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Abstract 

In this paper we aim to infer a model of genetic networks 

from time series data of gene expression profiles by using 

a new gene expression programming algorithm. Gene 

expression networks are modelled by differential 

equations which represent temporal gene expression 

relations. Gene Expression Programming is a new 

extension of genetic programming. Here we combine a 

local search method with gene expression programming 

to form a memetic algorithm in order to find not only the 

system of differential equations but also fine tune its 

constant parameters. The effectiveness of the proposed 

method is justified by comparing its performance with 

that of conventional genetic programming applied to this 

problem in previous studies.  

Keywords: Gene Expression Programming, Differential 

Equations, Gene Networks, Evolutionary Algorithm, 

Gene expression Profile, Microarray data . 

1 Introduction 

Microarray technology is a fast and versatile technique 

for exploring genome wide information such as gene 

function. A DNA microarray is a collection of 

microscopic DNA spots where each spot is a single gene 

attached to a solid surface (Tarca et al. 2006). DNA 

microarrays are commonly used for simultaneously 

monitoring the expression level of thousands of genes 

existing in a sample. They are used for a comparative 

genomic study such as cancer versus normal tissue 

(Dubitzky et al. 2003). Microarrays usually provide a 

static picture that shows the expression of many genes at 

a particular time in two different experimental samples. 

Recently researchers have started to use it for extracting a 

dynamic picture by getting different samples over time 

(Ideker et al. 2002; Wang et al. 2006). In this way, they 

are able to extract information about gene expression 

networks from the microarray data.1  

A gene expression (regulatory) network is a 

diagrammatic representation of gene expression over a 

period of time related to a situation, like the development 

of a disease. To obtain this network, usually multiple 
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experiments must be carried out at different times or 

stages of a disease.  Therefore, a dynamic picture can be 

extracted from microarrays which tells us about the 

developmental process of that condition through the gene 

regulatory network (which gene was first expressed and 

caused other genes to be expressed or inhibited in the 

second step and so on).  

Finding gene regulatory networks is a complex task. The 

reason underlying this is the complicated nature of 

genetics. Variation in samples (or patients) makes a huge 

difference in the extracted network. Also, in reality, many 

genes interact with each other and this increases the 

complexity of the model exponentially. Moreover, current 

microarray technology produces noisy data. Additionally, 

in most cases, there are insufficient samples or records 

compared with the number of genes or variables, because 

of the expensive technology, which makes it even harder 

to build an accurate model. As a result of the above facts, 

finding gene regulatory networks is complex and 

nonlinear. This has become one of the major concerns in 

bioinformatics. 

Many models have been proposed to represent gene 

expression networks. In Boolean networks (Akutsu et al. 

1999), the gene expression level is either 0 or 1 and the 

difference in expression levels is not considered. Those 

methods which consider real value expression can be 

categorized into two groups; probabilistic methods such 

as Bayesian networks and deterministic methods such as 

temporal differential equations. Further information 

regarding different techniques for the reconstruction of 

gene regulatory network can be found in two recent 

surveys (Sehgal et.al 2008; Schlitt and Brazma 2007). 

Temporal differential equations are the most common 

technique used to build a gene expression network from 

time series data (Wang et al. 2006; Hallinan 2008).  

Differential equations are a powerful and flexible model 

to describe complex relations among components. It is 

not easy to determine a suitable form of equations to 

represent the network, therefore, in some previous studies 

the form of the differential equations has been fixed 

(Sakamoto & Iba 2001). An S-system is a fixed form of 

differential equations that has been proposed as a model 

and the parameters are optimized by using a genetic 

algorithm.  

In this paper, we deal with an arbitrary form of the right 

hand side of the system of differential equations to obtain 

a more flexible model, as shown in Equation 1: 
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where 
iX  is the expression level of the i-th gene (state 

variable) and n is the number of the genes (component) in 

the network. We use gene expression programming which 

is a new evolutionary computation technique to solve this 

problem.  

2 Related Work  

There have been several methods proposed for inferring 

gene expression or regulatory networks. Of particular 

interest to this paper are those approaches which use 

evolutionary computation methods to infer a model of 

differential equations from time series data.   

Evolutionary computation is a particularly useful 

approach when a problem cannot readily be solved 

mathematically and we can not realistically look for an 

optimal solution but one or more good solutions are 

needed. Therefore, it is particularly suitable for the 

problem of inferring gene networks from microarray data.  

Different kinds of evolutionary computation techniques 

have been applied to this problem ranging from 

extensions of genetic algorithm to genetic programming, 

and differential evolution.  

Sakamoto and Iba (2001) used genetic programming 

(Koza 1992) to solve this problem modeled by a system 

of differential equations. Solving the general form of a 

system of differential equations is very difficult so a fixed 

form, called the S-system (Savageau 1988), was used and 

the goal becomes simply to optimize the parameters in 

the fixed equations.  An S-system is a type of power-law 

formalism. The concrete form of the S-system is as 

follows:  

),...,2,1(
11

niXX
dt

dX n

j

h

j

n

j

g

j
i ijij =−= ∏∏

==

βα  (2) 

 

where 
iX is a state variable.  The first term gives us all effect 

of increasing iX whereas the second term gives the effect of 

decreasing iX . 

The first work which used genetic algorithms to solve the 

S-system was presented by Maki et.al. (Maki et al. 2001) 

There are other works which applied genetic algorithms 

to this problem such as a study by Morishita et al. (2003) 

which used an evolutionary algorithm to find parameters 

for an S-system representing a 5-node network. Kikuchi 

et al. (2003) at the same time reported a good result for 

the same number of nodes. Later on, in 2005, genetic 

programming was used to solve the S-system by 

Matsumura et.al. (2005) and appropriate solutions were 

obtained. Also, in 2005, for the first time differential 

evolution was used for this purpose by Noman and Iba 

(2005). Their work presented a high performance, 

however, in their study the number of genes was still 

limited to 5 and the model could not easily be scaled up 

for larger networks. The reason for this is the fact that the 

number of parameters in differential equations system is 

proportional to the square of the number of genes in the 

network. Therefore, when the number of genes increases 

the algorithms must simultaneously estimate a large 

number of parameters. This is why inference algorithms 

based on the differential equations model have only been 

applied to small-scale networks of less than five genes. 

Evolutionary techniques were used along with other 

modeling approaches for gene regulatory networks. An 

example of that is a study by Eriksson and Olsson (2004) 

which used genetic programming to successfully solve a 

Boolean network of 20 genes.  

In this paper, we try to solve the problem of inferring 

gene regulatory network modeled by a system of 

differential equations with an extension of the Gene 

Expression Programming (GEP) algorithm. GEP has been 

applied in many regression problems successfully. In 

particular, it were used previously in a similar application 

-solving elliptic differential equations- by Jiang et al. 

(2007).   

Our algorithm exploits the effectiveness of GEP in 

finding the structure of gene regulatory network modeled 

by ordinary differential equations. It also uses a local 

search technique along with GEP for extra benefits. The 

combination of these methods, GEP as a global search for 

finding a function structure and a local search for fine 

tuning model parameters, results in a more powerful 

algorithm. 

The combination of global search methods with problem-

specific solvers is known as memetic algorithms (MAs) 

(Moscato and Norman 1998). The problem-specific 

solvers usually are implemented as local search heuristic 

techniques.  The hybridization is meant to accelerate the 

discovery of an optimal solution or to reach a solution 

which is impossible to discover by either of the 

component methods (Krasnogor et al. 2006). So far, 

conventional genetic algorithms have mainly been used in 

MAs as the global search method, however, the scope of 

MAs is not limited to the genetic algorithms and in 

general any global search method can be used 

(Krasnogor, Smith 2005).  Sakamoto and Iba (2001) used 

a local search algorithm along with genetic programming 

to obtain the constant parameters of the target function 

effectively. Here for the first time we have proposed a 

MA with GEP as the global search method. The Least 

Mean Square method (LMS) was used as the local search 

method. We have used the same data as were used in a 

previous study in the literature (Noman & Iba 2005) and 

compared the efficiency of our method with conventional 

genetic programming.  

3 Gene Expression Programming 

Gene Expression Programming (GEP) is a new form of 

genetic programming and was first introduced by Ferreira 

in 2001. Like genetic programming, it evolves computer 

programs but the genotype and the phenotype are 

different entities (both structurally and functionally) and 

because of this, performance is improved. It has been 

shown in experiments to converge faster than older 

genetic algorithms (Ferreira 2008). It also brings a greater 

transparency as the genetic operators work at the  

chromosome level (Wilson 2008).  

GEP uses fixed length linear strings of chromosomes as 

the genotype, and the phenotype is in the form of 

expression trees which represents a computer program 

(Marghny & El-Semman 2005). These trees are then used 

),...,2,1(),...,,( 21 niXXXf
dt

dX
ni

i ==    (1) 



)( 0 tktx i ∆+

to determine an organism’s fitness. The decoding of GEP 

genes to expression trees implies a kind of code and a set 

of rules which are simple. The set of genetic operators 

applied to GEP chromosomes always produces valid 

expression trees (ET).  

The most important application of GEP is in function 

finding and regression problems. Functions are the most 

important parts of a model. There are different 

approaches and methods for finding functions ranging 

from mathematical methods like logistic regression to 

artificial intelligence perspective via evolutionary 

computation. The latter method has the advantages of 

flexibility and generality as it is not limited to the 

assumption of linearity.  

We use GEP to find the best form of differential 

equations from the observed time series of the gene 

expression. Although GEP is effective in finding a 

suitable structure, it is not so effective in optimizing the 

parameters of the formula such as constants or 

coefficients. This is the motivation for incorporating local 

search into GEP to build memetic gene expression 

programming. Local search methods can find the constant 

values and parameters effectively and GEP is known to 

be effective in finding function structures. This 

combination results in an effective algorithm which is 

highly capable in function estimation.   

4 Memetic Gene Expression Programming 

for Gene Expression Networks  

Here we present an algorithm designed to infer a gene 

expression network (gene regulatory network) from the 

observed time series data. As noted earlier, the problem 

can be modeled as a set of differential equations. We used 

a GEP algorithm to evolve the structure of the gene 

expression network and enhanced it by using the local 

search process to find the constant parameters of the 

equations more effectively.  

The genes of gene expression programming are 

composed of a head and a tail. The head contains symbols 

that represent both functions and terminals, whereas the 

tail contains only terminals. For each problem, the length 

of the head h is chosen, whereas the length of the tail t is 

a function of h and n is the number of arguments in the 

function, and is evaluated by equation (3). 

t= h (n-1)+1 (3) 

Consider a gene for which the set of functions is               

F = {+, -, *, /, sqrt} and the set of terminals is T = {a,b }. 

In this case n = 2; if we choose an h = 6, then t = 6 (2 - 1) 

+ 1 =7, thus the length of the gene is 6 + 7 = 13. One such 

gene is shown below: 

 

*.-.a./.*.sqrt.a.b.a.a.b.a.b 
 

 

where “.” is used to separate individual building 

elements, “sqrt” represents the square root function and a, 

b are variable names. The above is referred to as Kava 

notation, and the above string is called a K-expression (Li 

X et al. 2004). 

5.1 Fitness Function  
In general, the genetic network inference problem is 

formulated as a function optimization problem to 

minimize the following sum of the squared relative error 

and the penalty for the degree of the equations:  
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0t   : the starting time 

 t∆   : the step size 

 n    : the number of the components in the network 

 T    : the number of the data points 

 

where                      is given target time series (k=0,1,…, 

T-1). )( 0 tktx ∆+′ is the time series acquired by 

calculating the system of differential equations 

represented by a GEP chromosome. All of these time 

series are calculated by using the Runge-Kutta method. 

This fitness function has often been used in previous 

studies in GP, for example by Samakato and Iba (2001). 

The problem of inferring gene networks based on the 

differential equations has several local optima because 

the degree of freedom of the model is high. Therefore, a 

penalty function has been introduced by Kimura et al. 

(2004). This penalty function, which is the second part of 

the fitness function, encourages low degree solutions. 
ja  

is the penalty coefficient for the jth degree and 
jb  is the 

sum of the absolute values of coefficients of jth degree.  

5.2 Local Search for the Local Optimizations 

of the Model 
GEP is capable of finding a desirable structure 

effectively, but it is not very efficient in the optimization 

of the constant parameters as it works on the basis of the 

combination of randomly generated constants. Thus, we 

use the least mean square (LMS) method to explore the 

search space in a more efficient way. To be more specific, 

some individuals are created by the LMS at some 

intervals of generations. Thus we use the LMS method to 

drive the coefficient of the expression of the right-hand 

sides of the system of differential equations.  

Consider the expression approximation in the following 

form:  
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where ))(),...,(( 1 ixixF lk
is the basis function, 

Lxx ,...,1 are the independent variables, y( Lxx ,...,1 ) is 

the dependent variable, and M is the number of the basis 

functions.  

Let a be the coefficient vector, and
2χ as follows:   
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The purpose of the local search is to minimize the 

function in Equation 6 to acquire a. N is the number of 

data points. Let b be the vector y(1),…y(N) and A be a 

N*N matrix described as follows:  
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y(i) for the i-th equation of the system is calculated as 

follows: 
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Then the following equation should be satisfied to 

minimize equation 6.  

bAaAA TT =).(  (9) 

 

a can be acquired by solving Equation 9.  

5.3 Overall Algorithms 
o The GEP evolution begins with the random 

generation of linear fixed-length chromosomes for 

individuals of the initial population. 

o In the second step, the chromosomes are translated 

into expression trees and subsequently into 

mathematical expressions, and the fitness of each 

individual is evaluated based on the formula 

presented in Equation 4 by using the Runge-Kutta 

method. 

o Local search is applied on individuals at some 

interval generations 

o The worst individuals are replaced in the population 

with the improved individuals generated above.  

o Selection is done with tournament selection and then 

genetic recombination  

The above steps repeat until there is no further 

improvement in the fitness function.  

The local search algorithm has been applied in two 

different ways. In the first way, it has been used only for 

the best individuals in each generation, and in the second 

approach it has been used on the whole generation at 

some intervals. The result of the second method was 

better than the first method; therefore, the reported results 

are based on the second method of applying the local 

search procedure. 

5 Experiments 

To confirm the effectiveness of the proposed algorithm, 

we have used a small network model with four sets of 

time series data with different initial values. The number 

of network components is considered to be five.   

Among those four experiments, here we present results 

for one which is the most complicated example. Fig.1. 

shows the gene network used in this experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A sample of weighted Gene Regulatory Network 

 

A weighted network was proposed to represent gene 

networks (Weaver et al. 1999). Each node is a gene and 

an arrow indicates a regulatory relation between two 

elements (gene). Negative values show a suppression 

relation and positive values show promotion.   

To account for the stochastic behavior of GEP, each 

experiment was repeated for 20 independent runs, and the 

results were averaged. Table 1 lists the parameter values 

used for these runs. 

Table 1.  General settings of our algorithm 

Number of generation 500 

Population size 100 

Mutation rate 0.044 

One-point recombination rate 0.2 

Tow-points recombination rate 0.2 

Gene recombination rate 0.1 

IS transition rate 0.1 

RIS transition rate 0.1 

Gene transposition rate 0.1 

Function set + - * /  

Terminal set α 

 

Fig 2a and Fig 2b show the observed expression levels of 

the five components (gene) of the network and the 

predicted level produced by our method.  
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(b) 

Fig. 2. Predicted versus actual gene expression levels for the 
best model obtained 

The effect of local search on the performance of the 

algorithm is presented in Fig. 3. The local search was 

applied in two different ways; in the first one it was 

applied to the best individual of the generation and in the 

second it was applied to the whole population. The first 

approach rarely improved the performance, but the 

second approach significantly improved the fitness of 

average individuals in the population, especially in the 

early stages of evolution. 

The reported result is based on the second approach of 

applying local search. It can be seen that on average the 

memetic system using both GEP and LMS achieves 

superior fitness levels compared to the system using GEP 

alone. 
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Fig. 3. Effect of the local search  

We have also compared our algorithm with the 

conventional GP algorithm. For this purpose we have 

used GPLAB (MATLAB toolbox for genetic 

programming) with default parameter values. The result 

is presented in Figure 4. It shows that the proposed 

method has a faster convergence rate by an index of 100 

compared to the conventional GP. 
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Fig.4. Performance comparison of the proposed GEP 

against GP 

5.1 Effect of Noisy Data 
We introduced artificial noise to the data to find out the 

robustness of our method. Usually in microarray data the 

most common noise is missing values. Therefore, we 

considered this type of noise here. We started with one 

missing variable per sample (2 percent noise) and then 

increased the amount of missing variables to 10 percent. 

The effect of such noise is presented in Table 2. 

In the second experiment, we tested the effect of 

Gaussian noise on the data by perturbing a certain value 

ix with a random number drawn from a Gaussian 

distribution ),0( iN σ by )1,0(Nxx iii σ+=′ . We present 

the correlation coefficient (r) that quantifies similarity 

between predicted values and observed ones as the 

measure of robustness of the algorithm in the presence of 

noise. Table 3 shows the result of applying noise to the 

gene expression values. 

 
Output r 

Output without noise 0.891 

Output with 2% noise  0.846 

Output with 10% noise 0.798 

Output with 20% noise 0.702 

Table. 2. Effect of noise with adding missing values 

 
Output r 

Output without noise 0.891 

Output with 2% noise  0.888 

Output with 10% noise 0.863 

Output with 20% noise 0.801 

Table. 3. Effect of Gaussian noise 



The results in Table 2 and Table 3 show that the noise in 

the form of missing values affects the algorithm more 

than Gaussian noise.  

The proposed system presents a robust behavior in the 

presence of noise, along with good performance. To 

compare the robustness of this algorithm in the presence 

of noise and also further investigation of the type of noise 

on our GEP system, we investigated Gene Expression 

Programming (GEP) literature. It has been said that GEP 

is a robust method in the presence of noise, although, 

there is not enough literature available on the effect of 

different types of noise on GEP systems. The only 

evidence of this type of work is a study by Lopez and 

Weinert (2004). In this work they used a simple form of 

random noise on each value and obtained a good result. 

Therefore, we decided to review the effect of noise on 

genetic programming (GP) algorithms as GEP can be 

considered to be an extension of GP. 

Typically, the fitness function for the regression problems 

is based on a sum-of-errors, involving the values of the 

dependent variable directly calculated from the candidate 

expression. Although this approach is extremely 

successful in many circumstances, its performance can 

decline considerably in the presence of noise. Therefore, 

in a study by Imada and Ross (2008) it was suggested to 

use feature-based fitness function in which the fitness 

scores are determined by comparing the statistical 

features of the sequence of values rather than actual 

values themselves. This sort of fitness function can be 

considered for future research in improving the algorithm 

in the presence of noise. 

6 Conclusion and Future Work 

Recently, evolutionary computation methods have been 

used for model-based inference of gene regulatory 

networks. This is now a very challenging task in the 

bioinformatics area.  In this work, we have investigated 

the suitability of Gene Expression Programming (GEP) 

for this problem. We have also proposed a memetic 

version of GEP which uses LMS as the local search 

procedure to improve the quality of solutions. The 

experimental results reported in this paper, using 

synthetic gene expression data, show that the proposed 

memetic GEP algorithm has a strong capability to find a 

suitable combination of constants and function structures. 

The constant creation method (local search) applied to the 

best individual of the generation can seldom improve 

them, however, when it is applied to the whole population 

it can significantly improve the fitness of average 

individuals in the population, especially in the early 

stages of evolution. 

The proposed GEP can be further examined with other 

local search methods to more effectively fine tune 

parameters. It is also vital to increase the number of genes 

in the network to scale up this method as much as 

possible. In reality the gene regulatory network usually 

has more than 10 components. To the best of the authors’ 

knowledge, existing evolutionary techniques can not deal 

with this number of components considering real gene 

expression values.  Partitioning is a possible solution to 

scale up these methods. There are some partitioning 

methods which have been previously used with other 

evolutionary algorithms (Kimura et al. 2004) and have 

improved their scalability dramatically. 

Also, in order to study the effect of real noise on our 

algorithm, the noise in the real data needs to be 

mathematically modelled. Then, it is possible to 

investigate the effect of real noise on our algorithm. The 

only part of the noise in our study which has a 

corresponding part in nature is the missing values. 

Modelling of noise in the form of mutated values is 

subject to further investigation of the distribution of noise 

in real microarray data.  
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