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New algorithms for solving unconstrained optimization problems are presented based on the
idea of combining two types of descent directions: the direction of anti-gradient and either
the Newton or Quasi-Newton directions. The use of latter directions allows one to improve
the convergence rate. Global and superlinear convergence properties of these algorithms are
established. Numerical experiments using some unconstrained test problems are reported. Also
the proposed algorithms are compared with some existing similar methods using results of
experiments. This comparison demonstrates the efficiency of the proposed combined methods.
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1. Introduction

Consider the following unconstrained minimization problem

min f(x) subject to x ∈ Rn (1)

where the function f is twice continuously differentiable. Let g(x) = ∇f(x) and
H(x) = ∇2f(x) be the gradient and the Hessian matrix of the function f , respec-
tively.

Numerical methods have been developed extensively for solving the minimiza-
tion problem (1). The gradient method is one of the simplest and commonly used
methods. Although this method is globally convergent, it suffers from the slow
convergence rate as a stationary point is approached. In order to improve the con-
vergence rate, one can use the Newton method. This method is one of the most
popular methods due to its attractive quadratic convergence, but it depends on the
initial point and sometimes the computation of the inverse of the Hessian could
be time consuming [18]. A number of different modified Newton methods have
been introduced to improve the performance of the Newton method [1, 8–10, 12].
However, the global convergence of these methods are not always guaranteed.

In order to avoid these difficulties, one way is the use of a combination of differ-
ent local optimization methods. In recent years, there has been a growing interest
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in applying such combined methods. De Luca et al. [5] considered a combination
of the gradient and the Newton methods for the solution of nonlinear comple-
mentarity problems. The work of Malik Hj et al. [13], employs a hybrid descent
direction strategy which uses a convex combination of the anti-gradient and the
Quasi-Newton as a search direction. Buckley [2, 3] proposed a strategy of using the
Conjugate gradient search direction for the most iterations and periodically using
the Quasi-Newton direction to improve the convergence. Wang et al. [19] proposed
a revised Conjugate gradient projection method, that is, a combination of the Con-
jugate gradient projection and the Quasi-Newton methods for nonlinear inequality
constrained optimization problems. Shi [16] introduced a method based on the
combination of the gradient and Newton methods for solving a system of nonlinear
equations. In [4], he proposed a combination of the modified Quasi-Newton and the
gradient method to find a solution for systems of linear equations. Furthermore, Shi
developed methods based on the combinations of the gradient method with New-
ton and Quasi-Newton methods for solving unconstrained optimization problems
[17]. Recently, the idea of combining the gradient method with the Newton and
the Quasi-Newton methods has been developed in [7, 11, 21]. These combinations
are also applied for minimizing the cost function during the training of Neural Net-
works [7]. More recently Yang [20] applied the Newton-Conjugate gradient method
for solitary wave computations.

In this paper, we propose new algorithms based on the idea of combining the anti-
gradient direction with either the Newton direction or the Quasi-Newton direction
for solving the problem (1). We call the algorithm involving combination of the
gradient and Newton methods as Algorithm CGN, and the combination of the
gradient and Quasi-Newton methods as Algorithm CGQN. These algorithms are
different from the existing combination algorithms [2–5, 7, 11, 13, 16, 17, 19–21].
We introduce a special parameter which allows us to control contribution from each
component method. We also define two different combinations. The first one is a
novel combination in which the step length, αk, is determined only along the anti-
gradient direction. The second one is similar to those developed in [4, 16, 17]. Under
some assumptions we prove that the proposed methods are globally convergent and
they have superlinear convergence rate.

The rest of the paper is organized as follows. In the next section, we present
a general scheme of the descent methods and some theorems which are used to
establish the convergence of the proposed methods. In Section 3, we describe the
proposed algorithms in details. The global and superlinear convergence proper-
ties of our algorithms are proved in Sections 4 and 5, which is followed by some
numerical experiments in Section 6, demonstrating the efficiency of the proposed
algorithms. Finally, some concluding remarks are made in Section 7.

2. Preliminaries

Consider the problem (1) and denote by gk = ∇f(xk), the gradient of the function
f at a point xk. A general descent method for solving Problem (1) proceeds as
follows:

Algorithm 1: A Descent Method

Initialization. Select a starting point x0 ∈ Rn, and a tolerance ε > 0, set k:=0.

Step 1. If ‖gk‖ < ε, then stop.



November 25, 2012 6:13 Optimization cgn-optimization

Optimization 3

Step 2. Compute a descent direction dk at xk satisfying

gTk dk < 0. (2)

Step 3. Determine an appropriate step length αk > 0.

Step 4. Set xk+1 := xk + αkdk, k := k + 1 and go to Step 1.

Depending on the choice of dk and αk, where dk is a descent direction and αk is
a step length, different descent direction methods have been developed. There are
two alternatives for finding αk, namely using the exact and inexact line search. In
practical implementations, the finding an exact optimal step length is, in general,
difficult or expensive [18], therefore, the inexact line search with less computa-
tional load is highly popular. There are some inexact line search techniques such
as Armijo, Goldstein and Wolfe-Powell rules. Given descent direction dk, the Wolfe-
Powell rule suggests the following relations to find the step length αk > 0 [18]

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk, (3)

gTk+1dk ≥ σgTk dk, (4)

where ρ ∈ (0, 1/2) and σ ∈ (ρ, 1).
Let us consider the Wolfe-Powell conditions (3) and (4) to determine αk in the

descent direction algorithm. The global convergence of the general descent direction
algorithm is given by the following theorem [18].

Theorem 2.1 : Let αk in the descent direction algorithm be defined by (3) and
(4). Let also dk satisfy

cos(θk) ≥ δ (5)

for some δ > 0 and for all k, where θk is the angle between dk and −gk. If g(x)
exists and is uniformly continuous on the level set {x ∈ Rn| f(x) ≤ f(x0)}, then
either gk = 0 for some k, or fk → −∞, or gk → 0.

One of the simplest and the most fundamental minimization methods satisfying
Theorem 2.1 is the gradient method, in which dk = −gk, for all k. Although this
method is globally convergent and usually works well in some early steps, as a
stationary point is approached, it may descend very slowly.

In order to improve the convergence rate, one can use the Newton method. At
the k-th iteration, the classical Newton direction dk is the solution to the following
system:

Hkdk = −gk, (6)

where Hk is the Hessian matrix at xk. In general, the Newton method is not glob-
ally convergent. Moreover, this method requires the computation of the inverse
of the Hessian in order to find descent directions which can be time consuming.
One technique, for instance, is the Quasi-Newton method which uses approxima-
tions with a positive definite matrix. However, these approximations still will not
guarantee the global convergence. A common strategy that is recently applied to
guarantee the global convergence is the use of methods based on the combination
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of different local optimization methods [2–5, 7, 11, 13, 16, 17, 19–21]. Most of these
methods are efficient for solving the problem (1) due to their global convergence
property and high local convergence rate. We propose new combined methods in
the next section.

The following theorems will be used to prove the convergence of the proposed
methods. Their proofs can be found in [18].

Theorem 2.2 : Let g : Rn → Rm be continuously differentiable in the open
convex set D ⊂ Rn. Assume that H is Lipschitz continuous in D with a Lipschitz
constant γ ≥ 0. Then for any u, v, x ∈ D, we have

‖g(u)− g(v)−H(x)(u− v)‖ ≤ γ ‖u− x‖+ ‖v − x‖
2

‖u− v‖. (7)

Theorem 2.3 : Let g and H satisfy the conditions of Theorem 2.2. Assume that
H−1(x) exists. Then there exist ε > 0 and µ > β > 0 such that for all u, v ∈ D,
when max{‖u− x‖, ‖v − x‖} ≤ ε, we have

β‖u− v‖ ≤ ‖g(u)− g(v)‖ ≤ µ‖u− v‖. (8)

3. The Proposed Algorithms

In this section, we introduce our new algorithms, called CGN and CGQN, for solv-
ing the unconstrained optimization problem (1). Algorithm CGN is based on the
idea of combining anti-gradient and Newton directions. In Algorithm CGQN, we
use the Quasi-Newton direction in the combination with the anti-gradient direction.

Throughout the paper d1,k denotes the anti-gradient direction at xk and d2,k

stands for the second direction at xk to be used in the combination with d1,k. The
steps of our combined methods are presented in Algorithm 2.

Algorithm 2: Algorithms CGN and CGQN

Initialization. Select a starting point x0 ∈ Rn, and a tolerance ε > 0, η and δ be
small positive numbers and ϑ > 1, ω and L are two fixed numbers. Set k:=0.

Step 1. If ‖g(xk)‖ < ε, then stop.
Step 2. Compute the direction d1,k at xk, d1,k = −gk.
Step 3. Compute a second direction d2,k at xk . If the direction d2,k at xk is not
computable, then go to Step 5.

Step 4. If dT2,kd1,k ≥ 0, go to Step 6.

Step 5. Use rules (3) and (4) to determine a step length αk > 0 along the direction
dk = d1,k, set sk := αkdk and go to Step 10.

Step 6. Set j := 0, η0 := η.

Step 7. Compute ξk as follows:

ξk =





1
1+ηj‖g0‖ if k = 0,

1
1+ηj |fk−fk−1| if k > 0,

(9)
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and set d(ξk) := (1− ξk)d1,k + ξkd2,k.

Step 8. If d(ξk)
Td1,k < δ‖d(ξk)‖‖d1,k‖, set ηj+1 := ϑηj and j = j + 1, and go to

Step 7.

Step 9. Compute sk using one of the following two approaches:

9.1. Use rules (3) and (4) to determine a step length αk > 0 along the direction
d1,k and set sk := αk(1 − ξk)d1,k + ξkd2,k. If f(xk + sk) ≤ f(xk) − ω‖sk‖ and
αk‖d1,k‖ ≤ L‖d2,k‖, set sk := sk; otherwise set sk := αkd1,k.

9.2. Use rules (3) and (4) to determine a step length αk > 0 along the direction
dk = d(ξk) and set sk := αkdk.

Step 10. Set xk+1 := xk + sk, k := k + 1 and go to Step 1.

The direction d2,k can be either the Newton direction or the Quasi-Newton di-
rection. In Algorithm CGN, when the Hessian at xk is singular or d2,k is not
computable then we use the anti-gradient direction. Moreover, if dT2,kd1,k < 0 then
the Newton direction tends to increase the function value. In this case, again, we
take the anti-gradient direction as indicated in Step 5.

In Algorithm CGQN, we use the Quasi-Newton direction as the second direction
in the combination with the anti-gradient direction. In the Quasi-Newton method,
an approximation Bk is used instead of the Hessian Hk. At the k-th iteration, the
Quasi-Newton direction is the solution to the following system:

Bkdk = −gk, (10)

where Bk is a positive definite matrix. There are some well known formulas for
updating Bk in the Quasi-Newton method [18]. In this paper, Bk is updated by
the BFGS formula as follows:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
, (11)

where sk = xk+1 − xk and yk = gk+1 − gk.
In practical implementations, when sTk yk = 0 (or sTk yk is too small), then Bk

and consequently d2,k may not be computable and we use only the anti-gradient
direction as indicated in Step 5.

In equation (9), parameter ξk is in the interval [0, 1] that weights two different
directions in the combination. When the slope of the function is slight, the algo-
rithm tends to the second direction, d2,k, otherwise it is close to the anti-gradient
direction, d1,k. More precisely, when the difference between function values is a
large number, and consequently ξk is close to 0, the gradient method may work
better. Also, it is clear from (9) that, near the solution, we can get the optimal
point with a high convergence rate.

In Step 7, we consider two different conditions for choosing ξk. At the first step,
k = 0, the value of |f(xk)− f(xk−1)| is not defined, so we will use ‖g0‖ instead.

In Step 9, we use two different strategies for the combination. Step 9.1 is a new
combination and is different from the existing methods in the literature [4, 16, 17].
In this combination, the step length αk is determined only along the anti-gradient
direction. In this strategy, we define two conditions that make the new direction
to be a descent direction. In Step 9.2, the step length αk is determined along the
combination of both directions d1,k and d2,k.
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4. Global Convergence

The following theorem shows that Algorithms CGN and CGQN are globally con-
vergent.

Theorem 4.1 : Consider using Algorithm 2 to solve the problem (1). Assume that
g(x) exists and is uniformly continuous on the level set {x ∈ Rn| f(x) ≤ f(x0)}.
Then either gk = 0 for some k, or fk → −∞, or gk → 0.

Proof : Let us assume that gk 6= 0 and fk is bounded below for all k. Clearly in
this case fk < fk−1 for all k. We need to show that gk → 0.

Denote by θk the angle between dk and −gk. Consider iterations xk+1 = xk + sk.
There are two versions to be considered. In the first version sk is calculated using
Steps 5 and 9.2 of Algorithm 2, in the second version sk is calculated using Steps
5 and 9.1.

Version 1. If sk is obtained at Step 5, then dk = d1,k = −gk and consequently

cos(θk) =
−dkgk
‖dk‖‖gk‖

= 1 > δ. (12)

Now suppose sk is obtained at Step 9.2. Then dk = d(ξk) is chosen as a descent
direction and according to Steps 7-8, the number ξk can be chosen so that the
inequality d(ξk)

Td1,k ≥ δ‖d(ξk)‖‖d1,k‖ holds. Then we have

cos(θk) =
d(ξk)

Td1,k

‖d(ξk)‖.‖d1,k‖
≥ δ, (13)

Therefore, in this version for all k the inequality cos(θk) ≥ δ > 0 holds and the
proof of the theorem follows from Theorem 2.1.

Version 2. Suppose sk is obtained at Steps 5 and 9.1. In this case we have
xk+1 = xk + sk where sk is defined by

sk = αkd1,k (14)

or

sk = αk(1− ξk)d1,k + ξkd2,k. (15)

Here we note that according to Step 9.1 the step length αk > 0 is determined by
the Wolfe-Powell rule along the direction d1,k; that is, the following two inequalities
are satisfied:

f(xk + αkd1,k) ≤ f(xk) + ραkg
T
k d1,k, (16)

g(xk + αkd1,k)
Td1,k ≥ σgTk d1,k, (17)

where d1,k = −gk = −g(xk).
If the number of cases when sk is defined using (15) is finite, that is, sk is defined
by (14) for all sufficiently large k, then the proof follows from Theorem 2.1 in view
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of (12).
Assume that there is a subsequent km →∞ such that

skm = αkm(1− ξkm)d1,km + ξkd2,km . (18)

According to Step 9.1, this in particular means that the following two relations
hold:

f(xkm + skm) ≤ f(xkm)− ω‖skm‖, for all km (19)

and

αkm‖d1,km‖ < L‖d2,km‖, for all km. (20)

Since sequence fk is bounded below, it follows from (19) that it follows

‖skm‖ → 0 as km →∞. (21)

Moreover, since dT1kd2k ≥ 0, ∀k, from (18) we have

‖skm‖2 ≥ α2
km(1− ξkm)2‖d1,km‖2 + ξ2

km‖d2,km‖2. (22)

We need to show that

d1,km = −gkm = −g(xkm)→ 0.

Assume the contrary, that is this is not true. For the sake of simplicity, assume
that there exists ε̃ such that

‖gkm‖ ≥ ε̃ > 0, ∀km. (23)

We will show that this leads to a contradiction by considering two possible
cases with respect to the sequence ‖d2,km‖. In the first case we assume that this
sequence converges to zero, in the second case it does not.

(i) Let

‖d2,km‖ → 0 as km →∞.

In this case from (20) we have

αkm‖d1,km‖ = αkm‖g(xkm)‖ → 0 as km →∞. (24)

Then from uniformly continuity of g we obtain that

‖g(xkm − αkmg(xkm))− g(xkm)‖ → 0 as km →∞. (25)
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From (17) it follows

g(xkm + αkmd1,km)Td1,km ≥ σg(xkm)Td1,km .

Letting d1,km = −g(xkm) from the last enequality we obtain

[g(xkm − αkmg(xkm))− g(xkm)]T g(xkm) ≤ (σ − 1)g(xkm)T g(xkm);

or

σ ≥ 1 +
[g(xkm − αkmg(xkm))− g(xkm)]T g(xkm)

‖g(xkm)‖2 .

Then from (23) and (25) we have σ ≥ 1 that is a contradiction.

(ii) Now we assume that the sequence ‖d2,km‖ does not converge to zero. For the
sake of simplicity assume that ‖d2,km‖ ≥ µ > 0 for all km. Then from (21) and (22)
it follows that ξkm → 0 and therefore (24) is satisfied. Then we get a contradiction
as in the case of (i).

Therefore (23) leads to a contradiction; that is, g(xkm)→ 0. �

5. Superlinear Convergence

Theorem 4.1 in the previous section establishes the convergence of gradients g(xkm)
that is the stoping criterion for Algorithm 2. In this section, we assume that the
sequence of points {xk} generated by the algorithm also converges to some point
x∗. In this case we aim to investigate the convergence rate of Algorithm 2.

Denote by D ⊂ Rn some convex neighborhood of x∗ that contains all elements
xk for sufficiently large k. Since we are interested in the convergence rate of {xk}
to x∗, we assume that xk ∈ D for all k = 0, 1, 2, . . . .

We recall that the function f is assumed to be twice continuously differentiable.
In addition we will use the following assumptions.

(AS1) x∗ ∈ D is a strong local minimizer of the function f , (for definition see [18]),
with H(x∗) symmetric and positive definite.
(AS2) There is a constant γ ≥ 0 such that

‖H(x)−H(x)‖ ≤ γ‖x− x‖,∀x, x ∈ D.

In the following theorem, we show that under some assumptions Algorithm
CGQN, with Step 9.1, is superlinearly convergent; that is,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Theorem 5.1 : Let the function f be twice continuously differentiable and
Assumptions AS1-AS2 be satisfied. Consider a sequence xk → x∗, xk ∈ D,
xk+1 = xk + sk, that is generated by Algorithm CGQN with a sequence of sym-
metric bounded and positive definite matrices Bk. Moreover, suppose there is k0

such that for all k ≥ k0: cos(θ0
k) ≥ δ > 0, where θ0

k is the angle between d1,k and
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d2,k; and the iterations sk in Step 9.1 utilize the formula

sk = αk(1− ξk)d1,k + ξkd2,k.

Then {xk} converges superlinearly to x∗ if and only if

lim
k→∞

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0. (26)

Proof : The proof of the theorem is based on the following equivalence:

lim
k→∞

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0⇐⇒ lim
k→∞

‖gk+1‖
‖xk+1 − xk‖

= 0

⇐⇒ lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (27)

1. First we prove that {xk} converges to x∗ superlinearly if the relation (26) holds.
If g(xk) = 0 for some k then the theorem is true. Assume that ‖g(xk)‖ > 0 and
g(xk) → 0 as k → ∞. Denote d(ξk) = (1 − ξk)d1,k + ξkd2,k, with d1,k = −gk, and
let θk be the angle between d(ξk) and d1,k.

Since ξk < 1 and dT1,kd2,k ≥ 0 for all k ≥ k0, it is clear that θk < θ0
k and therefore

by the assumption of the theorem cos(θk) > cos(θ0
k) ≥ δ > 0.

This in particular means that the required inequality in Step 8 is achieved at the
first round for η0; that is, ξk has the form

ξk =
1

1 + η0|fk − fk−1|
, ∀k ≥ k0.

Since |fk − fk−1| → 0 we obtain that

ξk → 1. (28)

By assumption, for all k ≥ k0, the increments sk are obtained in Step 9.1 of
Algorithm CGQN; that is,

xk+1 = xk − αk(1− ξk)gk − ξkB−1
k gk. (29)

From (29), we have

[Bk −H(x∗)](xk+1 − xk) =

−αk(1− ξk)Bkgk − ξkgk −H(x∗)(xk+1 − xk) =

gk+1 − gk −H(x∗)(xk+1 − xk)− gk+1 + (1− ξk)(gk − αkBkgk). (30)
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Taking here the norm and dividing by ‖xk+1 − xk‖, we obtain

‖gk+1‖
‖xk+1 − xk‖

≤ ‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

+
‖gk+1 − gk −H(x∗)(xk+1 − xk)‖

‖xk+1 − xk‖
+
‖(1− ξk)(gk − αkBkgk)‖

‖xk+1 − xk‖
. (31)

We note that all the assumptions of Theorems 2.2 and 2.3 are satisfied on the open
convex set D. By applying Theorem 2.2 we have

‖gk+1 − gk −H(x∗)(xk+1 − xk)‖
‖xk+1 − xk‖

≤ γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖)→ 0. (32)

Now consider the third term on right hand side of (31). Denoting by I the unit
matrix, we have

‖(1− ξk)(gk − αkBkgk)‖
‖xk+1 − xk‖

=
‖gk − αkBkgk‖

‖αkgk + ξk
1−ξkB

−1
k gk‖

≤

‖I − αkBk‖
‖αk gk

‖gk‖ + ξk
1−ξkB

−1
k

gk
‖gk‖‖

.

Since ‖Bk‖ is assumed to be bounded for all k ≥ k0 the relation ξk → 1 from (28)
yields

∥∥∥∥
ξk

1− ξk
B−1
k

gk
‖gk‖

∥∥∥∥→∞ as k →∞.

Indeed, if this is not true, then ‖B−1
km

gkm

‖gkm‖‖ → 0 for some km →∞ that contradicts

∥∥∥∥Bkm
(
B−1
km

gkm
‖gkm‖

)∥∥∥∥ = 1, ∀km.

Thus

‖(1− ξk)(gk − αkBkgk)‖
‖xk+1 − xk‖

→ 0 as k →∞. (33)

Therefore, it follows from (26), (32) and (33) that

lim
k→∞

‖gk+1‖
‖xk+1 − xk‖

= 0. (34)

The remaining part of the proof is similar to the proof of Theorem 5.4.3 from

[18] which yeilds limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = 0. This means that the sequence {xk} is

convergent to x∗ superlinearly.
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2. Now suppose that xk converges to x∗ superlinearly. Clearly g(x∗) = 0. From
the proof of Theorem 5.4.3 [18] it follows that the relation (34) is true. Therefore,
from (30) we obtain

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

≤ ‖gk+1 − gk −H(x∗)(xk+1 − xk)‖
‖xk+1 − xk‖

+
‖gk+1‖

‖xk+1 − xk‖
+
‖(1− ξk)(gk − αkBkgk)‖

‖xk+1 − xk‖
. (35)

which gives (26) by using (32), (33) and (34). �

Similar to Theorem 5.1, for Algorithm CGN with Step 9.1 we have the following
theorem.

Theorem 5.2 : Let the function f be twice continuously differentiable and As-
sumptions AS1-AS2 be satisfied. Consider a sequence xk → x∗, xk ∈ D, xk+1 =
xk + sk, that is generated by Algorithm CGN. Moreover, suppose there is k0 such
that for all k ≥ k0: cos(θ0

k) ≥ δ > 0, where θ0
k is the angle between d1,k and d2,k;

and the iterations sk in Step 9.1 utilize the formula

sk = αk(1− ξk)d1,k + ξkd2,k.

Then {xk} converges to x∗ at a superlinear rate.

Proof : From assumption AS2, there is a constant γ ≥ 0 such that

‖[Hk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

≤ ‖Hk −H(x∗)‖‖xk+1 − xk‖
‖xk+1 − xk‖

= ‖Hk −H(x∗)‖ ≤ γ‖xk − x∗‖. (36)

Since {xk} converges to x∗, we have

lim
k→∞

‖[Hk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0. (37)

The remaining of the proof follows from the proof of Theorem 5.1 with considering
Hk instead of Bk. �

6. Numerical Experiments

In this section, the performance of the proposed algorithms are evaluated by apply-
ing them to some unconstrained test problems taken from [15]. Out of 18 uncon-
strained minimization problems we use 15 problems in the numerical implementa-
tions excluding the 3 problem that are global optimization problems. Table 1 gives
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a brief description about each test problem, where n is a given integer number by
a user. More details can be found in [15].

The group of methods we compare includes our algorithms, algorithms presented
by Shi [17], the Newton method (NM), the Quasi-Newton method (QNM) and the
gradient method (GM). In the CGN and CGQN algorithms we use two different
versions, as described in Steps 9.1 and 9.2. We refer algorithms using Step 9.1 as
CGN1 and CGQN1, and algorithms using Step 9-2 as CGN2 and CGQN2. From
[17], we apply Algorithms 2 and 4, and we refer them as Shi1 and Shi2 that are
the Newton and Quasi-Newton based methods, respectively.
The termination criteria are the same for all algorithms. Algorithms terminate
when either ‖g(x)‖ ≤ ε or the number of iterations exceeds 500. Parameters in
Algorithms CGN and CGQN are chosen as follows: ε = 10−6, η = 10−3, δ = 10−3,
ϑ = 1.1, ω = 10−10, L = 1010. Also we select ρ = 10−3, σ = 0.9 for the Wolfe-
Powell rule.

The number of iterations (to find the local optimal solutions) used by the algo-
rithms for given initial points are reported in Table 2. In this table, TP stands for
test problems, Dim for dimention and IP for initial points. The initial points are
taken from [15, 17]. “AC” and “NC” stand for the “almost convergent” and “not
convergent”, respectively. Convergence means that the method finds the solution
xk where ‖gk‖ < 10−6, almost convergence means that the method finds a solution
xk where 10−6 ≤ ‖gk‖ ≤ 10−2; otherwise we accept that a method fails to find a
solution, that is, it is not convergent.

Based on Table 2, the number of iterations used by Algorithm CGN is, overall,
less than those used by other Newton based methods. Especially CGN1 (using
Step 9.1) has the lowest iteration numbers in comparison with other Newton based
methods. In the Quasi-Newton based methods, our algorithm (CGQN) has found
the local optimal solutions using the lowest number of iterations. The gradient
method is almost convergent or not convergent in most of the cases.

In order to compare the algorithms with more initial points, we generate 50 ran-
dom initial points uniformly distributed in [−10, 10]n ⊂ Rn for each test problem
1. Table 3 presents the summary of convergence results in percentage for all test
problems. Results from this table demonstrate that Algorithm CGN has the high-
est convergence rate among Newton based methods. Similarly, Algorithm CGQN
has the highest convergence rate among Quasi-Newton based methods.

New algorithms for solving unconstrained optimization problems are presented
based on the idea of combining two types of descent directions: the direction of
anti-gradient and either the Newton or Quasi-Newton directions. The use of lat-
ter directions allows one to improve the convergence rate. Global and superlinear
convergence properties of these algorithms are established. Numerical experiments
using some unconstrained test problems are reported. Also the proposed algorithms
are compared with some existing similar methods using results of experiments. This
comparison demonstrates the efficiency of the proposed combined methods.

7. Conclusion

In this paper, we have developed new algorithms which combine the anti-gradient
direction with either the Newton direction or the Quasi-Newton direction. We have
proved that under some conditions, the first version is both globally and superlinear
convergent, while the second version is only globally convergent.

We have carried out a number of experiments using fifteen unconstrained test
problems. The numerical results clearly demonstrate the efficiency of proposed
algorithms.
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Table 1. Some test problems taken from [15], n is a user given integer

Problem Function name Dimension

P1 Freudenstein and Roth function 2
P2 Box three demential function 3
P3 Gaussian function 3
P4 Gulf research and development function 3
P5 Helical valley function 3
P6 Brown and Dennis function 4
P7 Wood function 4
P8 Biggs EXP6 function 6
P9 Watson function n
P10 Extended Powell singular function n
P11 Penalty function1 n
P12 Penalty function2 n
P13 Trigonometric function n
P14 Variably dimensioned function n
P15 Extended Rosenbrock function n
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Table 2. Number of iterations for 15 test problems obtained by combination of gradient and Newton methods (CGN1 and CGN2), combination

of gradient and Quasi Newton methods (CGQN1 and CGQN2), Shi’s methods [17] (Shi1, Shi2), Newton method (NM), Quasi-Newton method

(QNM) and gradient method (GM)

TP Dim IP Newton based methods Quasi-Newton based methods
CGN1 CGN2 Shi1 NM CGQN1 CGQN2 Shi2 QNM GM

P1 2 (0.5,−2) 6 8 8 14 9 9 24 17 AC
P1 2 (5,−20) 7 10 13 24 17 17 26 27 253

P2 3 (0, 10, 20) 7 7 9 10 23 23 25 41 AC
P2 3 (0, 100, 200) 12 15 36 NC 14 20 29 31 37

P3 3 (0.4, 1, 0) 2 3 4 5 2 2 6 6 10
P3 3 (4, 10, 0) 9 15 12 NC 18 20 22 27 180

P4 3 (5, 2.5, 0.15) 4 8 11 11 19 34 48 48 66
P4 3 (−5,−2.5,−0.15) 3 5 14 14 13 13 13 13 18

P5 3 (−1, 0, 0) 10 10 13 24 17 17 28 22 AC
P5 3 (−10, 0, 0) 14 20 19 NC 20 20 37 35 NC

P6 4 (25, 5,−5,−1) 10 12 13 19 39 44 44 44 320
P6 4 (500, 100,−100,−20) 16 16 18 18 64 74 67 69 430

P7 4 (−3,−1,−3,−1) 21 AC AC NC 31 37 81 62 NC
P7 4 (3, 1, 3, 1) 9 10 11 11 18 27 64 57 AC

P8 6 (1, 2, 1, 1, 1, 1) 20 23 24 NC 64 64 102 87 AC
P8 6 (10, 20, 10, 10, 10, 10) 27 30 66 NC 24 26 33 32 AC

P9 6 (0, 0, 0, 0, 0, 0) 6 11 14 14 28 34 36 38 AC
P9 6 (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 8 9 9 NC 29 34 37 35 AC
P9 30 (0, 0, ..., 0) 7 10 10 14 45 54 59 58 AC
P9 30 (0.1, 0.1, ..., 0.1) 55 57 66 72 73 94 95 99 AC

P10 4 (3,−1, 0, 1) 12 12 13 18 20 23 23 25 AC
P10 4 (30,−10, 0, 10) 17 19 29 18 24 27 36 35 AC
P10 40 (3,−1, 0, 1, ..., 3,−1, 0, 1) 13 14 20 24 68 73 77 93 AC
P10 40 (30,−10, 0, 10, ..., 30,−10, 0, 10) 25 28 33 35 53 55 55 59 AC

P11 10 (1, 2, ..., 9, 10) 5 7 12 10 5 8 14 15 17
P11 10 (10, 20, ..., 90, 100) 7 9 15 13 13 13 16 18 24
P11 100 (1, 2, ..., 90, 100) 8 11 26 NC 15 18 19 22 NC
P11 100 (10, 20, ..., 900, 1000) 14 14 15 NC 21 23 23 28 NC

P12 10 (0.5, 0.5, ..., 0.5) 6 6 6 8 10 11 14 14 71
P12 10 (5, 5, ..., 5) 9 12 17 14 22 22 32 27 48
P12 100 (0.5, 0.5, ..., 0.5) 22 27 AC NC 73 89 94 174 AC
P12 100 (5, 5, ..., 5) 29 30 AC NC 80 91 102 127 NC

P13 10 (0.1, 0.1, ..., 0.1, 0.1) 10 15 14 AC 18 19 20 21 104
P13 10 (1, 1, ..., 1, 1) 11 11 14 14 29 39 46 57 123
P13 100 (0.01, 0.01, ..., 0.01, 0.01) 16 17 20 AC 39 56 54 135 137
P13 100 (0.1, 0.1, ..., 0.1, 0.1) 24 23 29 30 440 452 468 480 489

P14 10 (0.9, 0.8, ..., 0.1, 0) 10 11 14 21 16 20 21 22 27
P14 10 (9, 8, ..., 1, 0) 9 12 12 26 11 12 22 31 AC
P14 100 (0.99, 0.98, ..., 0.01, 0) 15 19 24 26 24 24 29 38 57
P14 100 (9.9, 9.8, ..., 0.1, 0) 29 32 32 36 14 17 20 31 AC

P15 10 (−1.2, 1, ...,−1.2, 1) 10 18 25 NC 81 87 104 95 AC
P15 10 (−12, 10, ...,−12, 10) 41 52 71 NC 97 108 115 114 NC
P15 100 (−1.2, 1, ...,−1.2, 1) 16 18 24 NC 327 355 383 411 AC
P15 100 (−12, 10, ...,−12, 10) 51 58 62 NC 217 238 241 295 NC

Table 3. Summary of average convergence results over 15 test problems given in Table 1 with 50

random initial points

Algorithm Convergence Almost convergence Non convergence

Newton CGN1 98.27 1.36 0.37
based CGN2 95.72 2.82 1.46
methods Shi1 94.91 3.55 1.54

NM 56.18 4.45 39.37
Quasi CGQN1 96.72 1.91 1.37
Newton CGQN2 95.54 2.36 2.10
based Shi2 94.82 2.18 3.00
methods QNM 93.12 2.09 4.79

GM 53.45 26.27 20.28


