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Abstract. Knowledge Based Systems (KBS) are highly successful in 

classification and diagnostics situations; however, they are generally unable to 

identify specific values for prediction problems. When used for prediction they 

either use some form of uncertainty reasoning or use a classification style 

inference where each class is a discrete predictive value instead. This paper 

applies a hybrid algorithm that allows an expert’s knowledge to be adapted to 

provide continuous values to solve prediction problems. The method applied to 

prediction in this paper is built on the already established Multiple 

Classification Ripple-Down Rules (MCRDR) approach and is referred to as 

Rated MCRDR (RM). The method is published in a parallel paper in this 

workshop titled Generalisation with Symbolic Knowledge in Online 

Classification. Results indicate a strong propensity to quickly adapt and provide 

accurate predictions.  
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ripple-down rules 

1   Introduction 

Knowledge Based Systems (KBS) have illustrated the ability to capture complex 

human knowledge and experience, which they can then apply to classification and 

diagnosis. However, when applied to prediction problems they either rely on 

uncertainty modeling, a specialized form of classification or hard coded mathematical 

functions. When using uncertainty modeling their predicted value is a probability, 

confidence or measure of membership in a classification rather than a true prediction 

of a value. Likewise, when using classification techniques they rely on having a 

classification for each predictive value instead. In this paper, prediction is regarded as 

the process of providing a single value from a continuous range rather than a 

membership of a class. This value may be a stock price of a company, relevance 

rating of a document, or a thrust level on a satellite stabilizer. 
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The aim of this paper is to introduce a method particularly well suited to the 

application of human knowledge for the problem of prediction. One significant 

advantage of directly incorporating incrementally acquired human knowledge is that 

it potentially can significantly improve the speed of learning. The method in this 

paper applies human knowledge yet also learns a generalisation of this knowledge 

that allows for value prediction. This paper is broken into two main sections. The first 

section will provide a brief introduction in to the methodology applied. The second 

section will describe the experimental method and give a number of results detailing 

the systems ability to predict.  

2   Methodology 

The approach developed in this paper is a hybrid methodology, referred to as Rated 

MCRDR (RM), combining Multiple Classification Ripple-Down Rules (MCRDR) [1-

6]with a function fitting technique, namely an artificial neural network (ANN). This 

hybridisation was performed in such a way that the function fitting algorithm learns 

patterns of conclusions found during the inferencing process. The method in this 

paper has been fully detailed in a parallel paper, also published in these proceedings 

(see [7]).  

Basically, the system discussed in this paper is designed to recognize patterns of 

rules and classifications for particular cases and to attach a weighting to this observed 

pattern. Nowhere in the actual knowledge map is this information actually recorded; it 

is simply derived information from the pattern of rules evaluated in the MCRDR tree. 

This pattern exists because there is either a conscious or subconscious relationship 

between these classes in the expert’s mind. The ANN can then be applied to learn a 

range of tasks. In this paper we evaluate the method’s ability to learn a continuous 

value in a prediction environment.  

One potential application for such a method could be in intelligent agents such as 

an email agent. Using knowledge gathered from an expert when they organize their 

email, combined with details such as their speed in replying, saving, or deleting, to 

determine a level of importance to the user. This learnt weighting could then be used 

to determine values of importance for future emails, which could be used to decide 

whether to inform the user of the email. 

3   Experiments and Results 

This section’s results illustrate how RM compares against a backpropagation neural 

network. Backpropagation was used as this matched the underlying network used in 

RM. In this paper RM and the ANN are compared in two environments: 

generalisation and online prediction. This section consists of a discussion of the 

experiments performed and the simulated expert and dataset used for the experiments. 

Secondly, this section will provide results and a discussion illustrating how RM 

compares against the ANN.  



3.1   Experimental Method 

In the prediction domain RM and the ANN must output a single value, which must 

be as close to the expected value as possible. In the collection of results presented in 

this paper each test used 10 different randomisations of the dataset. The first, 

generalisation test, divides each dataset into ten equal sized groups. Results are 

presented where 9/10
ths

 of the dataset are used for training and 1/10
th

 for testing. The 

size of the training set is then reduced incrementally in steps of 1/10
th

, down to 1/10
th

. 

The same 1/10
th

 set is always used as the test set. The online prediction test 

investigates how the methods can correctly predict values over time. In this test the 

entire dataset is broken up into smaller blocks, each 1/50
th

 of the original dataset, and 

passed through the system one group at a time. The system’s performance is recorded 

after each group. The value returned is then compared to the simulated expert’s 

correct value. The absolute difference between these two values (error) is then 

averaged over all the cases in the data segment and logged. 

3.2   Simulated Expertise 

One of the greatest difficulties in KA and KBSs research is how to evaluate the 

methodologies developed [8]. The method used by the majority of RDR based 

research has been to build a simulated expert, from which knowledge can be acquired 

[8]. It is this approach that has been taken in this paper. However, testing RM using 

simulation has an added difficulty. This is because available datasets do not give both 

symbolic knowledge and a target value instead of a classification. This could be 

partially resolved by assigning each classification a value. However, fundamentally 

this would still be a classification type problem. 

The approach taken in this paper was to develop a heuristic based simulated expert, 

which has two stages in calculating a value for a case based on a set of randomly 

generated attributes. The first stage uses a randomly generated table of values, 

representing the level that each attribute, Aa ∈ , contributes to each class, Cc ∈ . This 

classification stage is merely an intermediate step to finding a rating for the case. It is 

also used during knowledge acquisition for identifying relevant attributes in the 

difference lists. When creating a new rule, the expert selects the attribute from the 

difference list that distinguishes the new case from the cornerstone case to the greatest 

degree. This was achieved by locating the most significant attribute, either positively 

or negatively, that appeared in the difference list (see example in Table 1).  

 

 a b c d e f g h i j k l 

C1 0 0 -1 3 0 0 0 0 0 0 -1 3 

C2 0 0 0 -2 2 0 0 -2 0 0 1 0 

C3 0 -2 1 0 0 0 0 0 0 1 0 -1 

C4 -1 3 0 0 0 0 1 0 -1 0 0 0 

C5 0 0 0 0 -2 2 -2 0 2 0 0 0 

C6 2 0 0 0 0 -2 0 1 0 -2 0 0 

Table 1. Example of a randomly generated table used by the non-linear multi-class simulated 

expert. Attributes a - l are identified across the top, and the classes C1 – C6 down the left. 



Case A = {a, b, c, d} Case B = {a, c, e, g} 

Classifications Classifications Attributes 

1 2 3 4 5 6 

Attributes 

1 2 3 4 5 6 

a 0 0 0 -1 0 2 a 0 0 0 -1 0 2 

b 0 0 -2 3 0 0 c -1 0 1 0 0 0 

c -1 0 1 0 0 0 e 0 2 0 0 -2 0 

d 3 -2 0 0 0 0 g 0 0 0 1 -2 0 

Total 2 -2 -1 2 0 2 Total -1 2 1 0 -4 2 

Classified � � � � � � Classified � � � � � � 

Table 2. Two example cases being evaluated by the classification component of the simulated 

expert.  

Table 2, gives two example cases each with 4 attributes where the method for 

calculating the case’s appropriate classification can be seen. Each attribute contributes 

a value for the class. The simulated expert’s resulting classification for both of these 

cases are {1, 4, 6} for case A and {2, 3, 6} for case B.  

To fully push the system’s abilities, the rating calculated by the simulated expert 

needs to generate a non-linear value across the possible classifications. The 

implementation used for prediction generates an energy space across the level of class 

activations, giving an energy dimensionality the same as the number of classes 

possible. Each case is then plotted on to the energy space in order to retrieve the 

case’s value. First, the strength of each classification found is calculated. As 

previously discussed a case was regarded as being a member of a class if its attribute 

value was greater than 0. However, no consideration was made to what was the 

degree of membership. In this expert the degree of the case’s membership is 

calculated as a percentage, p, of membership using Equation 2.  
mt/a

tp =  (2) 

This is simply the actual calculated total, t
a
, divided by the maximum possible 

total, t
m
, for that particular class. Extending the example from Table 2 for case A, 

classification C1, the total 2 is divided by the best possible degree of membership 6, 

from Table 1, thereby, giving a percentage, p, membership of 33%. This calculation is 

performed for each class. Each class then has a randomly selected point of highest 

value, or centre, c, which is subtracted from the percentage and squared, Equation 3. 

This provides a value which can be regarded as a distance measure, d, from the 

centre. This distance measure can be stretched or squeezed, widening or contracting 

the energy patterns around a centre, by the inclusion of a width modifier, w. 
2)(d cpw −=  (3) 

The classes’ centres are combined to represent the point of highest activation for 

the expert, referred to as a peak. Therefore, if the square root of the sum of distances 

is taken then the distance from this combined centre can be found. This distance can 

then be used to calculate a lesser value for the case’s actual rating. Therefore, as a 

case moves away from a peak its value decreases. Any function can be used to 

calculate the degree of reduction in relation to distance. In this paper a Gaussian 



function was used. Equation 4 gives the combined function for calculating a value for 

each possible peak, v
p
, where n is the number of classes in the dataset. 
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(4) 

Finally, it is possible to have multiple peaks in the energy space. In such a situation 

each class has a centre for each peak. Each peak is then calculated in the same fashion 

as above, resulting in a number of values, one for each peak. The expert then simply 

selects the highest value as the case’s actual rating. This rating method is best 

understood by looking at a three dimensional representation shown in Fig 6.  

The third dimension, shown by the height, illustrates the value at any particular 

point in the energy space. This figure shows a dataset with only two possible classes, 

C1 and C2, and two peaks. A three class dataset cannot be represented pictorially. The 

advantage of this approach is that it generates an energy pattern that is nonlinear. At 

no location can a straight line be drawn where values are all identical. 

 

Fig. 6. Example of a possible energy pattern used in the Multi-Class-Prediction simulated 

expert. This would be used for a dataset with two possible classifications. This energy pattern 

contains two randomly located peaks. 

3.3   Dataset 

The method was tested using a randomly generated group of attributes that could be 

classified and rated by the above simulated expert. For instance, the environment 

setup in this paper allows for 12 possible attributes. In the tests carried out in this 

paper each case selected 6 attributes, giving a possible 924 different cases. Therefore, 

in each 1/10
th

 group there are 92 cases and 18 cases in each 1/50
th

 group. 



3.4   Prediction Generalisation 

The ability of a method to generalise is measured by how well it can correctly rate 

cases during testing that it did not see during training. The value returned by RM and 

the ANN is then compared to the simulated expert’s correct value. The absolute 

difference between these two values (error) is then averaged over all the cases in the 

data segment and logged. The results shown in Fig 7 show they each performed. Each 

point on the charts is the average error for the test data segment averaged over ten 

randomised runs of the experiment, for each of the nine tests. To reduce the 

complexity of the charts shown, error bars have been omitted. 
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b) After Training Complete 
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Fig. 7. (a) – (b) Two charts comparing how RM and ANN. Chart a) shows how the methods 

compare after only one viewing of the training set. Chart b) shows how the methods compare 

after training was completed. The x-axis shows how many tenths of the dataset were used for 

training. All results used the last tenth for testing. The y-axis shows the average error. 

These results show that the RM hybrid system has done exceptionally well both 

initially as well as after training is complete when generalising. Additionally, it can be 

observed that the neural network was unable to significantly improve with more 

training data. This problem is caused by the network having consistently fallen into 

local minimum, a problem common to neural networks especially in prediction 

domains. RM is less likely to encounter this learning problem as the knowledge base 

provides an extra boost, similar to a momentum factor, which propels it over any local 

minima and closer to the true solution. Therefore, not only does RM introduce KBSs 

into potential applications in the prediction domain, as well as, allow for greater 

generalisation similar to an ANN, but it also helps solve the local minima problem.  

3.5   Prediction Online 

The process of RM being able to predict an accurate value in an online 

environment could potentially allow the use of RM in a number of environments that 

have previously been problematic. For instance, KBSs in information filtering (IF) 

have difficulties due to their problems in prediction, while neural networks are far too 

slow. RM allows for the inclusion of expert knowledge with the associated speed but 

also provides a means of value prediction.  Fig 8  shows  a  comparison  between  RM  
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Fig. 8. This chart compares how RM and an ANN, perform in an online environment.  The x-

axis shows the amount of 1/50th data segments that have been seen. The y-axis shows the 

average error over the last 10 data segments, also averaged over 10 trials.  

and an ANN in an online environment. Here it can once again observed that RM has 

performed outstandingly well from the outset and was able to maintain this 

performance. This fast initial learning can be vital in many applications as it is what 

users usually expect.  

4.   Conclusion 

This paper presented a hybrid algorithm that allows an expert’s knowledge to be 

adapted to prediction problems. The method developed builds on the already 

established Multiple Classification Ripple-Down Rules (MCRDR) approach and was 

referred to as Rated MCRDR (RM). RM retains a symbolic core while using a 

connection based approach to learn a prediction value.  

This method has been applied to a prediction domain where results indicate a 

strong propensity to quickly adapt and generalize, providing accurate predictions. 

RM’s ability to perform well can be put down to two features of the system. First, is 

that the flattening out of the dimensionality of the problem domain by the MCRDR 

component allows the system to learn a problem that is mostly linear even if the 

original problem domain was non-linear. This allows the network component to learn 

significantly faster. Second, the network gets an additional boost through the single-

step-∆-initialisation rule, allowing the network to start closer to the correct solution 

when knowledge is added. A prediction method, such as this, that relies on symbolic 

knowledge for rapid learning, is particularly useful in a number of domains such as 

information filtering, prudence analysis and anomaly detection.  
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