
 

 
COPYRIGHT NOTICE 

 
 
 
 

 

FedUni ResearchOnline 
http://researchonline.ballarat.edu.au 

 
 
 
 

 

This is the submitted for peer-review version of the following article: 
 

Long, Q., & Huang, J., (2012). A new hybrid method combining genetic 
algorithm and coordinate search method. 2012 IEEE Fifth International 
Conference on Advanced Computational Intelligence (ICACI). P. 1072-1077  

Which has been published in final form at:  
http://dx.doi.org/10.1109/ICACI.2012.6463337 

 

 
 
 

 

© 2012 IEEE. 

 This is the author’s version of the work. It is posted here with permission  
of the publisher for your personal use. No further distribution is permitted. 

 

  

  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213013211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ballarat.edu.au/


A New Hybrid Method Combining Genetic Algorithm and
Coordinate Search Method

Qiang Long and Junjian Huang

Abstract— This paper proposed a new hybrid method com-
bining genetic algorithm(GA) and coordinate search method
(CSM). Genetic algorithm is good at global exploration but
bad at accuracy and local search. Whereas, coordinate search
method is good at local exploitation, and its accuracy is reliable
when searching in a local area. Thus we combine those two
methods in this paper to design a hybrid method called genetic
algorithm with coordinate search (GACS). Experimental tests
shows that this method are good at both global search and
local accuracy.

I. INTRODUCTION

IN this paper, we consider a global optimization problem




Minimize f(x)
Subject to

x ∈ X = [lb, ub],
(1)

where f : Rn → R is a continuous function, and X ∈ Rn

is a box set. Note that f could be a nonsmooth nonconvex
function, so gradient at some point may not available or hard
to obtain. And furthermore, nonconvex property of f makes
global minimum hard to achieve. Therefore, globally solving
problem (1) is quite a challenge problem.

In the last decades, different categories of global optimiza-
tion methods have been developed to solve this problem.
Among them, stochastic algorithms attracted a great deal
of attention. Some stochastic algorithms designed from be-
haviors of insects or birds, such as ant colony algorithm[4],
[5], [3] which simulates ants’ strategy of searching food,
artificial bee colony algorithm[18], [19], [17], [16] which
simulate bee colony’s process of searching honey and par-
ticle swarm optimization[20], [23], [25] which designed
from flying behaviors of a group of birds. Some stochas-
tic algorithms involve physical processes, such as simulate
annealing algorithm[1], [21], [24] which simulate the an-
nealing process of metal. Evolutionary algorithm simulate
the evolutionary process of nature where the population
evolute to the next generation though crossover, mutation and
selection. Similarly, in evolutionary algorithms, one designs
crossover operator, mutation operator and selection operator,
and the population which constitutes by some randomly
generated points moves to the next generation by applying
those operators. A typical evolutionary algorithm is genetic
algorithm[7], [26], [2].
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An advantage of those stochastic algorithms is their ability
of global exploration, thus they are quite commonly used in
global optimization. However, since they just explore the new
search area in a probability point of view, their numerical
performance is not very stable, they cannot guarantee that a
global solution or an approximation global solution can be
obtained every time. And furthermore, the accuracy of those
algorithms is a big problem.

In order to overcome the disadvantage of stochastic al-
gorithms and make good use of their global search ability,
a hybrid of stochastic algorithms and local search methods
could be a good idea. Some authors have made some contri-
bution to this idea, such as Durand[6] who combined Nelder-
Mead simplex method and genetic algorithm, Hedar[11]
who combined simulated annealing method and direct search
method and still [14] which combined tabu search method
and direct search method. In this paper, we will provide a
hybrid method which combines a derivative-free method, say
coordinate search method, and an evolutionary algorithm,
say genetic algorithm. The idea is that in the process of
generating the next population, except crossover operator,
mutation operator and selection operator, we add another
operator called accelerate operator which is designed from
coordinate search method. the function of accelerate operator
is that, through applying coordinate search method to some
randomly chosen chromosomes, we add some outstanding
genes into the new generation which, in return, generate
better points. In this way, we accelerate the convergence rate
and improve the accuracy of genetic algorithm. The new
hybrid method is called genetic algorithm with coordinate
search(GACS).

The following contents of this paper are arranged as fol-
lows. In section 2, we propose a review of genetic algorithm
and coordination search method. In section 3, we design
an accelerate operator based on coordinate search method
and provide the hybrid method GACS. In section 4, some
numerical tests are investigated and their results are compare
with some other hybrid methods. Finally, section 5 concludes
this paper.

II. PRELIMINARIES

In this section we first review the general process of
genetic algorithm, and then the coordinate search method.

A. Genetic algorithm

Genetic Algorithm is one of the most important Evolution-
ary algorithms in mathematical programming. It was firstly
introduced by John Holland in 1960s, and then developed



by his students and colleagues at the University of Michigan
between 1960s and 1970s [15]. In the last two decades,
genetic algorithm was increasingly enriched by plenty of
literatures, such as [9], [8], [10], [22]. And now various
genetic algorithms are applied in different areas, such as
math programming, combinational optimization, automatic
control, image processing, and so on.

The main idea of genetic algorithm is based on biological
natural selection and genetic mechanism. And different from
traditional deterministic methods, it is a stochastic algorithm.
The earliest structure of genetic algorithm was provided
by Glodberg in [7]. It firstly randomly generates a series
of solutions which is called initial population, and one
individual from the population is called a chromosome.
The number of chromosomes in a population is defined as
population size. In numerical computation, Chromosomes are
expressed as binary code, Gray code or real number code. the
population generate their offspring by two different means:
crossover and mutation. Crossover randomly exchanges some
genes (which constitute chromosomes) between two selected
individuals. Mutation changes some randomly selected genes
of an individual in a certain way. Then the next population is
constructed by selecting population size of best chromosomes
from the last population and its offspring. The criterion
for selecting the next generation is the performance of
each chromosome according to a fitness function which is
normally the objection function value. Those chromosomes
whose fitness is better are kept and whose fitness is worse are
eliminated. In this way, as the generation iteration goes on,
the algorithm will converge to the best chromosome, which
probably is the optimal solution or suboptimal solution of
the original optimization problem. In practical computation,
we set beforehand a maximal generation time which further
plays a role of stopping criterion.

Suppose that P (t) and O(t) represent the parents and
offspring of the tth generation, respectively. Then the general
structure of genetic algorithm can be written in the following
pseudo code.

General Structure of Genetic Algorithm
1 Initialization

1.1 Generate the initial population P (0),
1.2 Set crossover rate, mutation rate and max-

imal generation time,
1.3 Let t ← 0.

2 While the maximal generation time is not reached,
do

2.1 Crossover operator: generate O(t),
2.2 Mutation operator: generate O(t),
2.3 Evaluate P (t) and O(t): compute the fit-

ness function,
2.4 Select operator: build the next population,
2.5 t ← t + 1, go to 2.1

end
end

From the pseudo code, we can see that there are three
important operators in general genetic algorithm. Based

on different encoding, those operators can be various. In
this paper we use real number encoding and operators are
arithmetic crossover operator, nonuniform mutation operator
and best chromosomes selection operator, respectively.

B. Coordinate search method

The coordinate search method (also known as the coor-
dinate descent method or the alternating variables method)
cycles through the n coordinate directions e1, e2, . . . , en,
obtaining better points by performing a line search along
each direction in turn. It includes an inner iteration and an
outer iteration. This method is simple and somewhat intuitive,
but it works quite well for some problems especially for small
scale problems.

The advantage of genetic algorithm is its power of global
exploration. Given the randomness of populations, the search
is bestrewed all over the search space. This provides us
more opportunities to obtain the global basin of a objective
function, but it is the randomness which leads the terrible
accuracy of genetic algorithm. Coordinate search method, on
the other hand, is good at local exploitation. If the starting
point of coordinate search method is in the global basin,
then it can give a global solution with an excellent accuracy.
Therefore, combine both the advantages of genetic algorithm
and coordinate search method should be a good idea.

III. ACCELERATION OPERATOR AND GACS METHOD

In this section we propose a new hybrid method combining
genetic algorithm and coordinate search method. By doing
this, we first design the acceleration operator based on
coordinate search method.

Acceleration operator
Step 1: Input the acceleration rate acce rate, the popula-

tion size popu size. Set a counter k = 1.
Step 2: If k > popu size, stop the loop; otherwise,

randomly generate a number β ∈ [0, 1], if β <
acce rate, then let x0 = xk (which is the kth

chromosome in the current population) and go to
step 3; otherwise, let k = k+1 and go back to step
2.

Step 3: Starting from x0, Do the coordinate search and
store the obtained optimal point as an offspring.
Go back to step 2.

Line search is essential in coordinate search method. Nor-
mally, the optimal linear search is applied in each coordinate
direction. But this may cause some problems, first of all,
optimal line search needs gradient information which is not
acceptable for some engineering problems, even the gradient
is available, the cost for computation could be a big problem.
Second of all, like steepest descent direction method, for
some problem, such as quadratic problems, the so-called
zigzag may happen (see Figure 1) which brings a problem
for convergence.

In this paper, we apply inexact line search method, and
even simpler than that, we use a double strategy for step
size in line search. The idea is that we start from trying a



Fig. 1. Zigzag in coordinate search method

previously set step size, if it makes the objective function
value decrease then we accept it and try the one which
doubles it; otherwise, if it does not reduce the objective
function value, then we use the last accepted step size as
the result for line search.

Adding the accelerate operator to the general process of
genetic algorithm, we can add some better chromosomes to
the offspring, which, in return, generates more outstanding
points in the next generation. And for the selection operator,
we, on the one hand, try to keep those better chromosomes
to be in the next generation, on the other hand, guarantee
some new global exploration. So instead of choosing the
population size number of best chromosomes, we build the
next generation by half chosen from the best chromosomes
and half chosen randomly. In the following we propose the
pesudocode of genetic algorithm with coordinate search.

Genetic algorithm with coordinate search (GACS)
1 Initialization

1.1 Generate the initial population P (0),
1.2 Set crossover rate, mutation rate, acceler-

ate rate and maximal generation time,
1.3 Let t ← 0.

2 While generation counter does not reach the max-
imal generation number , do

2.1 Arithmetic crossover operator: generate
O(t),

2.2 Nonuniform mutation operator: generate
O(t),

2.3 Accelerate operator: generate O(t),

TABLE I
MAIN PROPERTIES OF TEST PROBLEMS

Pro. Dim. No. Property f∗∗

Ackley 10 several Nonlinear 0
Beale 2 several Quadratic 0
Bh1 2 1 Quadratic 0
Bh2 2 1 Quadratic 0
Bh3 2 1 Quadratic 0
Booth 2 several Quadratic 0
Branin 2 1 Quadratic 0.397887
Colville 4 several Quadratic 0
Dp 10 several Quadratic 0
Easom 2 several Exponential -1
Gold 2 several Quadratic 3
Griewank 10 several Nonlinear 0
Hart3 3 4 Exponential -3.86278
Hart6 6 6 Exponential -3.32237
Hump 2 1 Quadratic 0
Levy 2 several Quadratic 0
Matyas 2 1 Quadratic 0
Mich 2 several Nolinear -1.8013
Perm 4 several Quadratic 0
Perm0 4 several Quadratic 0
Powell 10 several Quadratic 0
Powerl 4 1 Quadratic 0
Rast 10 several Nonlinear 0
Rosen 10 several Quadratic 0
Schw 10 several Nonlinear 0
Shekel 4 10 Nonlinear -10.1532
Shub 2 several Nonlinear -186.7309
Sphere 10 1 Quadratic 0
Sum 10 1 Quadratic 0
Trid 10 1 Quadratic -210
Zakh 10 1 Quadratic 0

2.4 Evaluate P (t) and O(t): compute their
value of fitness function,

2.5 Selection operator: choose half population
size of best chromosome from P (t) and
O(t), the other half is chosen randomly.

2.6 t ← t + 1, go to 2.1
end

end

IV. NUMERICAL TESTS

In this section, we test GACS by some famous global test
problems which are cited from website

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm.
Main properties (like number of variables, global minimal
value and number of local minimum) of those test problems
are illustrated in table I. From table I, we can see that
those test functions enjoy very different properties (quadratic
,nonliner and exponential) and some of them do have several
local minimums (No.) except a global one. In the last column,
global minimal value (f∗∗) of the test problems are provided.

Unfortunately, there is no mature theory of how to adjust
parameters for evolutionary algorithms. So, we can just set
the parameters of GACS by a great deal of experimental
tests. Empirically, if the dimension of the problem is n, then
the population size is 2n ∼ 5n, maximal generation number
is 20n ∼ 50n. crossover rate, mutation rate and accelerate
rate are 0.4 ∼ 0.5, 0.2 ∼ 0.3 and 0.1 ∼ 0.2, respectively.

In order to measure the success rate of all test algorithms,



TABLE II
COMPARISON OF ACCURACY BETWEEN GA AND GACS

Pro.(n)
f̄ f∗

f∗∗GA GACS GA GACS
Ackley(10) 1.0882e-4 1.1738e-4 5.2899e-5 6.7253e-5 0
Beale(2) 6.2309e-9 7.1775e-8 7.3832e-10 5.7100e-13 0
Bh1(2) 6.52489e-9 2.5951e-8 7.1939e-10 1.4181e-10 0
Bh2(2) 5.6003e-9 2.8859e-8 8.1967e-10 2.0006e-11 0
Bh3(2) 3.7422e-9 6.4279e-8 4.3685e-10 5.3739e-12 0
Booth(2) 5.2070e-9 9.6581e-9 5.1714e-10 3.1795e-12 0
Branin(2) 3.9788e-1 3.9788e-1 3.9788e-1 3.9788e-1 0.397887
Colville(4) 5.6385e-5 4.2757e-5 1.0718e-9 8.5737e-8 0
Dp(10) 2.1194e-8 3.7873e-7 3.1574e-9 3.4527e-8 0
Easom(2) – -1.0000 – -1.0000 -1
Gold(2) 3 3 3 3 3
Griewank(10) – 3.0811e-3 – 7.5525e-10 0
Hart3(3) -3.8627 -3.8627 -3.8627 -3.8627 -3.86278
Hart6(6) -3.3223 -3.3223 -3.3223 -3.3223 -3.32237
Hump(2) 5.2402e-8 5.4034e-8 4.7194e-8 4.6514e-8 0
Levy(2) 3.8252e-9 7.5267e-10 4.8869e-10 1.3792e-13 0
Matyas(2) 4.2675e-9 9.0509e-10 5.5671e-10 1.8293e-12 0
Mich(2) -1.8036 -1.8013 -1.8843 -1.8013 -1.8013
Perm(4) 4.1457e-3 4.6400e-3 1.7909e-8 2.7555e-4 0
Perm0(4) 3.6127e-4 3.9217e-4 2.1966e-10 2.9097e-7 0
Powell(10) 1.0520e-7 6.3157e-6 1.4659e-9 3.1229e-8 0
Powerl(4) 1.8818e-4 1.2383e-3 3.6822e-9 2.6439e-7 0
Rast(10) 8.5126e-9 1.6723e-6 5.2740e-9 8.1787e-7 0
Rosen(10) 2.7445e-8 7.2265e-6 3.0088e-9 1.2679e-6 0
Schw(10) 1.2727e-4 – 1.2727e-4 – 0
Shekel(4) -10.5368 -10.5360 -10.5369 -10.5360 -10.1532
Shub(2) -186.7309 -186.7309 -186.7309 -186.7309 -186.7309
Sphere(10) 1.5144e-8 8.8349e-9 3.5837e-9 3.9039e-9 0
Sum2(10) 1.5510e-8 4.8324e-8 4.5229e-9 2.0105e-8 0
Trid(10) -210 -210 -210 -210 -210
Zakh(10) 1.6485e-8 1.0730e-6 2.3243e-9 6.5966e-8 0

we introduce the follow criteria,
f∗ − f∗∗

|f∗∗|+ 1
< ε,

where f∗ and f∗∗ stand for the obtained optimal solution
and the current known best optimal solution, respectively.
And ε is a threshold number which, in our test problems, is
10−2 ∼ 10−3. In order to see the stability of algorithms, for
each test problems, we calculate 100 times by each solver and
record the time of successful calculation. And the analysis of
average time of objective function evaluation, average time
spent for each calculation and average optimal value are all
based on the successful calculation.

All test problems are calculated in a environment of MAT-
LAB(2010a) installed on an ACER ASPIRE4730Z laptop
with a 2G RAM and a 2.16GB CPU. Before the results
are showed, we illustrate some signs which are used in the
following table.
• Pro.(n) ... name for test problems, n is dimension of

the problem;
• f̄ ... average optimal solution over the successful calcu-

lations;
• f∗ ... the best optimal solution over 100 times of

execution.
• f∗∗ ... the current known optimal value.
Example 4.1: Comparison between GA and GACS
In this example, we first compare the accuracy between

GA and GACS to see if the presentation of accelerate
operator improves the ability of local search. Table II shows
the mean solutions and the best solutions of GA and GACS

TABLE III
SUCCESS RATE OF GA AND GACS

Pro.(n) GA GACS Pro.(n) GA GACS
Ackley(10) 11 100 Matyas(2) 100 100
Beale(2) 92 83 Mich(2) 72 96
Bh1(2) 83 72 Perm(4) 85 43
Bh2(2) 80 62 Perm0(4) 75 71
Bh3(2) 87 79 Powell(10) 100 100
Booth(2) 100 100 Powerl(4) 100 89
Branin(2) 100 100 Rast(10) 4 30
Colville(4) 98 100 Rosen(10) 84 85
Dp(10) 31 88 Schw(10) 91 0
Easom(2) 0 71 Shekel(4) 36 38
Gold(2) 99 92 Shub(2) 77 93
Griewank(10) 0 8 Sphere(10) 100 100
Hart3(3) 95 89 Sum2(10) 100 100
Hart6(6) 57 67 Trid(10) 100 100
Hump(2) 100 100 Zakh(10) 100 100
Levy(2) 79 99

over 100 execution, from column of f∗ we can see that
GACS indeed improves the accuracy for most of the test
problems. Second of all, Table III illustrate the success rate
of GA and GACS. It can be seen that they are really neck
and neck except GA failed at Easom and Griewank, as well
as GACS at Schw.

Example 4.2: Comparison between GACS and other
solver

In this example, we compare numerical performance
of GACS with SAHPS[13], DTS[14] and DSSA[12]. The
results are analyzed through the following four indexes:
success rate, average time of objective function evaluation,
average time consumption and the best solution over 100
times of executions, which are illustrated from Table IV to
Table VII, respectively. It can be seen from Table IV that
the success rate of GACS is neck and neck with the other
three methods, except GACS failed to solve problem Schw.
For the term of average objective function value evaluation
time, Table V shows that GACS is better than DSSA but
worse than SAHPS and DTS for most of the test problems.
However, GACS spent less time on each execution than DTS
and DSSA which is illustrated in Table VI. Still Table VII
provides that GACS can achieve a better accuracy than other
methods, such as problem Beale, Levy and Matyas.

V. CONCLUSION

In this paper, we proposed a new hybrid method combin-
ing genetic algorithm and coordinate search method which
shortly named GACS. In the iteration process of general
genetic algorithm, except crossover operator, mutation op-
erator and selection operator, we add another operator called
accelerate operation which is based on coordinate search
method. From the numerical results, GACS performances
better than GA both in terms of success rate and accuracy.
And when compared with other hybrid method, GACS is still
reliable and efficient.
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