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A DESCRIPTION OF INCIDENCE RINGS
OF GROUP AUTOMATA

A. V. KELAREV and D. S. PASSMAN

Abstract. Group automata occur in the Krohn-Rhodes Decomposition The-

orem and have been extensively investigated in the literature. The incidence

rings of group automata were introduced by the first author in analogy with
group rings and incidence rings of graphs. The main theorem of the present

paper gives a complete description of the structure of incidence rings of group

automata in terms of matrix rings over group rings and their natural modules.
As a consequence, when the ground ring is a field, we can use known group

algebra results to determine when the incidence algebra is prime, semiprime,

Artinian or semisimple. We also offer sufficient conditions for the algebra to
be semiprimitive.

1. Introduction

Group automata can be briefly described as finite or infinite state machines
where the input set can be identified with a group. The Krohn-Rhodes Decomposi-
tion Theorem tells us that an arbitrary finite state machine can be represented with
a series-parallel connection of flip-flops and group automata, see [8, § 29] and [13].
The concepts of a group automaton and of a finite state automaton are also related
to the notion of an inverse automaton and to that of a Cayley graph. See references
[1], [2], [3], [9], [10], and [15] for recent results in these areas.

On the other hand, incidence algebras of graphs have also been actively inves-
tigated and many valuable results have been obtained, see [14]. A generalization of
group algebras inspired by incidence rings of graphs was introduced recently in [7]
using the concept of a finite group automaton, see Section 2. It is natural to expect
that the incidence rings of group automata will play important roles in automata
theory similar to the roles of group algebras in representation theory and in various
applications in finite group theory.

The main result of this paper is Theorem 2.1. It completely describes the
structure of all incidence rings of group automata in terms of matrix rings over
group rings and their natural modules. Corollary 3.1 uses known group algebra
results to determine when an incidence algebra is prime, semiprime, Artinian or
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semisimple, the latter being a generalization of the classical theorem of Maschke
on group algebras of finite groups. Corollary 3.3 offers sufficient conditions for
incidence algebras to be semiprimitive.

2. The Main Result

We use standard notation concerning automata, groups and rings, following
references [4], [5], [11], and [13]. Recall that a group automaton is an algebraic
system A = (X,G, δ) where

(A1) X is a nonempty set of states;
(A2) G is a group, with identity element 1G, of input symbols;
(A3) δ : X × G → X given by δ(x, g) = xg is a transition function satisfying

the equality

(1) x(gh) = (xg)h

for all x ∈ X, g, h ∈ G.

In view of condition (1), δ is almost a permutation representation of G on X.
Indeed, all that is missing is the assumption that x1G = x for all x ∈ X. Now
it is easy to see that XG = {xg | x ∈ X, g ∈ G} is the set of all elements of
X fixed by 1G. Thus, δ induces a permutation action of G on XG ⊆ X, and
clearly A = (XG,G, δ) is a subautomaton of A. Of course, XG is a disjoint union
of G-orbits O and, for any x ∈ X, xG is such an orbit. For convenience, we set
X ′ = X \XG, and we let ΩG denote the set of orbits of G on XG.

If x ∈ O, a G-orbit in XG, then we write Gx for the stabilizer of x in G, namely
Gx = {g ∈ G | xg = x}. As is well known, Gx is a subgroup of G and the elements
of O are in one-to-one correspondence with the right cosets of this subgroup. Thus
|O| = |G : Gx|. Furthermore, all such stabilizer subgroups of elements in the same
G-orbit are conjugate in G and hence they are isomorphic.

Let F be a ring with 1. Then the incidence ring of the automaton A = (X,G, δ)
over F is the ring IA = IA(F ) that is spanned as a free left F -module by the set
TA of all triples 〈x, g, xg〉, with x ∈ X, g ∈ G. Here multiplication is defined by
the distributive law and the rules

〈x1, g1, x1g1〉 · 〈x2, g2, x2g2〉 =

{
〈x1, g1g2, x1g1g2〉 if x1g1 = x2,
0 otherwise,

(2)

〈x, g, xg〉 · r = r · 〈x, g, xg〉,(3)

for all x, x1, x2 ∈ X, g, g1, g2 ∈ G, r ∈ F (see [6] and [7] for more details).
For example, if X = {x} is a singleton, then xg = x for all g ∈ G, so IA has as

a free F -basis the elements 〈x, g, x〉 with g ∈ G and with multiplication given by
〈x, g, x〉 · 〈x, h, x〉 = 〈x, gh, x〉. Thus, in this case, IA is naturally isomorphic to the
group ring F [G] via the map 〈x, g, x〉 7→ g. Recall that if G is a group, then the
group ring F [G] consists of all finite sums of the form

∑
g∈G rgg, with rg ∈ F , and

with addition and multiplication defined by the rules∑
g∈G

rgg +
∑
g∈G

r′gg =
∑
g∈G

(rg + r′g)g,

(∑
g∈G

rgg
)
·
(∑
h∈G

r′hh
)

=
∑

g,h∈G

(rgr
′
h)gh.
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Now if A = (X,G, δ) is arbitrary and if T is a subset of the collection of triples
TA, then we let FT ⊆ IA denote the F -linear span of T . Thus, for example, it
is clear that the incidence ring IA can be identified with F 〈XG,G,XG〉, where
〈XG,G,XG〉 = {〈x, g, xg〉 | x ∈ XG, g ∈ G}. Similarly, if O is a G-orbit in XG,
then A(O) = (O, G, δ) is also a subautomaton of A and IA(O) can be identified
with F 〈O, G,O〉, where 〈O, G,O〉 = {〈x, g, xg〉 | x ∈ O, g ∈ G}. Finally, we
let NA = F 〈X ′, G,X ′G〉 be the F -linear submodule of IA spanned by all triples
〈x, g, xg〉 with x ∈ X ′ = X \XG, g ∈ G.

In the following, if S is a ring and n is a cardinal number, possibly infinite,
then we let Mn(S) denote the ring of all finite n × n matrices over S. In other
words, each member of Mn(S) has only finitely many nonzero entries. Note that
each row of Mn(S) is a right ideal and hence is naturally a right module for this
ring. Furthermore, these modules are all isomorphic, and we denote any member
of the isomorphism class by Rn(S). With this notation, our main result is

Theorem 2.1. Let A = (X,G, δ) be a group automaton and let F be a ring
with 1. Then we have

(i) The F -incidence algebra IA is a direct sum of NA and IA, where A =
(XG,G, δ). Here IA is an F -subalgebra of IA and NA is a 2-sided ideal
of IA with IA ·NA = 0.

(ii) If XG =
⋃
O∈ΩG

O is written as a disjoint union of G-orbits, then the
ring IA is a direct sum of its 2-sided ideals IA(O). Furthermore, if x ∈ O
and if H = Gx is the stabilizer subgroup of x in G, then

IA(O)
∼= M|O|(F [H]).

(iii) NA is the direct sum of the F -linear spans F 〈y,G,Oy〉, where y ∈ X ′ and
Oy = yG is a G-orbit in XG. Each F 〈y,G,Oy〉 is a 2-sided ideal of IA
with F 〈y,G,Oy〉 · IA(O) = 0 if O 6= Oy. Furthermore, when O = Oy and
when IA(O) is written as the matrix ring M|O|(F [H]), then F 〈y,G,Oy〉 ∼=
R|O|(F [H]) as a right M|O|(F [H])-module.

Proof. (i) By definition, the F -basis TA of IA is a disjoint union of the basis
of NA and the basis of IA. Hence IA = NA ⊕ IA is a direct sum. Furthermore,
since no element of X ′ = X \ XG can be the third element of a triple in TA, it
follows that IA ·NA = 0.

(ii) Let XG =
⋃
O∈ΩG

O be written as a disjoint union of G-orbits. Since
the F -basis TA of IA is a disjoint union of the F -bases TA(O), it is clear that
IA =

∑
O∈ΩG

IA(O) is a direct sum. Furthermore, if O and O′ are distinct orbits,
then certainly IA(O) · IA(O′) = 0. Thus each IA(O) is a 2-sided ideal of IA, and it
remains to describe the multiplication in IA(O).

To this end, fix x ∈ O and write O = {xi | i ∈ I} where I is an index set of
size |O|. Let H = Gx be the stabilizer of x in G and, for each i, choose gi ∈ G with
xgi = xi. Now the elements of TA(O) are all of the form 〈xi, g, xj〉 with xig = xj ,

and we note that the latter equation implies that xgigg
−1
j = xigg

−1
j = xjg

−1
j = x.

Thus gigg
−1
j ∈ H = Gx and g ∈ g−1

i Hgj . Conversely, it is easy to check that if

g ∈ g−1
i Hgj then xig = xj . With this observation, we can define an F -linear map

θ : IA(O) → M|O|(F [H]) by 〈xi, g, xj〉 7→ (gigg
−1
j )ei,j , where of course gigg

−1
j ∈ H

and ei,j is the matrix unit with 1 in the (i, j)th entry and zeros elsewhere.
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Note that if j 6= j′, then 〈xi, g, xj〉 · 〈xj′ , g′, xk〉 = 0 and ei,j · ej′,k = 0, so
θ(〈xi, g, xj〉) · θ(〈xj′ , g′, xk〉) = 0. On the other hand, if j = j′ then

θ(〈xi, g, xj〉) · θ(〈xj , g′, xk〉) = (gigg
−1
j )ei,j · (gjg′g−1

k )ej,k

= gigg
′g−1

k ei,k = θ(〈xi, gg′, xk〉)
= θ(〈xi, g, xj〉 · 〈xj , g′, xk〉),

and θ is multiplicative. Thus θ defines an F -algebra homomorphism from IA(O) to
the ring M|O|(F [H]) of finite matrices.

To see that θ is one-to-one and onto, we merely require a back map. Since the
F -linear map θ′ : M|O|(F [H]) → IA(O) given by θ′(hei,j) = 〈xi, g−1

i hgj , xj〉, for all
subscripts i, j and all h ∈ H, is easily seen to be a well-defined inverse for θ, the
result follows. Note that, for any fixed subscript i, θ sends the F -linear span of the
triples {〈xi, g, xig〉 | g ∈ G} onto the ith row of M|O|(F [H]).

(iii) As above, it is clear that NA is the direct sum of the F -linear spans
F 〈y,G,Oy〉 with y ∈ X ′ = X \XG. Here Oy = yG is a G-orbit in XG depending
upon y, and 〈y,G,Oy〉 is the set of triples of the form 〈y, g, yg〉 with g ∈ G. Now we
know that IA ·NA = 0, so the definition of multiplication implies immediately that
F 〈y,G,Oy〉 is a 2-sided ideal of IA. It remains to determine the right IA-module
structure of this ideal.

To this end, note that yg = (y1G)g for all g ∈ G. Thus, the F -linear map
φ : F 〈y,G,Oy〉 → IA given by 〈y, g, yg〉 7→ 〈y1G, g, yg〉 is well defined and one-to-
one. Indeed, since these two triples have the same second and third entries, it is
clear that φ defines a right IA-module homomorphism. Note that if O = Oy, then
y1G ∈ O, and hence the image of φ is contained in IA(O). Now, in the notation of
the proof of part (ii) above, y1G = xi for some i ∈ I. Furthermore, as we have seen,
the F -linear span of all triples of the form 〈xi, g, xig〉, for all g ∈ G, maps onto the
ith row of M|O|(F [H]) under the isomorphism θ : IA(O) →M|O|(F [H]). Thus, as a
right IA-module, F 〈y,G,Oy〉 is isomorphic to R|O|(F [H]) with O = Oy. �

3. Corollaries

As we have seen, the structure of IA is intimately related to the structure of
finite matrix rings over certain group rings F [H]. In particular, this allows us to
translate group ring results to incidence rings of group automaton. Since properties
of F [H] are better understood when F is a field, we assume that this is the case in
most of our results below.

We first consider conditions where the group algebra results are definitive.
Recall that a ring S is prime if the product of any two nonzero ideals is nonzero,
and S is semiprime if it has no nonzero nilpotent ideal. We say that S is right
or left Artinian if its right or left ideals satisfy the descending chain condition
or equivalently the minimum condition. In the context of such rings, almost all
radicals are equal. In particular, we say that S is semisimple if it is semiprime and
right or left Artinian.

Corollary 3.1. Let A = (X,G, δ) be a group automaton and let F be a field.

(i) IA has an identity element if and only if X = XG is finite.
(ii) IA is right or left Artinian if and only if both X and G are finite.
(iii) If charF = 0, then IA is semiprime if and only if X = XG.
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(iv) If charF = p > 0, then IA is semiprime if and only if X = XG and, for
all x ∈ X, Gx has no finite normal subgroup of order divisible by p.

(v) IA is prime if and only if X = XG is a single G-orbit and, for all x ∈ X,
Gx has no nonidentity finite normal subgroup.

(vi) If charF = 0, then IA is semisimple if and only if X = XG and G are
both finite.

(vii) If charF = p > 0, then IA is semisimple if and only if X = XG and G
are both finite and, for all x ∈ X, p does not divide the order of Gx.

Proof. Most of these facts are simple consequences of known group algebra
results, so we just sketch some of the proofs. Of course, Theorem 1 and its notation
will be used implicitly throughout the arguments.

(i) If IA has an identity element, then certainly NA = 0, so X = XG and
IA = IA. Furthermore, IA cannot be an infinite direct sum of ideals, so there
are only finitely many G-orbits. Finally, the various rings M|O|(F [H]) of finite
matrices must each contain the identity matrix, so each such orbit size is finite.
Consequently, X = XG is finite, and the converse is clear.

(ii) If IA is right or left Artinian, then so is IA/NA ∼= IA. Clearly, IA cannot
involve an infinite direct sum of ideals, so there are only finitely many G-orbits in
XG. Again, each matrix ring M|O|(F [H]) cannot contain an infinite direct sum
of rows or columns, so |O| is finite and hence XG is finite. Next, note that each
right or left ideal of F [H] extends in a one-to-one manner to a right or left ideal
of M|O|(F [H]). Thus each F [H] must be right or left Artinian, and hence each
subgroup H is finite by Theorem 10.1.1 of [11], a result of Connell. We conclude
that |G| = |H| · |O| is finite. Finally, NA cannot be an infinite direct sum of the 2-
sided ideals F 〈y,G,Oy〉 with y ∈ X ′ = X \XG. Thus X ′ is finite and consequently
so is X. Conversely, if X and G are finite, then IA is finite dimensional over F and
hence it is both right and left Artinian.

(iii)(iv) If IA is semiprime, then certainly NA = 0, so X = XG and A = A.
Thus IA is a direct sum of the various IA(O), and IA is semiprime if and only
if each IA(O)

∼= M|O|(F [H]) is semiprime. Indeed, since any 2-sided ideal of the
matrix ring M|O|(F [H]) extends from an ideal of F [H], we see that M|O|(F [H]) is
semiprime if and only if F [H] is semiprime. Now, if charF = 0, then all F [H] are
semiprime by Theorem 4.2.12 of [11] and consequently (iii) follows. On the other
hand, if charF = p > 0, then by Theorem 4.2.13 of [11], a result of the second
author, F [H] is semiprime if and only if H does not have a finite normal subgroup
of order divisible by p. Since the groups H that occur here are, up to isomorphism,
all the stabilizer subgroups Gx with x ∈ XG, we conclude that (iv) holds.

(v) If IA is prime, then certainly NA = 0, so X = XG and IA = IA. Further-
more, IA cannot contain a nontrivial direct sum of 2-sided ideals, so XG = O must
be a single G-orbit. This IA ∼= M|O|(F [H]) and, since every ideal of the matrix
ring is extended from one of F [H], the matrix ring is prime if and only if F [H] is
prime. It now follows from Theorem 4.2.10 of [11], a result of Connell, that IA is
prime if and only if H = Gx has no nonidentity finite normal subgroup.

(vi)(vii) Since a ring is semisimple if and only if it is Artinian and semiprime,
these results follow from parts (ii), (iii) and (iv) above. �

Note that parts (vi) and (vii) of the preceding corollary apply to finite group
automaton and generalize the classical theorem of Maschke on group algebras,
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see Theorem 2.4.2 of [11]. We remark that there is an alternative proof of this
generalization based on Theorem 6.1 of [6].

Next, we obtain a reduction of either the prime or Jacobson radical of IA to
the radicals of certain group rings. Here, we denote the prime radical of a ring S
by P(S) and the Jacobson radical of S by J (S).

Lemma 3.2. Let A = (X,G, δ) be an arbitrary group automaton and let R(S)
denote either the prime or Jacobson radical of a ring S. Then

R(IA) = NA ⊕R(IA) = NA ⊕
∑
O∈ΩG

R(IA(O)).

Furthermore, if x ∈ O and if H = Gx is the stabilizer subgroup of x in G, then
R(IA(O)) ∼= M|O|(R(F [H])).

Proof. We start with R = P, the prime radical. Recall that, for any ring S,
P(S) is the intersection of all prime ideals of S and hence also the intersection of
all semiprime ideals of S. It follows that P(IA) ⊇ NA and that P(IA)/NA =
P(IA/NA) = P(IA). Furthermore, since IA is the direct sum of the various
IA(O), it is clear that P(IA) =

∑
O∈ΩG

P(IA(O)). Finally, since every ideal of

M|O|(F [H]) ∼= IA(O) is extended from one of F [H], it is easy to see that P(IA(O)) ∼=
P(M|O|(F [H])) = M|O|(P(F [H])).

Next, for any ring S, its Jacobson radical J (S) is the intersection of all prim-
itive 2-sided ideals of S, and it is also the largest quasi-regular ideal of the ring.
Furthermore, if e is an idempotent of S, then it is known that J (eSe) = eJ (S)e.
As a consequence of this and the fact that every 2-sided ideal of Mn(S) is ex-
tended from S, we have J (Mn(S)) = Mn(J (S)). With this, it follows as above
that J (IA) ⊇ NA and that J (IA)/NA = J (IA/NA) = J (IA). Moreover, since
IA is the direct sum of the various IA(O), the quasi-regular characterization of the
Jacobson radical implies that J (IA) =

∑
O∈ΩG

J (IA(O)). Finally, the preceding

matrix ring comments yield J (IA(O)) ∼= J (M|O|(F [H])) = M|O|(J (F [H])), and
the lemma is proved. �

Note that the prime radical of group algebras is well understood due to the work
of Dyment and Zalesskĭı, see Theorem 8.4.16 of [11]. Consequently, we can use the
preceding lemma to completely describe the prime radical of incidence algebras of
group automaton. However, this description is quite technical group theoretically
and therefore not appropriate for this short note. On the other hand, the group
algebra semiprimitivity problem and the nature of the Jacobson radical of group
algebras is far from settled. A fairly detailed survey of this material can be found
in [12] and again the results are too technical to be considered here. Thus, we limit
ourselves below to just one sufficient condition for semiprimitivity that is fairly easy
to state. Recall that a possibly infinite group is said to be a p′-group if it has no
elements of finite prime order p.

Corollary 3.3. Let A = (X,G, δ) be a group automaton with X = XG, and
let F be a field that is not algebraic over its prime subfield. If either charF = 0 or
charF = p > 0 and each Gx, with x ∈ X, is a p′-group, then the incidence algebra
IA(F ) is semiprimitive.

Proof. This follows immediately from the preceding lemma with R = J .
Indeed, X = XG implies that NA = 0, and our field and group assumptions
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combine with results of Amitsur, see Theorems 7.3.13 and 7.3.14 of [11], to conclude
that J (F [H]) = 0 for all H = Gx with x ∈ X. �
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