
Performance Estimations of First Fit Algorithm for Online Bin
Packing with Variable Bin Sizes and LIB constraints

J.Y. Lin~ P. Manyemt and R.L. Sheu+

Abstract

We consider the NP Hard problem of online Bin Packing while requiring that larger
(or longer) items be placed below smaller (or shorter) items - we call such a version the
LIB version of problems. Bin sizes can be uniform or variable. We provide analytical
upper bounds as well as computational results on the asymptotic approximation ratio for
the first fit algorithm.

Keywords. Online approximation algorithm, asymptotic worst case ratio, bin packing prob
"lem, longest item, uniform sized bins, variable sized bins.

1 Background

In the classical one-dimensional Bin Packing problem, we are given a list L = (i : 1 ~ i ~ n)
of items. The size of item i is ai, where each ai E (0,1]. The problem is to pack these n
items into bins such that the number of bins used is minimized. A bin is said to be used if it
contains at least one item (of non-zero length). A feasible solution is one where the sum of
the sizes of the items in each used bin is at most equal to the bin size.

VSBP (Variable Sized Bin Packing Problem) is similar to the classical problem stated
above, except that the bin sizes can be different - we are given a collection B of distinct bin
sizes S1 through SK, and SK is the largest (or just longest, in the one-dimensional case) bin
size with SK = 1. Size S1 is the smallest. The objective is to minimize the sum of the sizes of
the bins used. The dual of Bin Packing is Bin Covering, where the item sizes in a bin should
total up to at least the bin size.

Bin Packing can be offline or online. If the sizes of all items are known in advance, this
is referred to as offline bin packing. In the online version of Bin Packing, items in L arrive
one by one. When an item i of length ai arrives, it must immediately be assigned to a bin
(and this assignment cannot be changed later), and the length aH 1 of the next item becomes
known only after item i has been assigned to its bin. In all versions of Bin Packing, it is
assumed that there is an infinite supply of bins of any size. Hence, running out of bins to
place items is never an issue.

LIB version of Bin Packing. The bin packing problem considered in this paper is an
online version with variable bin sizes and imposes this additional requirement: In any bin,

'National Cheng-Kung University, Tainan, Taiwan. Email:jylin@math.ncku.edu.tw
tCentre for Informatics and Applied Optimisation , University of Ballarat .

Email:p.manyem@ballarat.edu.au
~National Cheng-Kung University, Tainan, Taiwan. Email:rsheu@mail.ncku·.edu.tw

Ba;;ic Problem LIB ? Bin Sizes Upper Bound Lower Bound
No Uniform 1.59 [9] 1.53 [10]

Bin No Variable 1.7 [3] 1.0 (trivial)
Packing Yes Uniform 3.0 [6] unknown

Yes Variable BFF unknown

Table 1: Bounds on Approximation Ratios in online Bin Packing and Covering with LIB

for any pair of items i and j, if size(j) = aj > size(i) = ai, then j should be placed in the bin
below i. In other words, longer items should be placed lower in any bin than shorter items.
We call this the LIB version, for Longest Item at the Bottom. Moreover, we assume that the
length of each item in L can not be arbitrarily small. Namely, there is a 0 < , :S S1 such that
ai E [r, 1] for all i E L.

Table 1 summarizes the results known so far in online Bin Packing. The numbers in square
brackets refer to the bibliography. The upper bound BFF for Variable Sized Bin Packing with
LIB is derived in Theorem 10 of this paper.

Organisation of this Paper. We provide a version of First Fit (FF) heuristic in Section
2 and then prove an upper bound on the guaranteed AAR (Asymptotic Approximation Ratio)
in Section 3. The computational results are in Section 4. The results here are more general
than the ones mentioned in [7], where the bin sizes are multiples of the smallest bin size.

1.1 Applications

Bin Packing and Covering theory does help to solve practical industry based problems such
as assigning semiconductor wafer lots to customer orders [1]. Another interesting application
arises during assigning tasks to computer processors based on a task priority. Each bin is
analogous to a processor. The size of a bin corresponds to the processor's capabilities (such
as speed), and the position of a task in a bin corresponds to its priority.

The LIB version of Bin Packing has applications in the Transportation industry, especially
with loading of pallets in a truck. If long items are placed at the bottom of a pallet inside a
truck, transportation is easier. In terms of weight, if heavier items are placed at the bottom,
better stability of the truck can be achieved, and smaller items will not get crushed by larger
items.

The dual of Bin Packing is Bin Covering, where the item size~ in a bin should total up to
at least the bin size. Bin Covering has been applied in the industry, from packing peaches into
cans in an "online" manner (so that the weight of each can is at least equal to its advertised
weight) to breaking up a large company into smaller companies such that each new company
is viable [11].

2 Problem and Algorithm

Problem Statement: Online LIB Variable-Sized Bin Packing (OLIBP). Given an
infinite supply of variable sized bins, and n items, each item with size in [,,1] and 0 < , < l.
Each item should be placed in a bin assigned to it (on top of items previously placed in that bin)
as soon as it arrives. This placement cannot be changed later. In addition, the following LIB

152

i
K
L
N (or n)
p

RALG

Size of item i
Bin number j
Set of used bins
Set of available bin sizes, S1 through SK

Index for an item (usually)
Number of available bin sizes (cardinality of 8)
Input list of items, in a given sequence
Cardinality of L (usually)
percentage of ones (used in computational studies)

S1 (SK)

topSize(bj)
totalSize(bj)

Worst case asymptotic approximation ratio for algorithm ALG
Size of the smallest (largest) available bin size
Size of the item at the top of bin bj
Sum of the sizes of the items in bin bj

LIB
FF
AAR
SU
VSBP
OLIBP

Table 2: Notation (in alphabetical order)

Largest (Longest, in the one-dimensional case) Item at the Bottom
First Fit heuristic
asymptotic approximation ratio
Space Utilization factor (in a bin, or set of bins)
Variable Sized Bin Packing
Online and LIB version of VSBP

Table 3: Acronyms

153

constraint should be obeyed for any used bin:

[i is below j in a used bin] ====? [ai 2: aj]. (1)

A feasible solution is one where the sum of the item sizes in each used bin is at equal to the bin size.
The available bin sizes consist of a finite set B = {Sj: 1:=S; j :=s; K}, Sj < Sj+l, 1:=S; j :=s; K-l.
The bin sizes are normalized, that is, SK (the largest bin size) is equal to one. The smallest bin
size SI is greater than zero. The goal is to find a feasible solution that minimizes the sum of the
size of used bins.

The online condition essentially reduces to the following Online Constraint: In a used bin,
if item i is below item j, then i should have arrived prior to j in the input list L, that is,

[i is below j in a used bin] ====? [i < j]. (2)

The First Fit algorithm can be modified to accommodate OLIBP. (See [6] or [5] or [2] for
descriptions of First Fit.) The behaviour of FF is summarized as follows: When an item i
arrives, assume that bins b1 through bm have already been used, in that order. Each such
bin bj , 1 :=s; j :=s; m, has two parameters, topSize(bj) and totalSize(bj), representing the size
of the topmost item in bj and the sum of the item sizes in bj respectively. FF scans b1

through bm in that order. For each such bin bj, it checks if (1) ai :=s; topSize(bj) , and (2)
ai :=s; size(bj) - totalSize(bj). FF places item i in the first such bin bj that satisfies both these
conditions and updates topSize(bj) as well as totalSize(bj). If no such bin among b1 through
bm satisfies these conditions, FF opens a new bin bm+l of size

(3)

to place i. For instance, if B = {0.2, 0.4, 0.6, 0.8, 1.0}, an arriving item of size 0.64 will be
placed in a bin of size f.641B = 0.8, not in a bin with a size of one.

Algorithm (ALG). First Fit (online variable-sized LIB Bin Packing).
Given: Items 1· .. N with sizes al ... aN, 'Y:=S; ai :=s; 1 for 1 :=s; i :=s; N,

bin sizes SI ... SK, 0 < SI < S2 < ... < SK-l < SK = 1.
Running Time: O(KN2).

1 nBin (number of bins used) 0 ;
2 for (item = 1 to N) do
3 placed [item] = NO;

4 bin = 1;
5 While (bin:=S; nBin AND placed [item] == NO) do
6 X = (topSize [bin] 2: size [item]) ;
7 Y = (size [bin] -totalSize [bin] 2: size [item]) ;
8 if (X == true AND Y == true) then
9
10
11
12
13
14
15

place item in bin;
update topSize[bin] and totalSize[bin];
placed [item] = YES;

end if
bin = bin + 1;

end While
if (placed [item] == NO) then (item not placed in any previous bin)

154

16
17
18
19
20
21
22
23
24 end
25 end for

if

nBin = nBin+ 1; (new, fresh, unused bin)
size [nBin] = SI;

While (size [nBin] < size [item])
increase size[nBin] to next higher bin size available;

place item in nBin;
topSize [nBin] = size [item] ;
totalSize [nBin] = size [item] ;
placed [item] = YES;

The key difference between original FF algorithm (where only bins of unit-size are used)
and ALG is that, in case an unused bin is needed, ALG searches (in lines 18-19) the set of
bin sizes {SI' S2, ... , S K} for the best jitting bin for the item to be placed.

3 Proof of A Bound of AAR

In this subsection, we give estimations of the asymptotic approximation ratio (AAR) for ALG.
Let ALG (L) denote the sum of the sizes of bins generated online by ALG to pack L. Let
OPT(L) be the optimal value of bin sizes necessary for packing items in L. The AAR is
defined by

. ALG(L)
RALG = s~~s~P{OPT(L)IOPT(L) > s}.

Define the SU (Space Utilization) factor for a set of used bins B = {bI, b2,··· bm } as
follows:

(4)

In other words, SU(B) is the ratio of the space occupied by items in the bins B to the sum
of the sizes of the bins in B. If B consists of just one bin bj , we will simply write SU(bj) as
a shorthand for SU({bj }). The following observation follows immediately from the definition
of SU.

Lemma 1. If SU(bi) of each used bin bi, i = 1,2, ... , m is greater than or equal to 6, then
RALG has an upper bound of~.

Proof. Since SU(bj) 2: 6, the total item size in bj should be larger than 6 x size(bj). Hence

L totalSize(bj) 2: 6 L size(bj). (5)
~EB ~EB

Any feasible packing, including the optimal one, must use bins whose total size is at least
LbjEB totalSize(bj). Therefore,

o

155

In contrast, let us now consider instances where the above condition is false for solutions
returned by ALG.

Lemma 2. Let 0 < 6 < min ~ and SU(bj) < 6 where bj is the last bin in B for which
- l iK-l Si+l

SU(bj) < 6 is true. In other wor·ds, J = max1jm{jISU(bj) < c5}. If I is the bottom item
of bin bj, then we have (1) aJ E ("Sl]; (2) size(bj) = Sl; and (3) al < 6S1 .

Proof. Clearly, a new bin bj is opened when I arrives, since I has been placed at the bottom
of bj. (1) By ALG, if al E (8i' Si+l] , 1 ~ i ~ K -1, then size(bj) = 8i+1 and totalSize(bj) ~
al > Si. Hence

SU(bj) = totalSize(bj) > ~ > 6
size(bj) Si+1 - ,

which contradicts to SU(bj) < 6. Therefore, al E (,,81].
(2) Since al E (,,81], size(b j) = Sl·
(3) Since

al
. (b) ~ SU(bj) < 6,

szze J

we have al < 6S1. o
Remark. If I ~ 1581, then the SU factor of every used bin is at least 6. By Lemma 1,

RALG is bounded above by 1/15.
Let us continue with the assumptions made in the first sentence of Lemma 2. Upon l's

arrival, there are two reasons why I was placed in a new bin bj and not in any of the bins bj

(1 ~ j ~ J-l) used earlier: Either (i) totalSizeI(bj)+aI > size(bj), or (ii) topSizeI(bj) < aI,
where totalSizeI (bj) is the sum of the sizes of items in bj and tapSizeI (bj) is the top item in
bj when item I arrived. Since there could be some items that arrived after I and were placed
in bj, the following inequalities hold

totalSizeI (bj) ~ totalSize(bj);

topSizeI (bj) ~ tapSize(bj).

(6)

(7)

Now, partition {bj ll ~ j ~ J - I} into two disjoint sets C and V with the following
definition:
Type-c bins: First, consider the set C of bins, with ICI = c, and

C = {bjltotalSizeI (bj) + al > size(bj), 1 ~ j ~ J - I}.

Refer to C as type-c bins. Since al < 8s1, it follows that

totalSizeI(bj) > size(bj) - 6S1, Vbj E C.

By the inequality (6),

totalSize(bj) > size(bj) - 881, Vbj E C. (8)

Define p = L size(bj). Then,
bjEC

OPT(L) ~ sum of item sizes ~ L totalSize(bj) > L [size(bj) - 6S1J = p - 8C8 1·
bjEC bjEC

(9)

156

On the other hand, for type-c bins, the solution returned by ALG has a value of L size(bj) =
bjEC

p. The upper and lower bounds for pare:

CS1 ~ P ~ c.

Lemma 3. For 8 <~, C ~ {bjISU(bj) ~ 8, 1 ~ j ~ J - I}.

Proof. By inequality (8),
totalSize(bJ) > 1 _ .6S1

size(bj) szze(bj)

Type-d bins: Secondly, let V be the subsets of bins, with 1'01 = d and

'0= {bjltopSizeJ (bj) < aJ, 1 ~ j ~ J - I} n C.

(10)

o

Name these bins as type-d bins. .
Among type-d bins, consider any two, say bj and bk with j < k, meaning tha~ bm bj was

opened before bin bk. Let el (j) [el (k)] be the topmost item of bj [bk] when I arnved.

Lemma 4. If bj, bk E V with j < k, then (1) totalSizel (bj) + aeI(k) ~ size(bj); (2) ael(j) <
aeI(k) < aI·

Proof. By the definition of V, aeI(k) = topSizeI (bk) < aI for all bk E V, and

totalSizeI(bj) + aI ~ size(bj).

It follows that
totalSizeI (bj) + aeI(k) < size(bj).

In other words there was enough space in bj for item el (k). If eI (k) had arrived after
el (j), then a p'lacement of el (k) over el (j) would have been attempted and failed due to
aeI(j) < aeI(k). On the other hand, if el (j) had arrived after eI (k), then, a.plac~ment .of e

l
(k)

over an earlier item x < el (j) in bj would have been attempted and faIled, Implymg that
ax < ael(k). Since x is below el(j) in bj , aeI(j) ~ ax· It follows that ael(j) ~ ax < aeI(k)· 0

Lemma 5. Let V = {bh , bt2 , ..• , btd }, with tl < t2 < ... < td - thus among the. V bins, btl

was opened the earliest and btd the last. For any item l E btk , k = 2,3,· .. ,d, if l < I and

at < aI, then there is another item j E btk _1 such that j < land aj < at·

Proof. Since btk _
1

E V , we have the following inequality:

157

By assumption, 1 arrived before I. Therefore,

Moreover, al < aI implies that

Then
(11)

This implies that, when 1 arrives, there is at least one item j already in btk _1 so that aj < al.
Otherwise, by (11), 1 would have been placed in btk_1 • 0

Let the topmost item of btd , as I arrived, be ad. Then ad < I and aGd < aI. Apply
Lemma 5 backward repeatedly, we obtain a sub-list of L such that al < a2 < ... < ad < I,
aG1 · < aal < .. . < aad < aI with ak E btk , k = 1,2, · · · ,d. Let A = {al,a2,···,ad}.

According to the online and LIB constraints, every item in A must be placed in distinct bins
and each item has a length at least ,. As a result, we have

Lemma 6. The sum of the bin sizes optimal algorithm to pack type-d bins should be at least

,d, whereas the value of the solution returned by ALG is q = LbjEV size(bj) ~ d.

Type-f bins: Beyond bin bJ, the last bin with space utility SU(bJ) < 8, there could be
several used bins all of which have SU ;:: 8. Name these bins as type-f and denote them by
F = {bj E Blj ;:: J + I}. Let the sum of their sizes be

f = L size(bj), (12)
bjEF

which is the value returned by ALG. Again, by equation (5) in Lemma 1, the sum of item sizes
in type-f bins is at least

L totalSize(bj) ;:: f8,
bjEF

which will be used as a lower bound for packing items in type-f bins the optimal way.

(13)

Thus the entire set of bins used by ALG is made up of, in this order: (i) a mixture of
type-c bins and type-d bins, (ii) bin bJ containing item I, and (iii) type-f bins. The lower
bound estimations for the sum of item sizes in each category are: (i) p - 8C8} for type-c bins
(by (9)); (ii) ,d for type-d bins (by Lemma 6); (iii) , for bin bJ ; (iv) 18 for type-f bins (by
(13)). Therefore, the lower bound for the optimal bin sizes is p - 8C8l + d, +, + 18, whereas
the solution returned by the ALG is p + q + 81 + f (q is defined in the statement of this
lemma.) The asymptotic ratio AAR requires us to consider the ratio

ALG(L) < p+ q+ 81 + f
OPT(L) - p - 6c81 + d-y +, + f6

(14)

for all large inputs L for which OPT(L) > 8 and 8 ---t 00. Equivalently, one of the numbers
p, q, f must tend to infinity in the limit. Observe that, by (10), p ---t 00 implies C ---t 00 and
also by Lemma 6, q ---t 00 implies d -+ 00. In what follows, we shall write (.,., ... ,.) ---t 00

158

to indicate at least one of the components tend to infinity. Taking the limit on both sides of

(14) gives
p+q+81 + f

RALG ~ lim
(p,c,q,d,f)-+oo p - 8CSI + d-y + , + f 8

p+q+.f
= lim .. d f!>

(p,c,q,d,f)-+oo p - OC81 + ,+ u

where S1 in the numerator and, in the denominator do not affect the limit in any case.

Lemma 7.
81(1- 8)

If C > 0, 8 < 1 and, < 8, then

p+q+ f 1+ ~(I-:g)
--~--~~--~< .
p - 8c81 + d-y + f 8 - 81 (1 - 8)

Proof. Since C81 ~ P ~ C and q ~ d,

p+q+f

p - 8C81 + d, + 18

c+d+f
< -
- C81 - 8CS1 + d-y + f 0

_ 1 c8 + d(8 - ,) + £I-y + f 8
-"8 CS1 - 8CS1 + d, + f6 .

Since 8 > , and C81 > &Sl,

c8 + d(8 - ,) + d, +18 < max{l, c8 + d(8 - -y)}.
C81 - 8C81 + d, + f8 - C81 - 8c8 l

Moreover, by assumption,

c8+d(8-,)=c+d(1-:g) 8 >l.
C8} - 8cs} C 81(1- 0)

This implies that

p+q+f lco+d8(1-:g) _1+%(1-~)
p---6~-C-8-} "::"+-d-=-,-+-f:-::8 ~"8 CS1 - 6c8} - 81 (1 - 8) .

o

Define lim ~ = 111, which might be infinite. Then, under the assumption of Lemma 7,
(c,d)-+oo C

Lemma 8. If C = 0, d > ° and, < 8, then

p+q+f <~.
p - 8C81 + d, + 18 - ,

159

Proof. Since c = 0 implies p = 0 and also q ::; d and, < 6,

p+q+f q+f Id6+f6 Id6 1 -----,------ = < - < -- = -
p - 6CSI + d, + 16 d, + f <5 - 6 d, + f6 - 6 d, , .

o

Lemma 9. If C > 0, d = 0 and 6::; min{~, s· 1
min {-~-}}, then RALG ::; -:r.

I::;i::;K-I Si+I U

Proof. Since d = 0, there are no type-d bins and C = {bj I 1 ::; j ::; J - I}. By Lemma 3,
SU(C) 2': 6. This makes type-c and type-f indistinguishable and the lower bound estimations
(of the optimal solution value) for the item sizes should follow the same rationale: (i) p6 for
type-c bins and (ii) f6 for type-f bins. Therefore,

p+ SI + f
RALG::; lim

(p,f)~oo p6 + , + f 6

p+f
lim

(p,f)~oo p6 + f6

o

Remark. When d = 0, i is a better bound than that of Lemma 7, which reduces to 1;1 (i-6) .

By assumption in Lemma 7, sl(1 - 6) < 6.
1

Remark. If c = d = 0, by Lemma 1, RALG ::; 8'

Theorem 10. The asymptotic approximation ratio obtained by ALG (the FF heuristic) for
the online VSBP Problem with the LIB constraint is guaranteed to be at most

{
1 + M(1 - ~) II}

max sl(I-5) '8''1'

If there are only type-c and type-f bins, then RALG is less than i. If there are only type-d and
type-f bins, then RALG is less than ~. If there are only type-f bins, then RALG is less than i.

4 Computational Studies in OLIBP

We carried out simulations to study the numerical performance of ALG for OLIBP. Here we
use a branch and bound (B&B) algorithm to compute the exact optimal bin sizes. A node t
of the B&B tree represents a partial solution that packs items, in this order, from 1 to some
i E L. The children of t represent different ways to pack the item i + 1 either to used bins at
nodet or to a new bin. The lower bound was computed at each node and tested against the
ALG solution. If the lower-bound was larger, all its sub-trees were pruned.

At any partial solution, let L' = {I + 1, I + 2, ... ,N} be the set of items not yet placed.
V is a subset of L' so that, if i E V, at least one of these three conditions are satisfied:

1. ai > 0.5 (When i was tried to place on top of j with aj 2': ai, it would find ai + aj > 1.);

2. ai is larger than the topSize of any of the used bins;

3. ai is larger than the empty space in any of the used bins.

160

List Number of Maximum Average Number Percentage Running
Size Bin Sizes Ratio Ratio Of Runs of Ones Time(B&B)
(N) (K) (p)
10 5 1.222 1.033 5000 37.14 47 secs
15 5 1.179 1.042 5000 13.98 26 mins
20 5 1.152 1.048 2000 4.627 26 hours
10 10 1.222 1.049 5000 18.26 216 secs
15 10 1.226 1.074 2000 1.2 36 hours

Table 4: Testing FF Heuristic for VSBP: Approximation Ratios

In other words, items in V can not be placed in any used bins so far, while items in L' - V
are allowed to place in a used bin provided there is sufficient space. Let (i) u be the sum of
the sizes of bins used thus far; (ii) x be the space leftover in used bins; (iii) v be the sum of
sizes of items in V; and (iv) w be the sum of the sizes of items in L' - V. Then we obtain a
lower bound as follows: u + v + max{O, w - x}.

Three different values for N was considered: 10, 15, and 20. For each N, we performed
2000-5000 runs of the simulation, depending on the time taken for the runs (last column of
Table 4). The table 4 summarizes results of (a) the worst RALG in column 3, (b) the average
RALG in column 4, and (c) the percentage of instances where RALG was one (the lowest
possible) in column 5. We observe that, as the list size (N) grows, the percentage of ones (p)
(the proportion of the instances where ALG produces a solution as good as that of the exact
algorithm) drop dramatically. The average ratio, however, stays almost the same.

5 Scope for Further Research

All problems referred to here are online LIB versions.

• Bin Covering: The discussion in this paper can be extended' to its Bin Covering coun
terpart.

• Testing of HF: A Harmonic Fit (HF) heuristic could be developed and computationally
tested for the online and LIB version of VSBP.

• Higher dimensions: All problems considered here can be extended to their two and three
dimensional counterparts.

References

[IJ M. Carlyle, K. Knutson, and J. Fowler. Bin covering algorithms in the second stage
of the lot to order matching problem. Journal of the Operational Research Society,
52: 1232-1243, 2001.

[2J E.G. Coffman, M.R. Garey, and D.S. Johnson. Bin Packing Approximation Algorithms:
A Survey. In D. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems,
pages 46-93. PWS Publishing Company, Boston, MA, 1997.

161

[3] J. Csirik. An On-line algorithms for Variable Sized Bin Packing. Acta Informatica,
26:697-709, 1989.

[4] R Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
R Karp, editor, Complexity of Computations, pages 43-73. SIAM-AMS Proceedings
(no.7), 1974.

[5] P. Manyem. Bin packing and covering with longest items at the bottom: Online ver
sion. The ANZIAM Journal (formerly Journal of the Austral. Math. Soc., Series B),
43(E):E186-E231, June 2002.

[6] P. Manyem. Uniform Sized Bin Packing and Covering: Online Version. In J .C. Misra,
editor, Topics in Industrial Mathematics, pages 447-485. Narosa Publishing House (New
Delhi), 2003.

[7] P. Manyem, RL. Salt, and M.S. Visser. Lower Bounds and Heuristics for Online LIB
Bin Packing and Covering. In Proceedings of the 13th Australasian Workshop on Com
binatorial Algorithms (Fraser Island, Queensland, Australia), pages 11-42, July 2002.

[8] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity
Classes. Journal of Computer and System Sciences, 43(3):425-440, December 1991.

[9] M.B. Richey. Improved Bounds for Harmonic Based Bin Packing Algorithms. Discrete
Appl'ied Mathematics, 34:203-227, 1991.

[10] A. Van Vliet. Optimal On-Line Algorithms For Variable-Sized Bin Covering. Information
Processing Letters, 43:277-284, 1992.

[11] G.J. Woeginger and G. Zhang. Optimal On-Line Algorithms For Variable-Sized Bin
Covering. Operations Research Letters, 25:47-50, 1999.

162

