

COPYRIGHT NOTICE

FedUni ResearchOnline
http://researchonline.ballarat.edu.au

This is the submitted for peer-review version of the following article:

Long, Q., & Huang, J., (2012). A new hybrid method combining genetic
algorithm and coordinate search method. 2012 IEEE Fifth International
Conference on Advanced Computational Intelligence (ICACI). P. 1072-1077

Which has been published in final form at:
http://dx.doi.org/10.1109/ICACI.2012.6463337

© 2012 IEEE.

 This is the author’s version of the work. It is posted here with permission
of the publisher for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213013211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ballarat.edu.au/

A New Hybrid Method Combining Genetic Algorithm and
Coordinate Search Method

Qiang Long and Junjian Huang

Abstract— This paper proposed a new hybrid method com-
bining genetic algorithm(GA) and coordinate search method
(CSM). Genetic algorithm is good at global exploration but
bad at accuracy and local search. Whereas, coordinate search
method is good at local exploitation, and its accuracy is reliable
when searching in a local area. Thus we combine those two
methods in this paper to design a hybrid method called genetic
algorithm with coordinate search (GACS). Experimental tests
shows that this method are good at both global search and
local accuracy.

I. INTRODUCTION

IN this paper, we consider a global optimization problem

Minimize f(x)
Subject to

x ∈ X = [lb, ub],
(1)

where f : Rn → R is a continuous function, and X ∈ Rn

is a box set. Note that f could be a nonsmooth nonconvex
function, so gradient at some point may not available or hard
to obtain. And furthermore, nonconvex property of f makes
global minimum hard to achieve. Therefore, globally solving
problem (1) is quite a challenge problem.

In the last decades, different categories of global optimiza-
tion methods have been developed to solve this problem.
Among them, stochastic algorithms attracted a great deal
of attention. Some stochastic algorithms designed from be-
haviors of insects or birds, such as ant colony algorithm[4],
[5], [3] which simulates ants’ strategy of searching food,
artificial bee colony algorithm[18], [19], [17], [16] which
simulate bee colony’s process of searching honey and par-
ticle swarm optimization[20], [23], [25] which designed
from flying behaviors of a group of birds. Some stochas-
tic algorithms involve physical processes, such as simulate
annealing algorithm[1], [21], [24] which simulate the an-
nealing process of metal. Evolutionary algorithm simulate
the evolutionary process of nature where the population
evolute to the next generation though crossover, mutation and
selection. Similarly, in evolutionary algorithms, one designs
crossover operator, mutation operator and selection operator,
and the population which constitutes by some randomly
generated points moves to the next generation by applying
those operators. A typical evolutionary algorithm is genetic
algorithm[7], [26], [2].

Qiang Long: School of Science, Information Technology and En-
gineering, University of Ballarat, VIC 3350, Australia. E-mail: qiang-
long@students.ballarat.edu.au

Junjian Huang: Department of Computer Science, Chongqing University
of Education, Chongqing 400067, China. E-mail: hmomu@sina.com

An advantage of those stochastic algorithms is their ability
of global exploration, thus they are quite commonly used in
global optimization. However, since they just explore the new
search area in a probability point of view, their numerical
performance is not very stable, they cannot guarantee that a
global solution or an approximation global solution can be
obtained every time. And furthermore, the accuracy of those
algorithms is a big problem.

In order to overcome the disadvantage of stochastic al-
gorithms and make good use of their global search ability,
a hybrid of stochastic algorithms and local search methods
could be a good idea. Some authors have made some contri-
bution to this idea, such as Durand[6] who combined Nelder-
Mead simplex method and genetic algorithm, Hedar[11]
who combined simulated annealing method and direct search
method and still [14] which combined tabu search method
and direct search method. In this paper, we will provide a
hybrid method which combines a derivative-free method, say
coordinate search method, and an evolutionary algorithm,
say genetic algorithm. The idea is that in the process of
generating the next population, except crossover operator,
mutation operator and selection operator, we add another
operator called accelerate operator which is designed from
coordinate search method. the function of accelerate operator
is that, through applying coordinate search method to some
randomly chosen chromosomes, we add some outstanding
genes into the new generation which, in return, generate
better points. In this way, we accelerate the convergence rate
and improve the accuracy of genetic algorithm. The new
hybrid method is called genetic algorithm with coordinate
search(GACS).

The following contents of this paper are arranged as fol-
lows. In section 2, we propose a review of genetic algorithm
and coordination search method. In section 3, we design
an accelerate operator based on coordinate search method
and provide the hybrid method GACS. In section 4, some
numerical tests are investigated and their results are compare
with some other hybrid methods. Finally, section 5 concludes
this paper.

II. PRELIMINARIES

In this section we first review the general process of
genetic algorithm, and then the coordinate search method.

A. Genetic algorithm

Genetic Algorithm is one of the most important Evolution-
ary algorithms in mathematical programming. It was firstly
introduced by John Holland in 1960s, and then developed

by his students and colleagues at the University of Michigan
between 1960s and 1970s [15]. In the last two decades,
genetic algorithm was increasingly enriched by plenty of
literatures, such as [9], [8], [10], [22]. And now various
genetic algorithms are applied in different areas, such as
math programming, combinational optimization, automatic
control, image processing, and so on.

The main idea of genetic algorithm is based on biological
natural selection and genetic mechanism. And different from
traditional deterministic methods, it is a stochastic algorithm.
The earliest structure of genetic algorithm was provided
by Glodberg in [7]. It firstly randomly generates a series
of solutions which is called initial population, and one
individual from the population is called a chromosome.
The number of chromosomes in a population is defined as
population size. In numerical computation, Chromosomes are
expressed as binary code, Gray code or real number code. the
population generate their offspring by two different means:
crossover and mutation. Crossover randomly exchanges some
genes (which constitute chromosomes) between two selected
individuals. Mutation changes some randomly selected genes
of an individual in a certain way. Then the next population is
constructed by selecting population size of best chromosomes
from the last population and its offspring. The criterion
for selecting the next generation is the performance of
each chromosome according to a fitness function which is
normally the objection function value. Those chromosomes
whose fitness is better are kept and whose fitness is worse are
eliminated. In this way, as the generation iteration goes on,
the algorithm will converge to the best chromosome, which
probably is the optimal solution or suboptimal solution of
the original optimization problem. In practical computation,
we set beforehand a maximal generation time which further
plays a role of stopping criterion.

Suppose that P (t) and O(t) represent the parents and
offspring of the tth generation, respectively. Then the general
structure of genetic algorithm can be written in the following
pseudo code.

General Structure of Genetic Algorithm
1 Initialization

1.1 Generate the initial population P (0),
1.2 Set crossover rate, mutation rate and max-

imal generation time,
1.3 Let t ← 0.

2 While the maximal generation time is not reached,
do

2.1 Crossover operator: generate O(t),
2.2 Mutation operator: generate O(t),
2.3 Evaluate P (t) and O(t): compute the fit-

ness function,
2.4 Select operator: build the next population,
2.5 t ← t + 1, go to 2.1

end
end

From the pseudo code, we can see that there are three
important operators in general genetic algorithm. Based

on different encoding, those operators can be various. In
this paper we use real number encoding and operators are
arithmetic crossover operator, nonuniform mutation operator
and best chromosomes selection operator, respectively.

B. Coordinate search method

The coordinate search method (also known as the coor-
dinate descent method or the alternating variables method)
cycles through the n coordinate directions e1, e2, . . . , en,
obtaining better points by performing a line search along
each direction in turn. It includes an inner iteration and an
outer iteration. This method is simple and somewhat intuitive,
but it works quite well for some problems especially for small
scale problems.

The advantage of genetic algorithm is its power of global
exploration. Given the randomness of populations, the search
is bestrewed all over the search space. This provides us
more opportunities to obtain the global basin of a objective
function, but it is the randomness which leads the terrible
accuracy of genetic algorithm. Coordinate search method, on
the other hand, is good at local exploitation. If the starting
point of coordinate search method is in the global basin,
then it can give a global solution with an excellent accuracy.
Therefore, combine both the advantages of genetic algorithm
and coordinate search method should be a good idea.

III. ACCELERATION OPERATOR AND GACS METHOD

In this section we propose a new hybrid method combining
genetic algorithm and coordinate search method. By doing
this, we first design the acceleration operator based on
coordinate search method.

Acceleration operator
Step 1: Input the acceleration rate acce rate, the popula-

tion size popu size. Set a counter k = 1.
Step 2: If k > popu size, stop the loop; otherwise,

randomly generate a number β ∈ [0, 1], if β <
acce rate, then let x0 = xk (which is the kth

chromosome in the current population) and go to
step 3; otherwise, let k = k+1 and go back to step
2.

Step 3: Starting from x0, Do the coordinate search and
store the obtained optimal point as an offspring.
Go back to step 2.

Line search is essential in coordinate search method. Nor-
mally, the optimal linear search is applied in each coordinate
direction. But this may cause some problems, first of all,
optimal line search needs gradient information which is not
acceptable for some engineering problems, even the gradient
is available, the cost for computation could be a big problem.
Second of all, like steepest descent direction method, for
some problem, such as quadratic problems, the so-called
zigzag may happen (see Figure 1) which brings a problem
for convergence.

In this paper, we apply inexact line search method, and
even simpler than that, we use a double strategy for step
size in line search. The idea is that we start from trying a

Fig. 1. Zigzag in coordinate search method

previously set step size, if it makes the objective function
value decrease then we accept it and try the one which
doubles it; otherwise, if it does not reduce the objective
function value, then we use the last accepted step size as
the result for line search.

Adding the accelerate operator to the general process of
genetic algorithm, we can add some better chromosomes to
the offspring, which, in return, generates more outstanding
points in the next generation. And for the selection operator,
we, on the one hand, try to keep those better chromosomes
to be in the next generation, on the other hand, guarantee
some new global exploration. So instead of choosing the
population size number of best chromosomes, we build the
next generation by half chosen from the best chromosomes
and half chosen randomly. In the following we propose the
pesudocode of genetic algorithm with coordinate search.

Genetic algorithm with coordinate search (GACS)
1 Initialization

1.1 Generate the initial population P (0),
1.2 Set crossover rate, mutation rate, acceler-

ate rate and maximal generation time,
1.3 Let t ← 0.

2 While generation counter does not reach the max-
imal generation number , do

2.1 Arithmetic crossover operator: generate
O(t),

2.2 Nonuniform mutation operator: generate
O(t),

2.3 Accelerate operator: generate O(t),

TABLE I
MAIN PROPERTIES OF TEST PROBLEMS

Pro. Dim. No. Property f∗∗

Ackley 10 several Nonlinear 0
Beale 2 several Quadratic 0
Bh1 2 1 Quadratic 0
Bh2 2 1 Quadratic 0
Bh3 2 1 Quadratic 0
Booth 2 several Quadratic 0
Branin 2 1 Quadratic 0.397887
Colville 4 several Quadratic 0
Dp 10 several Quadratic 0
Easom 2 several Exponential -1
Gold 2 several Quadratic 3
Griewank 10 several Nonlinear 0
Hart3 3 4 Exponential -3.86278
Hart6 6 6 Exponential -3.32237
Hump 2 1 Quadratic 0
Levy 2 several Quadratic 0
Matyas 2 1 Quadratic 0
Mich 2 several Nolinear -1.8013
Perm 4 several Quadratic 0
Perm0 4 several Quadratic 0
Powell 10 several Quadratic 0
Powerl 4 1 Quadratic 0
Rast 10 several Nonlinear 0
Rosen 10 several Quadratic 0
Schw 10 several Nonlinear 0
Shekel 4 10 Nonlinear -10.1532
Shub 2 several Nonlinear -186.7309
Sphere 10 1 Quadratic 0
Sum 10 1 Quadratic 0
Trid 10 1 Quadratic -210
Zakh 10 1 Quadratic 0

2.4 Evaluate P (t) and O(t): compute their
value of fitness function,

2.5 Selection operator: choose half population
size of best chromosome from P (t) and
O(t), the other half is chosen randomly.

2.6 t ← t + 1, go to 2.1
end

end

IV. NUMERICAL TESTS

In this section, we test GACS by some famous global test
problems which are cited from website

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm.
Main properties (like number of variables, global minimal
value and number of local minimum) of those test problems
are illustrated in table I. From table I, we can see that
those test functions enjoy very different properties (quadratic
,nonliner and exponential) and some of them do have several
local minimums (No.) except a global one. In the last column,
global minimal value (f∗∗) of the test problems are provided.

Unfortunately, there is no mature theory of how to adjust
parameters for evolutionary algorithms. So, we can just set
the parameters of GACS by a great deal of experimental
tests. Empirically, if the dimension of the problem is n, then
the population size is 2n ∼ 5n, maximal generation number
is 20n ∼ 50n. crossover rate, mutation rate and accelerate
rate are 0.4 ∼ 0.5, 0.2 ∼ 0.3 and 0.1 ∼ 0.2, respectively.

In order to measure the success rate of all test algorithms,

TABLE II
COMPARISON OF ACCURACY BETWEEN GA AND GACS

Pro.(n)
f̄ f∗

f∗∗GA GACS GA GACS
Ackley(10) 1.0882e-4 1.1738e-4 5.2899e-5 6.7253e-5 0
Beale(2) 6.2309e-9 7.1775e-8 7.3832e-10 5.7100e-13 0
Bh1(2) 6.52489e-9 2.5951e-8 7.1939e-10 1.4181e-10 0
Bh2(2) 5.6003e-9 2.8859e-8 8.1967e-10 2.0006e-11 0
Bh3(2) 3.7422e-9 6.4279e-8 4.3685e-10 5.3739e-12 0
Booth(2) 5.2070e-9 9.6581e-9 5.1714e-10 3.1795e-12 0
Branin(2) 3.9788e-1 3.9788e-1 3.9788e-1 3.9788e-1 0.397887
Colville(4) 5.6385e-5 4.2757e-5 1.0718e-9 8.5737e-8 0
Dp(10) 2.1194e-8 3.7873e-7 3.1574e-9 3.4527e-8 0
Easom(2) – -1.0000 – -1.0000 -1
Gold(2) 3 3 3 3 3
Griewank(10) – 3.0811e-3 – 7.5525e-10 0
Hart3(3) -3.8627 -3.8627 -3.8627 -3.8627 -3.86278
Hart6(6) -3.3223 -3.3223 -3.3223 -3.3223 -3.32237
Hump(2) 5.2402e-8 5.4034e-8 4.7194e-8 4.6514e-8 0
Levy(2) 3.8252e-9 7.5267e-10 4.8869e-10 1.3792e-13 0
Matyas(2) 4.2675e-9 9.0509e-10 5.5671e-10 1.8293e-12 0
Mich(2) -1.8036 -1.8013 -1.8843 -1.8013 -1.8013
Perm(4) 4.1457e-3 4.6400e-3 1.7909e-8 2.7555e-4 0
Perm0(4) 3.6127e-4 3.9217e-4 2.1966e-10 2.9097e-7 0
Powell(10) 1.0520e-7 6.3157e-6 1.4659e-9 3.1229e-8 0
Powerl(4) 1.8818e-4 1.2383e-3 3.6822e-9 2.6439e-7 0
Rast(10) 8.5126e-9 1.6723e-6 5.2740e-9 8.1787e-7 0
Rosen(10) 2.7445e-8 7.2265e-6 3.0088e-9 1.2679e-6 0
Schw(10) 1.2727e-4 – 1.2727e-4 – 0
Shekel(4) -10.5368 -10.5360 -10.5369 -10.5360 -10.1532
Shub(2) -186.7309 -186.7309 -186.7309 -186.7309 -186.7309
Sphere(10) 1.5144e-8 8.8349e-9 3.5837e-9 3.9039e-9 0
Sum2(10) 1.5510e-8 4.8324e-8 4.5229e-9 2.0105e-8 0
Trid(10) -210 -210 -210 -210 -210
Zakh(10) 1.6485e-8 1.0730e-6 2.3243e-9 6.5966e-8 0

we introduce the follow criteria,
f∗ − f∗∗

|f∗∗|+ 1
< ε,

where f∗ and f∗∗ stand for the obtained optimal solution
and the current known best optimal solution, respectively.
And ε is a threshold number which, in our test problems, is
10−2 ∼ 10−3. In order to see the stability of algorithms, for
each test problems, we calculate 100 times by each solver and
record the time of successful calculation. And the analysis of
average time of objective function evaluation, average time
spent for each calculation and average optimal value are all
based on the successful calculation.

All test problems are calculated in a environment of MAT-
LAB(2010a) installed on an ACER ASPIRE4730Z laptop
with a 2G RAM and a 2.16GB CPU. Before the results
are showed, we illustrate some signs which are used in the
following table.
• Pro.(n) ... name for test problems, n is dimension of

the problem;
• f̄ ... average optimal solution over the successful calcu-

lations;
• f∗ ... the best optimal solution over 100 times of

execution.
• f∗∗ ... the current known optimal value.
Example 4.1: Comparison between GA and GACS
In this example, we first compare the accuracy between

GA and GACS to see if the presentation of accelerate
operator improves the ability of local search. Table II shows
the mean solutions and the best solutions of GA and GACS

TABLE III
SUCCESS RATE OF GA AND GACS

Pro.(n) GA GACS Pro.(n) GA GACS
Ackley(10) 11 100 Matyas(2) 100 100
Beale(2) 92 83 Mich(2) 72 96
Bh1(2) 83 72 Perm(4) 85 43
Bh2(2) 80 62 Perm0(4) 75 71
Bh3(2) 87 79 Powell(10) 100 100
Booth(2) 100 100 Powerl(4) 100 89
Branin(2) 100 100 Rast(10) 4 30
Colville(4) 98 100 Rosen(10) 84 85
Dp(10) 31 88 Schw(10) 91 0
Easom(2) 0 71 Shekel(4) 36 38
Gold(2) 99 92 Shub(2) 77 93
Griewank(10) 0 8 Sphere(10) 100 100
Hart3(3) 95 89 Sum2(10) 100 100
Hart6(6) 57 67 Trid(10) 100 100
Hump(2) 100 100 Zakh(10) 100 100
Levy(2) 79 99

over 100 execution, from column of f∗ we can see that
GACS indeed improves the accuracy for most of the test
problems. Second of all, Table III illustrate the success rate
of GA and GACS. It can be seen that they are really neck
and neck except GA failed at Easom and Griewank, as well
as GACS at Schw.

Example 4.2: Comparison between GACS and other
solver

In this example, we compare numerical performance
of GACS with SAHPS[13], DTS[14] and DSSA[12]. The
results are analyzed through the following four indexes:
success rate, average time of objective function evaluation,
average time consumption and the best solution over 100
times of executions, which are illustrated from Table IV to
Table VII, respectively. It can be seen from Table IV that
the success rate of GACS is neck and neck with the other
three methods, except GACS failed to solve problem Schw.
For the term of average objective function value evaluation
time, Table V shows that GACS is better than DSSA but
worse than SAHPS and DTS for most of the test problems.
However, GACS spent less time on each execution than DTS
and DSSA which is illustrated in Table VI. Still Table VII
provides that GACS can achieve a better accuracy than other
methods, such as problem Beale, Levy and Matyas.

V. CONCLUSION

In this paper, we proposed a new hybrid method combin-
ing genetic algorithm and coordinate search method which
shortly named GACS. In the iteration process of general
genetic algorithm, except crossover operator, mutation op-
erator and selection operator, we add another operator called
accelerate operation which is based on coordinate search
method. From the numerical results, GACS performances
better than GA both in terms of success rate and accuracy.
And when compared with other hybrid method, GACS is still
reliable and efficient.

REFERENCES

[1] E.H.L. Aarts and P.J.M. Laarhoven. Simulated annealing: an introduc-
tion. Statistica Neerlandica, 43(1):31–52, 1989.

TABLE IV
SUCCESS RATE OF SAHPS, DTS, DSSA AND GACS

Pro.(n) SAHPS DTS DSSA GACS
Ackley(10) 11 29 77 91
Beale(2) 92 87 94 76
Bh1(2) 83 82 97 23
Bh2(2) 80 85 97 31
Bh3(2) 87 92 96 40
Booth(2) 100 100 100 100
Branin(2) 100 100 100 100
Colville(4) 98 99 100 100
Dp(10) 31 42 94 80
Easom(2) 0 3 1 35
Gold(2) 99 98 97 77
Griewank(10) 0 2 43 2
Hart3(3) 95 99 95 87
Hart6(6) 57 75 94 71
Hump(2) 100 99 93 100
Levy(2) 79 100 85 100
Matyas(2) 100 100 100 100
Mich(2) 72 93 53 88
Perm(4) 85 78 93 35
Perm0(4) 75 83 100 77
Powell(10) 100 100 100 100
Powerl(4) 100 100 100 86
Rast(10) 4 0 36 4
Rast(10) 4 0 36 4
Rosen(10) 84 94 100 89
Schw(10) 91 15 72 0
Shekel(4) 36 46 66 32
Shub(2) 77 63 83 78
Sphere(10) 100 100 100 100
Sum2(10) 100 100 100 100
Trid(10) 100 100 100 100
Zakh(10) 100 100 100 100

TABLE V
AVERAGE TIME OF OBJECTIVE FUNCTION VALUE EVALUATION

Pro.(n) SAHPS DTS DSSA GACS
Ackley(10) 2212 12992 6125 12387
Beale(2) 243 244 336 566
Bh1(2) 224 261 283 411
Bh2(2) 229 257 279 406
Bh3(2) 227 257 274 563
Booth(2) 236 242 287 421
Branin(2) 261 242 300 344
Colville(4) 405 1079 1563 2440
Dp(10) 1002 5035 11277 6113
Easom(2) – 181 271 997
Gold(2) 237 261 309 403
Griewank(10) – 4706 7624 5786
Hart3(3) 376 491 635 599
Hart6(6) 798 1652 2547 1961
Hump(2) 215 244 281 368
Levy(2) 276 235 282 508
Matyas(2) 244 235 220 439
Mich(2) 311 263 304 311
Perm(4) 424 1285 3030 2128
Perm0(4) 402 1006 1546 1607
Powell(10) 1002 4503 8951 6081
Powerl(4) 413 1115 2553 1605
Rast(10) 2089 – 7510 6997
Rosen(10) 1002 6862 27287 8320
Schw(10) 1015 6355 17810 –
Shekel(4) 740 852 941 1167
Shub(2) 331 264 328 536
Sphere(10) 1003 4072 5749 4895
Sum2(10) 1002 4249 7335 4962
Trid(10) 1002 5051 12007 7745
Zakh(10) 1002 4583 16055 13844

TABLE VI
AVERAGE TIME COMSUMPTION FOR EACH EXECUTION

Pro.(n) SAHPS DTS DSSA GACS
Ackley(10) 0.1928 2.8324 1.1797 0.7471
Beale(2) 0.0177 0.0461 0.0289 0.0411
Bh1(2) 0.0177 0.0455 0.0299 0.0353
Bh2(2) 0.0174 0.0454 0.0291 0.0360
Bh3(2) 0.0178 0.0453 0.0290 0.0434
Booth(2) 0.0173 0.0450 0.0249 0.0367
Branin(2) 0.0190 0.0437 0.0252 0.0342
Colville(4) 0.0755 0.2076 0.2014 0.1450
Dp(10) 0.3877 1.9636 2.2302 0.4708
Easom(2) – 0.0321 0.0258 0.0604
Gold(2) 0.0198 0.0462 0.0273 0.0377
Griewank(10) – 1.8835 1.5041 0.4943
Hart3(3) 0.0408 0.1048 0.0749 0.0708
Hart6(6) 0.1121 0.5078 0.4280 0.2249
Hump(2) 0.0179 0.0451 0.0267 0.0372
Levy(2) 0.0241 0.0456 0.0282 0.0483
Matyas(2) 0.0180 0.0440 0.0217 0.0395
Mich(2) 0.0278 0.0496 0.0301 0.0359
Perm(4) 0.1220 0.2559 0.4084 0.1662
Perm0(4) 0.0744 0.2122 0.2243 0.1388
Powell(10) 0.2689 1.9398 1.8962 0.5960
Powerl(4) 0.1032 0.2272 0.3427 0.1345
Rast(10) 0.2210 – 1.4142 0.5395
Rosen(10) 0.8455 2.4377 6.5660 0.5808
Schw(10) 0.4820 2.2685 4.9787 –
Shekel(4) 0.0805 0.2007 0.1393 0.1261
Shub(2) 0.0277 0.0462 0.0390 0.0442
Sphere(10) 0.1483 1.7980 1.3329 0.4492
Sum2(10) 0.1874 1.8493 1.7222 0.4318
Trid(10) 0.3785 1.9795 2.5160 0.5414
Zakh(10) 0.3070 1.9101 3.4809 0.7948

TABLE VII
THE BEST SOLUTION OVER 100 EXECUTIONS

Pro.(n) SAHPS DTS DSSA GACS
Ackley(10) 0.0529e-3 0.1974 0.1902 0.0817
Beale(2) 0.7383e-9 0.6148 0.5537 0.0001
Bh1(2) 0.7194e-9 0.5934 0.4328 0.2422
Bh2(2) 0.0820e-8 0.1026 0.0582 0.0521
Bh3(2) 0.4369e-9 0.4821 0.3328 0.7545
Booth(2) 0.5171e-9 0.7391 0.5788 0.0216
Branin(2) 0.3979 0.3979 0.3979 0.3979
Colville(4) 0.0011e-6 0.0011 0.0003 0.3178
Dp(10) 0.0032e-6 0.0036 0.0027 0.1274
Easom(2) – -1.0000 -1.0000 -1.0000
Gold(2) 3 3 3 3
Griewank(10) – 0.0000 0.0000 0.0000
Hart3(3) -3.8628 -3.8628 -3.8628 -3.8628
Hart6(6) -3.3224 -3.3224 -3.3224 -3.3224
Hump(2) 0.4719e-7 0.4706 0.4699 0.4651
Levy(2) 0.4887e-9 0.6093 0.3692 0.0000
Matyas(2) 0.5567e-9 0.5486 0.2966 0.0001
Mich(2) -1.8844 -1.8013 -1.9962 -1.8013
Perm(4) 0.0000e-3 0.0000 0.0000 0.2278
Perm0(4) 0.0000e-5 0.0001 0.0001 0.1323
Powell(10) 0.0147e-7 0.0337 0.0101 0.7074
Powerl(4) 0.0000e-4 0.0000 0.0000 0.1297
Rast(10) 0.0000 – 0.0000 0.0000
Rosen(10) 0.0003e-5 0.0001 0.0002 0.1762
Schw(10) -0.0661e5 -0.0063 -1.0008 –
Shekel(4) -10.5364 -10.5364 -10.5364 -10.5364
Shub(2) -186.7309 -186.7309 -186.7309 -186.7309
Sphere(10) 0.3584e-8 0.3562 0.2531 0.3631
Sum2(10) 0.0452e-7 0.0259 0.0247 0.1857
Trid(10) -210 -210 -210 -210
Zakh(10) 0.0232e-7 0.0359 0.0231 0.8621

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation,
IEEE Transactions on, 6(2):182–197, 2002.

[3] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization.
Computational Intelligence Magazine, IEEE, 1(4):28–39, 2006.

[4] M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical computer science, 344(2):243–278, 2005.

[5] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. Evolutionary
Computation, IEEE Transactions on, 1(1):53–66, 1997.

[6] N. Durand and J.M. Alliot. A combined nelder-mead simplex and
genetic algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference GECCO, volume 99, pages 1–7, 1999.

[7] D.E. Goldberg. Genetic algorithms in search, optimization, and
machine learning. Addison-wesley, 1989.

[8] D.E. Goldberg. A note on boltzmann tournament selection for genetic
algorithms and population-oriented simulated annealing. Complex
Systems, 4(4):445–460, 1990.

[9] D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex systems, 3(5):493–530,
1989.

[10] J.J. Grefenstette. Optimization of control parameters for genetic
algorithms. Systems, Man and Cybernetics, IEEE Transactions on,
16(1):122–128, 1986.

[11] A.R. Hedar and M. Fukushima. Hybrid simulated annealing and
direct search method for nonlinear global optimization. Department
of Applied Mathematics & Physics Kyoto University, pages 2001–013,
2001.

[12] A.R. Hedar and M. Fukushima. Hybrid simulated annealing and
direct search method for nonlinear unconstrained global optimization.
Optimization Methods and Software, 17(5):891–912, 2002.

[13] A.R. Hedar and M. Fukushima. Heuristic pattern search and its hy-
bridization with simulated annealing for nonlinear global optimization.
Optimization Methods and Software, 19(3-4):291–308, 2004.

[14] A.R. Hedar and M. Fukushima. Tabu search directed by direct search
methods for nonlinear global optimization. European Journal of
Operational Research, 170(2):329–349, 2006.

[15] J.H. Holland. Adaptation in natural and artificial systems. Number 53.
University of Michigan press, 1975.

[16] D. Karaboga. Artificial bee colony algorithm. Scholarpedia, 5(3):6915,
2010.

[17] D. Karaboga and B. Akay. A comparative study of artificial bee colony
algorithm. Applied Mathematics and Computation, 214(1):108–132,
2009.

[18] D. Karaboga and B. Basturk. Artificial bee colony (abc) optimization
algorithm for solving constrained optimization problems. Foundations
of Fuzzy Logic and Soft Computing, pages 789–798, 2007.

[19] D. Karaboga and B. Basturk. On the performance of artificial bee
colony (abc) algorithm. Applied Soft Computing, 8(1):687–697, 2008.

[20] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural
Networks, 1995. Proceedings., IEEE International Conference on,
volume 4, pages 1942–1948. IEEE, 1995.

[21] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[22] H. Kitano. Neurogenetic learning: an integrated method of designing
and training neural networks using genetic algorithms. Physica D:
Nonlinear Phenomena, 75(1-3):225–238, 1994.

[23] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization.
Swarm intelligence, 1(1):33–57, 2007.

[24] R.A. Rutenbar. Simulated annealing algorithms: An overview. Circuits
and Devices Magazine, IEEE, 5(1):19–26, 1989.

[25] Y. Shi. Particle swarm optimization. IEEE Connections, 2(1):8–13,
2004.

[26] J. Yang and V. Honavar. Feature subset selection using a genetic
algorithm. Intelligent Systems and Their Applications, IEEE, 13(2):44–
49, 1998.

