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Abstract

Landscape classification and hydrological regionalisation studies are being increasingly used in ecohydrology to aid in the
management and research of aquatic resources. We present a methodology for classifying hydrologic landscapes based on
spatial environmental variables by employing non-parametric statistics and hybrid image classification. Our approach
differed from previous classifications which have required the use of an a priori spatial unit (e.g. a catchment) which
necessarily results in the loss of variability that is known to exist within those units. The use of a simple statistical approach
to identify an appropriate number of classes eliminated the need for large amounts of post-hoc testing with different
number of groups, or the selection and justification of an arbitrary number. Using statistical clustering, we identified 23
distinct groups within our training dataset. The use of a hybrid classification employing random forests extended this
statistical clustering to an area of approximately 228,000 km2 of south-eastern Australia without the need to rely on
catchments, landscape units or stream sections. This extension resulted in a highly accurate regionalisation at both 30-m
and 2.5-km resolution, and a less-accurate 10-km classification that would be more appropriate for use at a continental
scale. A smaller case study, of an area covering 27,000 km2, demonstrated that the method preserved the intra- and inter-
catchment variability that is known to exist in local hydrology, based on previous research. Preliminary analysis linking the
regionalisation to streamflow indices is promising suggesting that the method could be used to predict streamflow
behaviour in ungauged catchments. Our work therefore simplifies current classification frameworks that are becoming more
popular in ecohydrology, while better retaining small-scale variability in hydrology, thus enabling future attempts to explain
and visualise broad-scale hydrologic trends at the scale of catchments and continents.
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Introduction

Flow variability and ecological controls
Long-term trends in flow variability in streams have the ability

to create and maintain ecosystem dynamics for a range of

ecologically-important conditions [1,2] and can therefore influ-

ence biotic communities and abiotic conditions [1] at local to

regional scales, both temporally and spatially [1,3]. These long-

term trends are controlled by the same factors influencing the

hydrologic cycle in a landscape and ultimately influence physical

habitat and refuge availability, food distribution and abundance,

and opportunities for migration, reproduction and recruitment

[4]. Given this ability for hydrologic variability to control the

ecological and biophysical attributes of in-stream and riparian

systems, landscapes that have similar hydrologic properties should

have similar biological and ecological assemblages [5]. Further-

more, if the same or similar hydrologic landscapes can exist in

multiple spatial locations within bioregions, it stands to reason that

the ecology of these systems should also be similar, regardless of

spatial location. The ability to identify, classify, and validate spatial

patterns in hydrologic landscapes is an important step in creating a

solid foundation to assess the impact of natural flow variability,

associated ecological conditions and management of water

resources across a range of spatial scales. As such, hydrologic

classification has been identified as a critical step in providing a

spatially-explicit understanding of the magnitude and timing of

flow regime variation within and between rivers and regions [2,6].

Landscape and hydrologic units
Landscape characteristics affecting the quality, quantity, and

movement of water are extremely complex [7]. The earth is made

up of a number of different landforms, geological settings and

climatic conditions, and the idea of a simple, unifying conceptual

hydrologic framework may seem impossible to achieve [7].

However, landscapes that appear unique and diverse often

actually have a common set of attributes (e.g. governing the
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movement of water). Winter [7] introduced the concept of

hydrologic landscape units, which suggests that the complete

hydrologic system (i.e. incorporating surface runoff, groundwater

flow and atmospheric water) interacts with simple physiographic

features, and that these features then become the building blocks

of all hydrologic landscapes. Therefore, by this rationale, the

movement, storage and release of surface and subsurface water are

controlled by a common set of physical principles regardless of the

geographic location of the landscape [8]. Winter [7] termed these

‘fundamental hydrologic landscape units’ (FHLU), and defined the

conceptual unit as a land surface form which includes an upland,

an adjacent lowland and the valley side that separates them. The

hydrologic system of an FHLU consists of: 1) the movement of

surface water (controlled by the slopes and permeability of the

landscape); 2) the movement, storage and release of groundwater

(a function of the geologic setting); and 3) atmospheric water

exchange (controlled by climate) [7]. Much peer-reviewed

research supports the idea that all hydrologic landscapes can be

considered to be variations and multiples of FHLUs, and that

these can then be used to describe major, spatially-contiguous and

discrete landscape types that should have similar hydrologic

conditions (e.g. [6,8,9]). Since the concept was first introduced,

further research has been conducted to delineate hydrologic

landscape regions based on a number of different approaches and

across a variety of scales (see Olden et al. [9] and Kennard et al.

[6] for an extensive list of examples).

Deductive and inductive landscape classification
Classification is the process of systematically placing objects into

classes that are similar with respect to a set of variables or

characteristics. Hydrologic classification is therefore the process of

systematically arranging streams, rivers or catchments into classes

that are similar with respect to their flow regime [6,9]. While

hydrologic classification can refer to a broad assortment of

methods, a review by Olden et al. [9] recognises two broad

approaches to hydrologic classification; deductive and inductive

approaches (not to be confused with top-down and bottom-up

logic; see below). The inductive approach uses the emergent

properties of discharge time series data to generate classes. In

contrast, the deductive approach to classification is used when

attempting to describe broad spatial patterns in flow regime

variability where there is a lack of gauged or modelled streamflow

data available. Deductive methods of environmental classification

are commonly used when the objective is to quantify and describe

spatial variation in flow regime attributes. This approach to

classification identifies groups on the basis of physical and climatic

attributes that, over broad scales, produce similar hydrologic

responses in stream systems [9]. The increased availability of high-

quality, hydrologically-relevant spatial datasets (e.g. climate,

topography, land use) makes deductive reasoning an appealing

method when attempting to define spatial similarities or dissim-

ilarities in hydrological characteristics [9]. It has been demon-

strated that the deductive approach to hydrological classification

can help in the prediction of streamflow metrics [10,11], and that

it improves predictive streamflow models when those models are

stratified by hydrologic regions [12]. However, some facets of flow

regimes (e.g. low flow magnitude and duration) are difficult to

accurately characterise and quantify with this approach due to

limitations in data quality and conceptual knowledge of the

systems, and spatial variability of hydrological processes in many

regions [6,9,13].

Wolock et al. [8] used the concept of hydrologic landscapes

introduced by Winter [7] to classify nearly 44,000 catchments

(,200 km2 in area each) using a combination of multivariate

ordination and cluster analyses. Kennard et al. [6] presented a

method combining non-hierarchical clustering of climate, topog-

raphy, soils and geology, vegetation and flow data to group

Australian streams at a continental scale with mixed success.

Sawicz et al. [14] employed the use of precipitation-temperature-

streamflow signatures and Bayesian clustering to characterise 280

non-contiguous catchments located in eastern USA so as to

understand similarities in climatic and landscape attributes across

the region. Their work found that signatures which vary along

climatic gradients exerted a stronger influence on cluster

separation than those signatures which may vary as a result of

geology or land cover. It has also been shown by McManamay et

al. [13] that hydrological regionalisations [15] can be severely

lacking in their ability to explain variation in a number of

streamflow metrics.

The approaches by Wolock et al. [8], Kennard et al. [6], Sawicz

et al. [14] and others all require the use of catchments or some

choice of arbitrary spatial unit (e.g. eco/bio-region) to delineate

and display the results of the clustering. However, there is evidence

of significant flow variability within river catchments [6,16] and

significant spatial variability in climate and land use within sub-

catchments that affect wetland extent [17]. The approach of

delineating spatial units a priori leads to a loss of spatial variability,

particularly as the catchment or spatial units become larger. Olden

et al. [9] state that while deductive classification is common in the

literature, hydrologic landscape regions and other similar concepts

that are founded on physical principles have rarely been tested

with this approach. The a priori (or ‘top-down’) specification of

boundaries between classes has been criticised, while alternative

‘bottom-up’ approaches, where groups are developed as an

emergent property of the data [18] (not to be confused with

inductive reasoning which relies on time series hydrologic data)

have been considered to be in keeping with physical ecohydro-

logical principles [9]. Using a bottom-up approach, spatial and

group clustering patterns are generated based on the analysis of a

large number of units, such as pixels or micro-catchments. These

units are then allocated into clusters based on their multivariate

similarity [18]. However, a number of subjective choices as to

which datasets to include, classification strategies and the number

of groups in the classification process still need to be made. Such

decisions could affect the quality and repeatability of the

classification process when applied to different regions and

datasets [9,14,18,19]. Despite the potential limitations, the routine

availability of these datasets and the application of statistical

clustering and analyses have allowed scientists to begin to link

spatial patterns to ecohydrological processes.

Statistical clustering and multivariate analyses
Statistical clustering and multivariate analyses are important

and powerful tools in the identification of spatial and temporal

gradients. There is a multitude of variations on the theme of

statistical clustering [20–22], but the most commonly used are

hierarchical agglomerative methods [23] which fuse individual

samples into like groups, gradually increasing the similarity within

groups while lowering the similarity level between groups; i.e. each

sample starts as its own group and pairs of groups are merged

moving up a hierarchy. The process is considered complete when

all samples are contained within a single group or cluster. Unlike

hierarchical clustering, non-hierarchical clustering places samples

into groups that are not related hierarchically, but differ from each

other significantly in multivariate space. Described simply, non-

hierarchical clustering tends to work by assigning each sample (n)

into a pre-defined number of clusters (k) and then cluster

membership of the samples is iteratively reassessed, usually with
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the criterion of maximising between-cluster variance while

simultaneously minimising within-cluster variance. The most

common example of non-hierarchical clustering is the k-means

algorithm [24]. In some instances, the groups extracted by

hierarchical and non-hierarchical algorithms do not differ

significantly [25], but non-hierarchical methods can be much

more efficient at extracting groups from large datasets [26].

Once statistical clustering has occurred, an analysis of the

performance of the clustering can be conducted through the use of

multivariate statistics and, in particular, ordination plots. There

are a number of ordination techniques (e.g. principal components

analysis (PCA), and multidimensional scaling (MDS)) that, broadly

speaking, reduce multidimensional space so that objects can be

compared graphically in two or three dimensions, without a

significant loss of explanatory information. It is also possible to use

the clustering information to train predictive models to classify

samples not included in the original classification. This is where

supervised classification algorithms, such as random forests (RF)

[27,28], coupled with geographic information systems (GIS) and

image processing software can be applied to extend the

applicability of deductive landscape classification approaches to

regionalisation studies.

Supervised classification of landscapes
One of the most common applications of remotely-sensed

images and data is the creation of maps of vegetation type, soil

properties or other discrete classes. In supervised classification, the

location of known classes on those maps (i.e. training sites) is used

by the software to determine the spectral signature of the pixels

belonging to each of those classes. Each pixel in the image (i.e.

outside the training sites) is then assigned, based on its spectral

signature, to the class it most closely matches. Supervised

classification can be applied at the individual pixel level or to

groups of adjacent, similar pixels for the creation of contiguous

regions. However, for the classification to work effectively, a priori
knowledge of where the classes of interest (e.g. land cover types)

are located is required. When supervised classification is combined

with, for example, an unsupervised statistical classification, the

process is referred to as hybrid (or semi-supervised) classification

[29]. A major benefit of hybrid classifications for landscape

regionalisation is that they permit the bottom-up approach to

deductive classification as recommended by Mackey et al. [18] and

Olden et al. [9]. This eliminates the need for survey approaches to

develop a priori knowledge of the location of classes of interest

which require expert opinion and substantial amounts of

qualitative evidence which is not always available or suitable.

The hybrid approach also eliminates the need to define a spatial

unit a priori (e.g. a catchment) and allows small-scale (e.g. intra-

catchment) variability to be identified and preserved where it may

otherwise be lost.

Aim of study
The aim of this study was to create a hydrologic landscape

regionalisation using deductive reasoning and a bottom-up

approach to statistical clustering combined with a hybrid

classification. The regionalisation was then assessed based on its

ability to discriminate between groups (regions) based on a number

of streamflow indices. In this research, we used unsupervised

classification (i.e. the statistical clustering) to first determine class

membership based on multivariate space and then used supervised

image classification to classify the remaining pixels from a number

of ecohydrologically-important layers into the classes of interest as

defined by the statistical clustering. This approach will permit the

regionalisation of spatially non-contiguous regions, while main-

taining small-scale intra-catchment variability that would be lost

using catchments as the unit of classification as has often been

done in the past. The assessment of the ability of the regions to

differentiate among streams based on a number of flow indices

provides insight into the utility of the method in predicting

streamflow characteristics in ungauged catchments.

Materials and Methods

To clarify the process used in the creation of the hydrological

regionalisation and the validation and training methods for the RF

models, a graphical overview of the methods is presented in

Figure 1.

Site description
Victoria is the southernmost state of mainland Australia,

comprising an area of 227,594 km2, and bordered by the southern

bank of the Murray River to the north, South Australia to the west

and separated from Tasmania by Bass Strait to the south.

Topographically, geologically, and climatically, Victoria is diverse,

varying from wet temperate climates in the southeast to alpine

areas rising to ,2000 m altitude in the northeast (Figure 2). To

the west and northwest are extensive, flat areas of semi-arid plains,

while most of the rest of the state experiences a Mediterranean

climate consisting of hot, dry summer and cool, wet winters [30].

Median annual rainfall in Victoria exceeds 2,500 mm in some

parts of the mountainous northeast but is less than 300 mm in a

large part of the west and northwest [31]. Generally, snowfall is

only observed in the mountains and hills to the east and centre of

the state. Victoria has an extensive wetland system, with nearly

17,000 wetlands larger than 0.01 km2 in surface area [32], and a

large river network, with the largest being the Murray River

system.

Site description of case-study area in western Victoria
The Glenelg-Hopkins region of western Victoria covers

approximately 27,000 km2 and the regional cities of Warrnam-

bool, Ararat, Hamilton, Portland and the western fringes of

Ballarat are within its boundary. The region contains the

Grampians Ranges in the north but is generally a low-lying series

of catchments across three major catchments – Glenelg, Hopkins

and Portland. The region has been previously studied with respect

to land-use and land-cover changes [33] and the associated

impacts on nutrient exports, in-stream salinity and dryland salinity

[34,35], while recent work has examined the spatio-temporal

variability between land cover, climate and wetland extent [17],

the impact of land-cover changes on groundwater levels [36] and

empirically modelled streamflow response to land-use change [37].

Variable selection and Processing
The first phase of the classification involved selecting suitable

variables upon which to base our classification. Steps associated

with variable selection and processing, described in this section,

are outlined in green in Figure 1. Based on the concept of FHLUs,

25 variables were chosen that could explain the storage,

movement, and quality of surface water, groundwater, and

atmospheric water. A full list and brief description of each of the

variables are presented in Table S1. All raster calculations and

raster analysis for the processing of variables was conducted in

ArcGIS 10.1 [38].

The raster datasets employed in the study covered a wide range

of resolutions (30 m–10 km). Typically, with GIS, analyses are

only considered to be suitable if all rasters are resampled to the

coarsest resolution. However, this can result in the loss of a

Hydrologic Regionalisation with Random Forests
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Figure 1. Graphical overview of the methods employed in the creation of the hydrological regionalisation; the training and
validation of the RF models used to extend the statistical clustering to the state of Victoria; and of the validation of the
classification with hydrological data. Each colour coded section of the figure corresponds to a section in the methods. Green: Variable Selection
and Processing; Orange: Development of Classification Groups; Beige: Hybrid Classification with Random Forests; Light Blue: Accuracy Assessment;
Grey: Relationship between the Regionalisation and Hydrologic Indices. The process for the ALOC 20 100% models did not involve splitting the ALOC
classified random sample points into training and validation subsets and model accuracy was only assessed with OOB accuracy from EnMap-Box.
doi:10.1371/journal.pone.0112856.g001
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substantial amount of detail and information and can affect the

ability of supervised classification methods to successfully classify

pixels (See Figure 3 for a comparison between the 30-m and 10-

km Landscape Development Index (LDI)). Therefore, in this

study, two approaches were used to standardise the scale of our

raster data. The first approach was to resample all datasets to the

finest resolution (30 m); and the second involved re-sampling all

the raster datasets to the coarsest resolution found in our datasets

(10 km). All rasters were continuous in their spatial coverage with

the exception of the soil hydrological properties (KSAT, PAWC

and soil horizon thickness) which had significant gaps where large

lakes and wetlands were found. There was also a significant gap in

coverage on the eastern headland of Port Phillip Bay. To ensure

that all datasets aligned correctly and had the same degree of

spatial continuity, the digital elevation model (DEM) was used as a

snap raster for the resampling. Once the resampling had been

completed using a nearest neighbour algorithm, the now 30-m soil

properties were used as a mask to extract all other raster values.

The result of this was that all of the datasets used in the analysis

had a 30-m spatial resolution and all had corresponding areas of

missing data that would be excluded from any analysis.

For the second approach, all of the original datasets were

resampled to 10 km using a nearest neighbour algorithm and the

mean annual evapotranspiration raster as the snap raster. Two

different datasets were used as snap rasters so that the pixels of the

resampled rasters (at either 30 m or 10 km) would be aligned

correctly at the respective resolution. If this study had been

conducted at a continental scale, then a coarser resolution would

be more suitable, however as it was conducted on a relatively small

scale, we considered that resampling to a finer resolution was both

suitable and justifiable. Furthermore, limiting our analysis to a

coarser resolution (on the basis of a single coarse-scaled dataset;

mean annual evapotranspiration), would have significantly affect-

ed the applicability and usefulness of the method presented here,

specifically, the ability of the RF model to accurately recover and

reproduce allocated class information. Previous research has

shown that the accuracy of supervised classifications, at both an

overall and per class level, can be affected by the spatial resolution

of the input images [39,40]. As such, we assessed this issue through

the accuracy of the RF model and the ability of the hybrid

classifications to accurately recover the class information using the

coarser dataset (see section on accuracy assessment). A layer stack

of both sets of variables (30-m and 10-km resolution) was produced

in ENVI 4.8 [41] for later use with the RF model.

Two random distributions of sampling points (n = 10,000 and

n = 410; with minimum distances between points of 30 m and

10 km respectively) were then created. Ripley’s K function [42],

which determines whether features are significantly clustered or

dispersed over a range of distances, was then used to assess

whether both sets of points were distributed across our sampling

area. Using the random-sampling points, raster values were

extracted from each of the raster layers for later use in clustering,

and then the training and validation of the RF model.

Development of classification groups
The selected variables were then statistically analysed to develop

the groups (known as ‘regions’) to be used as the basis for

Figure 2. Location of the study area in south-eastern Australia. Dark blue lines represent perennial rivers, while the colour gradient
represents elevations, with darker browns indicating higher elevations.
doi:10.1371/journal.pone.0112856.g002
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classification. The steps involved are outlined in orange in

Figure 1. All sampling points that were found to contain missing

data were removed prior to analysis, resulting in n = 9,958 (30-m

data) and n = 406 (10-km data) for the two sets of data points. For

the 30-m data, three 1000-point subsamples were taken for initial

statistical analysis, while all data points were used for the 10-km

dataset.

In order to develop a bottom-up approach to classification,

where groups are an emergent factor of the data rather than

defined a priori, we cluster-analysed each of the subsamples

individually. Due to the large ranges and different scales used

across our variable set, Gower similarity matrices were constructed

for each of the initial analysis datasets using PRIMER 6 [43]. The

CLUSTER [44] function was then used with a SIMPROF [45]

test, to identify the number of statistically-significant (a = 0.05)

groups within the datasets. Essentially, SIMPROF determines the

number of significant groups with the assumption of no a priori
groups by calculating similarities between every pair of samples

using the chosen resemblance matrix and a hierarchical cluster

dendrogram. Beginning at the top of an already-defined hierarchy

(i.e. by the CLUSTER function), progression down the divisions or

branches of the dendrogram is only permitted if the current set of

samples is deemed to still have statistically significant dissimilarity.

Upon encountering a non-significant result (i.e. the samples are

similar), no further tests are performed down that branch of the

dendrogram and all samples below are considered part of the same

group [45]. A limitation of the SIMPROF test is that groups

identified by the test may be at too fine a level of detail for

practical purposes. However, if the resulting clusters are super-sets

of the SIMPROF-defined groups, it is appropriate to define

coarser groupings based on an arbitrary slice at some chosen level

of similarity [45]. As the 30-m SIMPROF tests were conducted on

three 1000-point subsamples, the subsample that produced the

largest number of groups was used to determine the number of

groups for the 30-m data. Even though SIMPROF uses a

hierarchical relationship between sampling points to determine the

number of clusters present in the data, we believe this approach is

suitable for estimating an appropriate number of non-hierarchical

groups as opposed to choosing an arbitrary k number of groups.

We then classified the full datasets (n = 9,958 and n = 406) into

the number of classes suggested by the SIMPROF tests using the

non-hierarchical clustering algorithm ALOC [26] and the Gower

metric in PATN v3.1.2 [46]. Group allocations were then

exported from PATN and joined to the original datasets as factors

for further analysis. Once group membership information was in

PRIMER, the ANalysis Of SIMilarities (ANOSIM; [44]) routine

was used to test for statistically-significant differences among

sample groups. Based on the R statistic, which is scaled to be

between 21 and +1, global R values .0 indicate greater

dissimilarity between groups than within groups [23]. Group

averages were calculated using the AVERAGE [43] tool in

PRIMER to visually analyse group separation using MDS. MDS is

useful in providing a visual representation of the pattern of

similarities between objects or groups while reducing the

multidimensional space to be more readily interpretable (i.e.

reducing data to two or three dimensions). The ability of MDS to

reduce the degree of multidimensional space is measured with a

stress value. Essentially, stress is the mismatch between distances

between all samples in the plot in multidimensional space and the

calculated estimate of their respective locations in two or three

dimensions, with lower values indicating better representation

[23]. The CLUSTER and SIMPROF routines were then used to

hierarchically cluster the ALOC generated group averages into

‘meta-groups’. By definition, non-hierarchical groups are not

linked based on their hierarchical multivariate relationship to each

other, but rather are defined by their multivariate dissimilarity. As

such, group x may not be closely related to group y but could be

more closely related to group z. By hierarchically clustering our

ALOC generated groups, were we able to determine which ALOC

groups were more closely related to each other based on their

multivariate means. A standardised Euclidean distance similarity

matrix was then created and the SIMilarity PERcentage

(SIMPER; [44]) routine was then used to analyse variable

contribution to each of the meta-groups and to examine between

meta-group similarity, while the Kruskal-Wallis [47] statistic was

used to assess the ability of each of the variables to differentiate

between clusters.

Previous studies (e.g. Wolock et al. [8]) have employed PCA

[44] to reduce dimensionality and reduce multi-collinearity among

variables. Our method relied firstly on using ‘raw’ data (i.e. the

data was not transformed in any way) to extract spectral

information for the statistical clustering and then classification.

The results of this method were then compared against a

classification based on PCA-transformed data. PCA is a procedure

where possibly correlated variables are orthogonally transformed

into a new set of linear, uncorrelated variables known as principal

Figure 3. An example of the differences in resolution identified when working in relatively small study areas. The left hand image is
the Landscape Development Intensity index (LDI) at a 30-m resolution while the image on the right is the LDI at a 10-km resolution. The accuracy of
supervised classifications can be affected by the spatial resolution of the input images and as such we developed models at both resolutions.
doi:10.1371/journal.pone.0112856.g003
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components [23]. The transformation results in the first compo-

nent explaining most of the data variance (i.e. the first component

explains as much of the multivariate data as possible) while each

additional component in turn is then created to explain the

remaining variance. The number of components is less than or

equal to the number of original variables and each additional

component is created under the condition that it is uncorrelated

with all of the preceding components [23]. Here, a PCA was

conducted in PRIMER on the same standardised Euclidean

distance matrix used for the SIMPER analysis. The eigenvectors,

for the first five principal components (eigenvalues $1) were used

in ArcMap to generate PCA bands and new PCA raster stacks

were created in ENVI.

Hybrid classification with Random Forests
The regions that were developed in the previous step were then

used to classify the raster stack of the variables for the entire study

area. Steps in this section are outlined in beige in Figure 1. RF is

an ensemble machine-learning method used in classification and

regression [27]. The RF method is relatively unknown in land

remote sensing and has not been thoroughly evaluated by the

remote sensing community, although it has been shown to be more

accurate than single decision-tree classifiers [48]. RF requires two

parameters for generating a predictive model: the number of trees

(k) and the number of variables used for growing the trees (m).

Therefore, a dataset can be classified by defining a constant

number of m variables, while each of the training samples is

classified by k trees. Classification is determined by using the mode

of the classes output by individual trees for each training site (x),

ĈCB
rf ~majority vote ĈCb(x)

n o B

1
, where ĈCb(x) is the class predic-

tion of the bth RF tree from a possible B classes [48]. RF increases

the diversity of the constituent trees by making them grow from

different training data through bootstrap aggregation which

involves random re-sampling (without deletion) of the original

training dataset [27]. Therefore some data may be used more than

once in the training of the model, while some may not be used at

all [48]. Being an ensemble method, multiple models (trees) are

used allowing the algorithm to obtain better predictive perfor-

mance than that which would be obtained by using any of the

constituent models individually. RF is becoming increasingly

popular in data mining, remote sensing and landscape ecology as it

is non-parametric, can generate internal, unbiased error estimates

and variable importance, is robust to training data reduction and

noise, and is highly accurate [27,48].

In order to develop the RF models, the sampling points were

randomly split into independent training (80%) and validation

(20%) datasets and then stratified using the cluster-membership

allocations from PATN. Due to the small sample size of the 10-km

dataset, an additional RF model was created using 100% of the

sample for RF training. Using ENVI, layer stacks of the raster data

(30 m, 10 km, and PCA at both resolutions) were constructed and

masked. Layer stacks, masks and training regions of interest were

imported in to EN-Map Box 1.4 [28] to permit the building of RF

models and the classification of the image stacks. EN-Map Box was

set to use 200 trees (k) per sample, and the square root of the number

of input variables on the non-PCA transformed data (m =
ffiffiffiffiffi
25
p

= 5), or m-1 variables (m = 4) for the PCA models. The Gini

coefficient [49] was used to calculate impurity, which is one method

used to evaluate the best split decision for each tree.

Accuracy assessment
The ability of the classification to accurately represent the

information across a range of resolutions was then tested, with the

relevant steps outlined in light blue in Figure 1. The accuracy of

the RF models in recovering and classifying the image stacks into

the ALOC classes was assessed with out-of-bag (OOB) error rates

generated in EN-MAP box, and using the independent 20%

validation dataset to calculate percent agreement between

classified and validation data, user and producer accuracies, and

Kappa (k) coefficients [50] in ENVI and R 3.0.1 [47] with the

psych [51] and irr packages [52]. User’s accuracy refers to the

probability that a pixel classified into a certain class really belongs

to that class, while producer’s accuracy refers to the probability

that a certain class is classified correctly. The locations of the

validation pixels were used to extract class information from the

original and PCA classifications and percent agreement and k
coefficients between model types were examined. High levels of

agreement between the original and PCA classifications would

indicate an insignificant amount of multivariate information loss

by PCA and further support the use and application of methods

that reduce data dimensionality and multi-collinearity between

variables in regionalisation studies. The 10-km sample that used

100% of the data for RF training could not be assessed for

accuracy independently and was therefore only assessed with

OOB error and class distributions.

We also decided that, due to the resampling of the original data

(to 30-m from a range of resolutions), it was worth investigating the

effect of resampling the 30-m classifications to a coarser resolution

(using the majority filter) to help remove some of the finer-scale

variability in the data. A resolution of 2.5 km was chosen as a

suitable pixel resolution, to ensure that our resampled assessment

points were further apart than the mean distance of the original

samples (see below), this meant our resampled classifications were

equal to or larger than the resolution of the majority of the datasets

while still being finer than the soil erosivity index. To assess

agreement between the 30-m and 2.5-km resampled classifications

(i.e. original and PCA both at 30-m and resampled 2.5-km), 300

random validation points were selected from the 20% validation

datasets, with minimum distances between points of 2.5 km, and

used to extract class information from the 30-m and 2.5-km

resampled classifications. Agreement between the validation data

and the 30-m and 2.5-km resampled classifications was assessed

with percent agreement and k coefficients between model

resolutions. Visual inspection of the class distributions was also

conducted; for this the 300 random validation points were used for

the 30-m and 2.5-km classifications, while all 81 validation points

for the 10-km classifications were used. McNemar’s chi-square test

[53,54] was used to formally test for statistically-significant

differences between model types (e.g. 30-m original and 30-m

PCA) and resolutions (e.g. 30-m original and resampled 2.5-km

original) and the validation dataset using the same 300 random

validation points; however we recognised a priori that the

relatively large number of random validation points would likely

make any difference statistically significant and that the resolution

tests would not be independent of one another. As such, a

permutation- based method (n = 9999) was also used to assess for

statistically-significant differences in the k values of the classifica-

tions [55,56]. The algorithm worked as follows:

1. If V = validation data; A = classification 1; B = classification 2

2. Let test(x, y), be a function that calculates the test statistic (k) for

the classifications,

3. H0 = if A and B are approximately equal in their classification

accuracy, observations in A and B can be exchanged without

affecting k, given by test(V, A) and test(V, B),

Hydrologic Regionalisation with Random Forests
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4. Randomly exchange data between A and B, n times, and

observe how these changes affect the k of A and B, i.e. test(V,

A) – test(V, B),

5. n permutations would result in N data points. Rank the N data

points and observe where the k from the original test (i.e. not

the permutated data) is located among the k values from the

permutated data points. If the original k is outside the 0.975

percentile (or below the 0.025 percentile) then we can claim

that the two classifications are different at a= 0.05.

If a high level of agreement was found, as indicated by high

percent agreement and high k, then resampling to 2.5-km a
posteriori could be considered a suitable and justifiable method for

smoothing the finer-scale variability.

Relationships between the regionalisation and
hydrologic indices

Finally, we tested the results of our classification against a

traditional classification based on hydrologic indices. Steps in this

section are outlined in grey in Figure 1. As a preliminary

assessment of the ability of the regionalisation to differentiate

among streams with differing hydrology, we calculated a range of

streamflow indices based on the recommendations of Olden and

Poff [57] and then explored the relationships between the regions

and streams with a permutation-based ANOVA (PERMANOVA)

[58] and a constrained discriminant ordination (Canonical

Analysis of Principal Coordinates (CAP); [59,60]).

Streamflow gauge locations were downloaded from the Water

Measurement Information System (data.water.vic.gov.au/moni-

toring.htm). These locations were then overlayed on the

regionalisation (30-m ALOC 23 meta-group classification, see

results) and had group (region) information appended to them. In

regions where there were more than 50 stream-gauges present, 50

were chosen at random to be included in the analysis. Daily

streamflow data between 1980 and 2010 was then downloaded for

564 gauges throughout Victoria. A minimum record length of 15

years within the 30-year temporal window was required for a

gauge to be included in the analysis [61]. Stream gauges that were

potentially subject to modification by weirs, dams or water

extractions were not specifically excluded from the analysis. Where

there were missing periods of flow information (to a maximum of

20 days in any single event) the record was in-filled using linear

interpolation [62] with the Time Series Manager module of the

River Analysis Package (RAP) [63]. Gauges that had a single

period of missing data greater than 20 days were excluded from

the analysis. Thirty-two indices characterising different aspects of

the flow regime (Table III, All Streams; [57]) for each stream were

calculated using the Time Series Analysis module of RAP. Indices

that were related to discharge (i.e. those divided by catchment

area) were not included in the analysis.

To test for differences among our groups, the PERMANOVA+
add-on [64] for PRIMER was used. One-way PERMANOVAs,

(999 permutations) using Group as a fixed factor, were run for the

dataset of flow indices based on the original gauges (n = 201) and

for an additional dataset consisting of a bootstrapped sample of

those flow indices (n = 383), based on normalised Euclidean

distance matrices. Analyses tested both for main effects and

pairwise differences among groups. Traditional Analysis of

Variance (ANOVA) is powerful for univariate data however the

traditional multivariate analogues (e.g. MANOVA), are too

stringent in their assumptions (in particular, that of multivariate

normality which is frequently untrue in ecological data [25,58]),

for use in ecology. As such, permutation-based non-parametric

methods are preferred [58]. PERMANOVA uses permutation

methods to test the simultaneous response of one or more variables

to one or more factors in an analysis of variance. The use of

permutations in PERMANOVA removes the assumption of

normal distributions which are required for traditional AN-

OVA/MANOVA testing and, as such, the only assumption of the

test other than independence is that the observations can be

exchanged under a true null hypothesis [58]. Another benefit of

using a permutation approach is that the permutated P-values

provide an exact test of each individual null hypothesis of interest,

and as such ad-hoc pairwise corrections (e.g. Bonferroni) are not

strictly necessary [64].

When data are classified into a priori groups, unconstrained

ordinations (PCA, MDS) are extremely useful for visualising

patterns from a multivariate space. However, the overall

dispersion of points (when reduced to two or three dimensions)

can often hide the true multivariate differences among those

groups and it may be very possible to discriminate among groups

through another direction or dimension of the multivariate data

[64]. Unlike unconstrained ordinations, constrained ordinations

have an a priori hypothesis which controls the way the

multivariate data can be interpreted in an attempt to relate

predictor variables (streamflows indices) to response variables

(groups) [60]. In a discriminant analysis, the ordination axes are

interpreted in such a way as to maximise the differences between a
priori groups, while in a canonical correlation, the axes are

interpreted to maximise correlations among variables. CAP first

calculates the principal coordinate axes (PCO) among N samples,

and then chooses an appropriate number of PCO axes (m) for

interpretation based on a number of criteria (see Anderson et al.

[64] for details), including a leave-one-out cross validation

procedure which attempts to maximise classification success. The

benefits of CAP over other constrained ordination methods are its

ability to use any distance or dissimilarity measure, conduct

permutation tests for significance of relationships among variables

and predict group membership of new samples [60]. To assess the

ability of our regionalisation to discriminate groups based on

streamflow indices, three CAPs were conducted using the

PERMANOVA+ add-on for PRIMER. Two of the analyses were

performed against the group information extracted for each

stream gauge using the same normalised Euclidean distance

matrices that were used in the PERMANOVA tests (i.e. the

original dataset and the bootstrapped dataset of hydrologic

indices). The number of axes (m) was not specified and a

permutation test (n = 999) was conducted to test the strength of

the relationship. In addition, a third CAP was conducted using the

bootstrap dataset where a stratified random sampling approach

was used to remove 20% of the group information as a validation

sample. The CAP was conducted as before, with the exception

being that the validation cases were allocated groups based on the

results of the CAP. Allocation accuracy by CAP was assessed by

calculating percent agreement between the CAP allocated group

and the original group information, and k coefficients with the irr
and psych packages in R. Pearson’s r [47] was calculated between

the between the number of gauges in each group and the number

of gauges classified correctly from each group to assess for

thresholds at which a specified level of accuracy could be achieved.

Results

Spatial distribution of sample points
Analysis of spatial distribution of the sampling points concluded

that the mean, minimum and maximum distances to the nearest

neighbour among the 30-m points were 2.4 km, 202 m and

8.8 km, respectively. The corresponding values for the 10-km

Hydrologic Regionalisation with Random Forests
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points were 15 km, 10 km, and 47.4 km, respectively. Ripley’s K,

based on 999 permutations, indicated significant over-dispersion of

the 30-m sample points to a distance of ,250 m and a significant

clustering at distances greater than ,650 m, while the 10-km

sample points were significantly over-dispersed at distances less

than ,12 km, but were significantly clustered at distances greater

than ,18 km. Based on these values, the spatial distribution of our

sampling points was considered suitable for the analyses as no

significant clustering was displayed by the sample points at the

resolution of the datasets they would be sampling (e.g. there was

no significant over-dispersion or clustering at the mean distance of

15 km for the 10-km points).

Clustering and ordination
Twenty-three groups were identified within the 30-m data

points and 20 groups for the 10-km data. As a result, the data were

allocated into 23 (ALOC 23: 30-m data) and 20 (ALOC 20: 10-km

data) non-hierarchical groups. There were wide variations in the

ability of the model variables to differentiate among clusters (Table

S2) and the group populations had differing multivariate

distributions. The allocated groups were well separated (Figure

S1) with global-R values of 0.852 (p = 0.001) for the ALOC 23

clustering and 0.908 (p = 0.001) for the ALOC 20 clustering,

indicating that cluster membership was highly unlikely to be a

result of chance alone. This was supported by the fact that neither

ANOMSIM resulted in any permutations that had R-statistics

greater than or equal to the global-R value.

The allocated groups were then further clustered into hierar-

chical meta-groups. Using the group averages for ALOC 23 and

ALOC 20, 11 and ten meta-groups were generated (Figure S1 and

Figure S2). ANOSIM analysis again indicated that cluster

membership was highly unlikely to be a result of chance alone

and suggested that the meta-groups for both the ALOC 23 and

ALOC 20 models were well separated with global-R values of

0.668 and 0.762 (p = 0.001). Again no permutations had R-

statistics that were greater than or equal to the global-R value.

Some variables exhibited no relationship between the observed

values and the meta-groups, while other variables show very clear

relationships to the meta-groups (Figures S3–S7). For example, the

values for the aridity index (low aridity index values represent drier

regions) and rainfall decreased from groups A to K. The opposite

relationship was observed for maximum and minimum temper-

atures, again suggesting as we move through regions A to K, the

environment becomes drier and warmer. The BioClim variables 8,

9, 15 and 16 also supported this relationship, with increases in

BIO08 and BIO09 (mean temperature of the wettest and driest

quarter, respectively), and decreases in BIO16 and BIO17

(precipitation of the wettest and driest quarters, respectively).

Variable percentage contributions to the meta-groups for both the

ALOC 23 and ALOC 20 classifications differed markedly (Table

S2, Figure S8) with, for example, saturated hydraulic conductivity

of the B soil horizon (B_KSAT) contributing 0% to a number of

ALOC 23 meta-groups, while contributing 46% to ALOC 23

meta-group F. The within-group variation was highly variable

among groups, with average squared distances of groups ranging

from 4.18 to 11.77 for the ALOC 23 meta-groups, and 4.44 to

13.45 for the ALOC 20 meta-groups (Table S2).

Ordination by PCA resulted in the creation of five principal

components (PC) for both ALOC 23 and ALOC 20, using a

minimum eigenvalue of one. The first PC for each of the ALOC

23 and ALOC 20 clustering explained 45% and 53% of the data

variance, with eigenvalues of 11.2 and 13.2, respectively (Table 1).

The five PCs combined explained 78% and 87% of the variance,

with the final PC having eigenvalues of 1.39 and 1.25, respectively.

PC 1 can be interpreted to represent those areas that are wet, cool,

heavily vegetated, high elevation environments with steep slopes

and low erodibility soils (Table 1, 0.2,r,20.2). With the

exception of PC 1, none of the PCs for either of the datasets

can be interpreted to represent similar environments across the

two classifications. For example, PC 2 of the ALOC 23 dataset can

be interpreted to represent areas with thick, weathered, A-horizon

soils with high levels of plant available water, with relatively small

variations in temperature seasonality and poorly developed B-

horizon soils. For the ALOC 20 dataset, on the other hand, PC 2

suggests areas of poorly developed A-horizon soils, but with thick

B horizon soils, and cooler, wetter summers.

Random Forests
Training and validation. Two hundred trees were sufficient

for the RF models to achieve acceptable accuracies. Exploratory

analysis, using models with 5000 trees (not presented) showed little

improvement in OOB error (,1%). OOB error rates were low for

the ALOC 23 and ALOC 23 PCA RF models, with estimated

maximum accuracies of 95% and 92%, respectively. The OOB

error rate of the ALOC 20, ALOC 20 PCA and the 100% ALOC

20 and 100% ALOC 20 PCA models (the latter two were created

due to the small sample size for the 10-km dataset as described

above) was significantly worse, with estimated accuracies of 59%,

56%, 56% and 54%, respectively (Figure 4).

Classification accuracy was 95% (k= 0.94) for the ALOC 23

classification and 92% (k= 0.92) for the ALOC 23 PCA

classification (Table S3) when tested against the validation dataset.

The accuracy of the ALOC 20 and ALOC 20 PCA classifications

decreased relative to those estimated by the RF OOB error, with

accuracies of 46% (k= 0.42) and 47% (k= 0.44) (Table S3). The

producer accuracies differed significantly for each of the classifi-

cations (Table S3), with observed minimum producer classification

accuracies of 81% for the ALOC 23 classification and 59% for the

ALOC 23 PCA classification. Likewise, the ALOC 20 and ALOC

20 PCA classification also exhibited low producer accuracies with

minima of 0% observed for a number of classes in each

classification. Visual inspection of the resulting classifications

showed few obvious differences among the various ALOC 23

classifications (Figure 5), but more differences were apparent

among the ALOC 20 classifications (Figure 6).

Comparisons between original, PCA and resampled

classifications. The class distributions of the RF and resam-

pled classifications illustrate that the RF classifications at 30-m and

resampled to 2.5-km (bottom row, Figure 5) were quite successful

in maintaining the distribution of the validation dataset (Figure 7).

All 10-km models were missing classes 7, 8, 12, 18, 19 and 20 from

the validation dataset (Figure 7), meaning that accuracy assess-

ment of these classes was not possible, although classes 7, 8, 12,

and 18 were present in the final classification (Figure 6). Class 1

tended to be over-classified by the ALOC 20 RF models, as

evidenced by the large number of validation points classified as

such (Figure 7). The ALOC 20 100% classification was also the

only classification to have classes 6 and 15 represented at the

validation locations.

Agreement between the ALOC 23 and ALOC 23 PCA

classifications was high at 93% (k= 0.93). There was no

statistically-significant difference between the two classifications

(x2 = 2.72, p = 0.1). Agreements for the ALOC 20 and ALOC 20

PCA classifications was lower than that observed for the ALOC 23

classifications, at 72% (k= 0.67), which was also non-significant

(x2 = 0.24, p = 0.63). This indicates that the classification based on

the five principal components captured the vast majority of the

Hydrologic Regionalisation with Random Forests

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112856



T
a

b
le

1
.

R
e

su
lt

s
o

f
P

ri
n

ci
p

al
C

o
m

p
o

n
e

n
ts

A
n

al
ys

is
.

A
L

O
C

2
3

A
L

O
C

2
0

P
C

1
P

C
2

P
C

3
P

C
4

P
C

5
P

C
1

P
C

2
P

C
3

P
C

4
P

C
5

Ei
g

e
n

va
lu

e
1

1
.2

(4
5

)
3

.2
6

(5
8

)
2

.0
7

(6
6

.3
)

1
.5

8
(7

2
.6

)
1

.3
9

(7
8

.2
)

1
3

.2
(5

2
.7

)
4

.0
4

(6
8

.9
)

1
.6

8
(7

5
.6

)
1

.5
8

(8
1

.9
)

1
.2

5
(8

6
.9

)

V
a

ri
a

b
le

A
_

K
SA

T
0

.1
4

0
.1

4
2

0
.4

2
2

0
.3

0
.1

8
0

.1
3

2
0

.2
2

0
.1

5
0

.5
3

0
.0

3

A
_

P
A

W
C

0
.0

1
0

.4
8

2
0

.1
8

2
0

.0
2

2
0

.1
2

0
.0

5
2

0
.4

5
0

.1
2

0
.1

2
0

.0
7

A
_

T
H

IC
K

0
.1

0
.4

5
2

0
.2

1
2

0
.1

2
2

0
.0

2
2

0
.0

4
2

0
.4

5
0

.1
2

0
.0

4
2

0
.1

2

A
R

ID
IT

Y
_

IN
D

EX
0

.2
9

0
.0

1
0

.0
4

0
.0

2
0

.0
3

0
.2

6
2

0
.0

9
0

2
0

.0
3

2
0

.0
2

B
_

K
SA

T
0

.1
5

0
.0

5
2

0
.4

2
0

.3
1

0
.2

0
.1

6
2

0
.2

2
0

.2
6

0
.2

9
2

0
.0

8

B
_

P
A

W
C

0
.1

2
2

0
.3

4
2

0
.0

9
2

0
.4

1
0

.2
6

0
.1

7
0

.1
8

0
.0

1
0

.4
7

0
.2

9

B
_

T
H

IC
K

0
.0

6
2

0
.3

8
0

.1
4

2
0

.3
8

0
.1

6
0

.1
0

.3
2

0
.1

0
.3

5
0

.4
2

B
IO

0
4

2
0

.0
8

2
0

.3
4

2
0

.2
9

0
.0

8
2

0
.3

9
2

0
.2

1
2

0
.0

1
2

0
.2

6
0

.2
6

2
0

.3
6

B
IO

0
8

2
0

.2
2

0
.0

5
2

0
.1

0
.2

0
.4

4
2

0
.2

5
2

0
.0

1
0

.1
9

0
.0

9
0

.0
7

B
IO

0
9

2
0

.2
4

2
0

.1
2

0
.1

7
2

0
.0

4
2

0
.1

9
0

.0
2

2
0

.2
6

0
.3

5
2

0
.2

6
0

.5
2

B
IO

1
5

0
.0

8
0

.1
4

0
.1

6
2

0
.4

3
2

0
.5

3
0

.2
6

2
0

.0
9

0
2

0
.1

1
0

.1

B
IO

1
6

0
.2

8
0

.0
3

0
.0

7
2

0
.0

5
2

0
.0

5
0

.2
6

0
.0

1
2

0
.1

9
0

.0
3

2
0

.1
3

B
IO

1
7

0
.2

7
2

0
.0

2
0

.0
3

0
.1

8
0

.2
3

2
0

.0
4

0
.3

8
0

.3
8

2
0

.0
8

2
0

.0
1

EL
EV

A
T

IO
N

0
.2

5
2

0
.1

4
2

0
.0

8
0

.0
4

2
0

.1
6

0
.2

4
0

.1
8

0
.1

1
2

0
.1

1
2

0
.0

1

ET
_

A
N

N
U

A
L

0
.2

4
0

.1
4

0
.2

8
0

.0
6

0
.1

0
.2

1
2

0
.1

2
0

.4
1

2
0

.0
9

0
.1

G
W

_
SW

L
0

.1
7

2
0

.0
8

2
0

.2
9

0
.0

9
2

0
.1

4
0

.2
3

0
.1

1
0

.2
0

.0
5

2
0

.2
4

G
W

_
T

D
S

2
0

.1
7

2
0

.1
2

0
.3

2
0

.0
8

0
.0

2
2

0
.1

6
0

.1
1

0
.4

1
0

.1
3

2
0

.2
5

LD
I

2
0

.1
1

2
0

.1
1

0
.1

6
2

0
.0

7
0

.0
5

2
0

.1
5

2
0

.0
8

2
0

.2
6

0
.1

8
0

.0
8

M
A

X
_

T
EM

P
2

0
.2

7
2

0
.0

5
2

0
.1

8
0

2
0

.0
7

0
.2

6
2

0
.0

9
0

.0
1

2
0

.0
3

0

M
IN

_
T

EM
P

2
0

.2
5

0
.0

8
2

0
.0

5
0

0
.1

5
0

.2
5

0
.0

2
0

.0
7

0
.0

8
2

0
.2

1

R
A

IN
_

A
N

N
U

A
L

0
.2

9
0

0
.0

4
0

.0
3

0
.0

2
0

.2
7

2
0

.0
2

0
.0

4
0

.0
1

2
0

.0
7

SL
O

P
E_

R
A

D
0

.2
3

2
0

.1
2

0
.2

0
.2

2
2

0
.0

3
2

0
.2

6
0

.0
9

0
.0

5
0

.1
2

0
.0

4

SO
IL

_
ER

O
S

0
.2

6
2

0
.0

7
2

0
.0

5
0

.0
9

0
.0

3
2

0
.2

4
2

0
.1

6
2

0
.0

7
0

.1
3

0
.0

1

T
W

I
2

0
.1

8
2

0
.0

1
0

.1
6

2
0

.2
7

0
.0

3
2

0
.2

3
0

0
.0

3
2

0
.0

6
0

.1

W
EA

T
H

_
IN

D
2

0
.1

6
0

.2
3

0
.1

2
0

.2
6

0
.1

4
2

0
.1

9
2

0
.1

7
2

0
.0

3
0

.1
1

0
.2

7

Ei
g

e
n

va
lu

e
s

ar
e

p
re

se
n

te
d

in
th

e
to

p
ro

w
w

h
ile

th
e

n
u

m
b

e
rs

in
b

ra
ck

e
ts

re
p

re
se

n
ts

th
e

cu
m

u
la

ti
ve

%
va

ri
an

ce
e

xp
la

in
e

d
b

y
th

e
P

C
A

.
B

o
ld

n
u

m
b

e
rs

in
d

ic
at

e
va

ri
ab

le
s

w
it

h
a

co
rr

e
la

ti
o

n
$

0
.2

o
r

#
2

0
.2

w
h

ic
h

w
as

u
se

d
fo

r
P

C
in

te
rp

re
ta

ti
o

n
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
1

2
8

5
6

.t
0

0
1

Hydrologic Regionalisation with Random Forests

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e112856



Figure 4. Out-Of-Bag (OOB) percent accuracies for the ALOC clusterings as classified by Random Forests. The 30-m ALOC 23 and ALOC
23 PCA models were significantly more accurate than the 10-km ALOC 20 classifications.
doi:10.1371/journal.pone.0112856.g004

Figure 5. Results of the ALOC 23 (30 m) classifications. Top row - ALOC 23 and ALOC 23 PCA; Bottom row - ALOC 23 and ALOC 23 PCA
resampled to 2.5 km. Colours represent each of the ALOC non-hierarchical clusters. Similar colours and cluster numbers do not necessarily represent
related groups.
doi:10.1371/journal.pone.0112856.g005
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variability among points at the 30-m scale, and most of the

variability at the 10-km scale.

Visual inspection of the resampled classifications (bottom row,

Figure 5) showed very similar results to the original 30-m

classifications. Agreement between the resampled ALOC 23

classification and the original 30-m classification was high (92%,

k= 0.92) and an accuracy of 91% (k= 0.9) was observed with the

300 randomly chosen points from the validation dataset. This was

a 4% difference in accuracy to the original 30-m ALOC 23

classification. However, McNemar’s test suggested the difference

in classification accuracy was statistically significant (x2 = 12.56,

p,0.001). As the two classifications are not independent, the

permutation test was also used to compare the two. This supported

the results of the McNemar’s test and a permutated k difference of

0.062 was deemed significant (p,0.001). The ALOC 23 PCA

resampling results were similar, with a relatively high agreement

with the original 30-m PCA classification (88%, k= 0.87), and

87% (k= 0.86) agreement with the validation dataset, a 5%

difference compared to the original ALOC 23 PCA classification.

These differences were also statistically significant (McNemar’s

test, x2 = 11.76, p,0.001; permutation test, k difference = 0.073,

p,0.001). Agreement was quite high between the 2.5-km

resampled ALOC 23 and 2.5-km resampled ALOC 23 PCA

classifications (93%, k= 0.92), however unlike the 30-m classifica-

tion results, when comparing the agreement between the two

resampled classifications McNemar’s test suggested the results

were significantly different (x2 = 5.88, p = 0.015). As these two

classifications were independent of one another the permutation

test was not required.

Once the classification assessment was finalised, the meta-group

allocations were appended to the classifications. The ALOC 23

meta-group allocations were examined visually (Figure 8) and

were deemed suitable given that regions having similar groups (e.g.

A and B, represented by distinct colours in Figure 8) exist in

similar areas among the two classifications and show quite obvious

spatial relationships. While the performance of the ALOC 20

models was weaker, the meta-group assignment results were

similar to those observed for the ALOC 23 classification in that

similar meta-groups existed closer spatially (not presented).

Spatial variability in western Victoria
The variability of model results was not uniform across the

entire Glenelg-Hopkins case-study region (Figure 9). While the

eastern and central parts of the region appeared to be relatively

spatially uniform (i.e. they do not show a significant amount of

variation in ALOC groupings); the western and north-western

parts of the region are comprised of a number of ALOC classes.

This suggests that the hydrological system varies spatially across

Figure 6. Results of the ALOC 20 (10 km) classifications. Top row - ALOC 20 and ALOC 20 PCA; Bottom row - ALOC 20 (100%) and ALOC 20
PCA (100%). Note that not all ALOC clusters are present in the final classifications. Colours represent each of the ALOC non-hierarchical clusters.
Similar colours and cluster numbers do not necessarily represent related groups.
doi:10.1371/journal.pone.0112856.g006
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the region, with the most variability likely occurring in the western

half of the catchment.

The meta-group classifications support the idea that there was a

difference in the hydrological systems of the three major

catchments of the Glenelg Hopkins region (Figure 10). Interest-

ingly, the amount of spatial variation did not decrease when the

meta-group assignments of the original ALOC classes were

examined, suggesting that hydrologic responses could be very

different in areas that are quite close together. In the Glenelg

River catchment (Figure 10, shown in red), there is obvious spatial

variation in the assigned hydrological classes. Of particular interest

are the two catchments in the north-east of the catchment that

contain Rocklands Reservoir and the majority of the Grampians

ranges, as they each consist of five different hydrological meta-

groups (E, F, H, I & J). Even though the meta-groups represented

in those particular catchments occupy a small area, they are still all

present in the resampled classification (Figure 10, bottom row).

While the differences were less pronounced in the Hopkins River

catchment (Figure 10, outlined in blue), there was some spatial

variability in classes in the north (dominated by meta-group I, with

some small patches comprised of meta-group E), while most of the

catchment belongs to group I and the two southernmost

catchments belong to meta-group G. There was even less variation

in the classification of the Portland catchment (Figure 10, outlined

in green) with meta-group I dominating that catchment. None-

theless, there were small areas of groups F and J in the south-west

catchments of the catchment. Visual examination of the PCA and

the resampled classifications showed little difference to that

observed in the original 30-m classifications. The most obvious

change was the small area in the southern catchment of the

Hopkins River catchment (outlined in blue), and the easternmost

parts of the Portland catchment (outlined in green), that was

classified as meta-group J in the PCA classifications.

Figure 7. Class distributions from the final classified images. The 20% validation points were used to extract class information from the
classified images. The resulting figure shows that the ALOC 23 classifications were much better at maintaining the class distribution of the validation
dataset (shown above in red) than the ALOC 20 classifications.
doi:10.1371/journal.pone.0112856.g007
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Relationships between the regionalisation and
hydrologic indices

A total of 201gauges were deemed suitable for inclusion in the

analysis based on the criteria specified above. With the exception

of groups A, K and H, all regions had multiple suitable gauges.

There were significant differences among groups based on their

hydrologic indices for both the original (pseudo-F1,7 = 3.655,

p = 0.001) and the bootstrapped datasets (pseudo-F1,7 = 9.304,

p = 0.001). A posteriori pairwise comparisons of groups using the

original dataset indicated that the differences were significant (p#

0.05) between all groups with the exception of pairs B:E, C:D, C:E

and F:I. The pairwise comparisons on the bootstrapped dataset

were all significant (p,0.05).

The ability of CAP to correctly classify cases within the original

dataset based on their hydrologic indices was relatively poor, with

only 92 samples correctly classified, but the model was statistically

significant (48%, m = 30, p = 0.001). Stream gauges from meta-

group C had the lowest classification accuracy with only 10% of

gauges being successfully allocated. The highest classification

accuracy was observed for both meta-groups B and G, with 67%

of gauges correctly allocated to each. The bootstrap dataset

performed better with 253 samples being correctly classified (66%,

m = 28, p = 0.001). The lowest classification accuracy was observed

for meta-group E with only 47% of gauges being correctly

allocated. The highest classification accuracy was meta-group I

with 74% of gauges correctly allocated.

When 20% of cases were used as a validation sample within the

bootstrapped dataset, CAP performed reasonably, with 208 of the

gauges correctly classified (67%, m = 32, p = 0.001). The lowest

classification accuracy was observed for meta-group J with 58% of

gauges being correctly allocated. The highest classification

accuracy was meta-group F with 77% of gauges correctly

allocated. Agreement between the samples that were allocated to

new groups and their original group was relatively high at 60%

(k= 0.53). The lowest successful group allocation was observed for

meta-group E where only 20% of gauges were correctly classified.

The highest allocation accuracy was observed for meta-group D

where 100% of gauges were correctly classified.

Pearson’s correlation indicated there was a statistically-signifi-

cant positive relationship between the number of gauges in each

group and the number of gauges classified correctly from each

group (Figure S9) for the original (r = 0.91, p = 0.002, n = 8), the

bootstrapped dataset (r = 0.93, p = 0.001, n = 8), and the boot-

strapped dataset with the validation samples (r = 0.96, p,0.001,

n = 8). This indicated that the model was most likely to correctly

classify groups that were common in the dataset, with uncommon

groups being correctly classified less often. All classifications

performed highly favourably compared to a random allocation of

Figure 8. Results of the ALOC 23 (30 m) meta-group allocations. Top row - ALOC 23 and ALOC 23 PCA; Bottom row - ALOC 23 and ALOC 23
PCA resampled to 2.5 km. Colours represent each of the hierarchical meta-groups as defined by SIMPROF. Similar colours and group letters indicate a
closer relationship than those further apart.
doi:10.1371/journal.pone.0112856.g008
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cases among 11 groups which, assuming equal sample sizes, results

in 9% of cases being correctly classified.

Discussion

By incorporating a number of environmental variables likely to

influence regional hydrology and a range of non-parametric

statistical and classification methods, this study aimed to generate

a hydrologic landscape classification that did not require the use of

an a priori selection of a spatial unit such as a catchment. The

main objective of the approach was to see whether it was possible

to create a classification that could preserve the environmental and

hydrological variability that are known to influence streamflows

within and between catchments that has typically been lost in

previous regionalisation studies. An analysis of the ability of the

classification to differentiate between streams from each group

based on a number of streamflow indices was also undertaken.

Difference to previous regionalisation studies
Inductive methods of hydrologic regionalisation have been

popular in the past (see Table 2 in Olden et al. [9]) and, while

there have been a number of studies that have focused on

deductive methods (see Table 1 in Olden et al. [9]), the choice of

variables, their resolution (temporal and spatial), the classification

method, the spatial scale of the classification and the number of

groups are all known to influence deductive classifications [9,14].

While the final product of deductive methods is a spatial mosaic of

independent hydrologic types, the final classifications do not

always only identify hydrologic variation [10,12]. Inter-catchment

variability can limit the applicability of hydrologic regionalisations

to generalise and predict catchment behaviour as a function of

climatic and environmental gradients [14]. As previous studies

have relied on catchments, landscape units or stream sections

[8,9,14,19], an issue that is more apparent in deductive

regionalisation studies is the loss of small-scale spatial hydrologic

variability [6,16] as the unit of analysis gets larger. Our method

relied on using an accurate supervised image classification method

to extend our statistical clustering to an area covering ,228,000

km2 without the need to rely on catchments, landscape units or

stream sections. We opted for this approach as it is well known in

the literature that there is significant flow variability within and

among catchments and that the variables governing flow

Figure 9. Results of the ALOC 23 (30 m) classifications for the Glenelg Hopkins region. Top row - ALOC 23 and ALOC 23 PCA; Bottom row
- ALOC 23 and ALOC 23 PCA resampled to 2.5 km. Colours represent each of the ALOC non-hierarchical clusters. Similar colours and cluster numbers
do not necessarily represent related groups. More spatial variability in the ALOC clusters is obvious in the Glenelg catchment (western and NW side),
than that in the Hopkins (eastern) and Portland (south central) catchments.
doi:10.1371/journal.pone.0112856.g009
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variability are dependent on scale [13]. While other regionalisa-

tion studies have identified that the primary drivers of catchment

function are largely related to climatic gradients [14], our results

suggest that a mixture of climatic, geological and environmental

functions are driving catchment, and thus hydrologic, variability

(Table S2, Figure S8) in our regionalisation. It would be expected,

in a traditional approach to hydrologic regionalisations, that some

of this variability would be lost – which could explain why other

studies have largely identified climatic gradients that vary slowly

with space to be the primary drivers of catchment function. Our

approach allows for different classes to be represented within a

single catchment, thus preserving intra-catchment variability.

Statistical evaluation, clustering, and PCA
Traditional parametric statistical analyses and clustering algo-

rithms such as k-means tend to have restrictive assumptions

regarding independence of samples, multivariate normality and

collinearity. The assumption of samples being distributed normally

through multivariate space, for example, is unlikely to be true in

most ecological and environmental datasets [25]. The approach

that we employed relied on the use of non-parametric and

permutation-based statistical methods in conjunction with the RF

classification algorithm. This approach had far fewer assumptions

relating to data normality and collinearity [27,44,45]. The

approach also allowed the decision regarding the number of

groups used in the analysis to be statistically-justified, when this

decision is typically arbitrary. Our method was supported by the

application of both ANOSIM and MDS to assess group

separation, with each suggesting that the groups were distinct

and that we had chosen an appropriate number of groups for our

dataset. While not perfect (SIMPROF, by design, tests for

hierarchically-related groups and we were after non-hierarchical

groups), we believe this approach to be simpler, more statistically

sound and more efficient than methods employed in the past

which require large amount of a posteriori or post-hoc statistical

testing [10,19].

The use of PCA-transformed data was shown not to

significantly affect the classification accuracy of the model, even

though the PCA was only able to explain ,80% of the data

variability (Table 1, ALOC 23 PCA). This suggests that future

Figure 10. Results of the ALOC 23 (30 m) meta-group allocations for the Glenelg Hopkins region. Top row - ALOC 23 and ALOC 23 PCA;
Bottom row - ALOC 23 and ALOC 23 PCA resampled to 2.5 km. Colours represent each of the hierarchical meta-groups as defined by SIMPROF. Similar
colours and group letters indicate a closer relationship than those further apart. More spatial variability in the meta-groups is obvious in the Glenelg
catchment (shown in red), than that in the Hopkins (blue) and Portland (green) catchments.
doi:10.1371/journal.pone.0112856.g010
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classifications could be conducted on PCA-transformed datasets

while still producing accurate classification schemes. Our method

has essentially shown that it is possible to extract the same number

of groups from PCA-transformed data as it was from the non-PCA

transformed data. However, using PCA from the beginning has

the potential to influence the number of groups identifiable by

SIMPROF (as there are fewer data and less variance in the

remaining data) and therefore influence the overall classification

process. Using PCA could, however, make the process more

efficient in that having a reduced number of groups to begin with

could remove the need to first use non-hierarchical classification

before hierarchically classifying the groups. The major benefit of

using PCA-transformed data in this study was that the time to

parameterise and classify the raster data with RF was substantially

reduced.

Classification by Random Forests
The non-parametric and highly accurate [27,48] RF classifier

was very successful in recovering and classifying the ALOC class

information of the remaining pixels in the raster datasets. While

the ALOC 23 RF models had very high classification accuracies

(95%, k= 0.94 and 92%, k= 0.92), our hypothesis that the

classification of the coarser datasets would be inferior was

confirmed by the low accuracies of the ALOC 20 classifications

(46%, k= 0.42 and 47%, k= 0.44). As our sampling density was

severely limited by pixel size in the 10-km models, this further

supports previous research showing that the overall and per-class

accuracy of supervised classifications can be limited by pixel size

[39,40]. While the RF classifier has been shown to be robust

against statistical noise and training data reduction [48], it is

possible that, in this case, there were simply not enough training

sites to allow for the creation of an appropriate model at the 10-km

scale. This analysis used only 325 training sites (80% of n = 406

10-km sample points) to try to produce a classifier for 20 classes

and another 33% of the training site data was excluded for OOB

accuracy assessment [48]. This left the RF algorithm with only 215

points to generate the required classification trees. The two ALOC

20 100% models used 268 points (66% of n = 406 10-km sample

points) to create an RF model but still performed poorly with

OOB error rates limiting accuracies to 56% and 54%. As all

classes were included in training data for the ALOC 20 100%

models, their omission from the final classification (Figure 6 & 7)

suggests that they, by chance, happened to be excluded from the

training data selected by the bootstrapping step used to calculate

OOB error. This could partly explain the high OOB error rates

observed for those models. The missing classes from the ALOC 20

classifications (Figure 7, Table S3) could be similarly explained,

although it is also possible that they were excluded randomly from

the 80% training data at the previous step. As expected, the

exclusion of data, either manually for validation purposes or

automatically by RF to enable an OOB estimate, appeared to

severely limit the classification accuracy when using small amounts

of training data [48]. This further supports our hypothesis that

limiting the study to a 10-km resolution based on a single, coarse

dataset would influence the results presented here, particularly as

this study was conducted over a relatively small area. If the study

had been conducted at a continental scale, for example, it would

be possible to generate more than 15,500 random points at a

minimum distance of 10 km and, therefore, resampling the same

datasets to a finer resolution (to avoid sub-sampling of pixels)

would not be necessary.

The resampling of the ALOC 23 models from a 30-m to 2.5-km

resolution appeared to remove some of the finer-scale spatial

variability in the classifications (Figures 5 & 8). While not

appearing to constitute a significant change between the original

and resampled classifications (percent agreements between the

resampled and original classifications were 92% (k= 0.92) for the

ALOC 23 model and 88% (k= 0.87) for the ALOC 23 PCA

model), the results of both McNemar’s test and the permutation

test indicated that the resampled classifications were significantly

different from their equivalent 30-m classifications. This may seem

like a serious drawback to the method, however, when compared

to the validation dataset the accuracy of the 2.5-km ALOC 23

classification was only 4% less than that observed for the 30-m

model, while the accuracy of the 2.5-km ALOC 23 PCA

classification was only 5% less than that of the 30-m PCA model.

While statistically the difference may be deemed significant, we

contend that in reality a difference of #5% would likely not be

ecologically or environmentally important and thus, would not

affect the ability of the method to create a hydrological landscape

classification that could be used to explain spatial differences in

streamflow metrics. Additionally, the resampling step was

performed a posteriori and therefore may not actually be necessary

in all cases.

Case study on spatial variability in western Victoria
The spatial variability in the classification of the Glenelg

Hopkins region was most evident in the Glenelg catchment, and

less so in the Hopkins and Portland catchments (Figure 9 & 10).

Spatial hydrologic variability has been observed in a number of

studies in the past and the strongest and most variable

relationships between environmental factors and water quality

and quantity have consistently been found in the Glenelg

catchment. Brown et al. [17] found that the Glenelg catchment

exhibited the most variability in the relationships between climate,

land use and wetland extent, which may help to explain some of

the variability observed here. Relationships explored in the past

relating the proportion of native vegetation to in-stream salinity

[35] showed strong relationships in the Glenelg and Portland

catchments, but less evidence for the same relationships in the

Hopkins catchment and it was suggested that this may have been

due to the degraded nature of the catchment. The degraded

nature of the Hopkins catchment could also explain the lack of

variability observed in that catchment in this study. A spatially-

varying relationship between nutrient exports and land use has

also been observed in the Glenelg Hopkins region [34] although,

due to the lack of suitable stream-gauge data, it is not clear

whether this relationship holds for the streams and rivers of the

region. However, the relationships in the region that have been

described in the past [17,34,35] are likely to be complicated due to

variations in geomorphology, groundwater levels and salt concen-

trations [36]; conditions that we have attempted to account for in

this study. Water resource managers in the region need to take into

account possible differences in intra- and inter-catchment hydrol-

ogy that could drastically affect river management and restoration

plans and regionalisation studies such as the one presented here

could assist in identifying that variability.

Relationships between the regionalisation and
hydrologic indices

Understanding, and being able to accurately predict, streamflow

characteristics in ungauged locations is crucial for ecohydrological

and other studies [2,6]. Our method set out to test a new approach

to hydrological regionalisation that removed the need for

catchments as a spatial unit of analysis for our statistical clustering

[6,8,14]. However, the ability to link the results of the

regionalisation to streamflow indices could have presented an

issue given that we did not rely on catchments as a spatial unit.

Hydrologic Regionalisation with Random Forests
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The results supported our hypothesis that our method would be

able to identify and preserve inter- and intra-catchment variability.

Pairwise comparisons suggested that, even in the original dataset

(n = 201), there was enough variability in our 32 streamflow

indices to separate all but four pairs (of a total of 28 pairs). A

simple bootstrap (with replacement) to n = 383 gauges was

sufficient for all groups to be easily identified as distinct suggesting

there is a minimum number of gauges for the approach to be

reliable (likely to relate to the number of each individual class in

the dataset). In addition, CAP demonstrated that the regionalisa-

tion was able to discriminate among streams from different groups.

While the classification was not perfect, the analysis conducted on

the bootstrap datasets indicated that the stream gauges could be

classified correctly significantly better than chance alone, and that

gauges from one class could be correctly classified 100 percent of

the time. In general, common classes were correctly classified

more frequently than uncommon classes. While the correlation

between the number of gauges in each class and the number of

correctly-allocated samples was significant, there was no clear

threshold (i.e. the relationship was linear), so it is difficult to

identify a single minimum number of gauges that could be

implemented to ensure that results met pre-defined criteria for

reliability. Therefore, future users should interpret results for rare

groups with caution. However, we believe that, based on this

preliminary assessment of our method, the results illustrate that

there is promise in the method for categorising regions,

particularly in the absence of comprehensive streamflow data as

is the case in many regions in Australia and elsewhere. Further

investigation of the validation (i.e. linking the regionalisation to

streamflow indices) using more in-depth data mining approaches

(e.g. decision trees [49]) is likely to produce even greater

classification success.

Conclusions

Hydrologic classifications are increasingly being employed in

the management and research of aquatic resources. Our approach

differed from inductive hydrological regionalisation where mem-

bership is defined quantitatively based on metrics of stream flow,

and traditional deductive regionalisation which require the use of

catchments or other appropriate spatial units. Instead, member-

ship of pixels was defined qualitatively with the random forest

classifier based on a statistical classification of a number of

environmental variables that we believe could have a direct

influence on the hydrologic cycle. In essence, we present a method

that allowed the creation of spatially-independent hydrological

regions; these regions represent a series of fundamental hydrologic

landscape units that exist in multiple locations depending on

environmental similarity rather than a combination of environ-

ment and streamflow-metric response similarity. To our knowl-

edge, the application of deductive reasoning and hybrid classifi-

cation is a novel approach in hydrological regionalisation. This

method has removed the need to rely on a spatial unit specified a
priori, such as a catchment or ecoregion, and has allowed the

preservation of intra-catchment variability. Thus, it should be

useful in the spatial explanation and prediction of streamflow

responses that are known, or suspected, to vary within catchments.

The ability of our regionalisation to discriminate among streams

from different groups based on their range of flow indices

highlights the value of this approach, particularly in regions where

streamflow data are lacking.

Supporting Information

Figure S1 MDS Analysis plots for the ALOC 23 and
ALOC 20 models. Top row shows the ALOC 23 and ALOC 20

groups, while the bottom row shows the ALOC 23 and ALOC 20

meta-group plots. Legends in the top row represent the meta-

groups.

(PDF)

Figure S2 ALOC 23 and ALOC 20 dendrogram demon-
strating the hierarchical relationships between the non-
hierarchical groups as defined from the ALOC group
averages using SIMPROF. Letters in green represent the

meta-groups each combination of non-hierarchical groups belongs

to.

(PDF)

Figure S3 BioClim variable distributions across each of
the ALOC 23 meta-groups.

(PDF)

Figure S4 Groundwater variable distributions across
each of the ALOC 23 meta-groups. Note that observations

..30,000 are missing from GW_TDS.

(PDF)

Figure S5 Landscape variable distributions across each
of the ALOC 23 meta-groups.

(PDF)

Figure S6 Soil variable distributions across each of the
ALOC 23 meta-groups.

(PDF)

Figure S7 Climate variable distributions across each of
the ALOC 23 meta-groups.

(PDF)

Figure S8 Variable contribution to each of the hierar-
chical meta-groups calculated using SIMPER on a
standardised Euclidean distance matrix. Any variables

contributing ,5% to the variance were pooled together and are

represented by ALL_OTHER_VARS. Missing groups contained

only one ALOC cluster and therefore % variable contribution

could not be calculated with SIMPER.

(PDF)

Figure S9 The correlation between the number of
samples from each class and the number of samples
correctly classified by CAP was highly significant, with
the linear relationship between the variables for each
sample illustrated in the figure. However, as the relationship

was linear there was no clear threshold suggesting a minimum

number of gauges needed to guarantee an acceptable level of

accuracy. The CAP on the original dataset (n = 201) was quite

poor (classification accuracy = 48%, m = 30, p = 0.001), while the

bootstrapped dataset (n = 383) was a significant improvement

(classification accuracy = 66%, m = 28, p = 0.001). CAP on the

bootstrap dataset with a 20% validation sample also performed

reasonably (classification accuracy = 67%, m = 32, p = 0.001).

(PDF)

Table S1 The variables used in the creation of the
hydrological regionalisation. A number of variables describ-

ing the storage, transport and release of surface water, ground-

water and atmospheric water were included in the analysis. * The

DTM data was resampled to 30 m to enable geo-TIFF

compatibility with ENVI 4.8.

(PDF)
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Table S2 SIMPER results from PRIMER 6. Numbers
represent % contribution of each of the variables to the
ALOC 23 and ALOC 20 meta-groups on a standardised
Euclidean distance matrix. Blank columns are meta-groups

that only contained 1 ALOC cluster and therefore % contribution

could not be calculated using SIMPER. KW = Kruskal-Wallis

statistic, with higher values indicating a better ability of that

variable to discriminate between clusters. All KW values were

significant at p,,0.001. See Figure S9 for a graphical

representation of this table.

(PDF)

Table S3 Total accuracies and kappa statistics for the 4
RF classified models, and producer and user accuracies
for each of the classes defined by the ALOC algorithm as
classified by RF. N/A indicates groups that were missing from

the classified dataset as a result of exclusion from the samples used

to train the RF model. In some cases, groups were absent from the

80% training data, while others were excluded by the bootstrap

aggregation step used to train the RF models.

(PDF)

Code S1 S_perm_test.R: R code for running the permu-
tation test for testing for differences between the
resampled and original classifications.
(R)

Data S1 S_Kappa_ALOC23.csv: CSV file with 4 col-
umns. The first column is the point ID from the random

subsample used for comparisons between the original and

resampled classifications, the remaining columns are the ‘‘true’’

class from the ALOC clustering, the class extracted from the

location of the 30-m RF classification, and the class extracted from

the 2.5-km resampled RF classification.

(CSV)
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