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Abstract 

In this paper, we investigate the adjacency matrix of (a, d)-edge antimagic vertex graph 
and use this graph to construct other super edge magic total graphs with the same edge
weight set. Additionally, by combining known super edge magic total labeled graphs, we 
give a construction for a new super edge magic total graph. 
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1 Introduction 

Let G be a finite simple undirected graph. The set of vertices and edges of a graph G will 
be denoted by V(G) and E(G), respectively, v = IV(G) I and e = IE(G)I. For simplicity, we 
denote V(G) by V and E(G) by E. 

A labeling of a graph G is a mapping that carries a set of graph elements into a set of numbers 
(usually positive integers), called labels. Kotzig and Rosa in 1970 introduced edge magic total 
labeling [5]. 

An (a, d)-edge antimagic vertex (EAV) labeling is a one-to-one mapping f from V onto the in
tegers 1,2, ... ,v with the property that for every xy E E, the edge-weight set {f(x) + f(y)lx, y E 

V}={ a, a + d, a + 2d, ... , a + (e - 1 )d} for some positive integers a and d. A graph that has 
an (a, d)-edge antimagic vertex labeling is called an (a, d)- edge antimagic vertex graph. Since 
in this paper, we only consider the case of d = 1, then for simplicity we denote (a,l)-EAV 
graph as EAV graph. 

An edge magic total (EMT) labeling is a one-to-one mapping f from VuE onto the integers 
1,2, ... ,v·+ e with the property that for every (x, y) in E, f(x) + f(y) + f(xy) = k for some 
constant k. A graph that has an edge magic total labeling is called an edge magic total 
graph. An edge magic total labeling is called a super edge magic total (SEMI) labeling if 
f(V) = {I, 2, ... , v} and a graph that has SEMT labeling is called a SEMT graph. 



Research in SEMT labeling has been particularly popular during the last decade. For details, 
see the Gallian's dynamic survey [4]. There are many open problems, some of which will be 
listed in the conclusion of this paper. 

Concerning SEMT graph, researchers usually concentrate on some specific class of families of 
graphs, such as trees, cycles, bipartite graphs, friendship graphs, wheels, generalised Petersen 
graphs. See [2, 3, 5, 6, 7, 10]. In this paper, we use the adjacency matrix of a known SEMT 
graph to construct other labeled graphs with the same edge-weights set. Additionally, we 
give a construction of new graphs by combining several graphs that have SEMT. Adjacency 
matrix methods have been used to generate a super (a, I)-EAT graph in [11]. However, this 
is the first time that adjacency matrices are used to generate SEMT graphs. 

2 Adjacency matrix 

Let G = (V(G), E(G)) be a graph and f be an EAV labeling of G. Let V = {Xl, X2, ... , Xv} be 
the set of vertices in G with the labels {I, 2, ... , v}. Let A be an adjacency matrix of G, then 
the rows and columns of A can be labeled using 1,2, ... ,v. A is symmetric and every skew
diagonal (diagonal of A which is traversed in the "northeast" direction) line of matrix A has 
at most two "I" elements. The weights set {J(x) + f(y) : X, y E V} generates a consecutive 
integers a, a + 1, ... , a + e - 1 for some positive integer a. The weight f(x) + f(y) is the same 
as the sum of labels of vertices on skew diagonal adjacency matrix that has "I" element. 

A graph that has an EAV labeling and has the maximum possible number of edges is called 
maximal EAV graph. If G has a maximal EAV labeling then a = 3. Enomoto et al. [2] proved 
that the maximal number of edges in a SEMT graph is 2v - 3. 
Let A = (aij) be an adjacency matrix of a maximal EAV graph G. We can easily see that 
I{alj : alj I- O,j = 1, ... ,v}1 = v -1 and I{ail : ail I- O,i = 1, ... ,v}1 = v -1. Note that avv 

is counted twice. Thus the maximal width of the band of non-empty skew diagonal line is 
2v - 3. 

Let A be the adjacency matrix of an EAV graph G of order v. If we move the element "I" of 
A along the skew-diagonal line, then this matrix is an adjacency matrix of an EAV graph that 
has the same weights set as A. Two graphs G and G* are EA V-equivalent if G* is obtained by 
the previous technique of moving the "I" element from G. Note that EAV-equivalent graphs 
are not necessarily isomorphic with respect to the graph structure and/or to the vertex labels. 
Figure 1 shows an example of generating a new maximal EAV graph from an old one. Graph 
G* is obtained from graph G by moving the element "I" from position (1,4) to position (2,3) 
in the same skew-diagonal line. 
Baca et al. [1] proved that if G has an EAV labeling then G has SEMT labeling. Thus, in 
this paper, we consider an adjacency matrix of an EAV graph. 

Another known result for maximal SEMT labeling is given in the next section. 
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Figure 1: Generating a new EAV graph. 

3 Maximal SEMT labeling 

Figure 2 gives all maximal EAV-equivalent graphs with the one in Fig 1. Using the computer 
search we can find all possibilities of maximal EAV-equivalent graph from a given EAV graph 
with small order. Table 1 gives the result of the searching. Sugeng and Miller in [11] showed 
that the number of maximal EAV-equivalent (both connected and disconnected) graphs with 
size v is 

• (V-31)4(V-I)3 for v odd 
2· 2' , 

2 3 4 4 3 2 4 3 2 2 3 4 

3 5 

5 2 __ ----1.3 4 __ --. 3 

2 4 4 5 2 

Figure 2: Maximal EAV-equivalent graphs on 5 vertices. 
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v Connected EAV -equivalent Disconnected EAV -equivalent 
5 8 0 
6 48 0 
7 420 12 
8 4896 288 

Table 1: Maximal EAV-equivalent graphs on v vertices. 

MacDougall and Wallis [9] studied SEMT maximal graphs. They called SEMT a strong 
edge-magic-totallabeling. They proved the following propositions: 

Proposition 1 [9] Any SEMT labeling for a graph of order v can be obtained from any other 
by a sequence of single edge replacements. 

This proposition is the same as our technique of moving the "I" element along the skew
diagonal line of the adjacency matrix of a EAV graph. 

Proposition 2 [9] Every maximal SEMT graph of order v can be extended to one of order 
v+ 1. 

Proposition 3 can be generalised to the following theorem, giving a new SEMT graph from 
two known maximal SEMT graphs. 

Theorem 1 [9] Let Gl and G2 be any maximal SEMT graphs of order v and w , respectively. 
Then there are SEMT graphs of orders v + w - 2, v + w - 1, and v + w, each of which contains 
G1 and G2 as induced subgraphs. 

Considering the new maximal SEMT graph G with order v + w like in the above theorem, 
then we have the following observation. 

Observation 1 If G1 and G2 are maximal SEMT graphs order v and w respectively, then 
we can construct a new maximal graph G with order v + w. 

Next, we give new results on maximal SEMT labeling of regular graph. 

Proposition 3 If an r-regular graph G is a maximal SEMT graph then the number of vertices 
v is equal to 2,3 or 6 and 

• if v = 2 then r = 1, or 

• if v = 3 then r = 2, or 

• if v = 6 then r = 3. 

Proof. ·If G is an r-regular maximal SEMT labeling then T2V = 2v - 3. It follows that v16 . 

Thus, v is equal to 2,3 or 6. 0 

The I-regular graph with two vertices is K2 and the 2-regular graph with three vertices is 
cycle C3. It is known that K2 and C3 are SEMT graphs. Figure 3 gives EAV 3-regular graph 
on 6 vertices. 
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Figure 3: Maximal EAV 3-regular graph on 6 vertices. 

4 Non-maxinlal SEMT graph 

In this section, we show how the adjacency matrix of an EAV graph can be used for manip
ulating a given non-maximal SEMT gTaph. 

0 0 I 0 0 1 I 0 

0 0 0 1 I 

/> 
0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

4 2 5 3 I 4 2 5 3 

• • • • • ~ 9 8 7 6 

12 
Non-maximal graph 7 

Maximal graph 

Figure 4: Expanding non-maximal SEMT graph on 5 vertices. 

Theorem 2 Any non-maximal SEMT graph can be extended to a maximal SEMT graph. 

Proof. 

If G is a non-maximal SEMT graph of order v, then its adjacency matrix A has v rows and v 
columns but only p < 2v - 3 non-empty skew-diagonal lines. Putting element "1" in 2v - 3 - p 
empty skew-diagonal lines, we obtain a maximal SEMT graph. 0 

Since the composition of edge in the graph has changed, then the edge labels for the new 
graph will also change. Figure 4 illustrates a maximal SEMT labeling extending a non
maximal SEMT graph of order 5. We can see that P5 is not a maximal SEMT graph. It has 
only 4 edges. To extend P5 to a maximal SEMT graph, we need 3 more edges. 
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Theorem 3 Let GI and G2 be any non-maximal SEMT graphs of order v and w respectively. 
Then there exists an SEMT gmph of order v + w which contains GI and G2 as induced sub 
graphs. The minimum number of additional edges needed is 2v - 1 + min {wt( ei) : ei E 
E(G2 )} - max{wt(ej) : ej E E(G2 1)}. 

Proof. 

Note that the weight of an edge xy under a labeling a is wt(xy) = a(x) + a(y) + a(xy). Let 
GI and G2 be non-maximal SEMT graphs of order v and w respectively, and with number 
of edges e and f, respectively. Let V(G I ) = {Xl, ... , xv} and V(G2 ) = {YI, ... , Yw}. Label the 
vertices in GI and G2 as 

a(xd = i, for i = 1, ... , v. 

a(Yj) = v + j, for j = 1, ... ,w. 

Let A and B be the adjacency matrices of GI and G2, respectively. Create a new adjacency 
matrix C with order (v + w) x (v + w) such that 

C=(t ~). 
Matrix C contains several empty skew-diagonal line bands in the middle. If we put "I" 
elements in every skew-diagonal line of the set of these empty skew-diagonal bands and make 
the matrix symmetric, then we obtain a EAV graph with v + w vertices. Complete the edge 
labels then we have an SEMT graph C with order v + w. 0 

We already knew how to generate a bigger order SEMT graph from given SEMT graphs. 
On the other hand, we can also generate a smaller maximal (respectively, non-maximal) 
SEMT graph by deleting k vertices (and edges incident with those vertices) of a maximal 
(respectively, non-maximal) SEMT graph G to obtain a SEMT subgraph C/. However, we 
can only delete vertices that have the following properties: 

• the k-largest labeled vertices, or 

• the k-smallest labeled vertices, or 

• the l-largest labeled vertices and the (k - l)-smallest labeled vertices. 

Note that l ::; k ::; V. This requirement keeps the d-band set of the adjacency matrix of such 
graphs preserved to be a set of consecutive integers. The subgraph C has v - k vertices. Note 
that, if we use either of the last two options, then we not only have to re-label the edges, but 
we also have to re-label the vertices by 

• a* ( Vi) = a (vd - k for the second option, 

• a*(vi) = a(vi) - (k -l) for the third option. 

Thus, we have the following observation. 

Observation 2 Every SEMT graph with order at least 3 contains a smaller SEMT subgraph. 
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5 Conclusion 

As mentioned in the introduction section, there are many results in SEMT labeling. However, 
many interesting problems remain unsolved. Here we list just a few. 

• Are all trees SEMT graphs? (Conjecture from Enomoto et al. [2]). 

• Can we use adjacency matrix to obtain all path-like trees? (Note that path-like tree is 
a tree that is derived from a path by moving some edges [8]). 

• Can we find a relationship between SEMT labeling and other labeling using adjacency 
matrices? 

• Can we use the algebraic properties of the adjacency matrix to find new properties of 
SEMT graph? 

• Find SEMT labeling for various families of graphs. 

• Find SEMT labeling by utilising properties of decomposition of graphs. 
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