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Abstract

This paper addresses the problem of determining optimal sequences of tests for
the clinical assessment of cardiac autonomic neuropathy (CAN). Specifically, we
studied the Ewing battery consisting of the five most important tests in the diag-
nosis of CAN, and investigated an application of decision trees and the recently
proposed optimal decision path finder (ODPF) procedure for indentifying optimal
sequences of tests. We present the outcomes of an exhaustive evaluation of the
performance of decision trees for all 32 subsets of the Ewing battery. These out-
comes are required for practical determination of such sequences using the ODPF
procedure for various cost-functions including the minimization of effects when
any one or more of these tests cannot be completed because of the individual dif-
ficulties faced by each patient in performing the tests. We used several feature
selection methods to find the best features that can increase the predictive accu-
racy in situations where one of the Ewing attributes is missing, and have prepared
complete outcomes of all tests required for finding the best sequences of tests
including the Ewing tests combined with additional features. We applied these
outcomes to determine the best sequence of the five tests belonging to the Ewing
battery for the clinical assessment of CAN and cost-function equal to the number
of tests, as one of the appropriate cost-functions used in this setting.
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1. Introduction

The problem of finding an optimal sequence of tests in diverse knowledge do-
mains has been addressed by various authors including Chi, Streen and Katz for a
classification or a diagnosis [6], Thompson [46] for determining the sequence of
tests that maximizes the predictive accuracy of a disease diagnosis, and and Oddi
and Cesta [38] for scheduling tasks to manage medical resources. Artificial Intelli-
gence (AI) methods were applied to planning and scheduling of tests for a number
of diseases by Houshyar and Khayyal [23], Marinagi et al. [36] and Spyropoulos
[44]. Scheduling tests is a well known topic outside medicine including vehicle
fault diagnosis considered by Bartels and Zimmermann [1], and other domains
considered by Dy and Brodley [12] and Liberatore and Nydick [35].

In this paper, we use data mining methods to find optimal sequences of tests
for the clinical risk assessment of cardiac autonomic neuropathy (CAN), prepare
outcomes required for determination of optimal sequences for individual cost-
functions, and find most effective additinal tests. In addition, visual representa-
tions are proposed that may simplify the use of experimental results in practice.

Data mining, as a part of knowledge discovery from databases (KDD), can
be used to identify novel, valid, useful, and ultimately understandable patterns in
data and has been applied extensively to data from the medical domain by Bellazzi
and Ferrazzi [2], Escalante et al. [13], Gagliardi [20], Kukar et al. [32], Liang and
Zhang [34], Shouman et al. [43] and Van et al. [48].

CAN is a complication of diabetes that involves damage to the autonomic
nerve fibres that innervate the heart and blood vessels. The resulting abnormal-
ities in heart rate control and vascular dynamics is thought to account for many
deaths [28]. The Ewing battery of tests [15, 17, 18] are used clinically to assess a
patient’s risk of CAN. There are five tests in the Ewing battery: changes in heart
rate associated with 1) lying to standing, 2) deep breathing , 3) attempted exhala-
tion against a closed airway (valsalva manoeuvre) and changes in blood pressure
associated with 4) hand grip and 5) lying to standing.

Ewing and Clarke [17] recommended that all five tests be performed in a pre-
ferred sequence however this takes time and is not possible for all patients. For
instance, the hand grip test may not be performed due to arthritis. The lying to
standing tests often cannot be performed due to mobility challenges and some
patients have conditions where forceful breathing is contra-indicated. Further,
clinicians sometimes have an idiosyncratic preference for one test or sequence of
tests over another, [16], [21]. Although the time to perform all five tests, at around
20-30 minutes, is not long, this is sometimes difficult to achieve in the context of a
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busy practice. These issues result in CAN risk assessments being made in practice
on the basis of only a subset of Ewing tests.

Chi, Streen and Katz [6] proposed and investigated an algorithm for determin-
ing optimal sequences of tests briefly illustrated in Figure 1, the Optimal Decision
Path Finder (ODPF) procedure. The ODPF uses a pre-specified threshold of cer-
tainty required for the diagnosis of a disease. The first test selected is identified
as the one that is most likely to lead to a threshold crossing for a diagnosis. The
next test selected depends on the result of the first test. For instance, if the first
test involves blood pressure which is found to be 160/90, then the second test is
one that is most likely to cross the disease classification threshold given that blood
pressure is 160/90.

 

Find a test that optimizes  
the next prediction 

Confident?  
 

Yes 
 

Start with an  
empty set of tests 

No 

 

 

Conclude a 
diagnosis 

Train classifiers on the 
outcomes of selected tests 

Figure 1: Optimal Decision Path Finder (ODPF) procedure

Chi, Streen and Katz [6] use a lazy support vector based classifier to determine
the minimum set of features to classify an instance into disease or non-disease
given the results of previous tests. The lazy support vectors are repeatedly used in
an algorithm that involves calibrating the support vector machine’s binary output
into one that involves a 10 category certainty assessment. The algorithm takes
into account the cost of each test which further complicates the application and
requires that the algorithm be implemented and embedded into a decision support
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system for the clinician to use during a consultation. However, this reduces a
clinician’s autonomy, and mandates a reliance on technological systems that may
not be available in all clinical settings.

This paper explores the use of decision trees to infer optimal sequences of
tests given that some tests may not be able to be performed at all. The main claim
made here is that decision trees, one of the most important algorithms for clinical
applications, can be effectively applied to determine the optimal boundary values,
and sequence of tests. This is because decision tree outcomes are easy to generate,
interpret and understand. In addition, a relatively simple visual presentation can
present the sequence in a manner that can be used in practice.

In this paper, following Shouman et al. [43] and Van et al. [48], we report the
performance of decision trees as one of the main data mining algorithms used in
clinical applications involving heart disease. Decision tree induction implemen-
tations, advanced by Quinlan [42], are readily available. The J48 classifier im-
plemented in Weka [22] was used in this study; however decision tree induction
algorithms are also available in Rattle [49, 50] and many other sources.

Lamb et al. [33] address the issue of selecting an optimal sequence of tests to
predict the risk of falls for elderly women. They use classification tree algorithms
to generate a decision tree that depicts a minimum number of tests or questions
to make an accurate prediction of a falls risk. Zuzek et al. [52] note that the
problem of identifying an optimal sequence of tests in order to reach a diagnosis
at minimum cost has been studied by numerous authors in relation to mechanical
or electrical fault diagnosis.

The current paper presents outcomes of our evaluation of the performance of
the decision trees for all subsets of the Ewing battery. We use these outcomes to
determine the best sequence of Ewing tests for the clinical assessment of CAN.
Although we assume that each Ewing test is equally costly, the determination of
the optimal sequence of tests using an individual cost-function for each test can
be carried out using our tables. The main benefit inherent in the use of decision
trees for the identification of an optimal sequence of tests is that the decision trees
are simply generated, and easily understood by clinicians.

The paper is organized as follows. The next section elaborates on the dataset
and pre-processing deployed for this study. Following that, Section 3 describes
measures of performance used in our experiments to evaluate decision trees. Sec-
tion 4 contains the experimental results and discussions. A summary of conclu-
sions is presented in Section 5.
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2. Cardiac Autonomic Neuropathy

The dataset derives from the DiScRi project by Jelinek et al. [28], a diabetes
complications screening programme in Australia where members of the general
public participate in a comprehensive health review consisting of tests including
ECG, Ewing battery, retinal scans, peripheral nerve function and blood supply
assessments, for early detection and timely intervention of diabetes and cardio-
vascular disease. Data on over 200 variables from over two thousand attendances
have been collected in recent years. The dataset has been used in data mining
applications by Cornforth and Jelinek [11], Huda et al. [24] and Jelinek et al. [28],
[26], [27]. The presence of CAN from DiScRi data was determined using the
Ewing battery of tests.

Several expert editing rules were used to reduce the number of missing values
in the database. These rules were determined during discussions with the experts
maintaining the database. Preprocessing of data using these rules produced 1177
complete rows with complete values of all Ewing fields, which were used for the
experimental evaluation of the performance of data mining algorithms.

The classification of disease progression associated with CAN is important,
because it has implications for planning of timely treatment, which can lead to
improved wellbeing of the patients and a reduction in morbidity and mortality
associated with cardiac arrhythmias in diabetes. As indicated above, the most
important tests required for a risk assessment of CAN rely on responses in heart
rate and blood pressure to various activities, usually consisting of tests described
in [15, 17, 18]. In particular, Ewing and Clarke [17] recommended the tests be
performed in a specific sequence as follows:

(1) Heart rate response to the Valsalva manoeuvre (VAHR); where the patient
exhales against 40mmHg pressure while the heart rate is observed.

(2) Heart rate variation during deep breathing (DBHR); where the patient sits
quietly and breathes deeply while an electrocardiogram records the heart
rate variation over 6 breathing cycles.

(2) Blood pressure response to sustained hand-grip (HGBP); where the systolic
blood pressure variation is recorded before and after a sustained hand grip.

(4) Heart rate response to moving from a lying to a standing position (LSHR);
where the beat to beat (R-R) interval change in response to standing from a
lying position is measured.
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(5) Blood pressure response moving from lying to standing (LSBP); where the
blood pressure change in response to standing from a lying position is mea-
sured.

Table 1 contains the boundary points for each test derived in [15, 17, 18] from
physiological evidence in association with in-field trials. These boundary values
are also explained by Ewing et al. [18] in great detail. The categorical variables
Abnormal, Borderline and Normal are introduced in the Ewing and Clark formu-
lation for each test. The boundary points illustrated in Table 1 may not necessarily
be the optimal boundary points for distinguishing categories of CAN risk when a
subset of Ewing tests are used. New boundary points identified by decision trees
can be used to maximize the predictive accuracy of CAN assessment.

Test Value

Normal Borderline Abnormal

VAHR ≥1.21 1.11-1.20 ≤1.10

DBHR ≥15 11-14 ≤10

HGBP ≥16 11-15 ≤10

LSHR ≥1.04 1.01-1.03 ≤1.00

LSBP ≤10 11-29 ≥30

Table 1: Ranges and boundary values determining categorical variables for the Ewing battery

DiScRi database contains a separate attribute LSBPneg that can take on values
FALSE and TRUE. If LSBPneg = TRUE and LSBP ≥ 30, then the result is ab-
normal. If LSBPneg = TRUE and 29 ≥ LSBP ≥ 11, then the result is borderline.
In all other cases the result of this test is normal.

Before applying the cut-offs to DiScRi data for DBHR, LSBP, HGBP we
round off fractional parts to the second decimal place. This means that we are
a little more conservative. Likewise, for VAHR, LSHR we discard the third and
further digits after the decimal point.

Ewing et al. [15, 18] defined the five classes for a CAN risk assessment given
in Table 2. Ewing et al. [18] considered alternative approaches to the classifica-
tion of CAN and compared the categorization given in Table 2 with two scoring
systems used by other researchers: (1) giving 0 for a normal test, for a borderline
result, and 1 for abnormal result, thus giving a score of 0-5 for each subject; and
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(2) the number of tests definitely abnormal, again giving a score of 0-5 for each
subject. Ewing et al. [18] demonstrate that these scoring systems give roughly
equivalent categorizations and seem to carry no real advantages.

Class Test values

Normal All tests normal or one borderline.

Early One of the three heart rate tests abnormal or two bor-
derline

Definite Two or more of the heart rate tests abnormal.

Severe Two or more of the heart rate tests abnormal plus one
or both of the blood pressure tests abnormal, or both
borderline.

Atypical Any other combination of abnormal tests.

Table 2: CAN classes defined by Ewing et al. [18]

Since there are very few atypical patients in the DiScRi database, we investi-
gated three original classifications of cardiac autonomic neuropathy progression
introduced by Ewing et al. [15, 18]. They have 2, 3 and 4 classes, respectively. The
first one divides all patients into two classes allocating each patient either to the
Normal class, or to Definite class. The second one divides all patients into three
classes allocating each patient to one of the following classes: Normal, Early,
Definite. The fourth classification divides all patients into four classes, allocated
each patient to one of the following classes: Normal, Early, Definite, and Severe.

Ewing [14] writes that the question of finding an optimal sequence of tests
remains a difficult open question that requires further investigation. This is also
confirmed by the more recent work of Chen et al. [4], Jelinek et al. [27, 26],
Khandoker et al. [30] and Stella et al. [45].

3. Measures of Performance for Decision Trees

Following Shouman et al. [43], we used accuracy in assessing the decision
trees as the main measure of performance essential for guiding the clinicians
in determining the best sequence of tests for a particular patient. It is related
to two other measures, sensitivity and specificity, also considered for example
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by Shouman et al. [43] and Yearwood et al. [51] and broadly used in clinical prac-
tice. Here we include only a brief overview of these measures. The accuracy
is defined for the whole classifier as the percentage of all patients classified cor-
rectly, which means that this definition does not involve weighted averages in the
calculation. The accuracy can be expressed as the probability that the prediction
of the classifier for an individual patient is correct. Sensitivity is the proportion of
positives (eg. patients with CAN) that are identified correctly. Sensitivity is also
called True Positive Rate. Specificity is the proportion of negatives (eg. patients
without CAN), which are identified correctly. Specificity is equal to 1 - False
Positive Rate. Sensitivity and specificity are measures evaluating binary classifi-
cations. For multi-class classifications they can be also used with respect to one
class and its complement. Following Shouman et al. [43], these measures can be
expressed using formulas:

Accuracy =
True Positive + True Negative

Positive + Negative
(1)

Sensitivity = True Positive/Positive (2)
Specificity = True Negative/Negative (3)

These measures are related to recall and precision. Precision of a classifier,
for a given class, is the ratio of true positives to combined true and false positives.
Recall is the ratio of true positives to the number of all positive samples (i.e., to the
combined true positives and false negatives). The recall calculated for the class of
patients with CAN is equal to sensitivity of the whole classifier.

4. Experimental Results and Discussion

In this paper we used 10 fold cross validation to assess the performance of J48
trained for various subsets of Ewing features. Figures 2 to 5 present the outcomes
of an exhaustive evaluation of performance of decision trees for all 32 subsets of
the set of features that is recognized as the most important set of features in the
diagnosis of CAN and is called the Ewing battery.

These outcomes are required for practical determination of such sequences
following the ODPF methodology to minimize individual difficulties faced by
each patient in performing the tests. We use these outcomes to determine the best
sequence of Ewing tests for the clinical assessment of CAN and cost-function
equal to the number of tests, see Table 4. Figure 6 illustrates the optimal sequence
of Ewing tests and predictive accuracies that can be achieved after each step for
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2 classes of CAN and the number of tests as cost-function, since the Ewing tests
have approximately equal financial costs. On the other hand, another important
objective of a clinician is to minimize difficulties that individual patients may
experience ... in determining the presence of CAN and so clinicians may have to
use other subsets of tests. Therefore there are alternative cost-function to be taken
into account on individual basis.

 

DBHR test 

 80.80  VAHR test 

HGBP test 

 
Optimal sequence of Ewing 

tests for 2 classes of CAN 

LSBP test 

LSHR test 

 91.33  

 93.97  

 94.14  

 100  

Figure 6: Optimal sequence of Ewing tests and predictive accuracies after each step for 2 classes
of CAN and the number of tests as cost-function

Table 3 illustrates the confusion matrix for the J48 classifier using a single Ew-
ing test, the DBHR. The table illustrates that 159/716 = 22% of patients classified
as CAN using the single measure of DBHR are likely to be normal. This error
rate may be too high for most diagnostic contexts. However, it may be sufficient
for lifestyle based CAN mitigation strategies. The DBHR proved to be the most
accurate single test, and so is the test recommended to be performed first.

During the application of ODPF procedure explained in Figure 1, a clinician
could follow the resulting refinement of the protocol choosing tests so that every
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Classes Predictions

Normal Definite

Normal 394 67

Definite 159 557

Table 3: Confusion matrix of J48 classifier with 2 CAN classes for the DBHR test

next test provides the greatest predictive accuracy for the resulting sequence ac-
cording to the outcomes obtained in Figures 2 to 5. These figures can be used to
inform clinicians of the best remaining tests to perform and the ensuing predic-
tive accuracies that can be achieved. Therefore clinicians have to make individual
assessment of difficulties associated with each case on individual basis.

Rather than embedding an optimal sequence of tests algorithm into a decision
support system, we advocate the visualization of all possible Ewing test sequences
in a diagram that depicts the accuracy gains in diverse test sequences so that a clin-
ician can easily select the sequence of preference and be informed of the accuracy
associated with the chosen sequence. Visualization is one of the most important
methods in assisting clinical planning. Information visualization for medical ap-
plications has been considered, for example, by Chi, Streen and Katz [8], Combi
and Oliboni [10] and Jelinek et al. [25]. It has been applied to the design of plans
by Kosara and Miksch [31]. Graph-based approaches were used for medical vi-
sualization, for instance, by Plaza et al. [41]. Hierarchical visualization layouts
were considered by Tsay et al. [47]. Visualization for inference has been also in-
vestigated by Park et al. [39] and Park and Huh [40]. For diabetes patients, it was
treated by Cho et al. [9].

We include Figures 7 and 8 representing compressed versions of two diagrams
that illustrate visual aids and can be created to include the predictive accuracies
of all test sequences facilitating the work of clinicians applying the ODPF pro-
cedure in practice. Complete versions for the use of practitioner would include
the prediction accuracies achieved at each step as well as average time required
to perform the next test. The advantage of the circle diagram in Figure 7 is that
at every step of the ODPF process the current cell in the diagram keeps track not
only of the final predictive accuracy achieved, but also of the whole sequence of
previous tests in the order they were applied.

When it is difficult for a patient to pass one of the standard Ewing battery tests,
it may be possible to use the remaining tests to increase the combined predictive
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Figure 7: Circle diagram

accuracy of classification. Determination of appropriate tests to be used for this
has already been considered in the literature, see [37].

We used several feature selection methods to find a few most effective tests
that can be combined with tests in Ewing battery. To rank features in the order
of their significance we used three methods: Gain Ratio Attribute Evaluation,
Information Gain Attribute Evaluation and OneR Atribute Evaluation. Gain Ratio
Attribute Evaluation assesses the significance of each attribute by calculating its
gain ratio using the formula

GainR(Class,Attribute) = (H(Class)−H(Class|Attribute))|H(Attribute). (4)

Information Gain Attribute Evaluation assesses the significance of each at-
tribute by calculating the information gain using the formula
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InfoGain(Class,Attribute) = H(Class)−H(Class|Attribute). (5)

Classifier Attribute Evaluation assesses the significance of each attribute by
applying it with a user-specified classifier. We used Classifier Attribute Evaluation
with J48 classifier. Then we ordered all attributes according to the sum of their
ranks in these three assessments. Three most significant features on this list are
ECG interpretation, Grade 10sec and QRS 10sec. Note that the use of ECG data
in applications of AI methods has been considered recently, for example, by Chao
et al. [3], Chen and Yu [5], Chiarugi et al. [7], Gacek and Pedrycz [19] and Jovic
and Bogunovic [29]. Further tests have shown that J48 classifier could not use
ECG interpretation efficiently, since it is a categorical variable with very large
range of values and J48 would have to construct a very large tree to handle it
correctly. We carried out a complete evaluation of the predictive accuracy of J48
classifier for all 32 subsets of the Ewing battery supplemented with the QRS 10sec
and Grade 10sec attribute added. Bar Charts 9 through to 12 include experimental
results of these tests.
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Optimal sequences of Ewing tests

2 classes DBHR, VAHR, LSBP, HGBP, LSHR

3 classes DBHR, VAHR, LSBP, LSHR, HGBP

4 classes DBHR, VAHR, LSBP, LSHR, HGBP

Table 4: Optimal sequences of Ewing tests for the number of tests as cost-function

These outcomes show that Grade 10sec and QRS 10sec produce approxi-
mately equivalent improvement in the predictive accuracy of J48, with Grade 10sec
slightly better than QRS 10sec. Bar Charts 9 through to 12 can be used to deter-
mine the best sequence of Ewing tests, for example, for those patients who already
have ECG interpretations and the values of QRS 10sec attribute determined by the
clinicians.

5. Conclusion

We have applied decision trees to the problem of supporting clinicians in find-
ing optimal sequences of tests for each individual patient for the assessment of
cardiac autonomic neuropathy. Our experimental results include the outcomes
of a complete evaluation of performance of decision trees for all 32 subsets of
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Figure 10: Accuracy of J48 for sets of two Ewing features with QRS 10sec or Grade 10sec added

the Ewing battery as required for practical determination of such sequences us-
ing the Optimal Decision Path Finder (ODPF) procedure to minimize individual
difficulties faced by each patient in performing the tests. To illustrate this, we
have determined the best sequence of Ewing tests for the cost-function equal to
the number of tests as one of the appropriate cost-functions used in this setting.

Our experiments show that Grade 10sec and QRS 10sec produce approxi-
mately equivalent improvement in the predictive accuracy of J48, with Grade 10sec
slightly better than QRS 10sec.
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