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Ahstrqct 

Let C = (V, E) be a finite (non-empty) graph, where V and E are the sets of vertices 
and edges of C. An edge-magic total labeling is a bijection a from VuE to the integers 
1,2, ... , n+e, with the property that for every xy E E, a(x) +a(y) +a(xy) = k, for some 
constant k. Such a labeling is called an a-consecutive edge magic total labeling if a(V) = 

{a+1, ... , a+n} and a b-consecutive edge magic total if a(E) = {b+ 1, b+2, ... , b+e}. In 
this paper we study the properties of a-consecutive and b-consecutive edge magic graphs. 
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1 Introduction 

All graphs considered are finite, simple and undirected. The graph G has vertex set V = V(G) 
and edge set E = E( G) and we let e = lEI and n = IVI > 1. A bijection 

a: V(G)UE(G)~{1,2, ... ,n+e} 

is called a total labeling for G and the associated weight wa(xy) of an edge xy in G is 
wa(xy) = a(x) + a(y) + a(xy). In this paper we consider only total labelings, from now 
on by a labeling we shall always mean a total labeling. The total labeling a of G is edge 
magic if every edge has the same weight, and G is called an edge magic graph if an edge magic 
total labeling of G exists. If a(V) = {I, ... , n} then a is called super edge magic labeling. 
Magic labeling of graphs were introduced by Sedlacek [2J in 1963, and since then there are 
many results in magic labeling, especially in edge magic labeling. For a recent dynamic survey 
of graph labellings see [1]. 

A bijection f3 : V( G) U E( G) ~ {I, 2, ... , n + e} is called an a-consecutive edge magic labeling 
of G = G(V, E) if f3 is an edge magic labeling and f3(V) = {a + 1, ... , a + n}, 0 ::; a ::; e. 
On the other hand, , : V(G) U E(G) ~ {I, 2, ... , n + e} is called a b-consecutive edge magic 
labeling of G = G(V, E) if, is an edge magic labeling and ,(E) = {b+ 1, ... , b+ e}, 0::; b::; n . 
A graph G that has a-consecutive (respectively, b-consecutive) edge magic labeling is called 
an a-consecutive (respectively, b-consecutive) edge magic graph. 



Next we present known results of the dual labeling of super edge magic labeling. 

Define !'vI = e + n. Let 'Y : VUE ---> 1,2, ... ,!'vI be a super edge magic labeling for a graph G. 
Define the labeling 'Y' : VuE ---> 1,2, ... , M as follows. 

'Y'(x) = M + 1 - 'Y(x), x E V, 

'Y'(xy) = M + 1 - 'Y(xy), xy E E. 

Then 'Y' is called the dual of 'Y. 

Theorem 1.1 (5] The dual of a super edge magic labeling for a graph G is also a super edge 
magic labeling. 

Similar results in dual labeling for a-consecutive and b-consecutive edge magic labeling will 
be presented in the next sections. 

Let V(G) = {Xl,X2, ... ,Xn } be the set of vertices in G with labels in {1,2, ... ,n+e}. A 
symmetric matrix A = (aij), i, j = 1, ... , n, is called an adjacency matrix of G if 

1 if there is an edge between Xi and Xj 
a if there is no edge between Xi and Xj 

A bijection a: V(G) ---> {1,2, ... ,n} is called an (a,d)-edge-antimagic vertex (EAV) labeling 

of G = G(V, E) if the set of the edge-weights of all edges in G is {a, a + d, ... , a + (e - l)d}, 
where a > a and d 2: a are two fixed integers. 

In EAV labeling, we only give labels to the vertices of G. However, the evaluation is done for 
each edge in G. A graph that has EAV labeling can be represented by a special adjacency 
matrix. 

If G is an EAV graph then the rows and columns of A can be labeled by 1,2, ... ,n. A is 
symmetric and every skew-diagonal (diagonal of A which is traversed in the "northeast" 
direction) line of matrix A has at most two "I" elements. The set {a(x)+a(y) : x,y E V(G)} 
generates a sequence of integers of difference d. Each entry "I" in a skew-diagonal line has a 
one-to-one correspondence to an element of the edge-weight set {a (x) + a (y) : x, y E V ( G)}. 
If d = 1 then the non-zero off diagonal lines form a band of consecutive integers. In this 
paper, EAV labeling always refers to an (a, 1)-EAV labeling. 

2 Some properties of a-consecutive edge magic graphs 

Let G be an a-consecutive edge magic graph and f3 be an a-consecutive edge magic labeling 
of G. Then f3(x) E {a+ 1, a+2, ... , a+n}, for every x E V(G), a ~ a ~ e. Super edge magic 
labeling is a special case when a = a. In this paper we consider a-consecutive edge magic 
labeling for 1 ~ a ~ n - 1; For results in a-consecutive edge magic labeling, that is, super 
edge magic labeling. For further results, see [1, 5]. 
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Theorem 2.1 The dual of an a-consecutive edge magic labeling for a graph G is an (e - a)­

consecutive edge magic labeling. 

Proof: Let G be a graph that has a-consecutive edge magic labeling f3 with magic constant k. 

Thus f3(V) = {a+1, a+2, ... , a+n}. Let M = e+n. Define the labeling f3' : VUE ---> 1,2, ... , M 
as follows. 

f3'(x) = M + 1 - f3(x), x E V, 

f3'(xy) = M + 1 - f3(xy), xy E E. 

We can see that f3'(V) = {M + 1- a - n,!'vI - a - n+ 2, ... , M - a}. Since the dual of an edge 
magic labeling is also an edge magic labeling, then f3' is an (e - a)-consecutive edge magic 
labeling. D 

Let us consider the adjacency matrix of a-consecutive edge magic graph. Since all labels of 
vertices in G are consecutive integers, then the adjacency matrix A of G consists of all elements 
in {a+1, a+2, ... , a+n} in its rows and columns. The maximum number of edges in this graphs 
will be 2n-3 [4,3]. If a =I a and a =I e, and we know that f3(E) = {I, ... , a}U{a+n+1, ... , n+e}, 
then there will be a gap in the set of edge-weights {f3(x) + f3(y) : x, y E V(G)}. Thus, the 
labels divided into two blocks. The width of the gap must be n, the same as the gap in edge 
labels. Thus we can conclude that the maximum number of edges in G is (2n - 3) - n = n - 3. 
As a consequence, G cannot be connected. Thus we proved the following theorem. 

Theorem 2.2 If G has an a-consecutive edge magic labeling, a =I a and a =I e, then G is a 

disconnected graph. 

A natural guess is that G might be the union of 3 trees. However, the following results prove 
that this cannot be happen. 

Corollary 1 If a =I a and a =I e then there is no a-consecutive edge magic labeling for 3K2. 

Proof: 

Suppose that 3K2 has an a-consecutive edge magic labeling f3, a =I a and a =I e, then 

ek= (n+e)(n+e+l) = (9.10) =45 
2 2 

or k = 15. Since n = 6 and e = 3, the only possibilities for a < a < e are a = lora = 2. 

Case a = 1. 

(3('0) E {2, 3, 4, 5, 6, 7} and f3(e) E {I, 8, 9}, for v E V(K2) and e E E(K2). 

Since k = 15, then f3(x) + f3(y) E {6, 7, 14}, for x, y E V(G). However, the sum of the two 
largest labels of the vertices in G is less than 14, and so we cannot have the labeling. 

Case a = 2. 

f3(v) E {3,4,5,6, 7,8} and f3(e) E {1,2,9}. 
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Since k = 15, then f3(x) + f3(y) E {6, 13, 14}, for x, y E V(G). However, the sum of the two 
smallest labels of the vertices in G is more than 6, and so we cannot have the labeling. 

Thus there is no a-consecutive edge magic labeling for 3K2 0 

Theorem 2.3 If a i= 0 and a i= e, and G has an a-consecutive edge magic labeling f3 then G 
cannot be the" union of three trees Tb T2 and T3 , where !V(li)! > 2, i = 1,2, 3. 

Proof: Let G be an a-consecutive edge magic graph, a i= 0 and a i= e. Suppose that 

G = Tl U T2 U T3, where T1, T2, T3 are three arbitrary trees. Let nl > 2 (respectively, 
n2 > 2, n3 > 2) and el (respectively, e2, e3) be the number of vertices and the number of 
edges in Tl (respectively, T2, T3). Since G is an a-consecutive edge magic graph then there 
are two blocks of the edge labels. Consequently, the set of vertices in G also forms two disjoint 
subsets, say 81 and 82 . Suppose that Tl and T2 are in the same block. Then 

Thus 

( e 1 + 1) + (e2 + 1) 

el + e2 + 2. 

(2) 

Since the number of edges must be the maximum possible, then 

(3) 

(1) 

From Equations (2) and (3), we obtain (nl +n2) = 1 and this is a contradiction of nl +n2 > l. 
Similar results are obtained if T2 and T3 are in the same block. Thus G cannot be the disjoint 
union of three trees. 0 

Figure 1 gives examples of a-consecutive edge magic labelings of graphs. Note that the 
maximal a-consecutive edge magic graphs means the graph has n - 3 edges. 
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Maximal a-consecutive edge magic graphs; a=2, n=10, e=7 
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Non maximal a-consecutive edge magic graph; a=1, n=9, e=3 
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Figure 1: Examples of a-consecutive edge magic graphs. 
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If G is the union of three subgraphs then the only possibility is G = Tl UT2 UT3 , where T1 , T2 
and T3 are trees. However, the previous theorem established that this is not possible. Thus if 
G has more than two connected components, then G has to have at least one isolated vertex. 
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If G has a-consecutive edge magic labeling, a=/:.O and a =/:. e, and the maximum number of 
edges then in every case we need at least one isolated vertex. By counting the maximum 
number of edges and comparing this to the number of vertices in the graph, we derive the 
number of isolated vertices that are needed in the following observation. 

Observation 1 Let G be an a-consecutive edge magic graph, a=/:. 0 and a =/:. e. If G consists 
of 

• two trees then the number of isolated vertices is one. 

• one tree and one unicyclic graph then the number of isolated vertices is two. 

• two unicyclic graphs then the number of isolated vertices is three. 

• otherwise the number of isolated vertices is at least three. 

Theorem 2.4 There is an a-consecutive edge magic graph for every a and n. 

Proof: Let G be the union of two stars, 81 and 82, and one isolated vertex x. Let VIi, i = 

1, .. . , tl, tl = e - a, denote the leaves of 81 and let V2j,j = 1, .. . , t2, t2 = a, denote the leaves 
of 82 . Label the vertices of G as follows. 

n-l 
a+l 

if V = x 
if V is a center of 81 

f3(v)= a+l+i ifv=Vli,i=I, ... ,tl 
a + n if V is a center of 82 

a + n - j if V = V2j,j = 1, ... , t2 

Complete the edge labels {1, 2, ... , a} U {a + n + 1, .... , e + n}. Then we have an a-consecutive 
edge magic labeling for G. 0 

3 Some properties of b-consecutive edge magic graphs 

Let G be a b-consecutive edge magic graph and let "I be a b-consecutive edge magic labeling 
of G. Then 'Y( xy) E {b + 1, b + 2, . . . , b + n}. The super edge magic labeling is a special case of 
b-consecutive edge magic labeling, when b = n. Since the vertex labels in a b-consecutive edge 
magic labeling, 1 :S b :S n - 1, do not form a set of consecutive integers, it follows that the 
row jcolumn of the adjacency matrix of b-consecutive edge magic graph are labeled according 
to the vertex labels of G not consecutively as 1,2, ... , n. 

Theorem 3.1 Every b-consecutive edge magic graph has edge antimagic vertex labeling. 

Proof: Let G be a b-consecutive edge magic graph, then all the edge labels are the consecutive 

integers {b + 1, ... , b + e}. If we define "I' as a restriction mapping of "I in V then we can see 
that "I' is an edge antimagic vertex labeling. 0 

Considering the dual labeling from Theorem 1, if a graph G has a b-consecutive edge magic 
labeling, a similar result in the dual also holds. 
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Theorem 3.2 The dual of a b-consecutive edge magic labeling for a graph G is an (n - b)­
consecutive edge magic labeling. 

Proof: Let G be a graph that has b-consecutive edge magic labeling with magic constant k. 

Thus ')'(E) = {b+l, b+2, ... , b+e}. Let M = e+n. Define the labeling ')" : VUE -+ 1, 2, ... , M 
as follows. . 

'Y'(x) = lvI + 1- ')'(x) , x E V, 

~/(xy) = lvI + 1- 'Y(xy),xy E E. 

We can see that ,),'(E) = {M + 1 - b - e, M - b - e + 2, ... , M - b}. Since the dual of an edge 
magic labeling is also an edge magic labeling, then "I' ·is an (n - b)-consecutive edge magic 

labeling. 0 

A caterpillar is a graph derived from a path by hanging any number of leaves from the vertices 
of the path. The caterpillar can be seen as a sequence of stars 81 U 82 U ... U 8Tl where each 
8i is a star with centre Ci and ni leaves, i = 1,2, ... , r, and the leaves of 8 i include Ci-l and 
Ci+l, i = 2, ... , r - 1. We denote the caterpillar as 8n1 ,n2, ... ,nr , where the vertex set is 

T-I . . . 
V(8nJ ,n2, ... ,nr ) = {Ci : 1 :S i :S r} U U {xI : 2 :S j :S ni - I} U {x{ : 1 :S j :S nl - I} U {xl- : 

i=2 

2 :S j :S nT } and the edge set is 
T-I . . 

E(8nJ ,n2, ... n r ) = {CiCi+1 : 1 :S i :S r -I} U U {cixi : 2 :S j :S ni -I} U {Clx{ : 1 :S j :S 
i=2 

Theorem 3.3 There exists a b-consecutive edge magic graph for every b. 

Proof: 
Let r be b = ;, for r even; and b = Ttl, for r odd. Let G be a caterpillar 8n l,n2, ... ,nr , with 
centre CI, C2, ... , Cr, such that every centre Ci with i even has degree 2. Note that a star can 
be regarded as caterpillar 8n1 ,n2' with n2 = 1. Let')' be a b-consecutive edge magic labeling 
for G. Label the odd centres as 

'( i + 1 ')' Ci) = -2-' for i odd. 

Let vI be the j-th leaf of the centre i. Label the leaves of the odd centre by 

i-I 

"I' (vi) = b + e + 1 + j + (L (nk + 1)) 
k=1 

If i-I :S 1 then L:::~-==II,kOdd (nk - 1) = 0 and the even centre is treated as a leaf of the previous 

odd centre and is given the largest labels among the leaves. 
Thus for every b, b = ;, for r even; and b = ~, for r odd, we have constructed a b­
consecutive edge magic graph. 0 

We have an example of a b-consecutive edge magic labeling for every b. Figure 2 gives examples 
of labelings for some value of b. In general, we have 
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b=l, n=8 , e= 7 b=2,n=8,e=7 11 
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Figure 2: Examples of b-consecutive edge magic graphs. 
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Theorem 3.4 If a connected graph G has a b-consecutive edge magic labeling, where b E 
{I, ... , n - I}, then G is a tree. 

Proof: Suppose that G has a b-consecutive edge magic labeling ,. Then ,(V) = VI U V2, 

where VI = {1,2, ... ,b} and V2 = {b+e+ l,b+e+2, ... ,n+e}. Let bE {1, ... ,n-l}. Let " 

be the restriction of , under V. Thus " is a VAE labeling. 

Let A be the adjacency matrix of G. Since the set of vertex labels is a union of two disjoint 
subset VI and V2, then the adjacency matrix of G consists of four blocks as follows. 

Since A is a symmetric matrix it follows that A3 is the transpose of A2 • The entries of Al 
represent all the edges between the vertices inside VI, the entries of A2 represent all the edges 
between vertices in VI and vertices in V2, and the entries of A4 represent all the edges between 
vertices inside V2. 

Suppose that Al is a nonzero submatrix. Then there is at least one edge xy between the 
vertices in VI. ,'(xy) = ,(x) +,(y) ::; 2b-1. Let x'y' be an edge between a vertex in VI and 
a vertex in V2. Then ,(x'y') = ,(x') + ,(y') ;:::: b + e + 2. Since " is a VAE labeling, the edge­
weights under " must be a set of consecutive integers. This means that (b+e+2) < (2b-l) 
or b > e + 3. We know that b ::; n - 1, whence e < n - 4. This means G is disconnected. 
Similarly, if A4 is nonzero. 

Suppose that A2 is a zero submatrix. Then Al and A4 cannot be zero submatrices of A. 
Obviously, G will then be a disconnected graph. 

If G is connected then Al and A4 must be zero sub matrices of A. Consider the submatrix A2 . 

The maximum edge-weight under " is n + e + b and the minimum edge-weight is b + e + 2. 
Thus the maximum number of edges will be (n + e + b) - (b + e + 2) - 1 = n - 1. Then G is 
a tree. 0 

Corollary 2 A double star Snl,n2 has a b-consecutive edge magic labeling for some b E 
{I, 2, ... , n} and 

• If b = 1 then Snl,n2 is a star. 

• If b > 1 then b = n2 + 1. 

Proof: 

Let Snl,n2 be a double star with centres CI and C2. Let nl be the number of leaves of el, 

excluding C2, and let n2 be the number of leaves of CI, excluding ct . 

• b=l. 
Label vertices and edges of Snl,n2 as follows. 

319 



,(v) = { ~+i 
n+e 

if v = Cl 

if V = Vi, Vi leaves of C2 

if V = C2 

,(CIVi) = i + 1 for i = 1, ... , nl + 1 

Then, is a b-consecutive edge magic labeling for Snl,n2 . 

• b> l. 
Let b = n2 + 1. Label vertices and edges of Snl,n2 as follows. 

{

I 
l+i 

,(v)= b+e+j 

n+e 

if V = C! 

if v = Vi, Vi leaves of C2 

if V = Vj, Vj leaves of Cl 

if V = C2 

,(CIVi) = i+ 1 for i = 1, ... ,nl + 1 

Complete labeling of all edges with elements of {b + 1, .. . , b + e}, in such a way that, 
is a b-consecutive edge magic labeling for Snl,n2. 
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