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RÉSUMÉ 

Le chitosane est un polymère naturel modifié produit à partir de la chitine, un des matériaux 

organiques le plus abondant dans la nature. Les applications biomédicales du chitosane tels que 

les échafaudages en génie tissulaire et les pansements d’aide à la cicatrisation ont beaucoup attiré 

l'attention ces derniers temps en raison de l’origine naturelle du chitosane et ses propriétés 

exceptionnelles telles que la biodégradabilité, la biocompatibilité et la non-toxicité. Les mats 

nanoporeuses de chitosane présentent les propriétés physico-chimiques spécifiques du matériau 

de base et bénéficient aussi des caractéristiques physiques de ces membranes en raison de leur 

morphologie et de grande surface spécifique. Réaliser ces structures en satisfaisant à des 

exigences essentielles telles que la flexibilité et une porosité élevée reste toujours difficile. 

L’électrofilage est une nouvelle technique développée récemment pour générer des fibres de 

polymères de taille nanométrique. Grâce à cette technique, des mats non-tissés poreux ayant une 

surface nettement élevée par rapport à la masse (généralement de 40 à 100 m
2
/g) sont produits. 

Toutefois, la capacité d’électrofiler le chitosane est limitée principalement en raison de sa nature 

polycationique et de sa structure chimique rigide. Plusieurs démarches entreprises pour préparer 

des nanofibres électrofilées de chitosane n'ont pas réussi car les membranes préparées sont 

facilement dissoutes dans des solvants aqueux neutres et faibles acide, les propriétés des 

nanofibres sont affaiblies à cause de l’importante quantité de l’agent de co-électrofilage ou parce 

que les procédés utilisant des solvants nocifs dont les résidus peuvent se retrouver dans le produit 

final sont des préoccupations importantes. 

Le but de ce travail est de fabriquer des membranes microporeuses non-tissées à base de 

nanofibres de chitosane pour des pansements de cicatrisation et pour filtrer les ions métalliques 

lourds de l'eau potable. Par conséquent, la préparation de nanofibres à haute teneur en chitosane à 

partir de solutions aqueuses est un objectif à atteindre pour ces applications. Dans cette thèse, 

deux approches ont été utilisées pour préparer les nanofibres à base de chitosane: l’électrofilage 

d’un mélange d’une solution de chitosane avec une solution facilement électrofilable telle qu’une 

solution aqueuse d’oxyde de polyéthylène (PEO) – et l’électrofilage co-axial des deux solutions. 

Par conséquent, l’interprétation du comportement des phases et la miscibilité des solutions 

aqueuses acides de chitosane et de PEO et leurs mélanges est d’une importance cruciale, 



vi 

puisqu’une séparation de phases ayant lieu pendant le procédé d’électrofilage change grandement 

la morphologie et les propriétés physico-mécaniques des produits finaux. 

Premièrement, l’approche rhéologique a été utilisée sur une solution aqueuse de PEO bien 

caractérisée pour élaborer le protocole expérimental. En comparant les points critiques observés 

avec ceux obtenus par d'autres techniques expérimentales, nous avons montré que des mesures 

rhéologiques peuvent détecter de manière sensible les stades précoces de séparation de phases. 

Par conséquent, le procédé a été appliqué à des solutions de PEO, de chitosane ou du mélange des 

deux à différents ratios, dilués dans une solution d’acide acétique à 50% en masse. Ces solutions 

ont montré une température critique de solubilité inférieure (LCST) sur le diagramme de phase, 

qui est attribuée à l'existence de liaisons hydrogène entre les groupes actifs du chitosane, la 

chaîne principale du PEO et le solvant. Les températures de séparation de phase  critiques des 

points binodaux et spinodaux ont été estimées à partir d’expériences isochrones en balayage de 

température. Les températures binodales obtenues confirment que les solutions de chitosane / 

PEO sont miscibles et stables à des températures modérées et que la séparation de phases a lieu à 

des températures plus élevées de 60 – 75 °C.  

Alors, nous voulions comprendre de manière approfondie les propriétés de la solution chitosane / 

PEO qui permet d’obtenir un électrofilage réussi, c’est à dire continu et stable, et qui produit des 

nanofibres sans défaut et uniformes, des fibres sans relief ou non-perlées. Les effets de 

la composition du mélange et de la concentration en acide acétique sur les propriétés telles que la 

tension de surface et la conductivité, sur la possibilité d’électrofiler ces solutions ont été 

étudiés. Un chitosane fortement désacétylé (DDA = 97,5%) dans une solution d’acide acétique à 

50% a été utilisé, c’est le degré le plus élevé de désacétylation du chitosane pour lequel il a été 

signalé que la préparation de nanofibres de chitosane était possible. Les caractéristiques 

rhéologiques de la solution de chitosane et de PEO, étant des paramètres importants du procédé 

d’électrofilage, ont été examinées et leurs relations avec la possibilité d’électrofiler ou non sont 

été évaluées.  Comme nous avons montré que les solutions chitosane / PEO sont miscibles et 

stables à des températures modérées, un dispositif modifié pour électrofiler à des températures 

modérées (25-70 °C) a été conçu, permettant d’atteindre une quantité maximale de 90% en 

masse de chitosane dans des nanofibres non-perlées de chitosane / PEO ayant des diamètres 

de 60-80 nm de diamètre. Il a également été constaté que l’augmentation du rapport chitosane / 
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PEO de 50/50 à 90/10 a conduit à une réduction remarquable du diamètre des nanofibres de 123 

à 63 nm à température ambiante.  

En outre, nous avons constaté que des températures de procédé modérées (40-70 °C) aident à 

stabiliser le processus électrofilage de ces solutions et à produire des nanofibres non-perlées. 

Cependant, à des températures plus élevées (70-80 °C), le jet électrofilé est devenu instable et des 

fibres avec une morphologie perlée ont été obtenues. Ce phénomène a lieu dans une même 

gamme de températures que celle de la séparation de phases, déterminée précédemment par des 

études rhéologiques. Donc, la séparation de phases des solutions  induite par la température est 

considérée comme à l’origine de cette observation. D'autre part, une étude par spectroscopie infra 

rouge à transformée de Fourier (FTIR) sur des films obtenu par évaporation du solvant et des 

nanofibres du mélange chitosane / PEO obtenues à la température ambiante a  montré la présence 

d'interactions par liaison hydrogène entre le chitosane et le PEO. Ceci pourrait être une autre 

indication de la miscibilité entre ces deux polymères en solution à des températures modérées.  

Enfin, afin d’éliminer l’étape de mélange, et pour réduire la quantité de chitosane utilisé et 

positionner le chitosane sur la surface extérieure des nanofibres en vue des applications visées, la 

technique d’électrofilage coaxial a été utilisée. En utilisant le procédé en une étape d’électrofilage 

coaxial, des nanofibres avec une structure cœur-enveloppe de PEO / chitosane ont pour la 

première fois été produites à partir de solutions aqueuses, le chitosane étant l’enveloppe (couche 

extérieure) et le PEO le cœur (couche intérieure). Des nanofibres uniformes et sans défauts de 

100-190 nm de diamètre ont été produites. La nanostructure cœur-enveloppe et la présence de 

chitosane à la surface ont été confirmées par des images TEM obtenues avant et après le lavage à 

l’eau du PEO contenu. La présence du chitosane à la surface des nanofibres composites a aussi 

été confirmée par des analyses XPS. L’analyse de la composition, de manière générale ou locale, 

a été effectuée par thermogravimétrie (TGA) et par FTIR, respectivement, pour examiner 

l’homogénéité des nanofibres. De plus, il a été montré que les nanofibres de chitosane creuses ont 

pu être obtenues par l’extraction du PEO dans les nanofibres coaxiales de PEO / chitosane, ce qui 

pourrait être d’un grand intérêt dans des applications comme la purification du sang en 

hémodialyse. 

 



viii 

ABSTRACT 

Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant 

organic materials in the world. Highly porous chitosan mats present the specific physicochemical 

properties of the base material and also benefit from the physical characteristics of nanoporous 

membranes. Electrospinning is a novel technique developed long time ago and revisited recently 

that can generate polymeric fibers with nanometric size.  

The ultimate purpose of this work is to fabricate microporous non-woven chitosan membranes 

for wound healing dressings and heavy metal ion removal from drinking water. In this 

dissertation, two approaches have been utilized to prepare chitosan-based nanofibers; blending 

and co-axial electrospinning of chitosan solution with a readily electrospinnable solution, i.e. an 

aqueous solution of polyethylene oxide (PEO). 

Consequently, understanding the phase behavior and miscibility of aqueous acidic solutions of 

chitosan and PEO and their blends is of crucial importance, as any phase separation occurring 

during the electrospinning process greatly changes the morphology and physico-mechanical 

properties of the final products.  

First we employed the rheological approach on a well-known aqueous PEO solution to develop 

the experimental protocol.  By comparing these critical points with that obtained from other 

experimental techniques, we showed that rheological measurements can sensitively detect early 

stages of phase separation. Subsequently the method was applied to 50 wt% aqueous acetic acid 

solutions of PEO, chitosan and their blends at different ratios. These solutions showed a lower 

critical solution temperature (LCST) phase diagram that is attributed to the existence of hydrogen 

bonds between active groups on chitosan and PEO backbone and the solvent. Critical 

decomposition temperatures for binodal and spinodal points were estimated from isochronal 

temperature sweep experiments. The obtained binodal temperatures confirmed that chitosan/PEO 

solutions are miscible and stable at moderate temperatures and phase separate at higher 

temperatures of 60-75 °C.  

Then, we intended to obtain a thorough understanding of chitosan/PEO solution properties that 

lead to a successful electrospinning process, i.e. continuous and stable, and which produces 

defect free uniform beadless nanofibers. The effect of blend composition and acetic acid 
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concentration on properties such as surface tension and conductivity and, ultimately, on 

electrospinnability were investigated. A highly deacetylated chitosan (DDA=97.5 %) in 50% 

acetic acid was used, which is the maximum deacetylated chitosan grade that has been reported 

for the preparation of electrospun chitosan-based nanofibers. The rheological characteristics of 

the chitosan/PEO solutions as a controlling parameter in the electrospinning process were 

examined and their relationships to electrospinnability presented. As we showed that 

chitosan/PEO solutions are miscible and stable at moderate temperatures, a modified 

electrospinning set up to electrospin at temperatures of 25-70 °C was designed to achieve content 

as high as 90 wt% of chitosan in beadless chitosan/PEO nanofibers of 60-80 nm in diameter. It 

was also found that increasing chitosan/PEO ratio from 50/50 to 90/10 led to a remarkable 

diameter reduction from 123 to 63 nm at room temperature.   

Additionally, we found that moderate process temperatures help to stabilize the electrospinning 

process of these solutions and produce beadless nanofibers. However, at higher temperatures, the 

electrospun jet became unstable and beaded fiber morphology was obtained. This phenomena 

occurs closely at the temperature range of phase separation, previously determined by rheology 

studies. Therefore, temperature-induced phase separation of these solutions is considered as the 

reason for that observation. On the other hand, an FTIR study at room temperature on cast films 

and nanofibers of chitosan/PEO blends at room temperature showed the presence of hydrogen 

bonding interactions between chitosan and PEO that could be an another indication of miscibility 

between these two polymers in solution at moderate temperatures.  

 Finally, in order to remove the blending step, reducing the amount of chitosan used and also to 

put chitosan right on the outer surface of the nanofibers for further related applications, a co-axial 

electrospinning technique was employed. By using a one-step co-axial electrospinning process, 

for the first time  core-shell structured PEO-chitosan nanofibers from aqueous solutions were 

produced in which chitosan is located at the shell (outer layer) and PEO at the core (inner layer). 

Uniform sized defect-free nanofibers of 100-190 nm diameter were produced. The core-shell 

nanostructure and existence of chitosan on the shell layer were confirmed by TEM images 

obtained before and after washing the PEO content with water. The presence of chitosan on the 

surface of the composite nanofibers was further supported by XPS studies. Bulk and local 

compositional analysis is performed by thermal gravimetry (TGA) and Fourier transform infra-

red spectroscopy (FTIR) techniques, respectively, to examine the homogeneity of the nanofibers. 
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Additionally, it was shown that hollow chitosan nanofibers could be obtained by PEO washing of 

the co-axial PEO/chitosan nanofibers, which could also be of great interest in applications such as 

blood purification in hemodialysis. 
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CHAPITRE 1  

INTRODUCTION 

Nanofibrous materials in the form of flat sheet membranes or three dimensional structures 

provide new solutions and vast opportunities to significantly improve current technologies and to 

create high value-added products and associated business development. Applications for 

nanofibers (defined as having diameter less than 0.5 μm) include tissue scaffolds, protective 

clothing, nanocatalysis, water and air filtration, nanosensors, separation membranes and health 

care products. Although there are other methods for fabricating nanofibers, none of them can be 

compared to electrospinning in terms of versatility, ease of fiber production and flexibility.  

Electrospinning is a novel and simple technique to generate polymeric fibers with nanometric 

size. Using this technique, non-woven porous mats with distinctly high surface area to mass ratio 

(typically 40-100 m
2
/g) are produced. The electrospinning technique is generally used to fabricate 

thin planar flat sheet mats with thickness of 50 to 200 μm. In this process a charged polymer 

solution flows out of a syringe/needle set up and accelerates toward a collector, mounted at a 

fixed distance from the needle. Then an electrostatically driven jet of polymer solution forms, 

elongates and whips until it is deposited on the collector, resulting in formation of non-woven 

random nanofibers. The prepared non-woven electrospun membranes exhibit remarkable 

characteristics such as distinctly high specific surface area, high porosity, small pores size and 

interconnected pore structure. Recent achievements in development of industrial scale 

electrospinning equipments have opened up the way to fabricate electrospun nanofibers for 

several applications. Therefore, nowadays research on electrospun nanofibers is not restricted 

only to academic research labs, but also different companies that are involved in the production 

of nanofibrous products for superior performance. 

As for material selection in several biomedical applications, chitosan is among the most 

interesting due to its natural origin, non-toxicity, biocompatibility and biodegradability 

characteristics. Several methods such as phase inversion, phase separation and selective 

extraction have been used to produce porous chitosan morphologies. Lack of control over 

porosity and pore size dimensions and extracted phase and solvent residues in the final prepared 

structures are some negative aspects of these conventional methods. Therefore, microporous 
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chitosan structures obtained from the electrospinning process have gained much prominence 

recently. Highly porous electrospun chitosan-based mats present the specific physicochemical 

properties of the base material and benefit from the physical characteristics of nanoporous 

membranes because of their morphologies and large specific area. These materials show 

promising results in several applications such as wound healing dressings, anti-bacterial 

packaging films, drug delivery systems, scaffolds for tissue engineering and membranes for 

heavy metal ion absorption.  

Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant 

organic materials in the world. Existence of –NH2 groups on the chitosan backbone provides 

several unique properties such as solubility in acidic aqueous solvents, antifungal and 

antimicrobial properties and ability to chelate with heavy metal ions. However, chitosan is a 

challenging polymer to electrospin mainly due to its polycationic and rigid chemical structure in 

solution, and specific inter and intra- molecular interactions. The repulsive forces, arising from 

the protonation of –NH2 groups, could also restrict the formation of sufficient chain 

entanglements needed for a successful electrospinning process. 

Fabrication of chitosan-based electrospun nanofibers is a crucial step in order to produce the 

required structures for the above mentioned applications of interest. In this thesis, we aim to 

develop electrospun chitosan-based nanofibers with maximum chitosan content in stable 

electrospinning conditions, which can be used in various applications of interest, for example 

wound healing dressings and membranes for heavy metal ion removal from drinking water.  

To achieve that goal, the first part of this thesis is dedicated to provide a clear understanding 

about miscibility range and phase separation behaviour of chitosan, PEO and their blend 

solutions for further electrospinning process. To do so, rheological measurements are employed. 

Subsequently, electropsinnability of chitosan solutions in the presence of polyethylene oxide 

(PEO) as a co-spinning material was studied by performing a systematic study to obtain  

comprehensive knowledge about chitosan/PEO solution properties leading to a successful 

electrospinning process.  

Finally, a one-step co-axial electrospinning set up is used to prepare a novel core/shell structured 

PEO/chitosan nanofibers with chitosan located on the outer layer. 
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This dissertation is based on three articles that have been published or submitted to scientific 

journals and comprised the following sections: 

 Chapter 2 provides a critical literature review considering the related issues and followed 

by the originality and main objectives of this dissertation.    

 The summary and organization of the articles are described in Chapter 3. 

 The main achievements of the thesis are given in the format of three scientific papers in 

Chapters 4, 5 and 6. 

 Chapter 7 presents a general discussion of the main results. 

 Finally Chapter 8 presents the final conclusions of this work and the recommendations 

for future work. 
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CHAPITRE 2    

LITERATURE REVIEW 

This chapter provides a comprehensive literature review covering many aspects of chitosan 

nanofiber fabrication which forms the backbone of this research. In Section 2.1 an overview of 

chitosan as a promising biopolymer that shows a great potential in many biomedical applications 

is discussed. Section 2.2 focuses on nanofibers and the electrospinning technique, developed a 

long time ago and revisited recently, to fabricate submicrometer fibers. Section 2.3 deals with 

nanofibrous chitosan membranes and the electrospinning of chitosan through different routes 

followed by some applications of chitosan nanofibrous mats. Section 2.4 focuses on phase 

behaviour of polymer solutions, specifically chitosan and PEO and different methods utilized to 

determine their phase separation temperatures. Finally, in Sections 2.5 and 2.6 the originality of 

the work and the main objectives of this dissertation are introduced.      

2.1 Chitosan 

Chitosan is a modified natural amino-polysaccharide derived from chitin, known as one of the 

most abundant organic materials in nature. Chitin is the major structural component in the 

exoskeleton of arthropods and cell walls of fungi and yeast (Pillai, Paul et al. 2009). Commercial 

chitin is mainly prepared from crab, lobster and shrimp shells which are the massive waste 

products of seafood industries (Kumar 2000; Rinaudo 2006). Applications for chitin are very 

limited because of its poor solubility in common solvents resulting mainly from its highly 

extended hydrogen-bonded semi-crystalline structure (Kumar, Muzzarelli et al. 2004; Pillai, Paul 

et al. 2009).  Thus, chitin is often converted to its more deacetylated derivative called chitosan. 

Deacetylated form of chitin in nature only occurred in some fungi such as Mucor Rouxi that is 

identified as natural chitosan (Hudson and Jenkins 2001). Chitin is very similar to cellulose, 

except for the hydroxyl group at C-2 position that is replaced by the acetylamino group. These 

groups further transformed into aminogroups through the deacetylation process result in chitosan 

(Kumar 2000). Thus chitosan can be considered as a random copolymer; in addition the degree of 

deacetylation (DDA) is almost never 100%. The chemical structures of chitin, chitosan and 

cellulose are shown in Fig. 2-1. There is not a sharp border between chitin and chitosan in terms 
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of DDA. Some researchers defined chitosan as the copolymer with the DDA of larger than 50% 

(Brugnerotto, Desbrieres et al. 2001); however, some others believed that this limit should be 

defined as 75% (Knaul, Hudson et al. 1999). When the DDA reaches approximately 50%, chitin 

becomes soluble in aqueous acidic solutions (Brugnerotto, Desbrieres et al. 2001; Rinaudo 2006). 

Chitosan has an apparent pKa of 6.5 and is generally soluble at pHs below 6. This is related to 

the protonation of the free amino groups on its backbone. The amino groups on the chitosan 

molecule (Fig. 2-1) are identified as the main source of the unique properties of chitosan, after 

being protonated in acidic solvents resulting in a polyelectrolyte solution. Hence, beside 

molecular weight, DDA and the distribution of the amino groups along the polymer chain are the 

key factors affecting the final properties of chitosan.  

 

 

Figure 2-1: Chemical structure of cellulose, chitin and chitosan (Kumar 2000).  
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2.1.1 Chitosan solubility  

While chitin is insoluble in most solvent systems, chitosan having at least 50% deacetylated 

groups is readily soluble in dilute acidic solutions below pH 6.0. At low pH, amine groups get 

protonated and become positively charged, which makes chitosan soluble and a cationic 

polyelectrolyte solution forms (Rinaudo, Pavlov et al. 1999; Pillai, Paul et al. 2009). 

Consequently, chitosan is known as the only semi-natural polycationic polymer in nature. The 

following equilibrium reaction describes the state of ionization:  

Chit–NH2 + H3O
+
  Chit–NH3

+
 +H2O 

Therefore, organic acids such as acetic, formic and lactic acids can dissolve chitosan (Hamdine et 

al. 2005, Hamdine et al. 2006). The most commonly used solvent is aqueous acetic acid solutions 

at different concentrations. Chitosan is almost insoluble in polyprotic acids such as sulfuric and 

phosphoric acid (Pillai, Paul et al. 2009, Hamdine et al, 2006).  

 

2.1.2 Chitosan applications 

Chitosan has been widely used in several applications due to its natural origin and exceptional 

properties such as biodegradability, biocompatibility, non-toxicity, and chelation of metal ions. 

Among them, scaffolds for tissue-engineering, wound healing dressings, water and waste water 

filtration and antibacterial films were among the interesting ones (Kumar 2000; Dutta, Dutta et 

al. 2004; Kumar, Muzzarelli et al. 2004; Rinaudo 2006; Dutta, Tripathi et al. 2009; Jayakumar, 

Menon et al. 2010). Table 2.1 shows the main application fields of chitosan.  
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Table 2.1: Main applications for chitosan (Rinaudo 2006) 

Agriculture 

Defensive mechanism in plants, Simulation of plant growth, 

Seed coating, Frost protection, Time release of fertilizers, and 

nutrients into the soil 

Water and waste treatment 

Flocculants to clarify water (drinking water, pools), Removal of 

metal ions, Ecological polymer (eliminate synthetic polymers), 

Reduce odors 

Food & beverages 

Not digestible by human (dietary fiber), Bind lipids (reduce 

cholesterol), Preservative, Thickener and stabilizer for sauces, 

Protective, fungistatic,  Antibacterial coating for fruit 

Cosmetics & toiletries 

Maintain skin moisture, Treat acne, Improve suppleness of hair, 

Reduce static electricity in hair, Tone skin, Oral care (tooth 

paste, chewing gum) 

Biopharmaceutics 
Immunologic, Antitumoral, Hemostatic and anticoagulant 

healing, Bacterostatic 

 

Table 2.2: Attractive properties of chitosan in relation to its use in biomedical applications 

(Rinaudo 2006) 

Potential biomedical 

applications 

Surgical sutures, Dental implants, Artificial skin, Rebuilding of 

bone, Corneal contact lenses, Time release drugs for animals 

and humans, Encapsulating material 

Principal characteristics 

Biodegradable, Biocompatible, Renewable, Film forming, 

Hydrating agent, Nontoxic, Biological tolerance, Hydrolyzed by 

lyzosyme, Wound healing properties, Efficient against bacteria, 

Viruses, Fungi 
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However, as it is found from literature, chitosan is more attractive and promising for biomedial 

applications as can be understood from Table 2.2, which summarizes the main properties of 

chitosan and their related potential biomedical applications.  

 In addition, chitosan is a good inhibitor against the growth of a wide variety of yeast, fungi and 

bacteria. It also exhibits gas and aroma barrier properties in dry conditions, which make it an 

interesting choice for anti-bacterial food packaging applications. This can improve the quality, 

security and storage stability of perishable foods (Begin and Van Calsteren 1999; No, Meyers et 

al. 2007; Zivanovic, Li et al. 2007; Dutta, Tripathi et al. 2009). 

 

2.2 Nanofibers technology 

Fibers play an important role in the everyday life of humans and have been long used since they 

were first produced. Nowadays, applications of fibers are not limited to textiles and woven 

products as newer fields of application opened up. A fiber is defined as a flexible, 

macroscopically homogenous material that is long and has small diameter, which is called high 

aspect ratio. Development of fiber industries proposed some newly enhanced technologies that 

can potentially produce ultra thin fibers, in the range of 1000-2000 nm, which are named 

microfibers. The electrospinning process was introduced later as a method to produce nanofibers 

with diameter range from few nm to µm (Ramakrishna, Fujihara et al. 2005). In electrospinning, 

unlike conventional fiber spinning technologies, an electrical force is used to elongate a polymer 

jet into nanometer-size fibers. The electrospinning process has attracted rapidly growing interest 

because of the large number of current and potential application for nanofibrous structures. 

 

2.2.1 Nanotechnology  

The term nanotechnology covers the activities related to the manufacturing and engineering of 

objects at the nano-scale level. Nanotechnology can be defined as the use of methods to fabricate 

nanoscale objects with unique properties. These unique characteristics are the key to a wide range 

of exciting applications that cannot be achieved by other methods. An exponential growth in the 

scientific research centers/institutes and publications were observed in the last decade in this area. 
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Accepted classification for nanoscale materials or nanomaterials defines them as materials with at 

least one dimension in the order of nanometers. Nanomaterials are categorized by their geometry, 

in zero, one and two dimensional materials (Huang, Zhang et al. 2003). Nanoparticles, nanofibers 

and nanofilms are examples of these structures, respectively. Conventional fiber drawing 

methods are limited to fibers in the range of several µm to mm and cannot be used to produce 

nanofibers. Short whiskers (single crystal nano rod), submicron steel and nickel fibers and carbon 

nanotubes are some examples of nanofibers. However, these fibers are short and available only in 

the form of chopped bundles;on the other hand , polymeric nanofibers can be long and 

continuous. Polymer nanofibers are expected to provide a number of distinctive and attractive 

properties. It is anticipated that a larger reduction in polymer fiber diameter improves further 

their properties (Reneker and Yarin 2008).    

 

2.2.2 Electrospinning technique  

Electrospinning or electrostatic spinning is the most convenient and scalable technique proposed 

for production of polymeric nanofibers. In recent years, this process has been used and scaled up 

to produce nanofibers industrially. Nanofibers with diameters in the range of 50-900 nm can be 

readily electrospun in the form of nonwoven mats. A 50 nm diameter polymer fiber has about 10
5
 

molecules passing any cross section of the fiber, each up to a length of 100 µm (Reneker and 

Chun 1996).  At first glance, it seemed that electrospinning is very simple and thus an easily 

controlled method for the production of nanofibers. In a typical electrospinning experiment, the 

minimum set of equipment required is as follows: 

a. A thin nozzle with an inner diameter of about 100 µm through which a polymer solution 

or melt is pumped via a special metering pump or gas pressure; 

b. A collector in the form of fixed plate or rotating drum to collect the produced nanofibers, 

mounted at a distance of 10-25 cm from the nozzle; 

c. A high voltage generator that applies a high electric field of 100-500 KV/m between the 

nozzle and collector. 

A simple set up for laboratory scale production of electrospun nanofibers is shown in Fig. 2-2. 



10 

 

Figure 2-2: Schematic outline of a typical electrospinning set up.  

 

Fig. 2-2 shows a vertical alignment of the nozzle and collector in the top to bottom geometry but 

it can be done in the bottom to top or horizontally. The electric current flow during 

electrospinning is in the range of a few hundred nano-amperes to micro-amperes. The 

electrospinning method is simple and does not require expensive equipments. In fact, a wide 

range of polymers can be electrospun into nanofibers at room temperature and atmospheric 

pressure. Electrospun nanofibers are considerably thinner than a human hair (Fig. 2-3).   

 

 

Figure 2-3: SEM image of electrospun nanofibers and human hair (Greiner and Wendorff 2007). 
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Moreover, electrospun nanofibers can be produced in a wide range of diameters small enough to 

be compared with nanoscale objects of biological systems such as proteins, viruses and bacteria. 

A comparison of nanofibers diameter with other nanoscale objects is illustrated Fig. 2-4.  

 

 

Figure 2-4: Comparison of the diameter of electrospun nanofibers with nanoscale biological and 

technological objects (Greiner and Wendorff 2007) 

 

2.2.2.1 Description of the electrospinning technique 

In the electrospinning process, a high voltage is applied between a syringe filled with polymer 

solution and a collector mounted at a fixed distance. The resulting powerful electric field causes a 

pendant drop of polymer solution to be electrified, and the induced charges distributes over its 

surface. At this stage, two forces act on the droplet; repulsive force between the surface charge 

and coulombic force exerted by the external electrical field on the droplet. Further increase in the 

applied voltage deforms the drop into a conical shape commonly known as Taylor cone (Reneker 

and Chun 1996). Evolution of the pendant droplet at the tip of a needle by increasing the applied 

voltage is displayed in Fig. 2-5. If higher voltages are applied, the strength of the applied 

electrical field can overcome the surface tension of the polymer solution and a liquid jet is ejected 

from the deformed drop at the nozzle (Fig. 2-5) (Reneker, Yarin et al. 2000; Koombhongse, Liu 

et al. 2001; Han, Yarin et al. 2008; Reneker and Yarin 2008). This electrical jet then undergoes a 

stretching and whipping process towards the counter electrode on the collector. During this step, 

the liquid jet is elongated and the solvent is evaporated, leading to a large reduction in the jet 
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diameter from hundreds of micrometers to as small as tens of nanometers, and is then deposited 

with high velocities of 1-10 m/s on the collector (Reneker, Yarin et al. 2000; Yarin, 

Koombhongse et al. 2001; Yarin, Koombhongse et al. 2001; Thompson, Chase et al. 2007; Han, 

Yarin et al. 2008; Reneker and Yarin 2008). 

 

 

Figure 2-5: Evolution of Taylor Cone by increasing the electrical field (Reneker and Yarin 2008). 

 

The charged fiber often deposits as a randomly oriented, non-woven mat on the collector. 

Depending on the polymer solution used and the electrospinning conditions, other morphologies 

such as beads, beaded fibers or ribbon-type fibers can be obtained instead. Typical examples of 

these morphologies are shown in Figs. 2-6 to 2-8.   

 

 

Figure 2-6: SEM image of beads produced by electrospinning of 1 wt% PEO (900 kDa) solution 

in water, the horizontal edge of image is 20 μm long. (Fong et al. 1999).  
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Figure 2-7: SEM image of beaded fiber morphology obtained from electrospinning of 2.5 wt% 

PEO (900 kDa) solution in water, the horizontal edge of image is 20 μm long (Fong et al. 1999). 

 

 

Figure 2-8: SEM image of ribbon fiber morphology prepareded by electrospinning of 10% Poly 

(etherimide) (Theron et al. 2004). 

    

2.2.2.2 Electrospinning development 

Electrical liquid droplets and jets have been studied for more than hundred years. These works 

provide the fundamental basis for electrospraying and electrospinning. Stability of the jet is the 

main difference between these two processes. In electrospraying the electrical jet breaks into 

droplets due to capillary instability, but if there is enough entanglements in the fluid, it will be 

stabilized and make a continued jet in the form of thin filaments resulting in the electrospinning 
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process (Ramakrishna, Fujihara et al. 2005). Cooley (Cooley 1902; Cooley 1903) and Morton 

(Morton 1902) issued the first patents on the electrostatic spinning of polymer solutions. They 

used cellulose nitrate in acetone and proposed a method of dispersing fluids that is similar to 

electrospinning and spraying. From 1934 to 1944, Formhals (Formhals 1934; Formhals 1943) 

published a sequence of patents on an improved version of the electrospinning process and 

apparatus. Sir Taylor in 1960s (Taylor 1964) fundamentally investigated the deformation of a 

droplet into a conical geometry in an electrical field. Baumgarten (Baumgarten 1971) produced 

acrylic fibers with diameter less than 1 µm from DMF solution. He studied the effect of solution 

viscosity (concentration) and electrical field on the diameter of fibers. Larrondo and Manley 

(Larrondo and Manley 1981) produced electrospun fibers of PE and PP by melt electrospinning. 

Although these studies prepared the basics for the electrostatic spinning process, the present 

knowledge is mainly due to more recent work, especially the ones carried out in the last 10-15 

years. From 1993 to 1996, Reneker and coworkers reexamined the process to produce nanofibers 

(Doshi and Reneker 1995; Reneker and Chun 1996) and they coined the term “electrospinning” 

instead of electrostatic spinning for the first time. Recent scientific attempts also contributed well 

toward better understanding of electrospinning and its effective parameters to develop industrial 

applications. Consequently, nowadays research on electrospun nanofibers is not restricted only to 

academia, but also different companies such as Donaldson, Elmarco, Finetex Tech and Amsoil 

Ea are involved in the development/production of nanofibrous products for superior performance 

for several industrial applications and nanofiber production equipments. 

 

2.2.2.3 Mechanism of electrospinning 

Electrospinning looks simple but a closer inspection shows that this process is very complex. For 

instance, the jet only follows a direct path for a certain distance and after that, it changes its 

behavior considerably. The jet moves laterally and then splays into a number of jets, forming a 

cone shape towards the collector. Figure 2-9 shows a typical photograph of a jet during the 

electrospinning process on its way from a needle to the collector, taken at two different capture 

times (Shin, Hohman et al. 2001).  
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Figure 2-9: Photographs of a jet of PEO solution during electrospinning with two different 

capture times: A) 1/250 s, B) 18 ns (Shin, Hohman et al. 2001). 

 

Before 1999, splitting or splaying the electrified jet due to the repulsion forces between surface 

charges was thought to be the main reason of nanofiber formation during the electrospinning 

process (Reneker and Chun 1996; Li and Xia 2004). However, more experimental observations 

showed that the thinning of a jet by the electrospinning process is mainly caused by the bending 

instability associated with the electrified jet (Reneker, Yarin et al. 2000; Yarin, Koombhongse et 

al. 2001). This concept was concluded further by experiments done by Yarin et al. (Yarin, 

Koombhongse et al. 2001; Yarin, Koombhongse et al. 2001), and Shin et al. (Shin, Hohman et al. 

2001) in 2001. By using high-speed photography, they found that the conical envelope in the 

electrospinning jet contains only a single, rapidly bending or whipping thread (Fig.2-9B), even 

though it appears that the cone shaped region is composed of multiple jets. In some cases, 

splaying of the jet is also observed, but it is not the dominant process during electrospinning 

(Reneker, Yarin et al. 2000; Shin, Hohman et al. 2001; Yarin, Koombhongse et al. 2001; Yarin, 

Koombhongse et al. 2001; Li and Xia 2004). The frequency of whipping is so high that 

conventional photography cannot properly show what happens exactly, giving the impression of 

jet splaying into multiple jets toward the collector (Li and Xia 2004).       
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2.2.3 Applications of polymeric nanofibers 

The special geometry of electrospun nanofibers makes them attractive options for various 

applications in the field of nanostructured materials and design. Figure 2-10 illustrates the 

potential applications of polymer nanofibers in different fields.  

 

 

Figure 2-10: The diversity of application areas proposed for electrospun nanofibers (Huang, 

Zhang et al. 2003). 

 

Nanofibrous mats have a high surface area to mass ratio (40-100 m
2
/g). This unique characteristic 

is ideal for various membranes applications such as: 

 Chemical membranes for removal of toxic products  

 Protective clothing against chemical, biological or environmental attacks 

 Ultrafine filters for air filtration in medicine, military devices, food processing and 

electronic industries to absorb tiny particles 

 Highly breathable membranes due to high absorption capability and high porosity.
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Two third of U.S. patents published on nanofibers are related to biological and medical 

applications. However, the first completely industrialized application of nanofibers was 

introduced in filtration due to its huge market. Electrospun mats as filter media provide 

advantages of high filtration efficiency, absorbance of fine particles and low air resistance 

resuling in lower pressure drop. Nanofibers are also attractive materials for nano sensor 

applications because their high specific area provides the ability to absorb or react rapidly with 

low levels of chemicals.  

 

2.3 Nanofibrous chitosan membrane 

There has been a growing interest for the fabrication of chitosan membranes with micro and 

nanoporous morphologies recently. Such chitosan mats can not only present the specific 

physicochemical properties of chitosan but can also benefit from the physical characteristics of 

microporous membranes. Several methods have been used to fabricate porous chitosan structures 

such as phase separation (Gu, Xue et al. 2001; Mi, Wu et al. 2003), phase inversion (Li, Gu et al. 

1999; Mi, Shyu et al. 2001) and selective dissolution (Zeng, Fang et al. 2004). After successful 

development of the electrospinning technique to fabricate polymeric nanofibers, many 

researchers tried to employ this method to prepare chitosan microporous mats (Duan, Dong et al. 

2004; Min, Lee et al. 2004; Ohkawa, Cha et al. 2004; Ohkawa, Minato et al. 2006). Fabrication 

of chitosan-based nanofibers in the form of non-woven mats is very desirable, as it can provide 

novel possibilities to develop applications of chitosan in various fields (Torres-Giner, Ocio et al. 

2008). However, it was soon found that chitosan electrospinning is challenging. It is more likely 

due to its polycationic nature in solution, rigid chemical structure and specific inter and intra-

molecular interactions (Duan, Dong et al. 2004; Li and Hsieh 2006; Desai, Kit et al. 2008). 

Formation of strong hydrogen bonds prevents the free movement of polymeric chain segments 

exposed to the electrical field, leading to jet break up during the process (Geng, Kwon et al. 

2005; Li and Hsieh 2006; Desai, Kit et al. 2008). Additionally, the repulsive forces between ionic 

groups on the polymer molecules is expected to hinder the formation of sufficient chain 

entanglements to allow continuous fiber formation during jet stretching, whipping and bending, 

generally resulting in nanobeads instead of nanofibers (Min, Lee et al. 2004). In fact, it has been 
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shown on many occasions that sufficient chain entanglement in polymer solution is crucial for a 

successful electrospinning process (McKee, Wilkes et al. 2004; McKee, Park et al. 2005; Shenoy, 

Bates et al. 2005; Woerdeman, Shenoy et al. 2007).  

 

2.3.1 Electrospinning of chitosan  

In spite of all aforementioned difficulties in electrospinning of chitosan, its valuable properties 

and prospective applications are attractive enough to convince different research groups to work 

on this subject. Since 2004 several methods and approaches have been used with varying degrees 

of success to prepare electrospun nanofibers based on chitosan. 

2.3.1.1 Electrospinning of neat chitosan 

Neat electrospun chitosan nanofibers have been prepared by dissolving chitosan in trifluoroacetic 

acid (TFA) (Ohkawa, Minato et al. 2006) and its mixtures with dichloromethane (DCM) and 

trichloromethane (TCM) (Schiffman and Schauer 2007). TFA forms stable salts with the amino 

groups of chitosan which can efficiently hinder the intermolecular interactions between chitosan 

chains and facilitate electrospinning (Ohkawa, Minato et al. 2006). A highly concentrated 

aqueous acetic acid solution (80-90%) was also reported by some research groups as another 

successful solvent for the fabrication of neat chitosan nanofibers, using chitosan grades with 

DDA of 54 (Geng, Kwon et al. 2005) and 75-85% (Homayoni, Ravandi et al. 2009). It is believed 

that decreasing the surface tension of the solution by increasing the acetic acid content can help 

the electrospinnability of chitosan (Geng, Kwon et al. 2005). Applications of electrospun 

chitosan nanofibers using TFA-based solvents are however limited, as the prepared membranes 

can easily dissolve in neutral and weak basic aqueous solvents (Sangsanoh and Supaphol 2006), 

due to the high solubility of the TFA-chitosan salt residues. Additionally, working with toxic and 

harmful solvents and the possible presence of their residues in the final membranes always raise 

major concerns. 

2.3.1.2 Electrospinning of chitosan blends with synthetic polymers and proteins 

Blending chitosan with materials that facilitate its processing is another approach to make 

chitosan electrospinnable. The co-spinning agent should have excellent fiber forming
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characteristics in order to create entanglements and physical bonds with chitosan, and act as a 

carrier in the electrospinning process. Various synthetic polymers have been successfully blended 

with chitosan to produce chitosan-based composite nanofibers such as: polyethylene oxide (PEO) 

(Bhattarai, Edmondson, et al. 2005; Desai, Kit et al. 2008; Klossner, Queen et al. 2008), 

polyvinyl alcohol (PVA) (Li and Hsieh 2006; Jia, Gong et al. 2007; Zhou, Yang et al. 2008), 

polylactic acid (PLA) (Ignatova, Manolova et al. 2009), nylon-6 (Zhang, Wu et al. 2010) and 

polycaprolactone (PCL) (Zhang, Venugopal et al. 2005). Moreover, chitosan blends with proteins 

such as: silk fibroin (Cai, Mo et al. 2010; Sionkowska 2011), zein (Torres-Giner, Ocio et al. 

2009) and collagen (Mi, Shyu et al. 2001) have been electrospun productively. Generally the 

content of the co-spinning agent varies from 20 to 80 wt%. The presence of this second phase can 

however affect the properties of the nanofibers by decreasing the chitosan content located at the 

surface. This influences properties such as biocompatibility and mechanical integrity, and may be 

hard to rectify by an extraction process.  

 

2.3.1.3 Co-axial electrospinning of chitosan 

The co-axial electrospinning method provides an alternative and effective way of fabricating 

chitosan-based nanofibers. In this technique, two different solutions are spun simultaneously 

through a spinneret composed of two co-axial capillaries to produce core-shell structured 

nanofibers. Sun et al. (Sun, Zussman et al. 2003) and Yu et al. (Yu, Fridrikh et al. 2004) 

employed co-axial electrospinning to prepare nanofibers from polymer solutions with limited 

electrospinnability. They co-electrospun these solutions as the core material, with a readily 

electrospinnable solution as the shell layer to make core-shell nanofibers of the two components. 

Only Ojha et al. (Ojha, Stevens et al. 2008) used co-axial electrospinning technique to prepare 

chitosan nanofibers. They fed PEO as a template sheath for the chitosan core in a co-axial 

electrospinning set up. This leads to a two-step process, as the PEO shell layer should be 

removed by water washing to expose the chitosan nanofibers. 
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2.3.2 Applications of electrospun chitosan nanofibers 

Electrospun chitosan microporous structures have been sucessfully used for many applications in 

recent years. Among them the followings were more promising: 

 Supports for enzyme immobilization (Ye, Xu et al. 2006; Wang, Wan et al. 2009)   

 Anti-bacterial films (Ignatova, Starbova et al. 2006; An, Zhang et al. 2009; Son, Yeom et 

al. 2009)  

 Membranes for metal ions removal (Desai, Kit et al. 2008; Desai, Kit et al. 2009; Haider 

and Park 2009; Horzum, Boyaci et al. 2010) 

 Drug delivery systems (Ignatova, Manolova et al. ; Jayakumar, Menon et al. 2010; 

Jayakumar, Prabaharan et al. 2010) 

 Tissue engineering (Subramanian, Vu et al. 2005; Yang, Jin et al. 2008; Zhang, 

Venugopal et al. 2008; Wang, Itoh et al. 2009; Cooper, Bhattarai et al. ; Prabhakaran, 

Ghasemi-Mobarakeh et al. 2011)  

 Wound healing dressings (Chen, Chang et al. 2008; Zhou, Yang et al. 2008; Ignatova, 

Manolova et al. 2009; Cai, Mo et al. 2010; Kang, Yoon et al. 2010) 

 

2.4 Phase behavior of polymer solutions 

Phase separation behavior of polymer solutions is of great interest in both scientific and 

industrial point of view. (Bae, Lambert et al. 1991; Dormidontova 2002; Hammouda, Ho et al. 

2004; Shetty and Solomon 2009) Aqueous PEO solutions exhibit an inverse solubility-

temperature relationship that leads to a phase separation upon heating. Therefore, a low critical 

solution temperature (LCST) that depends on the molecular weight is observed for high 

molecular weight PEO grades in water. Such extraordinary properties are seen only in highly 

polar systems that have strong molecular interactions such as hydrogen bonding.(Polic and 

Burchard 1983; Bae, Lambert et al. 1991; Fischer and Borchard 2000)  

Aqueous acidic solutions of chitosan also exhibit great solubility, similarly to aqueous PEO 

solutions, due to the presence of strong hydrogen bonds between the solvent and the polymer 

owing to the presence of hydroxyl, acetylamine and amino groups on the chitosan chain. 
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Therefore, the occurrence of an LCST in chitosan solutions is expected.(Bae, Lambert et al. 

1991; Dormidontova 2002)   

Therefore, having clear knowledge about the phase behaviour and miscibility of solutions of 

chitosan and PEO and their blends is of crucial importance, as any phase separation occurring 

during the electrospinning process greatly changes the morphology and properties of the final 

products.  

Several methods have been used to study the onset of phase separation in polymer systems. 

Simple visual observation of turbidity (Fischer, Borchard et al. 1996), thermo-optical analysis 

(TOA) (Bae, Lambert et al. 1991), light scattering (Polic and Burchard 1983; He, Liu et al. 1991; 

Shetty and Solomon 2009) and  small angle neutron scattering (SANS) (Hammouda, Ho et al. 

2002; Hammouda, Ho et al. 2004)  are frequently used to determine the early stages of liquid-

liquid phase separation in polymer solutions.  

Rheometry represents a powerful tool to study the phase behaviour of polymeric systems. Near 

the phase separation temperature, the linear viscoelastic response is influenced by the critical 

concentration fluctuations and exhibits a thermorheological complexity, i.e. enhancement of 

elasticity in the vicinity of phase separation.(Kapnistos, Hinrichs et al. 1996; Niu and Wang 

2006) Ajji and Choplin(Ajji and Choplin 1991) quantified this phenomenon for polymer blends 

by extending the mean field theories of Fredrickson and Larson (Fredrickson and Larson 1987) 

developed for copolymers. It was shown that this approach can determine both the spinodal 

(Kapnistos, Hinrichs et al. 1996; Niu and Wang 2006; Yeganeh, Goharpey et al. 2010) and 

binodal (Sharma and Clarke 2004; Niu and Wang 2006) temperatures by carrying out a dynamic 

temperature sweep test on the blend and tracking the evolution of rheological material functions 

 and . This method was successfully employed for different polymer pairs and the obtained 

data agreed well with that from other techniques such as optical microscopy (Ajji, Choplin et al. 

1991; Yeganeh, Goharpey et al. 2010), light scattering (Vlassopoulos, Koumoutsakos et al. 1997) 

and inverse gas chromatography. (Bousmina, Lavoie et al. 2002) 
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2.5 Originality of the work 

According to the literature review, although considerable research has been conducted on the 

electrospinning of chitosan, there is still a great deal of uncertainty about the most influencing 

parameters leading to the achievement of electrospun chitosan nanofibers. Therefore, a 

comprehensive study is still required to clarify the relationships between chitosan-based solution 

properties and their success in the electrospinning process. Understanding the phase behavior of 

polymer solutions is also of crucial importance for any forming process, including 

electrospinning. To the best of our knowledge there is no published work that has examined the 

phase separation behavior of chitosan and its blend solutions with temperature. Furthermore, 

even if several methods have been used to study the onset of phase separation in polymer 

solutions, utilizing rheological measurements for this purpose have not been reported yet. Finally, 

even though the co-axial electrospinning technique is very promising for the preparation of 

nanofibers from polymers with limited electrospinnability, there is no published work on the 

fabrication of core-shell structured PEO-chitosan nanofibers with chitosan located on the surface 

by using a single-step co-axial electrospinning method. 

2.6 Objectives  

In view of the interesting features of highly porous chitosan structures and their huge potential 

for several biomedical applications, the well-established capability of the electrospinning process 

to produce non-woven nanofibrous structures, and considering the various drawbacks arising 

from the previous undertaken approaches to fabricate electrospun chitosan nanofibers, the main 

objective of this study is:   

“To fabricate chitosan-based microporous non-woven membranes from aqueous solutions using 

the electrospinning process” 

 

To achieve this main objective, two approaches are employed to prepare chitosan-based 

nanofibrous structures with high chitosan content, blending and co-axial electrospinning of 

chitosan with a readily electrospinnable solution, i.e. an aqueous solution of polyethylene oxide 

(PEO). The specific objectives of the current work are summarized as follows:
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 To fabricate chitosan-based electrospun mats with maximum chitosan content through 

blending with PEO in aqueous solution. 

 To investigate the phase behaviour and miscibility range of chitosan/PEO solutions as 

function of temperature. 

 To establish a fundamental understanding of chitosan/PEO solution properties that lead to 

successful electrospinning. 

 To produce PEO/chitosan nanofibers with chitosan located on the outer layer through a 

single step co-axial electrospinning process. 
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CHAPITRE 3  

SUMMARY OF ARTICLES 

The main achievements of this research project are presented in the form of three scientific 

papers in the following three chapters: 

Chapter 4 presents the results of the first paper: “Determination of phase behaviour of poly 

(ethylene oxide) and chitosan solution blends using rheometry” that has been submitted to 

Macromolecules. In this work, small amplitude oscillatory shear and steady shear rheological 

measurements are used to study the miscibility range and phase behaviour of PEO/chitosan 

solutions. It is shown that information on the phase separation of polymer solutions such as 

binodal and spinodal temperatures can be estimated directly through rheological measurements. 

In addition, the results of isochronal dynamic temperature sweep experiments are used to 

calculate key macromolecular and thermodynamic parameters such as correlation length and 

Flory-Huggins interaction parameter. 

Chapter 5 presents the second article “A fundamental study of chitosan/PEO electrospinning” 

that has been published in Polymer (Vol. 52, 2011, 4813-4824). In this work a thorough 

quantitative analysis of chitosan/PEO solution characteristics that lead to successful 

electrospinning is performed. Various properties such as surface tension, conductivity, viscosity 

and acetic acid concentration are considered in this study. Those fundamental findings allow us to 

prepare defect free chitosan-based nanofibers with high chitosan content. The effects of solution 

temperature and blend composition on morphology and fiber diameter of electrospun nanofibers 

are also investigated. In addition, an FTIR investigation is conducted to examine the presence of 

hydrogen bonding interactions between chitosan and PEO. 

Chapter 6 presents the third paper “Core-shell structured PEO-chitosan nanofibers by coaxial 

electrospinning”that has been published in Biomacromolecules (Vol. 13, 2012, 412-421). In this 

work, a single step co-axial electrospinning process is employed to prepare core-shell structured 

PEO/chitosan nanofibers with the possibility of producing chitosan hollow nanofibers through a 

subsequent PEO water washing step. Presence of chitosan on the outer layer is suggested by 

TEM images obtained before and after washing the PEO content with water, and also confirmed 

by XPS analysis. Bulk and local compositions of the prepared nanofibers are evaluated by TGA 
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and FTIR experiments, respectively, which confirms the homogeneity and uniformity of the 

nanofibers. 
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CHAPITRE 4  

DETERMINATION OF PHASE BEHAVIOUR OF POLY (ETHYLENE 

OXIDE) AND CHITOSAN SOLUTION BLENDS USING RHEOMETRY
1
 

Mehdi Pakravan, Marie-Claude Heuzey and Abdellah Ajji 

4.1 Abstract 

Aqueous solutions of PEO exhibit a lower critical solution temperature (LCST) phase diagram. In 

this work, phase separation behaviour of PEO/water solutions was investigated using small 

amplitude oscillatory shear and steady shear rheological measurements. Binodal decomposition 

temperatures were determined from the sudden changes in the slope of the dynamic temperature 

sweep of storage modulus and loss tangent. The spinodal decomposition points were also 

estimated by a mean field theoretical approach. Comparing the obtained critical points with other 

conventional methods revealed that rheological measurements are powerful and sensitive to 

detect even the early stage of phase separation of PEO solutions. This successful method was 

employed to investigate phase separation and miscibility of chitosan/PEO solutions at different 

compositions in aqueous acetic acid solutions that have already showed anomalous behaviour in 

a forming process. Lower critical solution temperature (LCST) phase behaviour was observed for 

chitosan/PEO solution blends. Phase separation temperature, miscibility range and correlation 

length of the solutions were determined from isochronal dynamic temperature sweep 

experiments. Effect of chitosan/PEO ratio on the binodal and spinodal decomposition 

temperatures was studied. Finding phase separation information on polymer solutions through 

rheological measurement is very promising. Isothermal steady shear rheological measurements 

were also carried out on chitosan/PEO solutions over a temperature range in which phase 

separation occurs. Viscosity increase at low shear rates above but in the vicinity of phase 

separation temperature was observed, which confirms the validity of the theoretical approach 

                                                 

1
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employed to determine the critical temperatures through dynamic rheological measurements. 

Finally, the Flory-Huggins interaction parameters were estimated from critical solution 

temperature and concentration results.  

 

4.2 Introduction  

PEO is a water soluble, hydrophilic, non-toxic and biocompatible polymer that has been widely 

used for biomedical and biomimetics applications.
1-3

 Phase separation behaviour and solubility 

characteristics of aqueous solutions of polyethylene oxide (PEO) have been raising both scientific 

and industrial interests for more than four decades. 
1, 3-9

 Aqueous PEO solutions exhibit 

anomalous behaviour in contrast to other ordinary polymer solutions. They show an inverse 

solubility-temperature relationship that leads to a phase separation upon heating. At even higher 

temperatures the homogeneous state becomes stable again. Hence, a closed loop phase diagram is 

observed as one of the characteristic features of aqueous PEO solutions. However, for high 

molecular weight PEO grades i.e. more than 100 kDa, only a low critical solution temperature 

(LCST) that depends on the molecular weight is observed. 
4, 6, 9

 Such extraordinary properties are 

seen only in highly polar systems that exhibit strong orientation dependence of molecular 

interactions such as hydrogen bonding.
1, 4-6, 10

 Clustering (also referred to as aggregation) is 

another unusual characteristic of PEO solutions dissolved in water (or other solvents) that has 

been studied intensively by several authors.
2, 3, 5, 7, 9

 Clusters or aggregates form in concentrated 

aqueous PEO solutions associated with temperature increase (T > 30° C). The clustering effect is 

pervasive and has been observed in some other systems such as polyelectrolyte solutions and clay 

dispersions.
7, 11, 12

 The basic origin of this cluster formation is not understood and remains an 

open question.
7, 13

 The peculiar behaviour of aqueous PEO solutions is attributed to the existence 

of hydrogen bonds between ether groups in PEO and hydrogen in water molecule and how these 

bonds are affected by temperature.
1, 3, 7, 8

  

Chitosan is a linear polysaccharide that is mainly produced from the partial deactetylation of 

chitin, one of the most abundant polysaccharides in nature.
14-18

 Chitosan is the only pseudo-

natural cationic polyelectrolyte. Aqueous acidic solutions of chitosan exhibit great solubility, 

similarly to aqueous PEO solutions, due to the presence of strong hydrogen bonds between the 
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solvent and the polymer owing to the presence of hydroxyl, acetylamine and amino groups on the 

chitosan chain. Therefore, the occurrence of an LCST in chitosan solutions is expected.
1, 6

  The 

tendency of chitosan to form aggregates in solution, which is attributed to the hydrophobic 

interactions of residual acetylated groups,
16

  has also been investigated extensively. 
11, 12, 19

  

Chitosan solutions and their blends with other synthetic polymers have recently attracted great 

attention 
15, 20-22

 due to the following facts:   

 The fascinating features of chitosan including renewability, availability in nature, non-toxicity, 

biocompatibility, anti-bacterial and biodegradability,
14, 17, 18

 which makes it a promising choice 

for biomedical and pharmaceutical applications such as drug delivery systems, wound healing 

dressings, tissue engineering scaffolds and anti-bacterial membranes.
18, 21, 23

  

 The “wet route” as the only successful method to fabricate chitosan final products in different 

forms of films, porous membranes, fibers, particles or sponges.
15, 21-24

 Chitosan should be 

processed in a solution state for all final applications. “Dry methods” such as melt processing, 

plasticization and kneading are still in early stages of research.
25-27

   

 Blending of chitosan in the solution state with other hydrophilic polymers such as PEO
28-31

, 

polyvinyl alcohol (PVA)
32, 33

, polylactic acid (PLA)
25

 and polycaproloctone (PCL)
34, 35

 is a 

well known approach to facilitate its processing, improve final properties or to overcome the 

disadvantage of the loss in mechanical strength in the wet state.
29, 36

   

PEO is a more attractive polymer for blending with chitosan due to its solubility in various 

aqueous solvents and biocompatibility.
30

 Consequently, understanding the phase behaviour and 

miscibility of aqueous acidic solutions of chitosan and PEO and their blends is of crucial 

importance, as any phase separation occurring during the forming processes such as film casting, 

fiber spinning and solution electro-spraying greatly changes the morphology and physico-

mechanical properties of the final products.  

In a separate study, the present authors have described an incoherent behaviour of chitosan/PEO 

solutions in the electrospinning process at high temperatures.
29

 We found that moderate process 

temperatures help to stabilize the electrospinning process of chitosan/PEO blend solutions and 

produce bead-less nanofibers. However, at higher temperature, the electrospun jet became 

unstable and beaded fibers morphology were obtained.
29

 The relevance of this observation to the 

temperature-induced phase separation of these solutions was questioned. On the other hand, 



29 

results of transmission FTIR on cast films and nanofibers of chitosan/PEO blends at room 

temperature showed the existence of hydrogen bonding interactions between chitosan and PEO, 

an indication of miscibility of these two polymers.
29

  

Several methods have been used to study the onset of phase separation in polymer systems. 

Simple visual observation of turbidity
37, 38

, thermo-optical analysis (TOA)
6
, light scattering 

3, 5, 39, 

40
 and  small angle neutron scattering (SANS)

7, 13
  are frequently used to determine the early 

stages of liquid-liquid phase separation in polymer solutions. However, only improved scattering 

techniques yield more detailed information leading to both spinodal and binodal points (cloud 

points).
6, 39, 40

 While the extensive studies were done to estimate the binodal (cloud points) 

temperatures,  little work on spinodal point measurements of well-known PEO/water solutions 

have been published. The fact is, that by having binodal and spinodal points one can calculate the 

values of Flory-Huggins interaction parameter (χ), a fundamental characteristic of polymer 

solutions.
10, 41, 42

  

Rheometry represents a powerful tool to study the phase behaviour of polymeric systems. 

Rheological measurements are sensitive to polymer chain reptation, diffusion and interfacial 

tension, and thus can be used to detect phase separation in rather early stages. Concentration 

fluctuations involving various mechanisms such as nucleation, diffusion, domain growth and 

coagulation are generally considered as the physical source of phase separation.
43, 44

 Near the 

phase separation temperature, the linear viscoelastic response is influenced by the critical 

concentration fluctuations and exhibits a thermorheological complexity, i.e. enhancement of 

elasticity in the vicinity of phase separation.
44-47

 Ajji and Choplin
48

 quantified this phenomenon 

for polymer blends by extending the mean field theories of Fredrickson and Larson
49

 developed 

for copolymers. It was shown that this approach can determine both the spinodal
44-47

 and 

binodal
44, 45, 50

 temperatures by carrying out a dynamic temperature sweep test on the blend and 

tracking the evolution of rheological material functions  and . This method was successfully 

employed for different polymer pairs and the obtained data agreed well with that from other 

techniques such as optical microscopy
47, 51, 52

, light scattering
46

 and inverse gas 

chromatography.
43

  Additionally, this quantitative technique allowed obtaining suitable results for 

both LCST 
43, 45, 47, 50, 53

 and UCST 
44, 46

 systems. 
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In this paper we demonstrate the usefulness of the rheological approach to investigate the phase 

behaviour of polymer solutions. To the best of our knowledge, it is the first time that this method 

is employed to study the liquid-liquid phase separation of a polymer solution. A PEO aqueous 

solution is selected as a model system to develop the experimental protocol, and subsequently the 

method is applied to aqueous acetic acid solutions of PEO, chitosan and their blends at different 

ratios. The results are expected to provide a clear understanding about the phase behaviour and 

miscibility of these blends, which is valuable for polymer forming processes in the solution state 

such as fiber spinning and film casting. 

Additionally, crucial macromolecular and thermodynamic parameters of correlation length and 

Flory-Huggins interaction parameter (χ) of polymer solutions were estimated from isochronal 

dynamic temperature sweep experiments.  

 

4.3 Theoretical background  

4.3.1 Scaling analysis of dynamic rheological properties near phase separation 

 Observations of anomalous behaviour in dynamic rheological properties of block copolymer 

melts in the transitional regime of phase separation have been analysed by Fredrickson and 

Larson.
49

 They used a mean field theory to derive the critical contribution of the concentration 

fluctuations to the viscoelastic properties of block copolymers near the critical point. After wave-

vector integration, they obtained the following expressions for the dynamic storage ( ) and loss 

moduli ( ) respectively: 

            (4-1)
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           (4-2) 

Where   is a static structure factor,  is the Onsager coefficient 

for the polymeric system of interest, k defines the wave vector, ω is the angular frequency and  

is the Boltzman coefficient. These equations are valid for both block copolymers and 

homopolymer blends. Hence  and  can be calculated by using the appropriate expression of 

the static structure factor and the Onsager coefficient. Ajji and Choplin
48

 extended Fredrickson 

and Larson’s approach
49

 to binary homopolymer blends after observing a similar behaviour
52, 54

 

in the evolution of their viscoelastic properties under oscillatory shear flow. They derived the 

previous equations (Eqs. 4-1 and 4-2) for homopolymer blends by using: 1) the static structure 

factor computed by de Gennes by a mean-field approach in the random phase approximation: 

       (4-3) 

Where  is the volume fraction of polymer 1, Ni is the number of statistical segments, and  

is the Debye function, and 2) the expression for the Onsager coefficient, , proposed by 

Binder: 

      (4-4) 

Where  is the statistical segment length of the species i and   is its rate of orientation defined 

by: 

                                       (4-5) 

Where  is the monomeric friction coefficient. 
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Using Eqs. 4-3 to 4-5, Ajji and Choplin
48

 integrated Eqs 4-1 and 4-2 by considering an expansion 

of the Debye function in the homogenous region near the critical point. More details of their 

development and discussion in the case of homopolymer blends can be found in reference [46]. 

Finally the following expressions for  and  were derived in the terminal one-phase region 

near the critical point: 

      (4-6) 

     (4-7) 

Where  is the value of the interaction parameter at the spinodal temperature, χ is the interaction 

parameter at temperature T and Rgi is the radius of gyration defined as Rgi 
2
 = Ni ai 

2 
/6. 

Using Eqs 4-6 and 4-7 the ratio of  can be calculated as follows, where the 

monomeric friction coefficient  is eliminated and there is no explicit dependency on angular 

frequency : 

    (4-8) 

This expression is only valid for the terminal response (near the critical region), where and  

have the scaling behavior of ~ ω
2
 and ~ ω

1
, respectively. The expression for the correlation 

length of a binary polymer blend is: 

                   (4-9)
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Where  is the characteristic length which is defined based on the individual segment lengths in 

each phase,  and ,  using the following equation: 

            (4-10) 

Thus, the correlation length can be calculated near the critical point directly from the shear 

rheological data: 

                         (4-11) 

Assuming the following expression for the interaction parameter
55

: 

                     (4-12) 

By substituting the interaction parameter in Eq. 4-8, one can find the following expression:    

        (4-13) 

where C is given by: 

     (4-14) 

Hence, a linear dependence of  versus  is predicted for the blends at the phase 

transitional region. The spinodal decomposition temperature  is then calculated from the 

intercept of the line with the  axis. 
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4.3.2 Evaluation of Flory-Huggins interaction parameter for polymer 

solutions from their critical temperature and concentration data 

In general, the Flory-Huggins expression for the molar Gibbs free energy of mixing of a binary 

polymer solution at temperature T is given by: 
42

 

       (4-15) 

where  is the free energy of mixing per unit volume, R is the universal gas constant, T is the 

absolute temperature, and  and  and  are the volume fractions and relative molar 

volumes of component 1 and 2, respectively;   for the solvent, and χ is the Flory-Huggins 

interaction parameter.  

However, it has been shown in several works that χ depends both on temperature and polymer 

concentration.
41, 56

 Hence, in Eq. 4-15, a more general interaction function, , is suggested 

as a semi-empirical form of χ. After replacing χ with the Gibbs free energy function is 

written as Eq. 4-16 for describing the free energy of real systems: 
10, 56, 57

 

   (4-16) 

Different functions have been proposed for the dependency of on temperature and 

concentration.
37, 41

 It is shown that similar to several other polymer/solvent systems, for highly 

diluted PEO/water solutions interaction parameter, χ starts out at a high value which decreases 

continuously by increasing the concentration. The minimum is reached and stayed constant at 

moderate concentrations and then increases steadily at highly concentrated solutions. Results of 

Venohr et al.
58

 and Michalczyk et al.
59

 showed that χ is constant at volume concentrations of 0.04 

to 0.5 for a 10 kDa PEO grade. It is speculated that our solution concentration in here, 
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6 wt% 4.76 vol% falls in this concentration range. Hence, the interaction parameter function, 

, is nearly independent of concentration, and Eq. 4-12 is applicable and leads to 

acceptable results. The spinodal decomposition temperature is the boundary between unstable 

and metastable mixtures. Thermodynamically, at the spinodal points the following Eq. is satisfied 

at a certain temperature (T= Ts):
56, 57

 

                                                                                   (4-17) 

At the binodal point, a homogeneous polymer solution separates into two phases. The general 

condition for equilibrium between two co-existing phases is that the chemical potential of each 

component must be the same in both phases.
55

 It is shown that these conditions are satisfied when 

the so-called binodal points have a common tangent line e.g. at  and , in the plot of 

ΔG/RT versus .
55

 Thus, at the binodal points (  and ) at T=Tb, the following equations 

must be satisfied:
60

 

     (4-18) 

           (4-19) 

By applying first and second derivative on Eq. 4-16 and considering Eq. 4-12 for the interaction 

parameter, and inserting into Eqs. 4-17 to 4-19, three equations are obtained, containing three 

unknown parameters: A, B and . Hence, an estimation of the Flory-Huggins interaction 

function can be obtained from the simultaneous solution of these equations and from the phase 

separation temperatures, Tb and Ts evaluated from rheological measurements. According to 
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Flory-Huggins theory of polymer solutions, A and B in Eq. 4-12 represent the entropic and 

enthalpic contributions of the interaction function, respectively.
42, 55

 

 

4.4 Experimental section 

4.4.1 Materials  

A commercial chitosan grade in the form of fine powder was supplied by Marinard Biotech 

(Rivière-au-Renard, QC, Canada). The weight-average molecular weight of this chitosan was 

measured by size exclusion chromatography with multi-angle laser light scattering (SEC-

MALLS) and was found to be 85 ± 5 kDa. The degree of deacetylation (DDA) (97.5%) was 

determined from 
1
H-NMR spectroscopy.

29
 More on the characterization of this chitosan grade 

can be found in reference [29]. PEO with a molecular weight of 600 kDa was obtained from 

Scientific Polymers Inc. (Ontario, NY, USA). Reagent grade acetic acid (99.7 %, Aldrich, WI, 

USA) and deionized Mili-Q water (conductivity at 25 °C < 18 μS·cm
−1

) were employed to 

prepare the aqueous solutions. All the materials were used as received. 

 

4.4.2 Solutions preparation 

A solution of PEO in water was prepared at a concentration of 6 wt%. In addition, aqueous 

solutions of chitosan and PEO in 50 wt% acetic acid were separately prepared at 4 wt% polymer 

concentration. Solution mixing was performed at room temperature using a laboratory magnetic 

stirrer (Corning Inc, MA, USA) for 18-24 h to ensure complete dissolution of the polymers and 

obtain homogeneous solutions. The prepared solutions were left to rest 4 h for degassing and kept 

in sealed containers at room temperature. Chitosan/PEO blend solutions at 20/80, 50/50 and 

80/20 ratios were prepared by mixing the two solutions at a 4 wt% total polymer concentration. 
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4.4.3 Rheological measurements 

Dynamic rheological properties of the solutions were characterized using a stress-controlled 

rotational rheometer (AR-2000, TA Instruments, DE, USA) with a Couette flow geometry with 

bob and cup radius of 14 and 15 mm, respectively. Low viscosity silicon oil was used to cover 

the surface of the sample solutions to prevent solvent evaporation during testing.  The presence of 

the oil was shown not to impact the rheological measurements. The stability of the solutions as a 

function of time at 25 °C was examined in oscillatory shear tests under a low frequency of 1 rad/s 

and a small deformation of 0.1. The elastic and loss modulus decreased by less than 1 and 3 %, 

respectively, in more than one hour, demonstrating a good stability of the solutions.  

Preliminary isothermal stress sweeps were carried out from 0.18-20 Pa at several fixed 

frequencies between 0.1 to 150 rad/s to determine the linear viscoelastic regime of the solutions. 

The effect of temperature on the viscoelastic response of the various solutions was studied by 

performing isochronal temperature sweep experiments. The storage and loss moduli were 

measured at a given frequency of 1 rad/s and a uniform rate of heating of 0.5 °C/min at a constant 

stress of 2 Pa. The temperature range of 25-80 °C was chosen to cover the whole region from 

homogeneous to phase-separated regions in the phase diagram. Isothermal oscillatory frequency 

sweeps in the range of 0.2-120 rad/s using stresses 0.5-2.5 Pa, hence well within the linear 

viscoelastic regime, were also performed.  

Isothermal steady simple shear measurements were carried out on solutions by applying shear 

rates from 0.1-2000 s
-1

 over a temperature range of 25 to 80 °C. Possible fluid inertia effects at 

high shear rates were also examined by looking at values of the Reynolds number Re. In Couette  

flow geometry, this number is given by , where  is the density of the fluid,  is the 

shear rate, h is the flow gap, and η is the viscosity of the solution.
61

 The calculated Re values 

were of the order of 10
−4

 to 1 over the range of shear rates used in these tests, hence, the flow 

conditions were considered inertialess. The zero shear viscosity of the solutions was evaluated by 

using the Carreau-Yasuda
62

 model to the shear viscosity data when applicable.  
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4.5 Results and discussion 

4.5.1 Determination of solution critical points by oscillatory shear 

measurements 

4.5.1.1 PEO/water solution 

To assess the viability of using the rheological measurements to find out the thermodynamic 

phase separation data of the polymer solutions, a dynamic temperature sweep test was carried out 

on a 6 wt% PEO solution in water. This solution was chosen since the phase behaviour of PEO 

solutions in water has been widely reported in the literature
1, 3-9

Additionally, PEO at this content 

is concentrated enough to develop large torques during the rheological tests, which helps to 

improve the reliability of the data. Figure 4-1 shows the storage and loss moduli and tan δ as 

functions of temperature for a 6 wt% PEO/water solution at a fixed frequency of 1 rad/s and a 

stress of 2 Pa. The temperature was increased from 15 to 90 °C at a rate of 0.5 °C/min. The 

frequency of 1 rad/s was selected to make sure that the changes observed in the viscoelastic 

properties were only induced by phase separation rather than any other factors. Ajji et al.
52

 

showed that this frequency is small enough for this purpose. Figure 4-1 depicts that  and 

decreases gradually with increasing temperature, which is due to the increase of PEO chain’s 

mobility and lower intermolecular friction.
44, 51, 52

 As temperature further increases, the storage 

modulus ( ) increases considerably in the temperature range of 60 to 85 °C, and an obvious 

upturn appears. A modest increase in the loss modulus is also observed. On the other hand, tan δ 

shows a reverse trend: a gradual increase followed by a sudden reduction with increasing 

temperature. Based on the known LCST behaviour of PEO/water solutions, phase separation 

occurs in this temperature range. In the vicinity of phase separation, the thermodynamic forces 

emerge as a competing phenomenon to chain mobility. By approaching the solution segregation 

temperature, these forces dominate and control the viscoelastic behaviour of the solution. It is 

believed that the temperature range in which the viscoelastic behaviour is more influenced by the 

thermodynamic forces is related to the phase separation region.
45, 46, 50

 For temperatures higher 
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than this temperature range, mobility forces control again the viscoelastic behaviour of the 

resulted phase separated blend and thus, storage and loss modulus decrease again.
47

   

 

Figure 4-1: Isochronal dynamic temperature sweep of storage modulus ( ), loss modulus ( ) 

and tan δ for a solution of 6 wt % PEO in water. Measured at a fixed frequency of 1 rad/s, 

oscillatory stress of 2 Pa and heating rate of 0.5 °C/min.  

 

The observed remarkable increase of the elasticity during the dynamic temperature sweep is most 

probably related to the morphology changes that occur during the phase separation of the 

solution. This elasticity enhancement originates mainly from two sources: concentration 

fluctuations resulting from coupling between chain mobility and thermodynamic forces 
45, 46, 52

, 

and formation of new interfaces during phase separation that brings in additional elasticity to the 

system.
43

 PEO-rich domains may form during the segregation process, and the deformation and 

shape recovery of these domains may enhance the elasticity. This phenomenon can be considered 

as interfacial tension-driven elasticity, as seen in molten polymer blends.
44

 Therefore, it is 
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predictable that the storage modulus, , and loss tangent, tan δ, would be more sensitive to 

temperature changes since the stress induced to the system by the concentration fluctuations and 

the new interface formation have mostly an elastic origin that affect more the elastic modulus. 

The developed equations for  and  (Eqs. 4-6 and 4-7 in Section 4-2) by Ajji and Choplin
48

 

also confirm this dependency.  

Fig. 4-1 can be used to determine the binodal decomposition temperatures or cloud points. The 

temperature at the inflection point of  or tan δ versus temperature, i.e. the temperature at the 

minimum , is assigned as the binodal temperature.
44, 45, 63

 For the 6 wt% PEO water 

solution, a binodal temperature of 73 °C is obtained by this method, indicated by the dashed line 

in Fig. 4-1. The reported cloud point in the literature for PEO with similar molecular weight is 

around 85-90 °C. 
4, 6, 10

 The discrepancy between the binodal points obtained from rheometry 

with that measured by light scattering could be attributed to the aforementioned
7, 13

 clustering 

effect in aqueous PEO solutions.  

Formation of clusters at temperatures well below the phase separation temperature of PEO 

solution in water was investigated by several researchers using light and neutron scattering 

methods.
2, 5, 7, 9, 13

 They showed that undissolvable aggregates increased when the PEO solution 

was heated to temperatures higher than 30 °C. They found that clusters concentration 

dramatically increased when the temperature was still 30 °C below the cloud point of the 

solution. A cluster size of 1.36 µm for a 4 wt% solution of 100 kDa PEO
7
, and 740 nm for a very 

dilute (20 ppm) solution of 1000 kDa PEO
3
 in water, has been reported in the literature. 

Clustering has been ignored in all proposed thermodynamic models for predicting PEO/water 

phase diagram and the phase separation behavior.
1, 7, 9

  Only de Gennes 
64

 attempted to explain 

the clustering effect in aqueous PEO solutions by considering a novel second type of phase 

separation occurring well below the conventional LCST point, in which a very dilute solution of 

collapsed coils coexists with a dense polymer phase (i.e. clusters or aggregates).
9
 It is speculated 

that the binodal temperature measured by rheological measurements in Fig. 5-1 is somehow 

associated with this phase separation phenomenon, as it is 10-20 °C below the reported cloud 

point for this sample, and hence in good agreement with cluster formation temperatures reported 
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in the literature.
5, 9, 64

 The anomalous rheological behaviour of dilute PEO solutions was also 

ascribed to the presence of aggregates in PEO solutions.
3
 PEO clusters mainly exist in solutions 

in two forms: high density spherulitic particles and low density aggregates of non-crystalline 

microgel particles 
3, 5, 7

, which both induce significant elasticity to the system. Moreover, it is 

worth noting that the binodal points obtained by optical methods are mainly measured in 

quiescent conditions, whereas in this study the phase separation point is measured under mild 

flow conditions. It was reported that shear flow can shift the binodal temperature by a few 

degrees, due to shear-induced demixing at low shear rates or lowering the chains entropy under 

applied rheological flow.
53, 65

  

The spinodal decomposition temperature of the solution can be estimated by applying the 

quantitative Ajji and Choplin’s 
48

 modified approach of Frederickson and Larson
49

 theory 

(Section 4-2).  

 

Figure 4-2: Estimation of spinodal temperature from the quantitative evaluation of the 

viscoelastic behaviour of a 6 wt% PEO in water near the phase boundary.  The spinodal 

temperature is indicated in the figure by the intercept of the curve in the linear region. 
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Figure 4-2 displays  versus   for the 6 wt% PEO solution in water. As 

mentioned in Section 4-2, the linear region in Fig. 4-2 corresponds to the one-phase region near 

the phase separation point. In this curve, the reciprocal of the intercept with the  axis is 

assumed to be the spinodal temperature, Ts, that was calculated to be about 92 ± 3 °C for the PEO 

solution in Fig. 4-2. The error associated with the evaluation of the spinodal temperature is 

approximately ± 3 °C, based on the selection of the fitted line on the linear region of the curve. 

The obtained spinodal temperature by this method agrees well with the Ts points obtained by 

Hammouda and coworkers from SANS measurements. They reported spinodal temperatures of 

105 °C and 95 °C for 4 wt% solutions of 50 and 100 kDa PEO in water, respectively. 
7,13

  

Figure 4-3 shows the changes in the correlation length,  of the PEO solution with temperature 

near the phase separation region. The data plotted in this figure were determined from Eq. 4-11 

(Section 4-2), by using the rheological data of Fig. 4-1.  The correlation length is related to 

concentration fluctuations. Significant changes in correlation length in the phase separation area 

represent the changes of the degree of local ordering and increased composition fluctuations 

during phase separation.
44

 The order of magnitude of the correlation length obtained in this work 

through rheological measurements is almost the same as that reported by Hammouda et al.
13

 

obtained by the SANS method. They found correlation length of around 40-400 Å for a 4wt % 

solution of 100 kDa PEO in water.
13

 This also validates again the rheological technique to find 

out thermodynamic properties. The binodal temperature is indicated in Fig. 4-3, and it is indeed 

located in the transition range, close to the inflection point.     
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Figure 4-3: Temperature dependence of the correlation length,  for the 6 wt% PEO solution in 

water obtained quantitatively from Eqn 11 (Section 5-2) and isochronous dynamic temperature 

sweep data (Fig. 5-1). 

 

4.5.1.2 Chitosan/PEO aqueous acetic acid solutions 

After showing that rheological measurements can be employed successfully to determine the 

phase separation behaviour of a polymer solution, the same procedure is used for the solutions of 

interest here, i.e. chitosan, PEO and their blends in aqueous acidic solutions. As mentioned 

before, these solutions have shown anomalous behaviour during fiber electrospinning at elevated 

temperatures, 
29

 which was suspected to be due to phase separation during the process.  
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Figure 4-4: Frequency sweep plots of storage modulus,  , and loss modulus,  , for 4 wt% 

solutions of neat chitosan and PEO in 50 wt% aqueous acetic acid at 25 °C. 

 

Dynamic rheological properties of the neat solutions of chitosan and PEO in aqueous acetic acid 

were measured by isothermal frequency sweep experiments at 25 °C. The results are shown in 

Fig. 4-4. This figure depicts that the elastic modulus of PEO is higher than that of chitosan up to 

a frequency of 300 rad/s. The characteristic relaxation time, τr, obtained from the reciprocal of the 

frequency where , (~ 5 ms) is longer for PEO than chitosan. In fact, this intersection 

point for chitosan falls outside the frequency range studied in this work and hence is shorter than 

~ 1 ms. The characteristic relaxation time of the polymer chains is related to the monomeric 

friction coefficient or chain entanglements.
66

 Lower elasticity and shorter relaxation time for 

τr, PEO 
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chitosan are probably due to repulsive forces between NH3
+ 

groups formed in acidic media. This 

may reduce chain entanglements and result in a rigid rod-like chain conformation in the solution 

state.
15, 18

   

 

Figure 4-5: Isochronal dynamic temperature sweep of storage modulus ( ) and loss modulus 

( ) for 4 wt % solutions of chitosan, PEO and their 50/50 blend in 50 wt% aqueous acetic acid 

solution. Measured at a fixed frequency of 1 rad/s, oscillatory stress of 2 Pa and heating rate of 

0.5 °C/min. Vertical lines show the rheologically determined binodal temperatures at the 

inflection points of  vs. temperature curves. 

 

To elucidate the phase behaviour of aqueous acetic acid solutions of chitosan and PEO with 

temperature, the method used above for PEO/water solution was applied.  Dynamic isochronal 
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temperature sweep tests were carried out on the neat chitosan and PEO solutions and their blends 

at different composition ratios of 80/20, 50/50 and 20/80. 

Figs. 4-5 and 4-6 present the evolution of the storage modulus ( ) and tan δ, respectively, during 

dynamic temperature sweeps at a fixed frequency of 1 rad/s and oscillatory stress of 2 Pa for 4 

wt% chitosan, PEO and their 50/50 blend solutions. Again the temperature was increased from 15 

to 90 °C at a rate of 0.5 °C/min. Similar behaviours to that observed previously for the 

PEO/water solution (Fig. 4-1) can be depicted in Figs 4-5 and 4-6, i.e. a gradual decrease of  

with temperature along with a clear upturn at higher temperatures, and a reverse trend for the tan 

δ curves. Therefore it can be concluded that all these solutions also exhibit an LCST in their 

phase diagram, as they reveal phase separation behaviour with increasing temperature. This is 

attributed to the changes in specific interactions due to hydrogen bonds between hydroxyl groups 

of acetic acid/water solvent and ether groups in PEO, and hydroxyl and amino groups in 

chitosan.
14, 16, 29

 It is well known that solutions with strong solvent/polymer interactions show an 

LCST phase diagram.
1, 3, 8
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Figure 4-6:  Isochronal dynamic temperature sweep of loss tangent angle (tan δ) for 4 wt% neat 

chitosan, PEO and their 50/50 blend in 50 wt% aqueous acetic acid solution. Measured at a fixed 

frequency of 1 rad/s, oscillatory stress of 2 Pa and heating rate of 0.5 °C/min. Vertical lines show 

the rheologically determined binodal temperatures at the inflection points of tan δ vs. temperature 

curves. 

 

It is interesting to note that, over the tested temperature range, the 50/50 blend solution exhibits a 

single peak located between the peaks of its neat polymer constituents.  This indicates full 

miscibility of chitosan and PEO in the solution state, hence a homogeneous solution up to phase 

separation temperatures.  Additionally, it is also apparent from Figs. 5-5 and 5-6 that not only the 

magnitude of the upturn and reduction of the storage modulus and loss tangent angle, 

respectively, strongly depend on solution composition, but also the temperature range over which 

the sharp changes occur. The binodal decomposition temperatures, Tb, of the solutions were 

estimated using the same approach as for the PEO/water solution (Fig. 4-1). Inflection points of 



48 

 and tan δ curves versus temperature gave estimates of binodal temperatures of about 68, 55 

and 59 °C for neat chitosan, neat PEO and their 50/50 blend solutions, respectively. These points 

are indicated by arrows in Figs. 4-5 and 4-6. The evaluations from  and tan δ resulted in the 

same value of Tb for each composition. Similar results were obtained for the 20/80 and 80/20 

solutions, but the corresponding curves are not shown for the sake of clarity. The binodal 

temperatures evaluated for these two blends are reported below. 

 

Figure 4-7: Estimation of spinodal temperature from the quantitative evaluation of the 

viscoelastic behaviour of neat chitosan, PEO and their 50/50 blend in 50 wt% aqueous acetic 

acid, near the phase boundary.  The spinodal temperatures are indicated in the figure from the 

intercept of the curves in the linear region. 
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The approach taken in Fig. 4-2 was also employed to quantitatively evaluate the spinodal 

decomposition temperatures of PEO/chitosan solutions. Figure 4-7 presents  versus 

  for the 4 wt% solutions of neat PEO, neat chitosan solution and their 50/50 blend in 50 wt% 

aqueous acetic acid solution.  Spinodal temperatures Ts, were determined to be 72, 60 and 64 °C 

for neat chitosan, neat PEO and their 50/50 blend solutions, respectively. An error of about ± 2.5 

°C is involved in these values.   

 

Figure 4-8: Binodal and spinodal phase separation temperatures of neat chitosan, neat PEO and 

their blends at different ratios in 50 wt% aqueous acetic acid (Total polymer concentration is  

4 wt% for all solutions). 

 

Binodal and spinodal decomposition temperatures of aqueous acetic acid solutions of chitosan 

and PEO and their blends, determined by temperature sweep experiments, are shown in Fig. 4-8 
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as functions of chitosan content. It depicts that, for the same 4 wt% total polymer concentration, 

chitosan has the higher LCST temperature. It means that chitosan in the aqueous acetic acid 

solvent has a larger one-phase homogeneous region as compared to PEO. It is known that LCST 

phase behaviour in polymer solutions is typical of systems that exhibit hydrogen bonds. 

Hydrogen bonds weakening or complete debonding occurs by a temperature increase.
1, 8, 9

 Higher 

LCST in chitosan could be due to more intense interactions with the acetic acid/water solvent. 

While PEO can form hydrogen bonds only via its ether groups, chitosan has more active groups 

such as hydroxyl, acetylamine and amino groups to form hydrogen bonds.
14, 19

 Therefore, 

temperature- induced disruption in polymer/solvent interactions affects more PEO and leads to an 

earlier phase separation lower critical temperature. Binodal and spinodal decomposition 

temperatures of chitosan/PEO blends are located between those of neat chitosan and PEO 

solutions, which is again an indication of their miscibility in the solution state prior to phase 

separation.  

It is worth noting that both estimated binodal and spinodal temperatures for PEO in aqueous 

acetic acid solvent are about 15-20 °C lower than for PEO in water (Figs. 4-2 and 4-3). It 

indicates that the degree of association between PEO and the solvent in aqueous acetic acid 

solution is reduced earlier by increasing temperature. This is more likely due to weaker or fewer 

hydrogen bonds formed between acetic acid and PEO, as compared to PEO and water molecules. 

In PEO/water solution it is suggested that two water molecules are associated with each PEO 

monomer, that at the same time are in competition to form water-water hydrogen bonds with their 

neighboring water molecules.
1, 8

 These prevailing hydrogen bonds are responsible for the unusual 

aforementioned characteristics of PEO solutions in water.  
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Figure 4-9: Temperature dependence of the correlation length,  for neat chitosan, neat PEO and 

their 50/50 blend in 50 wt% aqueous acetic acid obtained quantitatively from the rheological 

measurements. 

 

Plots of the correlation length () evaluated from Eq. 4-11 (Section 4-2) as a function of 

temperature in the vicinity of phase separation for neat chitosan, PEO and their 50/50 blend are 

shown in Fig. 4-9. The order of magnitude of the correlation length of these solutions and PEO 

solution in water (Fig. 4-3) are almost the same.  It reflects that concentration fluctuations and the 

process of phase separation in these polymer solutions are similar. Binodal decomposition 

temperatures are also indicated in Fig. 4-9 and are located in the transition range, close to the 

inflection point. 
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4.5.2 Isothermal steady shear viscosity results  

Steady shear viscosity as a function of shear rate and temperature for solutions of 4 wt% neat 

chitosan and its 50/50 blend with 4 wt% PEO in 50 wt% aqueous acetic acid is shown in Fig. 10. 

The experiments were carried out from 25 to 70-80 °C over a shear rate range of 0.1 to 1000 s
-1

. 

A typical shear-thinning behaviour with a well-developed plateau region is observed for neat 

chitosan solutions up to 60 °C (Fig. 5-10-A). This figure also shows that the magnitude of the 

zero-shear viscosity decreases with an increase of temperature up to 60 °C, and that the critical 

shear rate for the onset of shear-thinning increases as the temperature is raised. However, at a 

temperature of 70 °C, an enhancement in the viscosity is observed at low shear rates  

(Fig. 5-10-A). This temperature is near the phase separation point of this solution that was 

estimated to have a binodal temperature of 68 °C (Section 5-4-1). This enhancement in viscosity 

at low shear rates may be explained by Onuki’s
67

 interpretation of the viscosity of a phase 

separating two-component fluid near the critical point, and its similarity with a suspension of 

droplets in a fluid after the formation of phase-separated domains near the critical point.
67

 The 

same behavior is also observed for the 50/50 blend of chitosan/PEO in aqueous acetic acid 

solution (Fig. 4-10-B). In this solution, the increase of viscosity at low shear rates is detected at 

temperatures as low as 60 °C, which is in agreement with its determined binodal phase separation 

temperature (59 °C).  These results are in contrast with Sharma’s 
50

 findings for a polymer blend 

system who reported that the overall behaviour of viscosity versus shear rate remains unchanged 

at temperatures before and after the phase separation point.  This is more likely because Sharma 

tried to apply the Onuki’s approach, developed for polymer solutions, to a molten polymer blend 

that is probably far from the emulsion behaviour observed in here.   
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Figure 4-10: Plot of isothermal shear viscosity versus shear rate for A) 4 wt% neat chitosan 

solution and B) its 50/50 blend with 4 wt% PEO over the temperature range covering 

homogeneous to the two-phase regimes of the solutions phase behaviours, all in 50 wt% aqueous 

acetic acid solvent. 
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4.5.3 Flory-Huggins interaction parameter from rheological data 

The temperature dependence of the Flory-Huggins interaction parameter, χ of the solutions 

investigated was evaluated from the basic thermodynamic approach described in Section 5-2-2 

and the binodal and spinodal points estimated from rheological measurements (Section 4-4-1). 

The computed A and B coefficients (Eq. 4-12) and interaction parameter at certain temperatures 

are reported in Table 4.1. Absolute values of χ at given temperatures and the related coefficients, 

A and B, in the case of the PEO/water solution, coincide well with results reported in the 

literature obtained by light scattering, gas chromatography and vapour pressure osmometry 

techniques. The negative value of B confirms the existence of LCST phase diagrams in the 

PEO/chitosan solutions. 
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Table 4.1: A and B coefficients of Flory-Huggins interaction parameter, Eq. 4-12, and values of 

the interaction parameter, χ, at given temperatures obtained by using different experimental 

methods 
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4.6 Conclusions 

In this work a systematic rheological investigation of the well-known LCST polymer solution of 

PEO in water was conducted. We showed that the phase separation temperature of this solution 

could be assessed directly by rheological measurements. Binodal points were estimated from 

dynamic temperature sweep experiments and spinodal points were quantitatively calculated on 

the basis of a mean field theory. Comparing these critical points with that obtained from other 

experimental techniques showed that rheological measurements can sensitively detect rather early 

stages of phase separation. 

This approach was then employed on our solutions of interest: chitosan/PEO at different ratios in 

aqueous acetic acid. These solutions showed a LCST phase diagram as well, originating mainly 

from the existence of hydrogen bonds. Knowledge of phase separation temperature of chitosan-

based solutions is crucial for chitosan wet route formation processes. Additionally, occurrence of 

a viscosity enhancement in isothermal steady shear measurements right after phase separation 

confirms the validity of the aforementioned approach to determine solution critical points. The 

Flory-Huggins interaction parameter was calculated from the binodal and spinodal points 

estimated by the rheological measurements.  The obtained results agreed well with reported data 

in the literature for aqueous PEO solution which validate further the rheometry-based approach 

used in this work. Additionally, this parameter was estimated for the first time for PEO/chitosan 

solutions in 50 wt% aqueous solution. Therefore, rheology provides a powerful and simple 

technique to assess the phase separation behaviour of polymer solutions.    
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CHAPITRE 5  

 

A FUNDAMENTAL STUDY OF CHITOSAN/PEO 

ELECTROSPINNING
2
 

Mehdi Pakravan, Marie-Claude Heuzey and Abdellah Ajji 

5.1 Abstract 

A highly deacetylated (97.5%) chitosan in 50% acetic acid was electrospun at moderate 

temperatures (25-70 °C) in the presence of a low content of polyethylene oxide (10 wt% PEO) to 

beadless nanofibers of 60-80 nm in diameter. A systematic quantitative analysis of the solution 

properties such as surface tension, conductivity, viscosity and acid concentration was conducted 

in order to shed light on the electrospinnability of this polysaccharide. Rheological properties of 

chitosan and PEO solutions were studied in order to explain how PEO improves the 

electrospinnability of chitosan. Positive charges on the chitosan molecule and its chain stiffness 

were considered as the main limiting factors for electrospinability of neat chitosan as compared 

to PEO, since surface tension and viscosity of the respective solutions were similar. Various 

blends of chitosan and PEO solutions with different component ratios were prepared (for 4 wt% 

total polymer content). A significant positive deviation from the additivity rule in the zero shear 

viscosity of chitosan/PEO blends was observed and believed to be a proof for strong hydrogen 

bonding between chitosan and PEO chains, making their blends electrospinnable. The impact of 

temperature and blend composition on the morphology and diameter of electrospun fibers was 

also investigated. Electrospinning at moderate temperatures (40-70 °C) helped to obtain beadless 

nanofibers with higher chitosan content. Additionally, it was found that higher chitosan content 

in the precursor blends led to thinner nanofibers. Increasing chitosan/PEO ratio from 50/50 to 

90/10 led to a diameter reduction from 123 to 63 nm. Producing defect free nanofibrous mats 

from the electrospinning process and with high chitosan content is particularly promising for 

antibacterial film packaging and filtration applications.  

                                                 

2
 Published in Polymer 52, 2011, 4813-4824 
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5.2 Introduction 

Polysaccharides are some of the most promising natural materials to substitute for synthetic 

polymers in a number of applications due to their abundance in nature. Chitin and chitosan 

polymers are not only natural aminopolysaccharides, but also provide specific properties owing 

to their unique structures. Chitosan has been widely used in several industries due to its natural 

origin and exceptional properties such as biodegradability, biocompatibility, non-toxicity and 

chelation with metals. Among them, biomedical applications including tissue-engineering 

scaffolds and wound healing dressings, along with water filtration applications using separation 

membranes, have attracted a lot of attention lately [1-3]. Moreover, chitosan is a good inhibitor 

against the growth of a wide variety of yeasts, fungi and bacteria, and also displays gas and 

aroma barrier properties in dry conditions. These characteristics, beside its ease of film 

formation, make chitosan an interesting choice for active anti-bacterial food packaging 

applications. Chitosan-based packaging films can improve the quality, security and storage 

stability of perishable foods [4-8].  

Films and membranes with micro and nanoporous morphologies exhibit enhanced efficiency 

because of their large specific area; such individual layers can be combined with barrier and 

structural films to provide the required permeability and mechanical properties, respectively. 

Such chitosan mats can not only present the specific physicochemical properties of chitosan but 

can also benefit from the physical characteristics of nanoporous membranes. A number of 

different methods have been used to obtain porous chitosan membranes such as phase separation 

[9, 10], phase inversion [11] and selective dissolution [12]. More recently, electrospinning has 

been developed as a novel technique to generate polymeric fibers of nanometric size, resulting in 

non-woven three-dimensional porous mats with distinctly high surface area to mass ratio 

(typically 40-100 m
2
/g) [13-15] . 

The electrospinning process involves the application of a high voltage between a syringe filled 

with a polymer solution and a collector mounted at a fixed distance from the needle/syringe set-

up. An electrical charge builds up on the surface of the solution that is attracted to the collector. 

The large potential difference overcomes the surface tension of the fluid droplet at the tip of the 

needle. Under specific conditions of voltage, flow rate and distance, a jet of fluid is ejected from 

the needle and subjected to whipping and splaying instabilities due to stresses from electrostatic 
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origin [16]. The solvent evaporates over the jet path, and polymer nanofibers are formed on the 

collector. Various factors affect the electrospinning process such as solution properties, process 

parameters (flow rate, voltage, distance,…) and ambient conditions; hence different requirements 

should be met in order to have an efficient process [13, 17].  

The electrospinnability of chitosan is limited mainly because of its polycationic nature in 

solution, rigid chemical structure and specific inter and intra-molecular interactions [18-20]. 

Formation of strong hydrogen bonds prevents the free movement of polymeric chain segments 

exposed to the electrical field, leading to jet break up during the process [19-21]. Moreover, the 

repulsive force between ionic groups on the polymer backbone is expected to hinder the 

formation of sufficient chain entanglements to allow continuous fiber formation during jet 

stretching, whipping and bending, generally resulting in nanobeads instead of nanofibers [22]. 

Trifluoroacetic acid (TFA) is a well-known solvent for the electrospinning of chitosan. It can 

form stable salts with chitosan which prevents interchain interactions, and also has a low boiling 

point (71.8 °C as compared to 118.1 °C for acetic acid), which is beneficial for faster fiber 

formation in the evaporation region of the electrospinning process [23]. Some papers report the 

preparation of pure electrospun chitosan nanofibers using TFA or its mixtures with 

dichloromethane (DCM) and trichloromethane (TCM) [24, 25]. However, TFA is 

environmentally harmful, very toxic and corrosive, which makes its use very limited from an 

industrial point of view for food and biomedical applications. A highly concentrated acetic acid 

aqueous solution (90 wt %) was also reported by two research groups as a successful solvent for 

the electrospinning of neat chitosan, using samples with degrees of deacetylation (DDA) of 54 

and 75-85%, respectively [21, 26]. Electrospinning of chitin followed by deacetylation of the 

prepared nanofibers [22, 24], and co-axial electrospinning of chitosan with polyethylene oxide 

(PEO) are alternative proposed methods [27], however they present their own difficulties such as 

solubility and electrospinnablity of chitin or controlling adequately the co-axial electrospinning 

process. Finally, chemically modified chitosan has also been electrospun by some researchers, 

such as hexanoyl chitosan [28, 29], carboxymethyl chitosan [30], carboxyethyl chitosan [31] and 

quaternized chitosan [32, 33].  Among all of these approaches, the most successful and easiest 

method to improve the electrospinnability of chitosan is blending it with a second natural or 

synthetic polymeric phase. This co-spinning agent is usually an easily electrospinnable polymer 

such as PEO [7, 18, 34-36], polyvinyl alcohol  (PVA) [19, 37-39], polylactic acid (PLA) [25, 40, 
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41], polyacrylamide (PAM) [42, 43], zein [44, 45], silk fibroin [46, 47] and collagen [48], which 

are all biocompatible and biodegradable and will not constraint the final applications of chitosan 

nanofibers. Brief descriptions of these various approaches have been recently reviewed elsewhere 

[49-51].  

Depending on the second polymeric phase, type, content and developed morphology, physical 

and mechanical properties of composite chitosan nanofibers vary greatly.  Integrity and stability 

of the fibers in different working conditions is another concern that should be taken into account 

for the final applications of chitosan-based nanofibers [52]. Generally, due to the outstanding 

electrospinnability of the selected second phase, a higher content of the co-spinning polymer 

leads to further improvement of chitosan electrospinnability. Normally, the second phase is added 

in the range of 20 to 90 wt%. Obviously, for applications that require a particular property of 

chitosan, such as antimicrobial properties, the lowest amount of added polymer is preferable. 

Bhattarai et al. [34] could reach a low amount of 10 wt% PEO in chitosan nanofibers by using 

dimethyl sulfoxide (DMSO) and an aniogenic surfactant in an acetic acid aqueous solvent. 

Recently Zhang et al. [52]  prepared chitosan-based nanofibers with 5 wt% of added PEO using 

ultra high molecular weight PEO along with DMSO as a co-solvent. Desai et al. also reported the 

formation of composite chitosan nanofibers having 5 wt% PEO [20] and 10 wt% PAM [43] by 

utilizing a special designed hot air assisted electrospinning unit.  Finally, even though the 

preparation of chitosan-based nanofibers at high chitosan content has been achieved in the past 

years, several of these studies have been based on the use of harmful solvents such as 

trifuoroacetic acide (TFA) and dimethyl sulfoxane (DMSO) [34, 52].  Obviously, there is much 

remaining to be improved and clarified in the electrospinning of chitosan.  

In this work, chitosan-based nanofibers with high chitosan content are prepared from acetic acid 

aqueous solutions.  In addition, a systematic analysis of chitosan solution properties that lead to 

successful electrospinning in the presence of polyethylene oxide (PEO) is presented for the first 

time. The effect of blend composition and acetic acid concentration on properties such as surface 

tension and conductivity and, ultimately, on electrospinnability are considered. An FTIR study is 

also performed to investigate the presence of hydrogen bonding interactions between chitosan 

and PEO. Since rheological characteristics have been shown to play an important role in 

electrospinning [53-55], the rheological behaviour of the chitosan solutions and their 

relationships to electrospinnability are investigated. For this aim, a highly deacetylated chitosan 
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(DDA=97.5 %) is used in the presence of PEO as a co-spinning agent. To the best of our 

knowledge this is the maximum DDA value that has ever been reported to successfully prepare 

electrospun chitosan nanofibers. Finally, a modified electrospinning set up is used to control the 

temperature of the solution being pumped through the syringe and needle to allow spinning at 

moderate temperatures. The influence of temperature on the electrospinnability of the chitosan 

solutions is also investigated.  

5.3 Experimental 

5.3.1 Materials 

A commercial chitosan grade was supplied by Marinard Biotech (Rivière-au-Renard, QC, 

Canada). PEO with a molecular weight of 600 kDa was obtained from Scientific Polymers Inc. 

(Ontario, NY, USA). Reagent grade acetic acid (99.7 %, Aldrich, WI, USA) was employed to 

prepare the aqueous solutions. All the materials were used as received. 

5.3.2 Chitosan characterization 

5.3.2.1 Size exclusion chromatography 

Size exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) as 

described in reference [56] was used to evaluate the chitosan molecular weight. This method 

employs a GPC system consisting of a Shimadzu LC-20AD isocratic pump, a Dawn HELEOS II 

multi-angle laser light scattering detector (Wyatt Technology Co.), a Viscostar II (Wyatt 

Technology Co.), an Optilab rEX interferometric refractometer (Wyatt Technology Co.) and two 

TSK-GELPW columns (Tosoh Biosep, G4000 serial number F3373 and G3000 serial number 

H0012).  In this procedure, a solvent of 0.15 M acetic acid/0.1 M sodium acetate and 0.4 mM 

sodium azide with a pH of 4.5 is used as the mobile phase in the column series. The chitosan 

sample was dissolved in that solvent at a concentration of 1.0 mg/mL. This solution was kept at 

room temperature for 24 h under gentle stirring and then filtered through a 0.45 μm membrane 

prior to the analysis. The injection volume, the flow rate and the temperature were 100 μL, 0.8 

mL/min and 25 ºC respectively. Values of the specific refractive index, dn/dc, were measured 

using a Wyatt manual injector coupled with a Shimadzu LC-20AD pump and the Wyatt Optilab 
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rEX refractometer. The refractive indices of six solutions with different concentrations between  

0 and 1 mg/mL (0, 0.1, 0.25, 0.5, 0.75 and 1 mg/mL) were recorded for calculation of dn/dc.  

An average molecular weight of 85 ± 5 kDa was calculated from the observed elution time peaks 

(not shown here). Hence the chitosan sample used in this work is considered as a medium 

molecular weight grade. 

5.3.2.2 Nuclear Magnetic Resonance (NMR) spectroscopy  

A Bruker 500 MHz NMR spectrometer was used to obtain the 
1
H-NMR spectrum of the chitosan 

sample. Solutions of chitosan (10 mg) in a mixture of D2O and DCl (0.99/0.01 v/v) were 

prepared. Sixty four (64) scans of the chitosan solution were recorded with interscan delays of  

6 s. In this method, the DDA is calculated using the integral of the peak of proton H1 of the 

deacetylated group (H1-D) and of the peak of the three protons of the acetyl group (H-Ac) from 

Eq. 5-1: 

           (5-1) 

5.3.3 Solutions preparation 

Chitosan and PEO solutions were prepared separately at 4 wt% concentration in 50 wt% aqueous 

acetic acid. The solution mixing was performed at room temperature using a laboratory magnetic 

stirrer (Corning Inc, MA, USA) for 18-24 h to ensure complete dissolution of the solutes and 

obtaining homogeneous solutions. The prepared solutions were left to rest 4 h for degassing and 

kept in a sealed container at room temperature. Chitosan/PEO blend solutions were then prepared 

by mixing the two solutions at 50/50, 70/30, 80/20 and 90/10 chitosan/PEO ratios. 

5.3.4 Electrospinning 

Electrospinning was performed using a horizontal set up containing a variable high DC voltage 

power supply (Gamma High Voltage Research, FL, USA) and a programmable micro-syringe 

pump (Harvard Apparatus, PHD 2000, USA). The solutions were poured into a 10 mL stainless 

steel syringe (Harvard Apparatus, USA) with Luer-Lock connection to a 20-gauge blunt tip 

needle (Cadence Science, NY, USA). The syringe was mounted with a grip on the micro-syringe 
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pump and grounded by use of an alligator clip. The schematic outline of the electrospinning set 

up is shown in Fig. 5-1. An electrical heater containing an aluminum shell, cartridge heaters and a 

temperature controller was designed to heat the polymer solution during the process. It was 

placed around the needle and syringe (see inset in Fig. 5-2) to set the solution temperature up to 

80 °C. Fiber mats were collected on an aluminum foil attached to a drum collector that could be 

easily removed for subsequent characterization. The homemade designed drum has both 

controllable rotational and translational movement connected to the power supply and was placed 

15 cm away from the needle (optimum distance based on preliminary tests). Samples were 

collected on the drum in both static and rotating conditions, based on the requirements of specific 

samples for different experiments. Typical flow rates of 0.1-2 mL/h and voltages between 15-35 

kV were used as process parameters. All experiments were conducted at ambient pressure and 

relative humidity of 15-20%. 

5.3.5 Film preparation 

Thin films of chitosan were prepared by pouring and spreading approximately 10 g of a chitosan 

solution in a plastic Petri dish. Cast films were then vacuum dried at 40 °C overnight to 

completely evaporate the solvent. The dried films were peeled from the Petri dish and kept in a 

desiccator at room temperature until characterization. 

 

 

Figure 5-1: A schematic outline of the electrospinning set-up. Inset shows the heated syringe 

(inspired from Ref. [83]). 
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5.3.6 Rheological measurements 

Dynamic and steady shear rheological properties of the solutions were characterized at 25 ºC and 

temperatures between 40 to 80 ºC with 10 ºC increment, using two different rotational 

rheometers: a highly sensitive strain-controlled rheometer ARES (Rheometric Scientific, NJ, 

USA) for low viscosity solutions, and a stress-controlled rheometer AR-2000 (TA Instruments, 

DE, USA) for more viscous solutions. In both cases a Couette flow geometry was used. A low 

viscosity silicon oil was used to cover the surface of the sample solutions to prevent evaporation 

of the solvent during the tests. The presence of the oil was shown not to impact the rheological 

measurements. The stability of the solutions was examined as a function of time in oscillatory 

shear tests under a frequency of 1 rad/s and a deformation of 0.1. After an hour the elastic and 

loss modulus decreased by less than 1 and 3 %, respectively, showing the solutions to be stable. 

The linear viscoelastic (LVE) regime was determined at various frequencies from the maximum 

strain or stress (depending on the instrument) at which the elastic modulus, as a function of strain 

(stress), did not deviate by more than 5% from its low strain (stress) value. The oscillatory 

measurements were carried out by applying frequency sweeps from 0.0625 to 100 rad/s in the 

linear viscoelastic regime at temperatures between 25 to 80 °C. The zero-shear viscosity of the 

solutions were evaluated from the application of the Carreau-Yasuda model [57] to the shear 

viscosity and complex viscosity data.  

Additionally, the specific viscosity of chitosan and PEO solutions was determined using 

rheometry and viscosimetry to set the limits of their respective concentration regimes. For 

viscosimetry, the specific viscosity was measured using a Cannon-Fenske dilution capillary 

viscometer (diameter = 0.78 mm, Cannon-Fenske, Canada) at various concentrations. A water 

bath (model BT 15, Cole-Parmer, IL, USA) was used to control the temperature at a constant 

value of 25 ºC. 

5.3.7 Fiber diameter characterization 

The surface morphology of electrospun nanofibers was characterized by a Hitachi S-4700 field 

emission scanning electron microscope (FESEM) operating at 5-10 kV. Samples cut from an 

electrospun mat on the aluminum foil and mounted on aluminum stubs were coated by an 

ultrathin layer of platinum for better conductivity during imaging. The samples were observed at 
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magnifications between 100 and 40,000 times their original sizes to visually evaluate the 

electrospinnability and existence of beads and droplets. Fiber diameters were also determined 

using Image-J (National Institutes of Health (NIH), http://rsb.info.nih.gov/ij/) image processing 

software. For each electrospun mat, at least 100 fibers were considered from three different 

images to calculate the average diameter.  

5.3.8 Surface tension 

Surface tension of the various prepared solutions was measured using a dynamic Wilhelmy plate 

tensiometer DCAT 21 (Dataphysics Instruments GmbH, Germany). The measurements were 

carried out at 20 ºC and repeated five times on different samples for each solution. 

5.3.9 Electrical conductivity 

Electrical conductivity of different solutions was tested in a conductivity meter Infolab
®
 Cond 

750 (WTW GmbH, Germany). The measurements were performed at 25 ºC and reported after 

five times replication. 

5.3.10  FTIR spectroscopy 

Transmission FTIR spectra were measured at room temperature on the as-cast chitosan film and 

as-spun PEO and chitosan/PEO blend nanofibrous mats using a Perkin Elmer 65 FTIR-ATR 

instrument. A total of 128 scans were accumulated for the signal-averaging of each IR spectral 

measurement to ensure a high signal-to-noise ratio with a 4 cm
-1

 resolution.  The spectra of the 

samples were recorded over a wavenumber range of 600-4000 cm
−1

. 

5.4 Results and discussion 

5.4.1 Material characterization 

The degree of deacetylation (DDA) is an important chitosan physico-chemical characteristic for 

anti-microbial properties. Since it increases the active amino groups on the chitosan backbone, a 

high DDA chitosan has a stronger ability to act against bacteria as compared to a lower DDA 

molecular chain of the same size [2, 58]. In this work a recently established liquid phase 

1
H-NMR procedure proposed by Lavertu [59] has been used. It is a more reliable and precise 

http://rsb.info.nih.gov/ij/
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method than FTIR [60] to characterize high DDA chitosan. The advantage of this technique is 

that there is no need for a reference sample or calibration curve. Moreover, impurities and 

moisture content in chitosan do not overlap with chitosan peak signals [59]. The 
1
H-NMR 

spectrum of the grade used in this work is shown in Fig. 2. Based on this curve the DDA was 

calculated to be 97.5 %.  

5.4.2 Solution characterization 

Chitosan is soluble in a wide range of acetic acid concentrations, and some reports show that 

highly concentrated acetic acid can help chitosan electrospinnability by decreasing the solution 

surface tension [21]. The high DDA chitosan grade used in this work was soluble in aqueous 

solutions of 3 to 90 wt% acetic acid and could form homogeneous solutions up to a polymer 

concentration of 5 wt% concentration, above which the solution resulted in a gel. Preliminary 

tests depicted that the optimum concentrations for chitosan and PEO in terms of 

electrospinnability was 4 wt%. 

 

Figure 5-2: Chitosan 1H-NMR spectrum at 70 ºC. 
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After preparation, the solutions were immediately used in the electrospinning process in order to 

avoid aging effects. Aging is a well known phenomenon for chitosan solutions and originates 

mainly from conformational change, aggregation and some enzymatic chain scission [61, 62]. 

PEO chains are also easily subjected to mechanical degradation and can likely undergo solution 

aging. Additionally, phase separation can also take place in these blends, for example a 

remarkable drop in viscosity (between 15-60%) has been observed after three days of storage 

(data not shown here). Similarly to previous works [54, 63], it was observed that aged solutions 

of the neat polymers or their blends lost their ability to be electrospun mainly due to phase 

separation, complexation, polymer degradation or change in polymer conformation. 

5.4.2.1 Surface tension and electrical conductivity 

The effects of acetic acid concentration and temperature on surface tension of aqueous acetic acid 

solutions are presented in Fig. 5-3. The curve at 20 ºC is obtained in the present study while the 

other curves, i.e. at 35 ºC and 50 ºC, are adapted from reference [64]. Surface tension decreases 

from 73 mN/m for water to 28 mN/m for pure acetic acid at 20 ºC. It is also found that at 50 wt% 

acetic acid, 76% of this reduction is achieved. The electrical conductivity of different 

concentrations of aqueous acetic acid is also shown in Fig. 5-3. Increasing the acid concentration 

results in an increase of the electrical conductivity of the solution up to a maximum exhibited at 

20 wt% acetic acid. At higher acid concentrations (e.g. 50 wt%), the electrical conductivity 

shows a descending trend due to a lack of water molecules to completely dissociate the acid 

molecules [65].  Our initial tests also showed that increasing acid concentration to more than 50 

wt% in chitosan solutions led to a reduction in jet stability, as reported by other groups [54, 66]. 

This could be related to a reduction in the evaporation rate that delays the fiber formation step in 

the process. Therefore, a solution of 50 wt% acetic acid is a compromise between low surface 

tension, reduced evaporation rate and moderate electrical conductivity. The results of surface 

tension measurements for solutions of 4 wt % chitosan, 4 wt% PEO and their 50/50 blend in 50 

wt% acetic acid are superposed in Fig.5-3, indicating an identical surface tension at room 

temperature. Figure 5-3 also reveals that surface tension decreases by increasing temperature, for 

example a 50 wt% acetic acid solution undergoes a 8% reduction in surface tension of when 

temperature is increased from 20 ºC to 50 ºC, a result that is in favour of electrospinnability.  
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Figure 5-3: Effect of acetic acid concentration and temperature on surface tension of aqueous 

acetic acid solutions; 20 ºC: data from present study, 35 ºC & 50 ºC: data adapted from reference 

[64]. Surface tension of 4 wt% chitosan solution, PEO solution and their 50/50 blend overlie at 

20 ºC, showing as a single point in the graph. The electrical conductivity of aqueous acetic acid 

solutions at 25 ºC is also shown (secondary y-axis). 

5.4.2.2 Rheological behaviour  

The rheological properties of chitosan and PEO solutions and their blends have been investigated 

to relate the effect of their flow behaviour on electrospinnability. Results in steady shear flow are 

shown in Fig.5-4. The zero-shear viscosity of 4 wt% neat PEO in 50 wt% acetic acid is 2 Pa.s, a 

value much higher (three times) than that of in water (0.7 Pa.s). This is probably due to the strong 

interactions between ether groups in PEO and hydroxyl groups in acetic acid, which may expand 

the PEO chains in an acidic environment, resulting in a remarkable increase of the shear viscosity 

[18] . The zero-shear viscosity of 4 wt% neat chitosan solutions in 50 and 90 wt% acetic acid is 

nearly the same (almost 2 Pa.s), however this value is only 1.2 Pa.s for the same concentration of 

chitosan in 3 wt% acetic acid. The repulsive forces between protonated –NH3
+
 groups of the 

chitosan molecules increase the solution viscosity due to an expansion of their hydrodynamic
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volume. However, the viscosity of chitosan solutions remains constant at acetic acid 

concentrations higher that 50 wt% since the amine groups are fully protonated at this 

concentration and above. In Fig. 5-4, it is worth noting that the zero shear viscosities of chitosan 

and PEO solutions at the same concentration (4 wt%) in 50 wt% acetic acid are the same. The 

apparent shear rate at the needle wall was evaluated approximately by applying Eq. 5-2, 

considering the solution as a Newtonian fluid: 

                                                         (5-2) 

where  is the shear rate at the needle wall, Q is the volumetric flow rate and r is the radius of 

the needle (300 µm in this work). The calculated shear rate is around 2 s
-1 

(for a typical flow 

rate), hence situated in the plateau (zero-shear viscosity) region.  

 

Figure 5-4: Viscosity as a function of steady shear rate for chitosan, PEO and chitosan/PEO 

solutions in various solvents (total polymer concentration of 4 wt%). 
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Interestingly, a 50/50 mixture of chitosan/PEO with total polymer concentration of 4 wt% 

exhibits a higher viscosity than both of its precursor solutions. The effect of chitosan/PEO 

content on the zero-shear viscosity of solutions is shown in Fig. 5-5. Viscosity of the blends 

shows a strong positive deviation from the additivity rule, indicating strong interactions between 

PEO and chitosan chains. Strong hydrogen bonds between hydroxyl and amino groups on 

chitosan molecules and ether groups in PEO, schematically illustrated in Fig. 5-6, are believed to 

be the main reason for this observation [18, 63]. Further investigation of hydrogen-bonding 

interactions between chitosan and PEO in the nanofibers is presented in the next section. In 

contrast, in some previous works PEO was added to decrease the viscosity of chitosan solutions 

and it was believed that it could work as a plasticizer by breaking down the inter and intra 

molecular interactions of chitosan chains through new interactions with PEO [34, 67]. Flexible 

and small PEO chains can lie down along the rigid chitosan macromolecules facilitating their 

flow and decreasing the viscosity of the blends. However, the distinctive behaviour observed in 

this work is attributed to the size and conformation of the PEO molecules in 50 wt% acetic acid 

solution. Large expanded PEO chains in solution can make strong entanglements with chitosan 

chains leading to an opposite trend [68].   

 

Figure 5-5: Effect of chitosan content on zero-shear viscosity of chitosan/PEO blends. A 4 wt% 

chitosan solution is mixed with a 4 wt% PEO solution in a 50 wt% acetic acid solvent (total 

polymer concentration of 4 wt%). 
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Figure 5-6: Proposed hydrogen bonding interactions between chitosan and PEO molecules [63]. 

 

5.4.3 FTIR spectra 

Hydroxyl, carbonyl (C=O-NHR), amine (NH2) and ether groups in chitosan form intra/inter 

chain hydrogen bonds [69]. As shown in Fig. 5-6, polyether groups in PEO may also form 

hydrogen bonds with chitosan. Figure 5-7 shows the FTIR spectra obtained for neat PEO and 

chitosan/PEO blend nanofibers at various chitosan/PEO contents. The absorption peak observed 

at 1112 cm
-1

 is typical of the vibration stretching of the ether (C-O-C) group [18, 70]. This peak, 

indicated by the arrow, gradually shifts to lower wavenumbers by increasing the chitosan content 

in the nanofibers. As for the case of nanofibers containing 90% chitosan, this peak is shifted by 

almost 29 cm
-1

 unit. 
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Figure 5-7: Normalized transmission FTIR spectra recorded at room temperature in the ether (C-

O-C) region for neat PEO film and as-spun chitosan/PEO nanofibers. 

 

The FTIR spectra obtained at room temperature for neat chitosan and chitosan/PEO blend 

nanofibers at various chitosan/PEO contents in the amine (NH2) stretching region are shown in 

Fig. 5-8. The strong peak observed at 1555 cm
-1

 is attributed to the amine band in chitosan  

[3, 71]. This peak is gradually shifted to higher wavenumbers by increasing the PEO content in 

the nanofibers. The amine peak is shifted by almost 39 cm
-1

 unit after the addition of 50 wt% 

PEO in the nanofibers. The same trend was also observed in the hydroxyl/amine region (2000-

4000 cm
-1

), where the peak attributed to chitosan shifted to lower wavenumbers after the addition 

of PEO (data not presented). The shift in ether (Fig. 5-7), amine (Fig. 5-8) and hydroxyl bands in 

the chitosan/PEO nanofibers may be attributed to the formation of hydrogen bonds between 

polyether oxygen and amino hydrogen in PEO and chitosan, respectively [72, 73]. Therefore, 

strong interactions between chitosan and PEO may prevail from the formation of these hydrogen 

bonds.  
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Figure 5-8: Normalized transmission FTIR spectra recorded at room temperature in the amine 

(NH2) region for neat chitosan film and as-spun chitosan/PEO nanofibers. 

 

 

Figure 5-9: Electrospun solutions: A) 4 wt% PEO in 50 wt% acetic acid, B) 4 wt% PEO  in 

water (tip to collector distance = 15 cm, flow rate = 0.5 mL/h, voltage = 15 kV), C) 4 wt% 

chitosan in 50 wt% acetic acid at 25 °C, (tip to collector distance = 15 cm, flow rate = 0.5 mL/h, 

voltage = 30 kV). Scale bars represent 10 µm. 
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5.4.4 Morphology of electrospun nanofibers and concentration regimes 

Figure 5-9 shows FESEM images of fibers electrospun from a 4 wt% PEO in 50 wt% acetic acid 

solution and in water (Fig. 5-9-A and B, respectively), and from a 4 wt% chitosan in 50 wt% 

acetic acid (Fig. 5-9-C). PEO can produce defect free nanofibers in both solvents; however it 

loses some of its electrospinnability in aqueous acetic acid mainly due to its higher viscosity  

(Fig. 5-4) and to the lower evaporation rate of the solvent. This loss of electrospinnability has 

been concluded from a less stable jet (intermittent spinning) and the large reduction of collected 

nanofibers for the same electrospinning conditions and deposition time (Fig. 5-9-A and B). The 

results for chitosan are completely different; only nano beads and droplets in the range of 100-

150 nm are obtained (Fig. 5-9-C). For chitosan, typically a droplet is formed at the tip of the 

needle, is elongated very slowly with vibrations and then splayed around by an explosion-like 

behaviour. In the best conditions, a jet could be formed for only a fraction of a second, leading to 

beads on the collector.  

The electrospinnability of neat PEO and chitosan need to be explained by other criteria than shear 

viscosity (Fig. 5-4) and surface tension (Fig. 5-3), since these properties show the same values for 

both solutions in typical electrospinning conditions. For example, chain entanglement is another 

solution physico-chemical characteristic that may affect electrospinnability. McKee et al. [53] 

showed that the minimum polymer concentration in solution to prepare defect free beadless 

electrospun nanofibers depends on the critical entanglement concentration (Ce) and polymer type, 

i.e. neutral or charged (flexible or stiff). Ce is the boundary between the semi-dilute unentangled 

and semi-dilute entangled regimes at which entanglements between polymer chains form and 

start constraining chain motions. They found that for neutral polymers, beaded nanofibers formed 

at Ce [53], while defects and droplets disappear at 2-2.5 Ce. However, these values change to 8-10 

Ce for salt free polyelectrolytes [55].  Shenoy also studied the role of chain entanglements on 

fiber formation in the electrospinning process and concluded that for neutral polymers, stable 

fiber formation occurs roughly at more than 2.5 entanglements per chain, or as C >> C
*
 (the 

critical overlap concentration) [74]. Rheological and viscometric measurements have been 

performed in this work to calculate C
*
 and Ce for chitosan and PEO dissolved in 50 wt% acetic 

acid. Figure 5-10 shows the viscosity as a function of shear rate for chitosan solutions at different 

concentrations. All solutions show a very well-developed plateau region that indicates the value 
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of the zero-shear viscosity (η0). Moderate shear-thinning is observed at increasing chitosan 

content, due to more entanglements (hence disentanglements) between polymer chains.  

 

Figure 5-10: Dependence of viscosity on shear rate for chitosan solutions at various 

concentrations (50 wt% acetic acid at 25 °C).   
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Figure 5-11: Dependence of specific viscosity on concentration for chitosan dissolved in 50 wt% 

acetic acid (T = 25 °C). 

 

In this work Ce was evaluated using the method proposed by Colby [75]. In this method, the 

specific viscosity defined by Eq. 5-3 is plotted against concentration, then C
*
 and Ce are evaluated 

based on the onset points of changes in the slope. 

                                                                                                 (5-3) 

In Eq. 5-3 η0 and ηs are the zero-shear viscosity of polymer solution and solvent, respectively. 

The specific viscosity of low concentration solutions was also measured by viscosimetry to 

validate results from rheometry, and both are shown overlapping in Fig. 5-11 for chitosan 

solutions. The value of Ce was determined to be 1.3 wt% for chitosan. Dobrynin [76] also defined 

Ce as the point at which the specific viscosity of a solution is 50 times that of the solvent. In this 

case, the calculated Ce from Fig. 5-11 is 1.4 wt% and agrees with the calculated Ce from Colby’s 

method. The scaling theory of Rubinstein [77] predicts a change in the slope from 0.5 to 1.5 at Ce 

for polyelectrolytes in solution. It represents ηsp ~ C
0.5 

for the semi-dilute unentangled regime and
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ηsp ~ C
1.5 

for the semi-dilute entangled regime, evidential of more associated polymer chains after 

Ce. 
 
 The calculated scaling powers from Fig. 5-11 are higher than those predicted by the theory, 

i.e. 1.4 instead of 0.5, and 2.9 instead of 1.5. This illustrates a higher level of interactions 

between chitosan chains, resulting from strong intra and inter chain hydrogen bonds. It is also 

worth noting that the scaling relationship for concentrations higher than Ce in this work  

(ηsp ~ C
2.9

)
 
is lower than that measured previously by other researchers. For instance, Klossner 

[54], Hwang [67] and Cho [78] reported scaling values of 6.0, 3.94 and 4.1 respectively.  

The critical overlap concentration (C
*
) was also determined using two criteria; the first one was 

C
*
 = 1.5[η] [79], and the second one was the point at which the viscosity of the solution is twice 

that of the related solvent [76, 77]. C
*
 was determined to be 0.12 wt% and 0.1 wt% using these 

two criteria, respectively, hence in good agreement.  

The same procedure was used to measure the critical overlap (C*) and entanglement (Ce) 

concentrations for PEO (more detalis in appendix A). The obtained result indicated a Ce of 1.1 

wt% and 1.5 wt% by applying the same methods as defined previously for chitosan. The C
*
 was 

also estimated to be 0.2 wt% at the point where η = 2 ηs. Based on the above findings, the 

chitosan concentration used for electrospinning in this work, i.e. 4 wt% is nearly 40 times its C
*
 

and 3 times its Ce. Therefore, according to McKee [55], this concentration is too low and 

consequently no chitosan nanofibers can be obtained (as shown in Fig. 5-9-C). In the case of 

PEO, 4 wt% is 20 times C
*
 and approximately 3-3.5 times Ce, and this is above the threshold for 

defect-free nanofibers for a neutral polymer [53]. Consequently, the totally different behaviour in 

electrospinning of chitosan as compared to PEO can be attributed to a significant difference in 

chain entanglements in solution.  

Moreover, electrical conductivity of solutions is another factor affecting the electrospinning 

process. Figure 5-12 shows the electrical conductivity of different ratios of chitosan/PEO 

solutions in 50 wt% acetic acid.  The value for a neat 4 wt% PEO solution is 0.73 mS/cm, and is 

very similar to that of the solvent (0.9 mS/cm) (Fig. 5-3). However, it is relatively lower than the 

electrical conductivity of a neat 4 wt% chitosan (3.4 mS/cm). Chitosan solutions are more 

conductive as compared to PEO due to the polycationic nature and positive charges on the 

polymer chains. This leads to more stretching during the whipping and bending motion of the 

solution in the strong electric field. On the other hand, these charges caused repulsive interactions 
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between chitosan chains, which destabilize the charged jet in the stretching region, resulting in 

splaying and explosion-like behaviour of the jet, making only droplets on the collector. Addition 

of PEO decreases the electrical conductivity of chitosan/PEO solutions, firstly by substituting a 

positive charged molecule by a neutral one, and secondly by reducing the amount of protonation 

due to hydrogen bonds formed between amino groups of chitosan and ether groups of PEO, as 

discussed in Section 5-3-3. 

 

Figure 5-12: Effect of chitosan concentration on electrical conductivity of chitosan/PEO blends. 

A 4 wt% chitosan solution is mixed with a 4 wt% PEO solution in a 50 wt% acetic acid solvent. 

 

5.4.5 Moderate temperature electrospinning 

The effect of moderate temperature on the electrospinnability of chitosan solutions is shown in 

the SEM micrographs of Fig. 5-13 (A-D). As mentioned before, neat chitosan shows very poor 

electrospinnability at room temperature and only nanobeads and droplets are formed  

(Fig. 5-13-A). As temperature increases from 40 to 60 °C, fiber formation slightly improves and 

the morphology changes to a combination of beads and fibers (Fig. 5-13-B and C). However, at 

higher temperatures the number of beads rises again so that at 80 °C the result is almost the same 

than at room temperature (Fig. 5-13-D), with an only beaded morphology. This behaviour can be 
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explained by three competing phenomena at elevated temperatures: an increased rate of solvent 

evaporation, a decreasing surface tension (Fig. 5-3) and viscosity (Fig. 5-12). In Fig. 14 the 

viscosity of neat chitosan (2 Pa.s at 25 °C) and 50/50 blend of chitosan/PEO (3.1 Pa.s at 25 °C) is 

shown decrease to 0.5 Pa.s at 60 °C. The reduction in viscosity and surface tension may stabilize 

the jet in the spinning process, while faster solvent evaporation rate can cause faster drying of the 

whipping jet and increase chain entanglements, which overall improves spinnability. However at 

higher temperatures (70 to 80 °C), the jet may dry too fast without having enough time to be 

stretched by the electrical field and result in the disappearance of fibers and get back to a beaded 

morphology (Fig. 5-13-D). 

 

 

Figure 5-13: SEM micrographs of electrospun neat chitosan solutions at various temperatures (4 

wt% chitosan in 50 wt% acetic acid), (tip to collector distance = 15 cm, flow rate = 0.5 mL/h, 

voltage = 30 kV). Scale bars represent 10 µm. 
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Figure 5-14: Effect of temperature on zero shear viscosity of 4 wt% neat chitosan and its 50/50 

blend with 4 wt% PEO, all in 50 wt% acetic acid. 

 

In order to obtain defect free nanofibers based on chitosan, 4 wt% PEO is added to a chitosan 

solution of the same concentration, both in aqueous solutions of 50 wt% acetic acid at different 

blend ratios (for a 4 wt% total polymer concentration). Micrographs of morphologies obtained for 

various polymer ratios are presented in Fig. 5-15. At room temperature (25 °C), beadless 

nanofibers can be obtained from mixtures of 50/50 to 80/20 of chitosan/PEO (Fig. 5-15-A, D). 

Higher chitosan content (90/10) results in a large presence of beads in the final microstructure 

(Fig. 5-15-G). These results demonstrate that the addition of PEO can greatly facilitate the 

electrospinning process of chitosan up to 80 wt% chitosan in the mixture at room temperature.  

As discussed before, the formation of hydrogen bonds between PEO polyether oxygen and 

chitosan amino hydrogen may increase chain entanglements in solution and make chitosan more 

electrospinnable [19]. In fact, PEO chains may produce “links” between chitosan chains due to 

these hydrogen bonding interactions and carry them out in the jet toward the collector and hence 

facilitate fiber formation. These interactions probably still prevail at high temperature. Coleman 

and his coworkers have studied the effect of temperature on hydrogen bonds for several polymers 
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and blends in a series of publications (see for example [80]). They concluded that at higher 

temperature, the concentration of free N-H groups that must have increased as a result of 

destroyed hydrogen bonds did not change significantly over a temperature range of 30-210 °C. 

Therefore in the case of the chitosan/PEO blends examined here, it is expected that the hydrogen 

bonds would still exist at higher temperature (up to 80 °C). 

Moreover, the addition of PEO decreases the electrical conductivity of chitosan solutions  

(Fig. 5-12), thus may help in obtaining a more stable jet and prevent jet splaying in the stretching 

region [18]. As for the effect of temperature, beadless morphologies and more stable jets during 

the spinning process are obtained from a 90/10 chitosan/PEO blend (Fig. 5-15-H, I). This can be 

attributed to a reduction in viscosity (Fig. 5-14) and surface tension (Fig. 5-3), and also to a faster 

solvent evaporation rate that helps the charged jet to be further stretched and stabilized [20]. In 

blend solutions, higher temperatures (70 to 80 °C) (Fig. 5-15-C, F, I) did not have the same effect 

as for chitosan alone (Fig. 5-13-D). That may be due to the presence of PEO chains which 

increase chain entanglements so that faster evaporation rate cannot change the morphology from 

fibers to beads. At higher chitosan content (95 wt %, results not shown), the number of beads 

increases even at high temperature due to the large content of chitosan in solution. 

Finally, the effect of chitosan content and spinning temperature on the distribution of fiber 

diameters is shown in Fig. 4-16. It reveals that fiber diameter decreases with increasing chitosan 

content. For example, increasing chitosan/PEO ratio from 50/50 to 90/10 leads to a diameter 

reduction from 123 to 63 nm at room temperature, and a similar trend is observed at higher 

temperatures. The diameter reduction may be due to the decrease in viscosity (from the maximum 

in 50/50 to the steadily decreased value in 90/10, Fig. 5-5) and the larger conductivity of chitosan 

rich solutions (Fig. 5-12). Both effects results in higher stretching rate and subsequent thinner 

fibers. However, while no discernible trend is observed for fiber diameter with temperature, in 

most blends, as temperature increases, slightly larger values are observed. There are two 

opposing phenomena that may control the temperature effect on resulting fiber size: First, 

increasing temperature exponentially increases solvent evaporation rate, thus leading to larger 

fibers due to decreasing solidification time and lower stretching rate. On the other hand, viscosity 

and surface tension drop at higher temperatures, resulting in higher stretching rates and thinner 

fibers [81].Therefore depending on the dominant phenomena, different diameter-temperature 

trends can be observed. This has led to contradictory results in the literature; for example Wang 
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et al. [82] reported  a fiber diameter reduction,  while  Desai and Kit [43] observed a diameter 

increase with electrospinning temperature.   

 

 

Figure 5-15: Effect of blend ratio (chitosan/PEO) and temperature on electrospun nanofibers 

(blends of 4 wt% chitosan and 4 wt% PEO in 50% acetic acid); (tip to collector distance = 15 cm, 

flow rate = 0.5 mL/h, voltage = 30 kV). Scale bars represent 10 µm. 
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Figure 5-16: Effect of blend ratio (chitosan/PEO) and spinning temperature on fiber diameter, 

total polymer concentration = 4 wt% in 50 wt% acetic acid, (tip to collector distance = 15 cm, 

flow rate = 0.5 ml/h, voltage = 30 kV). 

 

5.5 Conclusion 

In this work, defect-free nanofibers with diameters of 60-120 nm were obtained from a highly 

deacetylated chitosan grade blended with PEO.  A new set up designed to electrospin at moderate 

temperature was utilized to achieve content as high as 90 wt% of chitosan in the final 

chitosan/PEO nanofibers.  

The different behaviour of chitosan and PEO in electrospinning was attributed to their intrinsic 

different nature in solution, i.e. a polyelectrolyte behaviour for chitosan and neutral for PEO, 

leading to higher electrical conductivity and lower entanglements in the chitosan solutions. The 

success of chitosan PEO-assisted electrospinning is believed to be the consequence of strong 

hydrogen bonds formed between ether groups in PEO and hydroxyl and amino groups in 

chitosan, as shown by FTI . It is speculated that PEO may act as a “carrier” of chitosan in the 

electrospinning process via those physical bonds. Electrospinning at moderate temperature 
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(40-80 °C) also helped to stabilize the jet and improved the spinnability of chitosan solutions, so 

that higher chitosan content could be reached in the nanofibers (up to 90 wt%). Finally, it was 

found that increasing chitosan content in the blend solutions led to a significant reduction in 

nanofiber diameters (from 123 to 63 nm for 50/50 and 90/10 chitosan/PEO blends, respectively, 

at room temperature). This is likely related to a reduction in viscosity and increased conductivity 

when increasing the chitosan content from 50 to 90%.  
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CHAPITRE 6  

CORE-SHELL STRUCTURED PEO-CHITOSAN NANOFIBERS BY 

COAXIAL ELECTROSPINNING
3
 

Mehdi Pakravan, Marie-Claude Heuzey, Abdellah Ajji 

6.1 Abstract 

Core-shell structured PEO-chitosan nanofibers have been produced using a co-axial 

electrospinning set-up. PEO and chitosan solutions, both in an aqueous acetic acid solvent, were 

used as the inner (core) and outer (shell) layer, respectively. Uniform sized defect-free nanofibers 

of 100-190 nm diameter were produced. In addition, hollow nanofibers could be obtained 

subsequent to PEO washing of the membranes. The core-shell nanostructure and existence of 

chitosan on the shell layer were confirmed by TEM images obtained before and after washing the 

PEO content with water. The presence of chitosan on the surface of the composite nanofibers was 

further supported by XPS studies. The chitosan and PEO compositions in the nanofibrous mats 

were determined by TGA analysis which were similar to their ratio in the feed solutions. The 

local compositional homogeneity of the membranes and the efficiency of the washing step to 

remove PEO were also verified by FTIR. In addition, DSC and XRD were used to characterize 

the crystalline structure and morphology of the co-electrospun non-woven mats. The prepared co-

axial nanofibers (hollow and solid) have several potential applications due to the presence of 

chitosan on their outer surfaces. 

                                                 

3 Published in Biomacromolecules, 13, 2012, 412-421 
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6.2 Introduction 

There has been a growing interest for the fabrication of chitosan nanofibers in recent years due to 

a wide variety of potential applications such as anti-bacterial films 
1
, membranes for metal ions 

removal 
2, 3

, supports for enzyme immobilization 
4
, drug delivery systems 

5
, tissue engineering 

scaffolds 
6, 7

 and wound healing dressings.
8
 Electrospinning is a simple and continuous process 

which is used to generate submicron fibers in the form of nonwoven mats. In this process a 

charged polymer solution flows out of a syringe/needle set-up and accelerates toward a collector, 

positioned at a fixed distance from the needle. Through electrostatic forces, a driven jet of 

polymer solution forms, elongates and whips until it is deposited on the collector, resulting in the 

formation of non-woven random nanofibers.
9
 The resulting  electrospun membranes exhibit 

remarkable characteristics such as distinctly high specific surface area (typically 20-100 m
2
/g), 

high porosity and small pore size.
10

  

Chitosan is a modified natural polymer derived from chitin, one of the most abundant organic 

materials in the world. It is very similar to cellulose, except for the amino group replacing the 

hydroxyl group on the C-2 position The –NH2 groups on the chitosan backbone provide several 

unique properties such as solubility in acidic aqueous solvents, antifungal and antimicrobial 

properties and the ability to chelate heavy metal ions.
11

 The electrospinnability of chitosan is 

limited mostly by its polycationic nature in solution, rigid chemical structure and specific inter 

and intra-molecular interactions.
12-14

 The repulsive forces, arising from the protonation of the –

NH2 groups, may also restrict the formation of sufficient chain entanglements to allow successful 

electrospinning.
15, 16

  

Neat electrospun chitosan nanofibers have been prepared by dissolving chitosan in trifluoroacetic 

acid (TFA) 
17

 and its mixtures with dichloromethane (DCM) and trichloromethane (TCM).
18

 TFA 

forms stable salts with the amino groups of chitosan which can efficiently hinder the 

intermolecular interactions between chitosan chains and facilitate electrospinning.
17

 A highly 

concentrated aqueous acetic acid solution (80-90%) was also reported by some research groups as 

another successful solvent for the fabrication of neat chitosan nanofibers, using chitosan grades 

with degrees of deacetylation (DDA) of 54 
19

 and 75-85% .
20

 It is believed that decreasing the 
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surface tension of the solution by increasing the acetic acid content can help the 

electrospinnability of chitosan.
19

   

Applications of electrospun chitosan nanofibers using TFA-based solvents are however limited, 

as the prepared membranes can easily dissolve in neutral and weak basic aqueous solvents 
21

, due 

to the high solubility of the TFA-chitosan salt residues. Additionally, working with toxic and 

harmful solvents and the possible presence of their residues in the final membranes always raise 

major concerns. 

Blending chitosan with materials that facilitate its processing is another approach to make 

chitosan electrospinnable. The co-spinning agent should have excellent fiber forming 

characteristics in order to create entanglements and physical bonds with chitosan, and act as a 

carrier in the electrospinning process. Synthetic polymers such as polyethylene oxide (PEO) 
12, 22-

24
, polyvinyl alcohol (PVA) 

8, 14
, polylactic acid (PLA) 

25
, nylon-6 

26
, polycaprolactone (PCL) 

27
 

and proteins such as silk fibroin 
28

, zein 
29

 and collagen 
30

 have been successfully blended with 

chitosan to produce chitosan-based composite nanofibers. Generally the content of the co-

spinning agent varies from 20 to 80 wt%. The presence of this second phase can however affect 

the properties of the nanofibers by decreasing the chitosan content located at the surface. This 

influences properties such as biocompatibility and mechanical integrity, and may be hard to 

rectify by an extraction process.  

The co-axial electrospinning method provides an alternative and effective way of fabricating 

chitosan-based nanofibers. In this technique, two different solutions are spun simultaneously 

through a spinneret composed of two co-axial capillaries to produce core-shell structured 

nanofibers. Sun et al. 
31

 and Jian et al. 
32

 employed co-axial electrospinning to prepare nanofibers 

from polymer solutions with limited electrospinnability. They co-electrospun these solutions as 

the core material, with a readily electrospinnable solution as the shell layer to make core-shell 

nanofibers of the two components. Previously, Ojha et al. 
33

 used this method to prepare chitosan 

nanofibers by co-axial electrospinning of PEO as a template sheath for the chitosan core, and 

then removal of the shell phase by water washing of PEO to expose the chitosan nanofibers. 

In this paper, we demonstrate that chitosan-based nanofibers with chitosan entirely located at the 

outer surface can be produced by a one-step co-axial electrospinning process, instead of the two-

step method reported above. To the best of our knowledge, it is the first time that core-shell 
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structured PEO-chitosan nanofibers are produced by a one-step co-axial electrospinning process, 

with chitosan as the shell component (outer layer) and PEO as the core material (inner layer) 

from aqueous solutions. Therefore any post-treatment required to extract the PEO phase in order 

to have chitosan on the outer surface is eliminated. The produced nanofibers can have significant 

potential applications in the biomedical field involving wound care and tissue engineering, due to 

the biocompatibility of both chitosan and PEO. Moreover, hollow chitosan nanofibers can be 

obtained by PEO washing of these co-axial nanofibers, which could also be of great interest in 

applications such as blood purification in hemodialysis.
34

 In this work, the morphology and 

core/shell structure of produced nanofibers are studied by scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM). The presence of chitosan on the outer layer is also 

confirmed by X-ray photo electron spectroscopy (XPS) measurements.  Bulk and local 

compositional analysis is performed by thermal gravimetry (TGA) and Fourier transform infra-

red spectroscopy (FTIR) techniques. Finally, differential scanning calorimetry (DSC) and X-ray 

diffraction (XRD) methods are utilized to investigate the crystalline structure of the prepared 

nanofibrous membranes. 

6.3 Experimental section 

6.3.1   Materials 

A commercial chitosan grade in the form of fine powder was supplied by Marinard Biotech 

(Rivière-au-Renard, QC, Canada). The weight-average molecular weight of this chitosan was 

measured by size exclusion chromatography with multi-angle laser light scattering (SEC-

MALLS) and was found to be 85 ± 5 kDa. The degree of deacetylation (DDA) (97.5%) was 

determined from 
1
H-NMR spectroscopy. More on the characterization of this chitosan grade can 

be found in reference.
24

 PEO with a molecular weight of 600 kDa was obtained from Scientific 

Polymers Inc. (Ontario, NY, USA). Reagent grade acetic acid (99.7 %, Aldrich, WI, USA) was 

employed to prepare the aqueous solutions. All the materials were used as received. 

6.3.2   Master solutions 

The chitosan solution was prepared at a concentration of 4 wt% in 50 wt% aqueous acetic acid. 

PEO solutions at 2, 3 and 4 wt% of polymer content were prepared in 50 wt% aqueous acetic 
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acid, and at 4 wt% in water. Solution mixing was performed at room temperature using a 

laboratory magnetic stirrer (Corning Inc, MA, USA) for 18-24 h to ensure complete dissolution 

of the polymers and obtain homogeneous solutions. The prepared solutions were left to rest 4 h 

for degassing and kept in sealed containers at room temperature.  

6.3.3   Electrospinning  

Co-axial electrospinning was performed using a horizontal set-up containing a variable high DC 

voltage power supply (Gamma High Voltage Research, FL, USA) and a programmable micro-

syringe pump (Harvard Apparatus, PHD 2000, USA). Chitosan and PEO solutions were poured 

into 10 mL plastic syringes mounted on the pump with a multi-rack grip; hence, the flow rates of 

the core (PEO solution) and shell (chitosan solution) components were identical during the tests. 

The syringes were connected by plastic tubes and Luer-Lock connections to the inlets of a co-

axial spinneret (Linari Engineering, Pisa, Italy). The co-axial spinneret comprised a 21-gauge 

(i.d. 0.510 mm, o.d. 0.830 mm) inner needle concentrically mounted on a 15-gauge (i.d. 1.37 

mm, o.d. 1.83 mm) outer needle and was grounded by use of an alligator clip. The schematic 

outline of the co-axial electrospinning set up is shown in Fig. 6-1. Blended chitosan/PEO 

nanofibers were also produced for comparison purposes. Two chitosan/PEO blend solutions were 

prepared by mixing the two master solutions at 50/50 and 80/20 chitosan/PEO ratios. The blend 

solutions were poured into an 8 mL stainless steel syringe (Harvard Apparatus, USA) with a 

Luer-Lock connection to a 20-gauge blunt tip needle (Cadence Science, NY, USA). The syringe 

was mounted on the same electrospinning set-up as for the co-axial electrospinning. More details 

on this procedure have been presented elsewhere.
24

 Fiber mats were collected on an aluminum 

foil attached to a drum collector that could easily be removed for subsequent characterization. A 

homemade designed drum with both rotational and translational controllable movements was 

connected to the power supply 15 cm away from the needle. Samples were collected in both static 

and rotating drum mode, based on the requirements of the subsequent characterization 

techniques. Flow rates of 0.25 to 0.5 mL/h (in each syringe), and a voltage range of 15-20 kV 

were used as process parameters. The electrospinning parameters used were chosen based on 

preliminary tests. All experiments were carried out at ambient temperature and relative humidity 

of 15-20%.  
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Figure 6-1: Schematic representation of the co-axial electrospinning set-up. 

6.3.4   PEO extraction 

The prepared electrospun mats were peeled from the aluminum surface of the collector and 

submerged in water for 24 h. The extracted mats were then vacuum dried at 40 °C overnight to 

remove the absorbed water, and further kept in a desiccator at room temperature.  

6.3.5   Film preparation 

For comparison and characterization purposes, chitosan/PEO films were prepared by mixing the 

two master solutions at different ratio (100/0, 50/50, 80/20 and 0/100). Thin films were prepared 

by pouring and spreading approximately 10 g of the relevant solutions in plastic Petri dishes. The 

cast films were vacuum dried at 40 °C overnight to evaporate completely the solvent. The dried 

films were peeled from the Petri dish and kept in a desiccator at room temperature for subsequent 

testing. 

6.3.6  Characterization 

6.3.6.1  Rheological measurements 

Dynamic and steady shear rheological properties of the solutions were characterized at 25 ºC, 

using a stress-controlled rheometer (AR-2000, TA Instruments, DE, USA) with a Couette flow 
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geometry. Low viscosity silicon oil was used to cover the surface of the sample solutions to 

prevent evaporation of the solvent during testing.  The presence of the oil was shown not to 

impact the rheological measurements. The stability of the solutions was examined as a function 

of time in oscillatory shear tests under a low frequency of 1 rad/s and a small deformation of 0.1. 

Over one hour, the elastic and loss modulus decreased by less than 1 and 3 %, respectively, 

showing the solutions to be stable. Steady simple shear measurements were carried out by 

applying shear rates from 0.0625 to 2000 s
-1

. Possible fluid inertia effects at high shear rates were 

also examined by looking at values of the Reynolds number Re. In Couette flow geometry, this 

number is given by: Re = ρ γ˙H
2
/η, where ρ is the density of the fluid, γ˙ is the shear rate, H is the 

flow gap and η is the viscosity of the solution.
35

 The calculated Re values were of the order of   

10
-4

 to 1 over the range of shear rates used in these tests, hence the flow conditions were 

considered inertialess.   The zero-shear viscosity of the solutions were estimated by applying the 

Carreau-Yasuda model 
36

 to the shear viscosity data. 

6.3.6.2   Surface morphology and core-shell structure 

The surface morphology of the electrospun nanofibers was characterized using a Hitachi S-4700 

field emission scanning electron microscope (FE-SEM) operating at 5-10 kV. Samples were cut 

from co-electrospun mats collected on aluminum foil. These samples were mounted on aluminum 

stubs and sputter-coated by an ultrathin layer of platinum. The samples were observed at 

magnifications between 100 and 40,000 times of their original size to evaluate their 

electrospinnability through the presence of beads or droplets. Fiber diameters were also 

determined using Image-J (National Institutes of Health (NIH), http://rsb.info.nih.gov/ij/) image 

processing software. For each electrospun mat, at least 150 fibers were considered from three 

different images to calculate the average diameter.  

The core-shell structure of the prepared nanofibers was characterized by transmission electron 

microscopy (TEM, JEOL, JEM 2100 F). For TEM observation, fibers were directly deposited 

onto a TEM copper mesh. The copper mesh was then submerged in water, dried and observed 

again by TEM to discriminate the components in the shell and core regions. 

http://rsb.info.nih.gov/ij/
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6.3.6.3   Thermal analysis 

Bulk compositional analysis of the nanofibrous mats was carried out according to the method 

proposed by Desai et al. 
12

 using a TA Instruments thermal gravimetric analyzer (TGA, Q 500). 

Neat PEO, chitosan powder and electrospun mats were weighted (typical weights of 5-10 mg) 

and heated from room temperature to 1000 °C under a constant heating rate of 10 °C/min. All the 

TGA tests were performed under a nitrogen atmosphere. The weight loss for chitosan and PEO in 

the nanofibers was evaluated by taking the first-order derivative of the raw weight loss 

thermograms. The area under the respective degradation temperature peak is related to the 

polymer content in the blends. 

6.3.6.4   Fourier Transform Infrared Spectroscopy (FTIR) 

The local compositional and chemical characteristics of the samples were evaluated by Fourier 

transform infra red spectroscopy measurements (Perkin Elmer spectrum 65 FTIR-ATR 

instrument). Transmission and ATR spectra were recorded at room temperature on the as-cast 

chitosan and PEO films and as-spun nanofibrous mats, at wavelengths in the range of  

700-4000 cm
−1

 (resolution 4 cm
−1

, accumulation of 128 scans). The chitosan to PEO relative ratio 

in the samples was estimated from the absorbance ratio at 1550 and 1250 cm
-1

 (A1550/A1250), that 

are characteristic peaks of chitosan and PEO, respectively.
37

 

6.3.6.5   Crystalline structure 

The crystalline structure of the electrospun nanofibers was investigated using XRD and DSC. 

Wide angle X-ray diffraction (WAXD) measurements were performed on a diffractometer system 

(Bruker Discover, D8, 40 kV, 30 mA) equipped with a monochromic Cu Kα (1.542 °A) X-ray 

source, The X D patterns were recorded over a diffraction angle (2θ) range from 5° to 40° in 

0.02° steps. Differential scanning calorimetry was carried out using a TA Instrument Q 1000 

system. Samples of 6 to 10 mg were sealed in aluminum pans and heated under a helium 

atmosphere from 10 to 200 °C in the DSC instrument at a rate of 10 °C/min.  

6.3.6.6   Surface chemistry (XPS) 

X-ray photoelectron spectrophotometry (XPS, Thermo Scientific, VG ESCALAB 3 MKII) was 

used to characterize the surface chemistry of the electrospun mats, in conjunction with a flood 
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gun to eliminate any charging of the surfaces under study. The chemical composition of the 

sample surface was determined for all elements contained in the polymers except hydrogen, with 

a typical sampling thickness of 5-10 nm. An Mg Kα monochromatized X-ray source (1253.6 eV) 

was used to produce photoelectron emission from the samples. The pressure in the analysis 

chamber was maintained at 10
-9

 Torr. An area of 2×3 mm
2
 (maximum allowable) was used to 

scan the surface of the samples to account for surface variations and obtain an averaged signal. 

Survey spectra were taken to identify the chemical species on the sample surface, and a high 

resolution scan for C, N and O was performed to identify the elemental peaks. XPS data was 

analyzed using VGS 5000 software to calculate the atom percentage of the various elements 

found on the mat surface. Peak fitting was performed on the high resolution elemental scans 

(average of 10 scans) to obtain surface chemistry information. Energy calibration was carried out 

by placing the hydrocarbon peak in the C1s spectrum at 285 eV. 

6.3.6.7   Specific surface area (BET) measurement 

The surface area of the electrospun mats was obtained by a Quantachrome instrument BET 

Autosorb IQ. A gas mixture of nitrogen and helium was continuously fed through the sample 

cell, which was kept in liquid nitrogen. The total volume of adsorbed nitrogen gas on the surface 

was measured at different pressures. The volume of gas needed to create an adsorbed 

monomolecular layer was calculated as follows 
38

: 

                                                                               (6-1) 

where P is the experimental pressure, P
0
 the saturation pressure, ν the volume of the adsorbate, 

νm the volume of gas required to form an absorbed monomolecular layer, and C a constant. The 

procedure for estimating the surface area from Eq. 6-1 can be found in reference.
39

 

6.4 Results and discussion 

6.4.1   Rheological behaviour of solutions 

The rheological characteristics of chitosan and PEO solutions were measured to gain knowledge 

of their flow behaviour in the needles during the electrospinning process (Fig. 6-2). The apparent 
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shear rate at the respective needle walls was approximated by considering the solutions as 

Newtonian fluids and applying Eq. 6-2: 

                                                         (6-2) 

where  is the apparent shear rate at the needle wall, Q is the volumetric flow rate and R is the 

radius of the needle (255 µm for the inner needle, 685 µm for the outer needle, and 415 µm at the 

annulus). For a typical flow rate of 0.5 ml/h, the calculated shear rates are approximately 11, 0.60 

and 2.5 s
-1

 at the three
 
respective needle walls, and these values are illustrated in Fig. 6-2 by 

dotted lines. The viscosity curves in Fig. 6-2 indicate that the solutions are nearly Newtonian at 

these operating shear rates in the co-axial needle, which support the use of Eq. 6-2.  

 

 

Figure 6-2: Dependence of viscosity on shear rate for PEO solutions (in water and 50 wt% acetic 

acid) and chitosan in 50 wt% acetic acid (data collected at 25 °C). 
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All solutions show a well developed zero-shear viscosity plateau. Shear-thinning is observed at 

higher shear rates, and this behavior is amplified with polymer content due to more 

disentanglement between polymer chains. The PEO solution show more shear-thinning than 

chitosan at the same polymer content as well as an earlier onset of shear-thinning, indicative of a 

larger characteristic time. This can be attributed to the different conformations of their chains in 

the solution state, i.e. very flexible for PEO and rigid (rod-like) for chitosan. The zero-shear 

viscosity of 4 wt% PEO in water is nearly the same as 3 wt% PEO in 50 wt% acid (0.7 Pa.s), 

however this value is much less than (almost one third) that of 4 wt% PEO in 50 wt% acetic acid 

(2.1 Pa.s). The larger viscosity of PEO in aqueous acetic acid solution, vs. water, could be due to 

interactions between ether groups in PEO and hydroxyl groups in acetic acid that may expand the 

polymer conformation in solution.
13

 

6.4.2 Morphology and internal structure of the co-axial electrospun 

nanofibers 

Fig. 6-3 shows the SEM images and associated diameter histograms of the nanofibers produced 

by the co-axial electrospinning of PEO and chitosan solutions in the core and shell streams, 

respectively. Defect-free, bead-less and geometrically uniform nanofibers could be prepared 

when 3 and 4 wt% PEO solutions were fed as the core stream (Fig. 6-3-A and 6-3-B, 

respectively). However, the morphology was changed to beaded fibers when the concentration of 

PEO was reduced to 2 wt% (Fig. 6-3-C). The same trend was observed for the lower flow rate of 

0.25 ml/h (results not shown). The average diameter of the nanofibers decreased from 190 ± 20 

nm to 103 ± 24 nm (for the flow rate of 0.5 ml/h) by decreasing the PEO concentration from 4 to 

3 wt% in the core solution (Fig. 6-3-A and 6-3-B). It shows that the effect of the core solution 

concentration in the co-axial electrospinning geometry is similar to that for simple 

electrospinning, i.e.  an increase in solution concentration generally results in a larger fiber 

diameter.
40

 On the other hand, co-axial electrospinning of a 4 wt% PEO in water as the inner 

stream and chitosan solution as the outer solution did not result in a stable jet and fiber formation 

(results not shown). Electrospinnability of neat PEO solutions alone  (in 50 wt% aqueous acetic 

acid) in the same set-up has been also studied by removing the outer chitosan stream from the 

spinneret. It shows that defect-free nanofibers were formed from 3 and 4 wt% PEO 

concentrations, however, beaded nanofibers and unstable jet were observed for the 2 wt% PEO 
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 solution. Moreover, electrospinning of neat chitosan solution only led to formation of beads and 

droplets on the collector. This could be due to lack of enough chain entanglements required for a 

successful electrospinning.
24

 

It is believed that in this co-axial setup, the PEO solution serves as a spinning aid to successfully 

prepare nanofibers from the non-electrospinnable chitosan solution. It is hypothesized that during 

the co-axial electrospinning process, the core PEO solution carries out the shell chitosan solution 

through the formation of a stable Taylor cone and continuous jet ejection during the entire 

process. This could be attributed to a combination of parameters: a) Using the same solvent in the 

two streams that leads to low interfacial tension between the two solutions is in favor of 

successful co-axial electrospinning.
32, 41

 This is supported by the fact that when the core solvent 

was changed to water (4 wt% PEO), even though the viscosity is almost the same as the core 

solution of 3 wt% PEO in 50 wt% acetic acid (Fig. 6-2), no nanofibers were formed. b) Higher 

conductivity of the shell solution; chitosan is a polyelectrolyte in solution that makes it more 

conductive than neutral solution of PEO.
24

 Yu et al. 
32

 speculated that higher conductivity in the 

shell layer compared to that of the core stream can stabilize the co-electrospinning process, 

probably due to higher shear stress applied on the core material and its subsequent elongational 

force to form a thinner core. c) Low vapor pressure of the solvent (50 wt% acetic acid solution) 

that was used to make the core and shell solutions (boiling point of acetic acid = 120 °C). It was 

shown that high vapor pressure solvents may produce unstable Taylor cones in co-axial 

electrospinning.
41, 42

 Moreover, as we showed in our previous work 
24

 (chapter 5)  specific 

hydrogen bonds are formed between chitosan and PEO. Those bonds could occur during the co-

axial electrospinning process according to Li and Xia 
43

 results, and would stabilize further the 

jet.  
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Figure 6-3: SEM micrograph and diameter histogram of co-axial electrospun nanofibers of 

PEO/chitosan; scale bars represent 10 µm. A) 4 wt% PEO, B) 3 wt% PEO and C) 2 wt% PEO 

(flow rate 0.5 ml/h, needle to collector distance = 15 cm, voltage = 15 kV).  

 

The detailed morphology of the produced co-axial PEO/chitosan nanofibers is shown in a TEM 

micrograph in Fig. 6-4. The contrast which is created by electron beam diffraction represents the 

distinctive phases in the nanofibers. These dark and bright regions represent the core and shell of 

the nanofiber, respectively. The diameters of the shell and core are approximately 200 and 100 
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nm, respectively. Complete concentricity is observed for the majority of the produced nanofibers 

(Fig. 6-4-A), however, eccentricity are noted for some others (Fig. 6-4-B).  It is speculated that 

the nature of the bending instability and whipping motion of the charged jet in the 

electrospinning process may cause some eccentricity.  

 

 

Figure 6-4: TEM micrographs of core-shell structured PEO-chitosan bi-component electrospun 

nanofibers, showing segments of the nanofibers with sharp boundaries; A) Concentric and B) 

Eccentric core and shell structures (Flow rate = 0.5 ml/h, needle to collector distance = 15 cm, 

voltage = 20 kV). 

 

In order to confirm further the formation of the core-shell structure and identify their respective 

components, the electrospun material deposited on a TEM copper mesh was soaked in water and 

dried, and examined again. The resulting structure shown in Fig. 6-5 reveals that the core region 

is completely removed and that a hollow nanofiber is obtained due to the high solubility of PEO 

in water. Hence, the extraction step reveals that PEO is mainly located in the core while chitosan 

constitutes the shell of the nanofiber. This is indeed a relatively simple method to produce 

chitosan hollow nanofibers.  
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Figure 6-5: TEM micrograph of a hollow chitosan nanofiber obtained after water extraction of 

the PEO core (Flow rate = 0.5 ml/h, needle to collector distance = 15 cm, voltage = 20 kV).  

 

6.4.3   Structural features of the core-shell nanofibers; Compositional analysis  

To determine the PEO content, electrospun mat samples were weighed before and after the 

extraction by water. A weight reduction of 46 ± 4 wt% was measured, in close agreement with 

the 50/50 PEO/chitosan flow rates used in the process. The resulting mat also kept its mechanical 

integrity in the form of a membrane after the soaking in water. A typical SEM image of PEO 

extracted co-axial electrospun PEO/chitosan nanofibrous mat is shown in Fig. 6-11 in the 

Supporting Information. To quantify further the bulk composition of chitosan and PEO in the 

produced co-axial nanofibers, TGA was used. Raw TGA thermograms and their first-order 

derivative curves for as-spun and PEO extracted co-axial nanofibrous mats, in comparison with 

neat chitosan and PEO, are shown in Fig. 6-6.  The neat chitosan sample in Fig. 6-6-A shows a 

weight reduction of 6.5 ± 0.5% until 100 °C due to the evaporation of the adsorbed water. In the 

case of PEO, at 1000 °C there is nearly no residue left, while an ash residue of 28.11 ± 1.16% is 

observed in the case of chitosan. The neat PEO and chitosan show two separate decomposition 

temperatures at 414.5 ± 2 °C and 325.8 ± 0.73 °C, respectively (Fig. 6-6-A). As shown in  

Fig. 6-6-B, the peak temperatures related to PEO and chitosan decomposition were also observed 

in the co-axial nanofibers, with only a slight shift in their position that has been attributed to the 

interactions between PEO and chitosan.
24, 44

 In addition, in the case of the PEO extracted co-axial 

mat, the PEO peak disappears as expected and only the chitosan peak is observed, with a 
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curve quite similar to that of the neat chitosan (Fig. 6-6-B).  These results also reveal that the 

extraction step is quite efficient in removing PEO from the nanofibers core. The data obtained 

from the TGA thermograms is used to determine the content of PEO and chitosan in the produced 

co-axial nanofibers, considering the humidity and residue level in the mats. This is achieved by 

measuring the related area under the peaks in the first-order derivative of the TGA curves  

(Fig. 6-6-B). Using this method the chitosan content is calculated to be 52 ± 3% for the co-axial 

electrospun mats, which agrees with the value obtained from the extraction method (~54 wt%).  

To evaluate the local compositional homogeneity of the membranes, FTIR analysis has been 

performed on the samples. Figure 6-7 shows the ATR-FTIR spectra of as-spun and PEO 

extracted co-axial electrospun nanofibers. Neat chitosan and PEO cast films were also 

characterized for comparison. Neat chitosan exhibits a broad band around 3100-3500 cm
-1

 and 

another one at 1550 cm
-1

,
 
which are commonly attributed to the N-H and O-H stretching of the 

primary amino groups (due to hydrogen bonds with O-H groups) and N-H stretching of the 

secondary amides (known as Amide II), respectively.
14, 45, 46

 Very weak peaks for the stretching 

of the carbonyl (C=O-NHR) groups at 1650 cm
-1 

(known as Amide I) and C-H stretching at 2880 

cm
-1  

also appear. The neat PEO shows its FTIR absorption feature bands around 2880, which are 

assigned to the CH2 stretching; however this band overlap with that detected for chitosan. Other 

feature bands of PEO are observed at 1150, 1110 and 1060 cm
-1 

as triplet peaks related to C-O-C 

stretching vibrations, and sharp peaks at 1360, 1340, 1275 and 1250 cm
-1

 attributed to CH 

deformation of the methyl groups.
13, 46

 The absorbance intensity ratio at 1550 cm
-1 

and 1250 cm
-1  

(A1550/A1250) is used as an indication of the chitosan to PEO ratio.
37

 Therefore, local compositions 

of chitosan and PEO are determined by evaluating this ratio in different areas of the co-axial 

nanofibers by recording the transmission FTIR spectra for that region. It is found that the 

A1550/A1250 ratio does not vary significantly for various locations of the samples, confirming the 

uniformity and homogeneity of the prepared nanofibers and the stability of the electrospinning 

process. A chitosan content of 55 ± 1.6 % was calculated based on this ratio, and is again in close 

agreement with the values obtained from bulk compositional analysis, i.e. the extraction test 

(~54%) and TGA (52 ± 1.6%).  In addition, after washing the co-axial electrospun mat with 

water, the feature peaks of PEO disappear and the spectra obtained is that of neat chitosan  

(Fig. 6-7). Therefore it can be concluded that after PEO washing, a nanofibrous mat exclusively 

made of chitosan can be obtained.  
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Figure 6-6: TGA curves of as-spun and PEO extracted co-axial electrospun PEO/chitosan mats 

compared with neat chitosan and PEO powder A) raw TGA curves, and B) first-order derivative 

of TGA curves.  
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Figure 6-7: ATR-FTIR spectra of neat chitosan and PEO powder, and co-axial electrospun 

PEO/chitosan nanofibers: as-spun and after extracting PEO by water. 

 

6.4.4   Crystalline structure of the nanofibers 

To evaluate the crystalline structure, DSC and XRD tests have been performed on chitosan/PEO 

electrospun nanofibers and compared with results for neat chitosan and PEO. DSC thermograms 

of as-spun and washed co-axial electrospun nanofibers, and nanofibers prepared from a 50/50 

chitosan/PEO blend solution are presented in Fig. 6-8. DSC curves of neat chitosan and PEO 

powder are also shown for comparison purposes. The broad endothermic peak in the chitosan 

curve is attributed to the evaporation of bound water from chitosan.
13

 For the neat PEO powder, a 

sharp endothermic melting peak around 71 °C is observed. On the other hand, the co-axial PEO-

chitosan nanofibers show a melting transition at 62.1 °C. This peak disappears after PEO 

extraction and the DSC curve become similar to that of the neat chitosan powder (Fig. 6-8). The 

nanofibers from the 50/50 chitosan/PEO blend solution also exhibit an endothermic melting 

transition, closely located to that of the co-axial nanofibers. Table 6.1 shows melting point and 

enthalpy of fusion for neat PEO powder and nanofiber in comparison with co-axial electrospun 
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nanofibers and 50/50 blended chitosan/PEO nanofibers. It shows that the melting point and 

enthalpy of fusion (hence crystallinity) in the PEO nanofibers decrease as compared to that of the 

neat powder. This is attributed to the very fast evaporation of the solvent in the electrospinning 

process that may prevent the crystals to form completely.
47, 48

 In the case of nanofibers based on 

blend (50/50), interactions between chitosan and PEO chains in the nanofibers may also hinder 

the crystallization of PEO.
46

 

 

Table 6.1: Melting point and enthalpy of fusion of neat PEO powder and electrospun nanofibers 

              Sample Tm (°C) ΔH (J/g; PEO) 

PEO powder 69.0 ± 1.0      180.8 

PEO nanofiber 64.5 ± 1.7      165.5 

Co-axial nanofibers 62.1 ± 2.0      158.7 

50/50 blend nanofibers 62.0 ± 1.6      157.1 

 

 

Figure 6-8: DSC thermograms of neat chitosan and PEO powder, as-spun and washed co-axial 

electrospun PEO/chitosan nanofibers, and 50/50 blend chitosan/PEO nanofibers. 
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In order to further illustrate the differences in crystalline content and morphology of the 

nanofibers and neat materials, X-ray diffraction patterns were obtained. Figure 6-9 presents the 

XRD patterns of neat chitosan and PEO powder, co-axial PEO-chitosan nanofibers before and 

after washing and 50/50 and 80/20 blend chitosan/PEO nanofibers. The neat PEO powder show 

two sharp feature peaks around 2θ=19.1° and 2θ=23.2°.
47

 The peak appearing around 2θ = 20.1° 

is characteristic of chitosan and has a much lower intensity than those of PEO, indicating that the 

crystalline ordering in chitosan is significantly less than in PEO.
11

 The two peaks related to the 

PEO crystals also appear in the XRD patterns of the co-axial nanofibers and the 50/50 blended 

chitosan/PEO nanofibers, however the peak around 2θ = 23.2° is weaker than for the neat PEO 

powder. Nevertheless it depicts the existence of the same PEO crystalline structure in the 

electrospun nanofibers, with a crystallinity degree slightly lower than in the neat material, as 

indicated previously by the DSC results. The difference between the intensity of the main peaks 

in the neat PEO powder as compared to its electrospun counterparts may be related to the 

orientation of the PEO crystals according to the strong elongational field in the electrospinning 

process, and possibly also to less crystals formed.
49

 No peak is observed after PEO washing from 

the co-axial mats, which reveals once more the complete removal of PEO and a remaining 

chitosan amorphous structure. This indicates that the crystalline microstructure of chitosan cannot 

build up as well as PEO in the electrospinning process, most probably due to the fast evaporation 

of the solvent in this process. Additionally, in the case of the 80/20 blend chitosan/PEO 

nanofibers, the low amount of PEO and the presence of chitosan-PEO interactions hinder crystal 

formation and lead to an almost amorphous structure. 
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Figure 6-9: XRD diffraction pattern of neat chitosan and PEO powder, co-axial electrospun PEO-

chitosan nanofibers: as-spun and after extracting the PEO by water, and blended chitosan/PEO 

nanofibers (80/20 and 50/50 chitosan/PEO blend ratios).  

6.4.5   Surface properties of core-shell nanofibers 

X-ray photo electron spectroscopy (XPS) analysis was performed to quantify the surface 

composition of the co-axial electrospun nanofibers. The XPS survey spectra (data not shown 

here) and the surface elemental content of carbon, oxygen and nitrogen of the co-axial and 

blended chitosan/PEO electrospun nanofibers, as well as cast films of the neat components, were 

analysed by the XPS technique. Chitosan contains nitrogen in its amine and acetylamine groups 

on its backbone; however PEO has only oxygen and carbon in its structure. Figure 6-10 shows 

the surface nitrogen composition in electrospun nanofibers and cast films vs. chitosan content in 

the blend (or feed) solutions. The theoretical nitrogen composition for a 97.5% DDA chitosan, 

calculated from the chemical structure and ratios of the repeating units in chitosan,
2
 is calculated 

to be 9 % and is shown as the dashed line in Fig. 6-10. It can be observed from Fig. 6-10 that this 

value is not in close agreement with the surface nitrogen composition of neat chitosan film 
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measured by XPS, i.e. 5.2% (shown as dotted line in Fig. 6-10). This discrepancy between the 

theoretical nitrogen composition and the surface nitrogen composition measured by XPS has 

been previously reported
2, 50

 for surface analysis of chitosan containing films. This can be 

attributed to a contaminating overlayer on the surface or the film surface composition is not 

necessarily the same as its expected theoretical stoichiometric bulk composition.  As expected, 

the surface nitrogen composition increases with chitosan content, and for the 90/10 chitosan/PEO 

blend the nitrogen composition is close to that of neat chitosan (cast film). In the 50/50 

chitosan/PEO blend, the surface nitrogen content is very low (~ 1%), however in co-axial 

electrospun nanofibers this value increases to 4.6 ± 0.6%, a value very close to that of the neat 

chitosan cast film. This is another indication of the successful formation of a core/shell 

nanostructure, with a chitosan shell. 

  

 

Figure 6-10: Surface nitrogen composition of the blended chitosan/PEO electrospun nanofibers 

and their cast films. The point represents the co-axial PEO/chitosan electrospun mats. 
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The actual specific surface area of the electrospun co-axial nanofibers, neat chitosan powder and 

chitosan cast film were obtained through conventional N2 adsorption measurements based on the 

Brunauer-Emmett-Teller (BET) theory.
38

 A specific surface area of 15 ± 1.5 m
2
/g was calculated 

for the co-axial nanofibers prepared from a 0.5 ml/h flow rate, a value which is much higher than 

that of chitosan powder (less than 1 m
2
/g) and most probably film. The specific surface area of 

the nanofibers was also calculated theoretically by considering the fibers as cylinders and 

neglecting the area of the cross sections, based on Eq. (6-3):  

                                                                                (6-3) 

where A is the specific surface area in g/m
2
 and D and ρ denote the diameter (in nm) and density 

(in g/cm
3
) of the nanofibers, respectively. The theoretical surface area of the co-axial nanofibers 

was calculated to be 16.7 m
2
/g, considering 190 nm as the average diameter and 1.26 g/cm

3
 for 

the density of the nanofibers (detailed on page 2 of the Supporting Information). This value is in 

good agreement with the experimental result (15 ± 1.5 m
2
/g).  

 

6.5 Conclusions 

Chitosan is a cationic biopolymer that is challenging to electrospin. In this work we were able to 

produce fairly uniform sized core/shell structured PEO/chitosan nanofibers using a co-axial 

electrospinning technique. PEO and chitosan solutions were fed as core and sheath materials to a 

co-spinneret, respectively. Core-shell structure of the nanofibers was observed by TEM images.  

Presence of chitosan on the shell was confirmed by TEM images of hollow nanofibers obtained 

after extracting the PEO content. The obtained mats after the washing step were comprised of 

nearly 100% chitosan in the form of hollow nanofibers. The presence of chitosan on the surface 

was also confirmed by XPS analysis as further evidence of core/shell formation. Bulk and local 

compositional analysis of chitosan and PEO in the electrospun nanofibers showed that the ratio of 

chitosan to PEO in the nanofibers was similar to that in the feed streams, and also that the local 

composition of the prepared nanofibers was homogeneous, indicating the stability of the 

electrospinning process. Due to a shell layer entirely made of chitosan, this processing method 

has several advantages such as the simplicity of a one-step production without any 
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post-treatment, with the possibility of producing chitosan hollow nanofibers through a subsequent 

PEO water washing. These nanofibers have interesting potential applications in the biomedical 

field such as purification of the blood in hemodialysis and wound dressings.  
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SEM micrograph of a PEO extracted nanofibrous mat; density calculation of the co-axial 
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Figure 6-11: SEM image of PEO extracted co-axial PEO/chitosan nanofibrous mat 
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6.7.2 Calculation of co-axial nanofibers density 

Density of PEO (typically 70% crystalline) = 1.20 (g/cm
3
)

4
  

Density of chitosan = 1.33 (g/cm
3
) 

5
 

Weight percent of chitosan in co-axial nanofibers  52 wt% (TGA results) 

Density of the co-axial nanofibers = 1/ (Σwi/di) = 1 / ((0.52/1.33) + (0.48/1.2)) = 1.26 g/cm
3
 

where wi and di are weight fraction and density of component i in the mixture, respectively. 
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CHAPITRE 7  

GENERAL DISCUSSION 

In spite of different studies that reported the fabrication of chitosan nanofibers with varying 

degrees of success, there are many aspects to be improved and clarified, especially for the 

production of electrospun chitosan-based nanofibers from harmless aqueous solutions that are 

significantly more suitable for biomedical applications. Several methods have been used to 

prepare porous structures of chitosan previously. Among them, the electrospining technique has 

gained a lot of attention lately since it can produce microporous non-woven three dimensional 

structures of sub-micrometer fibers that are more advantageous for applications such as wound 

healing dressings, anti-bacterial packaging films, drug delivery systems, scaffolds for tissue 

engineering and membrane filters for air and water purification.  

The first part of this work is aimed at understanding the miscibility and phase behaviour of 

chitosan/PEO solutions. Since electrospinning is carried out through a polymer solution, 

precursor and PEO is added to chitosan to improve its processability. A rheological approach was 

introduced as a sensitive method to evaluate the liquid-liquid phase separation of polymer 

solutions. In this method, the phase separation behavior of polymer solutions was investigated 

using small amplitude oscillatory shear measurements. Binodal decomposition temperatures were 

determined from the sudden changes in the slope of the storage modulus or loss tangent versus 

dynamic temperature sweep plots. The spinodal decomposition temperatures were also evaluated 

by using a mean field theoretical approach. This technique was first applied on a well-known 

PEO/water solution and then it was used to study the solutions of our interest, aqueous acetic acid 

solutions of PEO, chitosan and their blends. Comparing the obtained critical points with those 

reported from other experimental techniques, revealed that rheological measurements can detect 

the early stages of phase separation.  

Subsequently the method was applied to 50 wt% aqueous acetic acid solutions of PEO, chitosan 

and their blends at different ratios which previously showed incoherent results in the 

elecctrospinning process at elevated temperatures. These solutions showed a lower critical 

solution temperature (LCST) phase diagram that was attributed to the existence of hydrogen 

bonds between ether groups on PEO and hydroxyl, acetylamine and amino groups on chitosan
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 molecules and the solvent. Critical decomposition temperatures for binodal and spinodal points 

were estimated from isochronal temperature sweep experiments. It was conceded that chitosan 

and PEO solutions are miscible and stable up at moderate temperatures of 25-65 °C. Therefore, 

blending chitosan with PEO at this range of temperature lead to a one phase stable solution that 

can be used in the electrospinning process.  

Afterwards, a systematic quantitative analysis was conducted to investigate the solution 

properties that resulted in successful electrospinning. Various characteristics such as surface 

tension, conductivity, shear viscosity and acid concentration were considered to shed light on the 

electrospinnability of chitosan. The effect of PEO on the improvement of the electrospinnability 

of chitosan solutions was examined. The different behaviour of these two solutions in the 

electrospinning process indicated that the polyelectrolyte nature of chitosan and its chain stiffness 

in solution, which leads to lower chain entanglements, limits its electrospinnability as compared 

to PEO. However, elongational viscosity is another characteristic feature of solutions that can 

play role in electrospinnability of chitosan and PEO solutions, especially because it was shown 

that PEO chains have more entanglements in solution that could lead to more elasticity and 

higher elongational viscosity.  

A transmission FTIR study performed on chitosan/PEO spun nanofibers from solution blends 

confirmed the presence of hydrogen bonding between chitosan and PEO at room tempearture. 

These strong polar bonds form between the ether groups of PEO and hydroxyl and amino groups 

of chitosan. Hence, the success of chitosan PEO-assisted electrospinning was ascribed to the 

consequence of these bonds. It is speculated that PEO may act as a carrier of chitosan in the 

electrospinning process via these physical hydrogen bonds.  In a successful effort, a new 

designed set up was utilized to electrospin at moderate temperatures. Defect free nanofibers with 

diameters of 60-120 nm and high chitosan content as high as 90 wt% were prepared by using this 

set up. The success of this technique was related to lowering the surface tension and shear 

viscosity of the solutions in the electrospinning process. However, further increase in temperature 

(more than 70-80 °C) resulted in unstable jet in the electrospinning process and beaded fibers 

morphology was obtained. This observation was attributed to the phase separation of the polymer 

solutions in the vicinity of this range of temperature. Since the rheological measurements 

evaluated the same range of temperature for phase separation of these precursor electrospinning 

solutions. 
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It was also found that higher chitosan content in the precursor blend solution led to a significant 

reduction in nanofibers diameters. After finding the optimized conditions for electrospinning of 

chitosan/PEO solutions, continuous electrospinning was performed and nanofibrous mats were 

collected on a drum with both rotational and translational movements. Fabrication of these defect 

free nanofibrous membranes with high chitosan content from aqueous acetic acid solutions via a 

completely stable electrospinning process is very promising for further applications.  

In the last part of this work, novel core-shell structured PEO/chitosan nanofibers were prepared 

through a coaxial electrospinning set up. Due to a shell layer entirely made of chitosan, this 

approach had several advantages over the conventional approach of blending chitosan with a 

readily electrospinnable polymeric phase. In addition to the simplicity of a one-step production 

without blending and any post treatment, the amount of required chitosan to prepare the 

nanofibers of the same size will be reduced as well.  

To fabricate those nanofibers, a co-axial electrospinning technique was employed and for the first 

time a core-shell structured PEO-chitosan nanofibers from aqueous solutions were produced, in 

which chitosan is located at the shell (outer layer) and PEO at the core (inner layer). Uniform 

sized defect-free nanofibers of 100-190 nm diameter were produced. The core-shell nanostructure 

and presence of chitosan on the shell layer were suggested by TEM images obtained before and 

after extracting the PEO content by water. The obtained electrospun mats after the PEO washing 

step were nearly 100% chitosan in the form of hollow nanofibers. The presence of chitosan on the 

surface of the composite nanofibers was supported by XPS studies. Bulk PEO and chitosan 

compositions in the electrospun mats were determined by TGA analysis, which were similar to 

their ratio in the feed solution, indicating homogeneity and uniformity of the prepared nanofibers. 

In addition, the local compositional homogeneity of the prepared membranes and the efficiency 

of washing step to remove PEO were verified by transmission FTIR analysis. It was shown that 

the crystalline microstructure of chitosan as well as PEO cannot build up in the electrospinning 

process, most likely due to the fast evaporation of the solvent in this process. The prepared 

coaxial nanofibers (hollow and solid) prepared by this technique have several potential 

applications due to the presence of chitosan on their outer surfaces.  
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CHAPITRE 8  

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

In this dissertation, chitosan-based nanofibrous mats were successfully fabricated from aqueous 

solutions using two approaches: blending and co-axial electrospinning of chitosan solution with a 

readily electrospinnable polymeric solution, i.e. an aqueous acetic acid solution of polyethylene 

oxide (PEO). A fundamental study was performed to shed light on the electrospinning of 

chitosan/PEO solutions and the phase behaviour of these solutions was investigated using 

isochronal dynamic temperature sweep experiments. The following conclusions are drawn from 

this work: 

1- Defect free beadless nanofibers of 60-120 nm can be obtained from an aqueous acetic 

solution of chitosan in the presence of a small amount of PEO (10 wt%). 

2- Positive charges on the chitosan molecules and its chain stiffness are considered as the 

main limiting factors for the electrospinnability of chitosan solutions. 

3- Electrospinning at moderate temperatures (40-70 °C) helps to obtain beadless nanofibers 

with higher chitosan content of 90 wt%. 

4- Higher chitosan content in the precursor solutions of its blend with PEO reduces 

significantly the diameter of resulting electrospun nanofibers (from 123 to 63 nm for 

50/50blend and 90/10 chitosan/PEO blends, respectively). 

5- Rheological measurements provide a sensitive tool to determine the phase behaviour of 

polymer solutions.  

6- Binodal decomposition points of polymer solutions are estimated from dynamic 

temperature sweep experiments and spinodal points are quantitatively calculated on the 

basis of a mean field theory.  

7- Core-shell structured PEO/chitosan nanofibers are prepared by a one-step coaxial 

electrospinning process, with chitosan as the shell component (outer layer) and PEO as 

the core material (inner layer) from aqueous solutions. 
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8- Hollow chitosan nanofibers can be obtained from core-shell structured chitosan/PEO 

nanofibers after washing the PEO content with water. 

8.2 Recommandations  

The following aspects are recommended for more exploration in future work: 

1- To investigate the effect of molecular weight and concentration of the PEO component on 

the electrospinnability of chitosan/PEO blend solutions to find out the minimum PEO 

molecular weight and concentration that leads to a stable electrospinning conditions.  

2- To explore the efficiency of chitosan-based microporous mats in applications for heavy 

metal ions removal from drinking water, stability of the membranes in contact with water, 

clean water permeation and fouling behaviour. 

3- To investigate the anti-bacterial characteristics of the fabricated membranes for 

applications in anti-bacterial film packaging and wound healing dressings. 

4- To compare the properties of the chitosan membranes prepared by the electrospinning 

process in this work by other conventional techniques such as thermal induced phase 

separation (TIPS), cryogenic induced phase separation temperature (CIPS) and selective 

salt extraction. 

5- To investigate the effect of surfactants and salts on the electrospinnability of 

chitosan/PEO solutions and their final resulting nanofibrous membranes. 

6- To study the possibility of fabrication of three-dimensional chitosan-based structures by 

the electrospinning technique. 

7- To conduct a systematic investigation to minimize the thickness of chitosan in the core-

shell structured coaxial nanofibers of PEO/chitosan by changing the molecular weight, 

concentration and flow rate ratio of the two feeding streams. 
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