
Digital forensic techniques for static analysis of NTFS iInages

Mamoun Alazab
Internet Commerce Security Laboratory

University of Ballarat, Australia
m.alazab@ballarat.edu.au

Sitala ksJ)mi Ve nkatraman
Internet Commerce Security Laboratory

Uni vl:l'sity of Ballarat, Australia
s.venkatraman@ballarat.edu.au

Paul Watters
Internet Commerce Security Laboratory

Un i versity of Ballarat, Australia
p. watters@ballarat.edu.au

ABSTRACT
Static analysis of the Windows NT File System (NTFS) which is the standard and most
commonly used file system could provide useful information for digital forensics. However,
since the NTFS disk image records every event in the system, forensic tools need to process an
enormous amount of information related to user / kernel environment, buffer overflows, trace
conditions, network stack and other related subsystems. This leads to imperfect forensic tools
that are practical for implementation but not comprehensive and effective. This research
discusses the analysis technique to detect data hidden based on the internal structure of the NTFS
file system in the boot sector. Further, it attempts to unearth the vulnerabilities of NTFS disk
image and the weaknesses of the current forensic techniques. This paper argues that a
comprehensive tool with improved techniques is warranted for a successful forensic analysis.

Key Words: NTFS, Forensics, disk image, data hiding.

1. Introduction
Digital forensics IS the SCIence of
identifying, extracting, analyzing and
presenting the digital evidence that has been
stored in the digital electronic storage
devices to be used in a court of law [1, 2, 3].
It attempts to provide full descriptions of a
digital crime scene. In computer systems, the
primary goals of digital forensic analysis are
fivefold: i) to identify all the unwanted
events that took place, ii) to ascertain their
effect on the system, iii) to acquire the
necessary evidence to support a lawsuit, iv)
to prevent future incidents by detecting the
malicious techniques used and v) to
recogmze the incitement reasons and

intendance of the attacker for future
predictions [4]. The general component in
digital forensic process are; acquisition,
preservation, and analysis [5].
Digital electronic evidence could be
described as the information and data of
investigative value that are stored by an
electric device, such evidence [6]. This
research focuses on the third goal of
acqumng the necessary evidence of
intrusions that take place on a computer
system. In particular, this paper investigates
the digital forensic techniques that could be
used to analyze and acquire evidences from
the most commonly used file systems on

computers, namely, Windows NT File
System (NTFS).

Today, NTFS file system is the basis of
predominant operating systems in use, such
as Windows 2000, Windows XP, Windows
Server 2003, Windows Server 2008,
Windows Vista, Windows 7 and even in
most free UNIX distributions [7, 8, 9].
Hence, attackers try to target on NTFS as
this could result in affecting more computer
uscrs. Another compelling reason for
witnessing a strong relationship between
computer crime and the NTFS file system is
the lack of literature that unearth the
vulnerabilities of NTFS and the weaknesses
of the present digital forensic techniques
[10]. This paper attempts to fill this gap by
studying the techniques used in the analysis
of the NTFS disk image. Our objectives are
i) to explore the NTFS disk image structure
and its vulnerabilities, ii) to investigate
different commonly used digital forensic
techniques such as signatures, data hiding,
timestamp, etc. and their weaknesses, and
iii) finally to suggest improvements in static
analysis ofNTFS disk image.

2. Research Methodology
In order to achieve the above mentioned
objectives of this research work, we
conducted an empirical study using selected
digital forensic tools that are predominantly
used in practice. Several factors such as
effectiveness, uniqueness and robustness in
analyzing NTFS disk image were considered
in selecting the tools / utilities required for
this empirical study. Since each utility does
some specific functionality, a collection of
such tools were necessary to perform a
comprehensive set of functionalities. Hence,
the following forensic utilities / tools were
adopted to conduct the experimental
investigation in this research work:

i) Disk imaging utilities such as dd [11]
or dcfldd V1.3.4-1 [12] for
obtaining sector-by-sector mIrror
image of the disk;

ii) Evidence collection using utilities
such as Hexedit [13], Frhed 1.4.0[14]
and Strings V2.41[15] to introspect
the binary code of the NTFS disk
image;

iii) NTFS disk analysis using software
tools such as The Sleuth KIT (TSK)
3.0] [16] and Autopsy [17] and
NTFSINFO v1.0 [18] to explore and
extract intruded data as well as
hidden data for performing forensic
analysis.

Test data for the experimental investigation
with the above tools was created on a
Pentium (R) Core (TM) 2 Due CPU, 2.19
GHz, 2.98 of RAM with Windows XP
professional that adopts the NTFS file
system partition. In this research, we focus
on the boot sector of the NTFS disk image
for the empirical study. We adopt the
following three steps to perform digital
forensic analysis III a comprehensive
manner:

i) Hard disk acquisition,
ii) Evidence searching and
iii) Analysis ofNTFS file system.

2.1 Hard Disk Data Acq uisition
In this step, we used the dcfldd developed by
Nicholas Harbour and dd utility from
George Gamer to acquire the NTFS disk
image from the digital electronic storage
devices since they are simple and flexible
acquisition tools. The advantage of using
these tools is that we could extract the data
in or between partitions to a separate file for
more analysis, and in addition, it provides
built-in MD5 hashing features. Some of its
salient features allow the analyst to
calculate, save, and verify the MD5 hash
values. In digital forensic analysis, using
hashing technique is important to ensure
data integrity and to identify whether the
value of data has been changed as well as
explore known data objects [19].

2.2 Evidence searching

An evidence of intrusion could be gained by
looking for some known signatures,
timestamps as well as even searching for
hidden data [20]. In this step, we used
Strings command by Mark Russinovich,
Frhed hexeditor tool by Rihan Kibria and
WinHex hexeditor tool by X-Ways Software
Technology AG to detect a keyword or
phrase from the disk image.

2.3 Analysis of NTFS File System
The final step in the experimental
investigation is to analyze the data obtained
from the NTFS disk image that contribute
towards meaningful conclusions of the
forensic investigation. We adopted a
collection of tools such as the Sleuth Kit
(TSK) and Autopsy Forensic by Brian
Carrier and NTFSINFO vl.0 from Microsoft
Sysinternals by Mark Russinovich to
perform different aspects of the NTFS file
system analysis.

3. Analysis of the boot sector of the
NTFS disk image
The first step for a digital forensic
investigator is to acquire a duplicate copy of
the NTFS disk image before beginning the
analysis so as to ensure that the data on the
original devices have not been changed
during the analysis. Therefore, it is required
to isolate the original infected computer to
extract the evidence that could be found on
the electronic storage devices from the disk
image as the image captures the invisible
information as well [21]. The advantages of
analyzing disk images are that the
investigators can: a) preserve the digital
crime-scene, b) obtain the information in
slack space, c) access unallocated space, free
space, and used space, d) recover file
fragments, hidden or deleted files and
directories, e) view the partition structure
and f) get date-stamp and ownership of files
and folders [3, 22].

To understand how intrusions can lead to
data hiding, deleting, etc. and to facilitate
recovery, it is essential to understand the
physical characteristics of the Microsoft
NTFS file system. Master File Table
(MFT) is the core of NTFS since it contains
details of every file and folder on the volume
and allocates two sectors for every MFT
entry [23]. Each MFT entry has a fixed sized
which is 1 KB (At byte offset 64 in the boot
sector to identify the MFT record size). We
provide the MFT layout and represent the
plan of the NTFS file system using Figure 1.
NTFS exists to read and write the attributes
instead of read and write the file content.
The MFT enables a forensic analyst to
examine in some detail the structure and
working of the NTFS volume. Therefore, it's
important to understand how the attributes
are stored in the MFT entry.

Figure 1: MFT layout structure.

MFT entry within the MFT contains
attributes that can have any format and any
size. Further, as it shows in Figure 1, every
attribute contains an entry header which is
allocated in the first 42 bytes of a file record,
and it contains an attribute header and
attribute content. The attribute header is used
to identify the size, name and the flag value.
The attribute content can reside in the MFT
followed by the attribute header if the size is
less than 700 bytes (known as a resident
attribute), otherwise it will store the attribute
content in an external cluster called cluster
run (known as a non-resident attribute).
This is because; the MFT entry is lKB in

size and hence cannot fit anything that
occupies more than 700 bytes.

Metadata files are used to describe the file
system. We created a NTFS disk image of
the test computer using the dd utility and
investigated the boot sector. We used
NTFSINFO tool on the disk image as shown
in Table 1 which shows the boot sector of
the test device and information about the on
disk structure: it enables you to view the
MFT information, allocation size, volume
SIze and metadata files. We extracted
information such as the size of clusters,
sector numbers in the file system, starting
cluster address of the MFT, the size of each
MFT entry and the serial number given for
the file system.

Volume Size

Volume size
Total sectors
Total clusters

: 483 MB
: 991199
: 123899

o 1 2 3 6 7

EE 52 90 4E 54 46 53 20

00 00 00 00 00 F8 00 00

00 00 00 00 80 00 00 00

04 00 00 00 00 00 00 00

F6 00 00 00 01 00 00 00

00 00 00 00 FA 33 CO 8E

8E D8 E8 16 00 E8 DODD

10 E8 53 00 68 DODD 68

08 CD 13 73 05 E9 FF FF

OF E6 D1 80 E2 3F F7 E2

E7 C9 66 F7 E1 66 A3 20

16 24 00 CD 13 72 OF 81

74 04 FE 06 14 00 C3 66

03 06 1C 00 66 3E 06 20

00 66 50 06 53 66 68 10

OF 85 OC 00 E8 E3 FF 80

B4 42 8A 16 24 00 16 1F

66 58 66 58 1F EB 2D 66

66 F7 F1 FE C2 8A CA 66

1A 00 86 D6 8A 16 24 00

01 02 CD 13 OF 82 19 00

FF 06 10 00 FF OE OE 00

C3 AD F8 01 E8 09 00 AO

: 106696 Free clusters
Free space : 416 MB (86% of drive)

Allocation Size

Bytes per sector : 512
Bytes per cluster : 4096
Bytes per MFT record : 1024
Clusters per MFT record: 0

MFT Information

MFT size : 0 MB (0% of drive)
MFT start cluster : 41300
MFT zone clusters : 41344 - 56800
MFT zone size : 60 MB (12% of drive)
MFT mirror start : 61949

Meta-Data files

Table I: NTFS Information Details.

From the information gained above and from
analyzing the boot sector image as shown in
Figure 2, we performed an analysis of the
data structure of this boot sector and this IS
summarized in Table 2.

8 9 10 11 12 13 14 15

20 20 20 00 02 08 00 00

3F 00 FF 00 20 00 00 00

DF 1F OF 00 00 00 00 00

FD F1 00 00 00 00 00 00

12 04 43 38 37 43 38 68

DO BC 00 7C FB E8 CO 07

8E CO 33 DE C6 06 DE 00

6A 02 CE 8A 16 24 00 E4

8A F1 66 OF B6 C6 40 66

86 CD CO ED 06 41 66 OF

00 C3 B4 41 BB AA 55 8A

FB 55 AA 75 09 F6 C1 01

60 ~E 06 66 A1 10 00 66

00 OF 82 3A 00 1E 66 6A

00 01 00 80 3E 14 00 00

3E 14 00 00 OF 84 61 00

8E F4 CD 13 66 58 5B 07

33 D2 66 OF E7 DE 18 00

8B DO 66 C1 EA 10 F7 36

8A E8 CO E4 06 OA CC E8

8C CO 05 20 00 8E CO 66

OF 85 6F FF 07 1F 66 61

FB 01 E8 03 00 FB EB FE

eRllNTFS

'" 7 'I
~ Jl,

yn

/;j C87C8h

u3AZDl.o: I u.A
Z0e ZA3UlI!

eS h hj ES $

f '" 1 yysnf '3L!I!@f
'![!iJ~e.7-i-e.-t fAi Af

• Ef-i- af£ A - A» 1 US

$ f r ouuau /;jA

t P Af' fj f

f; fj

fP S:fh ~>

e~~> "s.
-ES $ <df ~X[
:fX:fX e-f30f .

f-i-npAsEf<DfAe -i-6

-tds $ SeA;';' i.
f CEA ZAf

O::E ::fset

000000000

0000000~6

000000032

0000 000'18

0000 0006'1

000000080

000000096

000000112

000000128

0000001'1'1

000000160

000000176

000000192

000000208

000000224

000000240

000000256

000000272

000000288

0000 0030'1

000000320

000000336

000000352

000000368

0000 0038'1

000000400

000000416

000000432

0000004'18

000000464

000000'180

000000496

0000005~2

B4 01 8E FO AC 3C 00 74 09 B4 DE BB 07 00 CD 10

EB F2 C3 OD OA 41 20 64 69 73 6B 20 72 65 61 64

20 65 72 72 6F 72 20 6F 63 63 75 72 72 65 64 00

OD OA 4E 54 4C 44 52 20 69 73 20 6D 69 73 73 69

6E 67 00 OD OA 4E 54 4C '14 52 20 69 73 20 63 6F

6D 70 72 65 73 73 65 64 DODD OA 50 72 65 73 73

20 43 74 72 6C 2E 41 6C 74 2B 4'1 65 6C 20 74 6F

20 72 65 73 74 61 72 74 OD OA 00 00 00 00 00 00

00 00 00 00 00 00 00 00 83 AO E3 C9 00 00 55 AA

05 00 4E 00 54 00 4C 00 44 00 52 00 om 00 24 00

'I 'I _0'1 fa

A ~ e u e uep
< 115-,< t '» f

eoA A disk read

error occurred

NTLDR is missi
ng NTLDR is co

mpressed Press
Ctr~+A~t+De~ to

resta.rt

Figure 2: First Sector of the test boot Sector.

Byte
Size Description Vallie

Range
Note

If bootable, jump. If non-
o -- 2 3 Jump to boot code 9458411 bootable, used to store error

message

3 -- 10 8 OEM Name - System ID NTFS

11 -- 12 2 Bytes per sector: 512

13 -- 13 1 Sectors per cluster 8

14 -- 15 2 Reserved sectors 0 Unused

16 -- 20 5 Unused 0 Unused

21 -- 21 1 Media descriptor 0

22 -- 23 2 Unused 0 Unused

24 -- 25 2 Sectors per track 63 Not Check

26 -- 27 2 Number of heads 255 Not Check

28 -- 31 4 Unused 32 Not Check
32 -- 35 4 Unused 0 Unused

36 -- 39 4 Drive type check 80000000 For USB thumb drive

40 -- 47 8
Number of sectors III file
system (volume)

0.47264 GB

48 -- 55 8
Starting cluster address of

4*8=32
$MFT
Starting cluster address of MFT

56 -- 63 8 Mirror 619,49
$DA T A attribute

64 -- 64 1 Size of record - MFT entry 210-1024

65 -- 67 3 Unused 0 Unused

68 -- 68 1 Size of index record 01h

69 -- 71 3 Unused 0 Unused

72 --79 8 Serial number C87C8h

80 -- 83 4 Unused 0 Unused

84 -- 509 426 Boot code ~

510--511 2 Boot signature OxAA55

Table 2: Data structure for the test boot sector

4. Analysis of the Hidden Data in
the $Boot metadata file system
Attackers use different techniques such as
disguising file names, hiding attributes and
deleting files to intrude the system. Since
the Windows operating system does not zero
the slack space, it becomes a vehicle to hide
data, especially in $Boot file. Hence, in this
study, we analyze the hidden data in the
$Bootfile. The $Boot entry is stored in a
metadata file at the first cluster in sector 0 of
the file system called $Boot from where the
system boots. It is the only metadata file that
has a static location so that it cannot be
relocated. Microsoft allocates the first 16
sectors of the file system to $Boot and only

half of these sectors contains non-zero
values [3].

NTFS file system requires knowledge and
experience to analyze the data structure and
the hidden data [24]. The $Boot metadata
file is located in MFT entry 7 and contains
the boot sector of the file system. It contains
information about the size of the volume
clusters and the MFT. The $Boot metadat~
file has four attributes:
$STANDARD INFORMATION
$FILE _ NAME~ ,
$SECURlTY_DESCRlPTION and $DATA.
The $STANDARD INFORMATION
attribute contains temporal information such

as flags, owner, security ID and the last
accessed, written, and created times. The
$FILE_NAME attribute contains the file
name in Unicode, the size and
information as well.
$SECURITY _DESCRIPTION

temporal
The

attribute
contains information about the access
control and security properties. Finally, the
$DATA attribute contains the file contents.
These are illustrated for the test sample as
shown in Table 2 using the following TSK
command tools:
Istat -f ntfs c:\image.dd 7

MFT Entry Header Values:
Entry: 7 Sequence: 7
$LogFile Sequence Number: 0
Allocated File
Links: I

$STANDARD_INFORMATION Attribute Values:
Flags: Hidden, System
Owner ID: 0
Created: Mon Feb 09 12:09:062009
File Modified: Mon Feb 09 12:09:062009
MFT Modified: Mon Feb 09 12:09:062009
Accessed: Mon Feb 09 12:09:062009

$FILE_NAME Attribute Values:
Flags: Hidden, System
Name: $Boot
Parent MFT Entry: 5 Sequence: 5
Allocated Size: 8192 Actual Size: 8192
Created: Mon Feb 09 12:09:062009
File Modified: Mon Feb 09 12:09:062009
MFT Modified: Mon Feb 09 12:09:062009
Accessed: Mon Feb 09 12:09:062009

Attributes:
Type: $STANDARD_INFORMATION (16-0)
Name: N/A Resident size: 48
Type: $FILE_NAME (48-2) Name: N/A Resident
size: 76
Type: $SECURITY_DESCRIPTOR (80-3) Name:
NI A Resident size: 116
Type: $DATA (128-1) Name: $Data Non-Resident
size: 8192
01

Table 2: "$Boot Attributes"

Hence the $Boot attribute of the NTFS file
system could be used to hide data. By
analyzing the hidden data in the boot sector,

one could provide useful information for
digital forensics. The size of the data that
could be hidden in the boot sector is limited
by the number of non-zero that Microsoft
allocated in the first 16 sectors of the file
system. The data could be hidden in the
$Boot metadata files without ralSlng
SUspICIon and without affecting the
functionality of the system [25].

Analysis of the $Boot attribute of the NTFS
file system will identifY any hidden data.
The analyzer should start by making a
comparison between the boot sector and the
backup boot sector. The image with the boot
sector and backup boot sector are supposed
to be identical; otherwise there is some data
hidden on the $Boot file. One method is to
check the integrity of the backup boot sector
and the boot sector by calculating the MD5
for both of them. A difference in checksum
indicates that there is some hidden data. We
performed this comparison by adopting the
following commands on the $Boot image
file and the backup boot image, see the
applied below:

dd if=image.dd bs=512 count= 1 skip=61949
of=c:\backupbootsector.dd -md5sum
verifYmd5 -md50ut=c:\hashl.md5

dd if=image.dd bs=512 count=l
of=c:\bootsector.dd -md5sum -verifYmd5 -
md50ut=c:\hash2.md5

We found that hidden data in the $Boot file
was not detected directly by the tools used in
this study and manual inspections were
required alongside these forensic tools.
Hence, through the analysis conducted with
various utilities and tools, we arrived at the
following results:

1. There is a huge amount of data
analysis required while scanning the
entire NTFS disk image for forensic
purposes. Just by focusing on the
hidden data in the $Boot, this
empirical study showed that many

tools and utilities have to be adopted
and it takes an immense amount of
time to analyze the data derived.

2. Not all computer infections are
detected by forensic tools, especially
intrusions that are in the form of
hidden data in the $Boot file.

3. By adopting a manual introspection
of the $Boot file using the three-step
approach of i) hard disk
acquisition, ii) evidence searching
and iii) analysis of the NTFS file
system, we could identifY hidden
data in the $Boot file.

4. Searches can be performed to extract
the ASCII and UNICODE characters
from binary files in the disk image on
either the full file system image or
just the unallocated space, which
could speed-up the process of
identifYing hidden data.

5. Microsoft has different versions of
the NTFS file system. While
Windows XP and Windows Server
2003 use the same version, Windows
Vista uses the NTFS 3.J version [7].
The new NTFS 3.1 has changed the
on-disk structure. For example, the
location of the volume boot record is
at physical sector 2,048. Not all
existing tools work with all the
different versions of NTFS file
system, hence a comprehensive tool
is warranted even with the changes in
the NTFS file structure.

5. Conclusions and Future Work
This paper has attempted to explore the
difficulties involved in digital forensics,
especially in conducting static analysis of
NTFS disk images and propose a solution
method. In this empirical study, we have
found the boot sector of the NTFS file
system could be used as a vehicle to hide
data by computer attackers. This is an
important NTFS file system weakness to be
addressed as research in this domain area
could lead to effective methods for the open

problem of detecting new malicious codes
that use this mode of attack. The existing
forensic software tools are not competent
enough to comprehensively detect hidden
data in boot sectors. As a first step to
address this problem, we have formulated a
three-step forensic analysis process to
facilitate the research methodology. We
have reported the results gathered by
adopting this process. One clear
achievement through this research study is
that we were successful in identifYing some
unknown malicious hidden data in the $Boot
file that were hidden from current well
known virus scanners. The research
methodology reported in this paper could be
adopted to analyze other sectors of the NTFS
file system as well.

In this initial research investigation
conducted, we had adopted a few forensic
techniques and manual inspections of the
NTFS file image. Our next stage of this
research work would be to automate the
proposed process so as to facilitate forensic
analysis of the NTFS disk image in an
efficient and comprehensive manner. We
plan to extract signatures intelligently so as
to detect efficiently new malware that use
hidden and obfuscated modes of attack.
This would help trigger more research to be
conducted in satisfYing the objective of
automatically and proactively identifying
unseen malware that try to evade detection.

References:

[1] Reith, M.; Carr, C. & Gunsch, G., "An
examination of digital forensic models",
International Journal of Digital
Evidence, 2002, J, 1-12.

[2] Technical Working Group for Electric
Crime Scene Investigation. "Electronic
Crime Scene Investigation: A Guide for
First Responders", 2001.

[3] Carrier, B., "File system forensic
analysis", Addison-Wesley Professional,
USA, 2008.

[4] Ardisson, S. ,"Producing a Forensic
[mage of Your Client's Hard Drive?
What You Need to Know", Qubit, 2007,
1, 1-2.

[5] Andrew, M., "Defining a Process Model
for Forensic Analysis of Digital Devices
and Storage Media", Systematic
Approaches to Digital Forensic
Engineering, 2007, SADFE 2007.
Second International Workshop on,
2007, 16-30.

[6] Investigation, E., "Electronic Crime
Scene Investigation: A Guide for First
Responders", US Department of Justice,
NCJ, 2001, 187736.

[7] Svensson, A., "Computer Forensic
Applied to Windows NTFS Computers",
Stockholm's University, Royal Institute
of Technology, 2005.

[8] NTFS, http://www.ntfs.com. 22/212009.

[9] Purcell, D. & Lang, S., "Forensic
Artifacts of Microsoft Windows Vista
System", Lecture Notes in Computer
Science, Springer, 2008, 5075, 304-319.

[10] Newsham, T.; Palmer, C.; Stamos, A.;
Burns, 1. & iSEC Partners, 1., "Breaking
forensics software: Weaknesses in
critical evidence collection",
Proceedings of the 2007 Black Hat
Conference, 2007.

[IIJ DD tool, George Gamer's site
http://users.ero Is .com! gmgarner/forensic
s/, 14/1/2009.

[12] DCFL tool, Nicholas Harbour,
http://dcfldd.sourceforge.net/, 14/1/2009.

[13] WinHex tool, X-Ways Software
Technology AG, http://www.x-
ways.net/winhexl, 14/1/2009.

[14] FRHED tool, Raihan Kibria site,
http://frhed.sourceforge.netl , 14/1/2009.

[15] STRINGS, Mark Russinovich,
http://technet.microsoft.com!en
us/sysinternalslbb897439.aspx,
141112009.

[16] TSK tools, Brian Carrier site,
http://www .sleuthkit.org/sleuthkitl,
14/1/2009.

[17] Autopsy tools, Brian Carrier site,
http://www.sleuthkit.org/autopsy/,
14,1,2009.

[18] NTFSINFO tool, Mark Russinovich,
http://technet.microsoft.com!en
au/sysinternalslbb897424.aspx,
14/1/2009.

[19] Roussev, V.; Chen, Y.; Bourg, T. &
Richard, G., md5bloom: Forensic file
system hashing revisited, Digital
Investigation, Elsevier, 2006, 3, 82-90.

[20] Chow, K.; Law, F.; Kwan, M. & Lai,
K., "The Rules of Time on NTFS File
System" Proceedings of the Second
International Workshop on Systematic
Approaches to Digital Forensic
Engineering, 2007, 71-85.

[21] Jones, K.; Bejtlich, R. & Rose, C.,
"Real digital forensics: computer
security and incident response",
Addison-Wesley Professional, USA,
2008.

[22] Carvey, H., "Windows Forensic
Analysis DVD Toolkit", Syngress Press,
USA,2007.

[23] Naiqi, L.; Yujie, W. & QinKe, H.,
"Computer Forensics Research and

Implementation Based on NTFS File
System", Computing, Communication,
Control, and Management, 2008.
CCCM'08. ISECS International
Colloquium on, 2008, 1.

[24] Aquilina, 1.; Casey, E.; Malin, C. &
MyiLibrary, "Malware Forensics
Investigating and Analyzing Malicious
Code ", Syngress Publishing,USA, 2008.

[25] Huebner, E.; Bern, D. & Wee, c., "Data
hiding in the NTFS file system", Digital
Investigation, Elsevier, 2006, 3, 211-226.

