
Efficient piecewise linear
classifiers and applications

Thesis by

Dean Webb

Submitted to the degree of Doctor of Philosophy

A DISSERTATION

Presented to the Graduate School of Information Technology and

Mathematical Sciences

University of Ballarat

PO Box 663

University Drive, Mount Helen

Ballarat, Victoria 3353

Australia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213011098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Supervised learning has become an essential part of data mining for industry, mil-

itary, science and academia. Classification, a type of supervised learning allows a

machine to learn from data to then predict certain behaviours, variables or out-

comes. Classification can be used to solve many problems including the detection

of malignant cancers, potentially bad creditors and even enabling autonomy in

robots.

The ability to collect and store large amounts of data has increased signifi-

cantly over the past few decades. However, the ability of classification techniques

to deal with large scale data has not been matched. Many data transformation

and reduction schemes have been tried with mixed success. This problem is fur-

ther exacerbated when dealing with real time classification in embedded systems.

The real time classifier must classify using only limited processing, memory and

power resources.

Piecewise linear boundaries are known to provide efficient real time classi-

fiers. They have low memory requirements, require little processing effort, are

parameterless and classify in real time. Piecewise linear functions are used to ap-

proximate non-linear decision boundaries between pattern classes. Finding these

piecewise linear boundaries is a difficult optimization problem that can require

a long training time. Multiple optimization approaches have been used for real

time classification, but can lead to suboptimal piecewise linear boundaries.

This thesis develops three real time piecewise linear classifiers that deal with

i

ii

large scale data. Each classifier uses a single optimization algorithm in conjunc-

tion with an incremental approach that reduces the number of points as the

decision boundaries are built. Two of the classifiers further reduce complexity by

augmenting the incremental approach with additional schemes. One scheme uses

hyperboxes to identify points inside the so-called “indeterminate” regions. The

other uses a polyhedral conic set to identify data points lying on or close to the

boundary. All other points are excluded from the process of building the decision

boundaries.

The three classifiers are applied to real time data classification problems and

the results of numerical experiments on real world data sets are reported. These

results demonstrate that the new classifiers require a reasonable training time

and their test set accuracy is consistently good on most data sets compared with

current state of the art classifiers.

Statement of Authorship

This thesis contains no material which has been accepted for the awards of any

other degree or diploma in any university and is less than 100,000 words in length

excluding tables, maps, footnotes, bibliographies and appendices. To the best of

my knowledge and belief this thesis contains no material previously published by

any other person except where due acknowledgement has been made.

Dean Webb

December 2010

iii

Acknowledgements

Firstly I would like to thank my supervisor Assoc. Prof. Adil Bagirov and my

associate supervisor Dr. Mammadov. Their guidance, availability and persistance

along the way has been invaluable.

I would also like to thank Dr. Ugon and Dr. Soukhoroukova for all their help

and encouragement. They are truly good friends and colleagues. All the work

that they put into reading and highlighting the mistakes in my thesis, made the

writing that much easier.

To all my other colleagues at the University of Ballarat, I would like to thank

you for all the encouragement and support that you gave me. When the research

seemed to be going no where, it was always good to have people to discuss with.

Also I would like to thank all the anonymous referees who read and gave me

useful feedback on my papers.

I would like to thank the University of Ballarat for allowing me the oppurtunity

to undertake this research. Special thanks to Dianne Clingin for the support that

she gave me towards the end of the writing phase.

Lastly but certainly not least, I would like to thank my family for enduring

the roller coaster ride that is a Ph.D. Especially to my wife, it is not easy having

two young children and a husband studying fulltime. For your patience I am

eternally grateful. Thank you Kathryn, Bailey and Sienna.

iv

List of Publications

[1] Adil Bagirov, Moumita Ghosh, and Dean Webb. A derivative-free method

for linearly constrained nonsmooth optimization. Journal of Industrial and

Management Optimization, 2(3):319–338, 2006.

[2] Adil Bagirov, Julien Ugon, and Dean Webb. An efficient algorithm for the

incremental construction of a piecewise linear classifier. Information Systems,

36(4):782–790, 2011. Selected Papers from the 2nd International Workshop

on Similarity Search and Applications SISAP 2009.

[3] Adil Bagirov, Julien Ugon, Dean Webb, and Bülent Karasözen. Classification

through incremental max-min separability. Pattern Analysis & Applications,

14:165–174, 2011. 10.1007/s10044-010-0191-9.

[4] Adil Bagirov, Julien Ugon, Dean Webb, Gurkan Ozturk, and Refail Kasim-

beyli. A novel piecewise linear classifier based on polyhedral conic and max-

min separabilties. 2010. Submitted.

[5] Adil Bagirov, Julien Ugon, and Dean Webb. Fast modified global k-means al-

gorithm for incremental cluster construction. Pattern Recognition, 44(4):866–

876, 2011.

[6] Dean Webb, John Yearwood, Liping Ma, Peter Vamplew, Bahadorreza Ofoghi,

and Andrei Kelarev. Applying clustering and ensemble clustering approaches

to phishing profiling. In Proceedings of the Australasian Data Mining Confer-

ence: AusDM, Melbourne, Australia, December 2009.

v

LIST OF PUBLICATIONS vi

[7] John Yearwood, Musa Mammadov, and Dean Webb. Profiling phishing ac-

tivity based on hyperlinks extracted from phishing emails. Social Network

Analysis and Mining, 1–12, 2011. 10.1007/s13278-011-0031-y.

Contents

Abstract i

Acknowledgements iv

List of Publications v

1 Introduction 1

2 Data mining and classification 6

2.1 Introduction . 6

2.2 Data Mining . 9

2.2.1 History . 9

2.2.2 Knowledge Discovery in Databases 11

2.2.3 Data Collection . 12

2.2.4 Data cleaning and preprocessing 14

2.2.5 Data Transformation . 16

2.2.6 The data mining task . 19

Machine learning . 20

Classification (Supervised learning) 21

Classification process . 22

Algorithm selection . 23

Algorithm training . 24

2.2.7 Pattern evaluation . 26

vii

CONTENTS viii

2.2.8 WEKA . 28

2.3 Real time systems . 33

2.3.1 Embedded real time systems 34

2.3.2 Real time classification for embedded systems 35

2.4 Polychotomous classification (the Multi-class problem) 36

2.5 Current classification techniques 39

2.5.1 Logic based classifiers . 39

Decision trees . 39

Rule learners . 42

2.5.2 Statistical based algorithms 43

Bayesian classifiers . 43

k-Nearest Neighbour . 45

2.5.3 Artificial Neural Networks 48

Perceptron . 48

Multilayered perceptrons 48

2.6 Conclusions . 53

3 Optimization and piece wise linear based classifiers 55

3.1 Introduction . 55

3.1.1 Optimization based classifiers 56

3.1.2 Piecewise linear classifiers 56

3.2 Classifiers based on the multiple optimization approach 59

3.2.1 Early piecewise linear classifiers 59

Nilsson . 59

Sklansky and Michelotti 59

3.2.2 Prototype based piecewise linear classifiers 61

Park and Sklansky . 61

Tenmoto, Kudo and Shimbo 62

3.2.3 Tree Based Methods . 64

CONTENTS ix

Kostin . 64

3.2.4 Linear Regression based methods 66

3.2.5 Neural Network based and other methods 67

3.3 Classifiers based on the single optimization approach 68

3.3.1 Linear Separability . 68

3.3.2 Support Vector Machines 70

Linear support vector machines 71

Nonlinear support vector machines 73

3.3.3 Polyhedral separability . 75

3.3.4 Max-min separability . 77

3.3.5 Error function . 80

3.4 Data pre-classification . 83

3.5 Incremental learning algorithms 86

3.6 Conclusions . 89

4 Classification through incremental max-min separability 91

4.1 Introduction . 91

4.2 Incremental algorithm . 92

4.2.1 Algorithm . 93

4.2.2 Explanations to the algorithm 97

4.3 Classification rules . 99

4.4 Implementation of the algorithm 100

4.5 Numerical Experiments . 101

4.6 Conclusion . 105

5 A piecewise linear classifier based on polyhedral conic and max-

min separabilities 107

5.1 Introduction . 107

5.2 Polyhedral conic sets and max-min separability 108

CONTENTS x

5.2.1 Separation via polyhedral conic functions 109

5.2.2 Explanations to the algorithm 111

5.3 The hybrid polyhedral conic and max-min separability algorithm . 115

5.3.1 Computation of centers of polyhedral conic sets 115

5.3.2 Identification of boundary points 118

5.3.3 Outline of the algorithm 119

5.4 Implementation of the algorithm 120

5.5 Numerical Experiments . 121

5.6 Conclusion . 124

6 An incremental piecewise linear classifier based on hyperboxes

and max-min separation 126

6.1 Introduction . 126

6.2 Piecewise linear separability . 128

6.3 Identification of indeterminate regions using hyperboxes 128

6.4 Incremental algorithm . 130

6.5 Classification rules . 135

6.6 Implementation of the algorithm 136

6.7 Numerical Experiments . 138

6.8 Conclusion . 141

7 Conclusion and further work 143

7.1 Conclusion . 143

7.2 Further research . 145

Bibliography 164

List of Figures

2.1 Knowledge discovery Process 11

2.2 Data in a tabular representation for classification 16

2.3 Process of classification . 22

2.4 Knowledge flow Graphical user interface 32

2.5 A decision tree . 39

2.6 k-nearest neighbour, k=5 . 46

2.7 Simple multilayer neural network 49

2.8 Basic model of a neural network 50

3.1 Prototypes found by clustering algorithm 59

3.2 Encounter zone between classes in feature space 61

3.3 Tomek links . 62

3.4 Linear separability . 69

3.5 Linear separating hyperplanes as a separable case. The support

vectors are filled in. 71

3.6 Polyhedral separability . 75

3.7 Max-min separability . 77

4.1 The first iteration of Algorithm 1 for three sets A1, A2 and A3. . . 99

4.2 Classification rule between three sets A1, A2 and A3 using Algo-

rithm 1 . 100

5.1 3d graph of polyhedral conic functions with different level sets . . 112

xi

LIST OF FIGURES xii

5.2 Approximations of classes for three class data set in R
2 113

5.3 The first iteration of Algorithm 1 for three sets A1, A2 and A3. . . 114

5.4 Identification of the centers of the polyhedral conic sets for the two

classes A1 and A2 using hyperboxes 116

5.5 Identification of the centers of the polyhedral conic sets for the

three classes A1, A2 and A3 using hyperboxes 116

6.1 Identification of indeterminate region between two sets A1 and A2

using hyperboxes: grey region . 128

6.2 Identification of indeterminate regions between three sets A1, A2

and A3 using hyperboxes: grey regions 129

6.3 Classification rule to separate sets A1, A2 and A3 using hyperboxes

and max-min separability . 137

List of Tables

2.1 Training set of decision tree . 40

4.1 Brief description of data sets . 102

4.2 Results of numerical experiments: test set accuracy. 102

4.3 Results of numerical experiments: test set accuracy (cont). 103

4.4 Results of numerical experiments: test set accuracy (cont). 103

4.5 Results of numerical experiments: CPU time for Polyhedral and

CIMMS algorithms. 105

5.1 Brief description of data sets . 122

5.2 Test set accuracy for different classifiers. 123

5.3 Test set accuracy for different classifiers. 123

5.4 Pairwise comparison of the HPCAMS classifier with others using

testing accuracy. 124

5.5 Training and testing time for the the HPCAMS algorithm (in sec-

onds). 124

6.1 Brief description of data sets . 138

6.2 Test set accuracy for different classifiers. 139

6.3 Pairwise comparison of the proposed classifier with others using

testing accuracy . 140

6.4 Training and testing time for the proposed algorithm (in seconds) 140

xiii

Chapter 1

Introduction

In today’s information age, knowledge discovery is becoming more important than

ever before. Industry, military, academia and science all endeavour to learn and

then predict future outcomes within their respective fields.

Intelligence agencies want to predict any impending man made catastrophes;

companies would like to increase their product buying power or predict stock

market trends; banks would like to identify potential loan defaulters; medical

science is concerned with predicting accurate diagnoses and the robotics industry

is interested in developing further robot autonomy.

Solutions to such problems can be achieved through the data mining task of

supervised learning. More specifically through the sub task known as classifica-

tion. Classification is a type of machine learning where the computing device

employs a classification algorithm to learn from data observations, in order to

make future predictions.

Over the past few decades the collecting and storing of data have increased at

such a rate that the current classification techniques are unable to deal with the

large volumes of data. Attempts have been made to reduce the data by applying

various transformation and reduction techniques.

These techniques have been met with varying degrees of success, as most of

1

Introduction 2

them depend heavily on the underlying distributions of the data provided. Fur-

thermore, certain classification domains place additional demands on classifiers.

One such application domain, is that of real time classification.

Real time classification problems usually need classifiers to have low memory

requirements, small training times and to classify data in real time. Generally,

such applications demand the use of large scale data, this is especially true when

device sensors are sampling data at very high rates. Some examples of real time

applications include small reconnaissance robots, automated visual surveillance

systems, embedded systems and portable electronic devices. Applications involv-

ing embedded systems and portable electronic devices also add power and space

constraints, further emphasizing computational and memory efficiency of the clas-

sifier.

In most cases current mainstream classifiers achieve good classification accu-

racy. However, many such classifiers fail to deal with large scale data, have long

training times, require human input through the tuning of parameters and can

not provide real time classification. As many real time applications deal with

large scale data and learn without human intervention, this makes these types

of classifiers inappropriate for such applications. On the other hand, it has been

shown that piecewise linear (PWL) classifiers are ideal for real time classification

[87].

PWL classifiers can provide real time classification with low memory, process-

ing and power requirements. They are also very simple to implement and do not

contain parameters that depend on the data set. However, the determination

of PWL boundaries used for the classification process can be a complex global

optimization problem [141].

The objective function in this problem is nonconvex and nonsmooth where

Newton-like methods cannot be applied. It may have many local minimizers,

where only global minimizers provide PWL boundaries with the least number of

Introduction 3

hyperplanes. Furthermore, the number of hyperplanes needed to separate sets is

not known a priori. As a result of these difficulties, PWL classifiers can require

a long training time which creates challenges for their practical application.

In order to overcome these problems and reduce training time, most PWL

techniques try to avoid solving optimization problems when computing piecewise

linear boundaries. Many multiple optimization approaches apply different forms

of heuristics to determine and compute the number of hyperplanes [18, 32, 65, 87,

118, 142, 141, 149]).

Often these algorithms are quite fast, however, they do not always find the

global minimizers of the classification error function. Working with large scale

data only intensifies the problem as the number of minimizers of the classification

error function increases.

This thesis develops three real time piecewise linear classifiers that deal with

large scale data. Each classifier uses a non smooth single optimization algorithm

to calculate the number and placement of hyperplanes for the decision boundary.

Learning is based on an incremental approach that employs heuristics to decrease

the number of data points,while building a decision boundary for the separation

of classes.

Incremental approaches have been shown to be efficient problem solving tools

[127]. Such approaches can be applied effectively for the construction of PWL

boundaries, as information from previous iterations can be built upon. Building

on information can reduce complexity and aid in the determination of an optimal

number of hyperplanes.

Furthermore, two of the classifiers further reduce complexity by augmenting

the incremental approach with additional schemes. One classifier uses hyperboxes

to identify points inside the so-called “indeterminate” regions. The other algo-

rithm uses a polyhedral conic set to identify data points lying on or close to the

defined boundary. All other points from both schemes are excluded from the

Introduction 4

process of building the decision boundaries.

Results of numerical experiments using a number of real-world data sets are

reported. These results demonstrate that the new algorithms consistently pro-

duce good test set accuracy and are trained in a reasonable time. These results

are compared to a number of other classifiers, where all experiments were run on

real world data sets.

This thesis is organized as follows: Chapter 2 presents a comprehensive re-

view of the Knowledge discovery in data bases process. This process highlights

the tasks needed for data mining, including data collection, data storage, data

processing and data mining itself. A comprehensive review is given on the classi-

fication process. A data mining software package is presented where the classifi-

cation process is shown in practice using a number of classification techniques.

This chapter also presents a review on real time classification, where a number

of classification constraints are highlighted. The multi-class problem is presented

and a review of solutions is given. This leads onto a review of a number of main

stream classification techniques, where problems associated with large scale data

are highlighted.

Chapter 3 gives a brief explanation on optimization and then moves into

piecewise linear classification, where a description is given. The next sections

provide a detailed overview of multiple optimization and single optimization piece

wise linear classification techniques. This critique highlights the advantages of

these classifiers, but also points out their weaknesses in terms of large scale data

and long training times.

An incremental approach is given, highlighting the benefits of algorithms that

deal with large scale problems sequentially. This then leads onto schemes that

focus on data, where a review on data pre-classification is given. A number of

schemes are presented where the benefits of pre-classifying data is made relevant

to dealing with large scale data.

Introduction 5

The next three chapters present the three real time piece wise linear classifiers

developed in the thesis. The first one, given in chapter 4 introduces the idea

of incrementally building a piecewise linear boundary from a least complexity

approach.

Chapter 5 extends this idea by introducing polyhedral conic functions. The

polyhedral conic functions are used in conjunction with the incremental algorithm,

where points are removed before the incremental algorithm is applied.

Chapter 6 uses an alternative idea to that of polyhedral conic functions. In-

stead, hyperboxes are used to eliminate points between each pair of classes. As

with the use of polyhedral conic functions, hyperboxes eliminate points before

the incremental approach is applied, thus reducing complexity.

Results of numerical experiments are presented in each of the these three

chapters and this is followed by a discussion that draws a conclusion from the

presented results.

Finally chapter 7 concludes the thesis by drawing on conclusions from the

results of the three classifiers. Further research ideas are presented, and based on

the three classifiers future work and research directions are highlighted.

Chapter 2

Data mining and classification

2.1 Introduction

It is natural for Human Beings to abstract objects into groups based on certain

characteristics. When a human comes in contact with an unfamiliar object, iden-

tification would be made on a closest fit to one of the previous defined groups.

Early nomadic tribes people serve as a good example of this as they learned the

differences between edible and poisonous plants. Learning the characteristics of

both groups of plants allowed them to quickly identify unknown plants likely to

be poisonous. “The ability to distinguish between objects is the fundamental to

learning intelligent behaviour in general.”[25].

Today we are able to identify a plant or animal by its physical attributes

and functionality using a dichotomous classification tree, Systema Naturae [97].

This work dates back to Aristotle and then Karl von Linne in the 18th century.

Although refinements have been made, this hierarchical classification model is still

being used today. Its primary function is to identify different plants or animals.

If part of the taxonomy is missing or a contradiction is found then additions or

alterations to the model can be made. This highlights the importance of the

classification process. We can store what we have learnt, quickly identify the

6

Data mining and classification 7

new unseen or update the unknown or contradicting information. However, work

done by von Linne (Linnaeus) and other scientists since the 18th century has been

laborious and tedious. Painstakingly all found plants and animals were manually

recorded, collated and then added to the classification model.

With the advent of the computer these manual processes have now become

automated. Computers have allowed us to minimize the work load in terms

of collecting and storing data. We are also able to analyse, make predictions

and find useful patterns from the data. The classification task is performed by

the computer where it learns from the data in order to later classify unseen

objects. This is known as machine learning and can be used in all types of

domains. In business, classification can be used in customer segmentation to

identify customers who would be a credit risk, or others who would be likely to

pay their entire monthly credit card balance. In medicine, researchers may want

to predict a patient’s response to a drug, or determine the likelihood of a patient

having breast cancer.

Data Mining is the field of work which deals with collecting, analysing, pre-

dicting and learning from data. Machine learning has become a very important

field in data mining where many different classification techniques can be found.

These include techniques that are based on trees, statistics, mathematical opti-

mization, heuristics and many others. With as many classification techniques,

come many more classification problems which need to be solved. One such prob-

lem domain can be found in real time classification. Many applications for real

time classification can be seen in science, industry and academia. These include

robotics, embedded systems, facial recognition, prosthetic automation and many

more.

Although technology has allowed for many advancements in the field of data

mining, it has also inadvertently created problems. Computer processors and

memory have become progressively cheaper and quicker. This has allowed for

Data mining and classification 8

increased amounts of data to be stored, but also quickly retrieved. Consequen-

tially the desire for data collection is now matched by the capability of technology,

where vast amounts of data is being collected. However, the amount of data being

collected is disproportional to our ability to utilize it. Current machine learning

techniques are becoming less capable when dealing with large volumes of data.

This is especially the case in real time applications. Many real time systems

contain sensors that can sample data at very high rates, thus generating masses

of data over a very short period of time. In terms of sensor collected data, it has

been shown that even as early as the late 1980s, automated collection, storage

and better retrieval methods led to large amounts of data being collected [136].

This trend has only intensified, where memory storage capacity has increased by

a factor of a million and its price has decreased accordingly.

Many mainstream machine learning techniques currently used today have

problems when dealing with large scale data. Often, only subsets of the data

can be used for training, and in terms of classification, most classifiers are unable

to classify data in real time. However, it has been shown that piecewise linear

classifiers are ideal for real time classification [87]. Piecewise linear classifiers can

be broken up into two main groups, multiple and single optimization piecewise

linear classifiers. The multiple optimization approach [142], [141] can suffer from

accuracy problems and long training times. On the other hand, the single opti-

mization approach theoretically is shown to be ideal for such an application [9]

and [5].

This thesis investigates the ability of a single optimization piecewise linear clas-

sifier to solve real time large scale classification problems. It builds on previous

work grounded in mathematical optimization, using the max-min optimization

technique [7] to minimize a classification error function that incrementally builds

a piecewise linear decision boundary between classes. It highlights the challenges

presented in solving a single optimization problem that deals with non smooth-

Data mining and classification 9

ness, non convexity and finding global solutions amongst a large number of points.

It also highlights the benefits, as max-min functions only take up little memory

and allow for classification to happen in a fraction of a second.

Therefore, can a single optimization piece wise linear classifier be used to solve

real time classification problems using large scale data?

In order to understand and justify this question, some context must be given

to the process of classification, real time applications and the growing presence of

large scale data. Data mining is the link between all three and is the encompassing

field that deals with all tasks and applications that attempt to convert useful

knowledge from masses of collected data. It is, therefore, a good starting point

for this literature review.

Finally, it is worth noting that this thesis considers large scale data as hun-

dreds of thousands of observations containing thousands of features, with no more

than a hundred classes.

2.2 Data Mining

2.2.1 History

Data mining can be traced along three lines, these include statistics, artificial

intelligence and machine learning.

Statistics which is its longest and strongest contributor is at the core of its

foundations. Such things as regression, standard distribution, discriminate and

cluster analysis were some of the original techniques used to analyse data.

Artificial intelligence, or AI was next to follow. At this time computing power

and memory had increased significantly. Also scientists were becoming more

interested in techniques other than just statistical based ones to analyse and use

data.

This led to a shift in wanting computers to analyse and behave in terms of

Data mining and classification 10

the way humans think. Philosophy, psychology and computer science drove the

whole AI concept. Such techniques as artificial neural networks and intelligent

agents were born from this paradigm.

AI, however, was a discipline strongly built on heuristics where many of the

underlying structures used were rule and tree based techniques. Trees are gener-

ally exponential in storage capabilities, and rule based systems suffered similar

problems when used in the decision making process. This meant that learning

and decision making could only be used on small problem sets, unless more com-

puting power and memory was found. The computing power and memory needed

for such applications during the early 80’s was very expensive and hard to gain

access to.

Machine learning was the next to follow and was born out of the problems as-

sociated with AI techniques. Machine learning encompasses statistics, heuristics

and mathematical techniques in its quest to learn patterns from the data. Gener-

ally machine learning is an inductive learning process where statistics, heuristics

or mathematical techniques, or any combination of three learn based on examples

from a given data.

To date, data mining has become an interdisciplinary field. Increased technol-

ogy and the demands for more information from other disciplines have now meant

that data mining embraces more areas than ever before. These include data base

systems, statistics, machine learning, visualization and information science. De-

pending on the type of data to be mined, or the data mining application this

could include such things as spatial data analysis, information retrieval, pattern

recognition, image analysis, signal processing, web technology and many other

applications.

Data mining and classification 11

12.3 42 3
23.1 3.2 5.6
3.4 54.3 45
9.08 6.78 23.1
09.8 12.3 2.51

Raw Data

1. Data Collection

2. Data Cleaning
and Preprocessing

Processed Data

Database Flat File

Transformed
 Data

4. Data Mining

Patterns

3. Data Transformation

Knowledge

5. Data Evaluation

Figure 2.1: Knowledge discovery Process

2.2.2 Knowledge Discovery in Databases

Data mining can be considered as the extraction of useful information or knowl-

edge from large amounts of collected data. This useful information could be a

model, summary or just derived values pertaining to a problem definition [82].

Recently, the definition of data mining has become synonymous with the

process of Knowledge Discovery in Databases (KDD) [61]. Although the KDD

process actually includes data mining as one of its steps, in this thesis we use the

term data mining to mean the KDD process itself. I include the KDD process

in this thesis to provide background to the work that must be undertaken before

any classification algorithm can begin training or be used as a classifier.

Data mining can be seen as an iterative process, where many steps are per-

formed to extract and refine knowledge from the data provided. This process is

Data mining and classification 12

synonymous with the algorithms developed in this thesis, as they also iteratively

refine data in order to reduce training complexity and improve the accuracy of

the classifier.

As shown in figure 2.1 the Knowledge Discovery in Databases is an in depth

and iterative process. The main flow of this process is from bottom left to top right

where each previous step is a prerequisite to the following step. However, once

the data mining and evaluation steps have been performed any of the previous

steps can be revisited any number of times.

Knowledge discovery is an iterative process and rarely is a problem defined

precisely enough that all steps are traversed only once. It is also rare that only

one data mining technique alone is used. Often the results from a number of data

mining techniques are evaluated and expert opinion maybe used to determine the

success of the results. Based on these results, data may need to be modified using

a number of statistical and analytical techniques. The KDD process may then be

reapplied using the updated data, using new or the same data mining techniques

and again the results are re-evaluated. This process can happen many times, to

the point where even the problem definition may change or new data may need

to be collected.

The KDD process has been described as a voyage of discovery where at each

new iteration of this process more relevant knowledge maybe unlocked. The

following subsections represent the steps in the KDD process where a detailed

description is given.

2.2.3 Data Collection

Data can be collected in many different ways. There is a large amount of pre-

existing data that can be sourced from repositories all over the world. Often

companies or academic institutions have collected data relevant to solving other

institution or company’s problems. However, questions maybe raised to the in-

Data mining and classification 13

tegrity and the means used to source the data. Even being part of the data

collecting process may include a number of repeat collections, before useful pat-

terns can be found.

The methods used to collect data will depend on the application and problem

definition. Social scientists generally collect data via observational techniques.

This is a systematic process of watching and recording behaviour and character-

istics. Another method is interview based, where questioning of respondents is

done either individually or as a group.

When humans are involved in the collection process, possible errors can be

made. Respondents or observers could be tired or distracted leading to incorrect

values being recorded. Survey questions can be ambiguous or misleading which

can lead to incorrect, redundant or no answers at all.

Generated data is another type of data, usually sourced via sensors measuring

certain activities, or data generators designed to create certain distributions for

testing or simulating problems. Generally this is an automated process, where

large amounts of data can be generated. High sampling rates and fast data

generation programs lead to large amounts of data being collected or created.

The collected data must be stored in such a way that relevant data remains

related to each other and can be called up to be used quickly and easily. With

large amounts of data sourced, it is possible that the data may be stored on mul-

tiple machines and over multiple sites. Many storage solutions such as databases,

data warehouses or other information repositories are currently being used.

Data warehouses offer the ability to have multiple data bases linked to one

another. Retrieval of relevant data is efficient and in a format suitable for the

clients. Some warehouses even offer the ability to have the data mined. Data

can be stored in many ways, these include spread sheets, a flat file containing

related measurements, many types of databases or even just raw data. For more

information on data warehouses refer to [84] and [47].

Data mining and classification 14

2.2.4 Data cleaning and preprocessing

The previous step shows that erroneous values can make their way into data. Dur-

ing manual collection, humans due to tiredness, boredom or inadequate surveys

may make errors. Automated collection may incur problems such as damaged sen-

sors, incorrectly calibrated measuring equipment or measuring devices exposed to

electromagnetic interference. These errors manifest themselves as missing, noisy

or outlier data, and may cause problems when data mining is performed.

Outliers are values that are not consistent with the values contained in other

observations. They occur infrequently, generally only representing about two per-

cent of all measurements pertaining to the observations [82]. Noisy data may

sometimes be included as outliers, though only in the case of intermittent occur-

rences.

Noisy data is found more often in automated collection. It is more problem-

atic with sensor collected data, as random noise can occur both as bursts or just

intermittently. Noisy data can contradict values that describe classes, breaking

down the natural pattern correlations and decreasing the ability to distinguish be-

tween the certain patterns. It is worth noting however, that irrelevant attributes

contribute no noise as their values are not indicative of any inherent patterns.

There has been a lot of work undertaken in data analysis, preprocessing and

preparation. As a result, a host of data analysis and preprocessing tools are

available. [13] proposed a new method for dealing with missing values by using

an imputation method based on the k nearest neighbour algorithm [116]. [13]

also reviewed a number of existing methods, these include ignoring missing val-

ues; disregarding instances containing missing values and maximum likelihood

procedures [42].

[66] presented a comprehensive survey of contemporary outlier detection tech-

niques. These include a large array of statistical, neural and machine learning

techniques. [66] highlight the advantages and disadvantages of each technique

Data mining and classification 15

and point out that an algorithm’s suitability is based on the data’s distribution

model, correct attribute types, scalability, speed and modelling accuracy. [66]

also show the benefits of removing observations in terms of noise and data size

complexity. This is further shown in [98] which employed optimization to min-

imize the data size while performing data mining. The authors point out that

this strategy maintains the mining quality and reduces complexity.

Data reduction can be crucial in improving the performance of a data mining

technique, both in speed and its effectiveness [165]. Though there are many

techniques for reducing the number of observations [126], there are also numerous

techniques for selecting and removing attributes. Reasons such as complexity

reduction, poorly chosen attributes containing noise, little information or too

many missing values are good candidates for such removal techniques.

The authors in [134] reviewed a number of attribute selection techniques to

deal with large dimensional data sets in bioinformatics. The review incorporates

many techniques, including filter, wrapper and embedded based. This review

highlights the benefits and disadvantages of such techniques, focussing on over

fitting, prediction performance, computational complexity and attribute depen-

dencies. Highlighted in the review, are the problems associated with classification

techniques attempting to learn patterns from large dimensional data. Further-

more, the review shows that any supervised learning model using such data needs

to incorporate attribute selection as a step in the process.

Identifying and removing redundant or irrelevant attributes is a complex prob-

lem where finding an optimal attribute subset is intractable [81]. [165] use both

attribute relevance and redundancy to build a frame work to approximate an

optimal subset. Alternatively, there are many other strategies that construct

attributes from a basic attribute set [101]. Such strategies attempt to avoid at-

tribute dependencies during construction as this can influence the accuracy of the

classifier.

Data mining and classification 16

Furthermore, to hight light the importance of this step, [168] shows that

approximately 80% of the total data engineering work is spent on data cleaning

and preparation. They show that most data mining techniques expect data to

be nicely distributed, contain no missing or incorrect values and only informative

features remain. If data preprocessing has not been applied, then it is likely that

useful hidden patterns will be disguised leading to the decreased performance of

the data mining techniques. The overall benefits of preprocessing means a smaller,

cleaner and higher quality data set which yields more concentrative patterns.

A detailed description of attribute selection strategies can be found in [61]

and a number of data preprocessing techniques can be found in [159].

2.2.5 Data Transformation

Attributes

Obervations
.
.
.

Attribute’s value for the given observation

Class
labels

yes
yes

No

No

.

.

.

..

Figure 2.2: Data in a tabular representation for classification

Before data mining can be performed, the preprocessed data needs to be

formatted in a way that best suits the data mining technique. As mentioned in

the Data Collection step, data may have been stored in one or many different

types of data bases. However, this may not be suitable for the data mining

technique to read in the data. Certain programs or data mining applications

expect data in a certain format. As an example, some Support Vector Machine

(SVM) classifiers [26] expect rows containing feature values split by colons. The

Data mining and classification 17

attribute number is on one side and the attribute value is on the other, showing

which value belongs to which attribute.

Further transformations may include the conversion of category labelled data

into certain memory allocated sized integer or continuous values. Such data trans-

formations are implemented so as to improve the performance of the classification

algorithm. This can allow for quicker parsing of the data; a better memory struc-

ture to contain the currently needed values from the data set; and to allow for the

use of more efficient data structures by the classification algorithm. Though such

tasks seem trivial, much time can be spent formatting data sets for the currently

nominated classification technique.

Generally machine learning techniques are trained using a two dimensional

flat data file containing rows of measurements. This format is shown in figure

2.2. Each row contains a group of features or attributes, the row is known as an

observation or an instance. The observation or instance is the recorded collection

of measurements that together describe an instance of an entity or event. The

data set contains n rows and m columns, used as collective evidence for the

machine learning algorithm. In supervised machine learning each observation

will have a class label attached to it. Often this is the last feature column. Class

labels are generally assigned manually by an expert in the field.

As an entity or an event is described by a collection of attributes, it is often the

case that the scale of magnitude between the attribute values may vary greatly.

As an example, one attribute may have a value range of [0, 1] and another may

have a value range of [−1000, 10000]. In this case, the magnitude of difference

is significantly greater between the two attribute measurements and depending

on the data mining technique, a greater weighting maybe given to the second

attribute.

Normalization is a process often used to scale attribute values so that they

fall within a small specified range. This helps to reduce any bias between the

Data mining and classification 18

attributes. It is also particularly useful for classification techniques that rely

on distance measures, often improving their performance [139]. [139] review a

number of scaling techniques, the following are just a few of the commonly used

techniques.

Using data set A containing i observations and j attributes, normalization is

performed on attribute Aj:

min-max is a linear transformation on Aj.

A′
ij = (Aij −min(Aj))/(max(Aj)−min(Aj))

z-score is based on the mean and standard deviation of Aj.

A′
ij = (Aij −mean(Aj))/stdev(Aj)

decimal scaling moves the decimal point of value Aij.

A′
ij = (Aij/10

p)

where p is the smallest integer such that max(|Aj|) < 1

The choice of the normalization technique can depend on the classification

algorithm, the type of data collected and the effect of any other preprocessing

techniques used on the data. As an example [151] present a comparative study on

different normalization techniques for the use in discriminating odours in black

tea. They evaluate these normalization techniques based on the Principal Com-

ponent Analysis (PCA) [140] preprocessing method for a back- propagation mul-

tilayer perceptron classifier [28]. Their results showed that normalizing the data

improved accuracy over using raw data. Furthermore, their results showed that

the min-max normalization technique allowed for the best classification accuracy.

Data mining and classification 19

The classification algorithms developed in this thesis use the min-max normal-

ization technique. Our previous experiments showed that the best classification

accuracy was gained using this technique. Furthermore, a number of accounts

can be found in current literature to support these findings. As an example, [139]

show that a number of classification algorithms, including k-nearest neighbour

[49] and tree based classifiers, performed consistently better using the min-max

normalization technique over other normalization techniques.

2.2.6 The data mining task

Data mining is the next stage in the KDD process and in essence is an analysis

of the data. Given the prepared data, what can be learnt from this data. In

practice, there are two primary goals of data mining. These include prediction

and description.

Prediction uses a model or rule derived from the data to predict unknown or

future variables of interest. There are a number of data mining tasks that can fulfil

these two goals. For example, predictive tasks may include classification, which

is described in this thesis. Another task is regression, which finds a predictive

learning function that maps to real value prediction variables.

Description on the other hand, focuses on finding the inherent patterns in

the data. Examples of such tasks may include clustering, which seeks to identify

a finite set of categories or clusters to describe the data. Also, summarization,

which is a descriptive task that uses methods to find a compact description for a

set or subsets of the data.

There are many data mining tasks that can be performed. However, this the-

sis focusses on the process of classification and current classification techniques

relevant to this research. There is some intersection between tasks, as a few

classification techniques also include regression or clustering as part of their clas-

sification technique. However, this is addressed later in the thesis. For detailed

Data mining and classification 20

explanations on all other data mining tasks refer to [46].

As classification is a type of supervised machine learning, the following sub-

sections give context to machine learning and supervised learning tasks. These

subsections serve to provide context to the processes and models used for clas-

sification under the confines of data mining and the KDD process. Also, they

highlight the role of computers as automated predictive tools and how they can

learn from data.

Machine learning

The field of machine learning (ML) develops computer programs to induce in-

herent patterns found in the data. These patterns can be derived from rules or

models to either find certain behaviours or relationships, or be used in predicting

unseen objects or events. Machine learning algorithms learn by searching through

an n dimensional data set space attempting to find an acceptable generalization.

One of the most fundamental machine learning tasks is inductive learning.

It is defined as the process of estimating an unknown input/output dependency

between a finite number of measurement based observations. Hence, the machine

learning algorithm uses a priori knowledge (training data), to build a selected

class of approximating functions or model that describes the generalized mapping

between the inputs and outputs for future prediction.

Machine learning can be broken up into three main categories. These include

supervised learning, unsupervised learning and reinforcement learning.

Supervised learning The data has class labels assigned to its observed mea-

surements. The ML algorithm learns the mapping between the input vector

and output class label of each observed measurement. Then it uses these

mappings to predict the class label of unseen observations. This conforms

to the two classical inference learning types:

1. Induction - progressing from particular observations (training data) to

Data mining and classification 21

a model or rule.

2. Deduction - progressing from the model or rule, given input values

(test data) to particular cases of output values (classes).

Unsupervised learning The data has no class labels assigned, instead the ML

algorithm searches for relationships within the data. The ML technique at-

tempts to learn the inherent structures within the data by grouping together

examples given a similarity measure.

Reinforcement learning This type of learning pertains more to artificial in-

telligence. ML agents learn and then act within a simulated environment

created using the data. Given delayed rewards for appropriate behaviour

and penalties for inappropriate behaviour the ML agents learn ideal be-

haviour to maximize the ML technique’s performance. It is roughly based

around the carrot and stick methodology.

Classification (Supervised learning)

The classification problem is one of the most widely studied within the field

of machine learning. Also known as supervised learning, classification is the

process of finding a model or function that learns a mapping between the set of

observations and their respective classes.

As mentioned previously, the purpose of a classification model or function is

to predict the class label of any unseen observations. The step of data mining

allows for the classification problem to be solved with many tools. The WEKA

[159] data mining application has many machine learning algorithms, including

a large number of classification algorithms. Often, the question arises to which

classification algorithm is the best to use, given the data set. Furthermore, which

set of parameters, if any, are more appropriate given the classification algorithm.

Presented next is a classification process which is a structured iterative pro-

Data mining and classification 22

cess used to solve classification problems. One of its main aims is to help address

the problem of choosing an appropriate classification algorithm and an optimal

parameters iteratively. Furthermore, this classification process can be modelled

directly using data mining software. This includes the WEKA data mining ap-

plication presented in subsection 2.2.8.

Classification process

Begin Training

Source preprocessed
and transformed data

Select algorithm

Train on Data

Tune or select
parameters

Algorithm has
parameters?

Evaluate on test set

Accuracy good?

Classifier ready

Yes

No

No

Yes

Figure 2.3: Process of classification

The process of classification of real world problems is shown in figure 2.3. The

Data mining and classification 23

data being used in this process is part of the KDD process and assumes iterative

changes both in preprocessing and transformation. One can view this classifica-

tion process as the data mining step. Failure to build an accurate and reliable

classifier from the given data may mean that the preprocessing and transforma-

tion steps are performed again.

Furthermore, the classification model itself must be validated and verified to

ensure that the training process is robust and non-biased. A number of classifica-

tion measure accuracies can be used for this comparison. These measures may be

dependent on the type of classifiers and problem domain. A number of statistical

methods for comparing multiple algorithms on multiple datasets can be found

in [43]. To prevent an infinite number of iterations with little to no progress, a

comparison of these measures after each training phase or a maximum iteration

threshold may need to be set.

All the shaded steps in figure 2.3 relate to the following subsections.

Algorithm selection

Often a review of classification algorithms is done before any supervised machine

learning is undertaken. It is likely that several classification algorithms will be

needed to determine the best prediction model or rule. The most appropriate

classifier may be dependent on the selection of classifiers on offer, data type,

problem domain and problem definition.

Brain-computer interface systems [160] is one example of a problem domain.

These systems look at captured brain wave data that is both time dependant and

contains continuous values. A comparison between classification algorithms for

suitability in this domain is performed [99]. The authors point out that when

choosing an appropriate classifier, the properties of the classifiers must be known.

They create four definition groups for the classifiers based on their properties and

assess them given the problem domain and data type.

Data mining and classification 24

Once a selection of classifiers has been decided upon and preliminary testing

has been done, an evaluation can be made through training and testing. This

evaluation is generally based on a prediction accuracy or training time measures

of the classifier. This preliminary testing can serve as a good guide to which

family of classifiers works best on the current data. By sampling classifiers from

a number of families, it is possible to gauge if certain individual classifiers will

respond poorly to the data, hence allowing for their omission from selection.

Algorithm training

Training on the data can be done using a number of techniques, where the data

is divided up into training and test sets. Generally with large data sets, it is

considered acceptable to divide the data set into two thirds training and one

third test. However, in smaller data sets, other strategies are employed. This can

include the use of cross-validations, where the data is randomly broken up into n

number of subsets and trained iteratively. Presented next are three re-sampling

techniques used for training on data.

The first technique that can be used is the holdout method which divides the

data set into two thirds training and one third testing. This technique is compu-

tationally preferable for large datasets. If the classes are divided proportionally

then the classification algorithm will have a balanced sample of training and test-

ing observations to gain an accurate rate of prediction. The observations selected

from the initial data set are normally chosen from an uniform distribution and

allocated proportionally to the training and testing subsets.

The next technique often used is cross-validation. Cross-validation works

by dividing the data set up into n equally sized mutually exclusive subsets. A

training set is the union of n−1 subsets, in which the remaining subset is the test

set. Training and testing is done n times, where all subsets have been included

in each union. To estimate the classification error, the average is taken over n

Data mining and classification 25

predictions of the test sets. This technique works well for medium sized data

sets, as there is a balance between the number of computations and the classifier

learning from re-sampling the data.

The last popular training technique worth considering, is the leave-one-out

validation. This technique is very similar to the cross-validation technique. In

fact it is considered as a special case, as the n subsets in this technique are actually

single observations. This technique is computationally intensive and is best suited

for very small data sets. It has been shown to be the most accurate estimate of

the classifier’s error [88]. However, due to its computational complexity, it can

not be considered when dealing with large scale data.

[85] presents a comprehensive survey of cross-validation and boot strap meth-

ods. The author highlights problems such as incorrect sampling and the use of

incorrect training methods. These problems can lead to over fitting or poor es-

timates of the training data. As the evaluation of a classification algorithm is

generally based on prediction accuracy, it is important that the classification al-

gorithm learns from a well proportioned cross section of the data. Furthermore,

[85] states that choosing the correct technique is based on the size and type of

the data and the type of classification algorithm.

The three classifiers developed in this thesis use the hold out method of divid-

ing the data set into two thirds training and one third testing.

Other problems that can be encountered while training may include an imbal-

ance in the number of classes, i.e. a larger proportion of instances for one class

compared to the others. It has been found that certain datasets derived from

nature contain considerable noise and have class imbalances, leading to a lower

accuracy compared to other data sets [60].

Often a balance must be found between the type of classification algorithm,

parameters chosen and data sampling method used. As mentioned earlier, some

algorithms perform better on certain types of data. Badly suited classifiers or

Data mining and classification 26

poorly chosen parameters may cause problems for the classification algorithm to

converge, in turn leading to a poor accuracy or long training times.

Selecting and tuning parameters Certain classification algorithms need pa-

rameters passed to them before they can begin training. As an example, support

Vector machine classifiers need parameters to find the best approximated kernel

to divide the classes. This can be an iterative process of trial and error where

the updating of the parameters will lead to better accuracy and faster learning.

As an example, a parameter grid search tool for the Radial Basis kernel support

vector machine can be found in [69].

It is worth noting however, that given the combinations of optimal parameters

needed for a classification algorithm, finding the optimal parameters can be a

tedious process. Parameters can not be altered until after the algorithm has

trained and tested for accuracy. Given the size of the data, the training could

take a long period of time. Furthermore, if the initial parameters chosen are far

from optimal, then the time taken for the algorithm to converge may also be

extended.

Generally, choosing the correct parameters is an iterative process based on

the previous accuracy where a better set of parameters can be chosen using pos-

itive feedback. The stopping criterion is generally based on a consecutive run

of decreasing accuracy measures or when a predefined accuracy value is reached.

There are a number of tools to aid with the choice of appropriate parameters, but

these can be limited and can also be time consuming [163].

2.2.7 Pattern evaluation

Pattern evaluation is a crucial step in the whole KDD process. Potentially the

data mining process can generate thousands or even millions of patterns. It is

therefore reasonable to conclude that only a fraction of the generated patterns

Data mining and classification 27

will be useful. It is imperative that the data miner understands the problem

domain well and that a problem definition has been well constructed. When the

data miner is reviewing the results, the problem definition should be in the back

of his or her mind. Calling in an expert at this stage to help understand and

verify the results will be beneficial.

The results from the data mining model should ultimately help in the decision

making process. These results need to be interpretable, as ”black box” models

can not be justifiable. The ultimate outcome would be an interesting pattern

that is easily understood, valid on test data with a degree of certainty, useful and

in the case of descriptive tasks, is novel.

In terms of classification, learning the class patterns more precisely is impor-

tant. Different classification techniques work better on different problem domains

with different data types. It is then up to us, the humans to try other classification

techniques or data transformations.

It is also possible that experts who have classified data or verified patterns

may have overlooked certain relationships or variables. It may be that the experts

have to reclassify, re-evaluate or reissue data. It is not unusual for experts to learn

more about their respective field by performing analysis on data from their field.

This step is also about defining metrics that can be used to determine the

validity of the results. Objective and quantifiable measures based on the structure

of the pattern and statistics underpinning them can be used to determine the

success of the results. An overall criteria for comparing algorithms could be

based on the following:

• Predictive accuracy - How well the classifier can predict the class label of

new unseen data;

• Speed and memory - Computer resources used by the classifier during train-

ing and classifying;

Data mining and classification 28

• Robustness - How well the classification algorithm can deal with all types

of data, including noisy data.

• Scalability - The ability for the classification algorithm to deal with increas-

ing amounts of data.

• Interpretability - Being able to understand the model or rule provided by

the classifier.

This thesis develops three real time classification algorithms for use in large

scale data problems. We are therefore, interested in the time taken by the clas-

sifiers to train and classify, the amount of memory needed to store the classifier

and finally the classifier’s predictive accuracy. Other than measuring time, the

predictive accuracy is a relatively easy performance measure to quantify. Some

performance measures include the ROC curve [21] and the F-score [31]. For a

detailed survey of accuracy measures refer to [30].

Once the results are acceptable or the experts are happy with their evalua-

tions then the knowledge can be presented. This may be in the form of reports

or statistical representations. In the case of classification, it means that the com-

puter is ready to classify unseen examples for the purpose intended. This also

becomes an iterative process as the data evolves or changes over time and the

KDD process will need to be run again to adapt to the change in the data.

2.2.8 WEKA

The name WEKA stands for Waikato Environment for Knowledge analysis (

WEKA). It is a data mining software suite developed by the Department of

Computer Science, University of Waikato, New Zealand [159]. Weka is an open

source [20] application written in the Java programming language [17] and has

been funded by the New Zealand government since 1993.

Data mining and classification 29

It was designed primarily as a work bench for machine learning tools to deter-

mine the necessary factors for the success of agriculture industries. Its secondary

aim was to develop new methods and then assess their effectiveness. This has led

to a data mining application that boasts many learning algorithms, preprocessing

and post-processing tools and an intuitive graphical user interface.

It is widely used in research and education but also now being adopted by

industry for data mining applications. It is an out of the box application that

can be used immediately after installation.

There are various ways of interfacing with the WEKA software in order to

tackle the data mining problem presented. As mentioned previously data can be

a voyage, possibly one of exploration. Hence, one needs to explore the problem

given the presented evidence. In our case, it is in the form of data. It is then

prudent that the user begins the data mining process by using the application’s

‘Explorer’ graphical user interface. The user interface presents a well laid out

menu offering the following tasks. They include:

• Preprocess

• Classify

• Cluster

• Associate

• Select Attributes

• Visualize

These tasks roughly mimic the steps shown in the KDD process 2.2.2. In

terms of the collection step, WEKA can connect to databases, however it does

not allow for a storage solution itself. Data must already be collected and stored

else where. It must also be converted into a flat file format so it can be read in

by WEKA.

Data mining and classification 30

The preprocessing step includes an inbuilt program that transforms data into

their so called ”ARFF” file format, where a description of the data is at the

beginning of the data set. Other preprocessing tasks include a group of filters

that can discretize, normalize, resample, transform, combine attributes and many

others. All of these filters ensure that a method is on hand that allows for an ideal

conversion of the data that would be optimal for the machine learning algorithm.

It also allows the user to find better insight into the data, as each transformation

gives another perspective of the data.

Further preprocessing tasks pertain to the training of classification algorithms.

The data can be randomly split into subsets and trained on each subset individu-

ally. This is explained in more detail in the algorithm training subsection of the

classification model, subsection 2.2.6.

As far as the data mining step is concerned, all of the machine learning al-

gorithms are contained in the classification, clustering and rule association menu

sections. There are many algorithms contained in WEKA that fall under these

three banners. In this thesis we are concerned primarily with classification algo-

rithms. Most of the mainstream multi-purpose classification algorithms found in

WEKA are presented in section 2.5. They are broken up into statistical, heuristic

and mathematical optimization based algorithms.

In WEKA, once the user has chosen a classification algorithm, often config-

urable options are needed for the algorithm to perform well. These are parameters

that may include, seed value, number of epochs, learning rate, time and many

more. The type of parameters needed generally depend on the classification algo-

rithm. However, WEKA provides default parameters so that all algorithms can

run.

Also, there are options to determine types of output and accuracy measures.

Charts and other outputs including a scatter plot, the actual model, i.e. an artifi-

cial neural network showing the input, output and hidden nodes with all weights

Data mining and classification 31

can be viewed. Furthermore, the WEKA package allows for the performance mea-

sures to be combined with the plots and the current classification model. This

is to aid the user in determining the best model or rule for the classification

problem.

WEKA has a comprehensive suite of preprocessing tools, for example it con-

tains a set of attribute selection methods. These methods are broken into two

groups. The first group include search methods that search through the attributes

in an attempt to find the best attributes based on a number of criteria. The sec-

ond group contain evaluation methods, which evaluate attributes based on such

metrics as information gain and correlation. Both sets of methods aim to keep

only the attributes that contribute to the inherent patterns while removing noise.

In terms of visualization WEKA also offers visualization of the data. All

attributes and observations can be mapped onto a 2 or 3 dimensional space. The

user can visualize how points and classes relate to each another. This gives the

data miner insight into how the points are distributed or related. This also aids

the data miner in determining what if any more preprocessing of the data is

necessary. It may also give insight into what data mining method would be more

appropriate given the data.

As data mining is an iterative process of refining the pattern search, WEKA

offers the ability to iterate through the menu tasks. Furthermore, it allows for all

previous preprocessing and machine learning algorithm’s output to be stored.

Hence, allowing for the ability to incrementally improve on the classification

problem, by improving on the data; using more appropriate preprocessing tools

and using more appropriate machine learning algorithms.

WEKA also offers an experiment environment where the classification algo-

rithms can be automated and batched using different parameters and different

preprocessed data. Analysis can be done after all tasks have completed, where

visualization of the tasks is possible. This experiment environment saves the data

Data mining and classification 32

miner time, as all the tasks can be run off line without human interaction.

Finally, WEKA offers a knowledge flow interface that can mimic the KDD

process graphically. Data sources, classifiers, evaluators, visualizers and summa-

rizes can all be connected together via a flow diagram. A comprehensive data

flow can be seen in diagram 2.4.

The main flow shows the data set being divided into subsets, for cross flow

validation. It then has attributes selected for it, before it is sent to a support

Vector machine classification algorithm for learning. It then has its output sent

to a performance evaluator and then has that information output to a text viewer

for evaluation.

Furthermore, it can be seen that the data is being sent to a visualizer, sum-

marizer and plotted into a scatter plot matrix. These layouts can be saved and

reused or changed at a later date. The knowledge flow interface completely auto-

mates an iteration of the KDD process. All entities can be changed, replaced or

moved after each iteration.

Figure 2.4: Knowledge flow Graphical user interface

Data mining and classification 33

2.3 Real time systems

”A real time system is a system where the time at which output is produced is

significant. This is usually because the input corresponds to some movement in

the physical world, and the output has to relate to the same movement. The

lag from input time to output time must be significantly small for acceptable

timeliness” [27].

Therefore, a real time system is one that relies heavily on the notion of re-

sponse time. This response time can be broken up into two categories, hard

real-time and soft real-time systems. Hard real-time systems are ones where the

response time is critical to an application, i.e. a missile response system. Whereas,

soft real time systems have response times that are important, but occasionally

missed deadlines will not stop the system from functioning correctly. An example

is a data sensor acquisition server, where computations can be rolled back to a

previously established checkpoint in the event of a timing error.

As important as processing time is in real time systems, the output accuracy

can not be overlooked. Correctness of a real time computation depends mainly on

the time that the outputs are generated, but also the accuracy of the results. Pre-

sented in [44] is a real time system based on a 3D echo-cardiograph reconstruction

system.

The system is used to evaluate important cardiac performance parameters

such as stroke volume and ventricular mass. The authors point out that for the

system to function correctly that both accuracy and timing requirements must

be met. Failure to derive the correct information even within the allocated time

frame could lead to incorrect estimates and thus endanger lives.

An in depth review on real-time systems can be found in [86], and a tutorial

can be found in [56].

Data mining and classification 34

2.3.1 Embedded real time systems

Embedded systems are becoming one of the most popular applications for real

time environments. An embedded system is a microprocessor based system that

is built to control a function or a range of functions that are generally dedicated

to one application [80]. An example is a washing machine. There are many

functions for a wash cycle, but the main application is to wash fabrics.

As embedded systems are dedicated to specific tasks, they need only to be

designed to meet such requirements. As a general rule, micro processors designed

for embedded systems have reduced capabilities compared to the multi purpose

processors found in personal computers.

[122] presents a review on design constraints for embedded real time control

systems. The author highlights a number of embedded system limitations which

include size, weight, power, cooling, performance and cost. As embedded sys-

tems are designed to be a component of a larger system or built into smaller

mobile devices, they have their own operating requirements and manufacturing

constraints.

Most devices, whether they are a mobile phone or one of the hundred dedi-

cated micro processor units found in the latest cars, have strict size and weight

limitations. Therefore, the internal electronics, including the processor and mem-

ory must be reduced in physical size and capacity. Furthermore, there is little

room for cooling devices and battery storage. As a result of these constraints,

it is essential that the power consumption and calculations of the processor is

reduced.

[102] introduces further constraints, specifying that the program code size

must be reduced as room for both static and dynamic memory is limited. He

points out that many embedded packages have a one chip solution, ”systems on

a chip (SoCs)”, where all information processing circuits are included on this

single chip. This further highlights the need for run time efficacy, showing that

Data mining and classification 35

energy consumption, clock frequencies and supply voltages should be kept as low

as possible.

For an in depth review on embedded systems, refer to [102] and [109].

2.3.2 Real time classification for embedded systems

[109] shows that embedded systems can be broken up into two different sub classes.

These include embedded data-processing systems and embedded controllers. Em-

bedded data-processing systems are dedicated to data communication and are

data flow dominated. Processing the data must be done within a predefined time

window.

Embedded controllers on the other hand, are dedicated to control functions

and are flow dominated where they react to external events. The events are

handled in real time, and accomplished within the range of milliseconds. These

systems interface directly to the physical equipment that they are embedded into,

and through sensors collect information about that environment. These systems

are generally dedicated to monitoring or controlling specific operations within

equipment.

They are known as reactive systems as they typically respond to incoming

stimuli from the external environment [80]. Any reactive system is one that is

in continual interaction with its environment and executes at a pace determined

by that environment [16]. They can be thought of as being in a certain state,

waiting for an input. For each input, they change their internal state to generate

an output and/or a new state.

Numerous examples of such reactive systems can be found. These include most

automotive embedded systems [94]. For example systems that control brakes,

door windows, steering and air bags. Many robotic applications that include

quality control or industrial machine fabrication. Also, applications for the use

in condition monitoring and fault diagnosis (CMFD) of computers or machinery

Data mining and classification 36

[95].

Given the description and examples of reactive systems, it can be seen, that a

classification algorithm with low memory, processor and power requirements can

be ideal for such applications. A classifier can be trained off line and then the

classifier’s rule or module can be loaded into an embedded system. It would then

wait for a set of inputs, compare the inputs against the model or rule and then

provide the outputs based on the classification of the inputs.

A number of examples of classifiers being used for real time applications can be

found in the literature. [93] presents work on monitoring power transformer faults

using both support Vector machines [152] and artificial neural network classifiers

[132]. [95] present case studies that look at monitoring different aspects of an

internal combustion engine and a large class of static diagnosis problems. In this

study both a multi layered perception and radial basis function neural network

classifier were used to determine the faults in the system.

In another example, [68] develops a methodology for intelligent remote mon-

itoring and diagnosis for manufacturing processes. In this work, a back propa-

gation neural network classifier is used to monitor and identify faults in a real

industrial case. The results showed that the back propagation neural network

combined with the rough set approach [121] were promising. Furthermore, other

work can seen in myoelectric control systems. Here an embedded device is im-

planted into a prosthetic limb. The classifier reads the myoelectric nerve data

and converts this information into a set of movements [113].

2.4 Polychotomous classification (the Multi-class

problem)

Before moving into a review on current classifiers, it is helpful to include some

context about multi-class classification.

Data mining and classification 37

Most classifiers are designed to distinguish between only two different classes.

In addition, classifiers that use a discriminant function not based on estimated

densities, but instead fit a discriminant between two classes need some form of

generalization to solve the multi-class problem [147]. Classifiers such as support

vector machines and piecewise linear classifiers fall into this category. Construct-

ing an approach that extends binary classification to a multi-class generalization

for such classifiers is not always straightforward [2].

A number of approaches dealing with this problem are offered in the litera-

ture. The three most popular approaches include the ”One- Against-One”, ”One-

Against-All” and ”Error correcting coding” strategies. For a detailed review of

multi-class approaches refer to [129].

”One-Against-One” (OAO) is also known as the ”All-against-All” or the ”All

pairs” strategy. Typically a ”One-Against-One” strategy constructs k(k −

1)/2 classifiers, where training is done between all pairs of classes [63]. This

strategy reduces the problem to multiple binary classification problems that

are solved separately. A framework that uses a scoring or voting system

finds the most appropriate two class boundary, given a criteria, and classifies

the new observation based on that boundary.

Many ”One-Against-One” implementations for classification problems exist

in the literature. Examples include [63] which builds on Friedman’s pro-

cedure, the ”max-wins” rule [52] and estimate pairwise class probabilities

within a coupling model [70]. The authors solve the problem of multi-class

classification for support vector machines. The authors also present vari-

ous other methods, some include combining several binary classifiers and

considering all classes at once.

”One-Against-All” (OAA) strategy constructs k classifiers where each single

class is trained against all other classes. [3] presents a k class modular ap-

Data mining and classification 38

proach to neural networks whereby building a k single output feed forward

networks. Training one class pattern against the other combined class pat-

terns, for all classes. A high output is given for the single class pattern and

low for the pattern of the remaining classes.

”Error-correcting coding” (ECC) strategy implements an encoding scheme

for each class, using a matrix M of −1, 1 values of a K×C matrix, where C

is the number of binary classifiers. A distance measure, often the Hamming

Distance, is used between each row and the output.

f(x) = argmin
C
∑

i=1

(

Mrifi(x)

2

)

(2.1)

A number of error encoding schemes can be found in [55]. The authors

build a framework that uses an error-correcting code approach to partition

classes into opposing subsets. Furthermore, [2] builds on the work of [55],

where they focus their attention on a margin-based approach frame work.

There is merit in using any of the three strategies for solving the multi-class

problem. From the literature the OAO approach appears to be the most popular.

Though a lot of this work was undertaken using SVM classifiers, this work can

still be generalized to other PWL classifiers. Results presented in ([2], [54], [70])

show that the OAO approach offers better performance than the OAA approach.

Furthermore, results found in [2] show an increase in performance when using the

ECC approach compared again, with the OAA approach.

A comprehensive review and comparison of the three strategies is presented in

[129]. The authors contradict the previous results found by the previous authors,

showing that when correctly applied on real world data sets, the OAA yields

results as good as the other two approaches. It was assumed that the training

times of the OAA approach were slower, see [54], their experiments did not show

this.

Data mining and classification 39

The three classifiers developed in this thesis use the OAA approach to solve

the multi-class classification problem.

2.5 Current classification techniques

There are many different classification techniques being used today and most are

found in the WEKA data mining package. The following are popular mainstream

classifiers, most of which were used in this thesis as comparison techniques for

the three developed classifiers.

2.5.1 Logic based classifiers

Decision trees

Atr1

c1

Y

a1 b1 d1

XAtr2 Atr2

YX

b2 c2a2 b2 c2

Y Atr3X

YX

a3 b3

Figure 2.5: A decision tree

Decision trees are the most popular representation of logic based classifiers and

are well presented in the literature ([74], [22] and [108]). Two well known imple-

mentations of decision trees include Classification and Regression Trees (CART)

Data mining and classification 40

Atr1 Atr2 Atr3 Class
a1 a2 a3 X
a1 b2 a3 Y
c1 a2 a3 Y
d1 b2 b3 X
a1 c2 a3 X
b1 a2 b3 X
b1 b2 b3 X
d1 c2 b3 Y
c1 a2 a3 Y
a1 c2 b3 Y

Table 2.1: Training set of decision tree

[22], and Quinlan’s univariate tree growing algorithm, known as the Iterative Di-

chotomiser 3 algorithm (ID3) [123]. The C4.5 algorithm [124] extends the ID3

algorithm by allowing the classification algorithm to deal with numbers and not

just categorical values as is the case for ID3.

The above implementation uses a top down approach as the learning model

for building a decision tree. The algorithm searches the data set’s attributes

and incrementally creates the tree’s nodes by splitting attributes, given the class

labels. Most algorithms split attributes based on an information theory criteria.

Each node then represents an attribute, and their outgoing branches correspond

to all the possible outcomes that lead to further attribute nodes. The terminal

or leaf nodes correspond to the output classes.

Classification of new observations starts at the root node and then traverse

down the respective tree nodes until a class node is reached. At a nominated

attribute node, a comparison is made between the observation’s attribute value

and the node rule. The outcome of this rule specifies the branch in which to

continue from that node. This process continues until a class leaf node is reached.

Information theory is often used to minimize the number of branches created.

This in turn reduces the number of tests that the new observation will need to do

to reach its class node. This attribute selection process works on the assumption

Data mining and classification 41

that the complexity of the decision tree is strongly related to the amount of

information conveyed by the value of that given attribute. It does this by using

a heuristic based on selecting a feature that provides the most information gain

[133]. Hence this measure favours the features that will partition the data into

subsets that have the lowest class entropy.

Figure 2.5 is an example of one possible decision tree derived from the ob-

servations shown in table 2.1. The tree was incrementally constructed using the

most informative attributes first [133]. Branches were constructed by splitting

on each of these attributes, where any redundant branches were removed [123].

The tree comprises of univariate splits, allowing for a simple representation and

making it easy to understand the inferred model. However, this also reduces its

functional form and therefore reduces the approximation power of the model. For

a detailed review on multi-variate decision trees refer to [24].

Information gain heuristic: Given a data set T with n outcomes for a given

feature that is partitioned into subsets of training observations T1, T2, . . . , Tn then

if S is any set of samples, let

freq(Ci, S) ∈ S ⊆ Ci 1, . . . , k

I(S) = −
k
∑

i=1

((freq(Ci, S)/|S|) · log(freq(Ci, S)/|S|))

after T has been partitioned according to n outcomes of feature Xi the expected

entropy is the weighted sum over subsets

I(T) = −
n
∑

i=1

((|Ti|/|T |) · I(Ti))

with the quantity: Gain(X) = I(T)− Ix(T)

However finding the smallest decision tree is NP complete due to the combi-

natorial nature of the attribute selection process. An example given in [82] shows

Data mining and classification 42

that a data set of five attributes and twenty observations can lead to more than

106 decision trees, depending on the number of different values for each attribute.

For this reason most decision tree construction methods use non backtracking

and greedy algorithms, as they are efficient and easy to implement. However,

this can lead to suboptimal solutions.

Rule learners

Rules can be derived from decision trees by recording the traversed path through

the tree from the root node, via the respective attribute nodes to the class leaf

[124]. However, for the most part, rules are induced from training data using

dedicated rule based algorithms. A detailed review of current rule learners can

be found in [53]. Some well known implementations of rule learners include

RIPPER [38] and PART [51].

Most algorithms are based on the divide and conquer paradigm [104]. These

algorithms search through the training set finding a rule that explains a number of

instances for a given class and then separates these instances from the others. This

separation is done recursively by conquering the remaining instances finding new

rules and updating older rules until all instances have been separated. Therefore,

the algorithm must run m − 1 times, where m is the number of classes and k is

the number of rules. This means that the algorithm needs to make n ·m ·k passes

of the data set, where n is the number of instances.

During the learning phase problems can occur as the available data dwindles.

Such problems include the fragmentation problem [117] and disjunct problem

where fewer training observations can lead to a higher error rate [67]. However,

the aim is to construct the smallest set of generalized rules that encapsulate all

the necessary assumptions for each class. It is necessary to avoid a large number

of rules as they tend to remember clauses, leading to overfitting and increased

complexity.

Data mining and classification 43

The Disjunctive normal form (DNF) can represent each class as rules in the

following form: (X1∧X2∧· · ·∧Xn)∨ (Xn+1∧Xn+2∧ . . . X2n)∨ . . .∨ (X(k−1)n+1∧

X(k−1)n+2 ∧ . . . ∧ Xkn). k is the number of disjunctions and n is the number of

conjunctions within each disjunction.

Typical rule based approaches solved the multi-class problem by running the

algorithms separately for each individual class. This can lead to contradictions,

i.e. the same observation is assigned to a different class and incomplete rules,

i.e. observations are assigned to no classes. A number of solutions have been

proposed to overcome these problems. One such solution includes a round robin

approach [54]. This approach builds rules for each pair of classes and then uses a

voting scheme to determine which two class solution the observation more closely

belongs to. A more detailed description of the multi-class problem can be found

in section 2.4.

2.5.2 Statistical based algorithms

Bayesian classifiers

Bayesian classifiers are statistical based methods that use probability and proba-

bility distributions to infer the class outputs of new observations. The Bayesian

classifier learns the probability distribution of the data set by using a sampling

technique to randomly select observations from the data set using a density es-

timator, usually a joint or naive density estimator. This distribution, known as

prior distribution, is used as the initial information.

The data set is then arranged into subsets, usually dividing the inputs into

their respective class outputs or creating functions to divide inputs over the class

outputs. A new distribution is found within the new subsets, and is used to

update the prior distribution. This new distribution becomes the posterior dis-

tribution. A maximum likelihood function based on this new distribution is used

to predict the class outputs. This process is called induction of inference.

Data mining and classification 44

In [107], the author claims that it is a reasonable assumption to know how

much training data is needed to attain a reliable estimation. When using con-

ditional probability to estimate the probability distribution the amount of data

needed is actually unknown. One hundred independently drawn training exam-

ples have been shown to be enough to obtain the maximum likelihood estimate

of P (Y), however, accurately estimating P (X|Y) will need many more examples.

The author provides an example showing that if output Y was a boolean and

vector X contains inputs of n boolean features then for this case the estimation

of parameters θij ≡ P (X = xi|Y = yj), where the index i takes on 2n possible

values. Therefore, this means that the estimation will be approximately 2n+1

parameters. This shows that the estimation is of an exponential nature and to

obtain reliable estimates would require multiple parses of vector X.

The Naive Bayes classifier improves the complexity down to a linear form

of 2n. This is achieved by making the assumption that there is a conditional

independence between all the features in the vector space. This assumption

allows for the reduction in the number of parameter estimations needed for the

conditional probability P (X|Y).

However, with this complexity reduction there is a trade off with the accuracy

of the Naive classifier. [128] highlights this problem within the text categorization

domain. [128] shows that when one class has more training examples than another,

the Naive Bayes classifier generally selects poor weights for the decision boundary.

The assumed feature conditional independence will cause the magnitude of the

weights for classes with strong word dependencies to become much larger than the

classes with weak dependencies. Hence any domain that has feature independence

integral to its distribution will fail due to this assumption.

The Naive Bayes classifier is a special case of a Bayesian Network. The learn-

ing structure and parameters of an unrestricted Bayesian network would be a log-

ical improvement to the short comings of a naive Bayesian Network. A Bayesian

Data mining and classification 45

Network B = 〈N,A,Θ〉 is a directed acyclic graph (DAG), where each node

n ∈ N represents a feature in the data set and each node ni edge represents a

probabilistic dependency, quantified using a conditional probability distribution

θi ∈ Θ.

Although Bayesian Networks are used for analysis and predictive regression,

they can also be used as a classifier. See [36]. Like naive Bayes, they also

need to establish a prior and posterior distribution. However, in this case, the

posterior distribution is taking into account relationships between all features, as

the assumption is now a conditional dependency. This allows for feature inter-

relationships and fixes the feature independence problem.

However, [36] state that given these new improvements the problem is NP hard.

For this reason modifications, such as the ones shown in [58, 36, 71] attempt

to reduce complexity. Many examples of successful modifications report high

accuracy in training, but the learning time is often high. This can be seen in [36]

which shows that for a 32000 · 13 dimensional dataset trained in ∼ 20 minutes,

that the time is scaled up by a factor of O(n2) in the number of features.

k-Nearest Neighbour

The k-Nearest Neighbour algorithm [49] and [40] is an instance or case based

algorithm that does most of its work during classification time. It does not

necessarily need to create a function rule or model, but instead compares each

new instance to nearby existing instances using a distance metric. The closest k

existing instances will determine which class the new instance will be assigned

to. This is done via a majority vote of the neighbouring objects and the class

containing the most number of objects among the k number of objects becomes

the class to which that object is assigned to.

An example of this can be seen in figure 2.6. In this example k = 5, meaning

the distance or radius is extended until five other neighbouring instances are

Data mining and classification 46

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bcbc

bc

bc
bc

+

+
+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+
+ +

++

+

+
+

b
Xq

bc

+
Figure 2.6: k-nearest neighbour, k=5

found. The figure also shows that the new instance Xq, has three instances of the

same class and two that are not, as its closest neighbours. As mentioned earlier,

a vote is taken and the majority of instances belonging to the same class within

the radius of k = 5 is chosen as the class that the new instance is assigned. As

can be seen in this case, the instance is correctly classified.

Furthermore, it is a good idea to have k set as an odd number. This will

prevent an equal number of objects belonging to both sets of classes within the

k number of points. Generally it is useful to look at more than one neighbour

around the new instance. However, having one neighbour is widely used as a

classifier. There is no set rule to defining the number of neighbours. Generally a

number of neighbours are tried incrementally and the one that provides the best

accuracy is used.

Given the training data D = {x1, . . . , xn} in Rn space. We have (xi)i∈[1,|D|]

training examples which are labelled by a class label yj ∈ Y . The objective is to

classify the unknown example q. ∀xi ∈ D where a distance measure can be used

to find the distance d(q, xi).

Data mining and classification 47

V ote(yj) =
k
∑

c=1

1

d(q,xc)n
1(yj, yc)

Though the (k−NN) algorithm has been shown to work well on small datasets,

it does not scale up well on large ones. [116] shows that the basic k−NN classifier

using a simple Minkowski distance will have a time behaviour of O(|D||F |), where

D is the training set and F is the number of features. In this simple case, the

distance metric is linear in the number of features and the comparison process

increases linearly with the amount of data. However, more complex distance

measures will increase this complexity further, where the measure is directly

related to the number of features.

Conversely a large training set may cause memory problems due to needing

to store all of instances at classifying time. Work has been conducted in finding

more efficient data tree storage structures and search methods. However, due to

the number of nodes increasing exponentially in the number of instances, there

has been limited success.

Data sets having a large disproportional number of instances belonging to one

class can also be problematic. These instances can dominate the class prediction,

thus affecting the prediction accuracy adversely. The most popular approach to

over come this is to weight the nearest instances by their given distance. The

further the distance, the less weighting the nominated neighbour should be given.

A final consideration is that k should be known a priori. Without knowledge

of the data set, multiple runs of the algorithm may be needed to find the most

appropriate k nearest neighbours. For these reasons the authors state that the

k − NN classifier can have a poor run time performance if the training set is

large.

Data mining and classification 48

2.5.3 Artificial Neural Networks

Perceptron

An artificial neural network (ANN) is an inductive learning technique that models

the brain by using a collection of nodes and weighted edges. ANNs have a long

history with origins dating back to the early 1940s [162]. A detailed review on

the history of ANNs can be found in [4]. In 1956, building on the work of [64]

and [162], [131] created a unit called the perceptron. Most ANNs are based on a

perceptron.

A perceptron has an input layer and an output layer which contains only one

neuron. It calculates a linear combination of its inputs, passes a weighted sum

of the inputs to an activation function that outputs one of two possible values.

Figure 2.8 shows the basic model for an ANN, in the case of a perceptron, the

receptor is the input layer and the output element is a single output.

Multilayered perceptrons

A single perceptron can construct a decision function that represents a hyperplane.

However, [106] found that a perceptron was unable to learn the XOR function.

This was mainly due to it having only two layers and thus capable of only linear

separation. More layers, hidden layers, were introduced to improve separability

from linear to bilinear. This then extended the network into a multilayered

perceptron [132].

Multilayered perceptrons are fully connected networks containing at least

three layers of neurons (nodes), input, hidden and output layers. The layers

are connected by adjustable weighted links. The neurons in the input layer corre-

spond to the attributes, and the output layer neurons correspond to the classes.

The neurons in the hidden layer are connected to both the input and output layer

nodes. One of the most popular multilayer network is the feed forward network.

Data mining and classification 49

A1

A2

A3

A4

A5

A6

A7

A8

H1

H2

H3

H4

O1

O2

Input
Layer

Hidden
Layer

Output
Layer

Weights

Weights

Attributes
 in Classes

 out

Figure 2.7: Simple multilayer neural network

Feed Forward networks have signals only travelling one way, from the inputs to

the outputs. See figure 2.7.

The training and classification processes can be seen through the basic model

shown in figure 2.8. The model is composed of four functional elements:

Receptor block is where the inputs xi arrive, the inputs are either from the

data or from a previous layer of neurons. These values are modified by the

weighting factor of the links.

Adder gives a weighted sum of the inputs, or a linear combination of that neu-

ron’s incoming connections.

Vk =
∑

i

wixi

Data mining and classification 50

W1

W2

Wn

.

.

.

Output
element

Receptor

Adder Activation function

Weights

Threshold

Figure 2.8: Basic model of a neural network

Activation function applies a threshold step function to the adder output to

determine if that neuron should fire.

Output element produces and distributes the outputs.

To train the network, observations are repeatedly presented as training pattern

vectors to the input layer. During each iteration the output vector is compared

with the current class vector and the difference is used to adjust the interconnected

weights. If the prediction value is too low then the weights are adjusted up

and vice versa. Training is completed when the training error is less than some

tolerance, or no more than an allocated number of epochs has been reached.

A number of search methods can be used for the training of multilayered

networks. However, the back propagation method [132] is the most widely applied.

It back feeds through the network, adjusting weights by using the derivative of the

activation function in conjunction with other parameters. It often achieves high

accuracy [48], but can get stuck in local minima and have a slow convergence rate

[169]. Optimization algorithms based on gradient descent algorithms are often

used to overcome these problems. Such algorithms include conjugate gradient

methods, quasi-Newton BFGS and Leven-Marquadt methods, refer to [167]. A

number of special classed problems involving bilinear separation ([91], [119] and

[15]), use greedy algorithms trained by Linear programming [41] in feed forward

Data mining and classification 51

networks.

During classification the unknown pattern is propagated through the network

to the output layer where the activation values determine the class values. The

input layer passes the signals to their respective hidden layer nodes, which in turn

pass signals onto the output layer nodes. Each neuron has an activation function,

so only the signals that are activated will pass between each layer onto the next

neuron. Since all link weights were determined during training, the firing of the

activation function depends on the contribution of the incoming values to the

weighted sum.

A number of activation functions can be found in the literature, these include

threshold or binary, piecewise linear and non linear type functions. The most

popular are non linear activation functions that are bounded, monotonically non-

decreasing and differentiable. This allows for the desired output of unit interval

[0, 1] as a threshold to fire the neurons. Furthermore, differentiability makes the

function suitable for the use in gradient search algorithms. The most popular

among them are the sigmoidal function [103]. Gaussian nonlinear functions are

popular in Radial basis function Networks (RBF) [35] and [79]. They are a gener-

alization of nearest neighbour algorithms, but instead use an exponential distance

function.

Determining the number of hidden nodes and layers is still an open problem.

Much work is being done on finding bounds for the number of hidden neurons

[72]. [29] presents a criterion based on an approximation of Chebyshev polyno-

mials, [23] and [83] present work on establishing the number of hidden layers.

Furthermore, [39] shows that adding extra hyperplanes, i.e. extra nodes in the

first hidden layer can save the need for a second hidden layer.

Although the inclusion of another layer improves separability, [15] shows that

two hyperplanes may not always solve the XOR problem. [23] and [83] attempt to

find a minimal architecture using a hidden layer and present limitations of poly-

Data mining and classification 52

hedral dichotomies when separating certain XOR configurations. They present a

conjecture showing four XOR configurations not computable by one hidden layer.

A further consideration, is to do with dimensionality problems when dealing

with large scale data. As the number of features increase, both the input nodes

and the number of connecting weights will also increase proportionally. This

becomes a problem for gradient search methods, as the gradient calculation re-

quires a nested summation over the weights and number of patterns [115]. The

author shows empirically that halving the number of records actually reduced the

training time by a factor of twelve.

Furthermore, as increased dimensionality can lead to an increased number

of minima, finding a global solution becomes more difficult and time consuming.

[150] shows that simple first order gradient descent methods, i.e. steepest descent

method used in BP, have poor convergence properties. Although very small steps

down the gradient guarantees convergence to a local a minimum [48], the time

taken to converge can be long with no guarantees of finding a global minimum.

Conjugate gradient methods greatly improve the performance of feed-forward

networks, however, finding optimal parameters can be just as time consuming

[150].

Artificial neural networks often deal with the multi-class classification prob-

lem as a single neural network system using O outputs. An example is shown

in figure 2.7, depicting a multilayered feed forward network. However, in terms

of improving on the backpropagation (BP) algorithm a multi-class solution is

preferrable [114]. There are a number of possible multiple neural network archi-

tectures, most use the approaches presented in section 2.4. These include the

one-against-one (OAO) and the one-against-all (OAA) strategies.

[3] presents work that builds a multiple neural network architecture and com-

pares the efficiency and accuracy to the single neural network system. The authors

divided a multilayer neural network into a number of single output feed forward

Data mining and classification 53

network modules. Their aim was to improve on the standard back propagation

approaches. Their results showed that using the OAA approach gave a reduction

in the number of iterations for training, a better rate of convergence, and scaled

up well for a larger number of classes.

For an indepth review on multi-class pattern classification using neural net-

works refer to [114].

2.6 Conclusions

In this chapter we presented an in depth view on the data mining process, super-

vised machine learning and more specifically how the classification process works.

It was shown that classification can be a long involved process, where a number

of classification techniques, parameters and data preprocessing may be needed

before a successful classifier is constructed.

Further, a review was given on a popular data mining package, WEKA. This

review showed that such data mining tasks can be implemented using a dedicated

data mining package. Also, it gave insight into the number of tools that can be

found for data preprocessing and classification. Thus, allowing the data miner

many options for the best presentation of the data using the most appropriate

classification technique.

A comprehensive review was given on real time and embedded systems. This

review described both systems and highlighted the operating constraints placed

on a classification technique being used in such a domain. Furthermore, a brief

review was given on current real time classification problems. A number of exam-

ples presented, showed the type of real time classification problems being solved

and by what type of classifier.

The multi-class classification problem was highlighted and a number of solu-

tions were presented. Also, a brief review was given on how some of the current

Data mining and classification 54

classification techniques deal with this problem. This led onto a detailed review

of a number of current and popular mainstream classification techniques. Prob-

lems in these classification techniques were highlighted in terms of dealing with

large scale data and real time classification constraints.

The next chapter presents a review on a number of optimization and piecewise

linear based classifiers. This review presents the benefits of these classification

techniques in being able to deal with real time classification. However, it also

highlights problems with finding well placed decision boundaries efficiently. It

further highlights the problems of these classifiers in terms of dealing with large

scale data.

Chapter 3

Optimization and piece wise

linear based classifiers

3.1 Introduction

It can be seen that the classification problem is also an optimization problem.

The ultimate aim is to construct some form of boundary that best divides the

classes from one another. When an unknown point is presented, it can then be

assigned to a class region designated by the respective boundary. Therefore, the

aim of classification is to find a function or rule that can minimize the number

of misclassified points or maximize the number of points that contribute well to

the construction of a decision boundary.

This chapter presents a number of optimization based classifiers. All of these

classifiers fall under either a multiple or single optimization approach. As this

thesis develops classification techniques based on a single optimization approach

using max-min separation, a description of max-min classification is presented.

As part of this description, an objective function based on the average error of

separation between two sets is also presented.

Furthermore, as two of the three developed classifiers use data pre- classifi-

55

Optimization and piece wise linear based classifiers 56

cation schemes and an incremental algorithm to reduce the computational com-

plexity, a review of both are included in this chapter. These are sections 3.4 and

3.5.

3.1.1 Optimization based classifiers

The general form for an optimization problem is

minimize f(x) subject to x ∈ X (3.1)

where x ∈ Rn is a vector of decision variables, f(x) is the objective function

and X ⊂ Rn is the feasible region.

The Mathematical formulation for the classification problem that minimizes or

maximizes the objective function, is dependant on the misclassified points and a

number of parameters, used as variables. Most optimization problems associated

with classification are based on the connected problem of separating two sets.

The following must be determined when solving such a problem.

1. The type of objective function needed.

2. The parameters needed to be passed to the function.

3. A criteria on determining the quality of the objective function.

4. Ensuring the problem being solved is tractable.

The optimization based classifiers presented in sections 3.2 and 3.3 address

these criteria. Furthermore, most of these classifiers extend the classification

problem of two sets to solving the multi-class problem.

3.1.2 Piecewise linear classifiers

Piecewise linear classifiers have been a subject of study for more than three

decades. They can be used to approximate non-linear decision boundaries be-

Optimization and piece wise linear based classifiers 57

tween pattern classes. One hyperplane provides perfect separation when the con-

vex hull of these pattern classes do not intersect. However, in many real-world

applications this is not the case.

In many data sets the classes are disjoint, but their convex hulls intersect.

In this situation, the decision boundary between the classes is non-linear. How-

ever, the decision boundary can be approximated using piecewise linear functions.

Over the last three decades different algorithms to construct the piecewise linear

decision boundary between classes have been designed these include the following

classifier examples ([5, 9, 11, 18, 32, 65, 87, 118, 142, 141, 149]).

Most of these piecewise linear classifiers are very simple to implement; their

memory requirements are very low and they provide real-time classification. Fur-

thermore they have a small training time and do not contain parameters which

depend on the data set. Most of them also make no assumptions of the under-

lying statistical distributions of the samples, and also most of the classifiers are

generalised to only a mathematical function, i.e. max-min function.

Therefore they are ideally suited for applications such as small reconnaissance

robots, autonomous mobile robots, intelligent cameras, embedded and real-time

systems, portable devices, industrial vision systems, automated visual surveil-

lance systems, monitoring systems etc. [87]. As previously mentioned, all of

these applications require fast real-time classification and low memory usage with

limited processing power. Whereas, most of the main stream classifiers were not

designed with these requirements in mind.

There are however problems associated with piecewise linear classifiers. In

general, the determination of piecewise linear boundaries is a complex global op-

timization problem [141]. In most cases the problem of finding such boundaries

is reduced to the minimization of the classification error function which is non-

differentiable and nonconvex. Nonconvexity of the error function means that, in

general, it has many local minimizers.

Optimization and piece wise linear based classifiers 58

As the global minimizers provide the piecewise linear boundary with the least

number of hyperplanes, an optimization technique best suited to nonsmooth

global optimization problems is needed. Smoothing techniques do not always

provide a good approximation of the decision boundary. Also Newton-like or

gradient based methods cannot be applied to solve such problems. Furthermore,

the problem of building a decision boundary is more complicated, as the number

of hyperplanes in the boundary is not known a priori.

These complications make training of the algorithm very complex and can lead

to long training times, thus making the application of piecewise linear classifiers

difficult. In order to reduce the training time most techniques try to avoid solv-

ing optimization problems when computing piecewise linear boundaries by using

certain heuristics. For example, they apply fast clustering algorithms (such as k-

means) to find clusters in each class. They then compute hyperplanes separating

pairs of clusters from different classes. The final piecewise linear boundary is ob-

tained as a synthesis of those hyperplanes (see [18, 87, 118, 32, 141, 142, 149, 65]).

Existing piecewise linear classifiers can be divided into two classes. The first

class contains classifiers in which each segment of the piecewise linear boundary

is constructed independently (multiple optimization approach). The second class

contains classifiers in which the problem of finding a piecewise linear boundary

is formulated as an optimization problem (single optimization approach).

Optimization and piece wise linear based classifiers 59

3.2 Classifiers based on the multiple optimiza-

tion approach

3.2.1 Early piecewise linear classifiers

Nilsson

Over the past few decades various approaches to design piecewise linear classi-

fiers have been proposed. In the mid 1960s ”Committee Machines” [110] were

used for pattern recognition to build a piecewise linear system. However, the

discrimination step was complex and computationally intensive [146]. Initial im-

provements included the idea of hyperplane placement by minimizing probability

density functions [157]. However, a large sample size was needed to construct a

well placed hyperplane boundary.

Sklansky and Michelotti

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc
bc

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

uT

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
||

||

|

||

bc

Figure 3.1: Prototypes found by clustering algorithm

More significant improvements came in, what is arguably, the first of the mul-

Optimization and piece wise linear based classifiers 60

tiple optimization approaches. Though still a two-class problem, ([142], [141])

introduced a procedure to locally train piecewise linear decision boundaries. The

authors recognized the time and memory complexities associated with committee

machines when training on the whole data set. To improve on this, they intro-

duce a methodology that reduced complexity by concentrating only on the points

that contribute to separating the decision boundary. This in turn helps to find

simplifications in the decision surface.

Firstly they identify prototypes using Forgy’s algorithm [50], also known as

the k-means clustering algorithm [100]. These prototypes are the cluster centers

of each class, see figure 3.1. They then use the prototypes to locate the points of

the two opposing classes that are either close or intersect. These points make up

the areas known as the encounter zones, refer to figure 3.2. Each pair of encounter

zones is known as a ”close-opposed pair” or ”link”.

Training is done by sequentially adding hyperplanes to only these areas. A

window training procedure [77] is used, where training is repeated until two suc-

cessive iterations gives the same separation. This gives a stopping criteria and

avoids the use of parameters. Finally, creating a decision boundary with a near-

minimal set of hyperplanes that separate only the subsets of the k-closed pairs

from the k prototypes.

Though this work addressed the complexity issues associated with committee

machines, a number of problems still existed. Determining the number and the

size of prototypes was left up to the user as a parameter. There was also a need

to automate the merging and splitting of the linear segments. Furthermore, the

technique needed to be generalized in order to solve the multi-class problem.

Optimization and piece wise linear based classifiers 61

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc
bc

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

uT

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
||

||

|

||

bc

Figure 3.2: Encounter zone between classes in feature space

3.2.2 Prototype based piecewise linear classifiers

Park and Sklansky

Building on the previous work of prototypes and closed opposed pairs, the authors

propose an improved method based on the cutting of straight line segments [120].

Tomek’s method [75], a Condensed Nearest Neighbour (CNN) method [62] is used

to find opposed pairs belonging to different classes. These pairs form the straight

line segment (Tomek link), refer to diagram 3.3. Finding a set of Tomek links

is O(N3) in the worst case, where N is the number of training set points. To

reduce complexity, the prototypes are used instead of data points for the cutting

of Tomek links.

Their procedure aimed to find a minimal subset of Tomek links and to max-

imize the number of Tomek links cut. This guarantees training set consistency

and provides a good initial starting point for the hyperplanes. Thus allowing for

efficient local region training. The authors show that incorporating the use of

Tomek links and examining error rates, allow for the automation of a nearly opti-

Optimization and piece wise linear based classifiers 62

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc
bc

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

uT

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
||

||

|

||

bc

Figure 3.3: Tomek links

mal set of hyperplanes without the need of user specified parameters. To address

the multi-class problem, data is temporarily relabeled into two groups. Using a

two phase approach to train hyperplanes both locally and globally, an error rate

then determines which phase hyperplane to use.

The authors demonstrate that this piecewise linear classifier provides a much

faster decision than the k-nearest neighbors classifier for a similar accuracy. In

[166] this classifier was compared with a neural network classifier. The neural

network classifier performed slightly better than the piecewise linear classifier.

On the other hand, the neural network classifier required a much longer training

time.

Tenmoto, Kudo and Shimbo

The proposed technique presented in [149] and [148] builds directly on the use of

prototypes and Tomek links found in the aforementioned classification work of

Slansky and Park [120], refer again to diagram 3.3. They recognize the need for us-

ing a small number of prototypes instead of all the training points. This is mainly

Optimization and piece wise linear based classifiers 63

due to the computational costs associated with constructing locally trained hy-

perplanes and discovering the spatial structure of the underlying distribution of

the samples [149].

The authors identify problems relating to the prototypes found in the previous

work of Slansky and Park. These include determining the number of prototypes,

prototypes accurately representing the training samples and an appropriate set

of prototypes in a high-dimensional space.

They point out that the previously mentioned classifier can produce undesir-

able results. This is due to prototypes being separated by a small number of

hyperplanes and as a consequence ignoring local information. Furthermore, if an

inappropriate set of prototypes is chosen then poorly constructed hyperplanes are

possible.

To address these problems, a modification of the previous method [120] is pro-

posed. This new method uses an incremental approach to construct hyperplanes

where even samples of both prototypes and training examples are used. An error

rate for this local training is kept under a threshold. The threshold is determined

automatically by a probabilistic model criteria, the Minimum Description Length

criterion [130], so as to avoid over fitting the training data. Furthermore, more

training samples are chosen as two links are used instead of one link, as is the

case in the previous method.

The results of the new method shows that it generally outperforms the previ-

ous method of Park and Slansky. The new method also keeps a lower error rate

than that of Park and Sklansky, however more hyperplanes are needed as they

search for training samples around four ends of two hyperplanes instead of one.

Optimization and piece wise linear based classifiers 64

3.2.3 Tree Based Methods

Kostin

Further building on the concept of prototype patterns, an algorithm that creates

a binary class partition tree is presented in [87]. The author proposes an im-

provement on the work of Park and Sklansky [120], and Tenmoto et al. ([149]

and [148]). He points out that almost all the step procedures presented in Park

and Sklansky’s classification method are time consuming. Since the modified al-

gorithm of Tenmoto et al. performs mostly the same steps found in Park and

Sklansky’s method it also is time consuming.

Furthermore, Kostin highlights the emphasis that is placed on the class bound-

ary data points by Park and Sklansky’s algorithm. As mentioned earlier, the al-

gorithm is dependant on the prototypes properly representing these data points.

He states that this is difficult to achieve as these marginal class training patterns

are often represented by noisy data points. Therefore, the delicate optimization

procedures performed within these class boundaries are of little value.

As mentioned before, Tenmoto et al. improve on Park and Sklansky’s algo-

rithm by maintaining a correct recognition rate over the training patterns, in

order to avoid overfitting the training data. However, Kostin shows that the ef-

ficiency of their algorithm is still dependent on the results of the clustering and

therefore is as complex as the algorithm of Park and Sklansky.

To avoid complex computational procedures in minimizing the number of

hyperplanes in the decision boundaries and to handle the multi-class problem,

Kostin implements a binary tree structure. This proposed classifier takes the

centroids of the prototype patterns representing each class, and creates a rooted

binary class partition tree. The tree contains a collection of segments of hyper-

planes, that are broken up as perpendicular bisectors of the line segments linking

the class centroids.

Optimization and piece wise linear based classifiers 65

The proposed algorithm sequentially partitions the multi dimensional space

containing the training set patterns. It computes for each non leaf node a set of

hyperplanes that separates the training sets into two groups of classes that corre-

spond to two outcome branches. These outcome branches represent the divided

subregions and are partitioned according to the binary tree. These subregion

partitions are continually created until one or more of the stopping criteria are

met. The stopping criteria could include a separation error or an upper limit on

the number of constructed hyperplanes. Each of the non leaf nodes within the

tree represent the equation of the respective hyperplane.

To deal with multi-class pattern recognition, a hierarchical partition scheme is

used. For further examples of hierarchical partition schemes for multi-classification,

refer to [89] and [161]. In order to implement such a scheme, Kostin generalizes

the original method so that the binary tree contains class centroids, or a partition

tree of classes. The binary tree is configured so that the root and inner nodes

correspond to groups of classes and the leaf nodes correspond to single classes.

As before, non leaf nodes are constructed sequentially. However, this time the

algorithm divides the data set into two groups. From there, each group of classes

in turn is divided into two smaller groups using a piecewise linear boundary. This

is implemented by building a binary partition tree of all the classes. Each of these

nodes decrease until the nodes consist of only two centroids of two simple classes.

For classification of unknown observations, an ordered traversal of the tree is

handled by a set of codes created during the training phase. These codes control

the choice of hyperplane sets chosen for the recognition process in determining

which sub region the unknown observation belongs to.

In [87], Kostin claims that the computational complexity of the classifier is

linear in the number of classes, but is quadratic in the number of attributes. As

is the case with most tree based classifiers, storage is often a problem, where the

memory complexity is quadratic in the number of nodes. A further consideration

Optimization and piece wise linear based classifiers 66

is with accuracy. The accuracy may be compromised if there is an incorrect sep-

aration error tolerance or too few hyperplanes are selected during the separation

of the initial regions.

Another tree based classifier is proposed in [32]. In this case, a linear binary

decision tree classifier is presented, where the decision at each non-terminal node

is made using a genetic algorithm. The authors apply this binary tree genetic

algorithm approach for the use in pap smear cell classification. They aimed to

build a classifier with a minimum misclassification error rate and low sensitivity-

false alarm rate. Their results were favourable, however improvements could

be made by adding more discriminatory features and increasing the statistical

sufficiency of data samples.

3.2.4 Linear Regression based methods

The use of linear Regression as a technique in classification is common. Such

work includes [73] which extend Support Vector machine classification to regres-

sion estimation to solve learning control for space robots. Also, [73] uses linear

regression for classifying gene expression by using partial least squares to build a

linear model.

In [138], a multiple optimization algorithm using linear regression is presented.

The learning algorithm constructs a piecewise linear classifier for multi-class prob-

lems. In the first step of the algorithm linear regression is used to determine the

initial positions of the discriminating hyperplanes for each pair of classes. Next an

error function is minimized by a gradient method for each hyperplane separately.

In the case of non-convex classes, the next step uses a clustering procedure to

decompose the classes into appropriate subclasses, in order to make them linearly

separable.

In terms of multi class classification, a pattern corresponding to a class is

uniquely classified by the trained discriminating hyperplanes if it belongs to all

Optimization and piece wise linear based classifiers 67

the half spaces for that class hyperplane set. It will not, however, belong to all

the half spaces of all other sets. This is true for all class patterns in terms of

discriminating against all other classes. If a class pattern is not uniquely classified,

then that pattern is classified on the basis of the minimum distance to the class

regions.

This classification technique has been implemented as a functional application

and is named DIPOL92 (DIscrimination and POst Learning). It was included

in the STATLOG [105] project where it achieved good classification results on

many data sets. The aim of the project was to review and compare different

classification techniques on a wide range of known data sets.

3.2.5 Neural Network based and other methods

The paper [18] proposes an approach to construct a piecewise linear classifier using

neural networks, refer to subsection 2.5.3. In this paper the training set is split

into several linearly separable training subsets, and the separability is preserved

in subsequent iterations. Furthermore, the authors completely reclassify these

learning sub sets by a two layer neural network. This procedure uses a basis

exchange technique in order to find a decision rule on the base of the learning

sets and to find a solution within a finite number of iterations.

The authors highlight the benefits of this technique, including the fact that it

shares the same properties of the nearest neighbour 1-NN rule, refer to subsection

2.5.2, as computational complexity is O(M), where M is the number of data

points. Furthermore, if the technique is implemented using a parallel network, the

classification time would decrease significantly compared to the nearest neighbour

1-NN rule. They also showed that the computational complexity of the neural

network is again linear and only increases in the number of neurons in the first

layer.

The paper [118] proposes a piecewise linear classifier which starts with a linear

Optimization and piece wise linear based classifiers 68

classifier. If it fails to separate the classes, then the sample space of one of

the classes is divided into two subsample spaces. This sequence of splitting,

redesigning, and evaluating continues until the overall performance is no longer

improved. The results presented in the paper showed that the classifier worked

well, as only a small number of discriminant functions were needed to obtain a

reliable classifier.

However, the main strength of the classification technique, is in its ability to

deal with the multi-class problem. The algorithm uses an iterative error correction

procedure at classifying time. This procedure takes random samples of classes and

adjusts a weight vector for each misclassification by saving the lowest error rate

each time. Obviously the class with the lowest error is the one that is nominated.

3.3 Classifiers based on the single optimization

approach

These classifiers learn the piecewise linear boundary globally and simultaneously,

via solving a single optimization problem. Although they achieve better results

than multiple optimization methods, their training time can still be long. One

way to find such functions is to compute boundaries between pattern classes.

In general, the classes in real world data sets are distinct, however their convex

hulls may intersect. In this case classes need to be separated by nonlinear func-

tions. Such functions can be approximated by using piecewise linear functions.

Piecewise linear classifiers based on a single optimization approach were pro-

posed in papers [5] and [9].

3.3.1 Linear Separability

Linear Separability uses one affine function to separate two sets.

Optimization and piece wise linear based classifiers 69

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc
bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bcbc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc
bc

bc

bc

bc

A

×

×

×

×
×

×

×

×

××
× ×

×

×

×

×

×

×

×

×

× ×

×

×

×

×
×

×

×

××

××

× ××

×

×

×

×

×
× ×

×

×

×

×

×

×

×

×

×

×

×
×

×
××

×

×

×
×

×

×

×

×
×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
××

× ×
×

×

×

×

× ×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

× ×

B

Figure 3.4: Linear separability

The sets A = {a1, . . . , am} and B = {b1, . . . , bp} are linearly separable if there

exists a hyperplane {x, y}, with x ∈ IRn, y ∈ IR1 such that

1) for any j = 1, . . . ,m

〈x, aj〉 − y < 0,

2) for any k = 1, . . . , p

〈x, bk〉 − y > 0.

The sets A and B are linearly separable if and only if coA
⋂

coB = ∅.

In practice, it is unlikely for the two sets to be linearly separable. An example

is that of Rosenblatt’s perceptron or linear threshold unit (LTU)[131]. More

precisely the Minsky and Pappert famous exclusive ‘OR’ problem [106]. Therefore

it is important to find a hyperplane which minimizes some misclassification cost.

In [14] the problem of finding this hyperplane is formulated as the following

optimization problem:

minimize f(x, y) subject to (x, y) ∈ IRn+1 (3.2)

Optimization and piece wise linear based classifiers 70

where

f(x, y) =
1

m

m
∑

i=1

max
(

0, 〈x, ai〉 − y + 1
)

+
1

p

p
∑

j=1

max
(

0,−〈x, bj〉+ y + 1
)

is an error function. Here 〈·, ·〉 stands for the scalar product in IRn. An algorithm

for solving problem (3.2) was described in [14] . It was shown that the problem

(3.2) is equivalent to the following linear program:

minimize
1

m

m
∑

i=1

ti +
1

p

p
∑

j=1

zj

subject to

ti ≥ 〈x, ai〉 − y + 1, i = 1, . . . ,m,

zj ≥ −〈x, bj〉+ y + 1, j = 1, . . . , p,

t ≥ 0, z ≥ 0,

where ti is nonnegative and represents the error for the point ai ∈ A and zj is

nonnegative and represents the error for the point bj ∈ B.

The sets A and B are linearly separable if and only if f ∗ = f(x∗, y∗) = 0

where (x∗, y∗) is the solution to the problem (3.2). It is proved that the trivial

solution x = 0 cannot occur.

3.3.2 Support Vector Machines

Support Vector Machines (SVM) are similar to piecewise linear separators as they

belong to the family of generalised linear classifiers. SVMs create decision planes

that separate the data into their respective classes. They were first proposed in

[152] and [153], due to their solid mathematical foundations are currently one

of the most popular classification techniques. Their popularity extends to real

time classification problems, including myoelectric control [113] and smart phone

Optimization and piece wise linear based classifiers 71

malware detection [19]. A comprehensive review of SVMs can be found in [154]

and [155].

Linear support vector machines

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bcbc

bc

bc bc
bc

bc

bc

bc

bc

bc

bc

bc bc

bc
bc

bc

bc
bc

bcbc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bcrs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

bc

b

b

b

r

r

r

class +1
w ∗ x + b > 1

H1

class -1
w ∗ x + b < −1

H2

Origin

M
ar
gi
n

Figure 3.5: Linear separating hyperplanes as a separable case. The support
vectors are filled in.

The simplest case is that linear machines are trained on separable data. If

the training data is linearly separable then variables w weight vector and b the

bias, exist such that

wTXi + b ≥ 1, for all Xi ∈M

wTXi + b ≤ −1, for all Xi ∈ N

(3.3)

The decision rule is given as

fw,b(X) = sgn(wTX + b), (3.4)

Optimization and piece wise linear based classifiers 72

where sgn is the sign function.

The overall aim is to create the largest possible distance between a separating

hyperplane and the data points on either side. An optimal separating hyperplane

can then be found by minimizing the squared norm of the hyperplane, such that a

convex and quadratic programming (QP) problem is constructed. The problem is

then defined as simultaneously minimizing the empirical classification error and at

the same time maximizing the geometric margin between the two sets. Therefore

to maximize the margin ‖w‖ means the goal is to minimize 1
2
‖w‖2 subject to 3.3.

The points lying on the margin of the newly found hyperplane are known

as the support vectors. These points are significant as their linear combination

alone represent the solution, refer to figure 3.5. As a result of the optimization

problem, the number of support vectors are generally small. It can also be seen

that the number of features have little effect on the complexity of an SVM.

However, SVMs are generally not favoured for large scale data mining. This is

due to the training complexity being highly dependent on the size of the data set

[164]. It has been shown that the training complexity is at least quadratic in the

number of data points. Refer to [145] and [164] for further training complexity

discussions.

In practice it is possible that a separating hyperplane may not exist. This

could be attributed to noise in the data set that causes an overlap of the classes.

To allow for observations that violate 3.3 slack variables can be introduced ([155]

and [156]).

Ξi ≥ 0, i = 1, . . . , l (3.5)

A soft margin is created to deal with the misclassified points by relaxing the

constraints to

yi((w
TXi) + b) ≥ 1− Ξi, i = 1, . . . , l (3.6)

Optimization and piece wise linear based classifiers 73

A generalized classifier is now constructed to control both its capacity through

‖w‖ and an upper bound on the number of training errors through the sum of

slack variables 3.5. Furthermore, the optimization problem remains convex.

One manifestation of this soft margin classifier is the C-SVM.

γ(w,Ξ) =
1

2
‖w‖2+C

l
∑

i=1

Ξi (3.7)

subject to the constraints 3.5 and 3.6, for a constant C > 0.

Another possible manifestation of a soft margin classifier is the ν − SVM

min‖w‖2+C
∑

i

ξi such that ci(w ·Xi − b) ≥ 1− ξi, 1 ≤ i ≤ n (3.8)

In this case the C parameter is replaced by the ν ∈ [0, 1] parameter which

is the lower and upper bound of the (noisy) points that lie on the wrong side of

the hyperplane respectively. For further information and improvements on these

classifiers refer to [33] and [34].

Nonlinear support vector machines

Most real world classification problems deal with complex data containing noise

and non linearity, such that no hyperplane can successfully separate the two sets.

In this case, the data points are projected or mapped into a higher dimensional

space. This transformed feature space is then used to define a separating hyper-

plane.

An appropriately chosen transformed feature space will allow for points to be

better separated. Even to the point of linear separation as this transformed space

corresponds to the original nonlinear input space [1]. The original input space D

can be mapped by a function Φ : D → H. With this transformation it is now

Optimization and piece wise linear based classifiers 74

necessary to solve only function K, the dot products in H such that:

K(xi, xj) = Φ(xi) � Φ(xj) (3.9)

It not necessary to determine Φ, only function K. Function K is a special class

of functions known as a Kernel function. They allow for inner products to be

calculated within the feature space without needing to perform any mapping to

the higher feature space.

The following are three popular kernel functions.

• K(x, y) = (x× y + 1)p

• K(x, y) = exp−‖x−y‖2/2σ2

• K(x, y) = tanh(κx× y − δ)

When the input data is projected onto a higher dimensional space one of

these previously chosen kernels is used to separate the classes. The combination

of a correctly chosen kernel and the transformation into the higher dimensional

space allows for a greater margin of difference between the two sets and a better

separation. For a more detailed explanation, refer to [26].

Currently the biggest limitation of the SVM approach lies in the choice of

the appropriate kernel and then the subsequent choice of parameters [26]. The

user must choose the kernel given the data set. This may be a time consuming

process given the combination of parameters and kernels. Much work has been

undertaken to remedy this situation. Examples include methods that use meta-

learning and meta features for choosing parameters [143].

Furthermore, there exist statistical grid search methods that find parameters

for tuning the Radial Basis kernels [12]. Guides and tutorials aimed to educate

the novice user on tools for parameter tuning and intuitive kernel selections can

be found in [69].

Optimization and piece wise linear based classifiers 75

3.3.3 Polyhedral separability

bc

bc

bc

bc bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bcbc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bcbcbc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc bc

bc

bc

A
× ×

×

×

×

×

×

×

×

×

×

×

× ×
×

×

×

×

×

×

×

×

×

× ×

×

×××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
×

×

××

×

×

×

×

×

×

×
×

×

××

×

×

×

×

××

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

× ×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×

×

×
×

×

×
×

×

×

×

×
×

×
××

×

×× ×

×

×
×

×

×

×

××

×

×

×

×

× ×

×

B

Figure 3.6: Polyhedral separability

The paper [5] introduces the concept of polyhedral separability. In this case

a class is approximated by a polyhedral set and the rest of the space is used

to approximate the second class. The classification error function is represented

as the sum of convex and nonconvex nonsmooth functions. An algorithm for

minimizing this function is developed in [5]. In the paper [112] the polyhedral

separability algorithm was modified to derive classification rules by accurately

learning from few data. It is achieved by solving a mixed integer programming

model that extends the notion of discrete support vector machines.

The concept of h-polyhedral separability was developed in [5]. The sets A

and B are h-polyhedrally separable if there exists a set of h hyperplanes {xi, yi},

with

xi ∈ IRn, yi ∈ IR1, i = 1, . . . , h

such that

1. for any j = 1, . . . ,m and i = 1, . . . , h

〈xi, aj〉 − yi < 0,

Optimization and piece wise linear based classifiers 76

2. for any k = 1, . . . , p there exists at least one i ∈ {1, . . . , h} such that

〈xi, bk〉 − yi > 0.

It is proved in [5] that the sets A and B are h-polyhedrally separable, for some

h ≤ p if and only if

coA
⋂

B = ∅.

The problem of polyhedral separability of the sets A and B is reduced to the

following problem:

minimize f(x, y) subject to (x, y) ∈ IR(n+1)×h (3.10)

where

f(x, y) =
1

m

m
∑

j=1

max

[

0, max
1≤i≤h

{

〈xi, aj〉 − yi + 1
}

]

+

1

p

p
∑

k=1

max

[

0, min
1≤i≤h

{

−〈xi, bk〉+ yi + 1
}

]

(3.11)

is an error function. Note that this function is a nonconvex piecewise linear

function. It is proved that xi = 0, i = 1, . . . , h cannot be the optimal solution.

Let {x̄i, ȳi}, i = 1, . . . , h be a global solution to the problem (3.10). The sets A

and B are h-polyhedrally separable if and only if f(x̄, ȳ) = 0. If there exists a

nonempty set Ī ⊂ {1, . . . , h} such that xi = 0, i ∈ Ī, then the sets A and B are

(h− |Ī|)-polyhedrally separable. In [5] an algorithm for solving problem (3.10) is

developed. One of the sets is approximated by a polyhedral set and the rest of the

space is used to approximate the second set. The error function is represented as a

sum of nonsmooth convex and nonsmooth nonconvex functions. The calculation

of the descent direction at each iteration of this algorithm is reduced to a certain

linear programming problem.

Optimization and piece wise linear based classifiers 77

3.3.4 Max-min separability

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bcbc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bcbc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

A

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

××

×

×
×

×
× ×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

× ×

×

×
××

××

×
×

×

×
×

×
×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×× ×

×

×

×

×
×

×

×

×

×× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×
×

×

× ×

×

×××

×

×

×

×

×

××
×

×

×

×
×

× ×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×
×

×

×

× B

Figure 3.7: Max-min separability

The concept of max-min separability was introduced in [9]. In this approach

two sets are separated using a continuous piecewise linear function. Max-min

separability is the generalization of linear, bilinear and polyhedral separabilities

[11]. It has been proven that any two disjoint finite point sets can be separated

by a piecewise linear function. The error function in this case is nonconvex

nonsmooth. The discrete gradient method [7, 8] is applied to minimize it.

Max-min separability is a generalization for the polyhedral separability intro-

duced in 3.3.3

Definition and properties Let H = {h1, . . . , hl}, where hj = {xj , yj}, j =

1, . . . , l with xj ∈ IRn, yj ∈ IR1, be a finite set of hyperplanes. Let J = {1, . . . , l}.

For a given 1 ≤ r ≤ l consider any partition of this set Jr = {J1, . . . , Jr} such

that

Jk 6= ∅, k = 1, . . . , r, Jk
⋂

Jj = ∅,
r
⋃

k=1

Jk = J.

From now on we use the following notation for hyperplanes. If the set of hyper-

planes is given without partition we use only one index for x and y. If the set of

hyperplanes is given with partition we use two indices for x and y.

Let I = {1, . . . , r}, 1 ≤ r ≤ l. A particular partition Jr = {J1, . . . , Jr} of the

Optimization and piece wise linear based classifiers 78

set J defines the following max-min-type function:

ϕ(z) = max
i∈I

min
j∈Ji

{

〈xij, z〉 − yij
}

, z ∈ IRn. (3.12)

Let A,B ⊂ IRn be given disjoint sets, that is A
⋂

B = ∅.

Definition 1. The sets A and B are max-min separable if there exist a finite

number of hyperplanes {xj, yj} with xj ∈ IRn, yj ∈ IR1, j ∈ J = {1, . . . , l} and a

partition Jr = {J1, . . . , Jr}, I = {1, . . . , r}, 1 ≤ r ≤ l of the set J such that

1) for all i ∈ I and a ∈ A

min
j∈Ji

{

〈xij, a〉 − yij
}

< 0;

2) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{

〈xij, b〉 − yij
}

> 0.

Remark 1. It follows from Definition 1 that if the sets A and B are max-min

separable then ϕ(a) < 0 for any a ∈ A and ϕ(b) > 0 for any b ∈ B, where the

function ϕ is defined by (3.12). Thus the sets A and B can be separated by a

function represented as a max-min of linear functions. Therefore this kind of

separability is called a max-min separability.

Remark 2. Linear and polyhedral separability, introduced in [14] and [5], re-

spectively, can be considered as particular cases of the max-min separability. If

I = {1} and J1 = {1} then we have the linear separability and if I = {1, . . . , h}

and Ji = {i}, i ∈ I we obtain the h-polyhedral separability. Moreover, max-min

separability is a generalization of the bilinear separation (see [11]).

Proposition 1. (see [9]). The sets A and B are max-min separable if and only

Optimization and piece wise linear based classifiers 79

if there exists a set of hyperplanes {xj, yj} with xj ∈ IRn, yj ∈ IR1, j ∈ J and a

partition Jr = {J1, . . . , Jr}, I = {1, . . . , r}, 1 ≤ r ≤ l of the set J such that

1) for any i ∈ I and a ∈ A

min
j∈Ji

{

〈xij, a〉 − yij
}

≤ −1;

2) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{

〈xij, b〉 − yij
}

≥ 1.

Proposition 2. (see [9]). The sets A and B are max-min separable if and only

if there exists a continuous piecewise linear function separating them.

Remark 3. It follows from Proposition 2 that the notions of max-min and piece-

wise linear separability are equivalent.

Proposition 3. (see [9]). The sets A and B are max-min separable if and only

if they are disjoint: A
⋂

B = ∅.

Remark 4. Proposition 3 means any two disjoint finite point sets are max-min

separable.

The next proposition shows that in most cases the number of hyperplanes

necessary for the max-min separation of the sets A and B is not too large.

Proposition 4. (see [9]). Assume that the set A can be represented as a union

of sets Ai, i = 1, . . . , q and the set B as a union of sets Bj, j = 1, . . . , d such

that

A =

q
⋃

i=1

Ai, B =
d
⋃

j=1

Bj

and

coAi

⋂

coBj = ∅ for all i = 1, . . . , q, j = 1, . . . , d. (3.13)

Optimization and piece wise linear based classifiers 80

Then the number of hyperplanes necessary for the separation of the sets A and B

is at most q · d.

Remark 5. Proposition 4 demonstrate that in most cases the cardinality of all

sets of indices Ji, i ∈ I is the same. If the assumptions of Proposition 4 are

satisfied then the cardinality of all these sets is either d or q. We will use this

fact for the design of an incremental algorithm.

3.3.5 Error function

[11] presents an algorithm for the max-min separability problem. They develop

an algorithm to find that piecewise linear function by minimizing the following

error function. This error function determines the quality of the of the max-min

piecewise linear separation.

Given any set of hyperplanes {xj , yj}, j ∈ J = {1, . . . , l} with xj ∈ IRn, yj ∈

IR1 and a partition Jr = {J1, . . . , Jr}, I = {1, . . . , r}, 1 ≤ r ≤ l of the set J , we

say that a point a ∈ A is well separated from the set B if the following condition

is satisfied:

max
i∈I

min
j∈Ji

{

〈xij, a〉 − yij
}

+ 1 ≤ 0.

Then we can define the separation error for a point a ∈ A as follows:

max

[

0,max
i∈I

min
j∈Ji

{

〈xij, a〉 − yij + 1
}

]

. (3.14)

Analogously, a point b ∈ B is said to be well separated from the set A if the

following condition is satisfied:

min
i∈I

max
j∈Ji

{

−〈xij, b〉+ yij
}

+ 1 ≤ 0.

Optimization and piece wise linear based classifiers 81

Then the separation error for a point b ∈ B can be written as

max

[

0,min
i∈I

max
j∈Ji

{

−〈xij, b〉+ yij + 1
}

]

. (3.15)

An averaged error function is defined as (see [9, 11])

f(X, Y) = f1(X, Y) + f2(X, Y) (3.16)

f1(X, Y) = (1/m)
m
∑

k=1

max

[

0,max
i∈I

min
j∈Ji

{

〈xij, ak〉 − yij + 1
}

]

,

f2(X, Y) = (1/p)

p
∑

t=1

max

[

0,min
i∈I

max
j∈Ji

{

−〈xij, bt〉+ yij + 1
}

]

,

where X = (x11, . . . , xlql) ∈ IRnL, Y = (y11, . . . , ylql) ∈ IRL, L =
∑

i∈I qi, qi =

|Ji|, i ∈ I = {1, . . . , l}. |Ji| denotes the cardinality of the set Ji. It is clear that

f(X, Y) ≥ 0 for all X ∈ IRnL and Y ∈ IRL.

Proposition 5. (see [9]). The sets A and B are max-min separable if and only

if there exists a set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition

Jr = {J1, . . . , Jr}, I = {1, . . . , r}, 1 ≤ r ≤ l of the set J such that f(x, y) = 0.

Remark 6. The error function (3.16) is nonconvex and if the sets A and B

are max-min separable with the given number of hyperplanes, then the global

minimum of this function f(X∗, Y∗) = 0 and the global minimizer is not always

unique. Moreover, X = 0 ∈ IRnL cannot be an optimal solution [9].

The problem of max-min separability is reduced to the following mathematical

programming problem:

minimize f(X, Y) subject to (X, Y) ∈ IR(n+1)L (3.17)

where the objective function f is described by equation (3.16).

Optimization and piece wise linear based classifiers 82

Proposition 6. (see [9]). Assume that the sets A and B are max-min sep-

arable with a set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition

Jr = {J1, . . . , Jr}, I = {1, . . . , r}, 1 ≤ r ≤ l of the set J . Then

1) xij = 0, i ∈ I, j ∈ J cannot be an optimal solution;

2) if

(a) for any t ∈ I there exists at least one b ∈ B such that

max
j∈Jt

{

−〈xtj, b〉+ ytj + 1
}

= min
i∈I

max
j∈Ji

{

−〈xij, b〉+ yij + 1
}

, (3.18)

(b) there exists J̃ = {J̃1, . . . , J̃r} such that J̃t ⊂ Jt, ∀t ∈ I, J̃t is nonempty

at least for one t ∈ I and xtj = 0 for any j ∈ J̃t, t ∈ I.

Then the sets A and B are max-min separable with a set of hyperplanes

{xj, yj}, j ∈ J0 and a partition J̄ = {J̄1, . . . , J̄r} of the set J0 where

J̄t = Jt \ J̃t, t ∈ I and J0 =
r
⋃

i=1

J̄i.

In paper [11], an algorithm for solving problem (3.17) is presented. This

algorithm exploits special structures of the error function such as piecewise partial

separability.

In this algorithm it is assumed that the number of hyperplanes is known

a priori. However this information is not always available. The classification

accuracy is highly dependent on this number. A large number of hyperplanes

may lead to overfitting of the training set. It is therefore imperative to calculate

as few hyperplanes as needed to separate classes with respect to a given tolerance.

The algorithms developed in this thesis use an incremental approach to find an

appropriate number of piecewise linear functions to separate classes. A review of

incremental learning algorithms is presented in section 3.5.

Optimization and piece wise linear based classifiers 83

The complexity of the error function computation (3.16) depends on the num-

ber of data points. For data sets containing tens of thousands of points the error

function becomes expensive to compute, and the algorithms proposed in [9, 11]

become very time consuming. In the next section, section 3.4 a scheme to reduce

the number of points is presented. The algorithms developed in chapters 5 and 6

build on this scheme.

Furthermore complexity is reduced at each iteration by eliminating points

easily classified using simpler piecewise linear separators calculated at previous

iterations. This allows for a significant reduction of the computational effort

for large data sets. Also, this scheme reduces the risk of overfitting by only

considering the data points that are relevant.

3.4 Data pre-classification

Pre-classification can be seen as the process of identifying data points for a given

purpose. Examples of applications for such purposes include detection of outliers

[111]. Different methodologies that identify points as either being ”outliers” or

”normal” are surveyed in [66]. In [66] an application for safety critical environ-

ments is presented, where the identification of outlier points can indicate abnor-

mal running conditions. Examples include detecting defects in plane engines or

flows in pipelines.

Another example includes filters and pattern discovery in images. In [76], the

authors identify and then filter out pixels determined as ”noise” in sonar images.

They are then able to improve the quality of the images by removing these noisy

points. Other image related work includes using clustering methods to determine

so called ”positive” and ”negative” samples. These identified points help to build

reliable models associated with a semantic concept to discover patterns in web

images [144].

Optimization and piece wise linear based classifiers 84

The use of clustering for the process of pre-classification is mainly based on

prototype learning methods [45]. For examples of clustering techniques refer to

([100], [96], [124], and [10]). Prototype learning methods are widely used as data

reduction schemes to train classification algorithms. They work by creating data

sample prototypes, see figure 3.1, that aid in identifying candidate points to be

removed from further training processes. This maybe one step in a multi-tiered

approach to remove points.

Examples of such schemes include [142] in which the notion of encounter zones

are introduced, see figure 3.2. Firstly creating prototypes from class centers, the

encounter zones are defined as areas that contain points from the different classes

or prototypes that overlap or are very close to one another. Also, [120] and

[37] propose a scheme that uses the Condensed Nearest Neighbor (CNN) rule

[62]. This scheme looks at finding reduced subsets of overlapping points, refer to

section 3.2.2.

These schemes are ideal for the use in optimization based classifiers as they

reduce the complexities associated with large data sets. A learning task can

be simplified by eliminating the points that can be more easily classified. [142]

shows that a reduction scheme used on a multi-optimization classifier reduces

computations/time when training hyperplanes on subsets of the data. They also

show that this helps to avoid overfitting of the data. Furthermore, [37] shows

that when applying a generalized version of CNN as a pre-process step for SVM

classifiers, the classifier produces better accuracy than without pre-classification.

[59] proposes a pre-classification scheme that takes points belonging to two

data types and assigns them to three data types. Their approach is based on the

separation law for convex sets by sets, where they attempt to separate the two

sets of classes with another set. The three sets are labelled as ’malignant’ (A),

’benign’ (B), the class sets, and ’indeterminate’ (S), the separating set. The data

points belonging to set A and B contain only easily discriminated points for each

Optimization and piece wise linear based classifiers 85

respective class. Whereas, set S contains indeterminate points from both sets A

and B, and is empty in the case of linear separability.

The authors work with the underlying assumption that the data is ”convex

separable”. Thus, the three regions A, B, and S containing data points from

their respective classes and the indeterminate region, form convex sets. Therefore,

there is no convex combination leading from set A to set B that does not enter

through set S.

Given that a separating set, set S is the natural generalization from a hy-

perplane, the authors are particularly interested in constructing a separating

polytope from set S, with a minimal volume. They use nonsmooth optimization

to minimize the number of indeterminate points within set S.

If set S separates the sets A and B then the three types can be specified as:

Type I :malignant(the set A \ S)

Type II :benign(the set B \ A)

Type III :indeterminate (the set S
⋂

(A
⋃

B)).

The classification algorithms presented in the next chapters, chapter 4, 5 and

6 of this thesis, build on the idea of separating a data set into specific regions.

These regions are useful for determining well classified data compared to data that

is much harder to separate in terms of convex sets. As with the work presented

in [59], nonsmooth optimization is applied to the indeterminate region, but in

our case to build a piecewise linear decision boundary.

However, unlike the work in [59], our aim is not to find accurate separation

regions, but instead to find a fast approximation of the three sets to minimize

the number of points involved in building the decision boundary.

Optimization and piece wise linear based classifiers 86

3.5 Incremental learning algorithms

Incremental learning algorithms are becoming increasingly popular in supervised

and unsupervised data classification (see, for example,[135, 90, 78, 125]). Gener-

ally, they build on accumulative knowledge only adding complexity when needed.

Intuitively this process would use less time and memory as it focuses its resources

only on the relevant information.

The concept of incrementally learning has been a field of study since the early

1970s [158, 104]. Much of this work was in observing the way humans learn. From

this research incremental machine learning models were derived.

Incremental learning can be seen through human learning. ”People learn

concept descriptions from facts and incrementally refine those descriptions when

new facts or observations become available.” [127]. The authors give two main

reasons to why humans need to learn incrementally.

1. Sequential flow of information. The authors state that a human typically

receives information in steps and that they must learn to deal with a situ-

ation before all information becomes available. As new information comes

in, there is no time to reformulate all currently known information.

2. Limited memory and processing power. People are unable to store and

access all information that they are exposed to. People tend to store the

most prominent facts and generalizations and progressively modify these

generalizations as more information is made available.

The authors can see the parallel between human learning and machine learn-

ing. Both receive information sequentially and both have to deal with it in such

a way that the most important factors are stored, and the essential concepts are

modified incrementally as new information arrives.

Furthermore, due to the scale of the data, limited memory and processing

power is also an important factor. Therefore, any algorithm must be efficient

Optimization and piece wise linear based classifiers 87

in being able to extract and build a model that can encapsulate the important

information. Intuitively, an incremental learner would be ideal as it only adds or

modifies to a model or rule as new, but different information arrives.

Building on this premise, the authors successfully build an automated in-

cremental learning model which modifies concept descriptions [127], using only

examples. They show that the incremental learning model can accommodate new

information without forgetting previously seen facts. Their results show that the

incrementally learning model significantly outperformed the single step learners,

both in time and quality of the results.

Around the same time, work was done in defining a framework for incremental

learning models. [137] outlines certain ”learning from experience” components

essential for an incremental learning model. With other authors including [92], a

broad outline of the basic components needed to build an incremental machine

learning algorithm was outlined. These are as follows,

1. Clustering the instances into known classes or groups. i.e. define a mapping

between the observation and a class.

2. Initializing the groups, using descriptors or functional assignments to dis-

tinguish between groups in the model.

3. Project the matching description of new observation against subsequent

collective changes in the model. Change the state of the model to reflect

the update.

4. Evaluate the effectiveness of the function or model with the addition of the

new observation.

5. Refine the model to improve the effectiveness as measured by the evaluation.

6. Aggregate the changes broadly across the model.

7. Store if the update successfully improves the model.

Optimization and piece wise linear based classifiers 88

The above components allow for an incremental learning algorithm to take

predefined groups of observations and convert them into a form recognizable to

the data structures used by the learning algorithm. From there a sequential

process that utilises the knowledge found in the previously given observations are

added to a model or rule that allows for the algorithm to move closer to a global

solution.

Therefore, the search space and starting point in step n is determined by the

solution found in the previous step. Furthermore, at each iteration the algorithm

moves closer to the global solution terminating when a criteria is met. This is

usually a preset tolerance given an error margin or a predefined number of steps.

The evaluation, refinement and aggregation steps are all used to ensure that

the algorithm sequentially builds an appropriate model or rule. This is based

on a criteria or form of optimization that leads to a solution that solves the

objective. The benefits, therefore, include less use of resources and complex tasks

are handled in parts by sequentially building on more simple tasks.

For large scale problems, data points that do not contribute to the solution

will be discounted and need not be seen again. Whereas only the points that are

interesting to the learning algorithm and contribute to the solution are added to

the model.

Optimization based classifiers are generally more time consuming and such a

strategy is ideal. A single optimization piecewise linear classifier can build on its

complexity as it constructs a decision boundary between classes. It would only

increase its complexity if a separation criteria was not met.

In terms of refinement and aggregation, the classification algorithm would

start with a linear separation then move to polyhedral separation and finally, if

needed, using max-min separation. At each step, evaluating the rule to determine

if the separation for the decision boundary meets the criteria. If so, then no need

to increase the complexity any further.

Optimization and piece wise linear based classifiers 89

3.6 Conclusions

In this chapter we reviewed a number of piecewise linear classification algorithms

and found that most of the algorithms are suitable for real time classification.

However, a number of the multiple optimization classification algorithms suffered

from long training times. Some of the schemes used to improve on these training

times led to a poor approximation of the decision boundaries. Thus making these

classification techniques unsuitable for use on large scale data.

The SVM family of classifiers though very successful and well used, were

shown to be problematic when needing to choose an appropriate function kernel

and set of parameters for a given classification problem. Training times would

be affected adversely, if time was needed in finding the appropriate parameters.

Also, these classifiers maybe unsuitable for real time applications that can not

use parameters.

A review of max-min separation and use as a classification method was pre-

sented in this chapter. As shown in this review, in theory, the separation is ideal

for such applications involving nonlinear set separation for use in real time clas-

sification. However, choosing the least number of hyperplanes for set separation

and avoiding overfitting of the data can be a problem.

Furthermore, this chapter presented a comprehensive review on incremen-

tal algorithms, highlighting the theoretical and practical advantages for use in

large scale applications that can be solved sequentially. Also, a review on pre-

classification schemes were presented. In this review, a number of examples

showed the benefits of pre-classifying data into certain groups before other tech-

niques are applied.

The developed classification algorithms presented in chapters 4, 5 and 6 builds

on max- min separation. These classifiers address the problems of finding the

necessary number of hyperplanes, overfitting and dealing with large scale data.

This is done by using an incremental approach and pre- classifying points before

Optimization and piece wise linear based classifiers 90

the training. The next three chapters develop three real time classifiers for the

use in large scale data applications.

Chapter 4

Classification through

incremental max-min separability

4.1 Introduction

The first piecewise linear classification technique proposed uses a new incremental

algorithm to find piecewise linear boundaries between pattern classes. In this algo-

rithm piecewise linear boundaries are built by gradually adding new hyperplanes

until separation is obtained, with respect to some predefined tolerance.

Incremental learning algorithms are becoming increasingly popular in super-

vised and unsupervised data classification (see, for example,[78, 90, 125, 135]).

Generally, they build on accumulative knowledge only adding complexity when

needed, refer to section 3.5.

This type of approach breaks up the data set into observations that can be

classified using simple separators, and observations that require more elaborate

ones. This allows one to simplify the learning task by eliminating the points

that can be more easily classified. Furthermore, at each iteration, information

gathered during prior iterations can be exploited.

In the case of piecewise linear classifiers, this approach allows for the compu-

91

Classification through incremental max-min separability 92

tation of as few hyperplanes as necessary to separate the sets, without any prior

information. Additionally, this approach allows for the algorithm to reach a near

global solution of the classification error function. At the same time, by using

the piecewise linear function obtained at a given iteration as a starting point

for the next iteration. Thus it reduces computational effort and avoids possible

overfitting.

In this chapter we present the incremental algorithm and explain the classi-

fication rule. We discuss the implementation of the algorithm and how training

is performed. We apply the proposed algorithm to solve supervised data clas-

sification problems using 15 publicly available data sets. We report the results

of numerical experiments and compare the proposed classifier with 9 other main-

stream classifiers found within the WEKA data mining suite. Finally we conclude

on our results.

4.2 Incremental algorithm

In this section we describe an incremental algorithm for finding piecewise linear

boundaries between finite sets. We assume that we are given a data set A with q

classes: A1, . . . , Aq.

At each iteration of the algorithm we solve problem (3.17) with a preset num-

ber of hyperplanes to find a piecewise linear boundary between a given class and

the rest of the data set. This is done for all classes using the one vs all approach.

After computing piecewise linear boundaries for all classes we define data points

which can be easily classified using the piecewise linear boundaries from this

iteration. Then all these points are removed before the next iteration.

The algorithm stops when all remaining points, if any, belong to only one set.

i.e. there are no sets left to separate. For each set, the previous iteration’s clas-

sification accuracy and the objective function value are compared to the current

Classification through incremental max-min separability 93

iteration’s values. The difference in these values are used as the stopping criterion

for the final piecewise linear boundary between this set and the rest of the data

set.

For the sake of simplicity we split the incremental algorithm into two parts:

Algorithm 1 (outer) and Algorithm 2 (inner). Algorithm 1 contains the main steps

of the method. These steps are the initialization of starting points, the number

of hyperplanes and the update of the set of undetermined points. Algorithm

2 is called at each iteration of Algorithm 1. It computes the piecewise linear

boundaries for a given set; refines the set of undetermined points; updates starting

points and the number of hyperplanes for the next iteration of Algorithm 1.

4.2.1 Algorithm

First, we describe the outer algorithm. Let ε0 > 0 be a tolerance.

Algorithm 1. An incremental algorithm

1: (Initialization) Set A1
u = Au, Q

1
u = ∅, u = 1, . . . , q. Select any starting point

(x, y) such that x ∈ IRn, y ∈ IR1 and set

X1u = x, Y1u = y, ∀ u = 1, . . . , q.

Set

C1 = {1, . . . , q}, I1u = {1}, J1u
1 = {1}, r1u = 1, s11u = 1, u = 1, . . . , q,

the number of hyperplanes for class u: l1u = 1 and iteration counter k = 1.

2: (Stopping criterion) If |Ck| ≤ 1 then stop. Otherwise go to Step 3.

3: (Computation of piecewise linear functions) For each u ∈ Ck apply Algo-

rithm 2. This algorithm generates a piecewise linear boundary (Xku∗, Yku∗),

the set of indices Ik+1,u, J
k+1,u
i , i ∈ Ik+1,u, a number of hyperplanes lk+1,u,

Classification through incremental max-min separability 94

a starting point (Xk+1,u, Yk+1,u) ∈ IR(n+1)lk+1,u for class u, the set Ak+1
u con-

taining “undetermined” points and the set Qk
u of easily separated points from

class u.

4: (Refinement of set Ck) Refine the set Ck as follows:

Ck+1 = {u ∈ Ck : |Ak+1
u | > ε0|Au|}.

Set k = k + 1 and go to Step 2.

We will now present the inner algorithm for separating class Au, u ∈ {1, . . . , q}

from the rest of the data set. At each iteration k of Algorithm 1 we get the subset

Ak
u ⊆ Au of the set u ∈ Ck which contains points from this class which are not

easily separated using piecewise linear functions from previous iterations. Let

Q
k

u =
⋃

j=1,...,k

Qj
u

be a set of all points removed from the set Au during the first k > 0 iterations.

We denote

Dk =
⋃

t=1,...,q

(

At \Q
k

t

)

, Ak
u =

⋃

t=1,...,q,t 6=u

(

At \Q
k

t

)

.

Algorithm 2 finds a piecewise linear function separating the sets Ak
u and Ak

u.

Let ε1 > 0, ε2 > 0, ε3 > 0 be given tolerances and σ ≥ 1 be a given number.

Algorithm 2. Computation of piecewise linear functions

Input Starting points (Xku, Yku) ∈ IR(n+1)lku, the set of indices Iku, J
ku
i , i ∈

Iku and the number of hyperplanes lku at iteration k of Algorithm 1.

Output A piecewise linear boundary (Xku∗, Yku∗) ∈ IR(n+1)lku, the set of in-

dices Ik+1,u, J
k+1,u
i , i ∈ Ik+1,u, a number of hyperplanes lk+1,u, a starting

point (Xk+1,u, Yk+1,u) ∈ IR(n+1)lk+1,u for class u, a set of undetermined points

Classification through incremental max-min separability 95

Ak+1
u and a set Qk+1

u of easily separated points from class u.

1: (Finding a piecewise linear function) Solve problem (3.17) over the set Dk

starting from the point (Xku, Yku) ∈ IR(n+1)lku. Let (Xku∗, Yku∗) be the solution

to this problem, f ∗
ku be the corresponding objective function value, and f ∗

1,ku

and f ∗
2,ku be values of functions f1 and f2, respectively. Let Eku be the error

rate for separating the sets Ak
u and Au

k at iteration k over the set A, that is

Eku =
|{a ∈ Ak

u : ϕk
u(a) > 0} ∪ {b ∈ Ak

u : ϕk
u(b) < 0}|

|A|
,

where

ϕk
u(a) = max

i∈Iku
min
j∈Jku

i

(

〈xij∗, a〉 − yij∗
)

.

2: (The first stopping criterion) If max{f ∗
1,ku, f

∗
2,ku} ≤ ε1 then set Ak+1

u =

∅, Qk+1
u = Au \Q

k

u and stop. (Xku∗, Yku∗) is the piecewise linear boundary for

set Au.

3: (The second stopping criterion) If k ≥ 2 and f ∗
k−1,u − f ∗

ku ≤ ε2 then set

Ak+1
u = ∅, Qk+1

u = ∅ and stop. (Xku∗, Yku∗) where Xku∗ = Xk−1,u∗, Yku∗ =

Yk−1,u∗ is the piecewise linear boundary for set Au.

4: (The third stopping criterion) If Eku ≤ ε3 then set Ak+1
u = ∅, Qk+1

u = Au\Q
k

u

and stop. (Xku∗, Yku∗) is the piecewise linear boundary for set Au.

5: (Refinement of sets of undetermined points) Compute

fku,min = min
a∈Ak

u

ϕk
u(a)

and the following set of easily classified points by function ϕk
u:

Qk+1
u =

{

a ∈ Ak
u : ϕk

u(a) < σfku,min

}

.

Classification through incremental max-min separability 96

Refine the set of undetermined points from the set Au as follows:

Ak+1
u = Ak

u \Q
k+1
u ,

6: (Adding new hyperplanes)

1. If f ∗
1,ku > ε1 then set

sik+1,u = siku + 1, Jk+1,u
i = Jku

i ∪ {sik+1,u}

for all i ∈ Iku. Set

xij = xi,j−1,∗, yij = yi,j−1,∗, i ∈ Iku, j = sik+1,u.

2. If f ∗
2,ku > ε1 then set

rk+1,u = rku + 1, Ik+1,u = Iku ∪ {rk+1,u}, J
k+1,u
rk+1,u

= Jku
rku
.

Set

xij = xi−1,j,∗, yij = yi−1,j,∗, i = rk+1,u, j ∈ Jku
rku
.

7: (New starting point) Set

Xk+1,u = (Xku∗, xij , i ∈ Ik+1,u, j ∈ Jk+1,u
i),

Yk+1,u = (Yku∗, yij , i ∈ Ik+1,u, j ∈ Jk+1,u
i),

lk+1,u =
∑

i∈Ik+1,u

|Jk+1,u
i |.

Classification through incremental max-min separability 97

4.2.2 Explanations to the algorithm

The following explains Algorithm 1 in more details. In Step 1 we initialize the

starting points, the number of hyperplanes for each class and the collection C1 of

sets to be separated. Step 2 is the stopping criterion verifying that the collection

Ck contains at least two sets to separate. In the third step Algorithm 2 is called

and returns piecewise linear boundaries for each set, the subsets of points not yet

separated by these piecewise linear boundaries and updated starting points for

the next iteration of Algorithm 1. In Step 4 we refine the set Ck by removing

sets fully separated using piecewise linear boundaries from previous and current

iterations.

The following explanations clarify Algorithm 2. In Step 1 we compute a

piecewise linear function with a preselected number of hyperplanes using the

starting point provided by Algorithm 1. It also computes the separation error

rate between a given class u and the rest of the data set. The algorithm contains

three stopping criteria which are given in Steps 2, 3 and 4.

• The algorithm terminates if both values f ∗
1,ku, f

∗
2,ku for class u are less than

a given tolerance ε1 > 0. The last piecewise linear function for this class

is accepted as a boundary between this class and the rest of the data set

(Step 2).

• If k ≥ 2 and the difference between values of the error function (for class

u) in two successive iterations is less than a given tolerance ε2 > 0 then

the algorithm terminates. The piecewise linear function from the previous

iteration is accepted as the boundary between this class and the rest of the

data set (Step 3).

• Finally, if the error rate is less than a threshold ε3 > 0 then the algorithm

terminates and the piecewise linear function from the last iteration is ac-

cepted as the boundary between this class and the rest of the data set (Step

Classification through incremental max-min separability 98

4).

If none of these stopping criteria is met, then in Step 5 we refine the set of

undetermined points by removing points easily separated using the piecewise

linear functions from the current iteration. In Step 6, depending on the values of

the error function on both sets, we may add new hyperplanes. Finally in Step 7

we update the starting point and the number of hyperplanes.

As an illustration Figure 4.1 shows the result of the first iteration of Algorithm

1 for a data set with three classes A1, A2 and A3. At this iteration we compute

one hyperplane for each set. The data set in its original form is illustrated in

Figure 4.1(a). We select any starting point in Step 1 of Algorithm 1 and then call

Algorithm 2 in Step 3. Algorithm 2 computes one linear function for each class

using one vs all strategy. A hyperplane given in Figure 4.1(b) presents the linear

function separating the class A1 from the rest of the data set with the minimum

error function value. This hyperplane is computed in Step 1 of Algorithm 2.

Then in Step 5 of Algorithm 2 we compute a hyperplane (with dashed lines in

Figure 4.1(c), here σ = 1) by translating the best hyperplane so that beyond

this dashed line only points from the class A1 lie. We remove all points from the

class A1 which lie beyond this line before the next iteration (Step 5 of Algorithm

2) and do not consider them in the following iterations. These data points can

be easily classified using linear separation. We repeat the same computation for

other classes A2 and A3 and remove all data points which can be classified using

linear functions (see Figure 4.1(d)). Then we compute all data points which lie

in the grey area in Figure 4.1(e). These points cannot be determined by linear

separators and we use only these points to compute piecewise linear boundaries

in the next iteration of Algorithm 1.

Classification through incremental max-min separability 99

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc bc

bc

bc
bc

bcbc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

A1

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×
×

×

×

×

×

×
×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

××

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

××

×
×

×

×

×

×

×

×

×

×

× ×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

× ×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

××

×

×

×
×

×

×

×

×

×

× ×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×× ×

×

×

×

× ×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

× ×

×

×

×

×

×
×

×

×

××

×

×

× ××

×

×

×
×

×

×

×
×

×

×

××

×

×

×× ×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

× A2

+ +

+

+
+

+

+
++

+

+

+

+

+

+

+

++

+

+
+

+
+

+
+

++
+

+ +

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+ + +

+

+

+

+

+

+

+

+ +

+

+

++

+

+

+

+

+

+

+ ++

+

+
+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++ +
+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+ +

++

+
+

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
++

A3

(a) Initial data set

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc A1

×

×

×

×

×

××
×

×

×

×

×

×

×
×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

× ×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×
×

×

×

×

××

×

×
×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×
×

×

×

×
×

×

×
×

×

×

×

×

×

×
×

× ×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

× ×

×

×

××

×

×

×

×

×

×

×
×

×
×

×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

× ×

×

×

×
××

×
×

×

×

×

×

×
××

×

×
×

×

×

×

×

×

×

×

×

×

×××

×

×

×

×
××

×

×

×

×

×

×

×

×
×

×

×

× ×

×

×

×

×

×
×

×

×

×

××

×
×

×

×

×

×

××

×

×

×

× ×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×
×

×

×

A2

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+
+

+ +

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

++

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

+

+

+
+

+

+

+
+

+

+

+
+

+ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+ +

+

+

+

+

A3

(b) The first set is sepa-
rated using a linear func-
tion

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
A1

×

×

×

×
×

×

×

×

×

×

×

× ×

×

× ×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

× ×

× ×

××

×

×

×

×

×

×
×

×

×

×

××

×
×

×

×

×

×

×

×
×

×

×

×
×

××

×

×
×

×

×

×
×

× ×

×
×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

××

×

×

×

×

×

×

××

×

×

×

×

×

××

×

×

×

×

×
×

×

×

×
×

×

××

×

×
××

×

×

×

×
×

×

×

×
×

×

×

×
××

×

×

×

×

×

×

×

×
×

×
×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×× ×

×

××

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

× ×

×

×

×

×

×

×

× ×

×××

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×
×

×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

××

×

×

×
×

×

×

×

×

× ×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

××

×

×
×

×

×

× ×

×

×

×

×

×

×

×

×
×

×

×

×
A2

+

+

+
+

+ +

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +
+

+

++

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+ ++

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ +
+

+

+

+

+

+

+
+

+
+

+

+

+ +

+ +

+

+

+ + +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

++

+

+
+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+
+

+

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

A3

(c) Then the linear sepa-
rator is translated so that
only points from A1 lie on
one side

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc bc

bc

bcbc

bc

bc

bcbc
bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

A1

×

×
×

×

×

×

×

×

×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×
×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

××

×

×

×
×

× ×

× ×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×
×

×
×

×

×
×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

××
×

×
× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

× ×

×

×

××

×
×

××

×
×

×

×
×

×

×

×

×

×

×
×

×

×

×

××

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

×

×

×

×

× ×

×

×
×

×

×
× ×

×

×

×

×

×
×

×

×

×

×

× ×
×

×

××

×

×

×

× ×

×

×

××

×

×
×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×
A2

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+ +

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+ +

+ +

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+
+
++

+

++

+

+
+

+

+ +
+

+

+

+

+

+
+

+

+

+

+

+

+ +

++
+

+

+

+

+

+

+
++

+

+

+

+
+ +

+
+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+ +

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

A3

(d) The sets A2 and A3 are
separated in a similar fash-
ion

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bcbc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

A1

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

× ×

××

×

×

×

×

×× × ×
×

×

× ×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

××
×

×

×
×

×

×

×
×

× ×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

××
×

×

×

×

× ×
×

×

×

×

×

×

××

×

×

×

× ×

×

×
×

×

×

×

×

×

×

×
×

×

×
×

××

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

××
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
××

×

×

×

×

×

×

×

×
×

×
×

××

×

×

××

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

× ×

×

×

×

×

×

× ×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

×

×

A2

+

+

+

+

+

+
+

++

+

+

+
+

+

++

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+ +

++ +

+

+
+

+
+

+ ++
+

+
+

+

+

+

+

+

+

+

++

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+

+

++

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

++
+

+

+

+
+

+

+

+

+

+ +
+

++

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+ +

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

++
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+ +

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

A3

(e) Then only points not
yet separated (the grey
area) are taken into ac-
count for the next itera-
tion

Figure 4.1: The first iteration of Algorithm 1 for three sets A1, A2 and A3.

4.3 Classification rules

At each iteration k, k ≥ 1, Algorithm 1 generates a piecewise linear boundary

(Xku, Yku), the set Ak+1
u of “undetermined” points and the set Qk+1

u of easily

separated points. After the algorithm stops all final piecewise linear boundaries

ϕ1, . . . , ϕq have been obtained.

If the new point belongs to a set Qk
u \
⋃

{Qt
k, t = 1, . . . , q, t 6= u} then it is

classified in set u. Otherwise it is associated with one function ϕu per class. In

this case a new point v is attributed a set of function values {ϕ1(v), . . . , ϕq(v)}.

We classify this point to the class associated with the minimum function value:

i = argmin{ϕ1(v), . . . , ϕu(v)}.

Figure 4.2 shows this classification rule in the case of the separation between

three sets: the easily separated areas at the first iteration are unshaded. The

light shaded area represents the points easily separated using the piecewise linear

function from the second iteration of Algorithm 1, and the dark shaded area

Classification through incremental max-min separability 100

represents the points separated using the final piecewise linear separating function

returned by Algorithm 1.

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc
bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bcbc

bc bcbc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

A1

×

×

×

×

×

×

×

×

×
×

×

×

×
××

×

×
×

×

×

×

×

×

× ×

×

×

× ×

×

×

×

×
×

×

×

×
×

××

×

××

× ×

×

×

×

×

×
×

× ×

××

×

×

×

×

×

×

×

×

×

×
× ×

××

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

× ×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

××
×

×

×

×

×

×

×
×

×
×× ×

×

×

×

×

×

×

×
××

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

× ×

××

×

×

×

×

×

×

×

×

×

× ×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

× ×

×
×

×

×

×

××

×

×

×
×

× ××

×

×
×

×
× ×

×

×

×

×

×
×

××

×
×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

× × ×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×

××

×

×

×

×

×

×

×

×

×

A2

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+
+

+

++

+

+

+

+

+
+

+

+ +

+

+

+

+

+
+

+

+

+

+

+

+

+ ++

+

++ +

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+
+ +

+
+

+

++ +

+

++

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+
++

+

+
+

+

+

+
+

+

+ +

++

+

+

+

+ +

+

+

+

+

++ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+
++

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

++

+

++

+
+ +

+

+
++

+

+

+

+ +

+

+

+
+

+

+

+

+

++
+

+

+

+

+

+

+

+
++

++

++

+

+

+

+

+ +

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

++

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

++

+

+
+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

A3

Figure 4.2: Classification rule between three sets A1, A2 and A3 using Algorithm
1

4.4 Implementation of the algorithm

In this section we describe conditions for the implementation of the classification

algorithm.

In Algorithm 1 we choose ε0 = 0.01 for the value of the tolerance ε0.

The following conditions have been chosen for the implementation of Algo-

rithm 2.

1. The values of tolerances ε1 > 0, ε2 > 0 and ε3 > 0 are:

ε1 = 0.005, ε2 = f ∗
1 /100, ε3 = 0.001,

where f ∗
1 is the optimal value of the objective function for linear separation.

The number σ = 1.25.

2. In the proposed algorithm we restrict the number of hyperplanes to 10.

3. In Step 1 of Algorithm 2 we solve minimization problem (3.17). We use the

discrete gradient method of [7, 8] as modified in [11].

Classification through incremental max-min separability 101

In all data sets we apply our algorithm on a training set and test our clas-

sification rules on a test set. In our experiments we use data sets with known

training and test sets.

We implemented the algorithm in Fortran 95 and compiled it using the La-

hey Fortran compiler on an Intel Pentium IV 1.83GHz CPU with 1GB of RAM

running Windows XP.

4.5 Numerical Experiments

We tested the proposed algorithm (Algorithm CIMMS - Classification through

incremental max-min separability) on real world data sets readily available from

the UCI machine learning repository [6]. The data sets were selected as follows:

they have either continuous or integer attributes and no missing values. Table 4.1

contains a brief description of the characteristics of the data sets. The number of

attributes in these tables also includes the class attribute.

In our experiments we used some classifiers from WEKA (Waikato Environ-

ment for Knowledge Analysis) for comparison.

We selected classifiers with fast testing time and/or based on separating func-

tions: Naive Bayes (with kernel), Logistic Regression based classifier Logistic,

Multi-Layer Perceptron (MLP), Linear LibSVM (LIBSVM (LIN)), SMO with

normalized polynomial kernel (SMO (NPOL)), SMO (PUK), decision tree classi-

fier J48 (which is an implementation of the C4.5 algorithm) and the rule based

classifier PART. In addition we tested the classifier based on polyhedral separabil-

ity [5]. Since the number of hyperplanes in polyhedral separability is not known

a priori, we tested this algorithm with 2 to 5 hyperplanes and report only the

best results on test sets with the corresponding CPU time.

We apply all algorithms with default values of parameters. For most classifiers

it is possible, but not always easy, to find better parameters for each data set

Classification through incremental max-min separability 102

Table 4.1: Brief description of data sets

Data sets (train,test) No. of No. of
attributes classes

Abalone (AB) (3133,1044) 9 3
DNA (2000, 1186) 180 3

Image segmentation (SEG) (1848,462) 20 7
Landsat satellite image (LSI) (4435,2000) 37 6
Letter recognition (LET) (15000,5000) 17 26
Optical recognition of

handwritten digits (OD) (3823, 1797) 65 10
Pen-based recognition of
handwritten digits (PD) (7494,3498) 17 10
Phoneme CR (PHON) (4322, 1082) 6 2
Shuttle control (SH) (43500,14500) 10 7
Texture CR (TEXT) (4400, 1100) 41 11

Vehicle (VEH) (679,167) 19 4
Yeast (YEAST) (1191, 293) 9 10
Isolet (ISO) (6238, 1559) 618 26

Page blocks (PB) (4000,1473) 11 5
Spambase (SB) (3682,919) 58 2

which will produce a better accuracy than the one we report. We put limits of

3 hours (for training and testing) and 1GB of RAM. A dash line in the tables

shows that the corresponding algorithm exceeded one of these limits.

Results of numerical experiments are presented in Tables 4.2-4.4. In these

tables we present accuracy for test sets.

Table 4.2: Results of numerical experiments: test set accuracy.
Algorithm AB DNA SEG LSI LET
NB(kernel) 57.85 93.34 85.71 82.10 74.12
Logistic 64.27 88.36 96.75 83.75 77.40
MLP 63.51 93.68 97.40 88.50 83.20

LIBSVM (LIN) 60.73 93.09 94.37 85.05 82.40
SMO (NPOL) 60.25 95.36 94.81 79.60 82.34
SMO (PUK) 64.18 57.93 97.19 91.45 -

J48 60.15 92.50 96.97 85.35 87.70
PART 57.95 91.06 96.75 85.25 87.32

Polyhedral 65.23 94.10 96.10 87.00 88.68
CIMMS 65.80 93.42 97.19 88.15 91.90

Classification through incremental max-min separability 103

Table 4.3: Results of numerical experiments: test set accuracy (cont).
Algorithm OD PD PHON SH TEXT
NB(kernel) 90.32 84.13 76.53 98.32 81.00
Logistic 92.21 92.85 74.58 96.83 99.64
MLP 96.55 89.85 81.52 99.75 99.91

LIBSVM (LIN) 96.55 95.00 77.54 - 99.18
SMO (NPOL) 96.66 96.86 78.74 96.81 97.27
SMO (PUK) 96.61 97.88 83.27 99.50 99.55

J48 85.75 92.05 85.67 99.95 93.91
PART 89.54 93.65 82.72 99.98 93.82

Polyhedral 96.05 97.03 79.02 99.29 99.91
CIMMS 94.27 96.63 81.05 99.84 99.82

Table 4.4: Results of numerical experiments: test set accuracy (cont).
Algorithm VEH YEAST ISO PB SB
NB(kernel) 59.88 57.34 - 88.39 76.17
Logistic 77.84 58.02 - 91.72 92.06
MLP 82.04 56.66 - 92.80 92.06

LIBSVM (LIN) 71.86 54.95 96.02 87.03 90.97
SMO (NPOL) 72.46 54.95 - 89.48 92.60
SMO (PUK) 74.25 60.75 - 88.53 93.04

J48 73.05 56.31 83.45 93.55 92.93
PART 74.85 54.61 82.81 92.46 91.40

Polyhedral 86.23 56.66 - 87.98 92.71
CIMMS 82.63 53.24 95.19 87.10 93.80

Based on these results we can draw the following conclusions:

• The proposed algorithm obtained the best or close to the best accuracy

on 7 data sets: Abalone, Image segmentation, Letter recognition, Shuttle

control, Texture CR, Spambase and Isolet.

• On 5 data sets (DNA, Landsat satellite image, Pen-based recognition of

handwritten digits, Phoneme CR and Vehicle) the proposed algorithm is

among the classifiers with the best accuracy.

• On the other 3 data sets (Page blocks, Optical Recognition of handwritten

digits and Yeast) the algorithm did not perform well compared with most

of the other classifiers.

Classification through incremental max-min separability 104

In Figure 4.5 we present pairwise comparison of the proposed algorithm with

existing ones graphically. For each algorithm we calculated the following value:

R =
Acc

Acc(CIMMS)
− 1.

Here Acc is a test set accuracy obtained by an algorithm and Acc(CIMMS) is a

test set accuracy obtained by the proposed algorithm. The values R are displayed

for all the data sets, in the same order they are in Table 4.1. The horizontal line

represents a threshold: if the curves lie below this line, the proposed algorithm

outperformed the existing algorithm for this data set. These graphs demonstrate

that on most of data sets the proposed classifier outperforms other classifiers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

NB(kernel)
Better

Worse

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Logistic

1 2 3 4 5 6 7 8 9 10 11 12 13 14
MLP

1 2 3 4 5 6 7 8 9 10 11 12 13 14
LIBSVM (LIN)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
SMO (NPOL)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
SMO (PUK)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
J48

1 2 3 4 5 6 7 8 9 10 11 12 13 14
PART

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Polyhedral

Table 4.5 presents training time required by two classifiers: Polyhedral and

CIMMS. We do not include training time of other classifiers because they were

Classification through incremental max-min separability 105

implemented on different platform.

Table 4.5: Results of numerical experiments: CPU time for Polyhedral and
CIMMS algorithms.

Data set Polyhedral CIMMS Data set Polyhedral CIMMS
AB 12.83 27.22 SH 1247.02 782.47
DNA 90.23 32.06 TEXT 128.41 47.28
SEG 39.97 17.20 VEH 58.09 17.25
LSI 1231.13 523.28 YEAST 20.19 73.67
LET 8941.81 9941.34 ISO - 3927.36
OD 524.66 81.88 PB 51.48 27.63
PD 729.92 203.02 SB 228.75 295.23

PHON 0.89 34.75

In comparison with most classifiers, and on most data sets, the proposed

algorithm requires a longer training time. However, the comparisons with the

Polyhedral classifier show that on some data sets the proposed classifier requires

significantly less training time.

Overall, we can observe that the proposed classifier achieves consistently good

classification accuracy on the test set. CPU time is reasonable, the testing time

and memory usage is very low.

4.6 Conclusion

In this chapter we have developed an incremental algorithm for the computation

of piecewise linear boundaries of finite point sets. At each iteration of this al-

gorithm a new piecewise linear boundary is constructed for each class, using a

starting point constructed from the boundaries obtained at previous iterations.

The new boundaries are used to eliminate points that they can easily separate.

Other “undetermined” points are identified for separation at further iterations.

This allows us to significantly reduce the computational effort, while still reaching

a near global minimizer of the classification error function. This piecewise linear

boundary separates the sets with as few hyperplanes as needed with respect to a

given tolerance.

Classification through incremental max-min separability 106

We tested the new algorithm on 15 real world data sets. Computational

results demonstrate that the new classifier achieves good classification accuracy

while requiring reasonable training time. This classifier can be used for real-time

classification and has a low memory requirement, so it can be used on many

portable devices.

Chapter 5

A piecewise linear classifier based

on polyhedral conic and max-min

separabilities

5.1 Introduction

The previous piecewise linear classifier proposed in chapter 4 presents an incre-

mental algorithm. As we recall, that algorithm finds piecewise linear boundaries

between pattern classes by gradually adding new hyperplanes until a separation

of classes is obtained with respect to some predefined tolerance.

The aim of this piecewise linear classifier, as also in chapter 4 is to reduce

computational effort and improve the separation quality. In the first stage of

this algorithm polyhedral conic functions, introduced in [57], are used to identify

data points which are on or close to the boundary between classes. In the second

stage max-min separability is applied to find a piecewise linear boundary using

only those data points. This boundary is constructed incrementally starting with

linear separation and adding hyperplanes as needed.

Furthermore, as shown in the previous chapter the advantage of an incre-

107

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 108

mental approach is that at each iteration of the process we refine our scope by

removing the points which are furthest from the piecewise linear boundary. This

in turn reduces the complexity of the error function and thus allows for better

separation accuracy and less time for the underlying optimization algorithm to

converge to a solution.

In this chapter we present a classifier based on polyhedral conic functions.

Firstly, we give a brief description of polyhedral conic functions. Then, using

polyhedral conic functions and the incremental algorithm presented in section

4.2 we solve the max-min separability problem.

We report results of numerical experiments using 12 real-world data sets. We

also provide the comparison of the new piecewise linear classifier with 9 other

classifiers from the WEKA suite. We finally conclude the chapter presenting our

results.

5.2 Polyhedral conic sets and max-min separa-

bility

As previously mentioned, the algorithm proposed in this chapter consists of two

main stages. In the first stage we use polyhedral conic functions to identify points

which lie on or close to the boundary between pattern classes. These functions

are formed as an augmented l1-norm with a linear part added. A graph of this

type of function is a polyhedral cone with a level set containing an intersection of

at most 2n half spaces. Due to this property we formulate a linear programming

problem to effectively and easily identify the boundary points between classes. A

more detailed description of polyhedral conic functions and max-min separability

can be found in [57] and [9, 11], respectively. In this section we briefly describe

polyhedral conic functions.

Let A and B be given disjoint sets in IRn containing m and p points, respec-

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 109

tively:

A = {a1, . . . , am}, ai ∈ R
n, i = 1, . . . ,m,

B = {b1, . . . , bp}, bj ∈ R
n, j = 1, . . . , p.

5.2.1 Separation via polyhedral conic functions

Polyhedral conic functions (PCFs) have recently been proposed to construct a

separation function for the sets A and B [57]. Definition 2 and Lemma 1 quoted

below are given in [57].

Definition 2. A function g : Rn → R is called polyhedral conic if its graph is a

cone and all its level sets

S(α) = {x ∈ R
n : g(x) ≤ α } ,

for α ∈ R, are polyhedrons.

Given w, c ∈ R
n, ξ, γ ∈ R a polyhedral conic function g(w,ξ,γ,c): R

n → R is

defined as follows:

g(w,ξ,γ,c)(x) = 〈w, (x− c)〉+ ξ ‖x− c‖1 − γ, (5.1)

where ‖x‖1 = |x1| + · · · + |xn| is an l1-norm of the vector x ∈ R
n and 〈·, ·〉 is an

inner product in R
n.

Lemma 1. A graph of the function g(w,ξ,γ,c) defined in equation (5.1) is a polyhe-

dral cone with a vertex at (c,−γ) ∈ R
n ×R. We call this cone a polyhedral conic

set and c its center.

The sets A and B are polyhedral conic separable if there exist a finite number

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 110

of PCFs gl = g(wl,ξl,γl,cl), l = 1, . . . , L such that

min
l=1,...,L

gl(a) ≤ 0 ∀ a ∈ A

and

min
l=1,...,L

gl(b) > 0 ∀ b ∈ B.

An error function can be formulated as follows:

Φ(w1, c1, ξ1, γ1, . . . , wL, cL, ξL, γL) =

1

m

∑

a∈A

max

{

0, min
l=1,...,L

gl(a)

}

+

1

p

∑

b∈B

max

{

0,− min
l=1,...,L

gl(b)

}

. (5.2)

Then the problem of finding polyhedral conic functions separating sets A and B

is reduced to the following mathematical programming problem:

minimize Φ(w1, c1, ξ1, γ1, . . . , wL, cL, ξL, γL) (5.3)

subject to wi, ci ∈ R
n, ξi, γi ∈ R, i = 1, . . . , L.

An algorithm generating a polyhedral conic separating function, therefore

called a PCF algorithm, is developed in [57].

The way a PCF can separate two sets A and B in R
2 is shown in Figure 5.1.

In this figure three different situations are shown according to the level sets of the

corresponding functions. For each situation point c is placed at the origin (see

(5.1)). Even though A and B are linearly inseparable, the constructed polyhedral

conic functions can completely separate these sets. In (a), the level set of the

obtained function is the intersection of three halfspaces: x1 ≥ −1, x2 ≤ 1 and

−x1 + x2 ≤ 1. In (b) and (c), new points (1,−6) and (7,−4), respectively, are

added to their set B. Figure 5.2 shows how a PCF can be used to approximate

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 111

classes in three class data set.

In the next section we combine the incremental algorithm presented in section

4.2 with PCF separability to propose a new classification algorithm.

Figure 5.3 shows the result of the first iteration of the algorithm for three

classes A1, A2 and A3. At this iteration we compute one hyperplane for each class.

The solid lines represent the linear separating functions for each class computed

by solving Problem (3.17). The dashed lines represent their translations beyond

which only points from one class lie. Points from the grey region are used to

compute piecewise linear boundaries in the next iteration of the algorithm.

5.2.2 Explanations to the algorithm

The following explanations clarify Algorithm 2. In Step 1 we compute a piecewise

linear function with a preselected number of hyperplanes using the starting point

provided by Algorithm 1. It also computes the separation error rate between a

given class u and the rest of the data set. The algorithm contains three stopping

criteria which are given in Steps 2, 3 and 4.

• The algorithm terminates if both values f ∗
1,ku, f

∗
2,ku for class u is less than

a given tolerance ε1 > 0. The last piecewise linear function for this class

is accepted as a boundary between this class and the rest of the data set

(Step 2).

• If k ≥ 2 and the difference between values of the error function (for class

u) in two successive iterations is less than a given tolerance ε2 > 0 then

the algorithm terminates. The piecewise linear function from the previous

iteration is accepted as the boundary between this class and the rest of the

data set (Step 3).

• Finally, if the error rate is less than a threshold ε3 > 0 then the algorithm

terminates and the piecewise linear function from the last iteration is ac-

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 112

A = {(2,−1), (2,−4), (3,−1), (4,−2)}
B = {(−2, 2), (−2,−2), (−2,−6), (2, 2), (8, 2), (1,−6)}

g(x1, x2) = −0.5x1 + 0.5x2 + 0.5(|x1|+ |x2|)− 1
(a)

B = {(−2, 2), (−2,−2), (−2,−6), (2, 2), (8, 2), (1,-6)}
g(x1, x2) = −2x1 + x2 + 2(|x1|+ |x2|)− 5

(b)

B = {(−2, 2), (−2,−2), (−2,−6), (2, 2), (8, 2), (1,−6), (7,-4)}
g(x1, x2) = −1.9x1 + 1.1x2 + 2.3(|x1|+ |x2|)− 6.6

(c)

Figure 5.1: 3d graph of polyhedral conic functions with different level sets

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 113

(a)

(b)

(c)

Figure 5.2: Approximations of classes for three class data set in R
2

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 114

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

A1

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

××

×

×

×
×

×

× ×

××
×

×

×
×

×
×

×

×

×

××

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

× ×

× ×

×

×
×

×

× ×

×

×
×

×

×

×

××
×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

× ×

×

×

×

×

×

×

××

×

×

×

× ×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
××

×

×

×
× ×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

× ×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

×
×

×

×

××

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

××

×

×

×
×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

× A2

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+ +

+

+
++

+ +

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+ +
+

+

+

+

+

+

+
+

+

+ +

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+ +

+
+

+

+

+

+

+
+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+ +

+

+
+

+

++
+

+

+

+

+
+

+ + +

+

+

+

+
+

+

+

+

+

+ +

+
+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+ ++

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

A3

(a) Initial dataset

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bcbc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bcbc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

A1

×

×

×

×
×

××
×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×
×

×

××

×

×

×
×

×

×
×

× ×

×

×

×

×

×

×
×

××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×× ×

×

×

×

×
×

×

×
×

×

×

××

×

×

×

×

×

×

×
×

×
×

×

×
×

×
×

×

×

×× ×

×
×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×× ×

×

××

×

×
×

×

×

×

×
×

×

×

×

×

×

×
×

×
×

×

×

×
×

×
×

×

×

×

×

×

××
×

×

×

×

× ×

×

×

×

×
×

×

×
×

×

×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

× ×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
×

×
×

×

×
× ×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

××

×

×

×

×

× ×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

× A2

+

+

+

+

+

+

+ +

+

+

+

+

+

++

+

+

++

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+ +

+
+

+ +

+

+

+

+

+

+

+

+ +

+

+
+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+ + +

+

+

+

+

+

++

+

++

+

+

+ +

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+

+

+

+ +

+

+
+

++

+

+

+

+

+
+

+
+++ +

+

+
+
+

+ +

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+
++

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

+
++

+

+
+

+

A3

(b) Approximating the sets
using PCF

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc bc

bc

bc

bc
bc

bc

bc

bc
bc

bc

bc

bc bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc
bc

A1

×

×

×
×

×

×

×
× ×

×

×

×

×
×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

××
×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

× ×

×

×

×

×

× ×

×

××

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

××
×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

××

×

× ×

×

×

×

×

×

×

×
×

××

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×
× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

A2

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+

+

+

+

++ +

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+ ++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+ +

+

+

+

+

+ + ++

+

+

+

+

+

+
+

+

+

+

+

+

+
+ +

+
+

+

+ +
+

+

+
+

+

+

+

+

+

+

++

+ +

+

+

+

+
+

+

A3

(c) Removing the points us-
ing PCF

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

A1

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×

×
×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

××

×

×

× ×

×

×

×

×

×

×
×

×

× × ×

×

× ×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

××

××

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

××

×

×

×

×

×

×
×

×

×
×

×

×

×
× ×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

× ×

×

×
×

×

×

×

×
×

×

×

×

×

××

×

×

× × ×

×

×

×

×

×

×

×

×
× ×

×

×

×

×
×

×

×
××

××

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

× ×

×
××

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×
××

×

×

A2

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

++

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+
+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+
+

++

+

+

A3

(d) The first set is sepa-
rated using a linear func-
tion

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

A1

×

×

×

×

×

×

×

×

×

×

×

×

×

× ××

×

×× ×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

××

×

×

×

×
×

×

××

×
×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

××

× ×

×

×

×

×

×

× ×

×

×

××

×

×

×

××

×

×

×
×

×
×

×

×

×

×

×

×

××

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

×

×
× ×

×

×
×

×

×

×

×

×
×

×
×

×

×

×

×

×
×

×
×

×
×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

××
×

× ×

×

×

×

×
×

××

×

×

×

×

×

×
×

×

×

×

××

×

A2

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+
+

+
++

+

+

+

+

+

+

++

+

+

+

+

+

+

++

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+
+

+

+

+

+

+

++

+

+

+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+ +

+
+

+

+

+

++

+
+

+

+

+ +
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+ +

+
+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+ ++

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+ +

++
+
+ +

+

+

+

+

+A3

(e) Then the linear sepa-
rator is translated so that
only points from A1 lie on
one side

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc
bc

bc

bc

bc
A1

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
××

×

× ×

×

×
×

×

×

×

×

×

×

××
×

×

×

×

×

×

× ×

×
×

×

×

×

× ×

×

×

×

×

×

×

×

×

×
×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

× ×

×

×

×

×

×

×

× ×

×

×

× ×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×

× ×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

× ×
×

×

×

×

×

×

×

×

×

××

×
×

×

×

× ×
×

×

××

×

×

×

×

×

×
××

×

×

×

× ×

×

×
×

×× ×

×

×

×

×

×
×

×

×

×

××

×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×

×

× ×

×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×
×

× ×

×
×

×

×

××

×

×

×

×

A2

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+ +

++ +
+
+

+

+

++

+ +

+

+
++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+
+

+

+

+ +

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+
+

+

+ +
+

++
+
+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+ + +

+

++

+

+

+

+

+

+

++

+

+

+

+

+
+ +

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +

+
+

+

+

+
+

+

+

+

+

+

+

+

+

A3

(f) The sets A2 and A3 are
separated in a similar fash-
ion

bc

bc

bc

bc

bc

bc

bc

bc

bcbc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

A1

×
×

×

×

×
×

×

×

×

×
×

×

×

×

×

×
×

×

×
×

××
×

×

×

×

×

×

×

×

×

× ×
×

×

×

×

×

×

×
× ×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

×

×

×

× ××

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

× ×

×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×
×

×

×
×

×

×
×

×

×

×

×

× ×

×

×

×

× ×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

××

×

×
×

×

×

×
×

× ×

×

×

×
×

×

×

×

×

×

×
×

××

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×

×

×

×

×
××

×

×

×

××

×

×

× ××

×

×

×

×

×

×

×
×

×

×
××

×

×

×
×

×

×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

×

A2

++
+ +

+

+

+

+
+

+

+

+
+

+
+

+

+

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+
+

+

+++

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+ +

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+ +
+

+ ++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+ +
+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++ + +

++
+

+

+

+
+

+

+

+

+

+

+ +

+

+

+

+

+

+ +
+

+

+ +

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+ +

+

+

+

A3

(g) Then only points not
yet separated (the grey
area) are taken into ac-
count for the next itera-
tion

Figure 5.3: The first iteration of Algorithm 1 for three sets A1, A2 and A3.

cepted as the boundary between this class and the rest of the data set (Step

4).

If none of these stopping criteria is met, then in Step 5 we refine the set of

undetermined points by removing points easily separated using the piecewise

linear functions from the current iteration. In Step 6, depending on the values of

the error function on both sets, we may add new hyperplanes. Finally in Step 7

we update the starting point and the number of hyperplanes.

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 115

5.3 The hybrid polyhedral conic and max-min

separability algorithm

Algorithm 1 allows one to find piecewise linear boundaries between pattern classes.

At each iteration function (3.16) is minimized. The complexity of the computation

of this function depends on the number of data points. However, in large data sets

many data points lie far away from other classes. Therefore they are not relevant

to the computation of the boundary between their class and other classes. We

propose to identify these points using one PCF in order to eliminate them before

applying Algorithm 1.

If we fix the center c, then the problem of minimizing function (5.2) with

one PCF is a linear programming problem. Furthermore, if this center is not

fixed, then the PCF may eliminate points which are close to other classes. It is

preferable to take as a center a data point which is far away from the boundary

of its associated class. In order to find such a point we propose to use hyperboxes

approximating classes. Then we select a center lying inside only one hyperbox

when possible (Step 1).

Using these centers we minimize error function (5.2). As a result we find a

PCF approximating the interior of the classes (Step 2). Then we eliminate those

points from the data set and apply Algorithm 1 to the remaining points (Step 3).

In the sequel we explain each step of this algorithm in more detail.

5.3.1 Computation of centers of polyhedral conic sets

In Step 1 we approximate each class by one hyperbox.

Assume that we are given data set A with q ≥ 2 classes A1, . . . , Aq. For each

class Ai we compute:

ᾱi
j = min

a∈Ai

aj, β̄i
j = max

a∈Ai

aj, j = 1, . . . , n, i = 1, . . . , q

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 116

Figure 5.4: Identification of the centers of the polyhedral conic sets for the two
classes A1 and A2 using hyperboxes

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc
bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc
bc

bcbc

bc

bc
bc

bc

bc

bc

bcbc

bc

bc

bcbc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bcbc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

ld

A1

× ×

××

×

×

×

×

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

××

×

×

× ×

×

×

×

×

×

×

××

×

×

×

×

××

××

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×× ×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

× ×

×

×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

××

×

×

×

××

×

×

×

×

×

×
×

×

× ×

×

×
×

×

×

××

×

×

×

×

×

×

×

×

×
×

ld

A2

Figure 5.5: Identification of the centers of the polyhedral conic sets for the three
classes A1, A2 and A3 using hyperboxes

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc
ld A1

×
××

××

×

×
×

×

×

×

×
×

×
×

×
×

×

×××
×

×

×

×

×

×

×

×

×

×

× ×

×

×

××

× ×

××
×

×

×

×
×

×

×

×

×

×
××

×
×

×

×

×

×

×
×

×

×
×

×

×

××
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×
×

×

×

× ×

×

×
×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

× ×

×

×

×

×

×
×

×
×

×

×

××

×
×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

×

×
×

× ×

×

×

×
×

×

×

×
××

×

×

×

×

× ×
×

× ×

××

×

×

×

×

×

×

×

×

×

×

×

×

××
×

×

×

×

×

×

×

×
×

×
×

×
×

×

×

×

×
×

×
×

×

×

×

×
×

× ×
×

×

×

×

××

×

×

×

×

×

× ×

× ×

×

××

×

×

×

×
×

×

×
×

×

×

×

× ×

×

××

×

×

×

× × ×

× ×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

× ×

×

××

×

×

×
×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

ld

A2

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

++

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++ +

+

++

+

+

+
+

+

+

+

+

+

++

+

+

+ +

+

+

+

+

+ +

+

+

+
+

+

+

+
+

+

+
+

+
+

+

+

+

+

++ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+
+

+

+++

+

+

+

+

+

+

+++

+

+

+

+

+

+

+ +

+

++

+
+

+

+

+

+

+

+

+

++

+ +

+ +

+

+

+

+

+

+
+

++

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+
+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+ +

++
+

+

+
+

+
+

+

+

+

+

+

+
+

+

+
+

ldA3

and define vectors ᾱi = (ᾱi
1, . . . , ᾱ

i
n), β̄

i = (β̄i
1, . . . , β̄

i
n), i = 1, . . . , q which in

turn define the following hyperboxes in n-dimensional space IRn for i = 1, . . . , q:

H̄(Ai) = [ᾱi, β̄i] ≡
{

x ∈ IRn : ᾱi
j ≤ xj ≤ β̄i

j , j = 1, . . . , n
}

.

All points from the i-th class belong to the hyperbox H̄(Ai).

To ensure that the centers of the polyhedral conic sets lie inside the classes

we take a sufficiently small η > 0 and consider the following extended hyperbox

for each class Ai, i = 1, . . . , q:

H(Ai) = [αi, βi] ≡
{

x ∈ IRn : αi
j ≤ xj ≤ βi

j , j = 1, . . . , n
}

,

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 117

where for j = 1, . . . , n

αi
j = ᾱi

j − η(β̄i
j − ᾱi

j), βi
j = β̄i

j + η(β̄i
j − ᾱi

j).

The hyperbox H(Ai) can be described as

H(Ai) = {x ∈ IRn : ψi(x) ≤ 0},

where the piecewise linear function ψi(x) is defined as follows:

ψi(x) = max
{

αi
j − xj, xj − βi

j, j = 1, . . . , n
}

In order to find the center for the i-th polyhedral conic set we define the set

Ri =

{

a ∈ Ai : min
k=1,...,q, k 6=i

ψk(a) > 0

}

.

This set contains all points from the i-th class which are outside hyperboxes of

all other classes. First we consider the case when the set Ri 6= ∅. Figures 5.4 and

5.5 illustrate this case. We compute

Q̄1 = min
a∈Ri

ψi(a)

and choose the center ci as follows:

ci ∈ Ri, ψi(c
i) = Q̄1.

If Ri = ∅ then for any a ∈ Ai

min
k=1,...,q, k 6=i

ψk(a) ≤ 0.

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 118

In this case we compute

Q̄2 = max
a∈Ai

min
k=1,...,q, k 6=i

ψk(a)

and choose the center ci as follows:

ci ∈ Ai, min
k=1,...,q, k 6=i

ψk(c
i) = Q̄2.

5.3.2 Identification of boundary points

To identify boundary points we minimize function (5.2) with L = 1 and using

center ci for each class i = 1, . . . , q. This is a linear programming problem and

after solving it we find the values for the vector wi and scalars ξi, γi which define

polyhedral conic functions gi for each class i = 1, . . . , q. Then for a given class

i ∈ {1, . . . , q} we compute the following:

δ̄i = min
j=1,...,q,j 6=i

min
b∈Aj

gi(b).

Consider the level sets of the function gi, i = 1, . . . , q:

Si(δ) = {x ∈ IRn : gi(x) ≤ δ} , δ ∈ IR.

If δ̄i > 0 then the set Si(0) does not contain points from any other classes, it only

contains points from the i-th class. If δ̄i ≤ 0 then the set Si(0) also contains points

from other classes. Therefore we replace δ̄i by δ̂i = min{0, δ̄i}. To ensure that

boundary points are not removed, δ̂i is again replaced by the following number:

δi = δ̂i − θ(|γi| − δ̂i)

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 119

where θ > 0 is a sufficiently small number. For each class i we can define the

following sets:

Di = {a ∈ Ai : gi(a) ≤ δi} , i = 1, . . . , q. (5.4)

The set Di approximates the interior of the i-th class and it does not contain

points from other classes. We then define the set of boundary points as follows:

Bi = Ai \Di, i = 1, . . . , q. (5.5)

Let σ ∈ (0, 1) be a sufficiently small number. For each class i = 1, . . . , q we

introduce the following number:

ri = |Bi|/|Ai|

and then we consider the set

P = {i = 1, . . . , q : ri > σ} . (5.6)

If P = ∅ then classes Ai, i = 1, . . . , q can be approximated by their corresponding

sets Di with the accuracy σ. Otherwise we can apply Algorithm 1 over sets

Bi, i ∈ P to find piecewise linear boundaries between classes.

5.3.3 Outline of the algorithm

In summary an algorithm for finding piecewise linear boundaries between classes

Ai, i = 1, . . . , q can be formulated as follows:

Algorithm 3. Computation of piecewise linear boundaries

1: (Finding a center of a polyhedral conic set) Approximate each class i =

1, . . . , q with the hyperbox H(Ai) and compute the center ci of the correspond-

ing polyhedral conic set (see Subsection 5.3.1).

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 120

2: (Identifying boundary points) Compute polyhedral conic sets by minimizing

function (5.2) and using the centers ci, i = 1, . . . , q. Find the sets Di, i =

1, . . . , q using equation (5.4) and the sets Bi, i = 1, . . . , q of boundary points

using equation (5.5) (see Subsection 5.3.2). Compute the set P using (5.6).

If |P | ≤ 1 then stop. Otherwise go to Step 3.

3: (Finding piecewise linear boundaries) Apply Algorithm 1 over sets Bi, i ∈ P

to find piecewise linear boundaries between classes (see Section 4.2).

We call this algorithm the Hybrid Polyhedral Conic and Max-min Separability

(HPCAMS) algorithm. This algorithm generates one PCF gi for each class i =

1, . . . , q. It also generates piecewise linear functions ϕi for classes i ∈ P when

|P | > 1. If i 6∈ P then we set ϕi(x) ≡ +∞. If |P | ≤ 1 then we set ϕi(x) ≡ +∞

for all i = 1, . . . , q. The function Ψi separating the i-th class from the rest of the

data set can be computed as follows:

Ψi(x) = min {gi(x), ϕi(x)} , i = 1, . . . , q. (5.7)

5.4 Implementation of the algorithm

In this section we describe the conditions for the implementation of Algorithm 3.

As mentioned earlier this algorithm consists of two stages. In the first stage we

compute polyhedral conic functions approximating classes (Steps 1 and 2). There

are three tolerances in this stage, in Step 1 η > 0 and in Step 2 θ > 0 and σ > 0.

We take η = 0.1, θ = 0.05 and σ = 0.01.

In the second stage we apply Algorithm 1 to find piecewise linear boundaries

(Step 3). This algorithm contains one tolerance ε0 ≥ 0. We choose ε0 = 0.01.

The following conditions have been chosen for the implementation of Algo-

rithm 2.

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 121

1. The values of tolerances ε1 > 0, ε2 > 0 and ε3 > 0 are:

ε1 = 0.005, ε2 = f ∗
1 /100, ε3 = 0.001,

where f ∗
1 is the optimal value of the objective function for linear separation.

2. We restrict the number of hyperplanes to 10.

3. In Step 1 of Algorithm 2 we use the discrete gradient method of [7, 8] as

modified in [11] to solve minimization problem (3.17).

The classification rule is as follows. For each class i Algorithm 3 generates

the separating function Ψi defined in (5.7). If the new point v belongs to the

set Di then we classify it to the i-th class. If this point does not belong to any

of the sets Di, i = 1, . . . , q then we compute the values Ψ1(v), . . . ,Ψq(v) and

classify this point to the class i associated with the minimum function value:

i = argmin{Ψ1(v), . . . ,Ψq(v)}.

We implemented the algorithm in Fortran 95 and compiled it using the Lahey

Fortran compiler on a 1.83GHz Intel Pentium IV CPU with 1GB of RAM running

Windows XP.

5.5 Numerical Experiments

We tested the HPCAMS algorithm on medium sized and large scale real world

data sets readily available from the UCI machine learning repository ([6]). The

selected data sets contain either continuous or integer attributes and have no

missing values. Table 5.1 contains a brief description of the characteristics of the

data sets. This table contains the number of data points in training and test sets.

The class attribute is included in the the number of attributes in this table.

In our experiments we used some classifiers from WEKA for comparison. We

chose the following classifiers: Naive Bayes (with kernel) (NB kernel), Logistic,

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 122

Table 5.1: Brief description of data sets

Data sets (train,test) No. of No. of
attributes classes

Shuttle control (SH) (43500,14500) 10 7
Letter recognition (LET) (15000,5000) 17 26

Landsat satellite
image (LSI) (4435,2000) 37 6

Pen-based recognition of
handwritten digits (PD) (7494,3498) 17 10

Page blocks (PB) (4000,1473) 11 5
Optical recognition of

handwritten digits (OD) (3823, 1797) 65 10
Spambase (SB) (3682,919) 58 2
Abalone (AB) (3133,1044) 9 3

DNA (2000, 1186) 180 3
Isolet (ISO) (6238, 1559) 618 26

Phoneme CR (PHON) (4322, 1082) 6 2
Texture CR (TEXT) (4400, 1100) 41 11

Multi-Layer Perceptron (MLP), Linear LIBSVM (LIBSVM (LIN)), support vec-

tor machines classifier SMO with normalized polynomial kernel (SMO (NPOL)),

SMO (PUK), a decision tree classifier J48 (which is an implementation of the

C4.5 algorithm) and a rule based classifier PART.

We apply all algorithms from WEKA with the default parameter values. We

put the following limits: 3 hours of CPU time (for training and testing) and 1GB

of memory usage. In the tables a dash line shows that an algorithm exceeded one

of these limits.

Results of numerical experiments are presented in Tables 5.2, 5.4 and 5.3. Ta-

ble 5.2 contains test set accuracy on different data sets using different classifiers.

One can see that in most of the data sets (except Optical recognition of hand-

written digits, Phoneme CR and Page blocks) the classification accuracy achieved

over the test set by the HPCAMS algorithm is either the best or comparable with

the best accuracy.

Table 5.4 presents pairwise comparison of the HPCAMS classifier with other

classifiers using test set accuracy. The table contain the number of data sets and

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 123

Data set AB DNA LSI LET OD PD

Classifier

NB(kernel) 57.85 93.34 82.10 74.12 90.32 84.13
Logistic 64.27 88.36 83.75 77.40 92.21 92.85
MLP 63.51 93.68 88.50 83.20 96.55 89.85

LIBSVM (LIN) 60.73 93.09 85.05 82.40 96.55 95.00
SMO (NPOL) 60.25 95.36 79.60 82.34 96.66 96.86
SMO (PUK) 64.18 57.93 91.45 - 96.61 97.88

J48 60.15 92.50 85.35 87.70 85.75 92.05
PART 57.95 91.06 85.25 87.32 89.54 93.65

HPCAMS 66.09 94.18 87.15 91.04 93.10 96.57

Table 5.2: Test set accuracy for different classifiers.

Data set PHON SH TEXT ISO PB SB

Classifier

NB(kernel) 76.53 98.32 81.00 - 88.39 76.17
Logistic 74.58 96.83 99.64 - 91.72 92.06
MLP 81.52 99.75 99.91 - 92.80 92.06

LIBSVM (LIN) 77.54 - 99.18 96.02 87.03 90.97
SMO (NPOL) 78.74 96.81 97.27 - 89.48 92.60
SMO (PUK) 83.27 99.50 99.55 - 88.53 93.04

J48 85.67 99.95 93.91 83.45 93.55 92.93
PART 82.72 99.98 93.82 82.81 92.46 91.40

HPCAMS 80.13 99.86 99.36 93.52 89.55 93.47

Table 5.3: Test set accuracy for different classifiers.

their proportion where the HPCAMS algorithm achieved better testing accuracy.

These results demonstrate that the HPCAMS algorithm performs well on test set

in comparison with other classifiers.

Table 5.5 presents training and testing time for the HPCAMS algorithm. The

use of polyhedral conic functions allow us to significantly reduce training time on

all data sets under consideration. Moreover, the use of PCFs allows one to reduce

training time by 3-10 times compared to the max-min separability algorithm from

[9]. However, the HPCAMS algorithm requires a much longer training time than

most of the other classifiers. The proposed algorithm is very fast in testing phase

for all data sets. Results show that testing of the new algorithm is similar to that

of Neural Network classifier MLP, Logistic classifier. Decision tree and rule-based

classifiers use more testing time than the proposed algorithm. SVM algorithms

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 124

Classifier No. of data sets Proportion
NB(kernel) 12 100%
Logistic 10 83.33%
MLP 7 58.33%

LIBSVM(LIN) 10 83.33%
SMO (NPOL) 9 75.00%
SMO (PUK) 7 58.33%

J48 9 75.00%
PART 8 75.00%

Table 5.4: Pairwise comparison of the HPCAMS classifier with others using test-
ing accuracy.

Dataset Training time Testing time
AB 37.03 0.00
DNA 42.27 0.03
LSI 451.67 0.03
LET 7389.73 0.16
OD 106.31 0.05
PD 158.91 0.03

PHON 39.13 0.00
SH 731.70 0.03

TEXT 55.33 0.02
ISO 2994.64 1.86
PB 89.55 0.02
SB 240.20 0.02

Table 5.5: Training and testing time for the the HPCAMS algorithm (in seconds).

use 1-2 order more testing time than the HPCAMS algorithm.

It should be noted that in order to implement the HPCAMS classifier it is

sufficient to save in memory one polyhedral conic and one piecewise linear func-

tions for each class. Therefore the memory usage of the HPCAMS classifier is

very low.

5.6 Conclusion

In this chapter we developed another new algorithm for the computation of piece-

wise linear boundaries between pattern classes. This algorithm consists of two

main stages.

A piecewise linear classifier based on polyhedral conic and max-min
separabilities 125

In the first stage we compute one polyhedral conic function for each class

in order to identify data points which lie on or close to the boundaries between

classes. In the second stage we apply the max-min separability algorithm to find

piecewise linear boundaries using only those data points.

Such an approach allows us to reduce the training time of the max-min sepa-

rability algorithm on large data sets by 3-10 times. This new algorithm requires

almost instantaneous testing time and has a low memory usage.

The results of the numerical experiments demonstrate that the proposed al-

gorithm consistently produces a good test set accuracy on most data sets when

comparing with a number of other mainstream classifiers. However, the proposed

algorithm can require more training time than most of the other classifiers.

Chapter 6

An incremental piecewise linear

classifier based on hyperboxes

and max-min separation

6.1 Introduction

The previous piecewise linear classification technique proposed in chapter 5 uses

polyhedral conic functions to initially eliminate points. In this chapter we consider

hyperboxes and a similar incremental algorithm presented in chapter 4. As with

the classifier presented in chapter 5 a scheme to initially remove points that do

not contribute to the decision boundary is presented. However, in this case the

first stage of point elimination is done using hyperboxes.

This new algorithm, consists of two main stages. In the first stage we approx-

imate each class using one hyperbox. Then we divide all data points into two

categories:

1. Data points which belong ”obviously” to their respective classes;

2. Data points which are in the ”indeterminate” regions [59].

126

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 127

The intersections of the hyperboxes define the ”indeterminate” regions. Data

points from the first category are points which are not in these intersections. They

are easily classified using the hyperboxes. We use piecewise linear functions to

separate points from different classes in the ”indeterminate” regions. It reduces

computational effort and also avoids possible overfitting. Since hyperboxes can

be considered as a special case of continuous piecewise linear functions, such an

approach allows us to find a piecewise linear boundary of classes.

The second stage is the incremental construction of the class boundaries. The

piecewise linear functions used to separate classes in the indeterminate region

are built incrementally, that is we start with one hyperplane and keep adding

new hyperplanes while the separation accuracy is improving sufficiently. Such an

approach allows us to find good starting points for minimization of nonconvex

error functions. It computes as many hyperplanes as necessary for separating

classes and avoids overfitting.

Another advantage of the incremental approach is that at each iteration of the

process we refine the indeterminate region so as to remove the points which are

furthest from the piecewise linear boundary. The complexity of the error function

is thus further reduced.

In this chapter we present the first stage of the algorithm, of which explains

the operation of hyperboxes. Next we present the incremental algorithm and then

finally we present the classification rules.

We report results of numerical experiments on 10 publicly available data sets.

We also provide the comparison of the new piecewise linear classifier with 9 other

classifiers from the WEKA suite. Finally we present a conclusion of our results.

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 128

6.2 Piecewise linear separability

The approach proposed in this chapter finds piecewise linear boundaries of classes.

Firstly we approximate the classes using hyperboxes, which allow us to identify

the “indeterminate” regions where points from several classes are intertwined.

We then focus on these regions to find more precise boundaries between the

classes, using continuous piecewise linear functions to do so. These boundaries

are determined using max-min separability, a concept which was introduced in

[9] (see also [11]). For the proofs of the propositions we refer to the paper [9].

6.3 Identification of indeterminate regions us-

ing hyperboxes

In this section we will describe a scheme to select points belonging to indetermi-

nate regions. Firstly, we approximate each class by one hyperbox, then we define

the indeterminate regions as the intersections of these hyperboxes and finally we

select data points belonging to these regions for further separation by piecewise

linear functions. All other points belong to only one hyperbox and therefore are

classified simply using hyperboxes (see Figs. 6.1 and 6.2).

Figure 6.1: Identification of indeterminate region between two sets A1 and A2

using hyperboxes: grey region

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bcbc

bc

bc

bcbc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

A1

×

×

×

××

×

×

×
×

××

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×
××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

× ×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××
×

×
×

×

××

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×
×

×
××

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

× ×

×

×
×

×

×

×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
× ×

×

×

×

×
×

×
×

×
×

×

×

×

×

×

×

×

×

××

×
×

×

×

A2

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 129

Figure 6.2: Identification of indeterminate regions between three sets A1, A2 and
A3 using hyperboxes: grey regions

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc
bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc bc

bc

bc bc

bc

bc

bc
bc

bc bc

bc

bc
bc
bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc
bc

A1

×

×
××

××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

××

×
×

×

× × ×
×

×

×

××

×

×

×

× ×

×

×

×

×

×

×
×

×

×

×

×× ×

×

× × ×

×

×

×

×

×

×

×

×

× ×
×

×

× ×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

××
×

×

× ×
×

×

×

×

×

×
×

×

× ×

× ×

×

×

×

×
×

×

×

×

×

×

×
×

×

××

×

×

×
×

×
×

×

×
×

×

×
×

×

×
×

×

× ××

×

×

×

×

×

×
×

×

×

×

× ×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

× ×

×

×

×

× ××

×
×

×

×

×

× ×

×× ×
×

×

×

×

×

×

×
×

××
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

× ×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×
×× ×

×

×
×

×
× ×

××

×

×

× ×
×

×
× ×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

××

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×
×

×

×

×

×

A2

+
+

+

+

+

+

+

+
+

+

+ +

+

+

+

+ +

+

+

+

+

++

+

+

+
++

+
+

++
+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++ +

+

+

+

+

+
+ +

+

+

+

+

+
+

+

+
+

+
+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+
+ +

+
+

+

+ +

+
+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+

+

+
+

+
+

+ +

+ +

+

+
+

+

+ +
+

+
+

+

+

+

+

+

+

+

+
+

+ ++

+

+
+

+

+

+

+

+

+

+

+

+

+ +
+

+
+

+

+

+

+

+

+ +

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+
+

+

+ +

+

+

+

+
+

++

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

++

+
+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

++

+

+

+

++ +
+

+

+
+

+

A3

Assume that we are given data set A with q ≥ 2 classes A1, . . . , Aq and the

i-th class contains mi data points. Then for each class we compute:

ᾱi
j = min

a∈Ai

aj, β̄i
j = max

a∈Ai

aj, j = 1, . . . , n, i = 1, . . . , q.

Then we define vectors αi = (αi
1, . . . , α

i
n), β

i = (βi
1, . . . , β

i
n), i = 1, . . . , q as

follows:

αi
j = ᾱi

j − γ(β̄i
j − ᾱi

j),

βi
j = β̄i

j + γ(β̄i
j − ᾱi

j),

where γ ≥ 0 is a sufficiently small number. These vectors define the following

hyperboxes in n-dimensional space IRn:

H(Ai) = [αi, βi] ≡
{

x ∈ IRn : αi
j ≤ xj ≤ βi

j, j = 1, . . . , n
}

, i = 1, . . . , q.

All points from the i-th class belong to the hyperbox H(Ai).

In order to obtain the indeterminate region between the class Ai and the rest

of the data set we need to compute the intersection between the hyperbox H(Ai)

and other hyperboxes H(Aj), j = 1, . . . , q, j 6= i. This is done by computing

pairwise intersections between hyperbox H(Ai) and other hyperboxes.

The intersection between two hyperboxes is also a hyperbox, which is obtained

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 130

using the following:

H(Ai, Aj) = [cij, dij]

where

cijk = max{αi
k, α

j
k}, dijk = min{βi

k, β
j
k}, k = 1, . . . , n.

If dijk < cijk for at least one k ∈ {1, . . . , n} then the hyperboxes H(Ai) and H(Aj)

do not intersect and the hyperbox H(Ai, Aj) is empty. The indeterminate region

Di between the i-th class and the rest of the data set is defined as:

Di =

q
⋃

j=1,j 6=i

H(Ai, Aj). (6.1)

Then the whole indeterminate region D is

D =

q
⋃

i=1

Di.

The set of obviously classified points in class Ai is:

Oi = Ai \Di.

These points can be simply classified using hyperboxes, and therefore are removed

from the data set before the next stage where we calculate a piecewise linear

boundary between the classes.

6.4 Incremental algorithm

In this section we describe the second stage of our method. It is an incremental

algorithm which differs from algorithm 1 by the way the incremental algorithm is

constructed. In this algorithm a different indeterminate region is calculated for

each class.

We will now present an algorithm for separating class Au, u ∈ {1, . . . , q} from

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 131

the rest of the data set. We assume that the indeterminate region Du has been

obtained using formula (6.1). One of the following cases will occur:

1. The set Du is empty or only contains points from class u. In this case we

use the hyperbox H(Au) to separate the class u from the rest of the data

set.

2. The set Du does not contain any points from class u and contains points

from the rest of the data set. In this case we use the obvious region Ou to

separate the class u from the rest of the data set.

3. The set Du contains points from both class u and the rest of the data set.

In this case we compute a piecewise linear boundary between the class u

and the rest of the data set within Du.

We denote Au = Au∩Du and Au = Du∩ (∪q
t=1,t 6=uAt). In Case 4 Au 6= ∅, Au 6= ∅.

Our aim is to find a piecewise linear function separating the sets Au and Au.

Let ε1 > 0, ε2 > 0, ε3 > 0 be given tolerances and δ > 0 be a sufficiently small

number.

Algorithm 4. An incremental algorithm

1: (Initialization) Set

D1
u = Du, Au

1
= Au, Au

1 = Au.

Select any starting point

(X1, Y1) = (x1, y1), x
1 ∈ IRn, y1 ∈ IR1.

Set

I1 = {1}, J1
1 = {1}, f1 = f(x1, y1),

r1 = |I| = 1, s1 = |J1
1 | = 1,

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 132

the number of hyperplanes l = 1 and iteration counter k = 1.

2: (Computation of piecewise linear function) Solve problem (3.17) over the set

Dk
u starting from the point (Xk, Yk) ∈ IR(n+1)l . Let (Xk∗, Yk∗) be the solution

to this problem, f ∗
k be the corresponding objective function value, and f ∗

1,k and

f ∗
2,k be values of functions f1 and f2, respectively. Let Ek be the error rate at

iteration k over the set D, that is

Ek =
|{a ∈ Au : ϕk(a) > 0} ∪ {b ∈ Au : ϕk(b) < 0}|

|D|
,

where

ϕk(a) = max
i∈Ik

min
j∈Jk

i

(

〈xij∗, a〉 − yij∗
)

.

3: (The first stopping criterion) If max{f ∗
1,k, f

∗
2,k} ≤ ε1 then stop. (Xk∗, Yk∗) is

the final solution.

4: (The second stopping criterion) If k ≥ 2 and f ∗
k−1 − f ∗

k ≤ ε2 then stop.

(Xk−1,∗, Yk−1,∗) is the final solution.

5: (The third stopping criterion) If Ek < ε3 then stop. (Xk∗, Yk∗) is the final

solution.

6: (Refinement of indeterminate regions) Compute

fk,max = max
a∈Au

k
max
i∈Ik

min
j∈Jk

i

(

〈xij∗, a〉 − yij∗
)

,

fk,min = min
a∈Au

k
max
i∈Ik

min
j∈Jk

i

(

〈xij∗, a〉 − yij∗
)

and the following sets:

C1 =

{

a ∈ Au
k
: max

i∈Ik
min
j∈Jk

i

〈xij∗, a〉 − yij∗ ≤ (1 + δ)fk,min

}

,

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 133

C2 =

{

a ∈ Au
k : max

i∈Ik
min
j∈Jk

i

〈xij∗, a〉 − yij∗ ≥ (1 + δ)fk,max

}

Refine the indeterminate region as follows:

Dk+1
u = Dk

u \ {C1

⋃

C2},

Au
k+1

= Au ∩D
k+1
u , Au

k+1 = Dk+1
u ∩ (∪q

t=1,t 6=uAt).

7: (Adding new hyperplanes)

1. If f ∗
1,k > ε1 then set

sk+1 = sk + 1, Jk+1
i = Jk

i ∪ {sk+1}

for all i ∈ Ik. Set

xij = xi,j−1,∗, yij = yi,j−1,∗, i ∈ Ik, j = sk+1.

2. If f ∗
2,k > ε1 then set

rk+1 = rk + 1, Ik+1 = Ik ∪ {rk+1}, J
k+1
rk+1

= Jrk .

Set

xij = xi−1,j,∗, yij = yi−1,j,∗, i = rk+1, j ∈ Jk
rk
.

8: (New starting point) Set

Xk+1 = (Xk∗, xij , i ∈ Ik+1, j ∈ J i
k+1),

Yk+1 = (Yk∗, yij , i ∈ Ik+1, j ∈ J i
k+1),

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 134

l =
∑

i∈Ik+1

|Jk+1
i |, k = k + 1

and go to Step 2.

The following explains Algorithm 4 in more details. In Step 1 we set the initial

indeterminate region as in (6.1), and select one hyperplane and starting point for

the computation of that hyperplane. In Step 2 we compute a piecewise linear

function with a preselected number of hyperplanes using the previous solution to

construct the starting point and to also compute the error rate over the indeter-

minate region (see Fig 6.3). The algorithm contains three stopping criteria which

are given in Steps 3, 4 and 5.

• The algorithm terminates if the values of the error function over the given

class and the rest of the data set is less than a given tolerance ε1 > 0 and

the last piecewise linear function is accepted as a boundary between classes

(Step 3).

• If k ≥ 2 and the difference between values of the error function in two

successive iterations is less than a given tolerance ε2 > 0 then the algorithm

terminates and the piecewise linear function from the previous iteration is

accepted as the boundary between the classes (Step 4).

• Finally, if the error rate is less than some threshold ε3 > 0 then again

the algorithm terminates and the piecewise linear function from the last

iteration is accepted as the boundary between classes (Step 5).

If none of these stopping criteria is met, then in Step 6 we refine the indetermi-

nate region by removing the data points which are far from the piecewise linear

boundary. In Step 7, depending on the values of the error function on both sets,

we add new hyperplanes. Finally in Step 8 we update the starting point and the

number of hyperplanes.

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 135

In summary, the classification algorithm proposed in this chapter consists of

two main stages. In the first stage the data set is divided into two regions using

hyperboxes. The first region consists of the points that can be easily classified

using the hyperboxes and therefore can be excluded from further investigation.

The remaining points belong to the indeterminate region. In the second stage of

our algorithm we incrementally construct a piecewise linear function to separate

the classes within this indeterminate region using Algorithm 4. Since hyperboxes

can be represented as piecewise linear functions we then get piecewise linear

boundaries of all the classes. Both the processes of computing the hyperboxes

and of eliminating the obviously classified points can be implemented linearly

with the number of instances in the data set.

6.5 Classification rules

To compute piecewise linear boundaries between classes we use the one vs. all

strategy, that is, for each class i we consider this class as one class and the rest of

the data set as a second class. Then we apply the proposed algorithm to separate

the i-th class from the rest of the data set in the indeterminate region. This

means that for each class we get one piecewise linear function taking into account

that hyperboxes can also be considered as piecewise linear functions.

The following classification rule is applied to classify new data points (obser-

vations). A new point can belong to one of three distinct sets:

1. This point belongs to one of the sets Oi, i = 1, . . . , q.

2. This point belongs to the set

Q = IRn \

(

q
⋃

i=1

H(Ai)

)

.

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 136

3. This point belongs to the indeterminate region

D =

q
⋃

i=1

Di.

If the new point belongs to the set Oi then we classify it to the i-th class.

If this point belongs to the set Q we classify it to the class associated with the

closest hyperbox.

If the new point belongs to the indeterminate region we use the following

classification rule. First we find all hyperboxes H(Ai1), . . . , H(Ait), 0 < t ≤ q

containing this point. At each iteration k, k ≥ 1 of the incremental algorithm we

refine the region Dk
u and associate a piecewise linear function ϕk to it. When the

algorithm terminates at iteration ki,max another piecewise linear function ϕ
ki,max

i

is found. If the new point belongs to a set Dk
u \ Dk+1

u then it is associated

with function ϕk
i . Otherwise it is associated with function ϕ

ki,max

i . Therefore

a new point v is associated with one piecewise linear function per class, that

is with a set of function values {ϕ1(v), . . . , ϕt(v)}. We classify this point to

the class associated with the minimum value among these function values: i =

argmin{ϕ1(v), . . . , ϕt(v)}.

Figure 6.3 shows this classification rule in the case of three-set separation:

the obviously separated areas are unshaded. The light shaded area represents

the points separated using linear separation (obtained at the first iteration of

Algorithm 4), and the dark shaded area represents the points separated using the

final piecewise linear separating function returned by Algorithm 4.

6.6 Implementation of the algorithm

In this section we describe conditions for the implementation of the classification

algorithm. As we mentioned above this algorithm consists of two main stages.

In the first stage we calculate hyperboxes containing classes. Here we choose

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 137

Figure 6.3: Classification rule to separate sets A1, A2 and A3 using hyperboxes
and max-min separability

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bcbc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

A1
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

××

×

×

×

×

×
×

× ×

×

×

×

××

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

A2

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++
+

+

+

+

+
+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+
+

+

++

+

++

+

+

+++

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+ +
+ +

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+ +

+

+

++

+

+

+

+

+

+ +
+

+

+

+

+

+
+

+
A3

γ = 0.05. The following conditions have been chosen for the implementation of

Algorithm 4.

1. The values of tolerances ε1 > 0, ε2 > 0 and ε3 > 0 are:

ε1 = 0.005, ε2 = f ∗
1 /100, ε3 = 0.001,

where f ∗
1 is the optimal value of the objective function for linear separation.

2. The value of δ > 0 is: δ = 0.25.

3. In the proposed algorithm we restrict the number of hyperplanes to 10.

4. Since for linear separation Problem (3.17) is convex, any initial point leads

us to the global minimum. In Step 1 we select x1 = 0, y1 = 0.

5. In Step 2 of Algorithm 4 we solve minimization problem (3.17). We use the

discrete gradient method of [7, 8] as modified in [11].

6. In all data sets we apply our algorithm on a training set and test our

classification rules on a test set. In our experiments we use data set for

which the division into training and test sets is given.

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 138

We implemented the algorithm in Fortran 95 and compiled it using the La-

hey Fortran compiler on an Intel Pentium IV 1.83GHz CPU with 1GB of RAM

running Windows XP.

6.7 Numerical Experiments

We tested the proposed algorithm on medium sized and large scale real world data

sets readily available from the UCI machine learning repository [6]. The data sets

were selected as follows: they have either continuous or integer attributes and no

missing values. Table 6.1 contains a brief description of the characteristics of

the data sets. The number of attributes in these tables also includes the class

attribute.

Data sets (train,test) No. of No. of
attributes classes

Shuttle control (SH) (43500,14500) 10 7
Letter recognition (LET) (15000,5000) 17 26

Landsat satellite image (LSI) (4435,2000) 37 6
Pen-based recognition of
handwritten digits (PD) (7494,3498) 17 10

Abalone (AB) (3133,1044) 9 3
Spambase (SB) (3682,919) 58 2
Isolet (ISO) (6238, 1559) 618 26

Covertype(CT) (15120, 565892) 55 7
Magic telescope (MT) (15025, 3995) 11 2
Texture CR (TEXT) (4400, 1100) 41 11

Table 6.1: Brief description of data sets

In our experiments we used a number of classifiers from WEKA for compari-

son.

In order to test our algorithm we used the following classifiers. We chose

representatives of each type of classifier from WEKA: Naive Bayes (with kernel),

Instance-based algorithm IBk (with k = 5), Logistic Regression based classi-

fier Logistic, Multi-Layer Perceptron (MLP), support vector machine classifiers

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 139

Linear LibSVM (LIBSVM (LIN)) and SMO (PUK), decision tree classifier J48

(which is an implementation of the C4.5 algorithm) and the rule based classifier

PART. The classifiers chosen produced an overall better accuracy than others

from WEKA. In addition we tested a classifier based on polyhedral separability

[5]. Since the number of hyperplanes in polyhedral separability is not known a

priori, we tested this algorithm with 2 to 5 hyperplanes and report only the best

results on test sets.

We apply all algorithms with the default values of parameters from WEKA.

We set limitations of 3 hours for training and testing CPU time and memory

usage of 128MB of RAM. A dash line in the tables shows that the corresponding

algorithm exceeded one of these limits.

Table 6.2 contains test set accuracy on the data sets for all classifiers. Since

Covertype is too large for WEKA given the restrictions on the memory we do not

include results on this data set. Test set accuracy for the proposed algorithm on

the Covertype data set is 74.30.

Data set SH LET LSI PD AB SB ISO MT TEXT
Algorithm
NB(kernel) 98.32 74.12 82.10 84.13 57.85 76.17 - 76.02 81.00
IBk(k=5) 99.88 94.96 89.85 97.60 60.35 90.10 91.08 84.33 98.82
Logistic 96.83 77.40 83.75 92.85 64.27 92.06 - 79.25 99.64
MLP 99.75 83.20 88.50 89.85 63.51 92.06 - 86.41 99.91

LIBSVM (LIN) - 82.40 85.05 95.00 60.73 90.97 96.02 79.35 99.18
SMO (PUK) 99.50 - 91.45 97.88 64.18 93.04 - 86.93 99.55

J48 99.95 87.70 85.35 92.05 60.15 92.93 83.45 85.48 93.91
PART 99.98 87.32 85.25 93.65 57.95 91.40 82.81 85.08 93.82

Polyhedral 99.29 88.68 87.00 97.03 65.23 92.71 - 84.93 99.91
Max-min 99.92 91.82 89.30 96.43 66.38 95.65 93.01 86.36 98.27

Table 6.2: Test set accuracy for different classifiers.

Table 6.3 presents pairwise comparisons of the proposed classifier with other

classifiers using test set accuracy. We do not count the Covertype data set. The

table contains the proportion of the data sets where the proposed algorithm

achieved better or similar testing accuracy. These results demonstrate that the

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 140

Classifier Proportion
NB(kernel) 100%
IBk (k=5) 55.56%
Logistic 88.89%
MLP 88.89%

LIBSVM(LIN) 77.78%
SMO (PUK) 55.56%

J48 88.89%
PART 88.89%

Polyhedral 77.78%

Table 6.3: Pairwise comparison of the proposed classifier with others using testing
accuracy

Data set Training Time Testing time
SH 76.84 0.03
LET 6124.38 0.19
LSI 739.83 0.03
PD 168.22 0.03
AB 108.73 0.00
SB 359.53 0.00
ISO 93.61 1.78
CT 957.73 5.44
MT 352.38 0.02

TEXT 26.41 0.02

Table 6.4: Training and testing time for the proposed algorithm (in seconds)

proposed algorithm performs well in comparison with other classifiers.

Table 6.4 presents training and testing time for the proposed algorithm. The

use of hyperboxes allow us to significantly reduce training time on data sets such

as Shuttle control, Pen-based recognition of handwritten digits, Abalone, Isolet,

Covertype and Texture CR. The proposed algorithm is very fast in classifying

new observations. Results show that testing time of the proposed algorithm is

similar to that of the Neural Network classifier MLP and the Logistic classifier.

Decision tree and rule-based classifiers use more testing time than the proposed

algorithm. SVM and lazy classifiers use significantly more testing time than the

proposed algorithm.

It should be noted that the proposed piecewise linear classifier needs only

to store one hyperbox and one piecewise linear function per class in memory.

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 141

Therefore, the memory usage of this classifier is very low. Results presented in

this section also demonstrate that the proposed classifier achieves consistently

good classification accuracy over the test set and its training time is reasonable.

All these make the proposed classifier suitable for the application areas listed in

the Introduction of this chapter.

6.8 Conclusion

In this chapter we developed another new algorithm for the computation of piece-

wise linear boundaries of finite point sets. This algorithm consists of two main

stages. In the first stage we compute a hyperbox that approximates each class.

These hyperboxes allow us to identify the so-called indeterminate regions, where

data points from different classes are mixed. Data points which belong to only one

hyperbox are called “obviously” classified points and are removed from further

examination. Thus, in most cases the use of hyperboxes allows us to significantly

reduce the number of data points and consequently computational effort.

In the indeterminate region we use more complex piecewise linear functions

than hyperboxes to find boundaries between classes. Since the number of linear

functions or hyperplanes necessary for separating classes is not known a priori we

suggest to use an incremental approach to find such boundaries. This approach

allows us: (i) to refine the indeterminate region and therefore to further reduce

the number of data points in this region; (ii) to compute as many hyperplanes as

necessary to separate classes with respect to a given tolerance; (iii) to find good

starting points for global minimization of the error functions; (iv) to formulate a

better classification rule for new data points.

We tested the proposed algorithm on medium to large scale real world data

sets. Computational results demonstrate that the new classifier achieves good

classification accuracy while requiring reasonable training time. This classifier

An incremental piecewise linear classifier based on hyperboxes and
max-min separation 142

can be used for real-time classification.

Chapter 7

Conclusion and further work

7.1 Conclusion

Classifiers using Piecewise linear decision boundaries offer many advantages over

current main stream techniques as real time classifiers. These include classifi-

cation in real time, their simplicity, not needing parameters and their modest

memory and processing requirements due to classification based on a piecewise

linear function. However, they are not immune to the complexities in dealing

with large volumes of data.

In this thesis three different real time piecewise linear classifiers were devel-

oped. Our main approach in building the piecewise linear boundaries is based

on the concept of max-min separability. Unlike other existing approaches, our

approach allows one to simultaneously compute boundaries while removing data

points that do not contribute to the construction of this boundary. The prob-

lem is formulated as a non-smooth optimization problem which can be solved by

efficient algorithms such as bundle methods, the discrete gradient method etc.

We proposed these three approaches to reduce the computational effort for the

training of the piecewise linear classifiers.

All three approaches aim to identify data points close to, or on the decision

143

Conclusion and further work 144

boundary. The first technique used an incremental algorithm to compute piece-

wise linear boundaries. At each iteration a new piecewise linear boundary is

constructed for each class, using a starting point constructed from the bound-

aries obtained at previous iterations. Each new boundary is used to eliminate

easily separated points from further calculations. The points not easily separated,

called “undetermined” points, are identified for separation at further iterations.

This piecewise linear boundary separates the sets with as few hyperplanes as

needed, with respect to a given tolerance.

The second technique uses one polyhedral conic function for each class to

identify data points which lie on or close to the boundaries between classes. This

again allows for all other points to be eliminated from further calculations. On

large data sets, this approach can have a reduction in training time by 3-10 times.

The final technique uses hyperboxes to identify the so-called indeterminate re-

gions (undetermined points), where data points from different classes are mixed.

This simultaneously identifies data points belonging to only one hyperbox, which

are the “obviously” classified points that can be removed from further examina-

tion.

The classifiers, in most cases, had a significant reduction in the number of data

points and as a consequence computational effort was reduced. Furthermore, this

also allowed for:

• computation of only as many hyperplanes as necessary to separate classes;

• ability to find good starting points for global minimization of the error

functions;

• formulation of a better classification rule for new data points.

We tested the proposed algorithms on medium to large scale real world data

sets. Computational results demonstrate that the new classifiers achieve good

Conclusion and further work 145

classification accuracy while requiring reasonable training time. The results fur-

ther show that a single optimization solution using a piecewise linear function

allows for real time classification, i.e. fractions of a second, and that the final

function requires very little memory space for storage.

Therefore, the above features make the classifiers ideally suited for real time

embedded system applications that need to respond to incoming stimuli from

an external environment. Furthermore, as the classifiers have low memory and

processing requirements, they are also ideally suited to embedded systems appli-

cations with size, power, processing and memory limitations. With many exam-

ples in a growing industry, that include small reconnaissance robots, autonomous

mobile robots, intelligent cameras, monitoring systems etc., current and further

research of real time classification techniques are of great importance.

7.2 Further research

Our results on piecewise linear classifiers presented in this thesis clearly demon-

strate that they are efficient classifiers for solving data classification problems.

Further research in this area may include:

• the development of more accurate algorithms that could utilize techniques

such as Condensed Nearest Neighbour (CNN), for the identification of

points close to, or on the boundaries between classes;

• the extension of these classifiers for very large data sets, including dynamic

and streaming data. Application of piecewise linear classifiers in this area

is especially important because of their low memory requirements and very

low testing time;

• the use of the notion of a margin, similar to the concept found in SVM like

algorithms, that improve the efficiency of the classifier and help to avoid

the problem of overfitting the data.

Bibliography

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior

of distance metrics in high dimensional space. Lecture Notes in Computer

Science, 1973:420–434, 2001.

[2] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to bi-

nary: A unifying approach for margin classifiers. In Proceedings of the 17th

International Conference on Machine Learning (ICML-2000), pages 9–16.

Morgan Kaufmann, 2000.

[3] R. Anand, K. Mehrotra, C. Mohan, and S. Ranka. Efficient classification

for multiclass problems using modular neural networks. Neural Networks,

IEEE Transactions on, 6(1):117 –124, jan 1995.

[4] J. A. Anderson and E. Rosenfield. Talking nets: An oral history of neural

networks. IEEE Transactions on Neural Networks, 9(5):1054–1054, 1998.

[5] A. Astorino and M. Gaudioso. Polyhedral separability through successive

lp. Journal of Optimization Theory and Applications, 112(2):265–293, 2002.

[6] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[7] A. Bagirov. Minimization methods for one class of nonsmooth func-

tions and calculation of semi-equilibrium prices. Progress in Optimiza-

tion:Contribution from Australasia, pages 147–175, 1999.

146

BIBLIOGRAPHY 147

[8] A. Bagirov. A method for minimization of quasidifferentiable functions.

Optimization Methods and Software, 17(1):31–60, 2002.

[9] A. Bagirov. Max-min separability. Optimization Methods and Software,

20(2-3):271–290, 2005.

[10] A. Bagirov. Modified global k-means algorithm for minimum sum-of-squares

clustering problems. Pattern Recognition, 41:3192–3199, 2008.

[11] A. Bagirov and J. Ugon. Supervised data classification via max-min sep-

arability. In Jeyakumar and Rubinov, editors, Continuous Optimisation:

current trends and modern applications, chapter 6, pages 175–208. Springer,

Berlin, 2005.

[12] Y. Bao and Z. Liu. A fast grid search method in support vector regression

forecasting time series. In IDEAL, pages 504–511, 2006.

[13] G. Batista and M. Monard. An analysis of four missing data treatment

methods for supervised learning. Applied Artificial Intelligence, 17:519–533,

2003.

[14] O. Bennet, K.P.and Mangasarian. Robust linear programming discrimina-

tion of two linearly inseparable sets. Optimization Methods and Software,

1:23–34, 1992.

[15] K. Bennett and O. Mangasarian. Bilinear separation of two sets in n-space.

Computational Optimization and Applications, 2:207–227, 1993.

[16] J.-M. Berge. High-Level System Modeling: Specification Languages. Kluwer

Academic Publishers, Norwell, MA, USA, 1995.

[17] J. Bloch. Effective Java programming language guide. Sun Microsystems,

Inc., Mountain View, CA, USA, 2001.

BIBLIOGRAPHY 148

[18] L. Bobrowski. Design of piecewise linear classifiers from formal neurons by

a basis exchange technique. Pattern Recognition, 24(9):863–870, 1991.

[19] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detection of malware

on mobile handsets. In MobiSys ’08: Proceeding of the 6th international

conference on Mobile systems, applications, and services, pages 225–238,

New York, NY, USA, 2008. ACM.

[20] R. R. Bouckaert, E. Frank, M. A. Hall, G. Holmes, B. Pfahringer, P. Reute-

mann, and I. H. Witten. WEKA–experiences with a java open-source

project. Journal of Machine Learning Research, 11:2533–2541, 2010.

[21] A. P. Bradley. The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern Recognition, 30(7):1145 – 1159, 1997.

[22] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Chapman & Hall, New York, NY, 1984.

[23] G. Brightwell, C. Kenyon, and H. Paugam-Moisy. Multilayer neural net-

works: One or two hidden layers? In Advances in Neural Information

Processing Systems 9, Proc. NIPS*96, pages 148–154. MIT Press, 1996.

[24] C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Mach. Learn.,

19(1):45–77, 1995.

[25] B. Brumen, I. Golob, H. Jaakkola, T. Welzer, and I. Rozman. Early assess-

ment of classification performance. In ACSW Frontiers ’04: Proceedings

of the second workshop on Australasian information security, Data Min-

ing and Web Intelligence, and Software Internationalisation, pages 91–96,

Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[26] C. J. C. Burges. A tutorial on support vector machines for pattern recog-

nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

BIBLIOGRAPHY 149

[27] A. Burns and A. J. Wellings. Real-time systems and their programming

languages. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1990.

[28] L. S. Camargo and T. Yoneyama. Specification of training sets and the

number of hidden neurons for multilayer perceptrons. Neural Comput.,

13(12):2673–2680, 2001.

[29] L. S. Camargo and T. Yoneyama. Specification of training sets and the

number of hidden neurons for multilayer perceptrons. Neural Comput.,

13(12):2673–2680, 2001.

[30] R. Caruana and A. Niculescu-Mizil. Data mining in metric space: an empir-

ical analysis of supervised learning performance criteria. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery

and data mining, KDD ’04, pages 69–78, New York, NY, USA, 2004. ACM.

[31] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on

Machine learning, ICML ’06, pages 161–168, New York, NY, USA, 2006.

ACM.

[32] B. Chai, T. Huang, X. Zhuang, Y. Zhao, and S. J. Piecewise linear classifiers

using binary tree structure and genetic algorithm. Pattern Recognition,

29(11):1905–1917, 1996.

[33] C.-C. Chang and C.-J. Lin. Training ν-support vector classifiers: Theory

and algorithms. Neural Computation, 13(9):2119–2147, 2001.

[34] P.-H. Chen, C.-J. Lin, and B. Schlkopf. A tutorial on ν-support vector

machines. Applied Stochastic Models in Business and Industry, 21(2):111–

136, 2005.

BIBLIOGRAPHY 150

[35] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares

learning algorithm for radial basis function networks. IEEE Transactions

on Neural Networks, 2(2):302–309, 1991.

[36] J. Cheng and R. Greiner. Learning Bayesian belief network classifiers: Al-

gorithms and system. Lecture Notes in Computer Science, 2056:141–148,

2001.

[37] C. Chou, B. Kuo, and F. Chang. The generalized condensed nearest neigh-

bor rule as a data reduction method. In Proceedings of the International

Conference of Pattern Recognition, pages II: 556–559, 2006.

[38] W. W. Cohen. Fast effective rule induction. In In Proceedings of the Twelfth

International Conference on Machine Learning, pages 115–123. Morgan

Kaufmann, 1995.

[39] M. Cosnard, P. Koiran, and H. Paugam-Moisy. A step towards the frontier

between one-hidden-layer and two-hidden-layer neural networks. In Neu-

ral Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 International

Joint Conference on, volume 3, pages 2292–2295, Oct 1993.

[40] T. Cover and P. Hart. Nearest neighbor pattern classification. Information

Theory, IEEE Transactions on, 13(1):21 – 27, Jan 1967.

[41] G. B. Dantzig. Linear programming and extensions. Princeton, N.J., Prince-

ton University Press, 1963.

[42] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the em algorithm. J. Royal Statistical Society, Series B, 39(1):1–38,

1977.

[43] J. Demšar. Statistical comparisons of classifiers over multiple data sets. J.

Mach. Learn. Res., 7:1–30, 2006.

BIBLIOGRAPHY 151

[44] R. Desai, J. Buckey, and J. Pearce. Timing specifications and accuracy of

the real-time 3d echocardiographic reconstruction system. In Image Process-

ing, 1994. Proceedings. ICIP-94., IEEE International Conference, volume 1,

pages 895–899, nov. 1994.

[45] L. Devroye, L. Gyorfi, and G. Lugosi. Probabilistic Theory of Pattern Recog-

nition. Springer-Verlag, 1996.

[46] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,

New York, 2. edition, 2001.

[47] J. Einbinder, K. Scully, R. Pates, J. Schubart, and R. Reynolds. Case

study: a data warehouse for an academic medical center. J Healthc Inf

Manag, 15(2):165–175, Summer 2001.

[48] S. E. Fahlman. An empirical study of learning speed in back-propagation

networks. Technical Report Computer Science Technical Report, Carnegie-

Mellon University, 1988.

[49] E. Fix and J. Hodges. Discriminatory analysis, non-parametric discrimina-

tion: consistency properties. Technical report, USAF Scholl of aviation and

medicine, Randolph Field, 1951. 4.

[50] E. Forgy. Cluster analysis of multivariate data: efficiency versus inter-

pretability of classifications. Biometrics, 21:768–780, 1965.

[51] E. Frank and I. H. Witten. Generating accurate rule sets without global op-

timization. In ICML ’98: Proceedings of the Fifteenth International Confer-

ence on Machine Learning, pages 144–151, San Francisco, CA, USA, 1998.

Morgan Kaufmann Publishers Inc.

[52] J. H. Friedman. Another approach to polychotomous classification. Tech-

nical report, Department of Statistics, Stanford University, 1996.

BIBLIOGRAPHY 152

[53] J. Fürnkranz. Separate-and-conquer rule learning. Artif. Intell. Rev.,

13(1):3–54, 1999.

[54] J. Fürnkranz. Round robin classification. J. Mach. Learn. Res., 2:721–747,

2002.

[55] D. T. G. Approximate statistical tests for comparing supervised classifica-

tion learning algorithms. Neural Comput., 10(7):1895–1923, 1998.

[56] A. Gambier. Real-time control systems: a tutorial. In Control Conference,

2004. 5th Asian, volume 2, pages 1024–1031, Jul 2004.

[57] R. N. Gasimov and G. Ozturk. Separation via polihedral conic functions.

Optimization Methods and Software, 21(4):527–540, 2006.

[58] D. Grossman and P. Domingos. Learning bayesian network classifiers by

maximizing conditional likelihood. In ICML ’04: Twenty-first international

conference on Machine learning. ACM Press, 2004.

[59] J. Grzybowski, D. Pallaschke, and R. Urbanski. Data pre-classification and

the separation law for closed bounded convex sets. Optimization Methods

and Software, 20(2-3):219–229, 2005.

[60] H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting

and data generation: the databoost-im approach. SIGKDD Explor. Newsl.,

6(1):30–39, 2004.

[61] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[62] P. Hart. The condensed nearest neighbor rule. Information Technology,

14(5):515–516, May 1968.

[63] T. Hastie and R. Tibshirani. Classification by pairwise coupling. In NIPS

’97: Proceedings of the 1997 conference on Advances in neural information

BIBLIOGRAPHY 153

processing systems 10, pages 507–513, Cambridge, MA, USA, 1998. MIT

Press.

[64] D. Hebb. The organization of Behaviour. Wiley, New-York, 1949.

[65] G. Herman and K. Yeung. On piecewise-linear classification. IEEE Trans.

Pattern Anal. Mach. Intell., 14(7):782–786, 1992.

[66] V. Hodge and J. Austin. A survey of outlier detection methodologies. Ar-

tificial Intelligence Review, 22(2):85–126, 2004.

[67] R. C. Holte, L. E. Acker, and B. W. Porter. Concept learning and the prob-

lem of small disjuncts. In IJCAI’89: Proceedings of the 11th international

joint conference on Artificial intelligence, pages 813–818, San Francisco,

CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[68] T. Hou, W. Liu, and L. Lin. Intelligent remote monitoring and diagnosis of

manufacturing processes using an integrated approach of neural networks

and rough sets. Journal of Intelligent Manufacturing, 14:239–253, 2003.

[69] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector

classification. Technical report, Department of Computer Science, National

Taiwan University, 2003.

[70] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support

vector machines. IEEE Transactions on Neural Networks, 13(2):415–425,

2002.

[71] K. Huang, I. King, and M. Lyu. Learning maximum likelihood semi-naive

bayesian network classifier, 2002.

[72] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurons in

multilayer perceptrons. Neural Networks, IEEE Transactions on, 2(1):47–

55, jan 1991.

BIBLIOGRAPHY 154

[73] X. Huang and W. Pan. Linear regression and two-class classification with

gene expression data. Bioinformatics, 19(16):2072–2078, 2003.

[74] E. B. Hunt, P. J. Stone, and J. Marin. Experiments in induction / Earl B.

Hunt, Janet Marin, Philip J. Stone. Academic Press, New York, 1966.

[75] T. I. Two modifications of cnn. IEEE Transactions on Systems, Man and

Cybernetics, 6(11):769–772, 1976.

[76] A. Isar, S. Moga, and D. Isar. A new denoising system for sonar images. J.

Image Video Process., 2009:1–1, 2009.

[77] S. J. and W. G.S. Pattern Classifiers and Trainable Machines. Springer-

Verlag, New York, 1979.

[78] K. Jackowski and M. Wozniak. Algorithm of designing compound recogni-

tion system on the basis of combining classifiers with simultaneous splitting

feature space into competence areas. Pattern Anal. Appl., 12(4):415–425,

2009.

[79] A. Jayawardena, D. Fernando, and M. Zhou. Comparison of multilayer

perceptron and radial basis function networks as tools for flood forecasting.

In Proceedings of the Conference at Anaheim, CA, IAHS Destructive Water:

Water-Caused Natural Disaster, their Abatement and Control, pages 173–

181, 1997.

[80] S. Jesus and D. Dias. Embedded systems architecture, 2008.

[81] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and

the subset selection problem. In International Conference on Machine

Learning, pages 121–129, 1994. Journal version in AIJ, available at

http://citeseer.nj.nec.com/13663.html.

BIBLIOGRAPHY 155

[82] M. Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms.

John Wiley & Sons, Inc., New York, NY, USA, 2002.

[83] C. Kenyon and H. Paugam-Moisy. Multilayer neural networks and polyhe-

dral dichotomies. Annals of Mathematics and Artificial Intelligence, 24(1-

4):115–128, 1998.

[84] R. Kimball. The data warehouse toolkit: practical techniques for building

dimensional data warehouses. John Wiley & Sons, Inc., New York, NY,

USA, 1996.

[85] R. Kohavi. A study of cross-validation and bootstrap for accuracy estima-

tion and model selection. In IJCAI’95: Proceedings of the 14th international

joint conference on Artificial intelligence, pages 1137–1143, San Francisco,

CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[86] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[87] A. Kostin. A simple and fast multi-class piecewise linear pattern classifier.

Pattern Recognition, 39:1949–1962, 2006.

[88] S. B. Kotsiantis. Supervised machine learning: A review of classification

techniques. Informatica, 31(3):249–268, 2007.

[89] S. Kumar, J. Ghosh, and M. M. Crawford. A hierarchical multiclassifier

system for hyperspectral data analysis. In MCS ’00: Proceedings of the

First International Workshop on Multiple Classifier Systems, pages 270–

279, London, UK, 2000. Springer-Verlag.

[90] L. I. Kuncheva. Clustering and selection model for classifier combination,

2000.

BIBLIOGRAPHY 156

[91] R. Labib and K. Khattar. Mlp bilinear separation. Neural Comput. Appl.,

19(2):305–315, 2010.

[92] P. W. Langley and J. Carbonell. Language acquisition and machine learning.

In B. MacWhinney, editor, Mechanisms of language acquisition. Lawrence

Erlbaum, Hillsdale, N.J., 1987.

[93] T.-F. Lee, M.-Y. Cho, C.-S. Shieh, and F.-M. Fang. Particle swarm

optimization-based svm application: Power transformers incipient fault syn-

drome diagnosis. Hybrid Information Technology, International Conference

on, 1:468–472, 2006.

[94] G. Leen and D. Heffernan. Expanding automotive electronic systems. Com-

puter, 35(1):88–93, 2002.

[95] Y. Li, M. Pont, N. Jones, and J. Twiddle. Applying mlp and rbf classifiers in

embedded condition monitoring and fault diagnosis applications. Transac-

tions of the Institute of Measurement & Control, 23(3):313–339, December

2001.

[96] A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algo-

rithm. Pattern Recognition, 36(2):451–461, 2003.

[97] C. Linnaeus. Systema Naturae. Holmiae, 10th edition, 1758.

[98] H. Liu and H. Motoda. Instance Selection and Construction for Data Min-

ing. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[99] F. Lotte, M. Congedo, A. Lcuyer, F. Lamarche, and B. Arnaldi. A review of

classification algorithms for eeg-based brain-computer interfaces. Journal

of Neural Engineering, 4(2):R1, 2007.

BIBLIOGRAPHY 157

[100] J. B. Macqueen. Some methods for classification and analysis of multivari-

ate observations. Proceedings of 5-th Berkeley Symposium on Mathematical

Statistics and Probability, 1(281-297), 1967.

[101] S. Markovitch and D. Rosenstein. Feature generation using general construc-

tor functions. In MACHINE LEARNING, pages 59–98. The MIT Press,

2002.

[102] P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

[103] B. Mendil and K. Benmahammed. Simple activation functions for neural

and fuzzy neural networks. In Circuits and Systems, 1999. ISCAS ’99.

Proceedings of the 1999 IEEE International Symposium on, volume 5, pages

347 –350 vol.5, 1999.

[104] R. Michalski and J. Larson. Selection of most representative training exam-

ples and incremental generation of vl1 hypotheses: the underlying method-

ology and the description of programs ESEL and AQ11. UIUCDCS-R 78-

867, Computer Science Department, Univ. of Illinois at Urbana-Champaign,

1978.

[105] D. Michie, D. Spiegelhalter, and C. Taylor. Machine Learning, Neural and

Statistical Classification. Ellis Horwood, Hemel Hempstead, 1994.

[106] M. Minsky and P. S. Perceptrons. MIT Press, Cambridge, MA, 1969.

[107] T. Mitchell. Generative and discriminative classifiers: Naive bayes and

logistic regression. http://www.cs.cmu.edu/ tom/mlbook/NbayesLogReg-

2-05.pdf.

[108] S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique

decision trees. J. Artif. Int. Res., 2(1):1–32, 1994.

BIBLIOGRAPHY 158

[109] R. Niemann. Hardware/Software CO-Design for Data Flow Dominated Em-

bedded Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[110] N. J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

[111] K. Ord. Outliers in statistical data : V. barnett and t. lewis, 1994, 3rd

edition, (john wiley & sons, chichester), 584 pp., [uk pound]55.00, isbn 0-

471-93094-6. International Journal of Forecasting, 12(1):175–176, March

1996.

[112] C. Orsenigo and C. Vercellis. Accurately learning from few examples

with a polyhedral classifier. Computational Optimization and Applications,

38(2):235–247, 2007.

[113] M. A. Oskoei and H. Hu. Support vector machine-based classification

scheme for myoelectric control applied to upper limb. IEEE Transactions

on Biomedical Engineering, 55(8):1956–1965, 2008.

[114] G. Ou and Y. L. Murphey. Multi-class pattern classification using neural

networks. Pattern Recogn., 40:4–18, January 2007.

[115] A. Owens. Empirical modeling of very large data sets using neural net-

works. In IJCNN ’00: Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks (IJCNN’00)-Volume 6, page 6302,

Washington, DC, USA, 2000. IEEE Computer Society.

[116] C. P and S. Delany. k-nearest neighbour classifiers. Technical report, Uni-

versity College Dublin, School of Computer Science and Informatics, 2007.

[117] G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning.

Mach. Learn., 5(1):71–99, 1990.

[118] H. Palm. A new piecewise linear classifier. In ICPR90, volume 1, pages

742–744, 1990.

BIBLIOGRAPHY 159

[119] D.-C. Park and D.-M. Woo. Prediction of network traffic using dynamic

bilinear recurrent neural network. In ICNC (2), pages 419–423, 2009.

[120] Y. Park and J. Sklansky. Automated design of multiple-class piecewise

linear classifiers. Journal of Classification, 6:195–222, 1989.

[121] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko. Rough sets.

Commun. ACM, 38(11):88–95, 1995.

[122] K. Philip. Design constraints on embedded real time control systems. In

Systems Design & Network Conference proceedings, 1990.

[123] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.

[124] J. Quinlan. C4.5:Programs for Machine Learning. Morgan Kaufmann, 1993.

[125] B. Raducanu and J. Vitrià. Online nonparametric discriminant analysis

for incremental subspace learning and recognition. Pattern Anal. Appl.,

11(3-4):259–268, 2008.

[126] T. Reinartz. A unifying view on instance selection. Data Min. Knowl.

Discov., 6(2):191–210, 2002.

[127] R. E. Reinke and R. S. Michalski. Incremental learning of concept de-

scriptions: A method and experimental results. Machine intelligence 11

proceedings, pages 263–288, 1988.

[128] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling the poor assump-

tions of naive bayes text classifiers. In Proceedings of ICML-03, 20th Inter-

national Conference on Machine Learning, Washington, DC, 2003. Morgan

Kaufmann Publishers, San Francisco, USA.

[129] R. Rifkin and A. Klautau. In defense of one-vs-all classification. J. Mach.

Learn. Res., 5:101–141, 2004.

BIBLIOGRAPHY 160

[130] J. Rissanen. A universal prior for integers and estimation by minimum

description length. The Annals of Statistics, 11(2):416–431, 1983.

[131] F. Rosenblat. The perceptron: a probabilistic model for information storage

and organisation in the brain. Psychological Review, 65:386–408, 1958.

[132] D. E. Rumelhart, G. Hinton, and R. J. Williams. Learning internal repre-

sentations by error propagation. In D. E. Rummelhart and J. L. McClelland,

editors, Parallel Distributed Processing, volume 1. MIT Press, Cambridge

MA, 1986.

[133] K. S. Information Theory and Statistics. Wiley, New York, 1959.

[134] Y. Saeys, I. Inza, and P. Larraaga. A review of feature selection techniques

in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[135] S. N. Sanchez, E. Triantaphyllou, J. Chen, and T. W. Liao. An incremental

learning algorithm for constructing boolean functions from positive and

negative examples. Comput. Oper. Res., 29(12):1677–1700, 2002.

[136] W. E. Saris. A technological revolution in data collection. Quality and

Quantity, 23(3):333–349, 09 1989.

[137] J. C. Schlimmer and R. H. Granger Jr. Incremental learning from noisy

data. Mach. Learn., 1(3):317–354, 1986.

[138] B. Schulmeister and F. Wysotzki. The piecewise linear classifier dipol92.

In Proceedings of the European Conference on Machine Learning (Cata-

nia, Italy). F. Bergadano and L. De Raedt, Eds. Springer-Verlag New

York,Secaucus, NJ, pages 411–414, 1994.

[139] L. Shalabi, Z.Shaaban, and B. Kasasbeh. Data mining: A preprocessing

engine. Journal of Computer Science, 2(9):735–739, 2006.

BIBLIOGRAPHY 161

[140] J. Shlens. A tutorial on principal component analysis.

http://www.snl.salk.edu/ shlens/pub/notes/pca.pdf, December 2005.

[141] J. Sklansky and G. G.S. Wassel. Pattern classifiers and trainable machines.

Springer, Berlin, 1981.

[142] J. Sklansky and L. Michelotti. Locally trained piecewise linear classifiers.

IEEE Trans. Pattern Anal. Mach. Intell., 2(2):101–111, 1980.

[143] C. Soares and P. B. Brazdil. Selecting parameters of svm using meta-

learning and kernel matrix-based meta-features. In SAC ’06: Proceedings

of the 2006 ACM symposium on Applied computing, pages 564–568, New

York, NY, USA, 2006. ACM.

[144] Y. Sun, S. Shimada, and M. Morimoto. Visual pattern discovery using web

images. In MIR ’06: Proceedings of the 8th ACM international workshop

on Multimedia information retrieval, pages 127–136, New York, NY, USA,

2006. ACM.

[145] J. A. K. Suykens, G. Horváth, S. Basu, C. Micchelli, and J. Vandevalle,

editors. Advances in Learning Theory: Methods, Models and Applications,

volume 190. IOS Press, NATO Science Series, 2003.

[146] R. Takiyama. A two-level committee machine: a representation and a learn-

ing procedure for general piecewise linear discriminant functions. Pattern

Recognition, 13(3):269 – 274, 1981.

[147] D. M. J. Tax and R. P. W. Duin. Using two-class classifiers for multiclass

classification. In ICPR (2), pages 124–127, 2002.

[148] H. Tenmoto, M. Kudo, and S. M. Piecewise linear classifiers preserving

high local recognition rates. Kybernetika, 34(4):479–484, 1998.

BIBLIOGRAPHY 162

[149] H. Tenmoto, M. Kudo, and M. Shimbo. Piecewise linear classifiers with an

appropriate number of hyperplanes. Pattern Recognition, 31(11):1627–1634,

1998.

[150] M. Towsey, D. Alpsan, and L. Sztriha. Training a neural network with

conjugate gradient methods. Neural Networks, 1:373 – 378, 1995.

[151] B. Tudu, B. Kow, N. Bhattacharyya, and R. Bandyopadhyay. Compari-

son of multivariate normalization techniques as applied to electronic nose

based pattern classification for black tea. In ICST 2008. 3rd International

Conference on Sensing Technology, 2008., pages 254–258, Nov 2008.

[152] V. Vapnik. Theory of Pattern Recognition. Nauka, Moscow, 1974. In

Russian.

[153] V. Vapnik. Estimation of Dependences Based on Empirical Data: Springer

Series in Statistics (Springer Series in Statistics). Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1982.

[154] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

1995.

[155] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[156] K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitiv-

ity of support vector machines. In Proceedings of the International Joint

Conference on AI, pages 55–60, 1999.

[157] M. W. Computer Oriented Approaches to Pattern Recognition. Academic

Press, New York, 1972.

[158] P. H. Winston. Learning structural descriptions from examples. Technical

report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1970.

BIBLIOGRAPHY 163

[159] I. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

[160] J. R. Wolpaw. Brain-computer interfaces (bcis) for communication and con-

trol. In Assets ’07: Proceedings of the 9th international ACM SIGACCESS

conference on Computers and accessibility, pages 1–2, New York, USA, 2007.

ACM.

[161] H.-S. Wong, K. K. Cheung, C.-I. Chiu, Y. Sha, and H. H. Ip. Hierarchical

multi-classifier system design based on evolutionary computation technique.

Multimedia Tools Appl., 33(1):91–108, 2007.

[162] M. W.S. and P. W. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[163] L. Xu and C. Li. Multi-objective parameters selection for svm classification

using nsga-ii. In P. Perner, editor, Advances in Data Mining, volume 4065

of Lecture Notes in Computer Science, pages 365–376. Springer Berlin /

Heidelberg, 2006.

[164] H. Yu, J. Yang, and J. Han. Classifying large data sets using svms with

hierarchical clusters. In KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

306–315, New York, NY, USA, 2003. ACM Press.

[165] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and

redundancy. J. Mach. Learn. Res., 5:1205–1224, 2004.

[166] L. Z.-P. and B. B. Comparison of a neural network and a piecewise linear

classifier. Pattern Recognition Letters, 12(11):649–655, 1991.

BIBLIOGRAPHY 164

[167] Z. Zakaria, N. A. M. Isa, and S. A. Suandi. A study on neural network train-

ing algorithm for multiface detection in static images. In World Academy

Of Science, Engineering and Technlogy, 62, pages 170–174, February 2010.

[168] S. Zhang, C. Zhang, and Q. Yang. Data preparation for data mining. Ap-

plied Artificial Intelligence, 17:375–381, 2002.

[169] Y. H. Zweiri, J. F. Whidborne, and L. D. Seneviratne. A three-term back-

propagation algorithm. Neurocomputing, 50:305 – 318, 2003.

	Abstract
	Acknowledgements
	List of Publications
	Introduction
	Data mining and classification
	Introduction
	Data Mining
	History
	Knowledge Discovery in Databases
	Data Collection
	Data cleaning and preprocessing
	Data Transformation
	The data mining task
	Machine learning
	Classification (Supervised learning)
	Classification process
	Algorithm selection
	Algorithm training

	Pattern evaluation
	WEKA

	Real time systems
	Embedded real time systems
	Real time classification for embedded systems

	Polychotomous classification (the Multi-class problem)
	Current classification techniques
	Logic based classifiers
	Decision trees
	Rule learners

	Statistical based algorithms
	Bayesian classifiers
	k-Nearest Neighbour

	Artificial Neural Networks
	Perceptron
	Multilayered perceptrons

	Conclusions

	Optimization and piece wise linear based classifiers
	Introduction
	Optimization based classifiers
	Piecewise linear classifiers

	Classifiers based on the multiple optimization approach
	Early piecewise linear classifiers
	Nilsson
	Sklansky and Michelotti

	Prototype based piecewise linear classifiers
	Park and Sklansky
	Tenmoto, Kudo and Shimbo

	Tree Based Methods
	Kostin

	Linear Regression based methods
	Neural Network based and other methods

	Classifiers based on the single optimization approach
	Linear Separability
	Support Vector Machines
	Linear support vector machines
	Nonlinear support vector machines

	Polyhedral separability
	Max-min separability
	Error function

	Data pre-classification
	Incremental learning algorithms
	Conclusions

	Classification through incremental max-min separability
	Introduction
	Incremental algorithm
	Algorithm
	Explanations to the algorithm

	Classification rules
	Implementation of the algorithm
	Numerical Experiments
	Conclusion

	A piecewise linear classifier based on polyhedral conic and max-min separabilities
	Introduction
	Polyhedral conic sets and max-min separability
	Separation via polyhedral conic functions
	Explanations to the algorithm

	The hybrid polyhedral conic and max-min separability algorithm
	Computation of centers of polyhedral conic sets
	Identification of boundary points
	Outline of the algorithm

	Implementation of the algorithm
	Numerical Experiments
	Conclusion

	An incremental piecewise linear classifier based on hyperboxes and max-min separation
	Introduction
	Piecewise linear separability
	Identification of indeterminate regions using hyperboxes
	Incremental algorithm
	Classification rules
	Implementation of the algorithm
	Numerical Experiments
	Conclusion

	Conclusion and further work
	Conclusion
	Further research

	Bibliography

