

COPYRIGHT NOTICE

FedUni ResearchOnline
http://researchonline.ballarat.edu.au

This is the submitted for peer-review version of the following article:

Ureche, O., Layton, R., & Watters, P. (2012). Towards an implementation of
information flow security using semantic web technologies. Cybercrime and
Trustworthy Computing Workshop, 75-80

Which has been published in final form at:
http://dx.doi.org/10.1109/CTC.2012.12

© 2012 Crown.

 This is the author’s version of the work. It is posted here with permission
of the publisher for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213013673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ballarat.edu.au/

Towards an Implementation of Information Flow Security using Semantic Web
Technologies

Oana Ureche, Robert Layton and Paul Watters
Internet Commerce Security Laboratory

University of Ballarat
Ballarat, Australia

{o.ureche, r.layton, p.watters}@icsl.com.au

Abstract—Controlling the flow of sensitive data has been
widely acknowledged as a critical aspect for securing web
information systems. A common limitation of previous
approaches for the implementation of the information flow
control is their proposal of new scripting languages. This
makes them infeasible to be applied to existing systems written
in traditional programming languages as these systems need to
be redeveloped in the proposed scripting language. This paper
proposes a methodology that offers a common interlinqua
through the use of Semantic Web technologies for securing
web information systems independently of their programming
language.

Web vulnerabilities; Computer Security; Information flow;

Semantic Web

I. INTRODUCTION
Cyber-crime is a major interdisciplinary concern thriving

on the opportunities that information and communication
technologies (ICT) offer [1]. Activities which fall under the
cyber-crime category expand from the use of malware to
gain sensitive information [2] to the use of technology in
order to plan terrorist attacks [1]. In this research the authors
focus on testing web applications for web vulnerabilities that
can lead to cyber-attacks.

Web applications constitute a major target for computer
“hackers”. High profile companies, such as: NASA [3], Sony
[4] and Citigroup Inc. [5], have suffered cyber-attacks that
lead to these hackers gaining access to unauthorized data and
other information (such as bank account and credit card
details, contact information, email addresses) that could lead
to identity theft [6]. According to security company McAfee,
the last 5 years have seen the biggest series of cyber-attacks
in history, including the infiltration of 72 world
organizations as well as the United Nations [7].

These series of cyber-attacks are due to implementation
flaws in the web applications’ underlying programming
code. In practice, developers of applications that contain
sensitive/hidden data will surround the implementation code
with security features to protect the sensitive data.
Unfortunately, it is impossible to guarantee that a piece of
complex software does not contain some flaws [8].
Developers make mistakes, which results in implementation
bugs that can be exploited in order to gain access to

unauthorized information. Local implementation errors,
interprocedural errors or even malicious programmers trying
to compromise the security of the network can cause security
breaches [9].

A significant amount of research has been carried out in
the area of finding vulnerabilities in web application systems
that could expose confidential data by employing methods of
information flow control [10]. Most of the proposed research
methods use the decentralized label model (DLM) and apply
it using a generalization of security classes (labels), security
policies and rules describing how data can be consumed
based on the security policy that describes the data. A
common limitation of these systems is their proposal of new
scripting languages. This makes it infeasible for the proposed
methods to be applied to existing web applications or
systems, as applications will need to be rewritten in the
proposed programming language [11].

This research aims to develop a method modeling
vulnerabilities in applications through information flow
control. This approach will provide not only comparable
reliability in terms of the number of vulnerabilities found,
but also a method that does not require existing systems to be
redeveloped. To evaluate the proposed method, it is
compared against previous approaches; specifically the
method will be evaluated in terms of number and type of
vulnerabilities found. As previous approaches in the area of
finding vulnerabilities in computer applications through
information flow control are applied to web applications, the
proposed method will target web applications and traditional
scripting languages: PHP, Perl, and Python.

The key aspect that differentiates the proposed method to
previous approaches is that rather than proposing a new
language, the proposed technique will be applicable to
existing programs. This approach will be based on open
standards and W3C recommendations, specifically Semantic
Web technologies. Application code will be exported to the
Resource Description Framework (RDF) format. A semantic
reasoner will detect vulnerabilities by finding inconsistencies
in the model, in conjunction with an ontology about the
domain of information flow control of sensitive data and
rules about how data can be consumed based on their
labeling. The proposed method will statically check
information flow within web information systems that
contain sensitive data.

As a definition, a web information system consists of one
or more web applications.

II. BACKGROUND
In the introduction section it was shown that a viable

approach to finding vulnerabilities in web information
systems is through the information flow control. Controlling
the flow of sensitive data has been acknowledged as a critical
aspect of securing applications, even at industry level [12].
This section reviews and explains language-based
information flow control systems and their limitations in
terms of applicability.

A. Language-based Information Flow Control
1) Ad-hoc mechanisms.

Taint mode checking is a feature of some scripting
languages, such as Perl and Ruby, used to detect
vulnerabilities in applications [13]. Such mechanism treats
all input data coming from outside the application and used
in potentially dangerous operations, such as writing to a file
or make system calls, as tainted values. Safe operations, such
as print [14] are ignored by taint mode. Malicious users of
web applications can exploit security weaknesses by using
HTML web forms to input data that will cause the
application to behave in an unexpected way. This can lead to
access of confidential data. Best practice is to use bind
variables by employing prepare and execute statements [15].

In Ruby, there are five safety levels, given by the value
of $SAFE variable, which provides much finer control over
the security checks of the code [16]. The safety levels range
from level 0, where Ruby does not perform any checks, to
level 4, where non-tainted objects cannot be modified.

Not all scripting languages have a taint mode; Python and
PHP are two examples. One advantage of taint mode is that
for some languages, its implementation is straightforward.
Perl uses an easy algorithm to run the security checks, but is
known to contain bugs [11]. The disadvantage of current
taint mode implementations is that they provide only an ad-
hoc mechanism for detecting vulnerabilities and are language
dependent. For example, Perl’s taint mode cannot be applied
to PHP code.

2) Other scripting languages.
Yip, Wang, Zeldovich and Kaashoek [17] introduced a

new language runtime called RESIN that allows, through
data annotations at code level, to find and prevent security
vulnerabilities in web information systems. The proposed
programming language introduces three mechanisms: policy
objects, data tracking and filter objects. In order to control
data flow, RESIN uses the policy objects to annotate and
track sensitive data and then invokes the filter objects when
data is written outside the program, such as when writing
data to a file or the network. The authors explain how
RESIN can prevent a series of vulnerabilities such as SQL
injection, server-side script injection, password disclosure.

Although RESIN is effective at finding most security
vulnerabilities, the programmers are faced with extra
overhead, as they are required to write extra code in order to
implement the aforementioned data flow assertions. In terms

of application overhead, RESIN adds a 33% CPU overhead
when generating a page for a system like HotCRP. However,
in their publication the authors did not mention the
application overhead for web applications other than
HotCRP. Furthermore, RESIN has a potential concern since
the data flow assertion can be duplicated by data flow checks
and security checks that already existed in an application.

Myers [18] describes JFlow, a new language that extends
the Java programming language developed to protect the
confidentiality and integrity of sensitive data mostly using
statically-checked data flow assertions. JFlow’s goal is to
prevent sensitive information from being leaked through
computation and it achieves this using decentralized label
modeling (DLM). As opposed to other approaches for
protecting confidential information that use dynamic security
classes [19], JFlow uses static checking, allowing a detailed
tracking of security classes without incurring run-time
overhead. The author provides programmers with a JFlow
compiler that will statically check programs written in
JFlow. Furthermore, JFlow supports the development of
secure applets and servers that handle sensitive data.
Although JFlow addressed some of the limitations of
previous proposed approaches, (e.g. mutable objects,
subclassing, exceptions) programmers are required to write
applications in the JFlow language. Therefore, this approach
cannot be applied to traditional scripting languages such as
PHP, Python or Perl, used in the development of web
information systems.

Li [20] proposes a new scripting language and a variable
type checker in order to provide security and integrity of data
in standard web applications systems that use query
languages, such as SQL, to access the underlying database.
The language interprets conventional security levels
associated with data (e.g. public, secret, untainted, and
tainted) according to downgrading policies, where every
security level has a policy that specifies what computation is
needed to downgrade data to that security level. The
scripting language is similar to PHP and it uses the
<?ssp_header and !ssp_header> delimiters for the
programming code. The major difference be-tween PHP and
the proposed language is that the queries to the web
application’s database are strongly typed, therefore checking
the code for confidentiality and integrity purposes is easier
for programmers and the security checker used by the author
can automatically determine if the code satisfies the security
policies. However, similar to other approaches [18] [21] the
author proposes a new scripting language thus, making it
difficult for programmers that use standard web application
development languages (such as PHP, Perl, Python) to
employ this method.

B. Enforcing Security and Privacy Policies Using
Semantic Web Reasoning
In this section, an example of a framework [22] that uses

Semantic Web reasoning for enforcing context-sensitive
security and privacy policies is given. Although this
framework is applied in the context of a particular type of
Policy Enforcing Agent (PEA), specifically an Information
Disclosure Agent (IDA), it is important to note the

methodology used, as conceptually this could be applied in
the context of information flow control.

The authors apply their proposed framework to an
application scenario where there is a need for enforcing
confidentiality and integrity policies in decentralized
computing environments [22]. In such a scenario, a person
who owns information sources (sensor, user, application etc.)
invokes an IDA in order to disclose information ac-cording
to pre-defined rules. An IDA receives a request for
information. The IDA satisfies that request with information
that the privacy and security policies allow to disclose. For
example, an employee of a company wants to know the
location of an-other employee. The employee uses the
framework to send a request for the location information.
The IDA of the other employee receives the incoming
request, but answers the request based on the privacy and
security policies that are associated with that information.
The IDA could respond only with the building location and
not the actual level in the building where the employee is
located.

The authors use RDF, rules and ontologies to describe
the data, the policies and the domain knowledge,
respectively. ROWL, an extension of OWL, is the
specification used for expressing the concepts’ security and
privacy policies [23].

In this section, it was shown that reasoning with rules and
ontologies in order to enforce security and privacy policies
was previously proposed in literature. As part of the
evaluation of the proposed Semantic Web framework, the
authors implemented an example that used 22 rules and 178
facts and that invoked a semantic service directory
containing 50 services. Although this framework works in
different contexts than the information flow control, it was
shown that it is practical to enforce security policies using

Semantic Web technologies by reasoning with rules and
ontologies.

III. OVERALL METHODOLOGY AND ARCHITECTURE
The limitation of rewriting existing code to account for

information flow constraints was previously mentioned by
Zdancewic [11]. He recommends a mostly static approach,
such that software is analyzed in order to check if policies
applied to data are obeyed. In light of this, this paper
proposes a methodology that addresses the limitation of
previous approaches for securing web applications.
Specifically, the proposed methodology leverages Semantic
Web technologies in the field of information flow control to
develop a tool deployable for existing web information
systems, without the need for their code to be rewritten in a
proposed programming language.

Fig. 1 shows the overall architecture of the proposed
methodology. The inputs consist of web information systems
written in different programming languages. The
programming code together with the respective language
grammar is fed into an AST builder tool, such as ANTLR,
and converted to RDF.

Information flow control rules previously described in
literature are expressed in RDF. There is a vast amount of
work regarding the definition of rules for security policy
enforcement [10]. This paper’s methodology reuses existing
label-checking rule definitions. The inference engine is
implemented using the Jena framework inference machinery.
The Jena framework constitutes the programming toolkit for
the methodology described in this paper. Jena was chosen as
it is the most widespread Semantic Web framework [24].
While there are other frameworks, it falls out of the scope of
this research to analyze which framework is the most
productive or usable.

Python

PHP

Inference MachineryRDF

OWL

Other...

 W3C standards

Programming
Code

Information
flow control

Rules

A
S

T
 T

re
e

B
u

ild
er

Inference Model

Semantic
Reasoner

Rules

Data
Sources

Web
Vulnerabilities

SQL Injection,
Directory
Traversal,

...

Language
grammars

.g

Figure 1. Overall architecture

Using Jena’s ModelFactory class a new inference
model is created by associating a data set with some
reasoner. The new model can be queried for statements.
When the model is queried for data, statements that
originally existed in the data set will be returned together
with statements that were not in the original dataset. The new
statements are inferred by the semantic reasoner using the
defined rules or by other inference mechanisms. Reasoning
is achieved using rules and ontologies in the context of
information flow control over the programming code
translated to RDF. The inferred statements will represent
web vulnerabilities found in the web information systems
given as input.

IV. EXAMPLE SCENARIO
As aforementioned in section III, the information flow

control rules are translated from literature using Semantic
Web technologies. The base for the creation of the ontology,
the rules and the reasoning is JFlow [18]. First, JFlow is the
first practical approach to a language-based information flow
control system [18]; and second, this proposed language
represented the base for several other proposed approaches:
[25], [26] and many more.

JFlow uses a label model in which the label of some data
consists of a set of policies and according to these defined
policies the movement of the data is restricted.

In this section a simple PHP example that leaks
information will be given. The code will be converted to
RDF using the JFlow label model. The rule that assures no
leakage of information will be expressed using the Jena

framework. The following code shows the PHP code. The
conversion to RDF follows.

<?php

$b = True; //secret value

// set of instructions that may

change the value of b

$x = 0; //public value

if ($b) {

$x = 1;

}

?>
Code fragment 1. PHP code that leaks information.

In this example, $b is a secret value and $x is a public

value. The assignment $x = 1 leaks information, because
if the assignment takes place the value of $x changes and
thus, the conclusion that $b is True can be drawn, which
gives out publicly the value of $b. These public and private
variables can be expressed using RDF. These variables will
have a label with a policy attached to it that will express their
state: public or private.
The information leak rule states that:

“Any assignment where the pc counter has a private
policy and it is assigned to a public variable is an
information leak.”

The pc counter concept is explained in [18]. JFlow
associates the pc counter with every assignment and
expression.

<rdf:RDF

...

<rdf:Description rdf:about="http://flowcontrol.org/1#assignment">

<fc:id>1</fc:id>

<fc:variable_value>True</fc:variable_value>

<fc:variable_name>b</fc:variable_name>

<fc:hasPolicy>private</fc:hasPolicy>

<rdf:type rdf:resource="http://flowcontrol.org/Assignment"/>

</rdf:Description>

<rdf:Description rdf:about="http://flowcontrol.org/2#assignment">

<fc:id>2</fc:id>

<fc:variable_value>0</fc:variable_value>

<fc:variable_name>x</fc:variable_name>

<fc:hasPolicy>public</fc:hasPolicy>

<rdf:type rdf:resource="http://flowcontrol.org/Assignment"/>

</rdf:Description>

<rdf:Description rdf:about="http://flowcontrol.org/3#assignment">

<fc:id>3</fc:id>

<fc:variable_value>1</fc:variable_value>

<fc:variable_name>x</fc:variable_name>

<rdf:type rdf:resource="http://flowcontrol.org/Assignment"/>

</rdf:Description>

...

</rdf:RDF>
Code fragment 2. Translation to RDF using the JFlow label model.

The information that can be leaked after the execution of
the statement will be assigned to the pc counter. In the PHP
code example, at the $x = 1 assignment the pc counter will
have the value b. Because x is public and b is private, the
assignment represents an information leak. The rule that
states that the assignment is an information leak in this case,
is expressed using Jena rule syntax and is listed as follows.

//defining namespaces

@prefix fc: http://flowcontrol.org/

[informationLeak: (?d rdf:type

fc:InformationLeak)

<-

(?d rdf:type fc:Assigment)

(?d fc:pc_counter ?pc)

(?d fc:variable_name ?x)

(?pc fc:hasPolicy “private”)

(?x fc:hasPolicy “public”)]

Code fragment 3. Information leak rule expressed using Jena rules syntax

This example scenario section showed through an

information leak example, how an approach using a
proposed programming language to annotate data and detect
an information leak can be translated using Semantic Web
technologies. As mentioned in section III, there is a vast
amount of work regarding the definition of rules for security
policy enforcement. The proposed approach will apply the
same steps to define and apply other rules for security
policy enforcement, as it was shown for the PHP code
example.

Using the Jena framework, reasoning can be achieved by
invoking the Jena inference engine. When the inference
model is queried for data, statements that originally existed
in the data set will be returned together with statements that

were not in the original dataset. The new statements are
inferred by the semantic reasoner using the defined rules or
by other inference mechanisms. For example, when
considering the information flow control code listings
examples, one inferred statement could be “Assignment 3 is
an information leak” and the representation in RDF follows.
In this manner, a list of vulnerable code assignments is
returned.

@prefix fc: http://flowcontrol.org/

<rdf:Description rdf:about=

"fc:3#assignment">

<rdf:type rdf:resource=

"fc:InformationLeak "/>

</rdf:Description>

Code fragment 4. Assignment 3 is an information leak expressed using

RDF.

V. COMPARISON
In this section, we provide a qualitative comparison of

our proposed technique by comparing it with other popular
methods of finding web vulnerabilities. For this purpose, we
divide the existing approaches in 4 categories: taint mode,
security-typed programming languages, security enforced in
the database and our proposed approach.

Our proposed approach offers several desirable features,
including the language independent aspect and the machine
learning capability. Although security enforced in the
database can be considered programming language
independent, it is highly infeasible that two or more web
information systems written in different programming
languages will have the same structure and access for and to
the underlying database.

TABLE I. FEATURE COMPARISON BETWEEN SEVERAL DIFFERENT APPROACHES

Proposed approach Taint mode Security-typed

programming
languages

Security
enforced in the
database

Language
independent

(with respect
to the database)

Machine learning
capability

Reusable/
Modular

Effective N/A
Multiple levels of
security (but possible)

(with respect to
the scripting

language)

No complex
implementation

No new scripting
language

VI. CONCLUSIONS AND FUTURE WORK
Due to the nature of web browsers and the HTTP

protocol, web information systems are known to be highly
insecure. “Hackers” target these systems in order to expose
confidential information such as usernames and passwords
leading to major losses in revenue and loss of users trust.
While existing approaches that find web vulnerabilities are
effective at discovering security pitfalls, they are language
dependent. Thus, for different web information systems
potentially different methods need to be applied, making
existing methods not scalable. This paper describes an
original technique that finds web vulnerabilities in web
information systems and is independent of the programming
language used and capable of machine learning using
inference engines.

Future work includes the implementation and the
quantitative evaluation of the proposed technique. To
evaluate we will use popular web information systems
written in several different programming languages (e.g.
PHP, Perl, Python and Java). We will use older versions of
these systems with a list of security issues discovered in the
past. The evaluation report will conclude that the proposed
technique is effective at detecting vulnerabilities in web
applications once all the known vulnerabilities are found.
Yip, Wang, Zeldovich and Kaashoek [17] used this type of
evaluation.

ACKNOWLEDGMENT
This research was conducted at the Internet Commerce

Security Laboratory and was funded by the State
Government of Victoria, IBM, Westpac, the Australian
Federal Police and the University of Ballarat. More
information can be found at the Internet Commerce Security
Laboratory website1.

REFERENCES
[1] K-K. R. Choo, “The cyber threat landscape: Challenges and future

research directions”, Computers & Security, pp. 719-731, 2011.
[2] M. Alazab, S. Venkatraman, and P. Watters, “Zero-day Malware

Detection based on Supervised Learning Algorithms of API call
Signatures”, Ninth Australasian Data Mining Conference: AusDM
2011, 2011.

[3] Bloomberg - Business & Financial News, Breaking News Headlines,
“Bloomberg L.P. Network Security Breaches Plague NASA”,
http://www.businessweek.com/magazine/content/08_48/b411007240
4167.htm.

[4] The Sydney Morning Herald, “PlayStation hacking scandal: police
chief says contact your bank now”, http://www.smh.com.au/digital-
life/games/playstation-hacking-scandal-police-chief-says-contact-
your-bank-now-20110427-1dvts.html.

[5] Business Spectator Pty Ltd., “Citigroup cyber security breached”,
http://www.businessspectator.com.au/bs.nsf/Article/UPDATE-3-Citi-
says-hackers-access-bank-card-data-HNAQP.

[6] A. Stabek, P. Watters, R. Layton, "The Seven Scam Types: Mapping
the Terrain of Cybercrime," Cybercrime and Trustworthy Computing,

1 http://www.icsl.com.au

Workshop, pp. 41-51, 2010 Second Cybercrime and Trustworthy
Computing Workshop, 2010

[7] Guardian News and Media Limited, “Biggest series of cyber-attacks
in history uncovered”,
http://www.guardian.co.uk/technology/2011/aug/03/biggest-series-
cyber-attacks-uncovered

[8] M. Gasser, “Building a secure computer system”, New York : Van
Nostrand Reinhold Co., 1988.

[9] McGraw, G., & Potter, B. (2004). Software Security Testing. IEEE
Security and Privacy, Vol. 2 , 81-85.

[10] A. Sabelfeld and A. Myers, “Language-based information-flow
security”, 2003, Selected Areas in Communications, IEEE Journal on,
pp. 5-19.

[11] S. Zdancewic, “Challenges for information-flow security”, In Proc.
Programming Language Interference and Dependence (PLID), 2004.

[12] Sophos, Inc. e-Guide, “Evolving IT security threats. Inside Web-
based, social engineering attacks”,
http://searchsecurity.bitpipe.com/detail/RES/1308928423_477.html.

[13] W. Masri, A. Podgurski and D. Leon, “Detecting and Debugging
Insecure Information Flows”, 2004, Software Reliability Engineering,
International Symposium on, pp. 198-209.

[14] A. Hurst, “Analysis of Perl’s Taint Mode”,
http://hurstdog.org/papers/hurst04taint.pdf.

[15] OWASP, “SQL Injection Prevention Cheat Sheet”,
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet.

[16] D. Thomas and A. Hunt, “Programming Ruby: A Pragmatic
Programmer’s Guide”, s.l. : Addison-Wesley, 2000.

[17] A. Yip, X. Wang, N. Zeldovich, M. Kaashoek, “Improving
application security with data flow assertions”, Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles.
New York : ACM, 2009, pp. 291-304.

[18] A. Myers, “JFlow: Practical Mostly-Static Information Flow
Control”, 1999. In Proc. 26th ACM Symp. on Principles of
Programming Languages. pp. 228-241.

[19] C. McCollum, J. Messing, and L. Notargiacomo, “Beyond the pale of
MAC and DAC-defining new forms of access control”, Oakland, CA
, USA : s.n., 1990. Research in Security and Privacy, 1990.
Proceedings., 1990 IEEE Computer Society Symposium on. pp. 190-
200.

[20] P. Li, “Practical information-flow control in web-based information
systems”, In Proceedings of 18th IEEE Computer Security
Foundations Workshop. IEEE Computer (pp. 2-15), s.l. : Society
Press, 2005.

[21] V. Simonet and I. Rocquencourt, “Flow Caml in a Nutshell”,
Proceedings of the first APPSEM-II workshop, pp. 152-165, 2003.

[22] J. Rao and N. Sadeh, “A Semantic Web Framework for Interleaving
Policy Reasoning and External Service Discovery”, 2005. In
Proceedings of RuleML, pp. 56-70.

[23] F. Gandon, and N. Sadeh, “Semantic web technologies to reconcile
privacy and context awareness”, 2004, Web Semantics: Science,
Services and Agents on the World Wide Web, Vol. 1, No. 3. pp. 241-
260.

[24] F. Lindorfer, “Semantic Web Frameworks”, Basel : Basel University,
2010.

[25] S. Zdancewic, “Practical Information-flow Control in Web-Based
Information Systems”, 18th IEEE Computer Security Foundations
Workshop CSFW05 (pp. 2-15), s.l., IEEE, 2005.

[26] R. Indrajit, D. Porter, M. Bond, K. McKinley, and E. Witchel,
“Laminar: Practical Fine-Grained Decentralized Information Flow
Control”, Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pp. 63-74, s.l. :
ACM, 2009.

http://www.icsl.com.au/

