
 Inference of Gene Expression Networks Using Memetic Gene

Expression Programming

Armita Zarnegar, Peter Vamplew, Andrew Stranieri
School of Information Technology and Mathematical Sciences,

 University of Ballarat,

P.O. Box 663, Ballarat, Victoria, Australia

{azarnegar@students.ballarat.edu.au,p.vamplew@ballarat.edu.au,

a.stranieri@ballarat.edu.au}

Abstract

In this paper we aim to infer a model of genetic networks

from time series data of gene expression profiles by using

a new gene expression programming algorithm. Gene

expression networks are modelled by differential

equations which represent temporal gene expression

relations. Gene Expression Programming is a new

extension of genetic programming. Here we combine a

local search method with gene expression programming

to form a memetic algorithm in order to find not only the

system of differential equations but also fine tune its

constant parameters. The effectiveness of the proposed

method is justified by comparing its performance with

that of conventional genetic programming applied to this

problem in previous studies.

Keywords: Gene Expression Programming, Differential

Equations, Gene Networks, Evolutionary Algorithm,

Gene expression Profile, Microarray data .

1 Introduction

Microarray technology is a fast and versatile technique

for exploring genome wide information such as gene

function. A DNA microarray is a collection of

microscopic DNA spots where each spot is a single gene

attached to a solid surface (Tarca et al. 2006). DNA

microarrays are commonly used for simultaneously

monitoring the expression level of thousands of genes

existing in a sample. They are used for a comparative

genomic study such as cancer versus normal tissue

(Dubitzky et al. 2003). Microarrays usually provide a

static picture that shows the expression of many genes at

a particular time in two different experimental samples.

Recently researchers have started to use it for extracting a

dynamic picture by getting different samples over time

(Ideker et al. 2002; Wang et al. 2006). In this way, they

are able to extract information about gene expression

networks from the microarray data.1

A gene expression (regulatory) network is a

diagrammatic representation of gene expression over a

period of time related to a situation, like the development

of a disease. To obtain this network, usually multiple

1 Copyright (c) 2009, Australian Computer Society, Inc. This

paper appeared at the 32nd Australasian Computer Science

Conference (ACSC 2009), Wellington, New Zealand.

Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 91. B. Mans, Ed. Reproduction for

academic, not-for profit purposes permitted provided this text is

included.

experiments must be carried out at different times or

stages of a disease. Therefore, a dynamic picture can be

extracted from microarrays which tells us about the

developmental process of that condition through the gene

regulatory network (which gene was first expressed and

caused other genes to be expressed or inhibited in the

second step and so on).

Finding gene regulatory networks is a complex task. The

reason underlying this is the complicated nature of

genetics. Variation in samples (or patients) makes a huge

difference in the extracted network. Also, in reality, many

genes interact with each other and this increases the

complexity of the model exponentially. Moreover, current

microarray technology produces noisy data. Additionally,

in most cases, there are insufficient samples or records

compared with the number of genes or variables, because

of the expensive technology, which makes it even harder

to build an accurate model. As a result of the above facts,

finding gene regulatory networks is complex and

nonlinear. This has become one of the major concerns in

bioinformatics.

Many models have been proposed to represent gene

expression networks. In Boolean networks (Akutsu et al.

1999), the gene expression level is either 0 or 1 and the

difference in expression levels is not considered. Those

methods which consider real value expression can be

categorized into two groups; probabilistic methods such

as Bayesian networks and deterministic methods such as

temporal differential equations. Further information

regarding different techniques for the reconstruction of

gene regulatory network can be found in two recent

surveys (Sehgal et.al 2008; Schlitt and Brazma 2007).

Temporal differential equations are the most common

technique used to build a gene expression network from

time series data (Wang et al. 2006; Hallinan 2008).

Differential equations are a powerful and flexible model

to describe complex relations among components. It is

not easy to determine a suitable form of equations to

represent the network, therefore, in some previous studies

the form of the differential equations has been fixed

(Sakamoto & Iba 2001). An S-system is a fixed form of

differential equations that has been proposed as a model

and the parameters are optimized by using a genetic

algorithm.

In this paper, we deal with an arbitrary form of the right

hand side of the system of differential equations to obtain

a more flexible model, as shown in Equation 1:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Federation ResearchOnline

https://core.ac.uk/display/213013034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where
iX is the expression level of the i-th gene (state

variable) and n is the number of the genes (component) in

the network. We use gene expression programming which

is a new evolutionary computation technique to solve this

problem.

2 Related Work

There have been several methods proposed for inferring

gene expression or regulatory networks. Of particular

interest to this paper are those approaches which use

evolutionary computation methods to infer a model of

differential equations from time series data.

Evolutionary computation is a particularly useful

approach when a problem cannot readily be solved

mathematically and we can not realistically look for an

optimal solution but one or more good solutions are

needed. Therefore, it is particularly suitable for the

problem of inferring gene networks from microarray data.

Different kinds of evolutionary computation techniques

have been applied to this problem ranging from

extensions of genetic algorithm to genetic programming,

and differential evolution.

Sakamoto and Iba (2001) used genetic programming

(Koza 1992) to solve this problem modeled by a system

of differential equations. Solving the general form of a

system of differential equations is very difficult so a fixed

form, called the S-system (Savageau 1988), was used and

the goal becomes simply to optimize the parameters in

the fixed equations. An S-system is a type of power-law

formalism. The concrete form of the S-system is as

follows:

),...,2,1(
11

niXX
dt

dX n

j

h

j

n

j

g

j
i ijij =−= ∏∏

==

βα (2)

where
iX is a state variable. The first term gives us all effect

of increasing iX whereas the second term gives the effect of

decreasing iX .

The first work which used genetic algorithms to solve the

S-system was presented by Maki et.al. (Maki et al. 2001)

There are other works which applied genetic algorithms

to this problem such as a study by Morishita et al. (2003)

which used an evolutionary algorithm to find parameters

for an S-system representing a 5-node network. Kikuchi

et al. (2003) at the same time reported a good result for

the same number of nodes. Later on, in 2005, genetic

programming was used to solve the S-system by

Matsumura et.al. (2005) and appropriate solutions were

obtained. Also, in 2005, for the first time differential

evolution was used for this purpose by Noman and Iba

(2005). Their work presented a high performance,

however, in their study the number of genes was still

limited to 5 and the model could not easily be scaled up

for larger networks. The reason for this is the fact that the

number of parameters in differential equations system is

proportional to the square of the number of genes in the

network. Therefore, when the number of genes increases

the algorithms must simultaneously estimate a large

number of parameters. This is why inference algorithms

based on the differential equations model have only been

applied to small-scale networks of less than five genes.

Evolutionary techniques were used along with other

modeling approaches for gene regulatory networks. An

example of that is a study by Eriksson and Olsson (2004)

which used genetic programming to successfully solve a

Boolean network of 20 genes.

In this paper, we try to solve the problem of inferring

gene regulatory network modeled by a system of

differential equations with an extension of the Gene

Expression Programming (GEP) algorithm. GEP has been

applied in many regression problems successfully. In

particular, it were used previously in a similar application

-solving elliptic differential equations- by Jiang et al.

(2007).

Our algorithm exploits the effectiveness of GEP in

finding the structure of gene regulatory network modeled

by ordinary differential equations. It also uses a local

search technique along with GEP for extra benefits. The

combination of these methods, GEP as a global search for

finding a function structure and a local search for fine

tuning model parameters, results in a more powerful

algorithm.

The combination of global search methods with problem-

specific solvers is known as memetic algorithms (MAs)

(Moscato and Norman 1998). The problem-specific

solvers usually are implemented as local search heuristic

techniques. The hybridization is meant to accelerate the

discovery of an optimal solution or to reach a solution

which is impossible to discover by either of the

component methods (Krasnogor et al. 2006). So far,

conventional genetic algorithms have mainly been used in

MAs as the global search method, however, the scope of

MAs is not limited to the genetic algorithms and in

general any global search method can be used

(Krasnogor, Smith 2005). Sakamoto and Iba (2001) used

a local search algorithm along with genetic programming

to obtain the constant parameters of the target function

effectively. Here for the first time we have proposed a

MA with GEP as the global search method. The Least

Mean Square method (LMS) was used as the local search

method. We have used the same data as were used in a

previous study in the literature (Noman & Iba 2005) and

compared the efficiency of our method with conventional

genetic programming.

3 Gene Expression Programming

Gene Expression Programming (GEP) is a new form of

genetic programming and was first introduced by Ferreira

in 2001. Like genetic programming, it evolves computer

programs but the genotype and the phenotype are

different entities (both structurally and functionally) and

because of this, performance is improved. It has been

shown in experiments to converge faster than older

genetic algorithms (Ferreira 2008). It also brings a greater

transparency as the genetic operators work at the

chromosome level (Wilson 2008).

GEP uses fixed length linear strings of chromosomes as

the genotype, and the phenotype is in the form of

expression trees which represents a computer program

(Marghny & El-Semman 2005). These trees are then used

),...,2,1(),...,,(21 niXXXf
dt

dX
ni

i == (1)

)(0 tktx i ∆+

to determine an organism’s fitness. The decoding of GEP

genes to expression trees implies a kind of code and a set

of rules which are simple. The set of genetic operators

applied to GEP chromosomes always produces valid

expression trees (ET).

The most important application of GEP is in function

finding and regression problems. Functions are the most

important parts of a model. There are different

approaches and methods for finding functions ranging

from mathematical methods like logistic regression to

artificial intelligence perspective via evolutionary

computation. The latter method has the advantages of

flexibility and generality as it is not limited to the

assumption of linearity.

We use GEP to find the best form of differential

equations from the observed time series of the gene

expression. Although GEP is effective in finding a

suitable structure, it is not so effective in optimizing the

parameters of the formula such as constants or

coefficients. This is the motivation for incorporating local

search into GEP to build memetic gene expression

programming. Local search methods can find the constant

values and parameters effectively and GEP is known to

be effective in finding function structures. This

combination results in an effective algorithm which is

highly capable in function estimation.

4 Memetic Gene Expression Programming

for Gene Expression Networks

Here we present an algorithm designed to infer a gene

expression network (gene regulatory network) from the

observed time series data. As noted earlier, the problem

can be modeled as a set of differential equations. We used

a GEP algorithm to evolve the structure of the gene

expression network and enhanced it by using the local

search process to find the constant parameters of the

equations more effectively.

The genes of gene expression programming are

composed of a head and a tail. The head contains symbols

that represent both functions and terminals, whereas the

tail contains only terminals. For each problem, the length

of the head h is chosen, whereas the length of the tail t is

a function of h and n is the number of arguments in the

function, and is evaluated by equation (3).

t= h (n-1)+1 (3)

Consider a gene for which the set of functions is

F = {+, -, *, /, sqrt} and the set of terminals is T = {a,b }.

In this case n = 2; if we choose an h = 6, then t = 6 (2 - 1)

+ 1 =7, thus the length of the gene is 6 + 7 = 13. One such

gene is shown below:

.-.a./..sqrt.a.b.a.a.b.a.b

where “.” is used to separate individual building

elements, “sqrt” represents the square root function and a,

b are variable names. The above is referred to as Kava

notation, and the above string is called a K-expression (Li

X et al. 2004).

5.1 Fitness Function
In general, the genetic network inference problem is

formulated as a function optimization problem to

minimize the following sum of the squared relative error

and the penalty for the degree of the equations:

() j

j

j

T

k

ii

n

i

batktXtktXf ∑∑∑
=

−

==

+∆+−∆+′=
0

1

0

2

00

1

)()((4)

0t : the starting time

 t∆ : the step size

 n : the number of the components in the network

 T : the number of the data points

where is given target time series (k=0,1,…,

T-1).)(0 tktx ∆+′ is the time series acquired by

calculating the system of differential equations

represented by a GEP chromosome. All of these time

series are calculated by using the Runge-Kutta method.

This fitness function has often been used in previous

studies in GP, for example by Samakato and Iba (2001).

The problem of inferring gene networks based on the

differential equations has several local optima because

the degree of freedom of the model is high. Therefore, a

penalty function has been introduced by Kimura et al.

(2004). This penalty function, which is the second part of

the fitness function, encourages low degree solutions.
ja

is the penalty coefficient for the jth degree and
jb is the

sum of the absolute values of coefficients of jth degree.

5.2 Local Search for the Local Optimizations

of the Model
GEP is capable of finding a desirable structure

effectively, but it is not very efficient in the optimization

of the constant parameters as it works on the basis of the

combination of randomly generated constants. Thus, we

use the least mean square (LMS) method to explore the

search space in a more efficient way. To be more specific,

some individuals are created by the LMS at some

intervals of generations. Thus we use the LMS method to

drive the coefficient of the expression of the right-hand

sides of the system of differential equations.

Consider the expression approximation in the following

form:

))(),...,((),...,(1

1

1 ixixFaxxy lk

M

k

kL ∑
=

= (5)

where))(),...,((1 ixixF lk
is the basis function,

Lxx ,...,1 are the independent variables, y(Lxx ,...,1) is

the dependent variable, and M is the number of the basis

functions.

Let a be the coefficient vector, and
2χ as follows:

2

1

1

2)))(),...,(()((ixixFaiy lk

N

i

k∑ ∑
=

−=χ (6)

The purpose of the local search is to minimize the

function in Equation 6 to acquire a. N is the number of

data points. Let b be the vector y(1),…y(N) and A be a

N*N matrix described as follows:



















))(),...,(()...(),...((

...

))2(),...,2(())...2(),...,2((

))1(),...,1(())...1(),...,1((

111

111

111

NxNxFNxNxF

xxFxxF

xxFxxF

LML

LML

LML

(7)

y(i) for the i-th equation of the system is calculated as

follows:

t

txttx
Xiy

ijij

titj ∆

−∆+
== =

)()(
)(& (8)

Then the following equation should be satisfied to

minimize equation 6.

bAaAA TT =).((9)

a can be acquired by solving Equation 9.

5.3 Overall Algorithms
o The GEP evolution begins with the random

generation of linear fixed-length chromosomes for

individuals of the initial population.

o In the second step, the chromosomes are translated

into expression trees and subsequently into

mathematical expressions, and the fitness of each

individual is evaluated based on the formula

presented in Equation 4 by using the Runge-Kutta

method.

o Local search is applied on individuals at some

interval generations

o The worst individuals are replaced in the population

with the improved individuals generated above.

o Selection is done with tournament selection and then

genetic recombination

The above steps repeat until there is no further

improvement in the fitness function.

The local search algorithm has been applied in two

different ways. In the first way, it has been used only for

the best individuals in each generation, and in the second

approach it has been used on the whole generation at

some intervals. The result of the second method was

better than the first method; therefore, the reported results

are based on the second method of applying the local

search procedure.

5 Experiments

To confirm the effectiveness of the proposed algorithm,

we have used a small network model with four sets of

time series data with different initial values. The number

of network components is considered to be five.

Among those four experiments, here we present results

for one which is the most complicated example. Fig.1.

shows the gene network used in this experiment.

Fig. 1. A sample of weighted Gene Regulatory Network

A weighted network was proposed to represent gene

networks (Weaver et al. 1999). Each node is a gene and

an arrow indicates a regulatory relation between two

elements (gene). Negative values show a suppression

relation and positive values show promotion.

To account for the stochastic behavior of GEP, each

experiment was repeated for 20 independent runs, and the

results were averaged. Table 1 lists the parameter values

used for these runs.

Table 1. General settings of our algorithm

Number of generation 500

Population size 100

Mutation rate 0.044

One-point recombination rate 0.2

Tow-points recombination rate 0.2

Gene recombination rate 0.1

IS transition rate 0.1

RIS transition rate 0.1

Gene transposition rate 0.1

Function set + - * /

Terminal set α

Fig 2a and Fig 2b show the observed expression levels of

the five components (gene) of the network and the

predicted level produced by our method.

0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12

Time

g
e
n
e
 e
x
p
re
s
s
io
n
 l
e
v
e
l X1

X2

X3

Pred X1

Pred X2

Pred X3

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

1 2 3 4 5 6 7 8 9 10 11 12

Time

G
e
n
e
 E
x
p
re
s
s
io
n
 L
e
v
e
l

X4

X5

PredX4

PredX5

(b)

Fig. 2. Predicted versus actual gene expression levels for the
best model obtained

The effect of local search on the performance of the

algorithm is presented in Fig. 3. The local search was

applied in two different ways; in the first one it was

applied to the best individual of the generation and in the

second it was applied to the whole population. The first

approach rarely improved the performance, but the

second approach significantly improved the fitness of

average individuals in the population, especially in the

early stages of evolution.

The reported result is based on the second approach of

applying local search. It can be seen that on average the

memetic system using both GEP and LMS achieves

superior fitness levels compared to the system using GEP

alone.

0

10

20

30

40

50

60

70

80

90

100

0 10 35 40 60 50 100 200 300 400 500

Generation

F
it
n
e
s
s

GEP with LMS

GEP without LMS

Fig. 3. Effect of the local search

We have also compared our algorithm with the

conventional GP algorithm. For this purpose we have

used GPLAB (MATLAB toolbox for genetic

programming) with default parameter values. The result

is presented in Figure 4. It shows that the proposed

method has a faster convergence rate by an index of 100

compared to the conventional GP.

0.1

1

10

100

Number of Generations

F
it
n
e
s
s

GEP

GP

Fig.4. Performance comparison of the proposed GEP

against GP

5.1 Effect of Noisy Data
We introduced artificial noise to the data to find out the

robustness of our method. Usually in microarray data the

most common noise is missing values. Therefore, we

considered this type of noise here. We started with one

missing variable per sample (2 percent noise) and then

increased the amount of missing variables to 10 percent.

The effect of such noise is presented in Table 2.

In the second experiment, we tested the effect of

Gaussian noise on the data by perturbing a certain value

ix with a random number drawn from a Gaussian

distribution),0(iN σ by)1,0(Nxx iii σ+=′ . We present

the correlation coefficient (r) that quantifies similarity

between predicted values and observed ones as the

measure of robustness of the algorithm in the presence of

noise. Table 3 shows the result of applying noise to the

gene expression values.

Output r

Output without noise 0.891

Output with 2% noise 0.846

Output with 10% noise 0.798

Output with 20% noise 0.702

Table. 2. Effect of noise with adding missing values

Output r

Output without noise 0.891

Output with 2% noise 0.888

Output with 10% noise 0.863

Output with 20% noise 0.801

Table. 3. Effect of Gaussian noise

The results in Table 2 and Table 3 show that the noise in

the form of missing values affects the algorithm more

than Gaussian noise.

The proposed system presents a robust behavior in the

presence of noise, along with good performance. To

compare the robustness of this algorithm in the presence

of noise and also further investigation of the type of noise

on our GEP system, we investigated Gene Expression

Programming (GEP) literature. It has been said that GEP

is a robust method in the presence of noise, although,

there is not enough literature available on the effect of

different types of noise on GEP systems. The only

evidence of this type of work is a study by Lopez and

Weinert (2004). In this work they used a simple form of

random noise on each value and obtained a good result.

Therefore, we decided to review the effect of noise on

genetic programming (GP) algorithms as GEP can be

considered to be an extension of GP.

Typically, the fitness function for the regression problems

is based on a sum-of-errors, involving the values of the

dependent variable directly calculated from the candidate

expression. Although this approach is extremely

successful in many circumstances, its performance can

decline considerably in the presence of noise. Therefore,

in a study by Imada and Ross (2008) it was suggested to

use feature-based fitness function in which the fitness

scores are determined by comparing the statistical

features of the sequence of values rather than actual

values themselves. This sort of fitness function can be

considered for future research in improving the algorithm

in the presence of noise.

6 Conclusion and Future Work

Recently, evolutionary computation methods have been

used for model-based inference of gene regulatory

networks. This is now a very challenging task in the

bioinformatics area. In this work, we have investigated

the suitability of Gene Expression Programming (GEP)

for this problem. We have also proposed a memetic

version of GEP which uses LMS as the local search

procedure to improve the quality of solutions. The

experimental results reported in this paper, using

synthetic gene expression data, show that the proposed

memetic GEP algorithm has a strong capability to find a

suitable combination of constants and function structures.

The constant creation method (local search) applied to the

best individual of the generation can seldom improve

them, however, when it is applied to the whole population

it can significantly improve the fitness of average

individuals in the population, especially in the early

stages of evolution.

The proposed GEP can be further examined with other

local search methods to more effectively fine tune

parameters. It is also vital to increase the number of genes

in the network to scale up this method as much as

possible. In reality the gene regulatory network usually

has more than 10 components. To the best of the authors’

knowledge, existing evolutionary techniques can not deal

with this number of components considering real gene

expression values. Partitioning is a possible solution to

scale up these methods. There are some partitioning

methods which have been previously used with other

evolutionary algorithms (Kimura et al. 2004) and have

improved their scalability dramatically.

Also, in order to study the effect of real noise on our

algorithm, the noise in the real data needs to be

mathematically modelled. Then, it is possible to

investigate the effect of real noise on our algorithm. The

only part of the noise in our study which has a

corresponding part in nature is the missing values.

Modelling of noise in the form of mutated values is

subject to further investigation of the distribution of noise

in real microarray data.

References

Akutsu, T., Miyano, S. and Kuhara, S. (1999): Identification of

Genetic Networks from a Small Number of Gene

Expression Patterns under the Boolean Network

Model. In Proceedings of Proceeding of Pacific

Symposium on BioComputing, pp. 17-28.

Dubitzky, W., Granzow, M., Downes, C.S. and Berrar, D.

(2003): A Practical Approach to Microarray Data

Analysis, Springer.

Erikson, R. and Olsson, B. (2004): Adapting genetic regulatory

 models by genetic programming. bioSystems 76: 217-

 227

Ferreira, C. (2001): Gene Expression Programming: A New

 Adaptive Algorithm for Solving Problems. Complex

 Systems 13(2): 87-129.

Ferreira, C. (2008): What is Gene Expression Programming?

from: Http://www.gene-expression-programming.com

Accessed Jun 2008.

Hallinan, J. (2008): Chapter4: Gene Networks and Evolutionary

Computation. Computational Intelligence in

BIOINFORMATICS. Fogel, G. B., Corne, D. W. and

Pan, Y., IEEE Press.

Ideker, T., Ozier, O., Schwikowski, B. and Siegel, A.F. (2002):

Discovering regulatory and signaling circuits in

molecular interaction networks. Bioinformatics 18:

Suppl 1: S233–S240.

Imada, J.H. and Ross, B.J. (2008): Using Feature-based Fitness

Evaluation in Symbolic Regression with Added

Noise. In Proceedings of Genetic And Evolutionary

Computation Conference (GECCO), Atlanta, GA,

USA, pp. 2153-2158, ACM.

Jiang, D., Wu, Z. and Kang, L. (2007): Parameter Identification

in Differential equations by Gene Expression

Programming. In Proceedings of International

Conference on Natural Computation (ICNC), IEEE.

Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K. and

 Tomita, M. (2003): Dynamic modeling of genetic

 networks using genetic algorithm and S-system.

 Bioinformatics 19(5).

Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M.,

 Masui, R., Nakagawa, N., Yokoyama, S., Kuramitsu,

 S. and Konagaya, A. (2004): Inference of S-system

 models of genetic networks using a cooperative

 coevolutionary algorithm. Bioinformatics 21(7): 1154-

1163.

Koza, J. (1992): genetic programming on the programming of

computers by means of natural selection. Cambridge,

MA, MIT Press.

Krasnogor, N. and Smith, J. (2005) A Tutorial for Competent

 Memetic Algorithms: Model, Taxonomy and Design

 Issues. IEEE Transactions on Evolutionary

 Computation A, NO. B, CCC 200D

Krasnogor, N., Aragón, A. and Pacheco, J. (2006): MEMETIC

ALGORITHMS. Metaheuristic Procedures for

Training Neutral Networks, Springer US.

Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S. and

Eguchi, Y. (2001): Development of a system for the

inference of large scale genetic networks. Pacific

Symposium on Biocomputing 6: 446-458.

Marghny, M.H. and El-Semman, I.E. (2005): Extracting Logical

ClassiTcation Rules With Gene Expression

Programming: Microarray Case Study. In

Proceedings of AIML 05 Conference, Cairo, Egypt.

Matsumura, K., Oida, H. and Kimura, S. (2005): Inference of S-

system models of genetic networks by function

optimization using genetic programming.

Transactions of the Information Processing Society of

Japan 46(11): 2814-30.

Moscato, P. and Norman, M. (1989). A competitive-

 Cooperative Approach to Complex Combinatorial

 Search (No. C3P-790): Caltech Concurrent

 Computation Program.

Noman, N. and Iba, H. (2005): Inference of gene regulatory

networks using s-system and differential evolution. In

Proceedings of Proceedings of the 2005 conference

on Genetic and evolutionary computation.

Sakamoto, E. and Iba, H. (2001): Inferring a System of

Differential Equations for a Gene Regulatory Network

by using Genetic Programming. In Proceedings of

Evolutionary Computation, 2001, pp. 720 - 726.

Savageau, M.A. (1988): Introduction to S-systems and the

underlying power-law formalism. Math. Comput.

Modell 11: 546–551.

Sehgal, M. S., Gondal, I., Dooley L. (2008): Computational

modelling strategies for gene regulatory network

reconstruction.Computational Intelligence in Medical

Informatics : 207-220, Springer

Tarca, A.L., Romero, R. and Draghici, S. (2006): Analysis of

microarray experiments of gene expression profiling.

American Journal of Obstetrics and Gynecology 195:

373–88.

Wang, Y., Joshi, T., Zhang, X.-S., Xu, D. and Chen, L. (2006):

Inferring gene regulatory networks from multiple

microarray datasets. Bioinformatics 22(19): 2413-

2420.

Weaver, D.C., C.T.Workman and G.D.Storm (1999): Modeling

Regulatory Networks with Weight Matrices. In

Proceedings of Pacific Symposium on Bioinfomratics,

pp. 112-123.

Wilson, S.W. (2008): Classifier Conditions Using Gene

Expression Programming (No. IlliGAL Report No.

2008001): University of Illinois at Urbana-

Champaign, USA.

