# Properties of Consecutive Edge Magic Total Graphs 

K. A. Sugeng ${ }^{(1,2)}$ and M. Miller ${ }^{(1)}$<br>${ }^{(1)}$ School of Information Technology and Mathematical Sciences, University of Ballarat, VIC 3353, Australia<br>e-mail:\{k.sugeng, m.miller\}@ballarat.edu.au<br>${ }^{(2)}$ Department of Mathematics, University of Indonesia, Depok 16424, Indonesia<br>e-mail:kikiariyanti@yahoo.com


#### Abstract

Let $G=(V, E)$ be a finite (non-empty) graph, where $V$ and $E$ are the sets of vertices and edges of $G$. An edge-magic total labeling is a bijection $\alpha$ from $V \cup E$ to the integers $1,2, \ldots, n+e$, with the property that for every $x y \in E, \alpha(x)+\alpha(y)+\alpha(x y)=k$, for some constant $k$. Such a labeling is called an $a$-consecutive edge magic total labeling if $\alpha(V)=$ $\{a+1, \ldots, a+n\}$ and a $b$-consecutive edge magic total if $\alpha(E)=\{b+1, b+2, \ldots, b+e\}$. In this paper we study the properties of $a$-consecutive and $b$-consecutive edge magic graphs.


Keywords: Graph, magic labeling, consecutive edge magic total labeling.

## 1 Introduction

All graphs considered are finite, simple and undirected. The graph $G$ has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $e=|E|$ and $n=|V|>1$. A bijection

$$
\alpha: V(G) \cup E(G) \rightarrow\{1,2, \ldots, n+e\}
$$

is called a total labeling for $G$ and the associated weight $w_{\alpha}(x y)$ of an edge $x y$ in $G$ is $w_{\alpha}(x y)=\alpha(x)+\alpha(y)+\alpha(x y)$. In this paper we consider only total labelings, from now on by a labeling we shall always mean a total labeling. The total labeling $\alpha$ of $G$ is edge magic if every edge has the same weight, and $G$ is called an edge magic graph if an edge magic total labeling of $G$ exists. If $\alpha(V)=\{1, \ldots, n\}$ then $\alpha$ is called super edge magic labeling. Magic labeling of graphs were introduced by Sedláček [2] in 1963, and since then there are many results in magic labeling, especially in edge magic labeling. For a recent dynamic survey of graph labellings see [1].

A bijection $\beta: V(G) \cup E(G) \rightarrow\{1,2, \ldots, n+e\}$ is called an a-consecutive edge magic labeling of $G=G(V, E)$ if $\beta$ is an edge magic labeling and $\beta(V)=\{a+1, \ldots, a+n\}, 0 \leq a \leq e$. On the other hand, $\gamma: V(G) \cup E(G) \rightarrow\{1,2, \ldots, n+e\}$ is called a $b$-consecutive edge magic labeling of $G=G(V, E)$ if $\gamma$ is an edge magic labeling and $\gamma(E)=\{b+1, \ldots, b+e\}, 0 \leq b \leq n$. A graph $G$ that has $a$-consecutive (respectively, $b$-consecutive) edge magic labeling is called an $a$-consecutive (respectively, b-consecutive) edge magic graph.

Next we present known results of the dual labeling of super edge magic labeling.
Define $M=e+n$. Let $\gamma: V \cup E \rightarrow 1,2, \ldots, M$ be a super edge magic labeling for a graph $G$. Define the labeling $\gamma^{\prime}: V \cup E \rightarrow 1,2, \ldots, M$ as follows.

$$
\begin{gathered}
\gamma^{\prime}(x)=M+1-\gamma(x), x \in V, \\
\gamma^{\prime}(x y)=M+1-\gamma(x y), x y \in E .
\end{gathered}
$$

Then $\gamma^{\prime}$ is called the dual of $\gamma$.
Theorem 1.1 [5] The dual of a super edge magic labeling for a graph $G$ is also a super edge magic labeling.

Similar results in dual labeling for $a$-consecutive and $b$-consecutive edge magic labeling will be presented in the next sections.

Let $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of vertices in $G$ with labels in $\{1,2, \ldots, n+e\}$. A symmetric matrix $A=\left(a_{i j}\right), i, j=1, \ldots, n$, is called an adjacency matrix of $G$ if

$$
a_{i j}= \begin{cases}1 & \text { if there is an edge between } x_{i} \text { and } x_{j} \\ 0 & \text { if there is no edge between } x_{i} \text { and } x_{j}\end{cases}
$$

A bijection $\alpha: V(G) \rightarrow\{1,2, \ldots, n\}$ is called an ( $a, d$ )-edge-antimagic vertex (EAV) labeling of $G=G(V, E)$ if the set of the edge-weights of all edges in $G$ is $\{a, a+d, \ldots, a+(e-1) d\}$, where $a>0$ and $d \geq 0$ are two fixed integers.

In EAV labeling, we only give labels to the vertices of $G$. However, the evaluation is done for each edge in $G$. A graph that has EAV labeling can be represented by a special adjacency matrix.

If $G$ is an EAV graph then the rows and columns of $A$ can be labeled by $1,2, \ldots, n . \quad A$ is symmetric and every skew-diagonal (diagonal of $A$ which is traversed in the "northeast" direction) line of matrix $A$ has at most two " 1 " elements. The set $\{\alpha(x)+\alpha(y): x, y \in V(G)\}$ generates a sequence of integers of difference $d$. Each entry " 1 " in a skew-diagonal line has a one-to-one correspondence to an element of the edge-weight set $\{\alpha(x)+\alpha(y): x, y \in V(G)\}$. If $d=1$ then the non-zero off diagonal lines form a band of consecutive integers. In this paper, EAV labeling always refers to an ( $a, 1$ )-EAV labeling.

## 2 Some properties of $a$-consecutive edge magic graphs

Let $G$ be an $a$-consecutive edge magic graph and $\beta$ be an $a$-consecutive edge magic labeling of $G$. Then $\beta(x) \in\{a+1, a+2, \ldots, a+n\}$, for every $x \in V(G), 0 \leq a \leq e$. Super edge magic labeling is a special case when $a=0$. In this paper we consider $a$-consecutive edge magic labeling for $1 \leq a \leq n-1$; For results in 0 -consecutive edge magic labeling, that is, super edge magic labeling. For further results, see [1, 5].

Theorem 2.1 The dual of an a-consecutive edge magic labeling for a graph $G$ is an (e-a)consecutive edge magic labeling.

Proof: Let $G$ be a graph that has $a$-consecutive edge magic labeling $\beta$ with magic constant $k$.
Thus $\beta(V)=\{a+1, a+2, \ldots, a+n\}$. Let $M=e+n$. Define the labeling $\beta^{\prime}: V \cup E \rightarrow 1,2, \ldots, M$ as follows.

$$
\begin{gathered}
\beta^{\prime}(x)=M+1-\beta(x), x \in V \\
\beta^{\prime}(x y)=M+1-\beta(x y), x y \in E .
\end{gathered}
$$

We can see that $\beta^{\prime}(V)=\{M+1-a-n, M-a-n+2, \ldots, M-a\}$. Since the dual of an edge magic labeling is also an edge magic labeling, then $\beta^{\prime}$ is an $(e-a)$-consecutive edge magic labeling. $\quad$

Let us consider the adjacency matrix of $a$-consecutive edge magic graph. Since all labels of vertices in $G$ are consecutive integers, then the adjacency matrix $A$ of $G$ consists of all elements in $\{a+1, a+2, \ldots, a+n\}$ in its rows and columns. The maximum number of edges in this graphs will be $2 n-3[4,3]$. If $a \neq 0$ and $a \neq e$, and we know that $\beta(E)=\{1, \ldots, a\} \cup\{a+n+1, \ldots, n+e\}$, then there will be a gap in the set of edge-weights $\{\beta(x)+\beta(y): x, y \in V(G)\}$. Thus, the labels divided into two blocks. The width of the gap must be $n$, the same as the gap in edge labels. Thus we can conclude that the maximum number of edges in $G$ is $(2 n-3)-n=n-3$. As a consequence, $G$ cannot be connected. Thus we proved the following theorem.

Theorem 2.2 If $G$ has an a-consecutive edge magic labeling, $a \neq 0$ and $a \neq e$, then $G$ is a disconnected graph.

A natural guess is that $G$ might be the union of 3 trees. However, the following results prove that this cannot be happen.

Corollary 1 If $a \neq 0$ and $a \neq e$ then there is no a-consecutive edge magic labeling for $3 K_{2}$.

## Proof:

Suppose that $3 K_{2}$ has an $a$-consecutive edge magic labeling $\beta, a \neq 0$ and $a \neq e$, then

$$
e k=\frac{(n+e)(n+e+1)}{2}=\frac{(9.10)}{2}=45
$$

or $k=15$. Since $n=6$ and $e=3$, the only possibilities for $0<a<e$ are $a=1$ or $a=2$.
Case $a=1$.

$$
\beta(v) \in\{2,3,4,5,6,7\} \text { and } \beta(e) \in\{1,8,9\} \text {, for } v \in V\left(K_{2}\right) \text { and } e \in E\left(K_{2}\right) \text {. }
$$

Since $k=15$, then $\beta(x)+\beta(y) \in\{6,7,14\}$, for $x, y \in V(G)$. However, the sum of the two largest labels of the vertices in $G$ is less than 14 , and so we cannot have the labeling.

Case $a=2$.

$$
\beta(v) \in\{3,4,5,6,7,8\} \text { and } \beta(e) \in\{1,2,9\} .
$$

Since $k=15$, then $\beta(x)+\beta(y) \in\{6,13,14\}$, for $x, y \in V(G)$. However, the sum of the two smallest labels of the vertices in $G$ is more than 6 , and so we cannot have the labeling.

Thus there is no $a$-consecutive edge magic labeling for $3 K_{2} \quad \square$
Theorem 2.3 If $a \neq 0$ and $a \neq e$, and $G$ has an a-consecutive edge magic labeling $\beta$ then $G$ cannot be the union of three trees $T_{1}, T_{2}$ and $T_{3}$, where $\left|V\left(T_{i}\right)\right|>2, i=1,2,3$.

Proof: Let $G$ be an $a$-consecutive edge magic graph, $a \neq 0$ and $a \neq e$. Suppose that $G=T_{1} \cup T_{2} \cup T_{3}$, where $T_{1}, T_{2}, T_{3}$ are three arbitrary trees. Let $n_{1}>2$ (respectively, $n_{2}>2, n_{3}>2$ ) and $e_{1}$ (respectively, $e_{2}, e_{3}$ ) be the number of vertices and the number of edges in $T_{1}$ (respectively, $T_{2}, T_{3}$ ). Since $G$ is an $a$-consecutive edge magic graph then there are two blocks of the edge labels. Consequently, the set of vertices in $G$ also forms two disjoint subsets, say $S_{1}$ and $S_{2}$. Suppose that $T_{1}$ and $T_{2}$ are in the same block. Then

$$
\begin{align*}
n_{1}+n_{2} & =\left(e_{1}+1\right)+\left(e_{2}+1\right) \\
& =e_{1}+e_{2}+2 \tag{1}
\end{align*}
$$

Thus

$$
\begin{equation*}
e_{1}+e_{2}=n_{1}+n_{2}-2 \tag{2}
\end{equation*}
$$

Since the number of edges must be the maximum possible, then

$$
\begin{equation*}
e_{1}+e_{2}=2\left(n_{1}+n_{2}\right)-3 \tag{3}
\end{equation*}
$$

From Equations (2) and (3), we obtain $\left(n_{1}+n_{2}\right)=1$ and this is a contradiction of $n_{1}+n_{2}>1$. Similar results are obtained if $T_{2}$ and $T_{3}$ are in the same block. Thus $G$ cannot be the disjoint union of three trees.

Figure 1 gives examples of $a$-consecutive edge magic labelings of graphs. Note that the maximal $a$-consecutive edge magic graphs means the graph has $n-3$ edges.

Maximal a-consecutive edge magic graphs; $a=2, n=10, e=7$


Non maximal $a-$ consecutive edge magic graph; $a=1, n=9, e=3$


3

$\stackrel{8}{-}$
Figure 1: Examples of $a$-consecutive edge magic graphs.

If $G$ is the union of three subgraphs then the only possibility is $G=T_{1} \cup T_{2} \cup T_{3}$, where $T_{1}, T_{2}$ and $T_{3}$ are trees. However, the previous theorem established that this is not possible. Thus if $G$ has more than two connected components, then $G$ has to have at least one isolated vertex.

If $G$ has $a$-consecutive edge magic labeling, $a \neq 0$ and $a \neq e$, and the maximum number of edges then in every case we need at least one isolated vertex. By counting the maximum number of edges and comparing this to the number of vertices in the graph, we derive the number of isolated vertices that are needed in the following observation.

Observation 1 Let $G$ be an a-consecutive edge magic graph, $a \neq 0$ and $a \neq e$. If $G$ consists of

- two trees then the number of isolated vertices is one.
- one tree and one unicyclic graph then the number of isolated vertices is two.
- two unicyclic graphs then the number of isolated vertices is three.
- otherwise the number of isolated vertices is at least three.

Theorem 2.4 There is an a-consecutive edge magic graph for every a and $n$.
Proof: Let $G$ be the union of two stars, $S_{1}$ and $S_{2}$, and one isolated vertex $x$. Let $v_{1 i}, i=$ $1, \ldots, t_{1}, t_{1}=e-a$, denote the leaves of $S_{1}$ and let $v_{2 j}, j=1, \ldots, t_{2}, t_{2}=a$, denote the leaves of $S_{2}$. Label the vertices of $G$ as follows.

$$
\beta(v)= \begin{cases}n-1 & \text { if } v=x \\ a+1 & \text { if } v \text { is a center of } S_{1} \\ a+1+i & \text { if } v=v_{1 i}, i=1, \ldots, t_{1} \\ a+n & \text { if } v \text { is a center of } S_{2} \\ a+n-j & \text { if } v=v_{2 j}, j=1, \ldots, t_{2}\end{cases}
$$

Complete the edge labels $\{1,2, \ldots, a\} \cup\{a+n+1, \ldots ., e+n\}$. Then we have an $a$-consecutive edge magic labeling for $G$. $\quad \square$

## 3 Some properties of $b$-consecutive edge magic graphs

Let $G$ be a $b$-consecutive edge magic graph and let $\gamma$ be a $b$-consecutive edge magic labeling of $G$. Then $\gamma(x y) \in\{b+1, b+2, \ldots, b+n\}$. The super edge magic labeling is a special case of $b$-consecutive edge magic labeling, when $b=n$. Since the vertex labels in a $b$-consecutive edge magic labeling, $1 \leq b \leq n-1$, do not form a set of consecutive integers, it follows that the row/column of the adjacency matrix of $b$-consecutive edge magic graph are labeled according to the vertex labels of $G$ not consecutively as $1,2, \ldots, n$.
Theorem 3.1 Every b-consecutive edge magic graph has edge antimagic vertex labeling.
Proof: Let $G$ be a $b$-consecutive edge magic graph, then all the edge labels are the consecutive integers $\{b+1, \ldots, b+e\}$. If we define $\gamma^{\prime}$ as a restriction mapping of $\gamma$ in $V$ then we can see that $\gamma^{\prime}$ is an edge antimagic vertex labeling. $\quad \square$

Considering the dual labeling from Theorem 1, if a graph $G$ has a $b$-consecutive edge magic labeling, a similar result in the dual also holds.

Theorem 3.2 The dual of a b-consecutive edge magic labeling for a graph $G$ is an $(n-b)$ consecutive edge magic labeling.

Proof: Let $G$ be a graph that has $b$-consecutive edge magic labeling with magic constant $k$.
Thus $\gamma(E)=\{b+1, b+2, \ldots, b+e\}$. Let $M=e+n$. Define the labeling $\gamma^{\prime}: V \cup E \rightarrow 1,2, \ldots, M$ as follows.

$$
\begin{gathered}
\gamma^{\prime}(x)=M+1-\gamma(x), x \in V, \\
\gamma^{\prime}(x y)=M+1-\gamma(x y), x y \in E .
\end{gathered}
$$

We can see that $\gamma^{\prime}(E)=\{M+1-b-e, M-b-e+2, \ldots, M-b\}$. Since the dual of an edge magic labeling is also an edge magic labeling, then $\gamma^{\prime}$ is an $(n-b)$-consecutive edge magic labeling. $\square$

A caterpillar is a graph derived from a path by hanging any number of leaves from the vertices of the path. The caterpillar can be seen as a sequence of stars $S_{1} \cup S_{2} \cup \ldots \cup S_{r}$, where each $S_{i}$ is a star with centre $c_{i}$ and $n_{i}$ leaves, $i=1,2, \ldots, r$, and the leaves of $S_{i}$ include $c_{i-1}$ and $c_{i+1}, i=2, \ldots, r-1$. We denote the caterpillar as $S_{n_{1}, n_{2}, \ldots, n_{r}}$, where the vertex set is

$$
V\left(S_{n_{1}, n_{2}, \ldots, n_{r}}\right)=\left\{c_{i}: 1 \leq i \leq r\right\} \cup \bigcup_{i=2}^{r-1}\left\{x_{i}^{j}: 2 \leq j \leq n_{i}-1\right\} \cup\left\{x_{1}^{j}: 1 \leq j \leq n_{1}-1\right\} \cup\left\{x_{r}^{j}:\right.
$$

$\left.2 \leq j \leq n_{r}\right\}$ and the edge set is

$$
E\left(S_{n_{1}, n_{2}, \ldots n_{r}}\right)=\left\{c_{i} c_{i+1}: 1 \leq i \leq r-1\right\} \cup \bigcup_{i=2}^{r-1}\left\{c_{i} x_{i}^{j}: 2 \leq j \leq n_{i}-1\right\} \cup\left\{c_{1} x_{1}^{j}: 1 \leq j \leq\right.
$$

$$
\left.n_{1}-1\right\} \cup\left\{c_{r} x_{r}^{j}: 2 \leq j \leq n_{r}\right\} .
$$

Theorem 3.3 There exists a b-consecutive edge magic graph for every b.

## Proof:

Let $r$ be $b=\frac{r}{2}$, for $r$ even; and $b=\frac{r+1}{2}$, for $r$ odd. Let $G$ be a caterpillar $S_{n_{1}, n_{2}, \ldots, n_{r}}$, with centre $c_{1}, c_{2}, \ldots, c_{r}$, such that every centre $c_{i}$ with $i$ even has degree 2 . Note that a star can be regarded as caterpillar $S_{n_{1}, n_{2}}$, with $n_{2}=1$. Let $\gamma$ be a $b$-consecutive edge magic labeling for $G$. Label the odd centres as

$$
\gamma^{\prime}\left(c_{i}\right)=\frac{i+1}{2}, \text { for } i \text { odd. }
$$

Let $v_{i}^{j}$ be the $j$-th leaf of the centre $i$. Label the leaves of the odd centre by

$$
\gamma^{\prime}\left(v_{i}^{j}\right)=b+e+1+j+\left(\sum_{k=1}^{i-1}\left(n_{k}+1\right)\right)
$$

If $i-1 \leq 1$ then $\sum_{k=1, k \text { odd }}^{i-1}\left(n_{k}-1\right)=0$ and the even centre is treated as a leaf of the previous odd centre and is given the largest labels among the leaves.
Thus for every $b, b=\frac{r}{2}$, for $r$ even; and $b=\frac{r+1}{2}$, for $r$ odd, we have constructed a $b$ consecutive edge magic graph. $\quad \square$

We have an example of $a b$-consecutive edge magic labeling for every $b$. Figure 2 gives examples of labelings for some value of $b$. In general, we have


Figure 2: Examples of $b$-consecutive edge magic graphs.

Theorem 3.4 If a connected graph $G$ has a b-consecutive edge magic labeling, where $b \in$ $\{1, \ldots, n-1\}$, then $G$ is a tree.

Proof: Suppose that $G$ has a $b$-consecutive edge magic labeling $\gamma$. Then $\gamma(V)=V_{1} \cup V_{2}$, where $V_{1}=\{1,2, \ldots, b\}$ and $V_{2}=\{b+e+1, b+e+2, \ldots, n+e\}$. Let $b \in\{1, \ldots, n-1\}$. Let $\gamma^{\prime}$ be the restriction of $\gamma$ under $V$. Thus $\gamma^{\prime}$ is a VAE labeling.

Let $A$ be the adjacency matrix of $G$. Since the set of vertex labels is a union of two disjoint subset $V_{1}$ and $V_{2}$, then the adjacency matrix of $G$ consists of four blocks as follows.

$$
A=\left(\begin{array}{cc}
A_{1} * & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

Since $A$ is a symmetric matrix it follows that $A_{3}$ is the transpose of $A_{2}$. The entries of $A_{1}$ represent all the edges between the vertices inside $V_{1}$, the entries of $A_{2}$ represent all the edges between vertices in $V_{1}$ and vertices in $V_{2}$, and the entries of $A_{4}$ represent all the edges between vertices inside $V_{2}$.

Suppose that $A_{1}$ is a nonzero submatrix. Then there is at least one edge $x y$ between the vertices in $V_{1} \cdot \gamma^{\prime}(x y)=\gamma(x)+\gamma(y) \leq 2 b-1$. Let $x^{\prime} y^{\prime}$ be an edge between a vertex in $V_{1}$ and a vertex in $V_{2}$. Then $\gamma\left(x^{\prime} y^{\prime}\right)=\gamma\left(x^{\prime}\right)+\gamma\left(y^{\prime}\right) \geq b+e+2$. Since $\gamma^{\prime}$ is a VAE labeling, the edgeweights under $\gamma^{\prime}$ must be a set of consecutive integers. This means that $(b+e+2)<(2 b-1)$ or $b>e+3$. We know that $b \leq n-1$, whence $e<n-4$. This means $G$ is disconnected. Similarly, if $A_{4}$ is nonzero.

Suppose that $A_{2}$ is a zero submatrix. Then $A_{1}$ and $A_{4}$ cannot be zero submatrices of $A$. Obviously, $G$ will then be a disconnected graph.

If $G$ is connected then $A_{1}$ and $A_{4}$ must be zero submatrices of $A$. Consider the submatrix $A_{2}$. The maximum edge-weight under $\gamma^{\prime}$ is $n+e+b$ and the minimum edge-weight is $b+e+2$. Thus the maximum number of edges will be $(n+e+b)-(b+e+2)-1=n-1$. Then $G$ is a tree. $\quad \square$

Corollary $2 A$ double star $S_{n_{1}, n_{2}}$ has a b-consecutive edge magic labeling for some $b \in$ $\{1,2, \ldots, n\}$ and

- If $b=1$ then $S_{n_{1}, n_{2}}$ is a star.
- If $b>1$ then $b=n_{2}+1$.


## Proof:

Let $S_{n 1, n 2}$ be a double star with centres $c_{1}$ and $c_{2}$. Let $n_{1}$ be the number of leaves of $c_{1}$, excluding $c_{2}$, and let $n_{2}$ be the number of leaves of $c_{1}$, excluding $c_{1}$.

- $b=1$.

Label vertices and edges of $S_{n 1, n 2}$ as follows.

$$
\begin{gathered}
\gamma(v)= \begin{cases}1 & \text { if } v=c_{1} \\
1+i & \text { if } v=v_{i}, v_{i} \text { leaves of } c_{2} \\
n+e & \text { if } v=c_{2}\end{cases} \\
\gamma\left(c_{1} v_{i}\right)=i+1 \text { for } i=1, \ldots, n_{1}+1
\end{gathered}
$$

Then $\gamma$ is a $b$-consecutive edge magic labeling for $S_{n 1, n 2}$.

- $b>1$.

Let $b=n_{2}+1$. Label vertices and edges of $S_{n 1, n 2}$ as follows.

$$
\begin{gathered}
\gamma(v)= \begin{cases}1 & \text { if } v=c_{1} \\
1+i & \text { if } v=v_{i}, v_{i} \text { leaves of } c_{2} \\
b+e+j & \text { if } v=v_{j}, v_{j} \text { leaves of } c_{1} \\
n+e & \text { if } v=c_{2}\end{cases} \\
\gamma\left(c_{1} v_{i}\right)=i+1 \text { for } i=1, \ldots, n_{1}+1
\end{gathered}
$$

Complete labeling of all edges with elements of $\{b+1, \ldots, b+e\}$, in such a way that $\gamma$ is a $b$-consecutive edge magic labeling for $S_{n 1, n_{2}}$.

## Acknowledgement

We wish to thank Professor Michal Tkáč for his suggestions and valuable discussions.

## References

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal Combinatorics 9 (2005) \#DS6.
[2] J. Sedlacek, Problem 27, Theory of Graphs and its Applications, Proc. Symposium Smolenice (1963) 163-167.
[3] K.A. Sugeng and M.Miller, Relationships between adjacency matrices and super (a,d)-edge-antimagic total graphs, $J C M C C$, in press.
[4] K.A. Sugeng and W. Xie, On adjacency matrices of edge magic vertex graphs, preprint.
[5] W. D. Wallis, Magic Graphs, Birkhauser, 2001.

