Properties of Consecutive Edge Magic Total Graphs
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Abstract

Let G = (V, E) be a finite (non-empty) graph, where V' and E are the sets of vertices
and edges of G. An edge-magic total labeling is a bijection ¢ from V' U F to the integers
1,2,...,n+e, with the property that for every zy € E, a(z)+ a(y) +a(zy) = k, for some
constant k. Such a labeling is called an a-consecutive edge magic total labeling if a(V') =
{a+1,...,a+n} and a b-consecutive edge magic total if o(E) = {b+1,b+2,...,b+e}. In
this paper we study the properties of a-consecutive and b-consecutive edge magic graphs.
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1 Introduction

All graphs considered are finite, simple and undirected. The graph G has vertex set V = V(G)
and edge set E = E(G) and we let e = |E| and n = |V| > 1. A bijection

a: V(G)UE(G) — {1,2,...,n+e}

is called a total labeling for G and the associated weight w,(zy) of an edge zy in G is
wao(zy) = a(z) + a(y) + a(zy). In this paper we consider only total labelings, from now
on by a labeling we shall always mean a total labeling. The total labeling a of G is edge
magic if every edge has the same weight, and G is called an edge magic graph if an edge magic
total labeling of G exists. If (V) = {1,...,n} then « is called super edge magic labeling.
Magic labeling of graphs were introduced by Sedlaéek [2] in 1963, and since then there are
many results in magic labeling, especially in edge magic labeling. For a recent dynamic survey
of graph labellings see [1].

A bijection 8 : V(G)U E(G) — {1,2,...,n + e} is called an a-consecutive edge magic labeling
of G = G(V,E) if § is an edge magic labeling and (V) = {a+1,..,a+n}, 0 <a<e.
On the other hand, v : V(G)U E(G) — {1,2,...,n+ e} is called a b-consecutive edge magic
labeling of G = G(V, E) if vy is an edge magic labeling and v(E) = {b+1,...,b+e}, 0< b< n.
A graph G that has a-consecutive (respectively, b-consecutive) edge magic labeling is called
an a-consecutive (respectively, b-consecutive) edge magic graph.



Next we present known results of the dual labeling of super edge magic labeling.

Define M =e+n. Let v: VUE — 1,2,..., M be a super edge magic labeling for a graph G.
Define the labeling v/ : VUE — 1,2, ..., M as follows.

Y(z)=M+1—7(z),z €V,

V(zy) = M +1—(zy),zy € E.
Then ' is called the dual of ~.

Theorem 1.1 [5] The dual of a super edge magic labeling for a graph G is also a super edge
magic labeling.

Similar results in dual labeling for a-consecutive and b-consecutive edge magic labeling will
be presented in the next sections.

Let V(G) = {z1,%2,.., 2.} be the set of vertices in G with labels in {1,2,...,n +e}. A
symmetric matrix A = (a;5), 1, =1, ...,n, is called an adjacency matriz of G if

. 1 if there is an edge between z; and z;
. 0 if there is no edge between z; and z;

A bijection a : V(G) — {1,2,...,n} is called an (a,d)-edge-antimagic vertez (EAV) labeling
of G = G(V, E) if the set of the edge-weights of all edges in G is {a,a +d, ...,a + (e — 1)d},
where @ > 0 and d > 0 are two fixed integers.

In EAV labeling, we only give labels to the vertices of G. However, the evaluation is done for

each edge in G. A graph that has EAV labeling can be represented by a special adjacency
matrix.

If G is an EAV graph then the rows and columns of A can be labeled by 1,2,...n. A is
symmetric and every skew-diagonal (diagonal of A which is traversed in the ”northeast”
direction) line of matrix A4 has at most two “1” elements. The set {a(z)+a(y) : z,y € V(G)}
generates a sequence of integers of difference d. Each entry “1” in a skew-diagonal line has a
one-to-one correspondence to an element of the edge-weight set {a(z) + a(y) : z,y € V(G)}.
If d = 1 then the non-zero off diagonal lines form a band of consecutive integers. In this
paper, EAV labeling always refers to an (a,1)-EAV labeling.

2 Some properties of a-consecutive edge magic graphs

Let G be an a-consecutive edge magic graph and 8 be an a-consecutive edge magic labeling
of G. Then §(z) € {a+1,a+2,...,a+n}, for every z € V(G), 0 < a < e. Super edge magic
labeling is a special case when a = 0. In this paper we consider a-consecutive edge magic
labeling for 1 < a < n — 1; For results in 0-consecutive edge magic labeling, that is, super
edge magic labeling. For further results, see [1, 5].
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Theorem 2.1 The dual of an a-consecutive edge magic labeling for a graph G is an (e —a)-
consecutive edge magic labeling.

Proof: Let G be a graph that has a-consecutive edge magic labeling 8 with magic constant k.

Thus B(V) = {a+1,a+2,...,a+n}. Let M = e+n. Define the labeling ' : VUE — 1,2,..., M
as follows.
Bz)=M+1-p(x),z€V,

B'(zy) = M +1— B(zy),zy € E.

We can see that #/(V)={M+1—a—n,M—-a—n+2,...,.M —a}. Since the dual of an edge
magic labeling is also an edge magic labeling, then (' is an (e — a)-consecutive edge magic
labeling. O

Let us consider the adjacency matrix of a-consecutive edge magic graph. Since all labels of
vertices in G are consecutive integers, then the adjacency matrix A of G consists of all elements
in {a+1,a+2,...,a+n} in its rows and columns. The maximum number of edges in this graphs
will be 2n—3 [4, 3]. Ifa # 0 and a # e, and we know that S(E) = {1, ..., a}U{a+n+1,...,n+e},
then there will be a gap in the set of edge-weights {3(z) + B(y) : z,y € V(G)}. Thus, the
labels divided into two blocks. The width of the gap must be n, the same as the gap in edge
labels. Thus we can conclude that the maximum number of edges in G is (2n—3)—n =n—3.
As a consequence, G cannot be connected. Thus we proved the following theorem.

Theorem 2.2 If G has an a-consecutive edge magic labeling, a # 0 and a # e, then G is a
disconnected graph.

A natural guess is that G might be the union of 3 trees. However, the following results prove
that this cannot be happen.

Corollary 1 If a # 0 and a # e then there is no a-consecutive edge magic labeling for 3Ks.

Proof:
Suppose that 3K» has an a-consecutive edge magic labeling 3, a # 0 and a # e, then

_ (n+e)(n+e+1) _ (9.10)

ek 5 >

=45

or k = 15. Since n = 6 and e = 3, the only possibilities for 0 < a <earea=1ora=2.

Case a = 1.

B(v) € {2,3,4,5,6,7} and B(e) € {1,8,9}, for v € V(K>) and e € E(K>).

Since k = 15, then B(z) + B(y) € {6,7,14}, for z,y € V(G). However, the sum of the two
largest labels of the vertices in G is less than 14, and so we cannot have the labeling.

Case a = 2.
B(v) € {3,4,5,6,7,8} and B(e) € {1,2,9}.
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Since k = 15, then B(z) + B(y) € {6,13,14}, for z,y € V(G). However, the sum of the two
smallest labels of the vertices in G is more than 6, and so we cannot have the labeling.

Thus there is no a-consecutive edge magic labeling for 3K, O

Theorem 2.3 Ifa # 0 and a # e, and G has an a-consecutive edge magic labeling 3 then G
cannot be the union of three trees Ty, T and T3, where |V(T;)| > 2, i =1,2,3.

Proof: Let G be an a-consecutive edge magic graph, a # 0 and a # e. Suppose that

G = T1 UTy U T3, where Th, Tp, T3 are three arbitrary trees. Let n; > 2 (respectively,
n2 > 2, nz > 2) and e; (respectively, e2, e3) be the number of vertices and the number of
edges in T (respectively, 75, T3). Since G is an a-consecutive edge magic graph then there
are two blocks of the edge labels. Consequently, the set of vertices in G also forms two disjoint
subsets, say S; and S3. Suppose that 77 and T, are in the same block. Then

n+ny = (e1+1)+(e2+1)
= e +ex+2.

Thus
e1t+ey=mn1+ny— 2. (2)

Since the number of edges must be the maximum possible, then
el +ey = 2(1’11 + ’I’Lg) —-3. (3)

From Equations (2) and (3), we obtain (n;+mn2) = 1 and this is a contradiction of n; +ng > 1.
Similar results are obtained if 75 and 73 are in the same block. Thus G cannot be the disjoint
union of three trees. O

Figure 1 gives examples of a-consecutive edge magic labelings of graphs. Note that the
maximal a-consecutive edge magic graphs means the graph has n — 3 edges.
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Maximal a—consecutive edge magic graphs; a=2, n=10, e=7

3 ® 12

7 6 @11

a=3, Il=10, e=7 10

Non maximal a—consecutive edge magic graph; a=1, n=9, e=3

- S 6 3

®o—©@ O

4 5 7
11

e —@ ®

9 ;10 8

®e——@ ®

Figure 1: Examples of a-consecutive edge magic graphs.

If G is the union of three subgraphs then the only possibility is G = T7 UT5 U T3, where 11, 15
and T3 are trees. However, the previous theorem established that this is not possible. Thus if
GG has more than two connected components, then G has to have at least one isolated vertex.

315



If G has a-consecutive edge magic labeling, a # 0 and a # e, and the maximum number of
edges then in every case we need at least one isolated vertex. By counting the maximum
number of edges and comparing this to the number of vertices in the graph, we derive the
number of isolated vertices that are needed in the following observation.

Observation 1 Let G be an a-consecutive edge magic graph, a # 0 and a # e. If G consists

of
e two trees then the number of isolated vertices is one.
e one tree and one unicyclic graph then the number of isolated vertices is two.
e two unicyclic graphs then the number of isolated vertices is three.
e otherwise the number of isolated vertices is at least three.

Theorem 2.4 There is an a-consecutive edge magic graph for every a and n.

Proof: Let G be the union of two stars, S; and S3, and one isolated vertex z. Let vy;,1 =

1,..,t1, t1 = e — a, denote the leaves of S; and let vo;,j = 1, ..., 12, t2 = a, denote the leaves
of Sy. Label the vertices of G as follows.

n—1 fv==zx

a+1 if v is a center of S
Bv)=X a+1+i fv=vyi=1,..,%

a+n if v is a center of So

a+n—j iftv=wy,5=1,...,1

Complete the edge labels {1,2,...,a}U{a+n+1,...,e+n}. Then we have an a-consecutive
edge magic labeling for G. O

3 Some properties of b-consecutive edge magic graphs

Let G be a b-consecutive edge magic graph and let v be a b-consecutive edge magic labeling
of G. Then y(zy) € {b+1,b+2,...,b+n}. The super edge magic labeling is a special case of
b-consecutive edge magic labeling, when b = n. Since the vertex labels in a b-consecutive edge
magic labeling, 1 < b < n — 1, do not form a set of consecutive integers, it follows that the
row/column of the adjacency matrix of b-consecutive edge magic graph are labeled according
to the vertex labels of G not consecutively as 1,2, ...,n.

Theorem 3.1 Ewvery b-consecutive edge magic graph has edge antimagic vertex labeling.

Proof: Let G be a b-consecutive edge magic graph, then all the edge labels are the consecutive

integers {b+ 1, ...,b+ e}. If we define 7 as a restriction mapping of v in V then we can see
that 4’ is an edge antimagic vertex labeling. m]

Considering the dual labeling from Theorem 1, if a graph G has a b-consecutive edge magic
labeling, a similar result in the dual also holds.
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Theorem 3.2 The dual of a b-consecutive edge magic labeling for a graph G is an (n —b)-
consecutive edge magic labeling.

Proof: Let G be a graph that has b-consecutive edge magic labeling with magic constant k.

Thus y(E) = {b+1,b+2,...,b+e}. Let M = e+n. Define the labeling v :VUE —1,2,...M
as follows.
Y(x)=M+1-v(z),z€V,

7 (zy) = M +1—~(zy),zy € E.
We can see that ¥/ (E) = {M +1—-b—e,M —b—e+2,..., M —b}. Since the dual of an edge

magic labeling is also an edge magic labeling, then +' s an (n — b)-consecutive edge magic
labeling. O

A caterpillaris a graph derived from a path by hanging any number of leaves from the vertices
of the path. The caterpillar can be seen as a sequence of stars 51 U S2U ... U S;, where each
S, is a star with centre ¢; and n; leaves, i = 1,2,...,r, and the leaves of S; include ¢;—; and
Cit1,i = 2,...,7 — 1. We denote the caterpillar as Sni1ng,....,n» Where the vertex set is

r—1 ; :
V(Snymaome) = {ci:1<i<ryu U{a] :2<j<ni—1}U{z] :1<j <m—1}U{at
=2

2 < j < n,} and the edge set is

E(Sning,.me) = {ciciy1: 1 £ <7 =1} U:L:J:{c,xf 2<j<ni—1}u{asd :1<5<
m -1} U {1 2< 5 <n.}.
Theorem 3.3 There ezists a b-consecutive edge magic graph for every b.

Proof:

Let r be b = 5, for r even; and b = %, for 7 odd. Let G be a caterpillar Sy, n,,...,n,, With
centre ¢y, Ca, ..., ¢y, Such that every centre ¢; with i even has degree 2. Note that a star can
be regarded as caterpillar Sp, n,, with ny = 1. Let v be a b-consecutive edge magic labeling
for G. Label the odd centres as

¥ (c) = : —; 1, for i odd.

Let vg be the j-th leaf of the centre i. Label the leaves of the odd centre by

i—1
Y@ =b+e+ 14+ (nk+1)
k=1
Ifi—1 <1 then Zi;ll iod q(mk— 1) = 0 and the even centre is treated as a leaf of the previous

odd centre and is given the largest labels among the leaves.
Thus for every b, b = §, for r even; and b = %‘—1-, for 7 odd, we have constructed a b-
consecutive edge magic graph. O

We have an example of a b-consecutive edge magic labeling for every b. Figure 2 gives examples
of labelings for some value of b. In general, we have
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b=1,n=8 ,e=7 b=2, n=8, e=7

13

b=3,n=15, e=14

Figure 2: Examples of b-consecutive edge magic graphs.
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Theorem 3.4 If a connected graph G has a b-consecutive edge magic labeling, where b €
{1,...,n — 1}, then G is a tree.

Proof: Suppose that G has a b-consecutive edge magic labeling 7. Then v(V) = V4 U Vs,

where V1 = {1,2,...,b} and Vo = {b+e+1,b+e+2,...,n+e}. Letbe {1,..,n—1}. Let v/

be the restriction of v under V. Thus v/ is a VAE labeling.

Let A be the adjacency matrix of G. Since the set of vertex labels is a union of two disjoint
subset V7 and V5, then the adjacency matrix of G consists of four blocks as follows.

Al* A2
A=
( Az A )
Since A is a symmetric matrix it follows that As is the transpose of As. The entries of A;
represent all the edges between the vertices inside V7, the entries of As represent all the edges

between vertices in V7 and vertices in V5, and the entries of A4 represent all the edges between
vertices inside V5.

Suppose that A; is a nonzero submatrix. Then there is at least one edge xy between the
vertices in V1. 7/(zy) = v(z) +v(y) < 2b—1. Let 2’y be an edge between a vertex in V; and
a vertex in V5. Then v(z'y") = v(2') +v(y') > b+ e+2. Since v’ is a VAE labeling, the edge-
weights under 4/ must be a set of consecutive integers. This means that (b+e+2) < (260—1)
or b > e+ 3. We know that b < n — 1, whence e < n — 4. This means G is disconnected.
Similarly, if A4 is nonzero.

Suppose that Ay is a zero submatrix. Then A; and A4 cannot be zero submatrices of A.
Obviously, G will then be a disconnected graph.

If G is connected then A; and A4 must be zero submatrices of A. Consider the submatrix As.
The maximum edge-weight under v is n + e + b and the minimum edge-weight is b + e + 2.
Thus the maximum number of edges will be (n+e+b) — (b+e+2)—1=n—1. Then G is
a tree. O

Corollary 2 A double star Sp,n, has a b-consecutive edge magic labeling for some b €
{1,2,...,n} and

o Ifb=1 then Sy, n, is a star.
e I[fb>1thenb=mno+ 1.
Proof:

Let Sp1n2 be a double star with centres c; and cp. Let n; be the number of leaves of ¢,
excluding co, and let ng be the number of leaves of c;, excluding c;.

o b=1.
Label vertices and edges of Syp1 2 as follows.

319



1 fv=qc
y(v) =9 1+i ifv=1w; v; leavesof co
n+e ifv=co

y(ev)) =i+ 1fori=1,...,n1+1
Then v is a b-consecutive edge magic labeling for Sy1 no.

e b>1.
Let b= ng + 1. Label vertices and edges of Sy n2 as follows.

1 ifv=ac

141 if v = v;, v; leaves of ¢y
() = b+e+j if v=wj, vjleaves of c;

n+e fv=cy

'y(clvi) =i+1fori=1,....,n1+1

Complete labeling of all edges with elements of {b+ 1,...,b+ €}, in such a way that 7
is a b-consecutive edge magic labeling for 5,1 5,.
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