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ABSTRACT  



Wavelength comparisons have indicated that circadian phase-shifting and enhancement of 

subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength 

visible light.  The aim of the current study was to test whether polychromatic light enriched 

in the blue portion of the spectrum (17000 K) has increased efficacy for melatonin 

suppression, circadian phase-shifting, and alertness as compared to an equal photon density 

exposure to a standard white polychromatic light (4000 K). Twenty healthy participants 

were studied in a time-free environment for 7 days. The protocol included two baseline 

days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following 

CR1, participants were exposed to a full-field fluorescent light (1 x 1014 photons/cm2/s, 

4000 K or 17000 K, n=10/condition) for 6.5h during the biological night.  Following an 8 

h recovery sleep, a second 30-h CR was performed.  Melatonin suppression was assessed 

from the difference during the light exposure and the corresponding clock time 24 h earlier 

during CR1. Phase-shifts were calculated from the clock time difference in dim light 

melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused 

significantly greater suppression of melatonin than standard light ((mean ± SD) 

70.9±19.6% and 42.8±29.1%, respectively, p<0.05). There was no significant difference 

in the magnitude of phase delay shifts. Blue-enriched light significantly improved 

subjective alertness (p<0.05) but no differences were found for objective alertness. These 

data contribute to the optimization of the short wavelength-enriched spectra and intensities 

needed for circadian, neuroendocrine and neurobehavioral regulation. 
 

Keywords 

Light response 



Circadian rhythm 

Alertness 

Melatonin 

 

1.  Introduction 

   The human circadian pacemaker is exquisitely responsive to ocular light exposure [1].  

Photic information is transduced by the retinohypothalamic tract to the suprachiasmatic 

nucleus (SCN) and then to the pineal gland via a multisynaptic pathway [2].  The SCN-

pineal, but not the retinae-SCN pathways need to be intact for the secretion of melatonin, 

even in the absence of light [3,4]. By way of this neuroanatomy, cycles of light and dark 

which are detected through the eyes entrain SCN neural activity which, in turn, entrains 

the rhythmic synthesis of multiple physiological, endocrinological, metabolic and 

behavioral systems including melatonin secretion from the pineal gland [5]. 

   In virtually all species including humans, high levels of melatonin are secreted during 

the night and low levels are secreted during the day [6].  Ocular light exposure affects 

melatonin secretion in two major ways –light exposure during the biological night causes 

the acute suppression of melatonin [7] and light exposure throughout the 24-hour day shifts 

its rhythm according to a Phase Response Curve [8]. The strong circadian control of 

melatonin and its sensitivity to light timing mean that melatonin is often used as a marker 

of the circadian clock [9]. 

   Light is detected primarily by a specialized subset of intrinsically photosensitive retinal 

ganglion cells (ipRGCs) [10,11,12,13].  These non-rod, non-cone photoreceptors express 



the photopigment melanopsin which has a short wavelength peak sensitivity around 480 

nm [14,15]. 

   Using this defined spectral sensitivity of the melanopsin photopigment in ipRGCs, 

multiple studies have examined the spectral sensitivity of melatonin suppression, circadian 

phase shifting, and the acute effects of alertness using narrowband (15 nm or greater 

halfpeak bandwidth) or monochromatic (less than 15 nm halfpeak bandwidth) light sources.  

Monochromatic blue light has been shown to cause greater circadian phase shifting and 

acute alerting responses over monochromatic green light [16,17,18,19,20].  

     Studies have also documented short-wavelength sensitivity for neuroendocrine effects 

using broad spectrum polychromatic blue-enriched light evoking stronger melatonin 

suppression than those with relatively less short-wavelength light [21,22].  In both of these 

studies, equal photopic lux bright light exposures of either 1,000 lux [22] or 2,500 lux [21] 

at high CCT (6480-6500K) caused greater increases in melatonin suppression and increases 

core body temperature than low CCT (3000-3150 K) broad spectrum polychromatic light. 

Sato and colleagues reported that a 2 hour light exposure in the early morning caused 

significant acceleration in the rise of core body temperature and fall of salivary melatonin 

secretion from the blue-enriched, high CCT condition [21]. Evening light exposures of 5 

hours were employed by Morita and Tokura causing significant suppression of the 

nocturnal rise urinary melatonin and the fall of core body temperature in the high CCT 

group [22]. These carefully done initial studies, however, were limited in that they 

examined only the acute neuroendocrine effects of relatively intense polychromatic light 

sources.  We built on these results to examine both acute and circadian neuroendocrine 



responses as well as neurobehavioral differences using a standard light source at more 

common lower room illuminances 

   In addition to highly controlled laboratory studies, several real-world applications in 

schools and offices using both static and dynamic lighting manipulations involving blue-

enriched light have demonstrated increased subjective measures of alertness and affect as 

well as improvements in standard tests of cognitive processing speed, concentration and 

reading ability in blue-enriched lighting conditions[23,24,25,26,27]. For example, office 

installation of the fluorescent lamps used in this study on two floors with participants being 

exposed in a counter-balanced order resulted in statistically significant improvements in 

self-reported measures of alertness, mood, performance, evening fatigue, irritability, 

concentration and eye discomfort during the month of 17000 K exposure as compared to 

4000 K [23].  Mott et al. (2012) studied third grade students (age 7-8 years) under the 

Normal (500 lux, 3500K) versus Focus (1000 lux, 6500K) light conditions and found that 

the higher CCT lighting was reported to improve oral reading fluency when assessed over 

a full calendar year [25]. 

   Recently, we conducted a within-subjects study that established full-range fluence-

response curves to three types of fluorescent lamps that differed in their relative emission 

of light in the short wavelength end of the visible spectrum between 400 and 500 nm 

demonstrating that increasing corneal irradiances of light evoked progressively increasing 

suppression of nocturnal melatonin. Comparison of these fluence-response curves supports 

the hypothesis that polychromatic fluorescent light is more potent for melatonin regulation 

when enriched in the short wavelength spectrum [28]. Building on these data, we tested the 

hypothesis that blue-enriched polychromatic fluorescent light (17000 K) can be more 



effective than standard white fluorescent light (4000 K) light for eliciting melatonin 

suppression, enhancement of neurobehavioral function and phase shifting in healthy 

human participants. This carefully controlled comparison of a high color temperature 

polychromatic light source was performed under commonly occurring room illuminances 

while balancing for photon density. 

2.  Materials and Methods 

2.1  Participants 

   A total of 11 males and 9 females (mean age ± SD of 22.1 ± 1.8 years, range -19 to 26 

years) were studied in the Light Research Laboratory of Thomas Jefferson University 

between July 2007 and August 2008. The study was approved by the Institutional Review 

Board of Thomas Jefferson University and all participants gave written informed consent 

prior to entering the protocol. All participants underwent psychological, toxicological, 

physical, and ophthalmological exams including color vision testing.  For at least 10 days 

prior to entry into the seven-day protocol participants maintained a self-selected 8-hour 

sleep/wake schedule with calls to a time- and date-stamped voicemail at bedtime and wake.   

Participants also wore an actigraph (BASIC Motionlogger, Ambulatory Monitoring, Inc., 

Ardsley, NY) to verify bed and wake times during this time.  The exclusion criteria 

included no use of recreational, over-the-counter, or prescription medications inclusive of 

caffeine and alcohol in the 10 days prior to admission.  Toxicological screening for drugs 

of abuse, caffeine and alcohol as well as pregnancy testing, basic metabolic panel, thyroid 

function, and a complete blood count was conducted during screening and on the day of 

entry in the facility. Both groups were gender balanced (5M, 5F in 17000 K group and 4M, 

6F in 4000 K group) and the testing of two sleep parameters from actigraphy revealed no 



differences (Total Sleep Time and Awakenings) from actigraphy revealed no differences 

(p=0.23 and p=0.70, respectively). 

 

2.2  Protocol design 

   Figure 1 provides a diagrammatic representation of the 7-day inpatient protocol.  This 

protocol was adapted from the 9-day protocol used at the Brigham and Women’s Hospital 

[16]. Participants lived in a time-free environment (no windows, timepieces, TV, or 

internet access with continual supervision by trained staff) and remained in their assigned 

room for the duration of the study. During the constant-routine, participants remained 

awake in dim light (< 5 lux) in a semi recumbent position while under direct supervision 

with isocaloric meals (basal energy expenditure x 1.3) being served every two hours. 

 

2.3  Study lighting conditions 

   Ambient light in the facility was produced by ceiling-mounted standard cool-white (4100 

K CCT) 40 W fluorescent lamps (F40T12/841ALTO, Philips Lighting, B.V., Eindhoven, 

Netherlands) placed above matte white acrylic 0.080-inch diffuser panels and controlled 

by a full range dimming system (Model #HLT-2000/3 Dimmer Module with HILUME 

Electronic dimming ballast OPSCU Series, DP-1 dimmer panel, VA-3-4A Control Panel, 

Lutron Corp., Coopersburg, PA). The light intensities in the study rooms were < 80 lux 

maximal (at a height of 122 cm in the vertical plane) on study day 1 and during the first 

eight hours of study day 2.  For the rest of the waking hours of the study, participants were 

kept in constant dim light with illuminances < 5 lux in the vertical plane.  Eight-hour sleep 

opportunities scheduled at the average of the 10 days prior to admission occurred in 



complete darkness.  Daily illuminance/irradiance measures were taken using an IL-

1400BL radiometer/photometer (International Light Technologies, Inc., Peabody, MA).  

This meter had either a model SEL033/Y/W detector or to provide photopic illuminance 

response or SEL033/F/W to provide flat irradiance response and each was annually given 

a full scanned calibration.  All calibrations were traceable to the U.S. National Institute of 

Standards and Technology. 

   Experimental polychromatic light exposures occurred on the night of study day 4 when 

participants underwent a 6.5-hour light exposure (LE) that began 9.25 hours before their 

habitual wake time. Light exposure was timed to correspond to approximately 6.75 h before 

core body temperature minimum, a phase where previous studies produced phase delays 

[16,19].  The 4’ x 4’ light exposure system held both sets of 54 W fluorescent lamps in 

each. A diffuser cover on the front of the panel allowed for a uniform field of light exposure 

for the subject. The panel was attached to an analog dimmer switch to adjust intensity. The 

lamps, as well as the lighting panel unit, were constructed and donated by Philips Lighting, 

B.V. (Eindhoven, Netherlands). An additional neutral density filter panel (0.3 ND 50% 

transmission) that covered the entire light panel surface was used to further adjust the 

intensity of 17000 K light source (Rosco Laboratories, Stamford, CT).  Experimental 

illuminance/irradiance measures were taken using the IL-1400BL radiometer/photometer 

previously described which was held in place by a clear, plastic holder attached in an 

ophthalmologic head holder 30 cm from the panel at approximate eye level of the 

participants. Figure 2 shows the spectral power distributions emitted by the 4000 K and 

17000 K experimental lamps. 

 



  Participants were randomly assigned on the day of entry to experimental polychromatic 

light from a 4000 K or a 17000 K fluorescent lamp (N=10 per condition).  The target 

intensity of the 17000 K lamp was chosen from fluence-response curves for short-duration 

(90-minute) melatonin suppression testing [28]. The ED90, or 90% of the saturating dose 

of light for melatonin suppression for the 17000 K lamp, was chosen for this study.  This 

resulted in an equal photon density of 1 x 1014 photons/cm2/s for both exposure conditions. 

The equivalent irradiance/illuminance of light for the 4000 K and 17000 K lamps were 

40.7 μW/cm2 (134.3 lux) and 50.0 μW/cm2 (128.9 lux), respectively.  The average 

irradiances (± SEM) measured every 30 minutes over the 6.5 h exposure were 40.86 ± 0.12 

μW/cm2 for the 4000 K exposure and 49.99 ± 0.07 μW/cm2 for the 17000 K exposure. For 

140 minutes prior to and for the full duration of the light exposure participants remained 

seated. Participants wore blindfolds for approximately 30 minutes prior to light exposure 

while lights stabilized and intensities were verified.  Participants were seated 30 cm in front 

of the light panel with their chin placed in an ophthalmologic head holder and monitored 

continuously. Participants were asked to maintain a fixed gaze toward the panel for 90 

minutes before resting their head and neck out of the headholder for 10 minutes while 

remaining seated. This sequence was repeated throughout the entire 6.5 h exposure. 

 

2.4  Sleepiness and performance assessments 

   During every hour of wakefulness, participants completed the Karolinska Sleepiness 

Scale (KSS) [29], and visual and auditory psychomotor vigilance tasks (PVTs) [30,31] 

using a personal digital assistant (PDA) (Tungsten E2, Palm, Inc, Sunnyvale, CA). This 

modified visual PVT lasted for five minutes, at the end of which the mean reaction time 



for that trial was displayed for the subject. PDA light measures taken at 12 inches from the 

eye were 1.2 lux and at 24 inches were 0.6 lux, The main measures for each trial for each 

subject were mean reaction time in milliseconds and number of lapses greater than 500 

milliseconds (i.e. number of times the subject took 500 milliseconds or longer to react to 

the target appearing) [30,32,33]. The auditory PVT was completed on a PVT-192 by 

Ambulatory Monitoring, Inc. (Ardsley, NY). The auditory PVT trial was 10 minutes in 

length. The main measures for each trial for each subject were mean reaction time in 

milliseconds and number of lapses greater than 400 milliseconds [31]. 

 

2.5 Sample collection 

   Blood samples (3 ml) were collected through an indwelling intravenous catheter located 

in a forearm vein into 3 ml polystyrene tubes which contained 5.4 mg of K2 

ethylenediaminetetraacetic acid (EDTA) (BD Diagnostics, Franklin Lakes, NJ).  Plasma 

was separated by refrigerated centrifugation, aliquoted into cryogenic vials and stored at -

20˚ C.  Plasma melatonin samples were collected every 60 minutes during constant-routine 

periods on Days 3/5 and every 20 minutes during light exposure. Plasma melatonin 

concentrations were assayed by radioimmunoassay using antiserum described by Rollag 

and Niswender [34].   

   Saliva samples (2ml) were collected with the "Salivette" sampling device (Sarstedt, Inc., 

Hayward, CA).  Specimens were centrifuged and aliquoted into cryogenic vials for storage 

at -20˚ C until assay.  Salivary melatonin samples were collected every 60 minutes during 

constant-routine periods on Days 3/5 and during light exposure.  Salivary melatonin 



concentrations were assayed by radioimmunoassay [35]. Salivary analyses were used as a 

backup measure when plasma samples were missed due to IV line failure.  

 

2.6  Melatonin assays 

   The inter-assay coefficient of variation from the 15 plasma assays run for this experiment 

using the assay from Rollag and Niswender [34] was 17.0%. Coefficient of variation 

calculated from a control sample of 100 pg/ml assayed had 12.3% for intra-assay 

coefficient of variation. The minimum detection limit of this assay is 0.5-2.0 pg/ml 

melatonin.  The inter-assay coefficient of variation from the 7 salivary assays run for this 

experiment using the assay from Vaughan [35] was between 8-12%. Coefficient of 

variation calculated from control samples of 1.83 and 18.99 pg/ml assayed had 2.7% and 

6.9% intra-assay coefficient of variation respectively. The minimum detection limit of the 

salivary assay is 0.5-2.0 pg/ml melatonin. 

 

2.7   Statistics 

   Melatonin suppression (mean ± SD) was calculated from the difference in area under the 

curve (AUC) between melatonin profiles during light exposure and the corresponding 

clock times during the previous melatonin cycle on CR1 [16]. Unpaired, two tailed t-tests 

were used to compare differences in melatonin suppression by exposure to 17000 K lamps 

compared to 4000 K lamps. 

   DLMO25 was calculated for each subject defined from 25% of the fitted three-harmonic 

peak-to-trough amplitude of the melatonin rhythm during the first constant routine. The 

magnitude of phase-shift was determined from differences in clock time between DLMO25 



during the first constant routine (CR1) as compared to the second constant routine (CR2) 

[16]. Unpaired, two tailed t-tests were used to compare differences in phase by exposure 

to 17000 K lamps compared to 4000 K lamps. 

   The data from the visual PVT and the auditory PVT-192 devices were analyzed using 

mixed ANOVA analysis comparing light sources and time was completed using SAS 9.0 

(SAS, Cary, NC).  

   To determine sample size a priori, data from a previous study of the phase shifting effects 

of 460 nm and 555 nm monochromatic light were used to perform a power analysis [16]. 

Using these data, a 1-h phase shifting difference was assumed, with a standard deviation 

of 0.62 h,  value of 0.05, and  value of 0.9. With these assumptions, 10 participants per 

group were calculated to be needed to detect the 1 h phase difference [36]. 

3.0  Results 

3.1  Melatonin suppression 

   As shown in Figure 3, all participants exposed to blue-enriched (17000 K) polychromatic 

fluorescent light had at least 29% melatonin suppression over the entire 6.5 h light exposure 

(range 29-91%). Suppression was more variable among participants exposed to the 

standard (4000 K) polychromatic fluorescent light at the same photon density (range 0-

82%), including 2 individuals with virtually no melatonin suppression.  On average, 

exposure to 6.5 h of 17000 K light caused a significantly greater suppression of melatonin 

(mean ±SD, 70.9 ± 19.6%; n=10) compared with 4000 K light (42.8 ± 29.1%; n=10) 

(p<0.05). The time course of the melatonin suppression response also differed between the 

groups. In the 17000 K condition, the light suppressed melatonin for the entire exposure 

duration and did not return to DLMO levels. In the 4000 K condition, four participants 



failed to suppress plasma melatonin to their DLMO25% level at all and in four other 

participants, melatonin levels recovered to their DLMO25% after ~1-3 hours within the 

light exposure. (1.35 h, 1.67 h, 2.50 h, 3.00 h) (Figure 4) 

 

3.2  Phase shifting 

   Both light exposure conditions caused a phase delay of the onset of the melatonin rhythm 

in all but of the one of the participants. Exposure to 6.5 h of 17000 K light caused a phase 

delay shift with amean ± SDof 2.1 ± 0.6 h; n=10whileexposure to 4000 K light caused a 

phase delay shift of 1.7 ± 1.3 h; n=10. The mean differencedid not reach significance 

(p=0.22) (Figure 3).  Representative 24 h melatonin profiles from an individual in each of 

the light conditions are shown in Figure 5. 

 

3.3 Sleepiness assessment 

   As shown in Figure 6, self-rated sleepiness was lower during the 17000 K light exposure 

as compared to the 4000 K group (p<0.05).  Pre light exposure differences in KSS were 

not significant (p=0.20). Participants in the 4000 K light group consistently reporting being 

sleepier at all time points (p<0.05) during LE compared to the 17000 K light group and 

remained so for 3 hours post light exposure (p<0.05). 

 

3.4 Performance assessment 

   With the visual PVT testing, there was no significant difference between the two light 

groups in the mean visual reaction time (RT) or lapses of attention during, or for the three 

hours after, the light exposure ended.  



   Three participants were eliminated from the auditory PVT analysis for the 4000 K light 

group as their data files were corrupted due to equipment malfunction. For auditory RT, 

there were no significant differences in any parameter during the light exposure but there 

were significant differences between light conditions for RT and lapses > 400 msec for the 

3 hours post LE (p<0.05), with the 17000 K light group having a quicker reaction time and 

fewer lapses than the 4000 K light group. This can be seen in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 1. Overview of 7-day phase shifting protocol for a subject with a midnight to eight AM 

sleep:wake schedule. The schedule consisted of a 2-day baseline (8-hour:16-hour sleep-wake cycle 

based on each subject’s self-selected sleep-wake times), an initial 26 hour constant routine, a 16 

hour dim light-exposure day with a 6.5 hour experimental light exposure, and a second 30 hour 

constant routine, each preceded and followed by an 8-hour sleep opportunity. [16,19]. 
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Fig. 2.  Spectral power distribution for 4000 K (upper panel) and 17000 K (middle panel) light 

sources. Profiles are relatively similar, with the primary difference between 400 and 500 nm. 

Compared to the 4000 K light source, the 17000 K light source emitted substantially more power 

in the blue light part of the spectrum. The lower panel shows calculated irradiances, photopic 

illuminances v(), and human photopigment illuminances relative to the two polychromatic light 

sources used [75]. 

 

 

 

 

 

 

 

 

 

 

 

 
Radiometric and Photometric Values           

(380 -780 nm inclusive) 
Retinal Photopigment Weighted Illuminances 

(α-opic lux) 
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(µW/cm2) 
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4000K 
Light 1.01E+14 36.3 123 83 79 91 109 120 

17000K 
Light 1.00E+14 39.0 96 190 133 122 107 96 
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Fig. 3. Melatonin suppression (±SD) as calculated by AUC with plasma (filled circles) or 

salivary (empty circles) levels following exposure to 6.5 h of white 4000 K fluorescent 

light or blue-enriched 17000 K fluorescent light (A).  A greater suppression of plasma 

melatonin occurred under 17000 K fluorescent light compared to 4000 K fluorescent light 

(p<0.05). Phase delay shift (±SD) of the plasma (filled circles) or salivary (empty circles) 

melatonin rhythm as assessed by DLMO following exposure to 6.5 h of white 4000 K 

fluorescent light and blue-enriched 17000 K fluorescent light (B). The phase delay shift, 

was not statistically significant (p=0.22).  
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Fig. 4. Individual melatonin profiles 2 h prior to, during (boxed area) and 4 h after 6.5 h 

exposure to 17000 K (top panel) and 4000 K (bottom panels) light, normalized to each 

individuals’ fitted peak value during the first melatonin cycle on CR1. 
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Fig. 5. The 24 h melatonin profiles on CR1 (filled circles) and CR2 (open circles) from one 

representative individual in each of the LE groups (A & B). Below each (C & D) are the 

calculated melatonin suppression (AUC) during LE (open circles) and the corresponding 

time from CR1 (filled circles) for each of the same individuals.  
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Fig. 6. KSS scores before, during and after LE (filled circles 4000 K; open circles 17000 K, top 

panel). KSS scores were lower, indicating higher alertness, during LE for the 17000 K group versus 

the 4000 K group (p<0.05). Average auditory PVT lapses per hour before, during, and after LE. 

The period of LE is indicated by box (bottom panel) 

 

4.  Discussion 

   Our results demonstrate that both standard (4000 K) and blue-enriched (17000 K) 

fluorescent light at equal photon densities of 1 x 1014 photons/cm2/s suppress plasma 

melatonin in healthy young participants with blue-enriched light eliciting a stronger 

hormonal suppression.  In contrast, phase shifting was not significantly different at this 

intensity between the two light conditions. Subjective measures of alertness using KSS 

support the hypothesis that blue-enriched light exposure significantly improves alertness. 

Objective measures of alertness using PVT, however, did not show any significant 

differences in alertness during the light exposures. In the three hours post-light exposure 



the blue-enriched light group had quicker reaction times and fewer lapses compared to the 

standard light group. 

   This study was based on two dose-response curves for melatonin suppression which 

predicted the photon density at which standard and blue-enriched light would differ the 

most.  The ED90 for the 17000 K dose-response curve with its matching 4000 K dose 

(approximately ED50) was used [28].  Use of these two dose-response curves successfully 

predicted the resultant melatonin suppression observed here.. The blue-enriched 

fluorescent light provided a significantly more consistent phase-delay than standard 

fluorescent light when comparing variances, however, indicating a greater effect on the 

circadian system. Our pre-study power calculations based on monochromatic exposure 

data showed sufficient power to detect an effect on phase shifting but our post-hoc power 

calculation revealed that these data yield a  value of 0.797, at  value of 0.05. This is a 

statistical power level (1-) of 20.3%. In order to obtain a statistical power of 50%, i.e. 

=0.5, each group would need to have 41 subjects, for a total of 82 subjects in the study, 

based upon the mean difference found between the 17000 K and 4000 K groups.  The costs 

of running such a study would be prohibitive and is an obvious limitation to this study. 

 Similarly, the blue-enriched condition also had a more sustained response on melatonin 

suppression. When examining the time course of melatonin suppression over the 6.5 hour 

light exposure, the blue-enriched light was effective for the entire 6.5 hours whereas the 

standard lighting either failed to cause suppression or showed a loss of sensitivity over time, 

with melatonin returning to its DLMO level after an average of 2.15 hours. This is 

consistent with our previous finding that longer-wavelength monochromatic light cannot 



sustain melatonin suppression responses for more than a few hours [16,19], presumably 

through the inability of cone photoreceptors to maintain a maximal response [19,37]. When 

attempting to differentiate the relative contribution of photoreceptor systems it is useful to 

assess the light response over long durations in order to detect time course differences. 

 How classic photoreceptors participate in this phototransduction process remains an area 

of intensive investigation. Different types of ipRGCs with distinct retinal connections [38] 

further complicate the picture as perhaps these differing classes combine rod and cone 

inputs differentially leading to changing spectral sensitivities for the different evoked light 

responses. One should never assume that a light response in one area of physiology such 

as a neuroendocrine response like acute melatonin suppression will be predictive of another 

studied response such as phase shifting the circadian pacemaker. The data presented here 

illustrate that point. 

   Objective and subjective measures of alertness yielded inconsistent results.  While blue-

enriched light exposure improved subjective alertness both during and after the light 

exposure compared to standard lighting, performance improvements were only seen in the 

three hours after the light exposure, and only for auditory reaction time and lapses. While 

it is not unusual for subjective and objective measures of alertness to show inconsistent 

changes with sleep deprivation [39,40] or light exposure [41,42], further work is required 

to understand the source of these differences, including the role of visual perception in 

mediating subjective responses. 

   A number of other comparative polychromatic light studies have also failed to find 

differences in phase shifting responses [43,44,45]. Smith and colleagues did not find 



differences in phase delay or phase advance shifts but used very high, potentially saturating 

light levels (4000-6000 lux, ~4.2 x 1015 photons/cm2/s). Munch and colleagues used a 

lower intensity (1 x 1015 photons/cm2/s) closer to, but still an order of magnitude higher 

than that used in the current study (1 x 1014 photons/cm2/s), and studied older adults who 

were likely to have reduced sensitivity to blue-light given pigmentation of the lens that 

would have blocked some of the short-wavelength light [46]. While we used a quantitative 

approach in selecting our light intensity, basing it on short-duration fluence response curves 

for melatonin suppression using the same light sources, it is possible that i) short duration 

exposures (1.5 h) do not always predict the effects of longer duration light (6.5 h) [19]; ii) 

the magnitude of melatonin suppression does not predict the magnitude of circadian phase 

shifting or vice versa [47,48]. Our pre-study power calculations based on monochromatic 

exposure data showed sufficient power to detect an effect on phase shifting but our post-

hoc power calculation for phase shifting, based on the actual variances measured, 

suggested that a greater number of participants was required. 

   The blue enriched light source used appears to be more efficient for photic phase shifting 

than the standard light source . Results were compared with a prior white light PRC [8] and 

indicated that the blue enriched light stimulus achieved approximately 80% of the phase 

shifting response of the much brighter (3,000 µW/cm2) white light stimulus with the 

maximum phase-delay of -2.6 h while the standard light stimulus achieved 25% less. In 

our study, we used less than 2% (50 µW/cm2) of the energy of the white light stimulus 

reported in the PRC study.  

   The melatonin suppression data presented here are similar to the melatonin suppression 

results of other studies comparing 4000 K and 17000 K fluorescent lights. Specifically, 



compared to the 4000 K light, 17000 K light was significantly stronger in suppressing 

melatonin in healthy subjects [28,49]. Melatonin suppression has been a widely used 

marker to discern physiology of melatonin and circadian regulation [50]. Importantly, 

melatonin suppression by light is suspected to be oncogenic [51] as well as possibly 

contributing to a range of other disorders [52]. Strict numerical comparison of melatonin 

suppression values across these studies, however, is not warranted due to major protocol 

differences such as circadian time of light exposure, prior photic history, light exposure 

duration and light source geometry [8,53,54,55,56]. 

   Many studies, but not all [57,58], have shown that polychromatic light increases alertness 

and improves performance in neurobehavioral tests compared to dim light or darkness.  

The study reported here uses equal photon doses of relatively dim light. A dark control 

condition may have yielded significant results. Studies using polychromatic light reported 

alerting effects when used at night [59,60,61,62]. Neurobehavioral and physiological 

parameters affected by nocturnal bright light exposure include subjective sleepiness, EEG 

frequencies in the beta, theta and alpha ranges, psychomotor vigilance performance, and a 

variety of cognitive tests. These effects have also been shown for daytime exposure [63,64] 

consistent with a separation of the mechanisms underpinning the alertness-enhancing and 

melatonin suppression responses of light, at least during the day. 

   When comparing the alerting effects of light with different spectra, a less consistent view 

emerges. In controlled laboratory studies of monochromatic, narrow-band light and 

polychromatic light, short-wavelength sensitivity to the alerting effects of light on 

subjective and objective measures have been shown in a range of models and different 

times of day [65,66,67]. Similarly, the benefits of blue-enriched daytime light exposure on 



alertness, performance, mood and cognition have been seen in real-world settings such as 

schools, offices and care homes [23,24,25,26,27,68] and in clinical groups [69,70]. Other 

studies, however, have failed to show major differences in alertness and/or performance 

measures between different narrow-band or polychromatic sources during the day [39,71] 

or night [41].  

   Major differences in populations studied, parameters measured, light history experienced, 

timing of light exposure given and intensities employed all likely contribute to these 

findings. While there is likely too much variability between studies to conduct a formal 

review of the alerting effects of light at this time, the weight of evidence suggests that blue 

or blue-enriched lighting is likely to be beneficial for alertness and performance compared 

to spectra with less short-wavelength light, all else being equal. 

   Modeling these effects of light, or designing lighting to take advantage of these benefits 

in real world application, presents a challenge. There are multiple factors that affect these 

responses to light, including circadian timing, light intensity, wavelength and duration, but 

the field does not have a complete knowledge of all relevant factors behind such effects.  

While models have been proposed to try and predict the relative efficacy of a particular 

light stimulus in terms of its relative circadian, neuroendocrine, and neurobehavioral 

efficacy [72,73,74] caution must be exercised as our understanding of circadian 

phototransduction develops. 

   Lack of a consistent and adequate method of quantifying light between different 

laboratories publishing data on photic regulation of biological and behavioral responses 

can make it challenging to replicate experimental conditions or to compare across studies. 

A number of laboratories have collaborated on developing a consensus publication about 



measuring light for circadian, neuroendocrine and neurobehavioral regulation based on 

current and accepted sensitivity functions for rods, cones and melanopsin integrating the 

spectral power distribution of the source [75] and the Commission Internationale de 

l'Eclairage recently adopted the consensus publication and accompanying free Toolbox as 

an international standard [76].   Light source data are reported in the Figure 2 using the 

Toolbox described by Lucas and colleagues [75]. While quantification of the biological 

potency of light for non-visual photoreception is developing, collecting source descriptions 

on one platform will help for comparing results and developing testable hypotheses that 

predict spectral characteristics for targeted physiological responses to polychromatic light. 

Care must be taken to appropriately describe and measure the lighting conditions so as to 

inform the lighting community and foster intelligent design. Careful measurement of the 

incident light spectrum being studied is crucial and must be reported in a systematic way. 

To this end, the consensus methodology described by Lucas and colleagues [75] with use 

of a common nomenclature based on current and accepted sensitivity functions will open 

the door for researchers to continue to unravel this complex photosensory system. 

Meanwhile, empirical verification of specific light stimuli will remain the most accurate 

way to determine the biological potency of light sources. 
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