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Abstract

Clustering in gene expression data sets is a challeng-
ing problem. Different algorithms for clustering of
genes have been proposed. However due to the large
number of genes only a few algorithms can be applied
for the clustering of samples. k-means algorithm and
its different variations are among those algorithms.
But these algorithms in general can converge only
to local minima and these local minima are signifi-
cantly different from global solutions as the number
of clusters increases. Over the last several years differ-
ent approaches have been proposed to improve global
search properties of k-means algorithm and its perfor-
mance on large data sets. One of them is the global
k-means algorithm. In this paper we develop a new
version of the global k-means algorithm: the modified
global k-means algorithm which is effective for solv-
ing clustering problems in gene expression data sets.
We present preliminary computational results using
gene expression data sets which demonstrate that the
modified k-means algorithm improves and sometimes
significantly results by k-means and global k-means
algorithms.

1 Introduction

This paper develops an incremental algorithm for
solving sum-of-squares clustering problems in gene
expression data sets. Clustering in gene expression
data sets is a challenging problem. Different algo-
rithms for clustering of genes have been proposed (see,
for example, (Medvedovic & Sivaganesan 2002, Ye-
ung et al. 2001, Yeung et al. 2003)). However due
to the large number of genes only a few algorithms
can be applied for the clustering of samples ((Bagirov
et al. 2003)). As the number of clusters increases
the number of variables in the clustering problem in-
creases drastically and most of clustering algorithms
become inefficient for solving such problems. k-means
algorithm and its different variations are among those
algorithms which still applicable to clustering of sam-
ples in gene expression data sets. But k-means algo-
rithms in general can converge only to local minima
and these local minima may be significantly different
from global solutions as the number of clusters in-
creases. Recently the global k-means algorithm has
been proposed to improve global search properties of
k-means algorithms ((Likas et al. 2003)). In this pa-
per we develop a new version of the global k-means
algorithm: the modified global k-means algorithm
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which is effective for solving clustering problems in
gene expression data sets.

The cluster analysis deals with the problems of
organization of a collection of patterns into clusters
based on similarity. It is also known as the unsuper-
vised classification of patterns and has found many
applications in different areas. In cluster analysis we
assume that we have been given a finite set of points
A in the n-dimensional space IR", that is

A=1{a',...,am}, wherea’ € R", i=1,...,m.
There are different types of clustering. In this paper
we consider the hard unconstrained partition cluster-
ing problem, that is the distribution of the points of
the set A into a given number k of disjoint subsets
AV j =1,...,k with respect to predefined criteria
such that:

1) AV#£0,5=1,....k

2) AINA =0, jl=1,....k j#L
k

3) A= J A
j=1

4) no constraints are imposed on clusters A7, j =
1,...,k.

The sets A7, j = 1,....k are called clusters. We
assume that each cluster A7 can be identified by its

center (or centroid) #/ € R™, j =1,..., k. Then the
clustering problem can be reduced to the following
optimization problem (see (Bock 1998, Spath 1980)):

1 m k _
minimize ¥(z,w) Ezzwwﬂﬂij —a'|]? (1)
=1 :1

subject to

k
Swy=1i=1,...,m, (3)
j=1

and
U/ij:()OI‘l,i:l,...,m,j:lv'_wk (4)

where w;; is the association weight of pattern a® with
cluster j, given by

Wii — { 1 if pattern a’ is allocated to cluster j,
Y 0 otherwise
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and m i
DY =L iy S
Dim Wij
Here || -] is an Euclidean norm and w is an m X k ma-
trix. The problem (1)-(4) is also known as minimum
sum-of-squares clustering problem.

Different algorithms have been proposed to solve
the clustering problem. The paper (Jain et al. 1999)
provides survey of most of existing algorithms. We
mention among them heuristics like k-means algo-
rithms and their variations (h-means, j-means etc.),
mathematical programming techniques including dy-
namic programming, branch and bound, cutting
plane, interior point methods, the variable neighbor-
hood search algorithm and metaheuristics like simu-
lated annealing, tabu search, genetic algorithms (see
(Al-Sultan 1995, Brown & Entail 1992, de Merle et
al. 2001, Diehr 1985, Dubes & Jain 1976, Hanjoul
& Peeters 1985, Hansen & Jaumard 1997, Hansen
& Mladenovic 2001a, Hansen & Mladenovic 2001b,
Koontz et al. 1975, Selim & Al-Sultan 1991, Spath
1980, Sun et al. 1994)). Since the number of genes
in gene expression data sets are very large most of
these algorithms cannot be applied for clustering of
samples in such data sets.

The problem (1)-(4) is a global optimization prob-
lem and the objective function % in this problem has
many local minima. However clustering algorithms
based on global optimization techniques are not ap-
plicable to even relatively large data sets. Algorithms
which are applicable to such data sets can locate only
local minima of the function 1 and these local min-
ima can differ from global solutions significantly as
the number of clusters increases. Another difficulty
is that the number of clusters, as a rule, is not known
a priori. Over the last several years different in-
cremental algorithms have been proposed to address
these difficulties. Results of numerical experiments
show that an incremental approach allows one, as a
rule, to locate a local solution close to global one.
Consequently it can produce a better cluster struc-
ture of a data set. The paper (Bagirov & Yearwood,

2006) develops an incremental algorithm based on
nonsmooth optimization approach to clustering. The
global k-means algorithm was developed in (Likas et
al. 2003). The incremental approach is also discussed
in (Hansen et al. 2004).

In this paper we propose a new version of the
global k-means algorithm for solving clustering prob-
lems in gene expression data sets. In this algorithm
a starting point for the k-th cluster center is com-
puted by minimizing so-called auxiliary cluster func-
tion. We present the results of numerical experi-
ments with 6 gene expression data sets. These results
demonstrate that the proposed algorithm improves
solutions obtained by the global k-means algorithm
and for some data sets this improvement is substan-
tial.

The rest part of the paper is organized as follows:
Section 2 gives a brief description of k-means and the
global k-means algorithms. The nonsmooth optimiza-
tion approach to clustering and an algorithm for the
computation of a starting point is described in Sec-
tion 3. Section 4 presents an algorithm for solving
clustering problems. The results of numerical experi-
ments are given in Section 5 and Section 6 concludes
the paper.

2 k-means and the global k-means algorithms

In this section we give a brief description of k-means
and the global k-means algorithms.

The k-means algorithm proceeds as follows:

1. choose a seed solution consisting of k centers (not
necessarily belonging to A);

2. allocate data points a® € A to its closest center
and obtain k-partition of A;

3. recompute centers for this new partition and go
to Step 2 until no more data points change clus-
ter.

The effectiveness of this algorithm highly depends on
a starting point. It converges only to a local solution
which can significantly differ from the global solution
in many large data sets.

The global k-means algorithm proposed in (Likas
et al. 2003) computes clusters successively. At the
first iteration of this algorithm the centroid of the set
A is computed and in order to compute k-partition
at the k-th iteration this algorithm uses centers of
k — 1 clusters from the previous iteration. The global
k-means algorithm for the computation of ¢ < m clus-
ters in a data set A can be described as follows.

Algorithm 1 The global k-means algorithm.

Step 1. (Initialization) Compute the centroid z! of
the set A:

m

Zai, aded i=1,...,m

=1

1
r=—
m

and set k = 1.

Step 2. Set k = k + 1 and consider the centers
1.2

b 2?,..., 2" from the previous iteration.

Step 3. Consider each point a of A as a starting point
for the k-th cluster center, thus obtaining m initial so-
lutions with k points (x!,..., 271 a); apply k-means
algorithm to each of them; keep the best k-partition
obtained and its centers z!, 22, ..., z*.

Step 4. (Stopping criterion) If k = ¢ then stop, oth-
erwise go to Step 2.

This version of the algorithm is not applicable for
clustering on middle sized and large data sets. Two
procedures were introduced to reduce its complexity
(see (Likas et al. 2003)). We mention here only one
of them because the second procedure is applicable
to low dimensional data sets. Let dj_; be a squared

distance between a’ € A and the closest cluster center
among the k£ — 1 cluster centers obtained so far. For
each a® € A we calculate the following:

m
ri = min{0, [la’ — a’||* — d]_,}
j=1

and we take the data point a' € A for which
l=arg min;—i . m7r;

as a starting point for the k-th cluster center. Then
k-means algorithm is applied starting from the point
b 2?,..., 2" 1, a! to find k cluster centers. In our
numerical experiments we use this procedure.

It should be noted that k-means algorithm and its
variants tend to produce only spherical clusters and
they are not always appropriate for solving cluster-
ing problems. However applying k-means algorithms
we assume that clusters in a data set can be approx-
imated by n-dimensional balls.



3 Computation of starting points

The clustering problem (1)-(4) can be reformulated in
terms of nonsmooth, nonconvex optimization as fol-
lows (see (Bagirov et al. 2002, Bagirov et al. 2003)):

minimize f(z) (5)

subject to
= (z,..., %) e R"*F, (6)

where

m

1 _ .
1 By _ — : J_ 0 2. 7
fla...ah) = — ;,1 jin | lz? —af% - (7)

We call f a cluster function. If kK > 1, the function
f is nonconvex and nonsmooth. The number of vari-
ables in problem (1)-(4) is (m + n) x k whereas in
problem (5)-(6) this number is only n x k and the
number of variables does not depend on the number
of instances. It should be noted that in many real-
world data sets the number of instances m is substan-
tially greater than the number of features n. On the
other hand in the hard clustering problems the co-
efficients w;; are integer, that is the problem (1)-(4)
contains both integer and continuous variables. In the
nonsmooth optimization formulation of the clustering
problem variables are continuous only. All these cir-
cumstances can be considered as advantages of the
nonsmooth optimization formulation (5)-(6) of the
clustering problem.

Let us consider the problem of finding k-th cluster
center assuming that the centers ', ..., 2*~1 for k—1
clusters are known. Then we introduce the following
function:

P =S min{dy, ly-a?} )
i=1

where y € IR"™ stands for k-th cluster center and
a'|*}.
The function f* is called an auziliary cluster func-
tion. It has only n variables.

Consider the set

D={yeR":|ly—d|>>dj_,}.

};71 = min{Hxl — ai||2, ey ||ack_1 —

D is the set where the distance between any its point y
and any data point a* € A is no less than the distance
between this data point and its cluster center. We
also consider the following set

Dy=R"\D={yeR":
Irc{l,....om}, I#0:|y—ad'| <di_, ViecI}.

The function f* is a constant on the set D and its
value in this set is

ffly)=do=> di_y, VyeD.

i=1

It is clear that 2/ € D for all j = 1,...,k — 1 and
at€Dyforalla’ € A, a*#27, j=1,....k—1. Tt
is also clear that f*(y) < do for all y € Dy.

Any point y € Dy can be taken as a starting point
for the k-th cluster center. The function f* is non-
convex function with many local minima and one can

assume that the global minimum of this function can
be a good candidate to be the starting point for the
k-th cluster center. However it is not always possi-
ble to find the global minimum of f* in a reasonable
time. Therefore we propose an algorithm for finding
a local minimum of the function f*.

For any y € Dy we consider the following sets:

Sity)={a" € A:|ly—d'|* =dj_,},
Sa(y) ={a' € A:|ly—d'|* <dj_,},
Ss(y)={a" € A:|ly—d'||>>dj_,}.

The set So(y) # 0 for any y € Dy.
The the following algorithm is proposed to find a
starting point for the k-th cluster center.

Algorithm 2 An algorithm for finding the starting
point.

Step 1. For each a’ € D[] A compute the set Ss(a’),
its center ¢’ and the value f¥ = f*(c’) of the function
f* at the point ¢'.

Step 2. Compute

J— i k
a’ = arg mmaieDoﬂA P

the corresponding center ¢/ and the set Sa(c/).

Step 3. Recompute the set Sz(c?) and its center until
no more data points escape or return to this cluster.

Let T be a cluster center generated by Algorithm 2.
Then the point Z is a local minimum of the function

F*.
4 An incremental clustering algorithm

In this section we describe an incremental algorithm
for solving cluster analysis problems.

Algorithm 3 An incremental algorithm for cluster-
ing problems.

Step 1. (Initialization). Select a tolerance ¢ > 0.
Compute the center 2'* € IR™ of the set A. Let f*
be the corresponding value of the objective function
(7). Set k =1.

Step 2. (Computation of the next cluster center).

Let z'*,..., z"* be the cluster centers for k-partition
problem. Apply Algorithm 2 to find a starting point

y*+10 € R™ for the (k + 1)-st cluster center.

Step 3. (Refinement of all cluster centers). Take
ohHL0 = (gl R yRHL0) as a new starting
point, apply k-means algorithm to solve (k + 1)-
partition problem. Let z'*,...,z*t%* be a solution
to this problem and f*+1* be the corresponding value
of the objective function (7).

Step 4. (Stopping criterion). If
fk* _ fk+1,*

fl*
then stop, otherwise set k = k + 1 and go to Step 2.

<€



It is clear that fk* > 0 for all & > 1 and the
sequence {f**} is decreasing, that is,

ka’* < fk’* for all k> 1.

The latter implies that after & > 0 iterations the stop-
ping criterion in Step 4 will be satisfied. Thus Algo-
rithm 3 computes as many clusters as the data set A
contains with respect to the tolerance € > 0.

The choice of the tolerance € > 0 is crucial for
Algorithm 3. Large values of € can result in the ap-
pearance of large clusters whereas small values can
produce small and artificial clusters.

5 Results of numerical experiments

To verify the effectiveness of the proposed algorithm
and to compare it with similar algorithms a number of
numerical experiments with six gene expression data
sets have been carried out on a Pentium-4, 2.0 GHz,
PC. We also use multi-start k-means (MSKM) and
global k-means (GKM) algorithms for comparison.
100 randomly generated starting points are used in
MSKM. In tables below MGKM stands for the mod-
ified global k-means algorithm. In tables we present
the number of clusters (IV), values f of the clustering
function obtained by different algorithms and CPU
time (). We used the following gene expression data
sets.

5.1 Data set 1

This data set is Boston Lung Cancer data set and was
generated at the Dana Farber Cancer Institute. The
data set consists of 12484 genes, 185 lung tumor sam-
ples and 17 normal lung samples. Of these, there were
138 lung adenocarcinoma, 6 small-cell lung cancer,
20 carcinoid lung cancer and 21 squamous cell. Ex-
pression profiles were generated using the Affymetrix
GeneChip HG_U95Av2. This data set can be ac-
cessed from Cancer Genomics expression database at
the Broad Institute of MIT and Harvard. Results for
this data set are presented in Table 1.

Table 1: Results for Data set 1

N MSKM GKM MGKM

f x 1010 t f x 1010 t f x 1010 t
2 8.441 542.81 8.441 59.31 8.441 102.47
5 6.644 1652.08 6.769 240.39 6.712 415.58
10 5.703 2714.59 6.004 545.19 5.696 962.94
15 5.467 4086.98 5.556 862.45 5.177 1543.30
20 4.900 5016.28 5.041 1199.98 1.812 2150.46

Results presented in Table 1 demonstrate that
MSKM algorithm produces better results when the
number of clusters N < 10. However MGKM outper-
forms two other algorithms as the number of clusters
increases. GKM requires less CPU time however its
solutions are not good. MGKM requires significantly
less CPU time than MSKM.

5.2 Data set 2

This is the Novartis multi-tissue data set. The
data set includes tissue samples of four can-
cer types with 26 breast,26 prostate, 28 lung,
and 23 colon samples. There are 103 sam-
ples all together and 1000 genes. This data
set is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Results for this data set are
presented in Table 2.

One can see from Table 2 that algorithms repform
similar when the number of clusters N < 5. However

Table 2: Results for Data set 2

N MSKM GKM MGKM

f x 1019 t f x 1010 t f x 1010 t
2 9.212 0.81 9.212 0.19 9.212 0.30
5 5.024 3.30 5.032 0.61 5.032 1.03
10 3.424 6.70 3.408 1.36 3.351 2.88
15 2.849 10.13 2.897 2.16 2.812 5.98
20 2.470 11.42 2.556 3.00 2.422 10.23

GKM requires significantly less CPU time. MGKM
produces better solutions than two other algorithms
as the number of clusters increases. Again MGKM
requires less CPU time than MSKM.

5.3 Data set 3

This is a leukemia data set with 5000 genes and
38 samples including 11 acute myeloid leukemia
(AML)and 27 acute lymphoblastic leukemia (ALL)
samples. The original data set is retrievable
from:  http://www.broad.mit.edu/cgi-bin/cancer/
datasets.cgi. Results are presented in Table 3. We
calculate maximum 10 clusters because this data set
contains only 38 samples.

Table 3: Results for Data set 3

N MSKM GKM MGKM
f x 1019 t f x 1019 t f x 1010 t
2 7.880 3.06 8.137 0.58 7.880 0.67
5 5.537 817 5.837 2.02 5.729 2.64
10 4.104 10.47 4.399 1.59 4.271 8.19

Results from Table 3 show MSKM produces bet-
ter solutions than two other algorithms, however it
requires more computational time. MGKM produces
better solutions than the GKM algorithm.

5.4 Data set 4

This data set includes 248 samples and 985
genes. Diagnostic bone narrow samples from pe-
diatric acute leukemia patients corresponding to
6 prognostically important leukemia subtypes: 43
T-lineage ALL, 27 E2A-PBX1, 15 BCR-ABL,
79 TEL-AMLI1, 20 MLL rearrangements and 64
“hyperdiploid>50" chromosomes. = The data set
is available at:  http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Computational results for
this data set are presented in Table 4.

Table 4: Results for Data set 4

~ MSKM GRM MGKM
f x 1013 t f x 1013 t f x 1013 t

2 2.777 747 2.777 0.97 2.777 1.81

5 1.939 20.44 1.039 3.55 1.039 6.81

10 1.671 36.44 1.685 7.86 1.626 15.20

15 1.570 51.67 1.555 12.34 1.480 25.14

20 1.534 60.36 1.473 17.02 1.364 36.09

For data set 4 all three algorithms give the same
solutions when the number of clusters N < 5. How-
ever, for larger number of clusters MGKM outper-
forms other two algorithms. GKM requires the least
CPU time and MGKM requires less CPU time than
MSKM.

5.5 Data set 5

This is a lung cancer data set which in-
cludes 2000 genes and 139 adenocarcinomas,
21 squamous cell carcinomas, 20 carcinoids

and 17 normal lung samples. This data set



is available at:  http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Results are given in Table
5.

Table 5: Results for Data set 5

N MSKM GKM MGKM
f x 1010 t f x 1010 t f x 1010 t

2 1.588 5.28 1.589 0.70 1.589 1.23

5 1.068 24.30 1.067 2.33 1.067 1.47

10 0.870 39.94 0.880 5.27 0.862 10.05

15 0.860 50.67 0.819 8.23 0.781 15.61

20 0.824 53.45 0.766 11.23 0.726 22.47

Results presented in Table 5 demonstrate that al-
gorithms produce almost the same solutions when the
number of clusters N < 5. The algorithm MGKM sig-
nificantly outperforms other algorithms as the num-
ber of clusters increases. GKM requires the least CPU
time and MGKM requires less CPU time than the al-
gorithm MSKM.

5.6 Data set 6

This data set has 90 samples and 1277 genes.
It contains 13 distinct tissue types: 5 breast
cancer, 9 prostate, 7 lung, 11 colon, 6 germi-
nal center cells, 7 bladder, 6 uterus, 5 periph-
eral blood monocytes, 12 kidney, 10 pancreas, 4
ovary, 5 whole brain and 3 cerebellum. This data
set is available at: http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. Computational results for
this data set are presented in Table 6.

Table 6: Results Data set 6

N MSKM GKM MGKM
f x 1011 t f x 1011 t f x 1011 t
2 1.554 2.16 1.589 0.20 1.582 0.36
5 1.040 7.06 1.064 0.69 1.065 1.23
10 0.655 14.28 0.651 1.52 0.633 2.69
15 0.526 23.58 0.461 2.44 0.453 1.86
20 0.476 29.78 0.352 3.38 0.349 8.27

Results from Table 6 demonstrate that for small
number clusters MSKM works better than other al-
gorithms, however GKM and MGKM produce better
solutions as the number of clusters increases. MGKM
is best for larger number clusters. MSKM is computa-
tionally more expensive and GKM use the least CPU
time.

5.7 Content of clusters

In this subsection we demonstrate the content of clus-
ters produced by different algorithms and we use the
notion of cluster purity to compare clusters. The no-
tion of cluster purity is defined as follows:

1 j
max - n;,

P(A%) =100 ax
Npi j=1,...,

where n 4 = |A| is the cardinality of the cluster A%,

ni‘i is the number of instances in the cluster A that
belong to the true class j and [ is the number of true
classes. Then the total purity P(A) for the data set
A can be calculated as:

i P(A?

P(A) = L().

m
We used the data set 6 and calculated 30 clusters.
Results are as follows.

e MSKM algorithm produced 13 empty, 6 mixed
and 11 pure clusters with total purity P(A) =
64.44;

e GKM algorithm produced 27 pure and 3 mixed
clusters with the total purity P(A) = 83.33. In
three mixed clusters the results were as follows:

— Cluster 1 - 17 tumors: breast(1), lung(2),
colon(2), germinal center cells (1), blad-
der(1), uterus(2), kidney(3), pancreas(5);

— Cluster 2 - 4 tumors: bladder(1), uterus(3);

— Cluster 3 - 5 tumors: whole brain(2), cere-
bellum(3).

e MGKM algorithm produced 27 pure and 3 mixed
clusters with the total purity P(A) = 85.56. In
three mixed clusters the results were as follows:

— Cluster 1 - 14 tumors: breast(1), lung(2),
colon(1), bladder(2), kidney(3), pan-
creas(5);

— Cluster 2 - 3 tumors: colon(1), germinal
center cells (1), bladder(1).

— Cluster 3 - 5 tumors: bladder(1), uterus(3),
whole brain(1);

One can see that MGKM algorithm produces better
clusters than two other algorithms.

6 Conclusions

In this paper we have developed the new version of
the global k-means algorithm, the modified global k-
means algorithm. This algorithm computes clusters
incrementally and to compute k-partition of a data
set it uses k — 1 cluster centers from the previous it-
eration. An important step in this algorithm is the
computation of a starting point for the k-th cluster
center. This starting point is computed by minimiz-
ing so-called auxiliary cluster function. The proposed
algorithm computes as many clusters as a data set
contains with respect to a given tolerance.

We have presented the results of numerical exper-
iments on 6 gene expression data sets. These results
clearly demonstrate that the modified global k-means
algorithm proposed in this paper is efficient for solv-
ing clustering problems in gene expression data sets.
It outperforms both the multi-start and global k-
means algorithms as the number of clusters increases.
However the proposed algorithm requires more com-
putational efforts than the global k-means algorithm.
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