dispatching between different

versions of an algorithm according to differing type requirements.

Our proposal for C++ retains the unrestricted templates of C++ for purposes of tem-

plate metaprogramming and adds a new kind of template with opaque type parameters for

purposes of generic programming. This distinction between generic programming (with

its focus on generic algorithms) and metaprogramming is important. Generic algorithms

typically need very little type dispatching and metaprogramming, whereas generative com-

ponents, such as Blitz arrays [193] and matrix types in MTL [174] and GMCL [50], require

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 69

highly sophisticated metaprogramming that uses compile-time type dispatching. It there-

fore makes sense to use two different language mechanisms to fulfill the differing needs of

generic programming and generative programming.

3.3.2. Compilation and run-time efficiency. Separate compilation is important for

ensuring that the time to compile a component is just a function of the component’s size

and not a function of the size of all components it uses (transitively). However, there are

tradeoffs between compile time and run time.

With the macro-like approach to type parameterization, the compiler in general must

produce a distinct sequence of machine code instructions for each instantiation of a pa-

rameterized function. Each of these sequences is specialized for the particular type argu-

ments given in the instantiation. All the type-dependent dispatching is resolved at compile

time and the results are hard coded into the instruction sequences. Parameter passing

conventions and run-time representations of data structures are exactly the same as for

non-parameterized code. The end result is highly efficient: there is no run-time overhead

associated with the parameterization. However, this approach gives up separate compila-

tion.

With parametric polymorphism, the compiler (or programmer) can choose between

two different approaches. For each use of a generic function, the compiler may perform

function specialization (sometimes called monomorphization), generating a type-specific

sequence of instructions, or the compiler may use a uniform, or generic, code sequence for

the function.

For the compiler to perform function specialization, two conditions must be satisfied:

it must have access to the implementation of the polymorphic function and it must know

on which types to instantiate the function. In the macro-like approach, both of these con-

ditions are always guaranteed: separate compilation is disallowed and function templates

are second-class citizens. With the polymorphic model, the story is more complicated. In

languages like ML and Haskell 98, polymorphism is second-class, so it is straightforward

to determine which polymorphic functions are instantiated on which types [20, 37, 98].

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 70

However, in languages with first-class polymorphism—such as System F and Quest [34]—a

control flow analysis is needed to determine which polymorphic functions are instantiated

on which types [191]. (The use of control flow analysis and function specialization has been

studied in the setting of dynamically typed languages [39, 41, 88, 195].) Of course, the flow

analysis must be conservative, so in some situations unnecessary specializations may be pro-

duced or alternatively the compiler must fall back and use non-specialized code. There are

several other compiler analysis and optimizations that help enable function specialization;

most of them are components of the more general technique of partial evaluation [99].

The alternative to function specialization is to compile a polymorphic function to a

single sequence of machine-code instructions that works for any type arguments. There are

several challenges to overcome with this approach. The first is that objects of different types

may have different sizes: some fit in general registers, some fit in floating point registers,

and others must be placed on the stack or heap. Thus, different instructions are needed to

access function parameters and local variables depending on their type. One solution, called

“boxing”, is to pass pointers to objects instead of the objects themselves, since pointers have

a uniform size and fit into general registers. However, this approach forces all objects to be

stored in memory (even small objects). On modern computer architectures CPU speed has

out-paced memory access speed, so increased memory traffic can be a significant source of

overhead.

Higher-order polymorphic functions also present a challenge to uniform compilation.

Consider again the polymorphic function. It is parameterized on types and , and

has a function parameter from to .

→ → →
→

The function is applied to the function → . The difficulty is that

passes a boxed to function parameter , but is expecting an unboxed . Similarly,

returns an unboxed , but is expecting a boxed . The solution proposed by

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 71

Leroy is to coerce as it is passed to by wrapping in a function that unboxes the

input, calls , and then boxes the result [114].

A related challenge is how to layout memory for parameterized data types. With the

macro-like approach, different instantiations of a parameterized data type may have a dif-

ferent layout. Consider the following template. When instantiated with , the

field is typically placed at an offset of 4 bytes from the start of the struct (on a 32

bit architecture). When instantiated with , the field is placed at an offset of

8 bytes.

This non-uniformity in field layout poses a problem for the compilation of polymorphic

functions because different instructions are needed to access the fields depending on the

type parameters. A common solution to this problem is to box the polymorphic fields of

a struct, thereby ensuring a uniform field layout. The following struct shows how this

representation would look in C.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 72

The problem with this solution is that the overhead from the indirection affects both nor-

mal (monomorphic) functions and polymorphic functions. One alternative is to use non-

uniform representations in monomorphic functions and uniform representations in poly-

morphic functions and to coerce objects as they pass between monomorphic and polymor-

phic code [114]. Of course, such coercions introduce run-time overhead, but at least there

is no overhead in purely monomorphic code.

Another alternative, called intensional type analysis of Harper and Morrisett [79], is

to pass a run-time representation of the type parameters to the polymorphic function and

use this information for dispatching inside primitive operations. This idea could be applied

to accessing a field of a struct in the following way. The run-time type information could

include the size of the type. The instructions for field access would then use this infor-

mation to compute the offset of the field within the struct. Thus, the same flattened, or

unboxed, representation could be used within polymorphic code. With the approach, in

non-polymorphic code, parameterized data structures are as efficient as non-parameterized

data structures. In separately compiled polymorphic code, there a small amount of over-

head when accessing fields of a parameterized data structure since the offset is not a con-

stant but computed.

To summarize, parametric polymorphism can be compiled using either function special-

ization or uniform compilation. This choice can be made at each call site and it can be under

the control of the compiler (based on a static analysis) or under the control of the program-

mer. With specialization, highly-efficient code is produced, but separate compilation is lost.

With uniform compilation, separate compilation is achieved, but there is a constant factor

of run-time overhead. Regardless of the compilation model, data-structures may be repre-

sented in their normal unboxed form by using intensional type analysis to manipulate this

data within polymorphic functions.

3.3.3. Evaluation. The most difficult tradeoff in the design of G is between parametric

polymorphism and the macro-like approach. The following points summarize the issues,

with the second two points being the distinguishing factors.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 73

separate type checking: can be achieved with both approaches.

low run-time overhead: is possible with both approaches via function specializa-

tion.

separate compilation: can be achieved with parametric polymorphism, but not with

the macro-like approach.

convenient dispatching on types: is provided by the macro-like approach, but not

by parametric polymorphism. In Section 6.1 I discuss how dispatching can be

performed in a language based on parametric polymorphism, but at the cost of

some inconvenience to the library author.

3.4. Concepts: organizing type requirements

Section 3.3 discussed how type-specific operations can be used in a polymorphic func-

tion by adding function parameters to the polymorphic function. This approach can be

used to express generic algorithms: each concept operation is passed as a function param-

eter. This is the same approach we used to implement the example in Scheme

in Section 2.1. The following code shows the definition and use of a generic

written in ML. The types for the declarations are also listed.

The use of function parameters to pass concept operations becomes unmanageable as

the concepts become more complex and the number of parameters grow. The

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 74

function is rather simple and already has 5 concept operation parameters. Many of the STL

and BGL algorithms would require dozens of function parameters. This section describes

language mechanisms that solve this problem.

Type-specific operations are just one kind of requirement on the type parameters of a

generic function, there are also associated types, same-type constraints, and conversion re-

quirements. For large libraries of generic algorithms, the task of writing requirements for

the type parameters of algorithms is a huge task that can be much simplified by reusing

requirements. In fact, many algorithms share requirements: for example, the Input Iterator

concept appears in the specification of 28 STL algorithms. Also, several other iterator con-

cepts build on the Input Iterator concept, so Input Iterator is either directly or indirectly used

in most STL algorithms. Thus, it is important to be able to group a set of requirements, give

the grouping a name, and then compose groups of requirements to form new groups. There

are a wide variety of programming language features that fulfill this role. In this section, I

discuss the major alternatives in the design of concepts and evaluate them with respect to

the needs of generic programming. The following list recalls from Section 2.2.4 the kinds

of requirements that a concept should be able to express:

• requirements for functions and parameterized functions,

• associated types,

• requirements on associated types,

• same-type constraints,

• convertability constraints.

3.4.1. Parameteric versus object-oriented interfaces. The facilities for representing

concepts in object-oriented languages differ from the facilities in languages with parametric

polymorphism, such as Haskell, Objective Caml, and ML. At first glance, the differences

may seem trivial but they have significant implications. To make the discussion concrete, I

contrast Java interfaces with Haskell type classes. The first difference is that in the definition

of a Java interface, there is no direct way to name the exact type of the modeling type. On

the other hand, with Haskell type classes, a type parameter serves as a place-holder for the

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 75

modeling type. The following shows how a concept can be represented using

interfaces and type classes.

The return type of can not be expressed precisely in the Java interface; instead the

return type is , which says that may return an instance of any class de-

rived from . (This inability to refer to the modeling type was also the reason for

the binary method problem.) On the other hand, the return type of in the type class

is precise: it is the same type as its input parameter.

The following code shows generic functions, written in Java and Haskell. In Java, the

type parameter is constrained to be a subtype of the interface. In Haskell, the

type parameter is constrained to be an instance of the type class.

The idea of using subtyping to constrain type parameters was first introduced by Cardelli [35]

and later refined into F-bounded polymorphism by Canning and colleagues [33]. F-bounded

polymorphism is used in Eiffel, Java, and C#.

Subtype and instance relations are quite different. For example, subtyping typically

drives a subsumption rule, allowing implicit conversions, whereas the instance relation

does not. Also, type substitution plays an important role in the instance relation, but not in

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 76

subtyping. For example, the following instance declaration is valid because substituting

for in gives the signature which matches the type of the

function in the instance declaration.

3.4.1.1. Parameterized object-oriented interfaces. With Java generics, interfaces may be

parameterized on types. This provides an indirect way to refer to the modeling type. A

type parameter is added to the interface and used as a place-holder for the modeling type.

Then, when defining a class that inherits from the interface, the programmer follows the

convention of passing the derived class as a parameter to the interface.

Parameterized interfaces provide a solution to the binary method problem. The follow-

ing shows a definition of the interface and a derived class. With this version there

is no need for a dynamic cast in the method. The type of parameter can be

, which exactly matches the parameter type of .

In addition to solving the binary method problem, type parameters can be used to rep-

resent associated types. For example, the Iterator concept has an associated element type,

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 77

so an interface can represent this with an extra parameter (the pa-

rameter is necessary because of the binary method).

3.4.1.2. Concept refinement. Composition of requirements via concept refinement is

straightforward to express with both parametric and object-oriented interfaces. With object-

oriented interfaces, inheritance provides the composition mechanism. The following code

shows Semigroup and Monoid concepts represented as Java interfaces.

With parametric interfaces, such as with Haskell’s type classes, subclassing is used to express

refinement. The syntax says that an instance of must also be an

instance of .

3.4.1.3. Composing requirements on associated types. An important form of concept com-

position is the inclusion of constraints on associated types within a larger concept. For ex-

ample, in the Boost Graph Library, there is an Incidence Graph concept with three associated

types: vertex, edge, and out-edge iterator. The Incidence Graph concept includes the require-

ment that the edge type model the Graph Edge concept (which requires a source and target

function) and that the out-edge iterator type model the Iterator concept.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 78

In Haskell, this composition can be expressed as follows by referring to the

and type classes in the definition of the type class.

We can use to constrain type parameters of a generic function. The re-

quirement for implies , so it is valid to use

and in the body of .

With Java interfaces it is not possible to express this kind of concept composition. The

following shows a failed attempt to group the constraints. We define two new interfaces:

and and use type parameters for the associated types. Also, we

put bounds on the type parameters in an attempt to compose the requirement for

and in the requirements for . The goal is to use

as a bound in a generic method and have that imply that its edge type extends

and its out-edge iterator extends .

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 79

The reason this approach fails is subtle. The following shows an attempt at writing a generic

method for the breadth-first search algorithm that fails to type check.

The bounds on a type parameter must be well-formed types. So, for example, the type

must be well-formed. This type is well-formed if the constraints of are

satisfied:

However, these constraints are not satisfied in the context of the method. The

method can be made to type check by adding the following bounds to its type parameters:

Unfortunately, this defeats our original goal of grouping constraints to allow for succinct

expression of algorithms. The constraints on the associated types must be duplicated in

every generic algorithm that uses the interface.

This problem with Java’s interfaces can be remedied. For example, the duplication of

constraints in not necessary in the language Cecil [40]. In Cecil, bounds on type parameters

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 80

of interfaces are treated differently in the context of a generic method: they need not

be satisfied and instead are added as assumptions. Going further, Järvi, Willcock, and

Lumsdaine [91] propose an extension to Generic C# to add associated types and constraints

on associated types to object-oriented interfaces. Virtual types, for example in Scala [146]

and gbeta [58], is another approach to solving this problem.

3.4.1.4. MyType and matching. The programming language LOOM [30] provides a

direct way to refer to the modeling type. The keyword is introduced within the

context of an interface to refer to the exact type of . Here is what the interface

would look like with ’s.

It would not be type sound for LOOM to use inheritance in the presence of ’s to

establish subtyping (and hence subsumption) since that would introduce a form of covari-

ance. Instead, LOOM introduces a matching relationship and a weaker form of subsump-

tion that does not allow coercion during assignment but does allow coercion when passing

arguments to a function with a hash parameter type. This is very similar to the object types

of Objective Caml, where polymorphism is provided by implicit row variables, which are a

kind of parametric polymorphism. In fact, the Msg and Msg# type rules of LOOM (which

handle sending a message to an object) perform type substitution on the type of the method,

replacing ’s with the type of the receiver. Thus, interfaces with and matching

are parametric in flavor and quite different from traditional object-oriented interfaces with

subtyping.

3.4.2. Type parameters versus abstract types. Among the parametric approaches to

concepts there are two different ways to introduce types: type parameters and abstract

types. The following shows the Iterator concept represented with a Haskell type class and

an ML signature. The type class has type parameters for the iterator and element types

whereas the signature has abstract types declared for the iterator and element types.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 81

Each of these approaches has its strengths and weaknesses. The following paragraphs

argue that in fact both approaches are needed and that they are complementary to one

another.

Type parameter clutter. With the type parameter approach to concepts, the main mod-

eling type and all associated types of a concept are represented with type parameters. Each

algorithm that uses the concept must have type parameters for each of the concept’s param-

eters. This causes considerable clutter when the number of associated types grows large,

as it does in real-world concepts. Part of the reason for this is that if a concept refines

other concepts, it must have type parameters for each of the parameters in the concepts

being refined. For example, the Reversible Container concept of the STL has 2 associated

types and also inherits another 8 from Container for a total of 10 associated types. Now, if

a generic function were to have two type parameters that are required to model Reversible

Container, then the function would need to have an additional 20 type parameters for all the

associated types. In contrast, with abstract types, a concept can be used without explicitly

mentioning any of its associated types.

Implicit model passing. The strength of the type parameter approach is that it facilitates

the implicit passing of models to a generic function. When a generic function is instantiated,

model declarations (instances in Haskell) can be found because they are indexed by the type

arguments of the concept. For example, consider the Haskell Prelude function (which

indicates whether an element is in a list):

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 82

and the following function call:

The type is deduced for the type parameter and then the type requirement is

satisfied by finding an instance declaration for (this instance declaration is also in

the Prelude). So the type parameters of the concept enable implicit model passing, which

is an extremely important feature for making generic functions easy to use.

Best of both worlds. For the design of G we would like to have the best of both worlds:

implicit model passing without type parameter clutter. The approach taken in G is to pro-

vide both type parameters and abstract types in concepts. When writing concepts, we use

type parameters for the modeling type and abstract types for the associated types. So, for

example, the Iterator concept could be written as follows in G, using both a type parameter

and an abstract type:

3.4.3. Same-type constraints. In Section 2.2.3 we discussed the Container concept and

the need for same-type constraints in concepts. We needed to express that the element type

of the Container is the same type as the element type of the Container’s iterator. ML signatures

provide support for this in the form of type sharing. The following signature

shows the use of type sharing to equate the elements types for the container, iterator, and

reverse iterator.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 83

3.5. Nominal versus structural conformance

The fundamental design choice regarding the modeling relation is whether it should

depend on the name of the concept or just on the requirements inside the concept. For

example, do the below concepts create two ways to refer to the same concept or are they

different concepts that happen to have the same constraints?

With nominal conformance, the above are two different concepts, whereas with structural

conformance, and are two names for the same concept. Examples of language mech-

anisms providing nominal conformance include Java interfaces and Haskell type classes.

Examples of language mechanisms providing structural conformance include ML signa-

tures [128], Objective Caml object types [115], CLU type sets [117], and Cforall specifi-

cations [53].

Choosing between nominal and structural conformance is difficult because both options

have good arguments in their favor.

Structural conformance is more convenient than nominal conformance. With nominal

conformance, the modeling relationship is established by an explicit declaration. For ex-

ample, a Java class declares that it an interface. In Haskell, an dec-

laration establishes the conformance between a particular type and a type class. When

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 84

the compiler sees the explicit declaration, it checks whether the modeling type satisfies the

requirements of the concept and, if so, adds the type and concept to the modeling relation.

Structural conformance, on the other hand, requires no explicit declarations. Instead,

the compiler determines on a need-to-know basis whether a type models a concept. The

advantage is that programmers need not spend time writing explicit declarations.

Nominal conformance is safer than structural conformance. The usual argument against

structural conformance is that it is prone to accidental conformance. The classic example

of this is a cowboy object being passed to something expecting a [124]. The

interface includes a method, which the cowboy has, so the type system does not

complain even though something wrong has happened. This is not a particularly strong

argument because the programmer has to make a big mistake for this kind accidental con-

formance to occur.

However, the situation changes for languages that support concept-based overloading.

For example, in Section 2.2.1.7 we discussed the tag-dispatching idiom used in C++ to

select the best algorithm depending on whether the iterator type models Random

Access Iterator or only Input Iterator. With concept-based overloading, it becomes possible for

accidental conformance to occur without the programmer making a mistake. The following

C++ code is an example where an error would occur if structural conformance were used

instead of nominal.

The class has two versions of , one for models of Input Iterator and one for

models of Forward Iterator. An Input Iterator may be used to traverse a range only a single time,

whereas a Forward Iterator may traverse through its range multiple times. Thus, the version

of for Input Iterator must resize the vector multiple times as it progresses through the

input range. In contrast, the version of for Forward Iterator is more efficient because

it first discovers the length of the range (by calling , which traverses the

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 85

input range), resizes the vector to the correct length, and then initializes the vector from

the range.

The problem with the above code is that fulfills the syntactic require-

ments for a Forward Iterator but not the semantic requirements: it does not support multiple

passes. That is, with structural conformance, there is a false positive and dispatches

to the version for Forward Iterators. The program resizes the vector to the appropriate size

for all the input but it does not initialize the vector because all of the input has already been

read.

Why not both? It is conceivable to provide both nominal and structural conformance

on a concept-by-concept basis. Thus, concepts that are intended to be used for dispatching

could be nominal and other concepts could be structural. This would match the current

C++ practice: some concepts come with traits classes that provide nominal conformance

whereas other concepts do not (the default situation with C++ templates is structural con-

formance). However, providing both nominal conformance and structural conformance

complicates the language, especially for programmers new to the language, and degrades

its uniformity. Therefore, with G we provide only nominal conformance, giving priority to

safety and simplicity over convenience.

3.6. Constrained polymorphism

In this section we discuss some design choices regarding parametric polymorphism and

type constraints. First we discuss at what granularity polymorphism should appear in the

language and then we discuss how constraints are satisfied by the users of a generic com-

ponent.

3.6.1. Granularity. Polymorphism can be provided at several different levels of gran-

ularity in a programming language: at the expression level (as in System F), at the function

level (Haskell, Ada), at the class level (Java, C# Eiffel), and at the module level (ML, Ada).

For libraries of generic algorithms, it is vital to have polymorphism at the function level be-

cause type requirements for an algorithm are typically unique to that algorithm. We strive

to minimize the requirements for each algorithm, and the result of this minimization results

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 86

in different requirements for different algorithms. There is often commonality between re-

quirements, which is why we group requirements into concepts, but two algorithms rarely

have exactly the same requirements. Also, polymorphism should be provided at the function

level to enable implicit model passing, the topic of the next subsection.

Polymorphism at the module level is sometimes useful for generic libraries, but is less

important than function-level polymorphism. Polymorphism at the class level is impor-

tant for defining generic containers, and polymorphism at the expression level is useful for

defining polymorphic function expressions.

3.6.2. Explicit versus implicit model passing. We use the term model passing to

refers to the language mechanisms and syntax by which all the type-specific operations

and associated types of a model are communicated to a generic component. We say a

language has explicit model passing if the programmer must explicitly pass a representation

of the model to the generic component. We say a language has implicit model passing

if the compiler finds and passes in the appropriate model when a generic component is

instantiated.

Many languages with sophisticated module systems have support for module-parameterized

modules: Standard ML [128], Objective Caml [115], Ada 95 [1], Modula-3 [141], OBJ [73],

Maude [45], and Pebble [31] to name a few. With these languages, a model can be repre-

sented by a module, and a generic algorithm can be represented by a module-parameterized

module. The programmer explicitly instantiates a generic module by passing in the modules

that provide the type-specific operations required by the generic algorithm.

We illustrate this approach by implementing an accumulate algorithm with modules in

Standard ML. In ML, a module is called a structure and a module-parameterized module

is called a functor. In Section 2.1 we found that accumulate operates on two abstractions:

Monoid and Iterator. So here we implement accumulate as a functor with two parameters:

parameter for the monoid structure and parameter the iterator structure.

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 87

The type of a structure in ML is given by a signature. The following are signature definitions

for . (The signature was defined in Section 3.4.2.)

Abstract types such as in and in are assumed to be different from

each other unless otherwise specified. So the type sharing constraint in

is necessary to allow the result of (which has type) to be passed to

(which is expecting type).

Applying the functor to two structures produces a concrete accumulate

algorithm. The following produces a structure that sums an array of integers.

The and structures are defined as follows:

The disadvantage of the explicit model passing is that the user must do extra work to

use a generic component. We want to keep the cost of using generic components as low

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 88

as possible, so we turn our attention to various implicit language mechanisms for passing

type-specific operations to a generic algorithm.

Haskell provides implicit model passing. For example, below is a generic

function in Haskell.

The following are instance declarations establishing as a and as

an .

The call to shown below does not need to mention the instances

and which are needed satisfy the type requirements

of . Instead, the compiler finds the appropriate instances, looking them up by

pattern matching against the type patterns in the instance declarations.

In more detail, first the compiler deduces the type arguments for from the

type of the arguments and obtaining and . The

compiler then tries to satisfy the constraints for , so it needs and

. The instance declaration for satisfies

3. THE LANGUAGE DESIGN SPACE FOR GENERICS 89

the first requirement and the instance declaration satisfies the

second requirement: the pattern matching succeeds with the pattern variable matching

with .

3.7. Summary

This chapter surveyed the design space for programming language support for generic

programming. The chapter began with the motivation for focusing on statically typed lan-

guages and explicitly typed languages. It then compared two forms of polymorphism, sub-

typing and parametric, and argued that type parameters are a better choice because they

offer better accuracy. Type parameterization comes in two flavors, the type-independent

parametric polymorphism, as found in ML, and the type-dependent generational parame-

terization as found in C++ templates. Parametric polymorphism was favored because it is

compatible with separate compilation whereas generational parameterization is not.

The chapter then evaluated language mechanisms for representing concepts such as

object-oriented interfaces, Haskell type classes, and ML signatures. It concluded that a

mixture of features from type classes and signatures would provide the best design. In par-

ticular, the type parameters of Haskell’s type classes are needed to support implicit model

passing and the abstract types and type sharing of ML signatures are needed to support as-

sociated types. Moving on to models, we compared the nominal and structural approaches

to conformance, and decided that nominal conformance is the better choice because it is

safer in the presence of concept-based overloading. The chapter then addressed the ques-

tion of at what granularity type parameterization should occur, arguing that it should occur

at least at the function level. Finally, the chapter discussed the need for implicit model

passing and showed an example of how this works in Haskell.

I wish someone would construct a language more suitable to generic
programming than C++. After all, one gets by in C++ by the skin of
one’s teeth. Fundamental concepts of STL, things like iterators and
containers, are not describable in C++ since STL depends on rigorous
sets of requirements that do not have any linguistic representation
in C++. (They are, of course, defined in the standard, but they are
defined in English.)

Alexander Stepanov [136]

4
The design of G

The goal of this thesis is to design language features to support generic programming, and

Chapter 7 describes a core calculus, named FG , that captures the essence of this design.

However, the design must be field tested; it must be used to implement generic libraries.

Any nontrivial library requires many language features unrelated to generics so a complete

programming language is needed. Therefore the design for generics in this thesis is em-

bedded in a language, named G, that is modeled after C++ but with redesigned generics.

G is an imperative language with declarations, statements, and expressions. G shares the

same built-in types as C++, and has classes, structs, and unions, though in simplified forms.

Objects may be allocated on the stack, with lifetimes that match a procedure’s activation

and objects may be allocated on the heap with programmer controlled lifetimes.

90

4. THE DESIGN OF G 91

While G is modeled after C++ it is not strictly an extension to C++. Several details of

C++ are incompatible with the design for generics developed in this thesis. Further, C++

is a large and complex language so implementing a compiler for C++ or even modifying

an existing C++ compiler would be a large and difficult task. In contrast, G is a simpler

language that is straightforward to parse and compile.

Modeling G on C++ allows for a straightforward translation of generic libraries from C++

to G, thereby facilitating the field tests of G. Furthermore, the compiler for G translates G to

C++. The bulk of the compiler implementation is concerned with translating the generic fea-

tures of G, since those differ from C++, but the rest of the features in G are straightforward

to translate to C++.

The language support for generics in G is based on parametric polymorphism, System

F in particular. As discussed in Chapter 3, this has advantages for modularity: it allows for

separate type checking and separate compilation. G augments parametric polymorphism

with a language for describing interfaces of generic components, a language inspired by the

semi-formal specification language used to document C++ libraries. The support for generic

programming in G is provided by the following language features:

(1) Polymorphic functions enable the expression of generic algorithms. They include

a clause that states type requirements. To use a polymorphic function with

certain types, the clause of the polymorphic function must be satisfied in

the lexical scope of the instantiation. Polymorphic functions may be called just

like normal functions; the polymorphic function is implicitly instantiated with type

arguments deduced from the types of the actual arguments.

(2) The feature directly supports the notion of “concept” in generic program-

ming. This feature is used to define and organize requirements on types.

(3) A definition verifies that a particular type τ satisfies the requirements of

a concept c and adds the pair (c, τ) to the modeling relation associated with the

current scope. This modeling relation is consulted when a generic function (or

class) is instantiated and its clause must be satisfied.

4. THE DESIGN OF G 92

FIGURE 1. Syntax for generic functions

fundef ::= id polyhdr type mode [id] . . . Function definition
type mode stmt . . .

funsig ::= id polyhdr type mode [id] . . . Function signature
type mode

decl ::= fundef | funsig
mode ::= mut [] pass by reference

pass by value
mut ::= [] constant

mutable
polyhdr ::= [tyvar , . . .][constraint . . .] polymorphic header
constraint ::= cid type . . . model constraint

type type same-type constraint
funsig function constraint

id identifier
tyvar type variable
cid concept name

(4) Polymorphic classes, structs, and unions allow for the definition of generic data

structures. As with polymorphic functions, constraints on type parameters are

expressed with a clause.

(5) Function expressions (anonymous functions) enable the convenient customization

of generic algorithms with user-specified actions.

The following sections give a detailed description of these language features and show how

this design meets the goals described in Chapter 1 and the criteria set forth in Section 2.2.4.

4.1. Generic functions

The syntax for generic function definitions and signatures is shown in Figure 1. The

function name is given by the identifier following . Generic functions are parameter-

ized on a list of types enclosed in angle brackets. The type parameters are constrained by

requirements in the clause. The body of a generic function is type checked under

the conservative assumption that the type parameters could be any type that satisfies the

constraints. Non-generic functions are taken as a special case of generic functions where

the type parameter list is empty.

4. THE DESIGN OF G 93

The default parameter passing mode in G is read-only pass-by-reference, which can also

be specified with . Read-write pass-by-reference is indicated by and pass-by-value is indi-

cated by . Pass-by-value is not the default calling convention in G, as it is in C++, because it

adds requirements on the parameter type: the type must be copy constructible. Unlike C++,

G does not have reference types because they allow the calling convention to change based

on whether a generic function is instantiated with a reference type or non-reference type,

such as instantiating a parameter with versus . Such a dependency on instantia-

tion would complicate separate compilation and allow the semantics of a generic function

to change.

4.1.0.1. Constraints. Three kinds of constraints may appear in a clause: model

constraints, same-type constraints, and function signatures. Constraints are treated as as-

sumptions when type checking the body of a generic function. Also, constraints must be

satisfied when a generic function is instantiated.

Model constraints: such as c τ indicate that type τ must be a model of concept

c. At the point of instantiation, there must be a best-match model definition in

the lexical scope for c [t/ρ]τ , where t are the type parameters of the generic

function and ρ are the type arguments. Section 4.6.2 discusses model lookup

in more detail. Inside the generic function, the constraint c τ is treated as a

surrogate model definition. All of the refinements and requirements of concept c

are added as surrogate model definitions. Finally, all the function signatures from

these concepts are introduced into the scope of the function.

Same-type constraints: such as τ1 τ2 say that two type expressions must denote

the same type. False constraints such as are not allowed. Inside a

generic function, the constraint τ1 τ2 is treated as an assumption that plays a

role in deciding when two type expressions are equal.

Function constraints: such as say that a function definition must

be in the scope of the instantiation of the generic function that has the given name

4. THE DESIGN OF G 94

FIGURE 2. Generic accumulate function in G.

FIGURE 3. Syntax for accessing associated types.

type ::= scope tyvar scope-qualified type
scope ::= scopeid

scope scopeid scope member
scopeid ::= mid module identifier

cid type . . . model identifier

and with a type coercible to the specified type. Also, this constraint introduces the

specified function signature into the scope of the generic function.

Figure 2 shows the generic function from Section 2.1 written in G. The

function is parameterized on the iterator type . The clause includes

the requirements that the type must model and the value type of

the iterator must model . The definitions of and appear in

Section 4.2 and 4.3.

The dot notation is used to refer to the associated value type of the iterator. Figure 3

shows the syntax for referring to associated types. The recursion in the scope production is

necessary for handling nested requirements in concepts. For example, consider the follow-

ing excerpt from the concept.

4. THE DESIGN OF G 95

FIGURE 4. Syntax for concepts.

decl ::= cid tyvar , . . . cmem . . . concept definition
cmem ::= funsig Function requirement

fundef " with default implementation
tyvar Associated type

type type Same-type requirement
cid type . . . Refinement
cid type . . . Nested requirement

The following type expressions show how to refer to the type of the container’s

and .

4.2. Concepts

The syntax for concepts is presented in Figure 4. A concept definition consists of a name

for the concept and a type parameter, enclosed in angle brackets, that serves as a place-

holder for the modeling type (or a list of type parameters for a list of modeling types). The

type parameters are in scope for the body of the concept. Concepts contain the following

kinds of members.

Function signatures: A function signature in a concept expresses the requirement

that a function definition with a matching name and type must be provided by a

model of the concept.

Function definition: A model of the concept may provide a function with the match-

ing name and type, but if not, the default implementation provided by the function

definition in the concept is used.

Associated types: An associated type in a concept requires that a model provide a

type definition for the specified type name.

4. THE DESIGN OF G 96

FIGURE 5. Syntax for models.

decl ::= polyhdr type, . . . decl . . . model definition

Same-type constraints: A same-type constraint states the requirement that two type

expressions must denote the same type in the context of a model definition.

Refinements: Requirements for the refined concept are included as requirements

for this concept. A model definition for the concept being refined must precede a

model definition for this concept.

Requirements: Nested requirements are similar to refinement in that they compose

concepts. However, in this case the associated types of the required concept are

not directly included but can be accessed indirectly. For example, the Container

concept has a requirement that the associated type model Iterator. The

difference type of the is accessed as follows:

The following example is the definition of the concept in G:

4.3. Models

The modeling relation between a type and a concept is established with a model defini-

tion using the syntax shown in Figure 5. A model definition must satisfy all requirements

of the concept. Requirements for associated types are satisfied by type definitions. Require-

ments for operations may be satisfied by function definitions in the model, by the

4. THE DESIGN OF G 97

clause, or by functions in the lexical scope preceding the model definition. The functions do

not have to be an exact match, but they must be coercible to the required function signature.

Refinements and nested requirements are satisfied by preceding model definitions.

The following simple example shows concept definitions for and as

well as model definitions for .

Model definitions, like all other kinds of definitions in G, may be enclosed in a module

thereby controlling the scope in which the model is visible. Model definitions may be im-

ported from another module with an declaration or statement. Modules are de-

scribed in Section 4.4.

4.3.0.2. Parameterized models. A model may be parameterized: the identifiers in the

angle brackets are type parameters and the clause introduces constraints. The fol-

lowing statement establishes that all pointer types are models of :

4. THE DESIGN OF G 98

FIGURE 6. Syntax for modules.

decl ::= mid decl . . . module
mid = scope; scope alias
scope.c τ ; import model
decl . . . public region
decl . . . private region

Like generic functions, generic model definitions are type checked independently of any

instantiation, so no type dependent operations are allowed on objects of type , except as

specified in the clause.

The following is another example of a parameterized model, this time with a

clause. This model definition says that the adaptor is a model of

if the underlying type is a model of . We discuss

is more detail in Section 6.1.5.

4.4. Modules

The syntax for modules is shown in Figure 6. The important features of modules in G

are import declarations for models and access control (and). An interesting

extension would be parameterized modules, but we leave that for future work.

4.5. Type equality

There are several language constructions in G that make it difficult to decide when two

types are equal. Generic functions complicate type equality because the names of the type

parameters do not matter. So, for example, the following two function types are equal:

=

4. THE DESIGN OF G 99

The order of the type parameters does matter (because a generic function may be explicitly

instantiated) so the following two types are not equal.

&=

Inside the scope of a generic function, type parameters with different names are assumed

to be different types (this is a conservative assumption). So, for example, the following

program is ill formed because variable has type whereas function is expecting an

argument of type .

Associated types and same-type constraints also affect type equality. First, if there is a

model definition in the current scope such as:

then we have the equality = .

Inside the scope of a generic function, same-type constraints help determine when two

types are equal. For example, the following version of is well formed:

There is a subtle difference between the above version of and the following one. The

reason for the difference is that same-type constraints are checked after type argument

deduction.

In the first call to the compiler deduces and from the arguments

and . The compiler then checks the same-type constraint , which in this case is

4. THE DESIGN OF G 100

satisfied. For the second call to , the compiler deduces and and then

the same-type constraint is not satisfied. The first call to is straightforward.

For the second call to , the compiler deduces from the type of and the

argument is implicitly coerced to .

Type equality is a congruence relation, which means several things. First it means type

equality is an equivalence relation, so it is reflexive, transitive, and symmetric. Thus, for

any types ρ, σ, and τ we have

• τ = τ

• σ = τ implies τ = σ

• ρ = σ and σ = τ implies ρ = τ

For example, the following function is well formed:

The type expression (the type of) and the type expression (the parameter type of)

both denote the same type.

The second aspect of type equality being a congruence is that it propagates in certain

ways with respect to type constructors. For example, if we know that = then we also

know that = . Similarly, if we have defined a generic struct such as:

then = implies = . The propagation of equality also goes in the other

direction. For example, = implies that = . The congruence extends to

associated types. So = implies = . However, for associated types,

the propagation does not go in the reverse direction. So = does not

imply that = . For example, given the model definitions

we have = but this does not imply that = .

4. THE DESIGN OF G 101

Like type parameters, associated types are in general assumed to be different from one

another. So the following program is ill-formed:

The next program is also ill formed.

In the compiler for G we use the congruence closure algorithm by Nelson and Op-

pen [142] to keep track of which types are equal. The algorithm is efficient: O(n log n)

time complexity on average, where n is the number of types. It has O(n2) time complexity

in the worst case. This can be improved by instead using the Downey-Sethi-Tarjan algorithm

which is O(n log n) in the worst case [54].

4.6. Function application and implicit instantiation

The syntax for calling functions (or polymorphic functions) is the C-style notation:

expr ::= expr expr . . . function application

Type arguments for the type parameters of a polymorphic function need not be supplied at

the call site: G deduces the type arguments by unifying the types of the arguments with

the types of the parameters. The type arguments are substituted into the clause and

then each of the constraints must be satisfied in the current lexical scope. The following is

a program that calls the function, applying it to iterators of type .

4. THE DESIGN OF G 102

Type arguments of a polymorphic function may be specified explicitly with the following

syntax.

expr ::= expr type . . . explicit instantiation

Following Mitchell [129] we view implicit instantiation as a kind of coercion that

transforms an expression of one type to another type. In the example above, the

function was coerced from

to

There are several kinds of implicit coercions in G, and together they form a subtyping

relation ≤. The subtyping relation is reflexive and transitive. Like C++, G contains some

bidirectional implicit coercions, such as ≤ and ≤ , so ≤ is not

anti-symmetric. The subtyping relation for G is defined by a set of subtyping rules. The

following is the subtyping rule for generic function instantiation.

(INST) Γ satisfies c
Γ (α c σ τ ≤ [ρ/α](σ τ)

The type parameters α are substituted for type arguments ρ and the constraints in the

clause must be satisfied in the current environment. To apply this rule, the compiler must

choose the type arguments. We call this type argument deduction and discuss it in more

detail momentarily. Constraint satisfaction is discussed in Section 4.6.2.

The subtyping relation allows for coercions during type checking according to the sub-

sumption rule:

(SUB)
Γ (e : σ Γ (σ ≤ τ

Γ (e : τ

The (SUB) rule is not syntax-directed so its addition to the type system would result in a

non-deterministic type checking algorithm. The standard workaround is to omit the above

rule and instead allow coercions in other rules of the type system such as the rule for

4. THE DESIGN OF G 103

function application. The following is a rule for function application that allows coercions

in both the function type and in the argument types.

(APP)
Γ (e1 : τ1 Γ (e2 : σ2 Γ (τ1 ≤ σ3 τ2 Γ (σ2 ≤ σ3

Γ (e1(e2) : τ2

4.6.1. Type argument deduction. As mentioned above, the type checker must guess

the type arguments ρ to apply the (INST) rule. In addition, the (APP) rule includes several

types that appear from nowhere: σ3 and τ2. The problem of deducing these types is equiv-

alent to trying to find solutions to a system of inequalities. Consider the following example

program.

The application type checks if there is a solution to the following system:

≤ α β γ
≤ α

≤ β

The following type assignment is a solution to the above system.

α =
β =
γ =

Unfortunately, not all systems of inequalities are as easy to solve. In fact, with Mitchell’s

original set of subtyping rules, the problem of solving systems of inequalities was proved

undecidable by Tiuryn and Urzyczyn [187]. There are several approaches to dealing with

this undecidability.

4.6.1.1. Remove the (ARROW) rule. Mitchell’s subtyping relation included the usual co/-

contravariant rule for functions.

(ARROW)
σ2 ≤ σ1 τ1 ≤ τ2

σ1 τ1 ≤ σ2 τ2

The (ARROW) rule is nice to have because it allows a function to be coerced to a different

type so long as the parameter and return types are coercible in the appropriate way. In

4. THE DESIGN OF G 104

the following example the standard function is passed to even though it does

not match the expected type. The (ARROW) rule allows for this coercion because is

coercible to .

However, the (ARROW) rule is one of the culprits in the undecidability of the subtyping

problem; removing it makes the problem decidable [187]. The language MLFof Le Botlan

and Remy [24] takes this approach, and for the time being, so does G. With this restriction,

type argument deduction is reduced to the variation on unification used in MLF. Instead of

working on a set of variable assignments, this unification algorithm keeps track of either a

type assignment or the tightest lower bound seen so far for each variable. The (APP) rule is

reformulated as follows to use this algorithm.

(APP)

Γ (e1 : τ1 Γ (e2 : σ2

Q = {τ1 ≤ α, σ2 ≤ β} Q′ = unify(α, β γ, Q)
Γ (e1(e2) : Q′(γ)

In languages where functions are often written in curried form, it is important to provide

even more flexibility than in the above (APP) rule by postponing instantiation, as is done in

MLF. Consider the example again, but this time written in curried form.

In the first application we do not yet know that should be bound to . The

instantiation needs to be delayed until the second application . In general,

each application contributes to the system of inequalities that needs to be solved to instan-

tiate the generic function. In MLF, the return type of each application encodes a partial

system of inequalities. The inequalities are recorded in the types as lower bounds on type

parameters. The following is an example of such a type.

4. THE DESIGN OF G 105

≤

Postponing instantiation is not as important in G because functions take multiple parameters

and currying is seldom used.

Removal of the arrow rule means that, in some circumstances, the programmer would

have to wrap a function inside another function before passing the function as an argument.

4.6.1.2. Restrict the language to predicative polymorphism. Another alternative is to re-

strict the language so that only monotypes (non-generic types) may be used as the type

arguments in an instantiation. This approach is used in by Odersky and Läufer [148] and

also by Peyton Jones and Shields [100]. However, this approach reduces the expressiveness

of the language for the sake of the convenience of implicit instantiation.

4.6.1.3. Restrict the language to second-class polymorphism. Restricting the language of

types to disallow polymorphic types nested inside other types is another way to make the

subtyping problem decidable. With this restriction the subtyping problem is solved by nor-

mal unification. Languages such as SML and Haskell 98 use this approach. Like the restric-

tion to predicative polymorphism, this approach reduces the expressiveness of the language

for the sake of implicit instantiation (and type inference). However, there are many moti-

vating use cases for first-class polymorphism [42], so throwing out first-class polymorphism

is not our preferred alternative.

4.6.1.4. Use a semi-decision procedure. Yet another alternative is to use a semi-decision

procedure for the subtyping problem. The advantage of this approach is that it allows

implicit instantiation to work in more situations, though it is not clear whether this extra

flexibility is needed in practice. The down side is that there are instances of the subtyping

problem where the procedure diverges and never returns with a solution.

4.6.2. Model lookup (constraint satisfaction). The basic idea behind model lookup

is simple though some of the details are a bit complicated. Consider the following program

containing a generic function with a requirement for .

4. THE DESIGN OF G 106

At the call , the compiler deduces the binding and then seeks to satisfy the

clause, with substituted for . In this case the constraint must be satisfied.

In the scope of the call there is a model declaration for , so the constraint is

satisfied. We call the model head.

In G, a model definition may itself be parameterized and the type parameters con-

strained by a clause. Figure 7 shows a typical example of a parameterized model. The

model definition in the example says that for any type , is a model of

if is a model of . Thus, a model definition is an inference rule, much like a

Horn clause [84] in logic programming. For example, a model definition of the form

corresponds to the Horn clause:

(P1 and . . . and Pn) implies Q

The model definitions from the example in Figure 7 could be represented in Prolog with the

following two rules:

The algorithm for model lookup is essentially a logic programming engine: it performs

unification and backward chaining (similar to how instance lookup is performed in Haskell).

Unification is used to determine when the head of a model definition matches. For example,

in Figure 7, in the call to the constraint needs to

be satisfied. There is a model definition for and unification of

and succeeds with the type assignment = . However, we have

not yet satisfied because the clause of the parameterized

4. THE DESIGN OF G 107

FIGURE 7. Example of parameterized model definition.

model must also be satisfied. The model lookup algorithm therefore proceeds recursively

and tries to satisfy , which in this case is trivial. This process is called

backward chaining: it starts with a goal (a constraint to be satisfied) and then applies

matching rules (model definitions) to reduce the goal into subgoals. Eventually the subgoals

are reduced to facts (model definitions without a clause) and the process is complete.

As is typical of Prolog implementations, G processes subgoals in a depth-first manner.

It is possible for multiple model definitions to match a constraint. When this happens

the most specific model definition is used, if one exists. Otherwise the program is ill-formed.

We say that definition A is a more specific model than definition B if the head of A is a

substitution instance of the head of B and if the clause of B implies the clause

of A. In this context, implication means that for every constraint c in the clause of A,

c is satisfied in the current environment augmented with the assumptions from the

clause of B.

4. THE DESIGN OF G 108

G places very few restrictions on the form of a model definition. The only restriction

is that all type parameters of a model must appear in the head of the model. That is,

they must appear in the type arguments to the concept being modeled. For example, the

following model definition is ill formed because of this restriction.

This restriction ensures that unifying a constraint with the model head always produces

assignments for all the type parameters.

Horn clause logic is by nature powerful enough to be Turning-complete. For example,

it is possible to express general recursive functions. The program in Figure 8 computes the

Ackermann function at compile time by encoding it in model definitions. This power comes

at a price: determining whether a constraint is satisfied by a set of model definitions is in

general undecidable. Thus, model lookup is not guaranteed to terminate and programmers

must take some care in writing model definitions. We could restrict the form of model defi-

nitions to achieve decidability however there are two reasons not to do so. First, restrictions

would complicate the specification of G and make it harder to learn. Second, there is the

danger of ruling out useful model definitions.

4.7. Function overloading and concept-based overloading

Multiple functions with the same name may be defined and static overload resolution

is performed to decide which function to invoke at a particular call site. The resolution

depends on the argument types and on the model definitions in scope. When more than

one overload may be called, the most specific overload is called if one exists. The basic

overload resolution rules are based on those of C++.

In the following simple example, the second is called.

4. THE DESIGN OF G 109

FIGURE 8. The Ackermann function encoded in model definitions.

The first has the wrong number of arguments, so it is immediately dropped from con-

sideration. The second and fourth are given priority over the third because they can exactly

match the argument type (for the fourth, type argument deduction results in),

whereas the third requires an implicit coercion from to . The second is

favored over the fourth because it is more specific.

A function f is a more specific overload than function g if g is callable from f but

not vice versa. A function g is callable from function f if you could call g from inside f ,

forwarding all the parameters of f as arguments to g, without causing a type error. More

formally, if f has type tf Cf (σf) τf and g has type tg Cg(σg) τg

then g is callable from f if

σf ≤ [tg/ρ]σg and Cf implies [tg/ρ]Cg

for some ρ.

4. THE DESIGN OF G 110

In general there may not be a most specific overload in which case the program is ill-

formed. In the following example, both ’s are callable from each other and therefore

neither is more specific.

In the next example, neither is callable from the other so neither is more specific.

4.7.0.1. Concept-based overloading. In Section 2.2.1.7 we showed how to accomplish

concept-based overloading of several versions of using the tag dispatching idiom in

C++. Figure 9 shows three overloads of implemented in G. The signatures for these

overloads are the same except for their clauses. The concept

is a refinement of , so the second version of is more specific than

the first. The concept is a refinement of ,

so the third is more specific than the second.

The code in Figure 10 shows two calls to . The first call is with an iterator for a

singly-linked list. This iterator is a model of but not ;

the overload resolution chooses the first version of . The second call to is

with a pointer which is a so the second version of is called.

Concept-based overloading in G is entirely based on static information available during

the type checking and compilation of the call site. This presents some difficulties when

trying to resolve to optimized versions of an algorithm from within another generic function.

Section 6.1.3 discusses the issues that arise and presents an idiom that ameliorates the

problem.

4.8. Generic user-defined types

The syntax for polymorphic classes, structs, and unions is defined below.

4. THE DESIGN OF G 111

FIGURE 9. The algorithms using concept-based overloading.

FIGURE 10. Example calls to and overload resolution.

4. THE DESIGN OF G 112

decl ::= clid polyhdr clmem . . . class

clid polyhdr type id . . . struct

clid polyhdr type id . . . union

clmem ::= type id data member

polyhdr clid type mode [id] . . . stmt . . . constructor

clid stmt . . . destructor

clid class name

In G, as in C++, classes enable the definition of abstract data types. Classes consist of data

members, constructors, and a destructor. There are no member functions; normal functions

are used instead. Data encapsulation (/) is specified at the module level

instead of inside the class.

In G, structs are distinct from classes, and merely provide a mechanism for composing

data, i.e., structs are like Pascal records. Unions are provided for situations where the type

of data may vary at run-time and data-directed programming is necessary.

The type of a class, struct, or union is referred to using the syntax below. Such a type

is well-formed if the type arguments are well-formed and if the requirements in its

clause are satisfied in the current scope.

type ::= clid [type . . .]

4.9. Function expressions

The following is the syntax for function expressions and function types.

expr ::= polyhdr type mode [id] . . . id expr . . . ({stmt . . .}| expr)

type ::= polyhdr type mode . . . [type mode]

4. THE DESIGN OF G 113

The body of a function expression may be either a sequence of statements enclosed in braces

or a single expression following a colon. The return type of a function expression is deduced

from the return statements in the body, or from the single expression.

The following example computes the sum of an array using and a function

expression. 1

The expression

creates a function object. The body of a function expression is not lexically scoped, so a

direct use of in the body would be an error. The initialization both declares a

data member inside the function object with type and copy constructs the data member

with the address .

The primary motivation for non-lexically scoped function expressions is to keep the de-

sign close to C++ so that function expressions can be directly compiled to function objects

in C++. However, this design has some drawbacks as we discovered during our implemen-

tation of the STL. Section 6.1.6 discusses the problem we encountered.

4.9.0.2. First-class polymorphism. At the beginning of this chapter we mentioned that

G is based on System F. One of the hallmarks of System F is that it provides first class

polymorphism. That is, polymorphic objects may be passed to and returned from functions.

This is in contrast to the ML family of languages, where polymorphism is second class. In

Section 4.6 we discussed how the restriction to second-class polymorphism simplifies type

1Of course, the function is the appropriate algorithm for this computation, but then the example
would not demonstrate the use of function expressions.

4. THE DESIGN OF G 114

argument deduction, reducing it to normal unification. However, we prefer to retain first-

class polymorphism and use the somewhat more complicated variant of unification from

MLF.

One of the reasons to retain first-class polymorphism is to retain the expressiveness of

function objects in C++. A function object may have member function templates and may

therefore by used polymorphically. The following program is a simple use of first-class

polymorphism in G. Note that is applied to arguments of different types.

4.10. Summary

This section reviews how the design of G fulfills the goals from Chapter 1 and the criteria

set forth in Section 2.2.4. In Chapter 1 we discussed the importance of separate type check-

ing and separate compilation for the production and use of generic libraries. The design for

G provides both separate type checking and separate compilation by basing its generics on

parametric polymorphism. The essential property for separate type checking is that generic

functions are checked under the conservative assumption that the type parameters could be

any type that satisfies the type requirement. Also, to enable separate compilation, the only

type-dependent operations that are allowed are those specified by the clause.

In Section 2.2.4 we listed nine specific language requirements for generic programming.

Each of those requirements is satisfied by the design for G.

(1) G provides generic functions with clauses to express constraints on how the

generic functions may be instantiated, and dually to express assumptions that may

be used inside the generic functions. Type checking is performed independently

of any instantiation.

(2) G includes definitions for grouping and organizing requirements. Con-

cepts are composable via refinements and via nested requirements.

4. THE DESIGN OF G 115

(3) Concepts contain requirements for function signatures, associated types, and same-

type constraints. This chapter did not discuss conversion requirements, but that is

because they are trivial to express in G. A user-defined implicit conversion may be

created by defining a function named . Thus a conversion requirement is

expressed with a function signature in a concept.

(4) The design for G provides implicit model passing via model definitions,

clauses, and a model lookup algorithm similar to a logic programming engine.

(5) Type argument deduction is provided in G by borrowing the approach of MLFwhich

is compatible with the presence of first class polymorphism.

(6) Concept-based dispatching is provided through the function overloading rules that

take the clause into consideration when determining the most specific over-

load.

(7) Conditional modeling is needed for generic adaptors such as

(Section 2.2.3). Conditional modeling is provided in G by parameterized model

definitions with clauses.

(8) G includes a simple feature with constructors and a destructor that enables

the creation of abstract data types.

It is also instructive to evaluate the design of G with respect to the criteria from our pre-

vious study comparing support for generic programming in several languages [69]. Table 1

shows the results of that study but with a new column for G. The table also includes a new

row for concept-based dispatching. The following describes the criteria and explains how it

is fulfilled in the design of G.

Multi-type concepts: are concepts with multiple type parameters. The syntax for

concepts in G, as shown in Figure 4, provides for multiple type parameters.

Multiple constraints: refers to the ability to place multiple constraints on a type

parameter. This is supported in G in that a clause may include any number

of requirements each each requirement may constrain one or more of the type

parameters. See Figure 1 for the syntax of clauses.

4. THE DESIGN OF G 116

C++ SML Haskell Java C# G
Multi-type concepts - ! !∗ " " !
Multiple constraints - #" ! ! ! !

Associated type access ! ! #" #" #" !
Constraints on assoc. types - ! ! #" #" !

Retroactive modeling - ! ! " " !
Type aliases ! ! ! " " !

Separate compilation " ! ! ! ! !
Implicit instantiation ! " ! ! ! !
Concept dispatching ! " " " " #"

∗Using the multi-parameter type class extension to Haskell 98 [149].

TABLE 1. The level of support for generic programming in several languages.
The rating of “-” in the C++ column indicates that while C++ does not explic-
itly support the feature, one can still program as if the feature were sup-
ported due to the flexibility of C++ templates.

Associated type access: refers to the ease in which types are mapped to other types

within the context of a generic function. In G this is accomplished with the dot

notation, as shown in Figure 3.

Retroactive modeling: indicates the ability to add new modeling relationships after

a type has been defined. This is supported in G because definitions (see

Figure 5) are separate from class definitions.

Type aliases: indicates whether a mechanism for creating shorter names for types

is provided. G provides type aliases, though we have not yet discussed them. The

syntax for type aliases is shown in Appendix A and the compilation of type aliases

is given in Section 5.2.4 and 5.2.5.

Separate compilation: indicates whether generic functions are type-checked and

compiled independently from their use. G provides both separate type checking

and separate compilation.

Implicit instantiation: indicates that type arguments are deduced without requiring

explicit syntax for instantiation. How implicit instantiation is performed in G is

explained in Section 4.6.

4. THE DESIGN OF G 117

Concept-based dispatching: indicates whether the language provides facilities for

dispatching between different versions of an algorithm based on which concepts

are modeled by the input.

5
The definition and compilation of G

There are many approaches to defining the meaning of phrases in a programming language.

The denotational approach maps a phrase to an object in some pre-defined formal domain,

such as mathematical sets or functions. The operational approach describes how a phrase

causes an abstract machine to change states, or describes what value will result from evalu-

ating the phrase. The translational approach maps phrases to phrases in another (hopefully

well-defined) language. The axiomatic approach to defining programming languages as-

signs a predicate to each point between statements in a program and describes how each

kind of phrase transforms these predicates. Each of the approaches is good for particular

118

5. THE DEFINITION AND COMPILATION OF G 119

purposes. For example, an axiomatic semantics is good for proving the correctness of pro-

grams, whereas an operational semantics is good for giving programmers a mental model

of program execution.

In this chapter we use the translational approach: we describe a translation from G

to C++. There are several reasons for this choice. The first is a matter of economy of

expression: G is a full-featured language so a denotational or operation semantics for G

would be rather large. On the other hand, G is quite similar to C++, so defining G in

terms of C++ reuses much of the effort that went into defining C++. Another reason to

use the translational approach is that the semantics of Haskell type classes is defined by

translation, either translating to an ML-like language [196] or to System F [78], and it

is easier to compare G with Haskell if the semantics are in the same style. The primary

reason for choosing the translational approach is that it also provides an implementation of

a prototype compiler for the language. This compiler was useful in testing the design of G

with the implementation of the STL and BGL, which is described in Chapter 6.

There are several disadvantages to defining G by translation to C++. First, the C++

standard is a rather informal description of the language. Second, the translation over-

specifies the language G, after all, an implementation of G does not have to translate to

C++, it could instead be written as an interpreter, or could translate to some other language

such as C or even directly to assembly. Of course, what is intended is that an implementation

of G should be observationally equivalent to the translation described in this chapter, for

some suitably loose definition of observational equivalence.

The first section gives an overview of the translation, describing the C++ output from

translating each of the major language features of G: generic functions, concept, models,

and generic classes. The second section describes the translation to C++ in more detail.

The full grammar for G is defined in Appendix A.

5. THE DEFINITION AND COMPILATION OF G 120

5.1. Overview of the translation to C++

This section gives an informal description of the translation from G to C++. The focus

is on what is output from the translation. The how is described in Section 5.2. The ba-

sic idea of the translation is the same as for Haskell type classes [78, 196]. The implicit

passing of models to generic functions is translated into explicit dictionary passing, where

a “dictionary” is a data structure holding the functions that implement the requirements of

a concept for a particular type. Thus a dictionary is a run-time representation of a model.

Mark Jones introduces a nice way to think about dictionaries in his Ph.D. thesis [96]. A

concept can be thought of as a predicate on types, so is a proposition

which states that is true for the type . In constructive logic, a proposition is

accompanied by evidence that demonstrates that the proposition is true. Analogously, we

can think of a dictionary as the evidence that a type models a concept.

While the basic idea is the same, the translation described here differs from that of

Haskell in the following respects.

• Concepts and models in G differ in several respects from type classes, especially

with regard to scoping rules and the presence of associated types in G.

• The target language is C++ instead of ML [196] or System F [78]. This impacts the

translation because C++ has neither parametric polymorphism nor closures, both

of which are used extensively in the translations for Haskell. C++ has templates,

but we do not use them in the translation of generic functions because that would

not provide separate compilation.

• The translation does not perform type inference.

Instead of using parametric polymorphism and closures in the target language, we use

a combination of dynamic types and object-oriented features such as abstract base classes

(interfaces) and derived classes. In some sense, this translation can be seen as establish-

ing a relationship between generic programming and object-oriented programming. The

translation also shows that it is possible to do generic programming in an object-oriented

5. THE DEFINITION AND COMPILATION OF G 121

language. However, the compilation is non-trivial so without it the programmer would have

to do considerable work and would be giving up the static type safety of G.

The translator mangles identifiers to prevent name clashes and to assign different names

to function overloads. However, for the sake of readability, identifiers are not mangled in

the excerpts shown in this section.

5.1.1. Generic functions. To achieve separate compilation, a generic function must

be compiled to a single function that can work on many different types of input. This

presents a small challenge for compiling to C++ because C++ is a statically typed language.

In particular, we need to pass objects of different types as arguments to the same parameter.

For example, we need to pass objects of type and to parameter of the following

function.

We use dynamic types to allow arguments of different types to be passed to the same pa-

rameter. In particular, we use a family of classes based on the Boost class. (This class

is similar to the type of CLU [117].) The class is used for pass-by-value,

for mutable pass-by-reference, and for constant pass-by-reference. Figure 1

shows the implementation of the class; the implementation of the other members of

the family is similar. The following is the C++ translation of the above program.

5. THE DEFINITION AND COMPILATION OF G 122

FIGURE 1. The C++ Class

The function is translated to a normal (non-template) function with type replaced by

(because pass by const reference is the default passing mode). The coer-

cion from to is handled implicitly by a constructor in the

class and the coercion in the other direction is accomplished by a cast that throws an ex-

ception if the actual type does not match the target type.

Alternatively, we could use instead of and a C-style cast instead of .

However, that approach would complicate the translation, requiring code to be produced

for managing the lifetime of temporary objects.

5. THE DEFINITION AND COMPILATION OF G 123

5.1.1.1. Function expressions. Anonymous functions expression in G are compiled to

function objects in C++. Consider the following program that creates a function and applies

it to .

The C++ translation is

A struct is defined with a function call operator containing the body of the function expres-

sion. The function expression itself is replaced by a call to the constructor of the struct. The

data member initialization in the G program translates to the data member in

the struct and its initialization in the constructor.

5.1.1.2. Function parameters, function types. A function may take another function as a

parameter, such as parameter in the following function.

Function pointers are a natural choice for translating G function types. However, function

objects like can not be passed as function pointers. We need a C++ type that

can be used for either function objects or built-in function pointers. The Boost Function

Library [22] provides a solution with its class template. The following example

shows the use of to declare a variable that can hold a function pointer, such as

, and later can hold a function object, such as an instance of .

5. THE DEFINITION AND COMPILATION OF G 124

The following is the C++ translation of , using the class template for the

type of parameter .

We call the function with the following function as the argument for pa-

rameter .

Compiling pointers in generic functions, such as above, is somewhat challenging because

many pointer operations are type dependent. For example, to increment a pointer we must

know the size of the object pointed to, and the size depends on the type of the object. How-

ever, the information is not available when the generic function is compiled. The solution

we currently use is to extend the family of classes to include , , and

. (There are also classes for pointers to constant objects.) These classes

implement all of the usual pointer operations by dispatching through virtual functions to

the real type-specific pointer. The following is the translation of .

One major drawback of this approach is that we cannot define a constructor for

with zero arguments (a so-called default constructor), for must be initialized with

5. THE DEFINITION AND COMPILATION OF G 125

a real pointer (such as). Thus, to default construct a pointer inside a generic func-

tion, the clause must include the requirement . In Sec-

tion 3.3.2 we discussed using intensional type analysis (run-time type passing) to access in-

formation about types. Instead of the class we could instead use along with

the type information provided by the intensional type analysis to implement the pointer

operations. Such an approach has the potential to be more efficient in time (both compile

time and run time) and space (in code size) and also avoids the default construction prob-

lem (it is trivial to default construct a). We plan to experiment with this approach in

the future.

The following code shows a call to , to which we pass a pointer and the

function.

The function does not exactly match the expected type but it can implicitly in-

stantiate to the expected type: is coerced from the type to .

To accomplish this coercion, a function with type is created that dispatches to

and applies the appropriate coercions to the arguments and return value. In general,

the inner function may be from an expression or a lexically bound variable, so the wrapper

function must hold onto it. C++ lacks real closures but function objects can be used instead.

The following is the function object wrapper that coerces .

The translation for the function is shown below.

5. THE DEFINITION AND COMPILATION OF G 126

5.1.2. Concepts and models. As mentioned above, the translation associates a dictio-

nary with each model and passes these dictionaries into generic functions. A convenient

representation for dictionaries in C++ is objects with virtual function tables. We translate

each concept to an abstract base class, and each model to a derived class with a singleton

instance that will act as the dictionary. The concept serves as a simple

example.

The following is the corresponding C++ abstract base class. Function signatures in the

concept are translated to pure virtual functions and function definitions are translated to

virtual functions (that may be overridden in derived classes.)

A model definition translates to a derived class with a singleton instance. The following

definition establishes that is a model of .

5. THE DEFINITION AND COMPILATION OF G 127

For this model, all of the operations are implemented by the built-in comparisons for .

Thus, the implementation of the each virtual function coerces the arguments to and

then applies the built-in operator.

The following is a singleton instance of the model class that is passed to generic functions,

such as , to satisfy its requirement for the model .

5.1.3. Generic functions with constraints. A generic function in G is translated to a

normal C++ function with parameters for dictionaries corresponding to the models required

by the clause. Calling this C++ function corresponds to instantiating the generic

function. The result of the call is a specialized function that can then be applied to the

normal arguments. The generic function below has a clause that requires

to model . Inside the generic function this capability is used to

compare parameters and .

The following code shows an explicit instantiation of followed by a function appli-

cation. These two steps are combined when implicit instantiation is used but it is easier to

understand them as separate steps.

5. THE DEFINITION AND COMPILATION OF G 128

The translated function is shown below.

The body of the function is placed in the of and the

use of inside is translated to .

includes the function as a data member to allow for recursion in

the body of , though in this case there is no recursion.

The instantiation (is translated to an application of the func-

tion to the dictionary corresponding to the model required by its clause, in this case

, followed by an application of to handle the

coercions from to and back.

5. THE DEFINITION AND COMPILATION OF G 129

The translation of the function contains the instantiation of and a call to

.

5.1.4. Concept refinement. The concept is an example of a concept

that refines other concepts and includes nested requirements.

Refinements and nested requirements are treated in a similar fashion in the translation.

Both are added as data members to the abstract base class. One might expect refinements

to instead translate to inheritance, but treating refinements and requirements uniformly re-

sults in a simpler implementation. The following shows the translation for ,

with three data members for the refinements and requirement. A constructor is defined to

initialize these data members.

5. THE DEFINITION AND COMPILATION OF G 130

The data members are used inside generic functions when a model for a refined concept

is needed. For example, the function requires and calls , which requires

.

In the translation of we pass the member from the input iter-

ator dictionary to . The following is the translation of .

5.1.5. Parameterized models. Parameterized models, such as the following model of

Input Iterator for , introduce some challenges to compilation, and is one

of the reasons concepts are translated to abstract base classes.

5. THE DEFINITION AND COMPILATION OF G 131

When an instance of this model is created, it must be supplied a model of Bidirectional

Iterator for the underlying type. The parameterized model needs to store away this

model for later use, so it needs some associated state. This motivated our approach of using

derived classes for model definitions. Each derived class can define different data members

corresponding to the requirement in its where clause. The following shows the translation

for the above model definition.

For parameterized model definitions we do not create a singleton object but instead

create the objects on-demand.

5.1.6. Model member access. Model members may be accessed explicitly with the dot

notation, as in the following.

A model member access translates to an access of a member in the corresponding dic-

tionary. In this case, is a member of the concept, which

refines. So the C++ output must access the sub-dictionary for and then access

the member. However, there are two small complications handled by the two

functors in the translation:

5. THE DEFINITION AND COMPILATION OF G 132

The first complication is that in C++ there is no direct representation for a member

function bound to its receiver object. (There is a representation for an unbound member

function.) Thus, we must bundle the together with the dictionary in the follow-

ing functor to obtain a first class function.

The second complication is that the parameter and return types of are dy-

namic types:

To obtain a function with the correct parameter and return types we wrap the

in the following function object which coerces the arguments and return value. (The argu-

ments are implicitly coerced.)

5.1.7. Generic classes. In Section 3.3.2 we discussed the problem of how to layout the

memory for parameterized classes and how to access fields in a uniform way inside a generic

function. Using intensional type analysis we could use the same flattened layout for generic

5. THE DEFINITION AND COMPILATION OF G 133

classes and for non-generic classes. However, there is some challenge to implementing

this portably: we need to mimic the layout of the underlying C++ compiler, which is not

completely specified by the C++ standard. This is feasible but tricky. For now the compiler

uses the simpler approach of boxing the data members of a class.

Consider the following simple class in G. It is parameterized on type and there is a

constraint that model , which is needed for the copy construction of the

member.

The translation to C++ is shown below.

The type of the member is and the dictionary for is stored as an

extra member of the class. The reason the dictionary is stored as a member is that in general

the destructor for a class may need to use the dictionary.

5.2. A definitional compiler for G

The compiler from G to C++ is a set of mutually recursive functions that recur on the

structure of the abstract syntax tree (AST) of a G program. There are three categories of

syntactic entities in G: declarations, statements, and expressions, and so there is a recursive

function for each of these categories. These functions are mutually recursive because, for

example, some statements contain expressions and some expressions contain statements.

5. THE DEFINITION AND COMPILATION OF G 134

The compiler is type-directed, which means that many of the decisions made by the

compiler are dependent on the type of an expression. Furthermore, the process of trans-

lating from implicit model passing to explicit dictionary passing is closely tied to the model

lookup aspect of the type system of G. Thus, the compiler and type checker are implemented

together as the same functions.

Each of the recursive functions takes an environment parameter. The environment

data structure includes information such as the type for each variable and function that is

in scope. We describe the environment in detail in Section 5.2.2.

In addition to determining the type of an expression, the compiler also keeps track of

whether an expression refers to an lvalue or rvalue and whether it is constant or mutable.

We use the term annotated type to refer to a type together with this extra information.

The following describes the input and output of the compiler’s main functions.

Compile declaration: The input is a declaration, an environment, and whether the

current access context is public or private. The output is a list of C++ declara-

tions and an updated environment. The reason that the output is a list of C++

declarations is that for some G declarations the compiler produces several C++

declarations. For example, a model definition translates to two C++ declarations:

a class definition and a variable declaration for the singleton instance of the class.)

Compile statement: The input is a statement, an environment, and the declared

return type of the enclosing function (if there is one). The return type is used

to check the type of expressions in return statements. The output is a list of C++

statements, a list of annotated types, and an updated environment. The list of

annotated types are the types from any return statements within the statement,

which is used in the context of a function expression to deduce its return type.

Compile expression: The input is an expression, an environment, and the lvalue/r-

value context. For example, an expression on the left-hand side of an assignment

is in an lvalue context. The compiler needs to know this context to make sure that

5. THE DEFINITION AND COMPILATION OF G 135

an rvalue expression does not appear in an lvalue context. The output is a C++

expression and an annotated type.

5.2.1. Types and type equality. One of the main operations performed on types during

compilation is checking whether two types are equal. As discussed in Section 4.5, checking

for type equality is somewhat complicated in G because of type parameters and same-type

constraints. In G, type equality is a congruence relation, and we use a congruence closure

algorithm [142] to maintain equivalence classes of type expressions that refer to the same

type.

The congruence closure algorithm requires that types be represented by a directed

acyclic graph (DAG), with one node for each type. Figure 2 shows the DAG for the fol-

lowing types.

Common parts of types are represented with a single subgraph. For example, there is

a single node which is used in three larger types. Each node is labeled with its type,

except the sub-types are replaced with dots. The out-edges of the nodes are ordered, and

the notation u[i] denotes the target of the ith out-edge. We say that u is a predecessor of

u[i].

fun<T>(•, •)->•

fun(•)->•

T

fun(•)->•

floatint

fun(•)->•

cell<•>

pair<•,•>

FIGURE 2. Types represented as a directed acyclic graph.

5. THE DEFINITION AND COMPILATION OF G 136

During compilation we may discover that two type expressions should denote the same

type, so we need to merge two nodes into a single node. However, merging nodes is

somewhat expensive because all the in-edges and out-edges must be rewired. Instead of

merging the nodes we record that the two nodes are equivalent using a union-find data

structure [49, 184] (also known as disjoint sets). For each equivalence class of nodes, the

union-find data structure δ chooses a representative node and provides a find operation

that maps a node to the representative for its equivalence class. Therefore, two nodes u

and v are equivalent iff find(u, δ) = find(v, δ). The union-find data structure also provides

the union(u, v, δ) operation which merges the equivalence classes of u and v, updated δ in

place.

The merging of two nodes is complicated by the need to propagate the change to other

types that refer to the two merged nodes, or that are parts of the merged nodes. For

example, if we merge u and v then the nodes for u and v must also be merged.

The propagation goes in other direction as well: if u and v were first merged,

then u and v would need to be merged. A modified version of the algorithm from

Nelson and Oppen [142] is shown in Figure 3. Pu(G) denotes the set of all predecessors of

the vertices equivalent to u in graph G.

Inserting type expressions into the graph. The DAG representation of the types is con-

structed incrementally as the compiler processes the G program. When a type expression

τ is encountered it is inserted into the DAG. A new node u is created for τ and then the

sub-types of τ are recursively inserted into the DAG, obtaining the nodes v1, . . . , vn. Then

the edges (u, v1), . . . , (u, vn) are added to the graph. Finally, if u is congruent to an existing

vertex v, delete u and return v instead.

5.2.1.1. Well-formed types. The function checks whether a type is well

formed and adds the type to the type DAG in the environment, returning the node repre-

senting the type. Figure 4 shows the pseudo-code for .

5.2.1.2. Translating G types to C++ types. The translation must convert from type ex-

pressions in G to type expressions in C++, for example, when translating the parameter type

of function. We define a function that translates a G type τ in environment Γ to a C++ type

5. THE DEFINITION AND COMPILATION OF G 137

FIGURE 3. Merge procedure for congruence closure

u v δ G δ
u δ = v δ

u v δ
k u

u &= c • t
k

u[i] v[i] δ
(x, y) x ∈ Pu(G) y ∈ Pv(G)

x δ &= y δ x y δ
x y δ G

u v δ
u = v

u u[i] δ = v[i] δ

!τ"Γ. For many types this translation is trivial, for example, ! "Γ = . We also define a

function for translating a G type τ and a parameter passing mode m to a C++ type !τ,m"Γ,

which is used for translating the parameter types of a function.

The translation of type expressions is defined by recursion on the structure of types, but

only for types that are representatives of their equivalence class. All other types are first

mapped to their representative which is then translated to the C++ type. The function !τ"Γ
= ![τ]Γ" where !·" is defined as follows:

5. THE DEFINITION AND COMPILATION OF G 138

FIGURE 4. Well-formed types.

t Γ
t ∈ dom(Γ.typevars) t Γ.dag

Γ Γ.dag

τ Γ
τ ′ Γ′ τ Γ

τ Γ′

u w σm τm Γ
Γ′ Γ, u

w′ Γ′ w Γ′

σ′ Γ′ σ Γ′

τ ′ Γ′ τ Γ′

t′ w′ σ′m x τ ′m Γ′

k τ Γ
τ ′ τ Γ
t w Γ.classes(k)

τ &= t

[τ ′/t]w Γ
k τ ′ Γ.dag

m a Γ
m /∈ dom(Γ.modules)

Γ′ Γ.modules(m)
t /∈ Γ′.typevars

m a Γ

c τ a Γ
τ ′ τ Γ

c τ ′ Γ
a c

c τ ′ Γ.dag

a c
t r Γ.concepts(c)

a ∈ r

c′ σ r
a c′

5. THE DEFINITION AND COMPILATION OF G 139

!t" =

!c τ .a" =

!int" = (and likewise for all the basic types)

!k" = k when k is a class, union, or struct identifier

!k τ " = k when k is a class, union, or struct identifier

!τ " =






if !τ" =

!τ" otherwise

!τ " =






if !τ" =

!τ" otherwise

! σ m τ m" = !τ,m" !σ,m"

! u w σ m τ m" = ρ C

where C is the list {C | C τ ∈ c}

and ρ = !τ,m" !σ,m"

The following defines the translation for parameters.

5. THE DEFINITION AND COMPILATION OF G 140

!τ, !" =






if !τ" =

if !τ" =

if !τ" =

!τ" otherwise

!τ,&" =






if !τ" =

if !τ" =

if !τ" =

!τ" otherwise

!τ,@" = !τ"

5.2.2. Environment. The contextual information needed during the translation is main-

tained in an environment. The symbol Γ is used to denote the environment. An environ-

ment consists of:

Γ.globals and Γ.locals: map from global variable names to bindings and map from

local variable names to bindings, respectively. There are two kinds of bindings:

for variables and for function overloads. A variable binding includes the G type

(as a node), whether it is mutable or constant, the name to use for the variable

in the C++ output, and whether the variable is public or private. The binding for

a function overload contains a list of function types (nodes) and mangled names

for the functions. The notation Γ, (global x : (x′, τ, access)) adds variable x to

the global variable environment with type τ , the name x′ for the C++ output,

and access specifies whether it is public or private. The notation Γ, (local x :

(x′, τ, access)) adds the variable to the local environment. When a function named

f is added to the environment, it is added to the set of overloads for f .

5. THE DEFINITION AND COMPILATION OF G 141

Γ.classes and Γ.structs and Γ.unions: maps from class, struct, and union names to

their definitions, respectively.

Γ.typevars: maps from type variable names to their node in the type graph. The

notation Γ, (t : access) adds type variable t to the environment, mapping it to a

new node, with the specified access (public or private).

Γ.concepts: maps from concept names to concept definitions. The notation Γ, (c *→

(t, r, access)) adds concept c to the environment, with type parameters t and re-

quirements r.

Γ.models: maps from concept names to a set of models. The information for each

model includes the model head (a list of type nodes), the path for accessing the

dictionary that corresponds to the model, and whether the model is public or

private. The following notation adds a model to the environment.

Γ, c τ ′ *→ (path, access)

The following notation adds a parameterized model to the environment. In this

case there is no dictionary, but we record the name of the derived class for the

model.

Γ, t w c τ *→ (mclass, access)

Γ.dag: is a directed acyclic graph that represents the types that appear in the pro-

gram.

Γ.δ: is a union-find (disjoint sets) data structure for maintaining equivalence classes

of type expressions that denote the same type.

5.2.3. Auxiliary functions. The main compilation functions rely on several auxiliary

functions. The two most important of these functions are used to process clauses.

The function is used in the compilation of function and model

definitions. This function adds surrogate model and function signatures to the environment

according to the contents of the clause. The function is used

in the instantiation of a generic function or model, and is used to check whether a model

5. THE DEFINITION AND COMPILATION OF G 142

satisfies the requirements of a concept. This function looks in the environment to see if the

clause is satisfied, and returns dictionaries and function definitions that satisfy the

requirements.

Pseudo-code for is shown in Figure 5. The requirements in

the clause are processed in order; later requirements may depend on earlier require-

ments. For example, a later requirement may refer to an associated type that an earlier

requirement brought into scope. If the requirement is a nested model requirement c τ

we add the model to the environment and then introduce all the assumptions associated

with the concept with a recursive call to . Refinements are pro-

cessed in a similar way except associated types are brought into scope directly instead of

being model-qualified. A function signature requirement adds to the overload set for that

function, and a same type requirement causes the two types to be merged according to the

congruence closure algorithm. Note that this merging may cause otherwise distinct model

requirements to become the same requirement. Some care must be take to ensure that such

models do not add duplicate functions into the overload set. The

function returns the clause (now containing pointers into the type DAG), the list of

dictionary names, and the new environment.

The pseudo-code for is shown in Figure 6. For each model

requirement or refinement we invoke to find the dictionary for the model.

For each associated type we check that the type has been defined. For each same type

constraint we check that the two type expressions are in the same equivalence class using

the function (of the union-find data structure). For each function signature we call

which checks to see if there is a function defined that can be coerced to the

signature and then creates a function that performs the coercion, if needed. The

function is responsible for inserting s for converting from a polymorphic object to a

concrete object, for wrapping functions when there needs to be coercions on the parameter

or return type, and for choosing a particular overload from an overload set.

The function finds a model for a given concept and type arguments and re-

turns the path to the dictionary for the model. Figure 7 shows pseudo-code for this function.

5. THE DEFINITION AND COMPILATION OF G 143

FIGURE 5. Pseudo-code for introducing clause assumptions.

w Γ path = [] scope inref
w′ []

i = 1, . . . , length(w)
wi

c τ c τ ⇒
c /∈ dom(Γ)

τ ′ Γ τ Γ
w′ w′, c τ ′

d d d, d

t′ w2 Γ.concepts(c)
Γ [τ ′/t′]w2 Γ path [d] c τ ′

Γ Γ, c τ ′ *→ (path [d], public)
c τ ⇒

Γ′ [τ ′/t′]w2 Γ path [d] c τ ′ inref

t ⇒
w′ w′, t

inref Γ Γ, t, scope t
Γ Γ, scope t

t w σm τm
t w σm τm s ⇒

f ′

Γ Γ, local f : (f ′, t w σm τm)
τ1 τ2 ⇒

τ ′
1 Γ τ1 Γ τ ′

2 Γ τ2 Γ
w′ w′, τ ′

1 τ ′
2

τ ′
1 τ ′

2 Γ.δ Γ.dag

w′ d Γ

The function is mutually recursive with the function, for if a model

is constrained by a clause it must lookup dictionaries to satisfy those requirements.

This recursion accomplishes a depth-first search for the requirements. Here we show the

basic algorithm, but it can be enhanced to catch problems amongst model definitions such

as catching circularity in model definitions and enhanced to prevent divergence.

5. THE DEFINITION AND COMPILATION OF G 144

FIGURE 6. Pseudo-code for satisfying requirements.

w Γ
d [] impls []

w w
w

c τ c τ c τ ⇒
d c S(τ) Γ d d, d

t ⇒
t /∈ dom(Γ.typevars)

τ1 τ2 ⇒
τ1 Γ.δ &= τ2 Γ.δ

f t w′ σm τ ⇒
impls impls, f t w′ σm τ Γ

f t w′ σm τ s *→ default ⇒
impls impls, f t w′ σm τ Γ

d impls

f t w σm τm Γ
Γ Γ, t

Γ w Γ
f ′ τ ′′ Γ(f) σm Γ

τ ′′ &≤ τ
p λσ σ
f ′′ f ′ τ ′′ σm τm Γ

!τm"Γ f !σm"Γ p f ′′ p

In more detail, the function extracts all the models for concept c from the

environment and then invokes to choose the most specific model.

If the model is not generic we return the C++ expression for accessing the model. If the

model is generic we must construct a new model object, passing in the dictionaries for the

clause and also the dictionaries for the refinements and requirements in concept c.

We the type arguments with the model head to obtain a substitution which is applied

to the clause before calling to obtain the dictionaries. The

unification algorithm used is that of MLF [24]. The dictionaries for the refines and requires

are obtained by recursive calls to .

5. THE DEFINITION AND COMPILATION OF G 145

FIGURE 7. Pseudo-code for finding the dictionary for a model.

c τ Γ

τ Γ.models(c) Γ
c τ ′ *→ (path, access) ⇒

path Γ′

t w c τ ′ *→ (mclass, access)
S τ ′ τ Γ ∅
dw S(w) Γ
s w2 Γ.concepts(c)

dr λ c τ d c [S(τ ′)/s]τ Γ d
w2

mclass dr dw [S(τ ′)/s]Γ′

[d] d
d :: path

rest path
d rest

The pseudo-code for is shown in Figure 8. The input to this func-

tion is some type arguments, a list of models, and the environment; this function returns a

model. First we find all models that match the type arguments τ . In the case of a generic

model we try to unify the type arguments with the head of the model. Once the list of

matching models is obtained, this function determines the most specific of the matches, if

there is one, using the more-specific-model relation as defined in Section 4.6.2.

Figure 9 shows the pseudo-code for overload resolution. The input to this function is

a list of function names with their types, the argument types, and the environment. This

function is quite similar to the function, following the same basic

pattern. The algorithm first filters out functions that are not applicable to the argument

types and then tries to find the most specific function among the remaining overloads.

5. THE DEFINITION AND COMPILATION OF G 146

FIGURE 8. Algorithm for finding the most specific matching model.

τ models Γ
matches

λm
m

c τ *→ (path, access) ⇒
t w c τ ′ *→ (mclass, access) ⇒

S τ ′ τ S(w) Γ

models
matches

[] ⇒
[m] ⇒ m
m :: matches
best m

matches &= []
best hd(matches)

hd(matches) best best hd(matches)

matches tl(matches)

best

5. THE DEFINITION AND COMPILATION OF G 147

FIGURE 9. Algorithm for function overload resolution.

ovlds σm Γ
matches λ(f, τ)

α, β, γ,m′, r′

Q = {τ ≤ α, σm ≤ βm′}

α β γ Γ Q
λ c τ c S(τ) Γ where(τ)

ovlds
matches

[] ⇒
[(f, τ)] ⇒ (f, τ)
(f, τ) :: matches
best (f, τ)

matches &= []
snd(best) snd(hd(matches))

snd(hd(matches)) snd(best)
best hd(matches)

matches tl(matches)

best

5. THE DEFINITION AND COMPILATION OF G 148

FIGURE 10. Pseudo-code for compiling function definitions.

f t w σm x τm s Γ access
Γ′ Γ, t

w′ dw Γ′ w Γ′

σ′ Γ′ σ Γ′ τ ′ Γ′ τ Γ′

τf t′ w′ σ′m x τ ′m
f ′

Γ′ = Γ′, x : σ′, f : (f ′, τf)
s′ s τ ′m Γ′

t = []
!τ ′m"Γ′ f ′ !σ′m"Γ′ x concat(s′) Γ, (global f : (f ′, τf , access))

cw λ c τ c w′

f ′′

f ′′

f ′′ cw dw dw dw

!τ ′m"Γ′ !σ′ m"Γ′ x concat(s′)

cw dw

!τ ′m"Γ′ !σ′m"Γ′ f ′ cw dw f ′′ dw

Γ, (global f : (f ′, τf , access))

5.2.4. Declarations. In this section we describe the cases of the main function

for declarations. The case for generic function definitions is shown in Figure 10. The type

parameters of the generic function are added to the environment and the auxiliary function

is used to augment the environment according to the clause

of the function. The parameters are then added to the environment and also the function

itself to enable recursion. The body of the function is then compiled. If the function is

generic, it is compiled to a curried function which takes the dictionaries corresponding to

its clause and returns a function object.

Figure 11 shows the pseudo-code for compiling concepts. The body of the concept is

processed using the function to produce Γ′ and then the function

5. THE DEFINITION AND COMPILATION OF G 149

FIGURE 11. Pseudo-code for compiling concepts.

c t r Γ access
Γ′ Γ, t

t′ r′ Γ′ r Γ′

cr λ c τ c r′

dr r′

f λf f Γ′ r

f ′ λf f Γ′ r
c

c cr dr dr dr

f

f ′

cr dr

Γ, (c *→ (t′, r′, access))

definitions in the concept are compiled in Γ′. The output is a class definition with pure

virtual functions for each function signature in the concept, and a virtual function for each

function definition. In addition, there are data members to point to the dictionaries for the

refinements and nested model requirements. The environment is updated with an entry for

the concept.

Figure 12 shows the pseudo-code for compiling model definitions. The definition is

compiled in an environment Γ′ that is extended with the type parameters t and also with

the clause with a call to . The definitions in the body of

the model are compiled in Γ′ and then added to Γ′. The model definition must satisfy the

requirements of the concept, so we call . The generated C++ code

consists of a class derived from the concept’s abstract base class, and optionally a singleton

object for the dictionary. If the model is generic, the compiler instead creates dictionary

objects on-demand in .

The compilation of declarations and type aliases is straightforward. A compiles

to a variable declaration, where the variable is given the type of the expression on the right

5. THE DEFINITION AND COMPILATION OF G 150

FIGURE 12. Compile model definitions.

t w c τ d Γ access
Γ′ Γ, t

w′ dw Γ′ w Γ
τ ′ Γ′ τ Γ′

d′ Γ′ d Γ′

s r Γ.concepts(c)
dr f [τ ′/s]r Γ′

cr λ c τ c r

cw λ c τ c w′

mclass dr λc cr

mdef mclass c

m cr r cw dw c dr dw dw

f

d′

cw dw

t = []
dm

inst c dm mclass dr

mdef inst Γ, c τ ′ *→ ([dm], access)

mdef Γ, t′ w′ c τ ′ *→ (mclass, acccess)

hand side. A type alias does not produce C++ output, but updates the environment with the

equality t = τ . Figure 13 shows the pseudo-code for compiling value and type aliases.

Class, struct, and union definitions are similar so we only discuss compiling classes.

Figure 14 shows the pseudo-code. The type parameters and clause are added to the

environment to form Γ′. Class members are compiled in Γ′. The output C++ class contains

extra data members for the dictionaries corresponding to the clause and each con-

structor includes extra parameters for these dictionaries. The constructors themselves may

be parameterized and constrained with clauses, so two sets of dictionaries are passed

to a constructor. Overload resolution between constructors is handled in the compilation

from G to C++ and the normal C++ constructor overload resolution must be disabled. To

5. THE DEFINITION AND COMPILATION OF G 151

FIGURE 13. Compile value and type aliases.

x e Γ access
e′ τ e Γ

!τ"Γ x e′ Γ, x : (x, τ, access)

t τ Γ access
τ ′ Γ τ Γ

Γ Γ, (t : access)
t τ ′ Γ.δ Γ.dag

Γ

this end each constructor has an extra parameter consid of a unique type that can be use

to force C++ overload resolution to the correct constructor. Otherwise, the compilation of

constructors is similar to the compilation of normal function definitions.

Figure 15 shows the compilation of definitions and related declarations such as

the alias and and declarations. A module in G is translated to a C++

namespace.

5. THE DEFINITION AND COMPILATION OF G 152

FIGURE 14. Compile class definition.

k t w c k s τ x Γ access
Γ′ Γ, t

w′ dw Γ′ w Γ
c′ λc c cw dw Γ′ c

s′ s Γ′

τ ′ λτ τ Γ′ τ

cw λ c τ c w′

k

c′

k s′

!τ ′"Γ′ x

cw dw

Γ, k *→ (w′, c′, access)

t w k σm y x(e) s ck dk Γ
Γ′ Γ, t

w′ dw Γ′ w Γ′

σ′ Γ′ σ Γ′

Γ′ = Γ′, y : σ′

e′ e Γ′

s′ s Γ′

cw λ c τ c w′

consid
k ck dk cw dw !σ′m"Γ′ y consid dk(dk) dw(dw) x(e′) s′

5. THE DEFINITION AND COMPILATION OF G 153

FIGURE 15. Compile module definition and related declarations.

m d Γ access
d′ Γ′ d Γ

Γ′′ Γ′

m d′ Γ, module m *→ (Γ′′, access)

m scope Γ access
Γ′ scope Γ

Γ, module m *→ (Γ′, access)

scope c τ Γ access
Γ′ scope Γ
τ ′ Γ′ τ Γ′

d c τ ′ Γ′

Γ, c τ ′ *→ ([d], access)

d Γ access
d′ Γ′ d Γ

d′ Γ,Γ′

d Γ access
d′ Γ′ d Γ

d′ Γ,Γ′

5. THE DEFINITION AND COMPILATION OF G 154

5.2.5. Statements. This section defines the compilation of G statements to C++.

The statement in G binds a name to an object. Thus it is similar to reference in

C++. There is one small complication: in C++ a temporary cannot be bound to a non-const

reference whereas the right hand side e of the may be a temporary. Thus, the output

C++ must first bind e′ to a const reference, thereby extending its lifetime to the extent of

the surrounding scope, and then assign the const reference to x, which is declared as either

a const or non-const reference depending on the mutability of e.

x e τm Γ
e′ τm e Γ

τ ′ !τm"Γ
!τ"Γ x e′

τ ′ x τ ′ x [] Γ, local x : τm

The alias statement in G binds a name to a type. This introduces the type name

t and merges it with the type τ . The alias statement translates to an empty C++

statement.

t τ τm Γ
τ ′ Γ τ Γ

Γ Γ, t
t τ ′ Γ.δ Γ.dag

Γ

The compilation of the statement depends on whether it is inside a function

definition or a function expression. In the case of a function definition, there is a declared

return type and the type of e must be convertible to the declared return type. In the case

of a function expression there is no declared return type, and the function returns

the type of e so that the return type of the function expression may be deduced.

5. THE DEFINITION AND COMPILATION OF G 155

FIGURE 16. Compilation of , , compound, and empty statements.

e s1 s2 τm Γ
e′ σm′ e Γ

σ &≤
s′1 rets1 s1 τm Γ
s′2 rets2 s2 τm Γ

e′ s′1 s′2 rets1 rets2 Γ

e s τm Γ
e′ σm′ e Γ

σ &≤
s′ rets s τm Γ

e′ s′ rets Γ

s τm Γ
s′ rets s τm Γ

concat(s′) concat(rets) Γ

e τm Γ
e′ e Γ

e′ [] Γ

τm Γ [] Γ

e τm Γ
e′ σm′ e Γ

σm′ &≤ τm
e′ [] Γ

e Γ
e′ σm′ e Γ

e′ [σm′] Γ

The compilation of , , compound, expression, and empty statements is shows in

Figure 16. The compilation for each of these statements is straightforward.

5. THE DEFINITION AND COMPILATION OF G 156

FIGURE 17. Compile switch statement.

e c τm Γ
e′ τ e Γ

τ

k τ ′ ⇒
k /∈ Γ.unions(k)

x

c′ rets λc.
c

y s ⇒
s′ rets s τm Γ
t w mems Γ.unions(k)

σ mems(y)
z x y σ [τ ′/t]σ

k y σ y z s′ rets
s ⇒

s′ rets s τm Γ
s′ rets

c

τ x e′ x c′ concat(rets) Γ
⇒

The pseudo-code in Figure 17 describes the compilation of statements. The

statement in G is specialized for use with s. The object has a tag that

indicates which data member is present, and the statement dispatches based on this

tag. The class contains an with a constant for each data member.

5. THE DEFINITION AND COMPILATION OF G 157

FIGURE 18. Compilation of function application expressions.

rator rand Γ
rator ′ τm rator Γ
rand ′ σm λe. e Γ rand
rator ′′ τ ′ τ σm Γ

α, β, γ,m′, r′

Q = {τ ′ ≤ α, σm ≤ βm′}
S α β γ Γ Q

rand ′′ rand ′ σm paramtypes(τ ′) Γ
where(τ ′) = []

rator ′′ rand ′′ S(γ)m′

d S(where(τ ′)) Γ
rator ′′ d rand ′′ S(γ)m′

5.2.6. Expressions. This section describes the compilation of G expressions to C++.

Figure 18 shows the pseudo-code for compiling a function application. The rator may

be a function or a function overload set. If it is a function then we treat it as an overload

set with only a single overload. The function is called to determine the

best overload. We then the arguments’ types with the parameters’ types to obtain a

substitution S. A mismatch between argument and parameter types would cause to

raise an error. If the function has a clause, is called to obtain

dictionaries. The C++ output is an application with the dictionaries and then a second

application with the arguments. If the function does not have a clause, the C++

translation is just an application with the arguments.

Figure 19 shows the pseudo-code compilation of object construction. This is similar to

compiling a function application. The constructors of class k form an overload set from

which the best match is chosen according to . Once the best construc-

tor is chosen, is applied to deduce the type arguments for the constructor and then

5. THE DEFINITION AND COMPILATION OF G 158

FIGURE 19. Compilation of object construction.

alloc k τ rand Γ
t w mems Γ(k)
τ ′ Γ′ τ

dk [τ ′/t]w Γ′

rand ′ σm rand Γ′

consid σ′ mems σ Γ′

α, β, γ,m′, r′

Q = {σ′ ≤ α, σm ≤ βm′}
S α β γ Γ′ Q

rand ′′ rand ′ σm paramtypes(σ′) Γ′

where(σ′) = []
k rand ′′ consid k

dc S(where(σ′)) Γ′

!alloc" k dk dc rand ′′ consid k τ ′

! "Γ
! "Γ
! "Γ
! e "Γ e′ e Γ e′

is applied to obtain dictionaries for the clause of the construc-

tor. The compiler must also obtain dictionaries for the clause of class k and pass these

to the constructor.

The pseudo-code for compiling an explicit instantiation is shown in Figure 20. The type

of expression e must be a generic function type. The compiler invokes

to check that the requirements of the clause are satisfied and to obtain dictionaries.

The output C++ is the compilation of e, that is e′, applied to the dictionaries.

The compilation of variables is somewhat complicated by the distinction between global

and local variables. Further, we treat function overload sets specially by combining the

local and global overloads. Figure 21 shows the pseudo code for compiling a variable. The

returned expression for a function overload set is unused, the actual translation will be

determined by overload resolution, so we return as the expression.

5. THE DEFINITION AND COMPILATION OF G 159

FIGURE 20. Compilation of explicit instantiation.

e σ Γ
σ′ Γ′ σ Γ
e′ τ e Γ

τ
t w ρm τ ′m ⇒

d [σ′/t]w Γ
e′ d [σ′/t]ρm [σ′/t]τ ′m

⇒

FIGURE 21. Compile variable.

x Γ
x ∈ dom(Γ.locals)

Γ.locals(x)
(x′, τ) ⇒ x′ τ
ovlds ⇒

Γ.globals(x)
(x′, τ) ⇒ ovlds
ovlds ′ ⇒ ovlds ovlds ′

x ∈ dom(Γ.globals)
Γ.locals(x)

(x′, τ) ⇒ x′ τ
ovlds ⇒ ovlds

Figure 22 shows the pseudo-code for compiling a scope access expression. There are

two kinds of scopes in G, models and modules. In G the dot operator is used to access

members of model and scopes, whereas in the C++ translation we must use to access

members of modules because they are translated to a C++ namespaces and we must use

to access members of a model because they are translated to objects. For simplicity, Fig-

ure 22 only shows the code for accessing into a single un-nested scope. This can be extended

to handle nested scopes by iterating the process. However, the access of a model member

5. THE DEFINITION AND COMPILATION OF G 160

FIGURE 22. Compilation of scope member access expressions.

m x Γ
Γ′ Γ.modules(m)

(x : (x′, τ)) ∈ Γ′ m x′ τ

c τ x Γ
τ ′ Γ′ τ Γ
d Γ′ c τ ′ Γ′

x c τ ′ d []

c τ ′ x path Γ
t r Γ.concepts(c)

x ∈ dom(r)
d path

d x r(x) [τ ′/t]r(x)

c′ σ r

m c′ σ

c′ [τ ′/t]σ x path [m] Γ

is still complicated by the fact that the member may be in a refinement, so the recursive

function is needed to search through the refinement hierarchy.

Figure 23 shows the pseudo-code to compile the access of an object member. The

coercion is necessary, for example, to unbox the member if it is polymorphic.

5.3. Compiler implementation details

This section discusses some details of the implementation of the prototype compiler

for G. The implementation is written in Objective Caml [115]. We chose Objective Caml

because it has several features that speed compiler implementation:

• Algebraic data types and pattern matching facilitate the manipulation of abstract

syntax trees.

5. THE DEFINITION AND COMPILATION OF G 161

FIGURE 23. Pseudo-code for compiling access to an object member.

e x Γ
e′ τ e Γ

τ
k σ ⇒

t w mems Γ.classes(k)
τ ′ [σ/t]mems(x)

e′ x mems(x) τ ′ τ ′

⇒

• The Ocamllex and Ocamlyacc tools for lexical analysis and parsing are particularly

easy to use.

• Automatic memory reclamation removes the work of manual memory manage-

ment.

One disadvantage of Objective Caml with respect to Scheme for compiler construction

is that Objective Caml does not have quasi-quote. In Scheme, quasi-quote provides a con-

venient way to form abstract syntax trees.

Ocamlyacc is an LALR(1) parser. The grammar of G is similar to that of C++ but differs in

several respects to make the grammar LALR(1). For example, explicit instantiation uses

and instead of and to avoid ambiguities with the less-than and greater-than operators.

In addition, great care was taken to separate type expressions and normal expression in the

grammar, thereby avoiding ambiguity between the and used for parameterized classes

and the less-than and greater-than operators.

The translation of G to C++ is accomplished in two stages. The first stage performs

type checking, translating polymorphic functions to monomorphic functions and models to

dictionaries. These tasks are combined in a single stage because they are interdependent.

The second stage lowers function expressions to function objects.

5. THE DEFINITION AND COMPILATION OF G 162

5.4. Summary

This chapter defined G by a translation to C++. The main technique is translating

clauses to extra dictionary parameters that contains operations implementing the require-

ments of the concepts. The basic idea is similar to the standard compilation strategy for type

classes in Haskell, though here the target language is C++. As such, concepts are mapped to

abstract base classes and models are mapped to objects of derived classes.

The proof of the pudding is in the eating.
Miguel de Cervantes Saavedra, Don Quixote [16]

6
Case studies: generic libraries in G

This chapter evaluates the design of G with respect to two case studies: prototype imple-

mentations of the STL and the Boost Graph Library [169]. The STL case study was reported

in [173] and the BGL study is new. The STL and BGL are large generic libraries that exercise

a wide range of language features. Both libraries exhibit considerable internal reuse and

the BGL makes heavy use of the STL, so these prototypes stress the language features that

support the development and use of generic libraries. The approach taken with the STL

prototype was to copy the algorithm implementations from the GNU C++ Standard Library,

fixing the syntax here and there, and then to write the clause for each algorithm

based on the specifications in the C++ Standard and in Generic Programming and the STL by

Austern [11]. The type system of G proved its worth during this process: several bugs were

163

6. CASE STUDIES: GENERIC LIBRARIES IN G 164

found in the C++ Standard’s specification and in the GNU implementation of the STL. Model

definitions were a useful form of first test for data structure implementations. At a model

definition, the compiler checks that the implementation matches the expected interfaces.

Further, the experience of using the generic libraries was much improved compared to C++.

Error messages due to misuse of the library were shorter and more accurate and compile

times were shorter due to separate compilation. A couple of challenges were encountered

while implementing the STL in G. The first challenge concerned algorithm dispatching, and

we developed an idiom to accomplish this in G, but there is still room for improvement.

The second challenge concerned code reuse within the STL data structures. It seems that

a separate generative mechanism is needed to complement the generic features of G. As a

temporary solution, we used the m4 macro system to factor the common code.

6.1. The Standard Template Library

In this section we analyze the interdependence of the language features of G and generic

library design in light of implementing the STL. A primary goal of generic programming is

to express algorithms with minimal assumptions about data abstractions, so we first look

at how the polymorphic functions of G can be used to accomplish this. Another goal of

generic programming is efficiency, so we investigate the use of function overloading in G

to accomplish automatic algorithm selection. We conclude this section with a brief look at

implementing generic containers and adaptors in G.

6.1.1. Algorithms. Figure 1 depicts a few simple STL algorithms implemented using

polymorphic functions in G. The STL provides two versions of most algorithms, such as the

overloads for in Figure 1. The first version is higher-order, taking a predicate function

as its third parameter while the second version relies on . The higher-order

version is more general but for many uses the second version is more convenient. Functions

are first-class in G, so the higher-order version is straightforward to express: a function type

is used for the third parameter. As is typical in the STL, there is a high-degree of internal

reuse: uses and .

6. CASE STUDIES: GENERIC LIBRARIES IN G 165

FIGURE 1. Some STL Algorithms in G.

At the time of finishing this thesis, we have not yet implemented all of the algorithms

in the STL, but we have implemented a significant portion, including several of the more

involved algorithms such as . The following is the list of algorithms imple-

mented at this time: , , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

, , , , , , ,

, , and .

6.1.2. Iterators. Figure 2 shows the STL iterator hierarchy as represented in G. Re-

quired operations are expressed in terms of function signatures, and associated types are

expressed with a nested requirement. The refinement hierarchy is established with the

clauses and nested model requirements with . In the previous example, the

calls to and inside type check because the

6. CASE STUDIES: GENERIC LIBRARIES IN G 166

FIGURE 2. The STL Iterator Concepts in G (has been abbreviated
to).

concept refines and . There are no examples of nested

same-type requirements in the iterator concepts, but the STL Container concept includes

such constraints. Semantic invariants and complexity guarantees are not expressible in G:

they are beyond the scope of its type system.

6.1.3. Automatic algorithm selection. To realize the generic programming efficiency

goals, G provides mechanisms for automatic algorithm selection. The following code shows

two overloads for . (We omit the third overload to save space.) The first version is

for input iterators and the second for random access iterators. The second version uses an

integer counter for the loop thereby allowing some compilers to better optimize the loop.

The two signatures are the same except for the clause.

6. CASE STUDIES: GENERIC LIBRARIES IN G 167

The use of dispatching algorithms such as inside other generic algorithms is chal-

lenging because overload resolution is based on the proxy models in the clause and

not on the models defined for the instantiating type arguments. (This rule is needed to en-

able separate type checking and compilation.) Thus, a call to an overloaded function such

as may resolve to a non-optimal overload. Consider the following implementation of

. The and types are required to model and the body of

contains two calls to .

The function always calls the slow version of , even though the actual iterators

may be random access. In C++, with tag dispatching, the fast version of is called

because the overload resolution occurs after template instantiation. However, C++ does not

provide separate type checking for templates.

To enable dispatching for the information available at the instantiation of

must be carried into the body of (suppose it is instantiated with a random access

6. CASE STUDIES: GENERIC LIBRARIES IN G 168

iterator). This can be accomplished using a combination of concept and model declarations.

First, define a concept with a single operation that corresponds to the algorithm.

Next, add a requirement for this concept to the type requirements of and replace the

calls to with the concept operation .

The last part of the this idiom is to create parameterized model declarations for .

The clauses of the model definitions match the clauses of the respective over-

loads for . In the body of each there is a call to which resolves to the

appropriate overload.

A call to with a random access iterator uses the second model to satisfy the re-

quirement for . Thus, when is invoked inside , the fast version

of is called. A nice property of this idiom is that calls to generic algorithms need not

change. A disadvantage of this idiom is that the interface of the generic algorithms becomes

more complex.

6. CASE STUDIES: GENERIC LIBRARIES IN G 169

FIGURE 3. Excerpt from a doubly-linked list container in G.

6.1.4. Containers. The containers of the STL are implemented in G using polymorphic

types. Figure 3 shows an excerpt of the doubly-linked container in G. As usual, a

dummy sentinel node is used in the implementation. With each STL container comes iter-

ator types that translate between the uniform iterator interface and data structure specific

operations. Figure 3 shows the which translates to

and to .

Not shown in Figure 3 is the implementation of the mutable iterator for (the

provides read-only access). The definitions of the two iterator types are

nearly identical, the only difference is that returns by read-only reference for the

constant iterator whereas it returns by read-write reference for the mutable iterator. The

6. CASE STUDIES: GENERIC LIBRARIES IN G 170

code for these two iterators should be reused but G does not yet have a language mechanism

for this kind of reuse.

In C++ this kind of reuse can be expressed using the Curiously Recurring Template Pat-

tern (CRTP) and by parameterizing the base iterator class on the return type of .

This approach can not be used in G because the parameter passing mode may not be pa-

rameterized. Further, the semantics of polymorphism in G does not match the intended use

here, we want to generate code for the two iterator types at library construction time. A

separate generative mechanism is needed to compliment the generic features of G. Similar

limitations in the ability to express reuse in terms of generics are discussed in [17], where

they suggest using the XVCL meta-programming system [202] to capture reuse. As a tem-

porary solution we used the m4 macro system to factor the common code from the iterators.

The following is an excerpt from the implementation of the iterator operators.

At the time of finishing this thesis, the STL implementation in G includes the doubly-

linked class, a singly-linked class, and the class. The , , ,

and containers have not yet been implemented, but look to be straightforward to

implement in G.

6.1.5. Adaptors. The class is a representative example of an STL

adaptor.

The requirement on the underlying iterator is needed for the copy constructor

and for the default constructor. This adaptor flips the direction of

6. CASE STUDIES: GENERIC LIBRARIES IN G 171

traversal of the underlying iterator, which is accomplished with the following and

. There is a call to on the underlying type so

is required.

Polymorphic model definitions are used to establish that is a model of

the iterator concepts. The following says that is a model of

whenever the underlying iterator is a model of .

6.1.6. Function expressions. Most STL implementations implement two separate ver-

sions of , one written in terms of and the in terms of a func-

tion object. The version using could be written in terms of the one that takes a

function object, but it is not written that way. The original reason for this was to improve

efficiency, but with with a modern optimizing compiler there should be no difference in ef-

ficiency: all that is needed to erase the difference is some simple inlining. The G implemen-

tation we write the version of in terms of the higher-order

version. The following code shows how this is done and is a bit more complicated than we

would have liked.

6. CASE STUDIES: GENERIC LIBRARIES IN G 172

It would have been simpler to write the function expression as

However, this is an error in G because the from the

requirement is a local name, not a global one, and is therefore not in scope for the body

of the function expression. The workaround is to store the comparison function as a data

member of the function object. The expression

accesses the member from the model of for type .

Examples such as these are a convincing argument that lexical scoping should be al-

lowed in function expressions, and the next generation of G will support this feature.

6.1.7. Improved error messages. In Section 2.2.1.4 we showed an example of a hard

to understand error message that resulted from a misuse of the STL algorithm.

The following code is the translation of that example to G.

4
5
6
7
8

The G compiler prints the following error message which is much shorter and easier to

understand.

6. CASE STUDIES: GENERIC LIBRARIES IN G 173

6.1.8. Improved error detection. Another problem that plagues generic C++ libraries

is that type errors often go unnoticed during library development. The errors go unnoticed

because the type checking of template definitions is delayed until instantiation. A related

problem is that the documented type requirements for a template may not be consistent

with the implementation, which can result in unexpected compiler errors for the user.

These problems are directly addressed in G: the implementation of a generic function

is type-checked with respect to its clause. Verifying that there are no type errors in a

generic function and that the type requirements are consistent is trivial in G: the compiler

does not accept generic functions invoked with inconsistent types.

Interestingly, while implementing the STL in G, the type checker caught several errors

in the STL as defined in C++. One such error was in . The implementation

below was translated directly from the GNU C++ Standard Library, with the clause

matching the requirements for in the C++ Standard [86].

196
197
198
199
200
201
202
203
204
205

The G compiler gives the following error message:

This is a subtle bug, which explains why it has gone unnoticed for so long. The type

requirements say that both the value type of the iterator and must be writable to the

output iterator, but the requirements do not say that the value type and are the same

type, or coercible to one another.

6. CASE STUDIES: GENERIC LIBRARIES IN G 174

6.2. The Boost Graph Library

A group of us at the Open Systems Lab performed a comparative study of language

support for generic programming [69]. We evaluated a half dozen modern programming

languages by implementing a subset of the Boost Graph Library [169] in each language. We

implemented a family of algorithms associated with breadth-first search, including Dijkstra’s

single-source shortest paths [52] and Prim’s minimum spanning tree algorithms [153]. This

section extends the previous study to include G. We give a brief overview of the BGL,

describe the implementation of the BGL in G, and compare the results to those in our

earlier study [69].

6.2.1. An overview of the BGL graph search algorithms. Figure 4 depicts some graph

search algorithms from the BGL, their relationships, and how they are parameterized. Each

large box represents an algorithm and the attached small boxes represent type parame-

ters. An arrow labeled from one algorithm to another specifies that one algorithm

is implemented using the other. An arrow labeled from a type parameter to

an unboxed name specifies that the type parameter must model that concept. For exam-

ple, the breadth-first search algorithm has three type parameters: , , and . Each of

these has requirements: must model the Vertex List Graph and Incidence Graph concepts,

must model the Read/Write Map concept, and must model the BFS Visitor concept. The

breadth-first search algorithm is implemented using the graph search algorithm.

The core algorithm of this library is graph search, which traverses a graph and performs

user-defined operations at certain points in the search. The order in which vertices are

visited is controlled by a type argument, , that models the Bag concept. This concept

abstracts a data structure with insert and remove operations but no requirements on the

order in which items are removed. When is bound to a FIFO queue, the traversal order is

breadth-first. When it is bound to a priority queue based on distance to a source vertex, the

order is closest-first, as in Dijkstra’s single-source shortest paths algorithm. Graph search

is also parameterized on actions to take at event points during the search, such as when a

vertex is first discovered. This parameter, , must model the Visitor concept (which is not

6. CASE STUDIES: GENERIC LIBRARIES IN G 175

Breadth-First Search
G

<uses>

Dijkstra Shortest Paths

G D W < +

<uses>

Johnson All-Pairs

G W < +
<uses>

<uses>

Prim Min Span Tree

G D W <
<uses>

Graph Search

G VisB

Incidence Graph

<models>

Vertex List Graph

<models>

Bellman-Ford Shortest Paths

G D W < +

Edge List Graph

<models>

Read-Map

Read/Write-Map

<models>
<models>

Read/Write-Map

<models>

Read-Map

<models>

C

Read/Write-Map

<models>Vertex List Graph

<models>
Vis

BFS Visitor

<models>

Visitor

<models>

Bag

<models>

C

Read/Write-Map

<models>

FIGURE 4. Graph algorithm parameterization and reuse within the Boost
Graph Library. Arrows for redundant models relationships are not shown.
For example, the type parameter of breadth-first search must also model
Incidence Graph because breadth-first search uses graph search.

to be confused with the Visitor design pattern). The graph search algorithm also takes a

type parameter for mapping each vertex to a color and must model the Read/Write Map

concept. The colors are used as markers to keep track of the progression of the algorithm

through the graph.

The Read Map and Read/Write Map concepts represent variants of an important abstrac-

tion in the graph library: the property map. In practice, graphs represent domain-specific

entities. For example, a graph might depict the layout of a communication network, its

vertices representing endpoints and its edges representing direct links. In addition to the

number of vertices and the edges between them, a graph may associate values to its ele-

ments. Each vertex of a communication network graph might have a name and each edge a

maximum transmission rate. Some algorithms require access to domain information associ-

ated with the graph representation. For example, Prim’s minimum spanning tree algorithm

requires “weight” information associated with each edge in a graph. Property maps pro-

vide a convenient implementation-agnostic means of expressing, to algorithms, relations

between graph elements and domain-specific data. Some graph data structures directly

contain associated values with each node; others use external associative data structures to

implement these relationships. Interfaces based on property maps work equally well with

both representations.

6. CASE STUDIES: GENERIC LIBRARIES IN G 176

The graph algorithms are all parameterized on the graph type. Breadth-first search

takes a type parameter , which must model two concepts, Incidence Graph and Vertex List

Graph. The Incidence Graph concept defines an interface for accessing out-edges of a vertex.

Vertex List Graph specifies an interface for accessing the vertices of a graph in an unspecified

order. The Bellman-Ford shortest paths algorithm [18] requires a model of the Edge List

Graph concept, which provides access to all the edges of a graph.

That graph capabilities are partitioned among three concepts illustrates generic pro-

gramming’s emphasis on minimal algorithm requirements. The Bellman-Ford shortest paths

algorithm requires of a graph only the operations described by the Edge List Graph concept.

Breadth-first search, in contrast, requires the functionality of two separate concepts. By

partitioning the functionality of graphs, each algorithm can be used with any data type that

meets its minimum requirements. If the three fine-grained graph concepts were replaced

with one monolithic concept, each algorithm would require more from its graph type pa-

rameter than necessary and would thus unnecessarily restrict the set of types with which it

could be used.

The graph library design is suitable for evaluating generic programming capabilities of

languages because its implementation involves a rich variety of generic programming tech-

niques. Most of the algorithms are implemented using other library algorithms: breadth-

first search and Dijkstra’s shortest paths use graph search, Prim’s minimum spanning tree

algorithm uses Dijkstra’s algorithm, and Johnson’s all-pairs shortest paths algorithm [94]

uses both Dijkstra’s and Bellman-Ford shortest paths. Furthermore, type parameters for

some algorithms, such as the parameter to breadth-first search, must model multiple con-

cepts. In addition, the algorithms require certain relationships between type parameters.

For example, consider the graph search algorithm. The type argument, as a model of

Read/Write Map, is required to have an associated key type. The type argument is required

to have an associated vertex type. Graph search requires that these two types be the same.

As in our earlier study, we focus the evaluation on the interface of the breadth-first

search algorithm and the infrastructure surrounding it, including concept definitions and

an example use of the algorithm.

6. CASE STUDIES: GENERIC LIBRARIES IN G 177

6.2.2. Implementation in G. So far we have implemented breadth-first search and

Dijkstra’s single-source shortest paths in G. This required defining several of the graph and

property map concepts and an implementation of the class, a FIFO queue,

and a priority queue.

The interface for the breadth-first search algorithm is straightforward to express in G. It

has three type parameters: the graph type , the color map type , and the visitor type .

The requirements on the type parameters are expressed with a clause, using con-

cepts that we describe below. In the interface of , associated types

and same-type constraints play an important role in accurately tracking the relationships

between the graph type, its vertex descriptor type, and the color property map.

Figure 5 shows the definition of several graph concepts in G. The concept requires

the associated types and and some basic functional-

ity for those types such as copy construction and equality comparison. This concept also

includes the and functions. The concept serves to factor common

requirements out of the and concepts.

The concept introduces the capability to access out-edges of a vertex.

The access is provided by the associated type. The requirements for the

out-edge iterator are slightly more than the standard concept and slightly

less than the concept. The out-edge iterator must allow for multiple

passes but dereferencing an out-edge iterator need not return a reference (for example, it

6. CASE STUDIES: GENERIC LIBRARIES IN G 178

may return by-value instead). Thus we define the following new concept to express these

requirements.

In Figure 5, the concept uses same-type constraints to require that the

type of the iterator to be the same type as the . The

concepts adds the capability of traversing all the vertices in the graph using the associated

.

Figure 6 shows the implementation of a graph in terms of a vector of singly-linked lists.

Vertex descriptors are integers and edge descriptors are pairs of integers. The out-edge

iterator is implemented with the class whose implementation is shown

in Figure 7. The basic idea behind this iterator is to provide a different view of the list of

target vertices, making it appear as a list of source-target pairs.

The property map concepts are defined in Figure 8. The is a

refinement of the concept, which requires the function, and the

concept, which requires the function. Both of these concepts

refine the concept which includes the associated and types.

Figure 9 shows the definition of the concept. This concept is naturally ex-

pressed as a multi-parameter concept because the visitor and graph types are independent:

a particular visitor may be used with many different concrete graph types and vice versa.

The use of for in is somewhat odd, would be more

natural, but the refinement provides direct (and convenient) access to the vertex and edge

descriptor types. An alternative would be use to and some type aliases, but type

aliases have not yet been added to concept definitions.

Figure 10 presents an example use of the function to output ver-

tices in breadth-first order. To do so, the visitor overrides the function ;

empty implementations of the other visitor functions are provided by .

6. CASE STUDIES: GENERIC LIBRARIES IN G 179

FIGURE 5. Graph concepts in G.

A graph is constructed using the class, and then is

called.

6. CASE STUDIES: GENERIC LIBRARIES IN G 180

FIGURE 6. Implementation of a graph with a vector of lists.

6.3. Summary

This chapter evaluated the design of G with respect to implementing representative por-

tions of the STL and the BGL. The evaluation showed that implementing generic algorithms

in G is straightforward. The and clause features of G enable the direct ex-

pression of the ideas of generic programming. The use of generic libraries is made easier

by the improvement in error messages and the development of generic algorithms is aided

by separate type checking. With respect to building generic containers, G provides some

support with its parameterized classes, but the kind of code reuse typical of inheritance or

6. CASE STUDIES: GENERIC LIBRARIES IN G 181

FIGURE 7. Out-edge iterator for the vector of lists.

mixins is not easily expressible in G, so such language features would make a good addition

to G.

6. CASE STUDIES: GENERIC LIBRARIES IN G 182

FIGURE 8. Property map concepts in G.

FIGURE 9. Breadth-first search visitor concept.

6. CASE STUDIES: GENERIC LIBRARIES IN G 183

FIGURE 10. Example use of the BFS generic function.

This type system has been designed to facilitate program verification
on a modular basis. The general principle is that a module writer
should not have to look outside his module to verify its correctness.

James H. Morris, Jr. [131]

7
Type Safety of FG

Type safety does not hold for G because G inherits many type safety holes from C++. For

example, a dangling pointer is created when is invoked on a pointer and the type

system does not prevent such a pointer from being dereferenced. Another example is that

a stack allocated object may be returned by-reference from a function, thereby creating

a dangling reference. There has been considerable research related to type-safe manual

memory management. This research includes memory management via regions [81, 188,

197] and using type systems to track aliasing [26, 27, 44, 60]. Memory management is

not the focus of this dissertation, so we leave for future work the application of the above

research to define a type safe version of G.

184

7. TYPE SAFETY OF FG 185

FIGURE 1. Types and Terms of System F

s, t ∈ Type Variables
x, y, d ∈ Term Variables
n ∈ N
τ ::= t | τ → τ | τ × · · · × τ | ∀t. τ
f ::= x | f(f) | λy : τ . f | Λt. f | f [τ]

| x = f f | (f, . . . , f) | nth f n

However, we still want to know whether the design for generics presented in this thesis

creates holes in the type system, or whether it is sound with respect to type safety. To this

end we embed the design for generics in System F [71, 157] to create a calculus named FG .

System F is a small language that captures the essence of parametric polymorphism and is

a standard tool in programming language research. The semantics of FG is defined with

respect to System F. That is, we define a translation from FG to System F. This translation

parallels the translation of G to C++. The type safety of FG is proved by showing that well-

typed terms of FG translate to well-typed terms of System F. Therefore, because System F is

type safe, so is FG . The property of type safety is important because when a language is type

safe and a program passes type checking, any execution of that program will be guaranteed

to be free of type errors. Thus type checking is a useful form of lightweight validation.

The presentation of FG here includes the material from [172] and adds the proof that the

translation of FG with associated types to System F preserves typing.

7.1. FG = System F + concepts, models, and constraints

System F, the polymorphic lambda calculus, is the prototypical tool for studying type

parameterization. The syntax of System F is shown in Figure 1 and the type rules for System

F are in Figure 2. The variable f ranges over System F expressions; we reserve e for System

FG expressions. We use an over-bar, such as τ , to denote repetition: τ1, . . . , τn. We use

mult-parameter functions and type abstractions in System F to ease the translation from FG

to F. We also include a expression.

7. TYPE SAFETY OF FG 186

FIGURE 2. Type rules and well-formed types for System F

Γ (f : τ

(TABS)
distinct t t ∩ FTV(Γ) = ∅ Γ, t (f : τ

Γ (Λt. f : ∀t. τ
(TAPP)

Γ (σ Γ (f : ∀t. τ

Γ (f [σ] : [t *→σ]τ

(VAR) x : τ ∈ Γ
Γ (x : τ

(ABS)
Γ, x : σ (f : τ Γ (σ

Γ (λx : σ. f : σ → τ

(APP)
Γ (f1 : σ → τ Γ (f2 : σ

Γ (f1(f2) : τ
(LET)

Σ (f1 : σ Σ, x : σ (f2 : τ

Σ (x = f1 f2 : τ

Γ (τ

t ∈ Γ
Γ (t

Γ (τ Γ (τ
Γ (τ → τ

Γ (τ1 · · · Γ (τn

Γ (τ1 × · · · × τn

distinct t Γ, t (τ

Γ (∀t. τ

FIGURE 3. Higher Order Sum in System F

Λ
λ → →
λ →

It is possible to write generic algorithms in System F, as is demonstrated in Figure 3,

which shows the implementation of a polymorphic function. The function is written

in higher-order style, passing the type-specific and as parameters. However, this

approach does not scale: algorithms of any interest typically require dozens of type-specific

operations.

7. TYPE SAFETY OF FG 187

FIGURE 4. Types and Terms of FG

c ∈ Concept Names
s, t ∈ Type Variables
x, y, z ∈ Term Variables
ρ, σ, τ ::= t | (τ) → τ | ∀t c σ . τ
e ::= x | e(e) | λy : τ. e

| Λt c σ . e | e[τ]
| c t { c σ ; x : τ ; } e
| c τ {x = e; } e
| c τ .x

7.1.1. Adding concepts, models, and constraints. FG adds concepts, models, and

clauses to System F. These three features provide the core support for generic pro-

gramming in G. Figure 4 shows the abstract syntax of the basic formulation of FG . Associ-

ated types and same-type constraints are added to FG in Section 7.4. While the core features

of G are present in FG , are are several aspects of the generics of G that are left out for the

sake of simplicity.

Function overloading: is not present in FG . Formalizing function overloading is

straightforward but complicated and the kind of static overload resolution present

in G poses no problems for type safety. For example, Java has static overload

resolution and is type safe.

Parameterized models: are not present in FG . The presence of parameterized mod-

els in G makes its type system undecidable because the model lookup algorithm be-

comes much more powerful and is not guaranteed to terminate (see Section 4.6.2

for details). However, the type soundness property is unaffected: if a program

type checks (and all the right models are found) then execution is still guaranteed

to be free of type errors.

Implicit instantiation: is not present in FG . G uses the same approach to implicit

instantiation as MLF [24], and that approach was already proved to be type sound

and decidable.

7. TYPE SAFETY OF FG 188

To illustrate the features of FG , we evolve the function defined above. To be generic,

the function should work for any element type that supports addition, so we capture

this requirement in a concept. As in Section 2.1 we define Semigroup and Monoid concepts

as follows.

→

As with System F, FG is an expression-oriented programming language. These

definitions are like : they add to the lexical environment for the enclosed expression

(after the).

The following code declares to be a model of Semigroup and Monoid, using integer

addition for the binary operation and for the identity element. The type system of FG

checks the body of the model against the concept definition to ensure all required operations

are provided and that there are model declarations in scope for each refinement.

A model is found via the concept name and type, and members of the model are ex-

tracted with the dot operator. For example, the following returns the function.

7. TYPE SAFETY OF FG 189

With the concept defined, we are ready to write a generic function. The

function is generalized to work with any type that has an associative binary operation with

an identity element (no longer necessarily addition), so a more appropriate name for this

function is . As in System F, type parameterization in FG is provided by the Λ

expression. FG adds a clause to the Λ expression for listing requirements.

Λ

The concepts, models, and clauses collaborate to provide a mechanism for im-

plicitly passing operations into a generic function. As in System F, a generic function is

instantiated by providing type arguments for each type parameter.

In System F, instantiation substitutes for in the body of the Λ. In FG , instantiation also

involves the following steps:

(1) is substituted for in the clause.

(2) For each requirement in the clause, the lexical scope of the instantiation is

searched for a matching model declaration.

(3) The models are implicitly passed into the generic function.

Consider the body of the function listed below. The model requirements

in the clause serve as proxies for actual model declarations. Thus, the body of

is type-checked as if there were a model declaration in the

enclosing scope. The dot operator is used inside the body to access the binary operator and

identity element of the .

Λ

λ →

λ

7. TYPE SAFETY OF FG 190

It would be more convenient to write instead of the explicit member ac-

cess: . However, such a statement could be ambiguous without the

incorporation of overloading. For example, suppose that a generic function has two type

parameters, and , and requires each to be a . Then a call to might

refer to either or . While the convenience of

function overloading is important, we did not wish to complicate FG with this additional

feature. Function overloading is present in the full language G. Function overloading in

G is described in Section 4.7 and an algorithm for overload resolution is defined in Sec-

tion 5.2.3.

The complete program for this example is in Figure 5.

7.1.2. Lexically scoped models and model overlapping. The lexical scoping of mod-

els declarations is an important feature of FG , and one that distinguishes it from Haskell.

We illustrate this distinction with an example. There are multiple ways for the set of inte-

gers to model Monoid besides addition with the zero identity element. For example, in FG ,

the Monoid consisting of integers with multiplication for the binary operation and for the

identity element would be declared as follows.

Borrowing from Haskell terminology, this creates overlapping model declarations, since

there are now two model declarations for the and concepts.

Overlapping model declarations are problematic since they introduce ambiguity: when

7. TYPE SAFETY OF FG 191

FIGURE 5. Generic Accumulate

→

Λ
λ →
λ

is instantiated, which model (with its corresponding binary operation and iden-

tity element) should be used?

In FG , overlapping models declarations may co-exist if they appear in separate lexical

scopes. In Figure 6 we create and functions by instantiating in the

presence of different model declarations. This example would not type check in Haskell,

even if the two instance declarations were to be placed in different modules, because in-

stance declarations implicitly leak out of a module when anything in the module is used by

another module.

7. TYPE SAFETY OF FG 192

FIGURE 6. Intentionally overlapping models.

7.2. Translation of FG to System F

We describe a translation from FG to System F similar to the type-directed translation

of Haskell type classes presented in [78]. The translation described here is intentionally

simple; its purpose is to communicate the semantics of FG and to aid in the proof of type

safety. We show that the translation from FG to System F preserves typing, which together

with the fact that System F is type safe [151], ensures the type safety of FG . The main idea

behind the translation is to represent models with dictionaries that map member names to

values, and to pass these dictionaries as extra arguments to generic functions. Here, we

use tuples to represent dictionaries. Thus, the model declarations for and

translate to a pair of expressions that bind freshly generated dictionary

names to the dictionaries (tuples) for the models. We show a diagram of the dictionary

representation of these models in Figure 7 and we show the translation to System F below.

7. TYPE SAFETY OF FG 193

Semigroup<int>

Monoid<int>

0

iadd

FIGURE 7. Dictionaries for and .

The function is translated by removing the clause and wrapping the body

in a λ expression with a parameter for each model requirement in the clause.

Λ

Λ λ →

The accumulate function is now curried, first taking a dictionary argument and then taking

the normal arguments.

In the body of there are model member accesses. These are translated into

tuple member accesses.

7. TYPE SAFETY OF FG 194

The formal translation rules are in Figure 9. We write [t *→σ]τ for the capture avoiding

substitution of σ for t in τ . We write [t *→ σ]τ for simultaneous substitution. The function

FTV returns the set of free type variables and CV returns the concept names occurring

in the clauses within a type. We write distinct t to mean that each item in the list

appears at most once. We subscript a nested tuple type with a non-empty sequence of

natural numbers to mean the following:

(τ1 × . . .× τk)i = τi

(τ1 × . . .× τk)i,n = (τi)n

The environment Γ consists of four parts: 1) the usual type assignment for variables,

2) the set of type variables currently in scope, 3) information about concepts and their

corresponding dictionary types, and 4) information about models, including the identifier

and path to the corresponding dictionary in the translation.

The (MEM) rule uses the auxiliary function)(c, ρ, n, Γ) to obtain a set of concept mem-

bers together with their types and the paths (sequences of natural numbers) to the members

through the dictionary. A path instead of a single index is necessary because dictionaries

may be nested due to concept refinement.

)(c, ρ, n, Γ) =

M := ∅

for i = 0, . . . , |c′| − 1

M := M ∪)(c′i, [t *→ρ]ρ′
i, (n, i),Γ)

for i = 0, . . . , |x| − 1

M := M ∪ {xi : ([t *→ρ]σi, (n, |c′|+ i))}

return M

7. TYPE SAFETY OF FG 195

where c t { c′ ρ′ ; x : σ; } *→ δ ∈ Γ

The (TABS) rule uses the auxiliary function)w to collect proxy model definitions from

the clause of a type abstraction and also computes the dictionary type for each re-

quirement. The function)m, defined below, is applied to each concept requirement.

)w([],Γ) = (Γ, [])

)w((c ρ , c′ ρ′),Γ) =

generate fresh d

(Γ, δ) :=)m(c, ρ, d, [],Γ)

(Γ, δ′) :=)w(c′ [t *→ρ]ρ′ ,Γ)

return (Γ, (δ, δ′))

where c t { c′ ρ′ ; x : σ; } *→ δ ∈ Γ

The function)m(c, ρ, d, n, Γ) collects the model definitions and dictionary type for the

model c ρ . The model information inserted into the environment includes a dictionary

name d and a path n that gives the location inside d for the dictionary of c(τ).

)m(c, ρ, d, n, Γ) =

check Γ (ρ $ −

τ := []

for i = 0, . . . , |c′| − 1

(Γ, δ′) :=)m(c′i, [t *→ρ]ρ′
i, d, (n, i),Γ)

τ := τ , δ′

τ := τ@[t *→ρ]σ

Γ := Γ, (c ρ *→ (d, n))

return (Γ, τ)

where c t { c′ ρ′ ; x : σ; } *→ δ ∈ Γ

Figure 8 defines the translation from FG types to System F types.

7. TYPE SAFETY OF FG 196

FIGURE 8. Well-formedness of FG types and translation to System F types.

Γ (τ $ τ ′

(TYVAR) t ∈ Γ
Γ (t $ t

(TYABS) Γ (σ $ σ′ Γ (τ $ τ ′

Γ (σ → τ $ σ′ → τ ′

(TYTABS)
(Γ′, δ) =)w(c ρ , (Γ, t)) Γ′ (τ $ τ ′

Γ (∀t c ρ . τ $ ∀t. δ → τ ′

We now come to our main result for this section: translation produces well typed terms

of System F, or more precisely, if Γ (e : τ $ f and Σ is a System F environment corre-

sponding to Γ, then there exists some type τ ′ such that Σ (f : τ ′. Figure 10 defines what

we mean by correspondence between an FG environment and System F environment.

Several lemmas are used in the theorem. The proofs of these lemmas are omitted here

but appear in a technical report [171]. The technical report formalizes the lemmas and

theorem in the Isar proof language [143] and the Isabelle proof assistant [144] was used

to validate the proofs. We give an overview of that formalization in Section 7.3.

The first lemma relates the type of a model member returned by the) function to the

member type in the dictionary for the model given by the)m.

LEMMA 1.

If (x : (τ, n′)) ∈)(c, ρ, n, Γ) and (−, δn) =)m(c, ρ,−,−,Γ)

then Γ (τ $ δn′

The next lemma states that the type of the dictionaries in the environment match the

concept’s dictionary type δ. The purpose of the sequence n is to map from the dictionary d

for a “derived” concept to the nested tuple for the “super” concept c.

7. TYPE SAFETY OF FG 197

FIGURE 9. Type Rules for FG and Translation to System F

Γ (e : τ $ f

(CPT)

distinct t (Γ′,−) =)w(c′ ρ , (Γ, t))
Γ′ (τ $ τ ′ δ = ([t′ *→ρ′]δ′)@τ ′

Γ, (c t { c′ ρ ; x : τ ; } *→ δ) (e : τ $ f c &∈ CV(τ)
Γ (c t { c′ ρ ; x : τ ; } e : τ $ f

(MDL)

c t { c′ ρ′ ; x : τ ; } *→ δ ∈ Γ Γ (ρ $ τ ′ Γ (e : σ $ f

c′ [t *→ρ]ρ′ *→ (d′, n) ∈ Γ x : [t *→ρ]τ ⊆ y : σ d fresh
Γ, (c ρ *→ (d, [])) (e : τ $ f d′′ = (nth . . . (nth d′ n1) . . . nk)

Γ (c ρ {y = e; } e : τ $ d = (d′′@[y *→f]x) f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, δ) =)w(c ρ , (Γ, t)) Γ′ (e : τ $ f

Γ (Λt c ρ . e : ∀t c ρ . τ $ Λt. λd : δ. f

(TAPP)
Γ (σ $ σ′ Γ (e : ∀t c ρ . τ $ f c [t *→σ]ρ *→ (d, n) ∈ Γ

Γ (e[σ] : [t *→σ]τ $ f [σ′](nth . . . (nth d n1) . . . nk)

(MEM)
Γ (ρ $ ρ′ (c ρ *→ (d, n)) ∈ Γ (x : (τ, n′)) ∈)(c, ρ, n, Γ)

Γ (c ρ .x : τ $ (nth . . . (nth d n′
1) . . . n′

k)

(VAR) x : τ ∈ Γ
Γ (x : τ $ x

(ABS)
Γ, x : σ (e : τ $ f Γ (σ $ σ′

Γ (λx : σ. e : σ → τ $ λx : σ′. f

(APP)
Γ (e1 : σ → τ $ f1 Γ (e2 : σ $ f2

Γ (e1(e2) : τ $ f1(f2)

LEMMA 2.

If (model c τ *→ (d, n)) ∈ Γ and Γ $ Σ and (−, δ) =)m(c, τ ,−,−,Γ)

then Σ ((nth . . . (nth d n1) . . . nk) : δ

7. TYPE SAFETY OF FG 198

FIGURE 10. Well-formed FG environment in correspondence with a System F environment.

Γ $ Σ

∅ $ ∅
Γ $ Σ Γ (τ $ τ ′

Γ, x : τ $ Σ, x : τ ′
Γ $ Σ

Γ, t $ Σ, t

Γ $ Σ (−, δ) =)m(c, τ ,−,−,Γ)
Γ, (c τ *→ (d, [])) $ Σ, d : δ

Γ $ Σ 0 < |n| d : δ ∈ Σ (−, δn) =)m(c, τ ,−,−,Γ)
Γ, (c τ *→ (d, n)) $ Σ

Γ $ Σ (Γ′, δ′) =)w(c′ τ , (Γ, t)) Γ′ (σ $ σ′

Γ, (c t { c′ τ ; x : σ; } *→ δ′@σ′) $ Σ

The following lemma states that extending the FG environment with proxy models from

a clause, and extending the System F environment with d : δ, preserves the environ-

ment correspondence.

LEMMA 3.

If Γ $ Σ and (Γ′, δ) =)w(c ρ ,Γ) then Γ′ $ Σ, d :δ

We now state and prove that the translation preserves well typing.

THEOREM 1 (Translation preserves well typed programs).

If Γ (e : τ $ f and Γ $ Σ then there exists τ ′ such that Σ (f : τ ′ and Γ (τ $ τ ′

PROOF. (of Theorem 1) The proof is by induction on the derivation of Γ (e : τ $ f .

Cpt: Let Γ′ = Γ, c t { c′ ν ; x : τ ; }. By inversion we have:

c′ t′ {. . .} *→ δ ∈ Γ(2)

Γ, t (τ $ τ ′(3)

Γ′ (e : τ $ f(4)

c &∈ CV(τ)(5)

7. TYPE SAFETY OF FG 199

From the assumption Γ $ Σ and from (2) and (3) we have Γ′ $ Σ. Then by (4)

and the induction hypothesis we have Σ (f : τ ′ and Γ′ (τ $ τ ′. Then from (5)

we have Γ (τ $ τ ′.

Mdl: Let Γ′ = Γ, (c ρ) *→ (d, []). We have the following by inversion:

Γ (e : σ $ f(6)

c′ [t *→ρ]ρ′ *→ (d′, n′) ⊆ Γ(7)

x : [t *→ρ]τ ⊆ y : σ(8)

Γ′ (e : τ $ f(9)

c t { c′ ρ′ ; x : τ ; } *→ δ ∈ Γ(10)

Let Σ such that Γ $ Σ. With (6) and the induction hypothesis there exists σ′ such

that Σ (f : σ′ and Γ (σ $ σ′. Next, let

r = (nth . . . (nth d′ n′
1) . . . n′

k)

From Γ $ Σ and (10) we have (−, δ′) =)w(c′ ρ′ ,Γ). and therefore (−, [t *→

ρ]δ′) =)w(c′ [t *→ρ]ρ′ ,Γ). Together with (7) and Lemma 2 we have Σ (r : [t *→

ρ]δ′. With (8) we have a well typed dictionary:

(11) Σ ((r@[y *→f]x) : δ

Let Σ′ be Σ, d : δ so Γ′ $ Σ′. Then with (9) and the induction hypothesis there

exists τ ′ such that Σ′ (f : τ ′ and Γ′ (τ $ τ ′. From (11) we show Σ (d =

(r@[y *→f]x) f : τ ′.

TAbs: By inversion we have:

(Γ′, δ) =)w(c ρ , (Γ, t))(12)

Γ′, t, M (e : τ $ f(13)

From the assumption Γ $ Σ we have Γ, t $ Σ, t. Then with (12) we apply

Lemma 3 to get Γ′ $ Σ, t, d : δ. We then apply the induction hypothesis with (13),

so there exists τ ′ such that Σ, t, d : δ (f : τ ′ and Γ′ (τ $ τ ′. Hence we have

7. TYPE SAFETY OF FG 200

Σ, t (λd : δ. f : δ → τ ′ and therefore Σ (Λt. λd : δ. f : ∀t. δ → τ ′.

Also, from Γ′ (τ $ τ ′ we have Γ, t (τ $ τ ′. Then with (12) we have Γ (

∀t c ρ . τ $ ∀t. δ → τ ′.

TApp: By inversion of the (TAPP) rule we have:

Γ (σ $ σ′(14)

Γ (e : ∀t. c ρ . τ $ f(15)

c [t *→σ]ρ *→ (d, n) ∈ Γ(16)

From (15) and the induction hypothesis there exists τ ′ such that Σ (f : τ ′ and

Γ (∀t c ρ . τ $ τ ′. By inversion there exists δ, τ ′′, and Γ′ such that

τ ′ = ∀t. δ → τ ′′(17)

(Γ′, δ) =)w(c ρ , (Γ, t))(18)

Γ′ (τ $ τ ′′(19)

Using (17) we have

Σ (f [σ′] : [t *→σ′](δ → τ ′′)(20)

From (18) and (14) we have

(Γ′, [t *→σ′]δ) =)w(c [t *→σ]ρ ,Γ))(21)

Let d′ = (nth . . . (nth d n1) . . . nk). From the assumption Γ $ Σ, (16), and

(21) we apply Lemma 2 to get Σ (d′ : [t *→ σ′]δ. Then with (20) we have

Σ (f [σ′](d′) : [t *→σ]τ ′′ and from (14) and (19) we have Γ ([t *→σ]τ $ [t *→σ′]τ ′′.

Mem: By inversion we have

(c τ *→ (d, n)) ∈ Γ(22)

x : (τ, n′) ∈)(c, τ , n, Γ)(23)

7. TYPE SAFETY OF FG 201

From the assumption Γ $ Σ and (22), we have the following by inversion.

(d : δ) ∈ Σ(24)

(−, δn) =)m(c, τ ,−,−,Γ)(25)

From (24) we have Σ (d : δ and with (23) we show

Σ ((nth . . . (nth d n′
1) . . . n′

k) : δn′

From (23), (25), and Lemma 1 we have Γ (τ $ δn′ .

Var: By inversion we have x : τ ∈ Γ. Then from Γ $ Σ there exists τ ′ such that

Γ (τ $ τ ′ and x : τ ′ ∈ Σ. Thus Σ (x : τ ′.

Abs: By inversion we have Γ, x : σ (e : τ $ f and Γ (σ $ σ′. With Γ $ Σ we

have Γ, x : σ $ Σ, x : σ′ and then from the induction hypothesis there exists τ ′

such that Σ, x : σ′ (f : τ ′ and Γ (τ $ τ ′. So Σ (λx : σ′. f : σ′ → τ ′ and

Γ (σ → τ $ σ′ → τ ′.

App: By inversion there exists σ such that Γ (e1 : σ → τ $ f1 and Γ (

e2 : σ $ f2. By the induction hypothesis there exists ρ1 such that Σ (f1 : ρ1

and Γ (σ → τ $ ρ1. Then by inversion there exists σ′ and τ ′ such that

ρ1 = σ′ → τ ′ and Γ (σ $ σ′ and Γ (τ $ τ ′. Also by the induction

hypothesis there exists ρ2 such that Σ (f2 : ρ2 and Γ (σ $ ρ2. Then because

type translation is a function, σ′ = ρ2 and so Γ (f2 : σ′. Thus Σ (f1(f2) : τ ′.

!

7.3. Isabelle/Isar formalization

Isar [143] is a language for writing proofs and is the language we used to formalize

the translation of FG to System F and the proof of Theorem 1. Figure 11 is simple example

of a proof in Isar which shows that the length of the concatenation of two lists is equal

to the sum of the lengths of each list. The Isabelle proof assistant [144] can be used to

check proofs written in Isar, and the Proof General interface [8] is useful for incrementally

developing Isar proofs.

7. TYPE SAFETY OF FG 202

FIGURE 11. Example Isar proof.

∀

∀

∀
∀

. . .
. . .

The main advantage of the Isabelle/Isar system is that allows for the straightforward

modification of large proofs. The majority of other theorem proving systems are tactic

based, which means that the proofs are not truly human readable, and even small changes

to a proof often require changes to all of the remaining steps in the proof. The development

of the proof for FG was fairly large, the technical report is 70 pages, so it was critical to be

able to make incremental changes to the proof.

7.3.0.1. Induction. The proof is a typical example of performing induc-

tion on an inductively defined data type. The first case of the induction handles when

is the empty list and the second case handles when for some and . The induc-

tion hypothesis, which is labeled , says that the proposition holds for , which we use in

the equational reasoning about the length of . In the proof, the keyword

is followed by the rule or tactic used to prove the preceding proposition. The tactic

of Isabelle includes a rewriting engine which among other things will unfold definitions. In

this proof it is used to unfold the definition of and .

7. TYPE SAFETY OF FG 203

FIGURE 12. A type system as an inductively defined set.

⇒ × ×

Γ Γ ∈
! Γ τ→τ ′ ∈ Γ τ ∈ "

=⇒ Γ · τ ∈
Γ τ τ ∈ =⇒ Γ λ τ→τ ∈

Isabelle also provides a mechanism for inductively defined sets. This facility is useful

for defining type systems. For example, the type judgment Γ (e : τ for the simply-typed

lambda calculus is encoded as the inductively defined set as shown in Figure 12.

As with datatypes, Isabelle provides proof by induction on these inductively defined sets.

Theorem 1 is an example of such an induction, as are many of the lemmas.

7.3.0.2. Variables and substitution. One of the necessary but annoying aspects of for-

malizing the type system and semantics of a programming language is handling variables

and substitution. De Bruijn indices are a popular choice for representing variables in formal

systems, and early on we used them in the formalization of FG . While De Bruijn indices

are manageable in the context of the lambda calculus, we found that using them in a more

complex language, with both type variables and normal variable, to be quite burdensome,

making the resulting proofs much more complex and difficult to reason about. We switched

to using naive substitution in combination with the Barendregt convention [14] made ex-

plicit. This approach made it straightforward to reason about variables in proofs but it has

a couple drawbacks:

• Type equality had to be explicitly formalized to allow for α-conversion, we could

not rely on Isabelle’s built-in equality. Defining type equality was straightforward

but uses of type equality in the proof was more cumbersome. For example, we

could no longer rely on Isabelle’s equational reasoning.

• To make the Barendregt convention explicit we had to add several extra premises

to most lemmas, and the proofs had to be augmented with steps that reason about

free variables and sometimes α-rename types or terms. Normally fresh variables

7. TYPE SAFETY OF FG 204

are used when renaming, that is, variables known to be globally unique. However,

it is difficult to track global properties in a proof, so instead we generate new

variables that are fresh with respect to the types or terms involved. This can be

achieved by computing the maximum natural number used as a variable in the

types or terms, and then choosing the next larger natural number. In several

places in our Isabelle proofs we skip the tedious renaming step and cheat by using

Isabelle’s command, but it should be straightforward to dot all the i’s and

cross all the t’s.

Despite these drawbacks we were satisfied with this approach to variables and substitution.

7.3.0.3. Evaluation of Isabelle/Isar. Isabelle/Isar is a big step forward in technology for

formalizing programming languages and validating proofs about languages. However, it

seems that the difficulty of formalizing proofs in Isabelle/Isar is still greater than it should

be, mainly due to user-interface issues. One of the problems is that Isar is built as a thin

layer over Isabelle’s tactic system, and the layer is transparent, not opaque. A user must

understand both systems and be able to switch back and forth between them. Another

problem is that when a proof step fails, the error message is rarely helpful in identifying the

source of the problem.

7.4. Associated types and same-type constraints

The syntax of FG with associated types and same-type constraints is given in Figure 13

with the additions highlighted in gray. The syntax for concepts is extended to include

requirements for associated types and for type equalities. We add type assignments to

model declarations. In addition, where clauses are extended with type equalities.

We have also added an expression for creating type aliases. Type aliases were singled

out in [69] as an important feature and the semantics of type aliases is naturally expressed

using the type equality infrastructure for same-type constraints.

7. TYPE SAFETY OF FG 205

FIGURE 13. FG with Associated Types and Same Type Constraints

c ∈ Concept Names
s, t ∈ Type Variables
x, y ∈ Term Variables
ρ, σ, τ ::= t | τ → τ | ∀t c σ ; σ = τ . τ

| c τ .t
e ::= x | e(e) | λy : τ . e

| Λt c σ ; σ = τ . e | e[τ]
| c t {

s; c σ ;
x : τ ; σ = τ ;

} e
| c τ {

t = σ;
x = e;

} e
| c τ .x
| t = τ e

Type checking is complicated by the addition of same-type constraints because type

equality is no longer syntactic equality: it must take into account the same-type declara-

tions. We extend environments to include type equalities, and introduce a new type equal-

ity relation Γ (σ = τ which is defined in Figure 14. This relation is the congruence that

includes all the type equalities in Γ. Deciding type equality is equivalent to the quantifier

free theory of equality with uninterpreted function symbols, for which there is an O(n log n)

average time algorithm [142] (O(n2) time complexity in the worst case). We prefix opera-

tions on sets of types and type assignments with Γ (because type equality now depends on

the environment Γ.

Figure 17 gives the typing rules for FG with associated types and same-type constraints

and the translation to System F. The (MDL) rule must check that all required associated

types are given type assignments and that the same-type requirements of the concept are

satisfied. Also, when comparing the model’s operations to the operations in the concept,

in addition to substituting ρ for the concept parameters t, occurrences of associated types

7. TYPE SAFETY OF FG 206

FIGURE 14. Type equality for FG .

(REFL)
Γ (τ = τ

(SYMM) Γ (σ = τ
Γ (τ = σ

(TRANS)
Γ (σ = ρ Γ (ρ = τ

Γ (σ = τ

(HYP) σ = τ ∈ Γ
Γ (σ = τ

(FNEQ) Γ (σ = τ Γ (σ = τ
Γ (σ → σ = τ → τ

(ASCEQ) Γ (σ = τ
Γ (c σ .t = c τ .t

(ALLEQ)

Γ (ρ1 = [t1/t2]ρ2 Γ (σ1 = [t1/t2]σ2 Γ (τ1 = [t1/t2]τ2

Γ, σ1 = τ1 (τ3 = [t1/t2]τ4

Γ (∀t1 c ρ1 ;σ1 = τ1. τ3 = ∀t2 c ρ2 ;σ2 = τ2. τ4

must be replaced with their type assignments from the body of the model and from models

of the concepts c refines. The (TABS) and (TAPP) rules are changed to introduce same-

type constraints into the environment and to check same-type constraints respectively. The

(APP) rule has been changed from requiring syntactic equality between the parameter and

argument types to requiring type equality based on the congruence of the type equalities in

the environment. The new rule (ALS) for type aliasing checks the body in an environment

extended with a type equality that expresses the aliasing.

The main idea of the translation is to turn associated types into extra type parameters

on type abstractions, an approach we first outlined in [89] and which is also used in [38].

The following code shows an example of this translation. The function requires a

model of Iterator, which has an associated type .

Λ

An extra type parameter for the associated type is added to the translated version of .

Λ

λ → → →

→

7. TYPE SAFETY OF FG 207

However, there are two complications here that are not present in [38]: same-type

constraints and concept refinement. Due to the same-type constraints, all type expressions

in the same equivalence class must be translated to the same System F type. Fortunately, the

congruence closure algorithm for type equality [142] is based on a union-find data structure

that maintains a representative for each type class. Therefore the translation outputs the

representative for each type expression. The translation of the function shows an

example of this. There are two type parameters and for each of the two Iterator

constraints. Note that in the types for the three dictionaries, only is used, since it was

chosen as the representative.

Λ

λ → → →

→ → →

→

→

The second complication is the presence of concept refinement. As mentioned in [38],

extra type parameters are needed not just for the associated types of a concept c mentioned

in the clause, but also for every associated type in concepts that c refines. Further-

more, there may be diamonds in the refinement diagram. To preclude duplicate associated

types we keep track of which concepts (with particular type arguments) have already been

processed.

Figure 17 presents the translation from FG with associated types and same-type con-

straints to System F. We omit the (Mem), (Var), and (Abs) rules since they do not change.

The functions) and)m need to be changed to take into account associated types that may

appear in the type of a concept member or refinement. For example, in the body of function

below, the expression has type , not just . Also, the refinement

for in translates to modeling .

→

7. TYPE SAFETY OF FG 208

→

Λ

λ

We define a function)a to collect all the associated types from a concept c and from the

concepts refined by c and map them to their concept-qualified names.

)a(c, τ) =

S := s : c τ .s

for i = 0, . . . , |c′| − 1

S := S,)a(c′i, S(τ ′
i))

return S

where

c t { s ; c′ τ ′ ; x : σ; ρ = ρ′} ∈ Γ

Here is the new definition of).

)(c, τ , n, Γ) =

S :=)a(c, τ), t : τ

M := ∅

for i = 0, . . . , |c′| − 1

M := M ∪)(c′i, S(τ ′
i), (n, i),Γ)

for i = 0, . . . , |x| − 1

M := M ∪ {xi : (S(σi), (n, |c′|+ i))}

return M

where

c t { s ; c′ τ ′ ; x : σ; ρ = ρ′} ∈ Γ

7. TYPE SAFETY OF FG 209

We used)m in Section 7.2 to collect the the models from a concept c and the concepts

that c refines. We change)m to also collect the same-type constraints from the concepts. In

addition, for every associated type s in c we generate a fresh type variable s′ and add the

same-type constraint s′ = c τ .s. The function)m also returns the type variables generated

for the associated types.

)m(c, ρ, d, n, Γ) =

check Γ (ρ $ − and generate fresh variables s′

Γ := Γ, s′ = c ρ .s

A :=)a(c, ρ), t : ρ

s′′ := []; τ := []

for i = 0, . . . , |c′| − 1

(Γ, a, δ′) :=)m(c′i, A(ρ′
i), d, (n, i),Γ)

s′′ := s′′, a; τ := τ , δ′

τ := τ@A(σ)

Γ := Γ, A(η) = A(η′)

Γ := Γ, c ρ *→ (d, n,)a(c, ρ))

return (Γ, (s′′, s′), τ)

where

c t { s ; c′ ρ′ ; x : σ; η = η′} ∈ Γ

The clause of a type abstraction is processed sequentially so that later require-

ments in the clause may refer to requirements (e.g., their associated types) that

appear earlier in the list.

)w([],Γ) = (Γ, [])

)w((c ρ , c′ ρ′),Γ) =

generate fresh d

(Γ, s, δ) :=)m(c, ρ, d, [],Γ)

(Γ, s′, δ′) :=)w(c′ [t *→ρ]ρ′ ,Γ)

return (Γ, (s, s′), (δ, δ′))

7. TYPE SAFETY OF FG 210

FIGURE 15. Well-formed FG types (with associated types) and translation to
System F.

Γ (τ $ τ ′

(TYVAR) t ∈ Γ
Γ (t $ [t]Γ

(TYABS) Γ (σ $ σ′ Γ (τ $ τ ′

Γ (σ → τ $ σ′ → τ ′

(TYTABS)
(Γ′, s, δ) =)w(c ρ , (Γ, t)) Γ′, η = η′ (τ $ τ ′

Γ (∀t c ρ , η = η′ . τ $ ∀t, s . δ → τ ′

(TYASC)
Γ (ρ $ ρ′ Γ (c ρ . . . ∈ Γ

Γ (c ρ .x $ [c ρ .x]Γ

where

c t { s ; c′ ρ′ ; x : σ; η = η′} ∈ Γ

Figure 15 shows the changes to the translation of FG types to System F types. Type variables

and member access types are mapped to their representative, written as [−]Γ.

The proof that the translation to System F preserves well typing can be modified to take

into account the changes we have made for associated types and same-type constraints. The

proof relies on the following lemma which establishes the correspondence between type

equality judgments and type translation. Whenever two FG types are equal they translate

to the same System F type.

LEMMA 4 (Correspondence of type equality and translation).

If Γ (σ = τ and Γ (σ $ ρ then Γ (τ $ ρ.

The FG environment now contains information about associated types and same-type

constraints, so the correspondence with System F environments is updated in Figure 16.

7. TYPE SAFETY OF FG 211

FIGURE 16. Well-formed FG environment in correspondence with a System F environment.

Γ $ Σ

∅ $ ∅
Γ $ Σ Γ (τ $ τ ′

Γ, x : τ $ Σ, x : τ ′
Γ $ Σ

Γ, t $ Σ, t

Γ $ Σ (−,−, δ) =)m(c, τ ,−,−,Γ)
Γ, (c τ *→ (d, [], s : σ)) $ Σ, d : δ

Γ $ Σ 0 < |n| d : δ ∈ Σ (−,−, δn) =)m(c, τ ,−,−,Γ)
Γ, (c τ *→ (d, n, s : σ)) $ Σ

Γ $ Σ (Γ′,−, δ′) =)w(c′ τ , (Γ, t)) Γ′ (σ $ σ′ Γ′ (ρ $ ν Γ′ (ρ′ $ ν ′

Γ, (c t { s ; c′ τ ; x : σ; ρ = ρ′} *→ δ′@σ′) $ Σ

THEOREM 2 (Translation preserves well typing).

If Γ (e : τ $ f and Γ $ Σ then there exists τ ′ such that Σ (f : τ ′ and Γ (τ $ τ ′.

PROOF. Like the proof of Theorem 1, this proof is by induction on the derivation of

Γ (e : τ $ f . The cases for (MDL), (TAPP), and (APP) rules differ because they rely on the

type equality judgment.

Mdl: Let Γ′ = Γ, (c ρ *→ (d, [], (∪A′, s′ : [s *→ν]s′))). We have the following

by inversion:

Γ (e : σ $ f(26)

c′ S(ρ′) *→ (d′, n′, A′) ⊆ Γ(27)

x ⊆ y(28)

Γ ([y *→σ]x = S′(τ)(29)

Γ (S′(η) = S′(η′)(30)

Γ′ (e : τ $ f(31)

c t { s′ ; c′ ρ′ ; x : τ ; η = η′} *→ δ ∈ Γ(32)

7. TYPE SAFETY OF FG 212

From Γ $ Σ, (26), and the induction hypothesis there exists σ′ such that Σ (

f : σ′ and Γ (σ $ σ′. Next, let r = (nth . . . (nth d′ n′
1) . . . n′

k). From Γ $
Σ and (32) we have (−, s, δ′) =)w(c′ ρ′ ,Γ). and therefore (−, s, [t *→ ρ]δ′) =

)w(c′ [t *→ρ]ρ′ ,Γ). Together with (27) and Lemma 2 we have Σ (r : [t *→ ρ]δ′.

With (28), (29), and (30), we have a well typed dictionary:

(33) Σ ((r@[y *→f]x) : δ

Let Σ′ be Σ, d : δ so Γ′ $ Σ′. Then with (31) and the induction hypothesis there

exists τ ′ such that Σ′ (f : τ ′ and Γ′ (τ $ τ ′. From (33) we show Σ (d =

(r@[y *→f]x) f : τ ′.

TApp: By inversion of the (TAPP) rule we have:

Γ (σ $ σ′(34)

Γ (e : ∀t. c ρ , η = η′. τ $ f(35)

c [t *→σ]ρ *→ (d, n, s : ν) ∈ Γ(36)

Γ ([t *→σ]η = [t *→σ]η′(37)

From (35) and the induction hypothesis there exists τ ′ such that Σ (f : τ ′ and

Γ (∀t c ρ , η = η′. τ $ τ ′. By inversion there exists δ, τ ′′, and Γ′ such that

τ ′ = ∀t, s′. δ → τ ′′(38)

(Γ′,−, δ) =)w(c ρ , (Γ, t))(39)

Γ′, η = η′ (τ $ τ ′′(40)

Using (38) we have

Σ (f [σ′, ν] : [t *→σ′][s′ *→ν](δ → τ ′′)(41)

From (39) and (34) we have

(Γ′,−, [t *→σ′][s′ *→ν]δ) =)w(c [t *→σ]ρ , (Γ, t)))(42)

7. TYPE SAFETY OF FG 213

Let d′ = (nth . . . (nth d n1) . . . nk). From the assumption Γ $ Σ, (36), and (42)

we apply Lemma 2 to get Σ (d′ : [t *→ σ′][s′ *→ ν]δ. Then with (41) we have

Σ (f [σ′, ν](d′) : [t *→σ′][s′ *→ν]τ ′′ and from (34) and (40) we have Γ ([t *→σ]τ $
[t *→σ′][s′ *→ν]τ ′′.

App: By inversion there exists σ1 and σ2 such that Γ (e1 : σ1 → τ $ f1 and

Γ (e2 : σ2 $ f2 and Γ (σ1 = σ2. By the induction hypothesis there exists ρ1

such that Σ (f1 : ρ1 and Γ (σ1 → τ $ ρ1. Then by inversion there exists

σ′
1 and τ ′ such that ρ1 = σ′

1 → τ ′ and Γ (σ1 $ σ′
1 and Γ (τ $ τ ′. Also by

the induction hypothesis there exists ρ2 such that Σ (f2 : ρ2 and Γ (σ2 $ ρ2.

Then with Γ (σ1 = σ2 and Lemma 4 we have σ′
1 = ρ2 and so Γ (f2 : σ′

1. Thus

Σ (f1(f2) : τ ′.

!

7.5. Summary

This chapter showed that the design for generics presented in this thesis is type safe.

The language G is not type safe, due to the aspects of the language unrelated to generics:

the presence of pointer, manual memory allocation, and also stack allocation. To show type

safety of the design for generics, we embed the design in System F, a type safe language,

creating the language FG . The language FG is defined by translation to System F, and we

show that if an FG program is well typed, the translation will result in a well typed term

of System F, thereby ensuring that execution of the System F term will not result in a type

error.

7. TYPE SAFETY OF FG 214

FIGURE 17. Type rules for FG with associated types and translation to Sys-
tem F.

Γ (e : τ $ f

(CPT)

distinct t distinct s c′ t′ {. . .} *→ δ′ ∈ Γ Γ, t, s (ρ $ ρ′

Γ, t, s (τ $ τ ′ Γ, t, s (σ $ ν Γ, t, s (σ′ $ ν ′

δ = ([t′ *→ρ′]δ′)@τ ′

Γ, (c t { s ; c′ ρ ; x : τ ; σ = σ′} *→ δ) (e : τ $ f

Γ (c t { s ; c′ ρ ; x : τ ; σ = σ′} e : τ $ f

(MDL)

c t { s′ ; c′ ρ′ ; x : τ ; η = η′} *→ δ ∈ Γ Γ (ρ $ τ ′

Γ (ν $ ν ′ Γ (e : σ $ f s′ ⊆ s

S = t : ρ, s′ : [s *→ν]s′ Γ (c′ S(ρ′) *→ (d′, n, A′) ∈ Γ

S′ = S,∪A′ x ⊆ y Γ ([y *→σ]x = S′(τ) Γ (S′(η) = S′(η′)

d fresh Γ, (c ρ *→ (d, [], (∪A′, s′ : [s *→ν ′]s′))) (e : τ $ f

d′′ = (nth . . . (nth d′ n1) . . . nk)
Γ (c ρ { s = ν; y = e} e : τ $ d = (d′′@[y *→f]x) f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, s , δ) =)w(c ρ , (Γ, t)) Γ′, τ = τ ′ (e : τ $ f

Γ (Λt c ρ , τ = τ ′ . e : ∀t c ρ , τ = τ ′ . τ $ Λt, s . λd : δ. f

(TAPP)

Γ (σ $ σ′ Γ (e : ∀t c ρ , η = η′ . τ $ f

Γ (c [t *→σ]ρ *→ (d, n, s : ν) ∈ Γ Γ ([t *→σ]η = [t *→σ]η′

Γ (e[σ] : [t *→σ]τ $ f [σ′, ν](nth . . . (nth d n1) . . . nk)

(ALS)
t /∈ FTV(Γ) Γ, t = τ (e : τ $ f

Γ (t = τ e : τ $ f

(APP)
Γ (e1 : σ → τ $ f1 Γ (e2 : σ′ $ f2 Γ (σ = σ′

Γ (e1 e2 : τ $ f1(f2)

8
Conclusion

This thesis presents and evaluates a design for language support for generic programming,

embodied in the programming language G. The design formalizes the current practice

of generic programming in C++, replacing the semi-formal specification language used to

document C++ libraries with a formal interface description language integrated with the

type system of a full programming language. The advantage is that an automated tool (the

G type system) checks uses of generic components against their interfaces, and on the other

side, checks implementations of generic components against their interfaces.

Of course, many languages provide this kind of modularity, but what is unique about

G is that 1) its interface description language is expressive enough to describe the rich

interfaces of generic libraries such as the Standard Template Library and the Boost Graph

215

8. CONCLUSION 216

Library, and 2) using generic components in G is convenient, even when dealing with large

and complex abstractions. Both of these points were demonstrated in Chapter 6. The central

features of G, ’s, ’s, and clauses, cooperate to provide a mechanism for

implicitly passing type-specific operations to generic functions, thereby relieving users of

this task. Implicit mechanisms are often dangerous, so in G the connection between the

implementations of type-specific operations and the concepts they fulfill is established by

explicit definitions. definitions are lexically scoped, so it is always possible for

a programmer to determine which model will be used by examining the program text of

just the module under construction and the public interface of any imported modules.

Chapter 5 described a compiler for G that can separately compile generic functions.

This is a critical point concerning the scalability of reuse-oriented software construction.

Separate compilation allows the compile time of a component to be a function of the size

of just that component and not a function of everything used by the component. Of course,

there is an inherent performance penalty associated with separate compilation (which is not

particular to G). The design of G allows for optimizations such as function specialization

and inlining to be applied in situations where the programmer does not want separate

compilation, but instead desires the greatest possible performance. Implementing these

optimizations in the compiler for G is planned for future work.

In conclusion, the design of G successfully satisfies the goals set down in Chapter 1:

it supports the modular construction of software, it makes generic components easier to

use and to build, it provides support for implementing and dispatching between efficient

algorithms, and it allows for efficient compilation.

There are several directions for future work on the language G: 1) further refinements

in the support for generic programming, 2) support for generative programming and 3)

improved compilation.

Support for Generic Programming. Chapter 6 presented an idiom for dispatching be-

tween specialized versions of an algorithm. While this idiom incurs little burden on users

of generic algorithms, it does expose unnecessary details in the interface of the generic al-

gorithms and can lead to large clauses. One solution that we have envisioned for this

8. CONCLUSION 217

is to add support for optional requirements in a clause. The rules for concept-based

overload resolution would then take this into account and allow for run-time or link-time

dispatching based on whether the optional requirements were satisfied at a particular call

site. There are some technical challenges and open questions concerning the compilation

of optional requirements that will be the focus of future work.

Another area where there is room for improvement is in implicit instantiation. As dis-

cussed in Section 4.6.1 it would be nice to allow coercions on function types (use the

(ARROW) subtyping rule). I have done some research into creating a semi-decision proce-

dure for this subtyping problem, but it remains to prove that the procedure is sound and to

demonstrate whether it is effective and efficient in practice.

An important aspect of concepts are their semantic requirements. The language G does

not yet provide mechanisms for expressing semantics, but this in an extremely interesting

area for future research. Semantic requirements could be an aid for program correctness

and for optimization. If G were outfitted with a program logic one could prove correctness of

generic algorithms based on the assumptions (semantic guarantees) provided by concepts.

Similarly, models of concepts could be proved correct by showing that the implementation

functions meet the requirements of the concept. Semantic requirements can also be used

in the context of compiler optimization. Many optimizations that are currently applied only

to scalar values could also be applied to user-defined types, such as constant folding and

constant propagation, if model definitions can assert that the necessary semantic properties

hold for the user-defined types.

Generative Programming. While the design of generics for G provides language support

for the implementation and use of generic algorithms, it does not provide language sup-

port for generative programming, which is often used in generic libraries to allow for code

reuse in the implementation of data structures. We will be investigating the addition of

metaprogramming features to G to provide support for generative programming. There is

considerable challenge with respect to integrating metaprogramming facilities and para-

metric polymorphism. Metaprogramming typically relies on information from the context

in which a library is used, whereas parametric polymorphism blocks out information from

8. CONCLUSION 218

the context. Thus, at a fundamental level metaprogramming and parametric polymorphism

are at odds with each other, so finding a way to bring them together will be challenging.

Improved Compilation. The compiler for G does not yet include an optimization pass.

Many traditional optimizations would increase the efficiency of G programs, but the most

critical optimizations are those that fall under the heading of partial evaluation. Those

include function specialization, function inlining, constant folding, and constant propaga-

tion. One other critical optimization for G programs is the scalar replacement of aggre-

gates [132].

The compiler for G currently translates to C++. This translation took advantage of many

features of C++ to reduce the amount of work done by the compiler. However, it would be

useful to compile all the way to C, thereby gaining more portability. In particular, replacing

the use of the class with would likely speed up compilation of the resulting C/C++

code. Similarly, compiling to Java byte code or to .Net would allow for better interoperabil-

ity with other languages and component frameworks.

A
Grammar of G

This appendix defines the syntax for G. We start with some preliminaries concerning the

lexical structure of identifiers and literals and then describe the grammars for type expres-

sions, declarations, statements, and expressions.

There are several kinds of identifiers that appear in G programs but they all share the

same lexical structure as given by the following regular expression:

The grammar variable id stands for value variables, tyvar for type variables, clid for class,

struct, and union names, cid for concept names, and mid for module names.

The integer literals intlit are sequences of digits

219

A. GRAMMAR OF G 220

and the floating point literals floatlit are sequences of digits followed by a period and an

optional second sequence of digits.

A.1. Type expressions

The type expressions of G differ from those of C++ in several respects. Instead of function

pointers G has first-class functions, so G has function types, not function pointer types. Also,

G has type expressions for referring to associated types of a model using the dot notation.

Two other minor differences are that there are no reference types and is not a general

type qualifier.

type ::= tyvar type variable
polyhdr type mode . . . [type mode] function

clid [type . . .] class, struct, or union
scope tyvar scope-qualified type
type [] pointer
type parenthesized type

btype basic type

mode ::= mut [] pass by reference
pass by value

mut ::= [] constant
mutable

polyhdr ::= [tyvar , . . .][constraint . . .] polymorphic header
constraint ::= cid type . . . model constraint

type type same-type constraint
funsig function constraint

scope ::= scopeid
scope scopeid scope member

scopeid ::= mid module identifier
cid type . . . model identifier

btype ::= [] intty | intty
| |
| | |

intty ::= | | |

A. GRAMMAR OF G 221

A.2. Declarations

The main declarations of interest in G are concepts, models, and clauses, which

can appear in function, model, class, struct, and union definitions. For now, classes in G are

basic, consisting only of constructors, a destructor, and data members. A struct in G consists

only of data members.

decl ::= cid tyvar , . . . cmem . . . concept
polyhdr type, . . . decl . . . model
clid polyhdr clmem . . . class
clid polyhdr type id . . . struct

clid polyhdr type id . . . union
fundef
funsig

id expr global variable binding
tyvar type type alias

mid decl . . . module
id = scope; scope alias
scope.c<τ>; import model
decl . . . public region
decl . . . private region

fundef ::= id polyhdr type mode [id] . . . Function definition
type mode stmt . . .

funsig ::= id polyhdr type mode [id] . . . Function signature
type mode

cmem ::= funsig Function requirement
fundef " with default impl.

tyvar Associated type
type type Same-type requirement

cid type . . . Refinement
cid type . . . Nested requirement

clmem ::= type id data member
polyhdr clid type mode [id] . . . stmt . . . constructor
clid stmt . . . destructor

A.3. Statements and expressions

Local variables are introduced with the statement, with the type of the variable

deduced from the right-hand side expression. The statement is quite different from

that of C++, for it provides type-safe decomposition of unions. There is an expression for

A. GRAMMAR OF G 222

initializing a struct object by field, and there is the dot notation for accessing members

of a model. The syntax for explicit instantiation includes extra bars as a concession to

ease parsing with Yacc [95]. Without the bars, the syntax is ambiguous with the less-than

operator.

stmt ::= id expr local variable binding
tyvar type type alias

expr expression
[expr] return from function

expr stmt [stmt] conditional
expr stmt loop

stmt . . . compound
empty

expr case . . . switch on union

case ::= id stmt . . . case
stmt . . . default case

expr ::= id variable
expr expr . . . function application

polyhdr type mode [id] . . . function expression
id expr . . . ({stmt . . .}| expr)

scope id scope member
expr id object member
expr type . . . explicit instantiation
expr . . . sequence
expr expr expr conditional
expr parenthesized expression

alloc clid expr . . . class instance
alloc clid id expr . . . struct or union instance
alloc type expr array allocation

expr invoke destructor and release memory
expr invoke destructor

literal literals

alloc ::= stack allocation
manual heap allocation
garbage collected heap allocation

expr construct in place

literal ::= | Boolean constants
intlit integer constant
floatlit floating point constant
char character constant
char . . . string literal

A. GRAMMAR OF G 223

A.4. Derived forms

s1 e1 e2 s2 =⇒ s1 e1 s2 e2

s e =⇒ s e s

e1 e2 =⇒ e1 e2

e =⇒ e
e→x =⇒ e x
e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e =⇒ e

e =⇒ e
e =⇒ e

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

e =⇒ e

e1 e2 =⇒ e1 e2

e1 e2 =⇒ e1 e2

B
Definition of FG

The syntax of FG is defined below. The language FG is an extension of System F (refer

to Section 7.1 for the definition of System F) that captures the core features for generic

programming: concepts with associated types, models, and generic functions with

clauses.

224

B. DEFINITION OF FG 225

c ∈ Concept Names
s, t ∈ Type Variables
x, y ∈ Term Variables
ρ, σ, τ ::= t | τ → τ | ∀t c σ ;σ = τ . τ

| c τ .t
e ::= x | e(e) | λy : τ . e

| Λt c σ ;σ = τ . e | e[τ]
| c t {

s; c σ ;
x : τ ; σ = τ ;

} e
| c τ {

t = σ;
x = e;

} e
| c τ .x
| t = τ e

Figure 1 defines the type system for FG and defines the semantics of FG in terms of

System F. Several auxiliary functions are used in Figure 1 and they are defined as follows.

)a(c, τ) =
S := s : c τ .s
for i = 0, . . . , |c′| − 1

S := S,)a(c′i, S(τ ′
i))

return S
where

c t { s ; c′ τ ′ ; x : σ; ρ = ρ′} ∈ Γ

)(c, τ , n, Γ) =
S :=)a(c, τ), t : τ
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪)(c′i, S(τ ′
i), (n, i),Γ)

for i = 0, . . . , |x| − 1
M := M ∪ {xi : (S(σi), (n, |c′|+ i))}

return M
where

c t { s ; c′ τ ′ ; x : σ; ρ = ρ′} ∈ Γ

)m(c, ρ, d, n, Γ) =
check Γ (ρ $ − and generate fresh variables s′

B. DEFINITION OF FG 226

FIGURE 1. Semantics of FG defined by translation to System F.

Γ (e : τ $ f

(CPT)

distinct t distinct s c′ t′ {. . .} *→ δ′ ∈ Γ Γ, t, s (ρ $ ρ′

Γ, t, s (τ $ τ ′ Γ, t, s (σ $ ν Γ, t, s (σ′ $ ν ′

δ = ([t′ *→ρ′]δ′)@τ ′

Γ, (c t { s ; c′ ρ ; x : τ ; σ = σ′} *→ δ) (e : τ $ f

Γ (c t { s ; c′ ρ ; x : τ ; σ = σ′} e : τ $ f

(MDL)

c t { s′ ; c′ ρ′ ; x : τ ; η = η′} *→ δ ∈ Γ Γ (ρ $ τ ′

Γ (ν $ ν ′ Γ (e : σ $ f s′ ⊆ s

S = t : ρ, s′ : [s *→ν]s′ Γ (c′ S(ρ′) *→ (d′, n, A′) ∈ Γ
S′ = S,∪A′ x ⊆ y Γ ([y *→σ]x = S′(τ) Γ (S′(η) = S′(η′)
d fresh Γ, (c ρ *→ (d, [], (∪A′, s′ : [s *→ν ′]s′))) (e : τ $ f

d′′ = (nth . . . (nth d′ n1) . . . nk)
Γ (c ρ { s = ν; y = e} e : τ $ d = (d′′@[y *→f]x) f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, s, δ) =)w(c ρ , (Γ, t)) Γ′, τ = τ ′ (e : τ $ f

Γ (Λt c ρ , τ = τ ′. e : ∀t c ρ , τ = τ ′. τ $ Λt, s. λd : δ. f

(TAPP)

Γ (σ $ σ′ Γ (e : ∀t c ρ , η = η′. τ $ f
Γ (c [t *→σ]ρ *→ (d, n, s : ν) ∈ Γ Γ ([t *→σ]η = [t *→σ]η′

Γ (e[σ] : [t *→σ]τ $ f [σ′, ν](nth . . . (nth d n1) . . . nk)

(ALS)
t /∈ FTV(Γ) Γ, t = τ (e : τ $ f

Γ (t = τ e : τ $ f

(APP)
Γ (e1 : σ → τ $ f1 Γ (e2 : σ′ $ f2 Γ (σ = σ′

Γ (e1 e2 : τ $ f1(f2)

Γ := Γ, s′ = c ρ .s
A :=)a(c, ρ), t : ρ
s′′ := []; τ := []
for i = 0, . . . , |c′| − 1

(Γ, a, δ′) :=)m(c′i, A(ρ′
i), d, (n, i),Γ)

s′′ := s′′, a; τ := τ , δ′

τ := τ@A(σ)
Γ := Γ, A(η) = A(η′)

B. DEFINITION OF FG 227

FIGURE 2. Type equality for FG .

(REFL)
Γ (τ = τ

(SYMM) Γ (σ = τ
Γ (τ = σ

(TRANS)
Γ (σ = ρ Γ (ρ = τ

Γ (σ = τ

(HYP) σ = τ ∈ Γ
Γ (σ = τ

(FNEQ) Γ (σ = τ Γ (σ = τ
Γ (σ → σ = τ → τ

(ASCEQ) Γ (σ = τ
Γ (c σ .t = c τ .t

(ALLEQ)

Γ (ρ1 = [t1/t2]ρ2 Γ (σ1 = [t1/t2]σ2 Γ (τ1 = [t1/t2]τ2

Γ, σ1 = τ1 (τ3 = [t1/t2]τ4

Γ (∀t1 c ρ1 ;σ1 = τ1. τ3 = ∀t2 c ρ2 ;σ2 = τ2. τ4

Γ := Γ, c ρ *→ (d, n,)a(c, ρ))
return (Γ, (s′′, s′), τ)

where
c t { s ; c′ ρ′ ; x : σ; η = η′} ∈ Γ

)w([],Γ) = (Γ, [])
)w((c ρ , c′ ρ′),Γ) =

generate fresh d
(Γ, s, δ) :=)m(c, ρ, d, [],Γ)
(Γ, s′, δ′) :=)w(c′ [t *→ρ]ρ′ ,Γ)
return (Γ, (s, s′), (δ, δ′))

where
c t { s ; c′ ρ′ ; x : σ; η = η′} ∈ Γ

Type equality in FG is defined in Figure 2.

Bibliography

[1] Ada 95 Reference Manual, 1997.

[2] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing

in a statically typed language. ACM Transactions on Programming Languages and

Systems, 13(2):237–268, April 1991.

[3] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams Iv, D. P. Friedman,

E. Kohlbecker, Jr. G. L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,

G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. Revised report on the algorithmic

language scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.

[4] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpreta-

tion of Computer Programs. MIT Press, 1985.

[5] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond. Addison-Wesley, 2004.

[6] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns

Applied. Addison-Wesley, 2001.

[7] Konstantine Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.

[8] David Aspinall. Proof general: A generic tool for proof development. In (TACAS

2000) Tools and Algorithms for the Construction and Analysis of Systems, number

1785 in LNCS, 2000.

[9] Matt Austern. (draft) technical report on standard library extensions. Technical

Report N1711=04-0151, ISO/IEC JTC 1, Information Technology, Subcommittee SC

228

Bibliography 229

22, Programming Language C++, 2004.

[10] Matt Austern. Proposed draft technical report on C++ library extensions. Technical

Report PDTR 19768, n1745 05-0005, ISO/IEC, January 2005.

[11] Matthew H. Austern. Generic Programming and the STL. Professional computing

series. Addison-Wesley, 1999.

[12] Bruno Bachelet, Antoine Mahul, and Loïc Yon. Designing Generic Algorithms for

Operations Research. Software: Practice and Experience, 2005. submitted.

[13] John Backus. Can programming be liberated from the von neumann style?: a func-

tional style and its algebra of programs. Commun. ACM, 21(8):613–641, 1978.

[14] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic. Elsevier, 1984.

[15] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost-effective. IEEE Software,

8(1):13–24, 1991.

[16] John Bartlett. Familiar Quotations. Little Brown, 1919.

[17] Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. Beyond templates: a

study of clones in the STL and some general implications. In ICSE ’05: Proceedings of

the 27th international conference on Software engineering, pages 451–459, New York,

NY, USA, 2005. ACM Press.

[18] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–

90, 1958.

[19] K. L. Bernstein and E. W. Stark. Debugging type errors. Technical report, State

University of New York at Stony Brook, 1995.

[20] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and

Marco Zagha. Implementation of a portable nested data-parallel language. Technical

report, Pittsburgh, PA, USA, 1993.

[21] Jean-Daniel Boissonnat, Frederic Cazals, Frank Da, Olivier Devillers, Sylvain Pion,

Francois Rebufat, Monique Teillaud, and Mariette Yvinec. Programming with CGAL:

the example of triangulations. In Proceedings of the fifteenth annual symposium on

Computational geometry, pages 421–422. ACM Press, 1999.

[22] Boost. Boost C++ Libraries. .

Bibliography 230

[23] Richard Bornat. Proving pointer programs in hoare logic. In MPC ’00: Proceedings

of the 5th International Conference on Mathematics of Program Construction, pages

102–126, London, UK, 2000. Springer-Verlag.

[24] Didier Le Botlan and Didier Remy. MLF: raising ML to the power of system F. In ICFP

’03: Proceedings of the eighth ACM SIGPLAN international conference on Functional

programming, pages 27–38, New York, NY, USA, 2003. ACM Press.

[25] Nicolas Bourbaki. Elements of Mathematics. Theory of Sets. Springer, 1968.

[26] Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebee, and Martin Ri-

nard. Ownership types for safe region-based memory management in real-time java.

In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming lan-

guage design and implementation, pages 324–337, New York, NY, USA, 2003. ACM

Press.

[27] John Tang Boyland and William Retert. Connecting effects and uniqueness with

adoption. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 283–295, New York, NY, USA, 2005.

ACM Press.

[28] Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and

safety. Technical report, Williams College, 1996.

[29] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith,

Valery Trifonov, Gary T. Leavens, and Benjamin C. Pierce. On binary methods. Theory

and Practice of Object Systems, 1(3):221–242, 1995.

[30] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good “match” for

object-oriented languages. In ECOOP ’97, volume 1241 of Lecture Notes in Computer

Science, pages 104–127. Springer-Verlag, 1997.

[31] R. Burstall and B. Lampson. A kernel language for abstract data types and modules.

In Proceedings of the international symposium on Semantics of data types, pages 1–50,

New York, NY, USA, 1984. Springer-Verlag New York, Inc.

[32] Rod M. Burstall and Joseph A. Goguen. Putting theories together to make specifica-

tions. In IJCAI, pages 1045–1058, 1977.

Bibliography 231

[33] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-

bounded polymorphism for object-oriented programming. In FPCA ’89: Proceedings

of the fourth international conference on Functional programming languages and com-

puter architecture, pages 273–280, New York, NY, USA, 1989. ACM Press.

[34] Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems Research

Center, 1989.

[35] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-

morphism. ACM Computing Surveys, 17(4):471–522, 1985.

[36] Robert Cartwright and Mike Fagan. Soft typing. In PLDI, June 1991.

[37] Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure con-

version for typed languages. In ESOP ’00: Proceedings of the 9th European Symposium

on Programming Languages and Systems, pages 56–71, London, UK, 2000. Springer-

Verlag.

[38] Manuel M. T. Chakravarty, Gabrielle Keller, Simon Peyton Jones, and Simon Marlow.

Associated types with class. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 1–13, New York,

NY, USA, 2005. ACM Press.

[39] C. Chambers and D. Ungar. Customization: optimizing compiler technology for SELF,

a dynamically-typed object-oriented programming language. In PLDI ’89: Proceedings

of the ACM SIGPLAN 1989 Conference on Programming language design and implemen-

tation, pages 146–160, New York, NY, USA, 1989. ACM Press.

[40] Craig Chambers and the Cecil Group. The Cecil Language: Specification and Rationale,

Version 3.1. University of Washington, Computer Science and Engineering, December

2002. .

[41] Craig Chambers and David Ungar. Interative type analysis and extended message

splitting; optimizing dynamically-typed object-oriented programs. In PLDI ’90: Pro-

ceedings of the ACM SIGPLAN 1990 conference on Programming language design and

implementation, pages 150–164, New York, NY, USA, 1990. ACM Press.

[42] Chung chieh Shan. Sexy types in action. SIGPLAN Notices, 39(5):15–22, 2004.

Bibliography 232

[43] Olaf Chitil, Frank Huch, and Axel Simon. Typeview: A tool for understanding type

errors. In 12th International Workshop on Implementation of Functional Languages,

2000.

[44] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible

alias protection. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, pages 48–64,

New York, NY, USA, 1998. ACM Press.

[45] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet,

José Meseguer, and Carolyn Talcott. The maude 2.0 system. In Robert Nieuwenhuis,

editor, Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture

Notes in Computer Science, pages 76–87. Springer-Verlag, June 2003.

[46] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addison Wesley, Reading, MA, 2002.

[47] CoFI Language Design Task Group. CASL—the CoFI algebraic specification

language—summary, 2001.

.

[48] William R. Cook. A proposal for making Eiffel type-safe. The Computer Journal,

32(4):304–311, 1989.

[49] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-

Hill, 1990.

[50] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques and

Applications. Addison-Wesley, 2000.

[51] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,

tools, and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,

USA, 2000.

[52] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-

ematik, 1:269–271, 1959.

[53] Glen Jeffrey Ditchfield. Overview of Cforall. University of Waterloo, August 1996.

Bibliography 233

[54] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common

subexpression problem. Journal of the ACM (JACM), 27(4):758–771, 1980.

[55] Pavol Droba. Boost string algorithms library, July 2004.

.

[56] R. Kent Dybvig. The Scheme Programming Language: ANSI Scheme. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1996.

[57] H. Eichelberger and J. Wolff v. Gudenberg. UML description of the STL. In First

Workshop on C++ Template Programming, Erfurt, Germany, October 10 2000.

[58] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagat-

ing, Dynamic Inheritance. PhD thesis, Department of Computer Science, University

of Aarhus, Århus, Denmark, 1999.

[59] Erik Ernst. Family polymorphism. In ECOOP ’01, volume 2072 of Lecture Notes in

Computer Science, pages 303–326. Springer, June 2001.

[60] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical linear types

for imperative programming. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002

Conference on Programming language design and implementation, pages 13–24, New

York, NY, USA, 2002. ACM Press.

[61] A.D. Falkoff and D.L. Orth. Development of an apl standard. Technical Report RC

7542, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, February 1979.

[62] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In

ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference on Func-

tional programming, pages 48–59, New York, NY, USA, 2002. ACM Press.

[63] Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Behavioral con-

tracts and behavioral subtyping. In ESEC/FSE-9: Proceedings of the 8th European

software engineering conference held jointly with 9th ACM SIGSOFT international sym-

posium on Foundations of software engineering, pages 229–236, New York, NY, USA,

2001. ACM Press.

[64] Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Softw. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1978.

Bibliography 234

[65] Daniel P. Friedman and Matthias Felleisen. The Little Schemer. MIT Press, fourth

edition, 1996.

[66] B. A. Galler and A. J. Perlis. A proposal for definitions in ALGOL. Communications of

the ACM, 9(7):481–482, 1966.

[67] B. A. Galler and A. J. Perlis. A View of Programming Languages. Computer science

and information processing. Addison-Wesley, 1970.

[68] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Professional Computing Series. Addison-

Wesley, 1995.

[69] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Will-

cock. A comparative study of language support for generic programming. In OOPSLA

’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented pro-

graming, systems, languages, and applications, pages 115–134, New York, NY, USA,

2003. ACM Press.

[70] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Will-

cock. An extended comparative study of language support for generic programming.

Journal of Functional Programming, 2005. submitted.

[71] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures de l’Arith-

métique d’Ordre Supérieur. Thèse de doctorat d’état, Université Paris VII, Paris,

France, 1972.

[72] J. A. Goguen. Parameterized programming and software architecture. In ICSR ’96:

Proceedings of the 4th International Conference on Software Reuse, page 2, Washing-

ton, DC, USA, 1996. IEEE Computer Society.

[73] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre

Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications of Algebraic

Specification using OBJ. Cambridge, 1993.

[74] Joseph A. Goguen. Parameterized programming. IEEE Transactions on Software En-

gineering, SE-IO, No(5):528–543, September 1984.

Bibliography 235

[75] Miguel Guerrero, Edward Pizzi, Robert Rosenbaum, Kedar Swadi, and Walid Taha.

Implementing DSLs in metaOCaml. In OOPSLA ’04: Companion to the 19th annual

ACM SIGPLAN conference on Object-oriented programming systems, languages, and

applications, pages 41–42, New York, NY, USA, 2004. ACM Press.

[76] John V. Guttag and James J. Horning. Larch: languages and tools for formal specifica-

tion. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[77] John V. Guttag, Ellis Horowitz, and David R. Musser. The design of data type spec-

ifications. In ICSE ’76: Proceedings of the 2nd international conference on Software

engineering, pages 414–420, Los Alamitos, CA, USA, 1976. IEEE Computer Society

Press.

[78] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type

classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.

[79] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type

analysis. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 130–141, New York, NY, USA, 1995.

ACM Press.

[80] Bastiaan Heeren, Johan Jeuring, Doaitse Swierstra, and Pablo Azero Alcocer. Improv-

ing type-error messages in functional languages. Technical report, Utrecht Univesity,

February 2002.

[81] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with

safe manual memory-management in cyclone. In ISMM ’04: Proceedings of the 4th

international symposium on Memory management, pages 73–84, New York, NY, USA,

2004. ACM Press.

[82] Ralf Hinze. A simple implementation technique for priority search queues. In ICFP

’01: Proceedings of the sixth ACM SIGPLAN international conference on Functional

programming, pages 110–121, New York, NY, USA, 2001. ACM Press.

[83] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM, 4(7):321,

1961.

Bibliography 236

[84] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of

Symbolic Logic, 16:14–21, 1951.

[85] Mark Howard, Eric Bezault, Bertrand Meyer, Dominique Colnet, Emmanuel Stapf,

Karine Arnout, and Markus Keller. Type-safe covariance: competent compilers can

catch all catcalls. , April 2003.

[86] International Organization for Standardization. ISO/IEC 14882:1998: Programming

languages — C++. Geneva, Switzerland, September 1998.

[87] Kenneth E. Iverson. Operators. ACM Trans. Program. Lang. Syst., 1(2):161–176,

1979.

[88] Suresh Jagannathan and Andrew Wright. Flow-directed inlining. In PLDI ’96: Pro-

ceedings of the ACM SIGPLAN 1996 conference on Programming language design and

implementation, pages 193–205, New York, NY, USA, 1996. ACM Press.

[89] Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock. An analy-

sis of constrained polymorphism for generic programming. In Kei Davis and Jörg

Striegnitz, editors, Multiparadigm Programming in Object-Oriented Languages Work-

shop (MPOOL) at OOPSLA, Anaheim, CA, October 2003.

[90] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Algorithm specialization

and concept constrained genericity. In Concepts: a Linguistic Foundation of Generic

Programming. Adobe Systems, April 2004.

[91] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Associated types and con-

straint propagation for mainstream object-oriented generics. In OOPSLA ’05: Pro-

ceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programing,

systems, languages, and applications, 2005. To appear.

[92] Mehdi Jazayeri, Rüdiger Loos, David Musser, and Alexander Stepanov. Generic

Programming. In Report of the Dagstuhl Seminar on Generic Programming, Schloss

Dagstuhl, Germany, April 1998.

[93] Richard D. Jenks and Barry M. Trager. A language for computational algebra. In

SYMSAC ’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic

computation, pages 6–13, New York, NY, USA, 1981. ACM Press.

Bibliography 237

[94] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Jour-

nal of the ACM, 24(1):1–13, 1977.

[95] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s

Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY,

USA, 1979.

[96] Mark P. Jones. Qualified Types: Theory and Practice. Distinguished Dissertations in

Computer Science. Cambridge University Press, 1994.

[97] Mark P. Jones. First-class polymorphism with type inference. In POPL ’97: Pro-

ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 483–496, New York, NY, USA, 1997. ACM Press.

[98] M.P. Jones. Dictionary-free overloading by partial evaluation. In Partial Evaluation

and Semantics-Based Program Manipulation, Orlando, Florida, June 1994 (Technical

Report 94/9, Department of Computer Science, University of Melbourne), pages 107–

117, 1994.

[99] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

[100] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank

types. submitted to the Journal of Functional Programming, April 2004.

[101] D. Kapur and D. Musser. Tecton: a framework for specifying and verifying generic

system components. Technical Report RPI–92–20, Department of Computer Science,

Rensselaer Polytechnic Institute, Troy, New York 12180, July 1992.

[102] D. Kapur, D. R. Musser, and X. Nie. An overview of the tecton proof system. Theoret-

ical Computer Science, 133:307–339, October 1994.

[103] D. Kapur, D. R. Musser, and A. A. Stepanov. Tecton: A language for manipulat-

ing generic objects. In J. Staunstrup, editor, Proceedings of a Workshop on Program

Specification, volume 134 of LNCS, pages 402–414, Aarhus, Denmark, August 1981.

Springer.

Bibliography 238

[104] Deepak Kapur, David R. Musser, and Alexander Stepanov. Operators and algebraic

structures. In Proc. of the Conference on Functional Programming Languages and Com-

puter Architecture, Portsmouth, New Hampshire. ACM, 1981.

[105] A. Kershenbaum, D. Musser, and A. Stepanov. Higher order imperative programming.

Technical Report 88-10, Rensselaer Polytechnic Institute, 1988.

[106] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William

Griswold. Getting started with ASPECTJ. Communications of the ACM, 44(10):59–65,

2001.

[107] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heteroge-

neous collections. In Haskell ’04: Proceedings of the ACM SIGPLAN workshop on

Haskell, pages 96–107, New York, NY, USA, 2004. ACM Press.

[108] Ullrich Köthe. Handbook on Computer Vision and Applications, volume 3, chapter

Reusable Software in Computer Vision. Acadamic Press, 1999.

[109] Bernd Krieg-Brückner and David C. Luckham. ANNA: towards a language for anno-

tating ada programs. In SIGPLAN ’80: Proceeding of the ACM-SIGPLAN symposium on

Ada programming language, pages 128–138, New York, NY, USA, 1980. ACM Press.

[110] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and

Kristen Nygaard. Abstraction mechanisms in the BETA programming language. In

POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 285–298, New York, NY, USA, 1983. ACM Press.

[111] K. Läufer. Type classes with existential types. Journal of Functional Programming,

6(3):485–517, May 1996.

[112] Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data

types. ACM Transactions on Programming Languages and Systems, 16(5):1411–1430,

1994.

[113] Lie-Quan Lee, Jeremy G. Siek, and Andrew Lumsdaine. The Generic Graph Compo-

nent Library. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 399–414,

New York, NY, USA, 1999. ACM Press.

Bibliography 239

[114] Xavier Leroy. Unboxed objects and polymorphic typing. In POPL ’92: Proceedings of

the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 177–188, New York, NY, USA, 1992. ACM Press.

[115] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jerome Vouillon.

The Objective Caml Documentation and User’s Manual, September 2003.

[116] Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Softw.,

11(5):23–30, 1994.

[117] Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Scheifler,

and Alan Snyder. CLU reference manual. Technical Report LCS-TR-225, Cambridge,

MA, USA, October 1979.

[118] B.H. Liskov and S. N. Zilles. Specification techniques for data abstractions. IEEE

Transactions on Software Engineering, SE-1(1):7–18, March 1975.

[119] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the combi-

nation of aop with generative programming in aspectc++. In G. Karsai and E. Visser,

editors, Generative Programming and Component Engineering, number 3286 in LNCS,

pages 55–74, Heidelberg, 2004. Springer-Verlag.

[120] Andrew Lumsdaine and Brian C. McCandless. The matrix template library. BLAIS

Working Note #2, University of Notre Dame, 1996.

[121] Andrew Lumsdaine and Brian C. McCandless. The role of abstraction in high perfor-

mance computing. In Proceedings, 1997 Internantional Conference on Scientific Com-

puting in Object-Oriented Parallel Computing, Lecture Notes in Computer Science.

Springer-Verlag, 1997.

[122] John Maddock. A proposal to add regular expressions to the standard library.

Technical Report J16/03-0011= WG21/N1429, ISO/IEC JTC 1, Information Tech-

nology, Subcommittee SC 22, Programming Language C++, March 2003.

.

[123] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mechanism in

object-oriented programming. In OOPSLA ’89: Conference proceedings on Object-

oriented programming systems, languages and applications, pages 397–406, New York,

Bibliography 240

NY, USA, 1989. ACM Press.

[124] Boris Magnusson. Code reuse considered harmful. Journal of Object-Oriented Pro-

gramming, 4(3), November 1991.

[125] Johan Margono and Thomas E. Rhoads. Software reuse economics: cost-benefit

analysis on a large-scale ada project. In ICSE ’92: Proceedings of the 14th international

conference on Software engineering, pages 338–348, New York, NY, USA, 1992. ACM

Press.

[126] M. Douglas McIlroy. Mass-produced software components. In J. M. Buxton, P. Naur,

and B. Randell, editors, Proceedings of Software Engineering Concepts and Techniques,

1968 NATO Conference on Software Engineering, pages 138–155, January 1969.

.

[127] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, Upper Saddle

River, NJ, 2nd edition, 1997.

[128] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

[129] John C. Mitchell. Polymorphic type inference and containment. Information and

Computation, 76(2-3):211–249, 1988.

[130] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM

Trans. Program. Lang. Syst., 10(3):470–502, 1988.

[131] James H. Morris, Jr. Types are not sets. In Conference Record of ACM Symposium on

Principles of Programming Languages, pages 120–124, New York, 1973. ACM.

[132] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

[133] David R. Musser. Introspective sorting and selection algorithms. Software Practice

and Experience, 27(8):983–993, 1997.

[134] David R. Musser. Formal methods for generic libraries or toward semantic

concept checking. In Workshop on Software Libraries: Design and Evaluation,

Dagstuhl, Germany, March 2005.

.

Bibliography 241

[135] David R. Musser. Generic programming and formal methods. In Workshop on The

Verification Grand Challenge, Menlo Park, CA, February 2005.

.

[136] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference Guide.

Addison-Wesley, 2nd edition, 2001.

[137] David R. Musser and Alex Stepanov. Generic programming. In ISSAC: Proceedings of

the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation,

1988.

[138] David R. Musser and Alexander A. Stepanov. A library of generic algorithms in Ada.

In Using Ada (1987 International Ada Conference), pages 216–225, New York, NY,

December 1987. ACM SIGAda.

[139] David R. Musser and Alexander A. Stepanov. Generic programming. In P. (Patrizia)

Gianni, editor, Symbolic and algebraic computation: ISSAC ’88, Rome, Italy, July 4–8,

1988: Proceedings, volume 358 of Lecture Notes in Computer Science, pages 13–25,

Berlin, 1989. Springer Verlag.

[140] Nathan C. Myers. Traits: a new and useful template technique. C++ Report, June

1995.

[141] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall Series in

Innovative Technology. Prentice Hall, 1991.

[142] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence

closure. J. ACM, 27(2):356–364, 1980.

[143] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors,

Types for Proofs and Programs (TYPES 2002), volume 2646, pages 259–278, 2003.

[144] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[145] Object Management Group. OMG Unified Modeling Language Specification, 1.5 edi-

tion, March 2003.

[146] Martin Odersky and al. An overview of the scala programming language. Technical

Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

Bibliography 242

[147] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal

theory of objects with dependent types. In Proc. ECOOP’03, Springer LNCS, 2003.

[148] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In POPL

’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 54–67, New York, NY, USA, 1996. ACM Press.

[149] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of

the design space. In Haskell Workshop, June 1997.

[150] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank

types. Journal of Functional Programming, 2004. submitted.

[151] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[152] W. R. Pitt, M. A. Williams, M. Steven, B. Sweeney, A. J. Bleasby, and D. S. Moss. The

bioinformatics template library: generic components for biocomputing. Bioinformat-

ics, 17(8):729–737, 2001.

[153] R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389–1401, 1957.

[154] B. Randell. Software engineering in 1968. In ICSE ’79: Proceedings of the 4th inter-

national conference on Software engineering, pages 1–10, Piscataway, NJ, USA, 1979.

IEEE Press.

[155] Didier Remy. Exploring partial type inference for predicative fragments of system-

F. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international conference on

Functional programming, New York, NY, USA, September 2005. ACM Press.

[156] Nicolas Remy. GsTL: The geostatistical template library in C++. Master’s thesis,

Stanford University, March 2001. .

[157] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Program-

ming Symposium, volume 19 of LNCS, pages 408–425, Berlin, 1974. Springer-Verlag.

[158] John C. Reynolds. Separation logic: A logic for shared mutable data structures.

In LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer

Science, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

Bibliography 243

[159] David S. Rosenblum. A practical approach to programming with assertions. IEEE

Trans. Softw. Eng., 21(1):19–31, 1995.

[160] Graziano Lo Russo. An interview with a. stepanov.

.

[161] Owre Sam and Shankar Natarajan. Theory interpretations in PVS. Technical report,

2001.

[162] Sriram Sankar, David Rosenblum, and Randall Neff. An implementation of anna. In

SIGAda ’85: Proceedings of the 1985 annual ACM SIGAda international conference on

Ada, pages 285–296, New York, NY, USA, 1985. Cambridge University Press.

[163] Sibylle Schupp, Douglas Gregor, David R. Musser, and Shin-Ming Liu. User-extensible

simplification: Type-based optimizer generators. In CC ’01: Proceedings of the 10th

International Conference on Compiler Construction, pages 86–101, London, UK, 2001.

Springer-Verlag.

[164] Christoph Schwarzweller. Towards formal support for generic programming.

, 2003. Habilitation thesis, Wilhelm-

Schickard-Institute for Computer Science, University of Tübingen.

[165] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In

Haskell ’02: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 1–16, New

York, NY, USA, 2002. ACM Press.

[166] Jeremy Siek. A modern framework for portable high performance numerical linear

algebra. Master’s thesis, University of Notre Dame, 1999.

[167] Jeremy Siek. Boost Concept Check Library. Boost, 2000.

.

[168] Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko Järvi, and

Andrew Lumsdaine. Concepts for C++0x. Technical Report N1758=05-0018,

ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-

guage C++, January 2005.

[169] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User

Guide and Reference Manual. Addison-Wesley, 2002.

Bibliography 244

[170] Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric poly-

morphism in C++. In First Workshop on C++ Template Programming, October 2000.

[171] Jeremy Siek and Andrew Lumsdaine. Essential language support for generic pro-

gramming: Formalization part 1. Technical Report 605, Indiana University, Decem-

ber 2004.

[172] Jeremy Siek and Andrew Lumsdaine. Essential language support for generic pro-

gramming. In PLDI ’05: Proceedings of the ACM SIGPLAN 2005 conference on Pro-

gramming language design and implementation, pages 73–84, New York, NY, USA,

June 2005. ACM Press.

[173] Jeremy Siek and Andrew Lumsdaine. Language requirements for large-scale generic

libraries. In GPCE ’05: Proceedings of the fourth international conference on Generative

Programming and Component Engineering, September 2005. accepted for publica-

tion.

[174] Jeremy G. Siek and Andrew Lumsdaine. Advances in Software Tools for Scientific

Computing, chapter A Modern Framework for Portable High Performance Numerical

Linear Algebra. Springer, 2000.

[175] Raul Silaghi and Alfred Strohmeier. Better generative programming with generic as-

pects. Technical report, Swiss Federal Institute of Technology in Lausanne, December

2003. .

[176] Silicon Graphics, Inc. SGI Implementation of the Standard Template Library, 2004.

.

[177] Richard Soley and the OMG Staff Strategy Group. Model driven architecture. Tech-

nical report, Object Management Group, November 2000.

.

[178] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series

in Computer Science, 2nd edition, 1992.

[179] Alexander Stepanov. gclib. , 1987.

[180] Alexander A. Stepanov, Aaron Kershenbaum, and David R. Musser. Higher order pro-

gramming.

Bibliography 245

, March 1987.

[181] Alexander A. Stepanov and Meng Lee. The Standard Template Library. Technical

Report X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project,

May 1994.

[182] Christopher Strachey. Fundamental concepts in programming languages, August

1967.

[183] Walid Taha and Tim Sheard. Metaml and multi-stage programming with explicit

annotations. Technical report, 1999.

[184] Robert Endre Tarjan. Data structures and network algorithms. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1983.

[185] J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification: Parameteri-

zation and the power of specification techniques. ACM Trans. Program. Lang. Syst.,

4(4):711–732, 1982.

[186] Kresten Krab Thorup. Genericity in Java with virtual types. In ECOOP ’97, volume

1241 of Lecture Notes in Computer Science, pages 444–471, 1997.

[187] Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is

undecidable. Information and Computation, 179(1):1–18, 2002.

[188] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information

and Computation, 132(2):109–176, 1997.

[189] Mads Torgersen. Virtual types are statically safe. In FOOL 5: The Fifth International

Workshop on Foundations of Object-Oriented Languages, January 1998.

[190] Matthias Troyer, Synge Todo, Simon Trebst, and Alet Fabien and. ALPS: Algorithms

and Libraries for Physics Simulations. .

[191] Franklyn Turbak, Allyn Dimock, Robert Muller, and J. B. Wells. Compiling with

polymorphic and polyvariant flow types.

[192] B. L. van der Waerden. Algebra. Frederick Ungar Publishing, 1970.

[193] Todd L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd International Scien-

tific Computing in Object-Oriented Parallel Environments (ISCOPE’98), volume 1505

of Lecture Notes in Computer Science. Springer-Verlag, 1998.

Bibliography 246

[194] Friedrich W. von Henke, David Luckham, Bernd Krieg-Brueckner, and Olaf Owe. Se-

mantic specification of ada packages. In SIGAda ’85: Proceedings of the 1985 annual

ACM SIGAda international conference on Ada, pages 185–196, New York, NY, USA,

1985. Cambridge University Press.

[195] Oscar Waddell and R. Kent Dybvig. Fast and effective procedure inlining. In Proceed-

ings of the Fourth International Symposium on Static Analysis (SAS ’97), volume 1302

of Lecture Notes in Computer Science, pages 35–52. Springer-Verlag, September 1997.

[196] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM

Symposium on Principles of Programming Languages, pages 60–76. ACM, January

1989.

[197] David Walker, Karl Crary, and Greg Morrisett. Typed memory management via static

capabilities. ACM Transactions on Programming Languages and Systems, 22(4):701–

771, 2000.

[198] Joerg Walter and Mathias Koch. uBLAS. Boost.

.

[199] M. Wenzel. Using axiomatic type classes in Isabelle (manual), 1995.

.

[200] Jeremiah Willcock, Jaakko Järvi, Andrew Lumsdaine, and David Musser. A formal-

ization of concepts for generic programming. In Concepts: a Linguistic Foundation of

Generic Programming at Adobe Tech Summit. Adobe Systems, April 2004.

[201] J. Yang, J. Wells, P. Trinder, and G. Michaelson. Improved type error reporting, 2000.

[202] Hongyu Zhang and Stan Jarzabek. XVCL: a mechanism for handling variants in

software product lines. Science of Computer Programming, 53(3):381–407, 2004.

[203] S.N. Zilles. Algebraic specification of data types. Technical Report Project MAC

Progress Report 11, Mass. Inst. Technology, 1975.

Index

LOOM, 80

MLF, 104

, 47

, 27

, 36

, 43

clause, 93

Bidirectional Iterator, 30

Binary Function, 39

Forward Iterator, 30

Input Iterator, 18, 28

Output Iterator, 29

Random Access Iterator, 30

, 36

, 38

, 34

, 23

, 31

, 30

, 25

, 41

, 41

, 41

, 41

, 48

, 47

, 41

, 47

, 41

, 25

, 41

abstract base class, 126

abstract data type, 110

accidental conformance, 84

Ada, 86

alias, 184

annotated type, 134

anonymous function, 112

any, 121

archetype classes, 34

argument dependent lookup, 25

associated types, 19, 94, 99

backward chaining, 107

BETA, 63

binary method problem, 60

callable from, 109

Cforall, 83

class, 110

247

INDEX 248

CLU, 83, 121

compilation, 118

complexity guarantees, 19

concept, 95, 126

concept-based overloading, 110, 166

concepts, 17

conditional model, 46, 97

congruence relation, 100

conversion requirements, 38

declaration, 221

environment, 134

equivalence relation, 100

evidence, 120

expression, 221

first-class polymorphism, 113

function

anonymous, 122

expressions, 122

generic, 121

parameters, 123

pure virtual, 126

types, 123

virtual, 126

function expression, 112

function object, 8, 37

function overloading, 108

function specialization, 69

functor, 86

gbeta, 63, 80

generic function, 92

generics, 9, 55

grammar, 219

higher-order functions, 8

Horn clause, 106

implicit instantiation, 7, 102, 125

implicit model passing, 105

instantiated, 24

intensional type analysis, 72, 125

interface, 83

macro-like parameterization, 65

matching, 80

Maude, 86

ML, 86

model, 96, 126

model head, 106

model lookup, 105

model passing, 86

models, 18

monomorphization 69

more specific model, 107

more specific overload, 109

multi-parameter concept, 35

nominal conformance, 83

OBJ, 86

object types, 83

Objective Caml, 83, 86

parameteric polymorphism, 65

parameterized model, 97

partial evaluation, 70

partial template specialization, 29

INDEX 249

Pebble, 86

pointers, 124

predecessor, 135

Prolog, 106

property map, 175

refinement, 26

regions, 184

requirements on associated types, 30

same-type constraints, 35, 93, 99, 178

Scala, 63, 80

scalar replacement of aggregates, 218

separate type checking, 8

separately compiled, 8

signature, 83, 87

statement, 221

struct, 110

structural conformance, 83

structure, 86

subsumption principle, 59, 102

syntax, 219

tag dispatching idiom, 40

template specialization, 27

theory, 53

traits class, 27

type, 220

type class, 83

type sets, 83

type argument deduction, 102

type equality, 98

type expression, 220

type sharing, 82

unification, 106, 144

unify, 144

union, 110

valid expressions, 24

value semantics, 42

virtual classes, 63

virtual patterns, 63

virtual types, 63

Jeremy G. Siek

Open Systems Lab
Department of Computer Science
Indiana University
Bloomington, IN 47405

Tel: (812) 855-3608
Fax: (812) 855-4829
jsiek@osl.iu.edu

Objective To advance both current practice and the state of the art in software engineering in the
area of library construction and programming languages with an emphasis on generic
programming.

Education University of Notre Dame 1993–2001
B.S. Mathematics 1997.
M.S. Computer Science and Engineering 1999.

Indiana University 2001–2005
Enrolled in the Ph.D. program. Defended thesis in July 2004.

Awards: NCAA Post-Graduate Scholarship and National Merit Scholar.

Experience Rice University, Houston Post-doctoral research associate 2005–present
Working with Prof. Walid Taha on multi-stage programming and with Prof. Ken
Kennedy on research related to telescoping languages

AT&T Labs–Research, Florham Park Summer Manager Summer 2001
Worked with Bjarne Stroustrup on the Extended Type Information (XTI) library, a
system for compile-time reflection of type information for C++. Applied XTI to the
construction of a remote-procedure invocation system.

C++ Standards Committee Representative for Indiana University 2001–present
Worked on the iterator concept and iterator adaptor proposals for standard library
extension. Worked on a proposal for adding support for generic programming to C++
through the addition of “concepts”.

Boost C++ Group Contributing Member 1999–present
Worked on the graph, concept check, property map, operator, iterator adaptor, and
dynamic bitset libraries.

SGI C++ Compiler Group Intern 1999–2000
Worked on the port of the SGI iostream library to Linux. Developed the concept
checking library in collaboration with Alexander Stepanov and applied it to the SGI
STL implementation. Contributed to bootstrapping the SGI C++ compiler in the
IA64 Itanium processor.

Professional
Interests

Generic library construction, especially in the domains of graph theory and high-
performance linear algebra. Language design and implementation for the support of
generic programming techniques, including type systems and logics for program cor-
rectness.

Selected
publications

Language Requirements for Large-Scale Generic Libraries. With Andrew Lumsdaine.
In GPCE ’05: Proceedings of the fourth international conference on Generative Pro-
gramming and Component Engineering. September, 2005.

Essential Language Support for Generic Programming. With Andrew Lumsdaine. In
PLDI ’05: Proceedings of the ACM SIGPLAN 2005 conference on Programming lan-
guage design and implementation. June, 2005.

Concepts for C++0x. With Douglas Gregor, Ronald Garcia, Jeremiah Willcock,
Jaakko Järvi, and Andrew Lumsdaine. ISO/IEC JTC 1, Information Technology,
Subcommittee SC 22, Programming Language C++. Report number N1758=05-0018.
2005.

A Comparative Study of Language Support for Generic Programming. With Ronald
Garcia, Jaakko Järvi, Andrew Lumsdaine, and Jeremiah Willcock. In proceedings
OOPSLA, 2003.

Improving the Lazy Krivine Machine. With Daniel P. Friedman, Abdulaziz Ghuloum,
and Lynn Winebarger. Accepted for publication in Higher-Order and Symbolic Com-
putation, 2003.

The Boost Graph Library: User Guide and Reference. Addison-Wesley. With Lie-Quan
Lee and Andrew Lumsdaine. December 20, 2001.

Concept checking: binding parametric polymorphism in C++. Jeremy Siek and An-
drew Lumsdaine. In the First Workshop on C++ Template Programming. Erfurt,
Germany, October 10, 2000.

The generic graph component library. With Lie-Quan Lee and Andrew Lumsdaine. In
Proceedings OOPSLA, 1999.

A Modern Framework for Portable High Performance Numerical Linear Algebra. Jeremy
Siek and Andrew Lumsdaine. Chapter in Modern Software tools for Scientific Com-
puter. Birkhauser 1999.

Generic Graph Algorithms for Sparse Matrix Ordering. Lie-Quan Lee and Jeremy G.
Siek and Andrew Lumsdaine. In Proceedings of ISCOPE, Lecture Notes in Computer
Science Springer-Verlag, 1999.

The Matrix Template Library: A Generic Programming Approach to High Perfor-
mance Numerical Linear Algebra. Jeremy G. Siek and Andrew Lumsdaine. In the
International Symposium on Computing in Object-Oriented Parallel Environments,
1998.

