
Semigroup Forum 1

Optimization of classifiers for data mining

based on combinatorial semigroups

A.V. Kelarev, J.L. Yearwood, P.W. Watters

School of Science, Information Technology and Engineering
University of Ballarat, P.O. Box 663, Ballarat, Victoria 3353, Australia

{a.kelarev,j.yearwood,p.watters}@ballarat.edu.au

Abstract

The aim of the present article is to obtain a theoretical result essential for applications
of combinatorial semigroups for the design of multiple classification systems in data mining.
We consider a novel construction of multiple classification systems, or classifiers, combining
several binary classifiers. The construction is based on combinatorial Rees matrix semi-
groups without any restrictions on the sandwich-matrix. Our main theorem gives a complete
description of all optimal classifiers in this novel construction.

1 Introduction

The present article is devoted to a novel construction of multiple classification systems, or clas-
sifiers, combining several binary classifiers and based on combinatorial Rees matrix semigroups.
Our main theorem completely describes all optimal classifiers in this novel construction without
any restriction on the sandwich-matrices (see Theorem 1 in Section 2).

The design of multiple classifiers combining several binary classifiers is well known in the litera-
ture and has valuable applications in data mining (see, for example, [22, 24]). We refer to [18, 19]
for more detailed motivation, and to the monographs [11, 21] for preliminaries and standard no-
tation used in this research direction. Recall that a classifier is said to be binary if it divides all
data into two classes. The set of all outputs of a binary classifier can be regarded as the field of
order two, which will be denoted by F throughout. This means that the set of the outputs of m
binary classifiers can be regarded as the vector space Fm.

In order to introduce convenient sets of generators for classification systems with outputs of
initial classifiers represented as vectors in Fm, further we assume that T is a finite semigroup and
the number m of the binary classifiers being combined does not exceed the number of nonzero
elements of T . Further, zeros of semigroups are denoted by θ, and 0 stands for the zero of a
ring. If T has no zero, then the semigroup ring F [T ] is isomorphic to the contracted semigroup
ring F0[T 0], where T 0 = T ∪ {θ}. In this case we also write F0[T ] for F [T ]. These constructions
are used, for example, in [2, 4, 5, 14]. We identify the standard vector space Fm with F0[T ] by
identifying r = (r1, . . . , rm) ∈ Fm with

∑m
i=1 risi ∈ F0[T ]. Thereby the set Fm = F0[T ] has been

endowed with multiplication.

For the design of efficient multiple classifiers it is essential to find sets with small numbers of
generators and large minimum distance, see [18], [19] and [22], Section 7.5. The weight wt(r) of
r =

∑
s∈T rss ∈ F0[T ] is the number of nonzero coefficients rs, for s ∈ S. The weight of a subset

C ⊆ Fm is the minimal weight of a nonzero element in C. The minimum distance of C is the
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smallest weight of a nonzero difference u−v for u, v ∈ C. If C is a linear space, then the minimum
distance of C coincides with its weight. A class set, or centroid set, generated by the elements
g1, . . . , gk ∈ Fm is the set

C(g1, . . . , gk) = Fmg1F
m + · · ·+ FmgkF

m

=

{
m1∑
j=1

`1,jg1r1,j + · · ·+
mk∑
j=1

`k,jgkrk,j

∣∣∣∣ `i,j, ri,j,∈ Fm ∪ F
}
.

2 Main Theorem

We use standard concepts and refer the readers to [9, 11, 12, 13, 14, 15, 17, 21, 22, 23] for
background information and examples of recent results on related topics. For preliminaries on
data mining, multiple classifiers and their class sets let us refer to the book [23] and papers
[16, 18, 19, 20, 24].

Let G be a group, I and Λ nonempty sets, and let e be the identity of G. Denote by G1 = G∪{1}
and G0 = G ∪ {θ} the group G with identity 1 and, respectively, zero θ adjoined. Let P = [pλi]
be a (Λ× I)-matrix with entries pλi ∈ G0, for all λ ∈ Λ, i ∈ I. The Rees matrix semigroup
M(G; I,Λ;P ) over G with sandwich-matrix P consists of all triples (g; i, λ), where i ∈ I, λ ∈ Λ,
g ∈ G, and multiplication is defined by the rule

(g1; i1, λ1)(g2; i2, λ2) = (g1pλ1i2g2; i1, λ2). (1)

The Rees matrix semigroup M0(G; I,Λ;P ) over G with zero is the set consisting of θ and all
triples (g; i, λ), where i ∈ I, λ ∈ Λ, g ∈ G0, where all triples (θ; i, λ) are identified with θ, and
multiplication is defined by (1). Let us refer to [1, 3, 5, 6, 7, 8, 10, 19] for relevant recent results.

A semigroup T is said to be combinatorial if every subgroup of T is a singleton. Throughout
we assume that T = M0(G; I,Λ;P ) is a finite combinatorial Rees matrix semigroup over a group.
We define subsets

L = {λ ∈ Λ : (∀i ∈ I) pλi = θ},
R = {i ∈ I : (∀λ ∈ Λ) pλi = θ}.

Denote by LE a subset of Λ \ L with the largest cardinality and such that, for each i ∈ I, the
set {λ ∈ LE : pλi 6= θ} has an even number of elements. Let RE be a subset of I \ R with the
largest cardinality and such that, for each λ ∈ Λ, the set {i ∈ RE : pλi 6= θ} has an even number
of elements. Denote by Dz a subset of T ∩G× (I \R)× (Λ \ L) with the largest cardinality |Dz|
and such that, for all j, k ∈ I, µ, ν ∈ Λ, the sets

{i ∈ I : (e; i, ν) ∈ Dz, pµi 6= θ} and {λ ∈ Λ : (e; j, λ) ∈ Dz, pλk 6= θ}

all have even numbers of elements. We define the following numbers

Mr = |L|+ |LE|,
Mc = |R|+ |RE|,
Mz = |L| · |R|+ |LE| · |R|+ |RE| · |L|+ |Dz|.
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To introduce the generators of class sets in F0[T ] we take any subset X in T and put

gX =

{ ∑
x∈X\{θ} x if X 6⊆ {θ},

0 otherwise.

Further, we use the obvious fact that if two subsets X and Y of T are disjoint, then gX∪Y = gX+gY .
Let Q be a subset of T . For j ∈ I, µ ∈ Λ, we use standard notation for the sets

Q∗µ = Q ∩ {(e; i, µ) : i ∈ I},
Qj∗ = Q ∩ {(e; j, λ) : λ ∈ Λ},
Qjµ = Q ∩ {(e; j, µ)}.

For any X ⊆ I, Y ⊆ Λ, let

QX∗ = ∪i∈XQi∗,

Q∗Y = ∪λ∈YQ∗λ,
QXY = ∪i∈X,λ∈YQiλ.

For any i ∈ I, λ ∈ Λ, we put

Q(ei) = {µ ∈ Λ : (e; i, µ) ∈ Q},
Q(eλ) = {j ∈ I : (e; j, λ) ∈ Q}.

For any λ ∈ Λ, denote by Pc(λ, T ) the set of all subsets X of G× (I \R)× {λ} ⊆ T such that
|X(eλ)| = |RE| and the set {i ∈ X(eλ) : pλi 6= θ} has an even number of elements. Denote by Gc
the set of all elements g = gTRλ∪X = gTRλ + gX , for all λ ∈ Λ and all subsets X ∈ Pc(λ, T ). If
|RE| > 0, then it is easily seen that the set Gc is nonempty and contains only nonzero elements.

For any i ∈ I, denote by Pr(i, T ) the set of all subsets Y of G × {i} × (Λ \ L) ⊆ T such that
Y (ei) = |LE| and the set {λ ∈ LE : pλi 6= θ} has an even number of elements. Denote by Gr the
set of all elements g = gTiL∪Y = gTiL + gY for all i ∈ I and all subsets Y ∈ Pr(i, T ). If |LE| > 0,
then it is easy to see that the set Gr is nonempty and contains only nonzero elements.

Let Pcz be the set of all subsets X of G × (I \ R) × L ⊆ T such that, for all λ ∈ L, µ ∈ Λ,
the set {i ∈ X(eλ) : pµi 6= θ} contains an even number of elements and |X(eλ)| = |RE|. Denote
by Prz the set of all subsets Y of G × R × (Λ \ L) ⊆ T such that, for all i ∈ R, j ∈ I, the set
{λ ∈ Y (ei) : pλj 6= θ} has an even number of elements and |Y (ei)| = |LE|. Denote by Pez the
set of all subsets V of G × (I \ R) × (Λ \ L) ⊆ T such that, for all j ∈ I and µ ∈ Λ, the set
{(e; i, λ) ∈ V : pµi, pλj 6= θ} has an even number of elements |V | = |Dz|. Let Gz be the set of all
elements gTRL∪X∪Y ∪V = gTRL + gX + gY + gV , for all subsets X ∈ Pcz, Y ∈ Prz, V ∈ Pez. It is
routine to verify that, if Mz > 0, then Gz is nonempty and contains only nonzero elements.

Theorem 1 Let T = M0(G; I,Λ;P ) be a finite combinatorial Rees matrix semigroup over a group
with zero. Then the following conditions are satisfied:

(i) wt(C(g)) = wt(g) = Mc, for all g ∈ Gc.

(ii) wt(C(g)) = wt(g) = Mr, for all g ∈ Gr.
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(iii) wt(C(g)) = wt(g) = Mz, for all g ∈ Gz.

(iv) Let C = C(g1, . . . , gk) be a class set with the largest weight in F0[T ], and let

W = max{1,Mr,Mc,Mz}.

Then the weight of C is equal to W . Furthermore, if W > 1, then C contains an element of
weight W belonging to the union of the sets Gc, Gr and Gz.

The next corollary follows immediately.

Corollary 2 Let T = M0(G; I,Λ;P ) be a finite combinatorial Rees matrix semigroup over a
group with zero. Then the largest number of errors of the binary classifiers, which can be corrected
by a multiple classifier with class set of the form C(g1, . . . , gk) in F0[T ], is equal to

E = max {0, b(Mr − 1)/2c, b(Mc − 1)/2c, b(Mz − 1)/2c} .

3 Proofs

For any r =
∑

t∈T rtt ∈ F0[T ], j ∈ I and µ ∈ Λ, put rj =
∑

λ∈Λ r(e;j,λ) and rµ =
∑

i∈I r(e;i,µ) ∈
F0[T ]. The support of r is the set

supp(r) = {t ∈ T : rt 6= 0}.

Let us define the sets

Ann `(F0[T ]) = {x ∈ F0[T ] : xF0[T ] = 0},
Ann r(F0[T ]) = {x ∈ F0[T ] : F0[T ]x = 0},
Ann (F0[T ]) = Ann `(F0[T ]) ∩ Ann r(F0[T ]).

Let Zc be the set of all subsets X of T such that, for all λ, µ ∈ Λ, the set {i ∈ X(eλ) : pµi 6= θ}
has an even number of elements. Denote by Zr the set of all subsets X of T such that, for all
i, j ∈ I, the set {λ ∈ X(ei) : pλj 6= θ} has an even number of elements.

Lemma 3 Let T = M0(G; I,Λ;P ) be a combinatorial Rees matrix semigroup over a group with
zero. Then the following conditions hold:

(i) Ann `(F0[T ]) = {gX : X ∈ Zr},

(ii) Ann r(F0[T ]) = {gX : X ∈ Zc},

(iii) Ann (F0[T ]) = {gX : X ∈ Zc ∩ Zr}.

Proof. First, let us show that equality (i) holds. Consider any r ∈ Ann `(F0[T ]). Put X =
supp(r). Since F = GF (2), we see that r = gX . Choose an arbitrary element y = (e; j, µ) in T .
We will also write y for 1y ∈ F0[T ].
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By the choice of r, we get gX · y = 0 and X ⊆ I ×Λ. Since y ∈ T , we see that j ∈ I and µ ∈ Λ.
Pick any i ∈ I. It follows that (ry)i = riy =

∑
λ∈X(ei)(e; i, λ)pλj(e; j, µ). Since (ry)i = 0 and F

is a field of characteristic 2, we see that the number of elements λ ∈ X(ei), satisfying pλj 6= θ,
is even. Since i and j are arbitrary elements of I, this means that X belongs to Zr. Therefore
Ann `(F0[T ]) ⊆ {gX : X ∈ Zr}.

To prove the reversed inclusion, choose any X in Zr and consider the element r = gX . Take
any y ∈ F0[T ]. We can write it down as y =

∑
j∈I,µ∈Λ(yjµ; j, µ), where yjµ ∈ {θ, e}. By the

definition of Zr, the number n = |{λ ∈ X(ei) : pλj 6= θ}| is even, for each i, j ∈ I. Hence we
get riyj =

∑
λ∈X(ei) r(e;i,λ)

∑
µ∈Λ(yjµ; j, µ) =

∑
µ∈Λ

∑
λ∈X(ei)(pλjyjµ; i, µ) =

∑
µ∈Λ n(yjµ; i, µ) = 0,

because n = 0 in F . Since y =
∑

j∈I yj, we get ry = 0. Hence r ∈ Ann `(F0[T ]). Therefore
Ann `(F0[T ]) ⊇ {gX : X ∈ Zr}. Thus equality (i) holds true.

The proof of equality (ii) is dual and we omit it. Equality (iii) follows from (i) and (ii). This
completes the proof. 2

Lemma 4 Let T = M0(G; I,Λ;P ) be a combinatorial Rees matrix semigroup over a group with
zero. Then the following conditions hold:

(i) FT∗L · F0[T ] = 0,

(ii) F0[T ] · FTR∗ = 0,

(iii) FTRL · F0[T ] = F0[T ] · FTRL = 0,

(iv) F0[T ] · FGc = 0,

(v) FGr · F0[T ] = 0,

(vi) F0[T ] · FGz = FGz · F0[T ] = 0.

Proof. Equalities (i) and (ii) follow from the definitions of L and R. Equality (iii) follows
from (i) and (ii). The definitions of R, Pc(λ, T ), Gc and Zc show that

Gc ⊆ {gX : X ∈ Zc}.

By Lemma 3(ii), we get Gc ⊆ Ann r(F0[T ]). Therefore condition (iv) follows.

The definitions of L, Pri, Gr and Zr imply that Gr ⊆ {gX : X ∈ Zr}. By Lemma 3(i), we get
Gr ⊆ Ann `(F0[T ]). Therefore condition (v) follows.

It remains to verify equality (vi). Fix any element x in Gz. The definition of Gz shows that x
can be recorded as x = gTRL + gX + gY + gV , for some X ∈ Pcz, Y ∈ Prz and V ∈ Pez. Choose
any homogenous element y = (e; k, µ) in F0[T ], where k ∈ I, µ ∈ Λ.

Condition (iii) immediately yields ygTRL = gTRLy = 0. Since X ∈ Pcz, we get X ⊆ G × (I \
R) × L ⊆ T . Therefore condition (i) implies that gXy = 0. On the other hand, the definition
of Pcz shows that the number n = |{i ∈ X(eλ) : pµi 6= θ}| is even, for all λ ∈ L. Therefore
(ygX)λ = y · (gX)λ =

∑
i∈X(eλ)(pµi; k, λ) = n(e; k, λ) = 0. Hence ygX = 0. It follows that

gX ∈ Ann (F0[T ]). Similarly, we get gY ∈ Ann (F0[T ]).
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Since V ∈ Pez, we see that, for each ν ∈ Λ, the number n = |{(e; i, ν) ∈ V : pµi 6= θ}|
is even. Since y = (e; k, µ), we get (ygV )ν = (e; k, µ) · (gV )ν = (e; k, µ)

∑
(e;i,ν)∈V (e; i, ν) =∑

(e;i,ν)∈V (pµi; k, ν) = n(e; k, ν) = 0. Since ν is an arbitrary element, it follows that ygV = 0.

For each j ∈ I, denote by m the number of elements (e; j, λ) ∈ V such that pλk 6= θ. Since
V ∈ Pez, it follows that m is an even number. Now, for any j ∈ I and y = (e; k, µ), we obtain
(gV y)j = (gV )j ·(e; k, µ) =

∑
(e;j,λ)∈V (e; j, λ) ·(e; k, µ) =

∑
(e;j,λ)∈V (pλk; j, µ) = m(e; j, µ) = 0. Since

j is an arbitrary element, we get gV y = 0. Thus gV ∈ Ann (F0[T ]).

Since x = gTRL + gX + gY + gV , we get x ∈ Ann (F0[T ]). Therefore Gz ⊆ Ann (F0[T ]), and so
condition (vi) follows. This completes the proof. 2

Lemma 5 Let T = M0(G; I,Λ;P ) be a finite combinatorial Rees matrix semigroup over a group
with zero. Then the following equivalences hold:

(i) Mc = 0⇐⇒ Gc = ∅;

(ii) Mr = 0⇐⇒ Gr = ∅;

(iii) Mz = 0⇐⇒ Gz = ∅.

Proof. Choose any λ ∈ Λ. The definition of the set RE implies that the set G×RE×{λ} belongs
to Pc(λ, T ). Since gG×RE×{λ} = gTREλ , we see that gTRλ + gTREλ ∈ Gc. Hence the equivalence (i)
follows.

As above, we can choose any i in I and derive that gTiL + gTiLE ∈ Gr. This means that
equivalence (ii) follows.

Finally, since TREL ⊆ G × (I \ R) × L, it is routine to verify that TREL ∈ Pcz. Besides,
TRLE ⊆ G × R × (Λ \ L) implies that TRLE ∈ Prz. We get Dz ⊆ G × (I \ R) × (Λ \ L). It is
straightforward to show that Dz ∈ Pez. Therefore equivalence (iii) follows. This completes the
proof. 2

Proof of Theorem 1. First, let us prove condition (i). Take any element g in Gc. There
exist λ ∈ Λ and X ∈ Pcλ such that g = gTRλ + gX . Since X ⊆ G × (I \ R) × {λ}, we get
wt(g) = |R|+ |RE| = Mc. It remains to verify that wt(C(g)) = Mc.

Choose a nonzero element y of minimal weight in C(g) and write it down as y =
∑n

j=1 ajgbj,
for some aj, bj ∈ F ∪ {fs : f ∈ F, s ∈ T}. We may assume that all summands in this expression
for y are nonzero. Lemma 4(iv) tells us that ajg = 0 for each aj /∈ F . Therefore aj = 1 for all
j = 1, . . . , n. Hence

y =
n∑
j=1

gbj. (2)

If bj = 1, then gbj = g and | supp(gbj)| = | supp(g)| = Mc. Further, consider the case where
0 6= bj /∈ F .

Then bj = fjsj, for some fj ∈ F, sj ∈ T . There exist `j ∈ I, µj ∈ Λ such that sj = (e; `j, µj).
Therefore if pλ`j = θ, then (1) and g = gTRλ + gX yield us that gbj = θ and supp(gbj) = ∅. On
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the other hand, if pλ`j 6= θ, then pλ`j = e, and so g = gTRλ + gX implies that

supp(gbj) = {(e; i, µj) : i ∈ R} ∪ {(e; i, µj) : i ∈ X(eλ)}. (3)

Hence | supp(gbj)| = |{(e; i, µj) : i ∈ R}|+ |{(e; i, µj) : i ∈ X(eλ)}| = | supp(g)| = Mc. In addition,
notice that if µj1 = µj2 for 1 ≤ j1, j2 ≤ n, then the union of two sets occurring in the right hand
side of equality (3) for j = j1 coincides with the union corresponding to j = j2. Therefore it
follows from (2) and (3) that the weight of y is divisible by Mc. The minimality of the weight
of y implies that wt(y) ≤ wt(g) = Mc, and so wt(y) = Mc. Since wt(C(g)) = wt(y), we get
wt(C(g)) = Mc, as required.

Second, we notice that the proof of condition (ii) is dual to that of (i), and so we omit it.

Third, let us prove condition (iii). Let g be an arbitrary element in Gz. By the definition of Gz
there exist subsets X ∈ Pcz, Y ∈ Prz, V ∈ Pez as required for Gz. In view of the definitions of the
sets Pcz, Prz, Pez of subsets of T , it is routine to verify that wt(g) = Mz. On the other hand, it
follows from Lemma 4(vi) that g generates a one dimensional cluster set C(g) = F (g). Therefore
wt(C(g)) coincides with wt(g) = Mz, as required.

Fourth, let us prove condition (iv). Choose a cluster set C = C(g1, . . . , gk) with the largest
possible weight in F0[T ]. If wt(C) = 1, then it follows from conditions (i), (ii) and (iii) and the
maximality of wt(C) that Mc, Mr, Mz ≤ 1. Hence W = 1, and so wt(C) = W . Further, we
consider the case where wt(C) > 1.

Denote by Hmin(C) = {x ∈ C : wt(x) = wt(C)} the set of all nonzero elements of minimal

weight in C. For λ ∈ Λ, we define Hc(λ) =
{∑n

j=1(e; ij, λ)
∣∣∣ n ≥ 1, ij ∈ I

}
and

Hc = ∪λ∈ΛHc(λ).

Finally, for i ∈ I, let us also set Hr(i) =
{∑n

j=1(e; i, λj)
∣∣∣ n ≥ 1, λj ∈ Λ

}
and

Hr = ∪j∈IHr(j).

Since wt(C) > 1, we get C ∩ (T \ {θ}) = ∅. Consider several possible cases.

Case 1: Hmin(C) ∩ Hr 6= ∅. Choose y in Hmin(C) ∩ Hr. Then there exists i ∈ I such that
y ∈ Hr(i). Put

L(y) = {λ ∈ L : supp(y) ∩ T∗λ 6= ∅},
Λ(y) = {λ ∈ Λ \ L : supp(y) ∩ T∗λ 6= ∅}.

Suppose that, for some s ∈ T , the product ys is nonzero. Then wt(ys) = wt(y). Since
ys ∈ C, we get ys ∈ Hmin(C). By (1), Hrs ⊆ T \ {θ}. Hence ys ∈ T \ {θ}. This contradicts
Hmin(C) ∩ (T \ {θ}) = ∅ and shows that yT = 0.

For each j ∈ I, it follows from yT = 0 and the definition of L that the number of elements
λ ∈ Λ(y), satisfying pλj 6= θ, is even. Hence |Λ(y)| ≤ |LE|. Obviously, |L(y)| ≤ |L|, too. Therefore
wt(y) = |L(y)|+ |Λ(y)| ≤ |L|+ |LE| = Mr. Hence we get wt(C) = wt(y) ≤Mr.

By the choice of C, condition (ii) implies that wt(C) ≥ Mr, and so wt(y) = Mr. It follows
that L(y) = L and |Λ(y)| = |LE|. The definition of Pr and Gr show that y ∈ Gr. Thus, in this
case C contains an element of Gr.
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Case 2: Hmin(C) ∩Hc 6= ∅. This case is dual to Case 1, and we omit the proof.

Case 3: Hmin(C) ∩Hr = Hmin(C) ∩Hc = ∅. Choose any element y in Hmin(C).

For any s ∈ T , it is clear that sy, ys ∈ Hmin(C) ∪ {0}. Besides, it is easily seen that if sy 6= 0,
then sy ∈ Hr. Similarly, if ys 6= 0, then ys ∈ Hc. Hence the hypothesis of Case 3 implies that
sy = ys = 0. Therefore Ty = yT = 0, and so y ∈ Ann (F0[T ]).

Let us introduce the following subsets X, Y , V , Z of supp(y):

X = supp(y) ∩ (G× (I \R)× L),

Y = supp(y) ∩ (G×R× (Λ \ L)),

V = supp(y) ∩ (G× (I \R)× (Λ \ L)),

Z = supp(y) ∩ TRL.

We are going to show that X ∈ Pcz, Y ∈ Prz, V ∈ Pez and Z = TRL.

The definitions of the sets R,L show that gZ ∈ Ann (F0[T ]). Therefore it follows from y ∈
Ann (F0[T ]) that gX , gY ∈ Ann (F0[T ]). Hence gV ∈ Ann (F0[T ]), too.

Lemma 3 implies that X ∈ Zc, because gX ∈ Ann (F0[T ]). Hence it follows from the definition
of Zc that, for each λ ∈ L, µ ∈ Λ, the number |{i ∈ X(eλ) : pµi 6= θ}| is even. Notice that this is
the same condition, which occurs for X in the definition of the set Pcz. Besides, Lemma 3 yields
us that Y ∈ Zr. It follows that, for each i ∈ R, j ∈ I, the number |{λ ∈ Y (ei) : pλj 6= θ}| is even.
Notice that this is the same condition which occurs for Y in the definition of the set Prz.

Lemma 3 also shows that V ∈ Zc ∩ Zr. Hence it follows that, for all j, k ∈ I, µ, ν ∈ Λ, the
numbers |{(e; i, ν) ∈ V : pµi 6= θ}| and |{(e; j, λ) ∈ V : pλk 6= θ} are even. These are the same
conditions which occur for V in the definition of the set Pez.

Pick any λ ∈ L. The set X(eλ) is a subset of I \ R. As we have established, the number of
i ∈ X(eλ), such that pµi 6= θ, is even, for each µ ∈ Λ. This means that the set X(eλ) satisfies
the property which occurs in the definition of the set RE. The maximality of |RE| shows that
|X(eλ)| ≤ |RE|. Therefore

|X| ≤ |RE| · |L|. (4)

For each i ∈ R, a dual argument demonstrates that |Y (ei)| ≤ |LE| and

|Y (ei)| ≤ |LE| · |R|. (5)

We have already established that, for each j, k ∈ I, µ, ν ∈ Λ, the number of (e; i, ν) ∈ V ,
satisfying pµi 6= θ, is even and the number of (e; j, λ) ∈ V , satisfying pλk 6= θ, is even. These are
precisely the numbers which occur in the definition of the set Dz. It follows from the maximality
of |Dz| that

|V | ≤ |Dz|. (6)

Since Z ⊆ TRL, the following inequality is obvious:

|Z| ≤ |R| × |L|. (7)

Now we see that the maximality of the weight of C, condition (iii) and inequalities (4), (5), (6)
and (7) imply that all of these inequalities turn into exact equalities: |X(eλ)| = |RE|, |Y (ei)| = |LE|,
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|V | = |Dz| and Z = R × L. It follows that X ∈ Pcz, Y ∈ Prz and V ∈ Pez. Therefore
y = gZ + gX + gY + gV ∈ Gz in this case.

Thus we see that in all cases C always contains an element of minimal weight, which belongs
to the union Gc, Gr and Gz, as claimed.

If we combine the last conclusion with Lemma 5 and conditions (i), (ii) and (iii), then it follows
that wt(C) ≤ W . On the other hand, the maximality of wt(C) and conditions (i), (ii) and (iii)
also yield us that wt(C) ≥ W . Therefore wt(C) = W , which completes the proof. 2
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