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Abstract 

We consider the NP Hard problem of online Bin Packing while requiring that larger 
(or longer) items be placed below smaller (or shorter) items - we call such a version the 
LIB version of problems. Bin sizes can be uniform or variable. We provide analytical 
upper bounds as well as computational results on the asymptotic approximation ratio for 
the first fit algorithm. 

Keywords. Online approximation algorithm, asymptotic worst case ratio, bin packing prob
"lem, longest item, uniform sized bins, variable sized bins. 

1 Background 

In the classical one-dimensional Bin Packing problem, we are given a list L = (i : 1 ~ i ~ n) 
of items. The size of item i is ai, where each ai E (0,1]. The problem is to pack these n 
items into bins such that the number of bins used is minimized. A bin is said to be used if it 
contains at least one item (of non-zero length). A feasible solution is one where the sum of 
the sizes of the items in each used bin is at most equal to the bin size. 

VSBP (Variable Sized Bin Packing Problem) is similar to the classical problem stated 
above, except that the bin sizes can be different - we are given a collection B of distinct bin 
sizes S1 through SK, and SK is the largest (or just longest, in the one-dimensional case) bin 
size with SK = 1. Size S1 is the smallest. The objective is to minimize the sum of the sizes of 
the bins used. The dual of Bin Packing is Bin Covering, where the item sizes in a bin should 
total up to at least the bin size. 

Bin Packing can be offline or online. If the sizes of all items are known in advance, this 
is referred to as offline bin packing. In the online version of Bin Packing, items in L arrive 
one by one. When an item i of length ai arrives, it must immediately be assigned to a bin 
(and this assignment cannot be changed later), and the length aH 1 of the next item becomes 
known only after item i has been assigned to its bin. In all versions of Bin Packing, it is 
assumed that there is an infinite supply of bins of any size. Hence, running out of bins to 
place items is never an issue. 

LIB version of Bin Packing. The bin packing problem considered in this paper is an 
online version with variable bin sizes and imposes this additional requirement: In any bin, 
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Ba ... .;;ic Problem LIB ? Bin Sizes Upper Bound Lower Bound 
No Uniform 1.59 [9] 1.53 [10] 

Bin No Variable 1.7 [3] 1.0 (trivial) 
Packing Yes Uniform 3.0 [6] unknown 

Yes Variable BFF unknown 

Table 1: Bounds on Approximation Ratios in online Bin Packing and Covering with LIB 

for any pair of items i and j, if size(j) = aj > size(i) = ai, then j should be placed in the bin 
below i. In other words, longer items should be placed lower in any bin than shorter items. 
We call this the LIB version, for Longest Item at the Bottom. Moreover, we assume that the 
length of each item in L can not be arbitrarily small. Namely, there is a 0 < , :S S1 such that 
ai E [r, 1] for all i E L. 

Table 1 summarizes the results known so far in online Bin Packing. The numbers in square 
brackets refer to the bibliography. The upper bound BFF for Variable Sized Bin Packing with 
LIB is derived in Theorem 10 of this paper. 

Organisation of this Paper. We provide a version of First Fit (FF) heuristic in Section 
2 and then prove an upper bound on the guaranteed AAR (Asymptotic Approximation Ratio) 
in Section 3. The computational results are in Section 4. The results here are more general 
than the ones mentioned in [7], where the bin sizes are multiples of the smallest bin size. 

1.1 Applications 

Bin Packing and Covering theory does help to solve practical industry based problems such 
as assigning semiconductor wafer lots to customer orders [1]. Another interesting application 
arises during assigning tasks to computer processors based on a task priority. Each bin is 
analogous to a processor. The size of a bin corresponds to the processor's capabilities (such 
as speed), and the position of a task in a bin corresponds to its priority. 

The LIB version of Bin Packing has applications in the Transportation industry, especially 
with loading of pallets in a truck. If long items are placed at the bottom of a pallet inside a 
truck, transportation is easier. In terms of weight, if heavier items are placed at the bottom, 
better stability of the truck can be achieved, and smaller items will not get crushed by larger 
items. 

The dual of Bin Packing is Bin Covering, where the item size~ in a bin should total up to 
at least the bin size. Bin Covering has been applied in the industry, from packing peaches into 
cans in an "online" manner (so that the weight of each can is at least equal to its advertised 
weight) to breaking up a large company into smaller companies such that each new company 
is viable [11]. 

2 Problem and Algorithm 

Problem Statement: Online LIB Variable-Sized Bin Packing (OLIBP). Given an 
infinite supply of variable sized bins, and n items, each item with size in [,,1] and 0 < , < l. 
Each item should be placed in a bin assigned to it (on top of items previously placed in that bin) 
as soon as it arrives. This placement cannot be changed later. In addition, the following LIB 
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i 
K 
L 
N (or n) 
p 

RALG 

Size of item i 
Bin number j 
Set of used bins 
Set of available bin sizes, S1 through SK 

Index for an item (usually) 
Number of available bin sizes (cardinality of 8) 
Input list of items, in a given sequence 
Cardinality of L (usually) 
percentage of ones (used in computational studies) 

S1 (SK) 

topSize(bj) 
totalSize(bj ) 

Worst case asymptotic approximation ratio for algorithm ALG 
Size of the smallest (largest) available bin size 
Size of the item at the top of bin bj 
Sum of the sizes of the items in bin bj 

LIB 
FF 
AAR 
SU 
VSBP 
OLIBP 

Table 2: Notation (in alphabetical order) 

Largest (Longest, in the one-dimensional case) Item at the Bottom 
First Fit heuristic 
asymptotic approximation ratio 
Space Utilization factor (in a bin, or set of bins) 
Variable Sized Bin Packing 
Online and LIB version of VSBP 

Table 3: Acronyms 
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constraint should be obeyed for any used bin: 

[i is below j in a used bin] ====? [ai 2: aj]. (1) 

A feasible solution is one where the sum of the item sizes in each used bin is at equal to the bin size. 
The available bin sizes consist of a finite set B = {Sj: 1:=S; j :=s; K}, Sj < Sj+l, 1:=S; j :=s; K-l. 
The bin sizes are normalized, that is, SK (the largest bin size) is equal to one. The smallest bin 
size SI is greater than zero. The goal is to find a feasible solution that minimizes the sum of the 
size of used bins. 

The online condition essentially reduces to the following Online Constraint: In a used bin, 
if item i is below item j, then i should have arrived prior to j in the input list L, that is, 

[i is below j in a used bin] ====? [i < j]. (2) 

The First Fit algorithm can be modified to accommodate OLIBP. (See [6] or [5] or [2] for 
descriptions of First Fit.) The behaviour of FF is summarized as follows: When an item i 
arrives, assume that bins b1 through bm have already been used, in that order. Each such 
bin bj , 1 :=s; j :=s; m, has two parameters, topSize(bj ) and totalSize(bj ), representing the size 
of the topmost item in bj and the sum of the item sizes in bj respectively. FF scans b1 

through bm in that order. For each such bin bj, it checks if (1) ai :=s; topSize(bj) , and (2) 
ai :=s; size( bj ) - totalSize( bj ). FF places item i in the first such bin bj that satisfies both these 
conditions and updates topSize(bj ) as well as totalSize(bj ). If no such bin among b1 through 
bm satisfies these conditions, FF opens a new bin bm+l of size 

(3) 

to place i. For instance, if B = {0.2, 0.4, 0.6, 0.8, 1.0}, an arriving item of size 0.64 will be 
placed in a bin of size f.641B = 0.8, not in a bin with a size of one. 

Algorithm (ALG). First Fit (online variable-sized LIB Bin Packing). 
Given: Items 1· .. N with sizes al ... aN, 'Y:=S; ai :=s; 1 for 1 :=s; i :=s; N, 

bin sizes SI ... SK, 0 < SI < S2 < ... < SK-l < SK = 1. 
Running Time: O(KN2). 

1 nBin (number of bins used) 0 ; 
2 for (item = 1 to N) do 
3 placed [item] = NO; 

4 bin = 1; 
5 While (bin:=S; nBin AND placed [item] == NO) do 
6 X = (topSize [bin] 2: size [item]) ; 
7 Y = (size [bin] -totalSize [bin] 2: size [item] ) ; 
8 if (X == true AND Y == true) then 
9 
10 
11 
12 
13 
14 
15 

place item in bin; 
update topSize[bin] and totalSize[bin]; 
placed [item] = YES; 

end if 
bin = bin + 1; 

end While 
if (placed [item] == NO) then (item not placed in any previous bin) 
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16 
17 
18 
19 
20 
21 
22 
23 
24 end 
25 end for 

if 

nBin = nBin+ 1; (new, fresh, unused bin) 
size [nBin] = SI; 

While (size [nBin] < size [item]) 
increase size[nBin] to next higher bin size available; 

place item in nBin; 
topSize [nBin] = size [item] ; 
totalSize [nBin] = size [item] ; 
placed [item] = YES; 

The key difference between original FF algorithm (where only bins of unit-size are used) 
and ALG is that, in case an unused bin is needed, ALG searches (in lines 18-19) the set of 
bin sizes {SI' S2, ... , S K} for the best jitting bin for the item to be placed. 

3 Proof of A Bound of AAR 

In this subsection, we give estimations of the asymptotic approximation ratio (AAR) for ALG. 
Let ALG (L) denote the sum of the sizes of bins generated online by ALG to pack L. Let 
OPT(L) be the optimal value of bin sizes necessary for packing items in L. The AAR is 
defined by 

. ALG(L) 
RALG = s~~s~P{OPT(L)IOPT(L) > s}. 

Define the SU (Space Utilization) factor for a set of used bins B = {bI, b2,··· bm } as 
follows: 

(4) 

In other words, SU(B) is the ratio of the space occupied by items in the bins B to the sum 
of the sizes of the bins in B. If B consists of just one bin bj , we will simply write SU(bj ) as 
a shorthand for SU( {bj }). The following observation follows immediately from the definition 
of SU. 

Lemma 1. If SU(bi ) of each used bin bi, i = 1,2, ... , m is greater than or equal to 6, then 
RALG has an upper bound of~. 

Proof. Since SU(bj ) 2: 6, the total item size in bj should be larger than 6 x size(bj ). Hence 

L totalSize(bj) 2: 6 L size(bj ). (5) 
~EB ~EB 

Any feasible packing, including the optimal one, must use bins whose total size is at least 
LbjEB totalSize(bj ). Therefore, 

o 
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In contrast, let us now consider instances where the above condition is false for solutions 
returned by ALG. 

Lemma 2. Let 0 < 6 < min ~ and SU(bj) < 6 where bj is the last bin in B for which 
- l $i$K-l Si+l 

SU(bj ) < 6 is true. In other wor·ds, J = max1$j$m{jISU(bj) < c5}. If I is the bottom item 
of bin bj, then we have (1) aJ E ("Sl]; (2) size(bj) = Sl; and (3) al < 6S1 . 

Proof. Clearly, a new bin bj is opened when I arrives, since I has been placed at the bottom 
of bj. (1) By ALG, if al E (8i' Si+l] , 1 ~ i ~ K -1, then size(bj) = 8i+1 and totalSize(bj) ~ 
al > Si. Hence 

SU(bj) = totalSize(bj) > ~ > 6 
size(bj) Si+1 - , 

which contradicts to SU(bj ) < 6. Therefore, al E (,,81]. 
(2) Since al E (,,81], size(b j ) = Sl· 
(3) Since 

al 
. (b) ~ SU(bj) < 6, 

szze J 

we have al < 6S1. o 
Remark. If I ~ 1581, then the SU factor of every used bin is at least 6. By Lemma 1, 

RALG is bounded above by 1/15. 
Let us continue with the assumptions made in the first sentence of Lemma 2. Upon l's 

arrival, there are two reasons why I was placed in a new bin bj and not in any of the bins bj 

(1 ~ j ~ J-l) used earlier: Either (i) totalSizeI(bj)+aI > size(bj ), or (ii) topSizeI(bj ) < aI, 
where totalSizeI (bj) is the sum of the sizes of items in bj and tapSizeI (bj ) is the top item in 
bj when item I arrived. Since there could be some items that arrived after I and were placed 
in bj, the following inequalities hold 

totalSizeI (bj ) ~ totalSize(bj ); 

topSizeI (bj ) ~ tapSize(bj ). 

(6) 

(7) 

Now, partition {bj ll ~ j ~ J - I} into two disjoint sets C and V with the following 
definition: 
Type-c bins: First, consider the set C of bins, with ICI = c, and 

C = {bjltotalSizeI (bj) + al > size(bj), 1 ~ j ~ J - I}. 

Refer to C as type-c bins. Since al < 8s1, it follows that 

totalSizeI(bj ) > size(bj ) - 6S1, Vbj E C. 

By the inequality (6), 

totalSize(bj ) > size(bj ) - 881, Vbj E C. (8) 

Define p = L size(bj ). Then, 
bjEC 

OPT(L) ~ sum of item sizes ~ L totalSize(bj) > L [size(bj ) - 6S1J = p - 8C8 1· 
bjEC bjEC 

(9) 
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On the other hand, for type-c bins, the solution returned by ALG has a value of L size(bj) = 
bjEC 

p. The upper and lower bounds for pare: 

CS1 ~ P ~ c. 

Lemma 3. For 8 <~, C ~ {bjISU(bj ) ~ 8, 1 ~ j ~ J - I}. 

Proof. By inequality (8), 
totalSize(bJ ) > 1 _ .6S1 

size( bj) szze( bj) 

Type-d bins: Secondly, let V be the subsets of bins, with 1'01 = d and 

'0= {bjltopSizeJ (bj) < aJ, 1 ~ j ~ J - I} n C. 

(10) 

o 

Name these bins as type-d bins. . 
Among type-d bins, consider any two, say bj and bk with j < k, meaning tha~ bm bj was 

opened before bin bk. Let el (j) [el (k)] be the topmost item of bj [bk] when I arnved. 

Lemma 4. If bj, bk E V with j < k, then (1) totalSizel (bj) + aeI(k) ~ size(bj); (2) ael(j) < 
aeI(k) < aI· 

Proof. By the definition of V, aeI(k) = topSizeI (bk) < aI for all bk E V, and 

totalSizeI(bj) + aI ~ size(bj). 

It follows that 
totalSizeI (bj) + aeI(k) < size(bj ). 

In other words there was enough space in bj for item el (k). If eI (k) had arrived after 
el (j), then a p'lacement of el (k) over el (j) would have been attempted and failed due to 
aeI(j) < aeI(k). On the other hand, if el (j) had arrived after eI (k), then, a.plac~ment .of e

l 
(k) 

over an earlier item x < el (j) in bj would have been attempted and faIled, Implymg that 
ax < ael(k). Since x is below el(j) in bj , aeI(j) ~ ax· It follows that ael(j) ~ ax < aeI(k)· 0 

Lemma 5. Let V = {bh , bt2 , ..• , btd }, with tl < t2 < ... < td - thus among the. V bins, btl 

was opened the earliest and btd the last. For any item l E btk , k = 2,3,· .. ,d, if l < I and 

at < aI, then there is another item j E btk _1 such that j < land aj < at· 

Proof. Since btk _
1 

E V , we have the following inequality: 
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By assumption, 1 arrived before I. Therefore, 

Moreover, al < aI implies that 

Then 
(11) 

This implies that, when 1 arrives, there is at least one item j already in btk _1 so that aj < al. 
Otherwise, by (11), 1 would have been placed in btk_1 • 0 

Let the topmost item of btd , as I arrived, be ad. Then ad < I and aGd < aI. Apply 
Lemma 5 backward repeatedly, we obtain a sub-list of L such that al < a2 < ... < ad < I, 
aG1 · < aal < .. . < aad < aI with ak E btk , k = 1,2, · · · ,d. Let A = {al,a2,···,ad}. 

According to the online and LIB constraints, every item in A must be placed in distinct bins 
and each item has a length at least ,. As a result, we have 

Lemma 6. The sum of the bin sizes optimal algorithm to pack type-d bins should be at least 

,d, whereas the value of the solution returned by ALG is q = LbjEV size(bj) ~ d. 

Type-f bins: Beyond bin bJ, the last bin with space utility SU(bJ) < 8, there could be 
several used bins all of which have SU ;:: 8. Name these bins as type-f and denote them by 
F = {bj E Blj ;:: J + I}. Let the sum of their sizes be 

f = L size(bj ), (12) 
bjEF 

which is the value returned by ALG. Again, by equation (5) in Lemma 1, the sum of item sizes 
in type-f bins is at least 

L totalSize(bj ) ;:: f8, 
bjEF 

which will be used as a lower bound for packing items in type-f bins the optimal way. 

(13) 

Thus the entire set of bins used by ALG is made up of, in this order: (i) a mixture of 
type-c bins and type-d bins, (ii) bin bJ containing item I, and (iii) type-f bins. The lower 
bound estimations for the sum of item sizes in each category are: (i) p - 8C8} for type-c bins 
(by (9)); (ii) ,d for type-d bins (by Lemma 6); (iii) , for bin bJ ; (iv) 18 for type-f bins (by 
(13)). Therefore, the lower bound for the optimal bin sizes is p - 8C8l + d, +, + 18, whereas 
the solution returned by the ALG is p + q + 81 + f (q is defined in the statement of this 
lemma.) The asymptotic ratio AAR requires us to consider the ratio 

ALG(L) < p+ q+ 81 + f 
OPT(L) - p - 6c81 + d-y +, + f6 

(14) 

for all large inputs L for which OPT(L) > 8 and 8 ---t 00. Equivalently, one of the numbers 
p, q, f must tend to infinity in the limit. Observe that, by (10), p ---t 00 implies C ---t 00 and 
also by Lemma 6, q ---t 00 implies d -+ 00. In what follows, we shall write (.,., ... ,.) ---t 00 
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to indicate at least one of the components tend to infinity. Taking the limit on both sides of 

(14) gives 
p+q+81 + f 

RALG ~ lim 
(p,c,q,d,f)-+oo p - 8CSI + d-y + , + f 8 

p+q+.f 
= lim .. d f!> 

(p,c,q,d,f)-+oo p - OC81 + ,+ u 

where S1 in the numerator and, in the denominator do not affect the limit in any case. 

Lemma 7. 
81(1- 8) 

If C > 0, 8 < 1 and, < 8, then 

p+q+ f 1+ ~(I-:g) 
--~--~~--~< . 
p - 8c81 + d-y + f 8 - 81 (1 - 8) 

Proof. Since C81 ~ P ~ C and q ~ d, 

p+q+f 

p - 8C81 + d, + 18 

c+d+f 
< -
- C81 - 8CS1 + d-y + f 0 

_ 1 c8 + d( 8 - , ) + £I-y + f 8 
-"8 CS1 - 8CS1 + d, + f6 . 

Since 8 > , and C81 > &Sl, 

c8 + d(8 - ,) + d, +18 < max{l, c8 + d(8 - -y)}. 
C81 - 8C81 + d, + f8 - C81 - 8c8 l 

Moreover, by assumption, 

c8+d(8-,)=c+d(1-:g) 8 >l. 
C8} - 8cs} C 81(1- 0) 

This implies that 

p+q+f lco+d8(1-:g) _1+%(1-~) 
p---6~-C-8-} "::"+-d-=-,-+-f:-::8 ~"8 CS1 - 6c8} - 81 (1 - 8) . 

o 

Define lim ~ = 111, which might be infinite. Then, under the assumption of Lemma 7, 
(c,d)-+oo C 

Lemma 8. If C = 0, d > ° and, < 8, then 

p+q+f <~. 
p - 8C81 + d, + 18 - , 
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Proof. Since c = 0 implies p = 0 and also q ::; d and, < 6, 

p+q+f q+f Id6+f6 Id6 1 -----,------ = < - < -- = -
p - 6CSI + d, + 16 d, + f <5 - 6 d, + f6 - 6 d, , . 

o 

Lemma 9. If C > 0, d = 0 and 6::; min{~, s· 1 
min {-~-}}, then RALG ::; -:r. 

I::;i::;K-I Si+I U 

Proof. Since d = 0, there are no type-d bins and C = {bj I 1 ::; j ::; J - I}. By Lemma 3, 
SU(C) 2': 6. This makes type-c and type-f indistinguishable and the lower bound estimations 
(of the optimal solution value) for the item sizes should follow the same rationale: (i) p6 for 
type-c bins and (ii) f6 for type-f bins. Therefore, 

p+ SI + f 
RALG::; lim 

(p,f)~oo p6 + , + f 6 

p+f 
lim 

(p,f)~oo p6 + f6 

o 

Remark. When d = 0, i is a better bound than that of Lemma 7, which reduces to 1;1 (i-6) . 

By assumption in Lemma 7, sl(1 - 6) < 6. 
1 

Remark. If c = d = 0, by Lemma 1, RALG ::; 8' 

Theorem 10. The asymptotic approximation ratio obtained by ALG (the FF heuristic) for 
the online VSBP Problem with the LIB constraint is guaranteed to be at most 

{ 
1 + M(1 - ~) II} 

max sl(I-5) '8''1' 

If there are only type-c and type-f bins, then RALG is less than i. If there are only type-d and 
type-f bins, then RALG is less than ~. If there are only type-f bins, then RALG is less than i. 

4 Computational Studies in OLIBP 

We carried out simulations to study the numerical performance of ALG for OLIBP. Here we 
use a branch and bound (B&B) algorithm to compute the exact optimal bin sizes. A node t 
of the B&B tree represents a partial solution that packs items, in this order, from 1 to some 
i E L. The children of t represent different ways to pack the item i + 1 either to used bins at 
nodet or to a new bin. The lower bound was computed at each node and tested against the 
ALG solution. If the lower-bound was larger, all its sub-trees were pruned. 

At any partial solution, let L' = {I + 1, I + 2, ... ,N} be the set of items not yet placed. 
V is a subset of L' so that, if i E V, at least one of these three conditions are satisfied: 

1. ai > 0.5 (When i was tried to place on top of j with aj 2': ai, it would find ai + aj > 1.); 

2. ai is larger than the topSize of any of the used bins; 

3. ai is larger than the empty space in any of the used bins. 
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List Number of Maximum Average Number Percentage Running 
Size Bin Sizes Ratio Ratio Of Runs of Ones Time(B&B) 
(N) (K) (p) 
10 5 1.222 1.033 5000 37.14 47 secs 
15 5 1.179 1.042 5000 13.98 26 mins 
20 5 1.152 1.048 2000 4.627 26 hours 
10 10 1.222 1.049 5000 18.26 216 secs 
15 10 1.226 1.074 2000 1.2 36 hours 

Table 4: Testing FF Heuristic for VSBP: Approximation Ratios 

In other words, items in V can not be placed in any used bins so far, while items in L' - V 
are allowed to place in a used bin provided there is sufficient space. Let (i) u be the sum of 
the sizes of bins used thus far; (ii) x be the space leftover in used bins; (iii) v be the sum of 
sizes of items in V; and (iv) w be the sum of the sizes of items in L' - V. Then we obtain a 
lower bound as follows: u + v + max{O, w - x}. 

Three different values for N was considered: 10, 15, and 20. For each N, we performed 
2000-5000 runs of the simulation, depending on the time taken for the runs (last column of 
Table 4). The table 4 summarizes results of (a) the worst RALG in column 3, (b) the average 
RALG in column 4, and (c) the percentage of instances where RALG was one (the lowest 
possible) in column 5. We observe that, as the list size (N) grows, the percentage of ones (p) 
(the proportion of the instances where ALG produces a solution as good as that of the exact 
algorithm) drop dramatically. The average ratio, however, stays almost the same. 

5 Scope for Further Research 

All problems referred to here are online LIB versions. 

• Bin Covering: The discussion in this paper can be extended' to its Bin Covering coun
terpart. 

• Testing of HF: A Harmonic Fit (HF) heuristic could be developed and computationally 
tested for the online and LIB version of VSBP. 

• Higher dimensions: All problems considered here can be extended to their two and three 
dimensional counterparts. 
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