View metadata, citation and similar papers_at core.ac.uk brought to you beORE

provided by Federation ResearchOnline

INTRODUCING OO CONCEPTS FROM A CLASS USER

PERSPECTIVE

Philip A. Smith
University of Ballarat
Ballarat, Victoria
5327 9237
p.smith@ballarat.edu.au

Geoffrey Boyd
University of Ballarat
Ballarat, Victoria
5327 9239
g.boyd@ballarat.edu.au

ABSTRACT

The use of an object-oriented language as an introductory language is becoming
morewidespread (Biddle & Tempero, 1998). However, paedogica issuesrdating
to the incorporation of such alanguage are till not understood properly (Kalling,
2001). Approaches to incorporating an object-oriented language into a teaching
program vary greetly. Some approaches avoid the issue of object-orientation by
putting emphass on the procedura aspects of the language (Koffman & Wolz,
1999). Others approach the subject from the perspective of a class devel oper,
especidly making use of the appeal graphicd user interfaces and gpplets have for
students.

The approach that we take at the University of Balarat is to introduce students to
programmingfromthe perspective of aclassuser. This approachisfacilitated by the
avalability of Bluel (Kalling & Rosenberg, 2001), a program development

"Copyright © 2001 by the Consortium for Computing in Small Colleges. Permission
to copy without feedl or part of this materid is granted provided that the copies are not made
or distributed for direct commercia advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permisson of the
Consortium for Computing in Smal Colleges. To copy otherwise, or to republish, requiresa
fee and/or specific permission.

152

https://core.ac.uk/display/213012814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CCSC: Southeastern Conference

environment designed explicitly for teaching object-oriented principles using Java.
This paper describes this gpproach and the students reactionsto it.

INTRODUCTION

The Universty of Ballarat isSituated inregiond Victoria, Audrdia It isasmndl Universty
which attracts students from the loca area and from a geographicdly large caichment area
incorporating a large part of Western Victoria. A large percentage of these students are
considered disadvantaged on account of coming from sparsely populated rurd areas which
cannot supply many fadlities available in the city. The proportion of women atending the
Univergty of Bdlarat is approximatdy 50% but this figure drops markedly for computing
coursesoffered by the School of Information Technology and Mathematica Sciences(SITMS).

IN2000, SITM S decided tointroduce Java as the introductory programming language for
al of its courses. We chose Java because it atrue (albeit not pure) object-oriented language,
because sudent feedback told us that they believed it to be a useful language to learn and
because of the availability of BlueJ, a novice programming environment developed & Monash
Univeraty, Melbourne. Usng BlueJ, we are able to introduce students to object-oriented
principles immediately. We teach our introductory programming unit to approximately two
hundred students.

Koffman and Wolz (1999) identified two extremes of using an object-oriented language
as an introductory teaching language. The fird is to dive headfirg into GUIs and applets,
embracing the features of the language. They rightly clam that dl but the srongest sudents
would struggle with this approach. The second is to play safe and teach the object-oriented
language as a procedura language, ignoring the object-oriented design that the language was
developed to promote.

Our Schooal's palicy isto introduce object-oriented principles immediately but to also be
mindful of the needs of weaker students. To this end we introduce basic object-oriented
principles but defer more problematic (and peripherd!) issues such as GUI development until
later in the course. Instead of teaching these concepts through the design and devel opment of
new classes, we teach them through the incorporation of pre-written classes into Java code.
With this approach students learn how to discover the functionaity of classes and how to use
objects of these dasses in their code. We fed that this approach is a straightforward
introductioninto object-oriented programming. We aso fed that we are indtilling animportant
ill into the students. Class reuse is an extremdy important part of object-oriented

programming.
The main desgn decisons that were taken with regard to this new unit were:

1/ To separate the roles of class user and class developer. While this distinction is probably a
little artificid it is useful as amethod of introducing the concepts of class and object.

2/ Toindg that students become involved in examining the APIs of aclassin order to gain an
undergtanding of its behaviour. Thisis done by experimenting with the classs methods directly

153

JCSC 17, 2 (December 2001)

in conjunction with examination of the appropriate Javadoc documentation created for these
classes.

3/ Toindg that students, whentheytake onthe later role of classdevel opers, writether classes
with the needs of class usersin mind. Asa result they must create adequate APIs and create
Javadoc documentation for them.

4/ To introduce the details of the syntax of Java after the students have become comfortable
with the concepts of classes and objects. The syntax is taught in the context of these
object-oriented principles.

THE CLASSUSER PERSPECTIVE

The fird semester introductory programming unit requires the student to view
programming fromtwo perspectives. Inthe firg hdf of the semester they view programming as
a "Class User". In the second hdf of the semester they view programming as a "Class
Deveoper".

As class users, the students view an object as a "black box" which they come to
understand through examinationof itsA Pl and experimentation utilizing the capabilities of Bluel.
The API isalig of the public methods making up the object’s functiondity. BlueJis anexcelent
tool for promoting this approach because it is Imple to learn and gives explict graphical
representations of classes and objects.

BlueJenablesan object'sinterface to be explored through a pop-up context menu. Public

class methods (e.g. congtructors) are viewed through a pop-up menu associated with a class
itsdlf.

Bluel. SuvulheoxienS mallCulleye CompulingCuonleience =]

Project Eidit Tools Wiew Help

New Class... | r BankAccoun Test
> —_—

>
car?

| LCompuilc

Iy L E20)
- FIENY S AF2CAGE, "Er, aLto, Fad caly

] Uses Edit I jalerentationr
Muhilir Wi=

[¥] Inheritance T =
Hackago Wis

e i, Inharited Wiens:

o paile

M rEnnve

154

CCSC: Southeastern Conference

Objects may be instantiated as required via the classs pop-up menu. Objects so
instantiated are 'visualy placed’ on BlueJs object bench. Consequently, in the one Bluel
window, studentsseeiconsrepresenting the classes and different icons representing the objects.
The idea of many objects of asingle classtype isreadily visudly demongtrated.

The ingantiated objects may now be ether ingpected to confirm thar individuality or
invited to execute their functiondity viather pop-up menu. The pop-up menuadso indicatesthe
methods inherited from the superclasses dlowing the concepts of inheritance and overriding to
be discussed.

ERDlued: TautheasternmaliCollegeCamputinpConference
Erojact EMm TooE WIBw Halp

L

Hew Uloss.- ~| HankACcount lest

B-,

Lommie

i

vy
[llzr=

| Wulveritanc

oty e
o R W

riulbie Car 22

carz2

anfcemml Tl e -
BanKCCoumt Tost

Creotimp ohpect... Done

Students are taught about the need for adequate documentation. In Java, the process of
documentation is partidly automated by the Javadoc utility. As class users, the students are
provided withA Pl documentation created by Javadoc, whichdescribesbothcl assesdevel oped
by the teacher and a sub-set of the classes provided by the Software Development Kit (SDK).
They are taught how to use thisdocumentationto understand the behaviour of the givenclasses.
They are dso taught how to use Javadoc and, in particular, Javadoc comments and tags to
create this documentation for themsaves. When they become class developers they are
required to use Javadoc to document ther own classes. Fortunately, Bluel facilitates this
approach with amenu item to generate the documentation for the package's classes.

155

JCSC 17, 2 (December 2001)

ERd Hiue). Soullhieosler nSmallColleyel vmnpulirgl onle e e

Frojecd Cdlt Tools Wiew 18elp
ey Class.. | | _‘\u | Renke i nant Tast
5 Trafes e e e A ast k IFs = agk Zcdeg
| = Slrin g o - mgi =oic firal ze 5
> Jauk £ Jethcce €slar il v i
Cumipil: b rael abon alic) o1 Rl 1A
-7 bR b SiIEy G R AT TH
i wuic # A=l Al A Uil <5 cpedls 25
unilie 5 3kt IR Loz 1 2 si2bje.)
| e]
) e R T R T T E T CIE €272 Caen
[Inibw:iliaruy urilie A -rikdng Slrirg 2Sh 3 Ccade T adin Cail |
e Fhrg astvalcar wald b
Shrin g elRe: lsalin - =0ld Fabkes G e
wole 3 2bzaloL feol)
wuic 5 2lPegiy calion el
PFELL I
(SRR

il by e D

When they have been shown how to explore the functiondity of a given class, they are
then shown how to usethese classesinther own Java code. To thisend, they are provided with
atemplate Test classwhichhasasngle method called testMethod. They import the Test class
into their package and write driver code which performs tasks usng the classes that they have
examined. In this way, they are introduced to Java coding as class users.

These concepts are drawn together in the firs assgnment. The students are given two
classes that they have not seen before. They are not told anything about these classes. They
need to create Javadoc documentation of these classes. They can read the documentation for
the classes and explore the functiondity of the classes usng Bluel. They are then required to
apply what they have gathered about the functiondity of classes to perform given tasksin the
Test class. (While drictly speaking this makes them class developers, the Test class is not
intended to be incorporated into other classes by class users. Hence it is appropriate to
congder this assgnment an exercise asa class user.)

Inthe second hdlf of the unit the students gpproach programming fromthe perspective of
aclass deveoper. In this section they are taught principles such asiterative desgn which they
can use to develop their own classes. They are told that they are expected to develop classes
with the understanding that they might be used by other programmers acting as class users.
Hence, they must give careful consideration to the development and documentation of the
classs APl aswdl as come to terms with issues concerning the implementation of the API.

The second assgnment is an extension of the firg. The students are required to use the
two cdasses which they studied in the firgt assgnment to develop therr own new classes. While
this makes them, in the strictest sense, class users, the hard work of learning about the
functiondity of the classes was achieved in the first assgnment. Hence it is gppropriate to
consder this second assgnment as being mainly an exercise in class development.

156

CCSC: Southeastern Conference

STUDENTS REACTIONSTO THE UNIT

Wefdt that students reacted well to the unit and al but the weskest students were able
to make progress. We received alot of positive student feedback about the unit from course
eva uationquestionnairesthat we handed out at the end of the semester. Many fdt that we had
made the right decision in teaching Java usng BlueJ and many expressed the view that the
material was enjoyable and understandable.

There were some concerns, however. Some of the students, especidly those with
previous programming experience, fdt that the BlueJ system was too smpligtic. One of them
declared that BlueJ was "embryonic!"”. We take this statement as actudly being an indication
that our choice of BlueJwas correct Snce Smplicity was one of our guiding factorsinour choice
of a development environment. We wanted to give the sudents one chdlenging thing to learn
- not two.

Some students expressed disgppointment that GUIsand appletswere deferred until |ater
inthar course. Thisis understandabl e since the experience of most studentswill be of programs
with GUIs. They arelikdly to consider theseto be "red” programs. Most of themwill have had
experience with gppletsin their dealings on the World Wide Web and be impatient to be able
to write their own. We decided to defer the introduction of GUIs and applets until later in the
course. It wasfdt that students should have athorough groundingininheritance concepts before
learning GUIs and applets. As we mentioned earlier, Koffman and Wolz (1999) clam that
introducing these features too early risks confusing dl but the strongest students.

CONCLUSION

More and more inditutions are using object-oriented languages such as Java as
introductory programming languagesfor their courses. Many of themignorethe object-oriented
features of the language and introduce the language ina s milar manner to procedural languages.
Others jump headlong into discussion of GUIs and gpplets.

The approach we have used is to introduce object-oriented concepts immediately by
placing the student in the role of a class user. We fed that this is appropriate because
programmers need to make heavy use of classes written by other programmers and especidly
cassesin the SDK. The availability of the novice program development environment Bluel,
together withthe documentation produced by the utility Javadoc, hasfacilitated this approach.

In this report, we have recounted our experiences of using Java and Bluel in an
introductory programming unit. We fed that the combination of Java and BlueJ has been a
success and has provided our students with a straightforward yet useful introduction to

programming.
BIBLIOGRAPHY
Biddle, R. & Tempero, E. (1998). Java Fitfals for Beginners. SIGCSE Bulletin, June, 30(2),

48-52.

157

JCSC 17, 2 (December 2001)

Koffman, E. & Wolz, U (1999). CS1 Using Java Language Features Gently. ITiCSE '99,
Cracow, Poland, 40-43.

Kadlling, M. (2000). The Blued Tutorid: Version 1.2. Technica Report Number 2000-01,
Monash University, November.

Kalling, M. & Rosenberg, J. (2001). Bluel - The Hitchhikers Guide to Object Orientation,
accepted for publication in Journal of Object-Oriented Programming, 2001.

Rosenberg, J. & Kalling, M. (1997). 1/0 Considered Harmful (At Least for the First Few
Weeks). Proceedings of the Second Austra asian Conference on Computer Science Education,
ACM, Mebourne, 216-223, July.

SITMS Annua Course Reports (1998).

158

