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Abstract

The present article continues the investigation of constructions essential for applications
of combinatorial semigroups to the design of multiple classification systems in data mining.
Our main theorem gives a complete description of all optimal classification systems defined
by one-sided ideals in a construction based on combinatorial Rees matrix semigroups. It
strengthens and generalizes previous results, which handled the more narrow case of two-
sided ideals.

1 Introduction

The present article strengthens and generalizes previous results devoted to the investigation of
constructions of multiple classification systems, or classifiers, combining several binary classifiers
and based on combinatorial Rees matrix semigroups and two-sided ideals [15]. Our main theorem
describes all optimal classification systems defined by one-sided ideals in the corresponding con-
struction. Since the class of one-sided ideals is larger than that of two-sided ideals, considering
this more general case may lead to the design of better classification systems. It is also nice that
the new formula given by our new main theorem involves fewer terms and may turn out easier to
use compared to the previous formula obtained in the more narrow case handled previously.

The design of multiple classifiers combining several binary classifiers is well known in the lit-
erature and has valuable applications in data mining (see, for instance, [17, 18]). Recall that a
classifier is said to be binary if it divides all data into two classes. Every binary classifier operates
by producing the labels of its classes as outputs. The set of all outputs of each binary classifier
can be regarded as the field GF (2) of order two, which will be denoted by F throughout. This
means that the set of the outputs of n binary classifiers can be considered as the vector space F n.

Rees matrix semigroups can be used in order to generate convenient sets of centroids for
centroid-based classifiers and to design combined multiple classifiers capable of correcting the
errors of individual binary clusterers. These applications are illustrated in Figure 1.
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Figure 1: Centroid-based classifiers and combined multiple classifiers.

The classification process using binary classifiers begins with feature extraction and represen-
tation of data in a vector space F n, where n is a positive integer. Every centroid-based classifier
selects special elements c1, . . . , ck in F n, called centroids. For i = 1, . . . , k, each centroid ci defines
its class N(ci) consisting of all vectors v such that ci is the nearest centroid of v. Every vector is
assigned to the class of its nearest centroid.

On the other hand, multiple classifiers and classifiers are often used in analysis of data to
combine individual initial classifiers or classifiers. A well-known method for the design of multiple
classifiers consists in designing several simpler initial or individual classifiers, and then combining
them into one multiple classification scheme with several classes. This method is very effective,
and is often recommended for various applications, see [17], Section 7.5. The main advantage of
using combined multiple classifiers is in their ability to correct errors of individual classifiers and
produce correct classifications despite individual classification errors. Let us refer to [10, 12, 14, 19]
for more details.

Denote the number of initial binary classifiers being combined by n. As noted above, the set of
the outputs of n binary classifiers can be considered as the vector space F n. If o1, . . . , on are the
outputs of the initial binary classifiers, then the sequence (o1, . . . , on) is called a vector of outputs
of the initial classifiers. In order to define the multiple classifier and enable correction of errors
of the initial classifiers, a set of centroids c1, . . . , ck is again selected in F n. For i = 1, . . . , k, the
class N(ci) of the centroid ci is again defined as the set of all observations with the vector outputs
of the initial classifiers having ci as its nearest centroid.

In order to introduce convenient sets of generators for classification systems with outputs of
initial classifiers represented as vectors in F n, further we assume that S is a finite semigroup and
the number m of the binary classifiers being combined does not exceed the number of nonzero
elements of S. Denote by S∗ the set of all nonzero elements of S. Since we can extend the vector
space F n to F |S

∗| by adding initial binary classifiers, without loss of generality we may assume
throughout that the number of nonzero elements of S is equal to n. Further, zeros of semigroups
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are denoted by θ, and 0 stands for the zero of a ring.

We refer to the monographs [5, 7, 8] for preliminaries and standard notation used in this research
direction. The semigroup ring F [S] is the set of all finite sums

F [S] =

{
m∑
i=1

fisi

∣∣∣∣∣ fi ∈ F, si ∈ S
}

(1)

with addition and multiplication defined by the rules

∑
s=S

fss+
∑
s∈S

hss =
∑
s∈S

(fs + hs)s, (2)

(∑
s∈S

fss

)(∑
t∈S

htt

)
=
∑
s,t∈S

(fsht)st, (3)

where fs, hs, ht ∈ F and s, t ∈ S. It is natural to consider S as being embedded in F [S] by
identifying each element s of S with 1s in F [S]. If S has a zero θ, then the contracted semigroup
ring F0[S] is defined as the quotient ring of F [S] modulo its ideal Fθ. If S has no zero, then the
semigroup ring F [S] is isomorphic to the contracted semigroup ring F0[S0], where S0 = S ∪ {θ}.
In this case we also write F0[S] for F [S]. Thus, we always have

F0[S] = {0} ∪

{
n∑
i=1

fisi

∣∣∣∣∣ 0 6= fi ∈ F, θ 6= si ∈ S

}
. (4)

These constructions are standard, well known and have been used in various research directions.
Let us refer to the book [7] and survey [11] for a comprehensive bibliography devoted to their
applications in coding theory, and to [1], [2], [3], [9] for examples of more recent results. If
{s1, . . . , sn} is the set of nonzero elements of S, then we can identify the vector space F n with
F0[S] by identifying r = (r1, . . . , rn) ∈ F n with

∑m
i=1 risi ∈ F0[S]. Thereby the set F n = F0[S]

has been endowed with multiplication.

For the design of efficient multiple classifiers it is essential to find sets with large minimum
distance, see [13] and [17], Section 7.5. The weight wt(r) of r =

∑
s∈S rss ∈ F0[S] is the number

of nonzero coefficients rs, for s ∈ S. The weight of a subset C ⊆ F n is the minimal weight of a
nonzero element in C. The minimum distance of C is the smallest weight of a nonzero difference
u−v for u, v ∈ C. If C is a linear space, then it is well known and easy to verify that the minimum
distance of C coincides with its weight.
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The concepts of ideals and one-sided ideals of a ring or an algebra over a field are well known.
It is also well known and easy to verify that in the case where F is a field of order two, these
notions defined for rings coincide with their counterparts defined in F -algebras. For convenience
of the readers, let us recall the definitions of ideals and one-sided ideals here. Pick any elements
g1, . . . , gk ∈ F n. The set

C(g1, . . . , gk) = F ng1F
n + · · ·+ F ngkF

n (5)

=

{
m1∑
j=1

`1,jg1r1,j + · · ·+
mk∑
j=1

`k,jgkrk,j

∣∣∣∣ `i,j, ri,j ∈ F n ∪ F
}

is called the ideal, or two-sided ideal, generated by the g1, . . . , gk. The sets

Cr(g1, . . . , gk) = g1F
n + · · ·+ gkF

n (6)

=

{
m1∑
j=1

g1r1,j + · · ·+
mk∑
j=1

gkrk,j

∣∣∣∣ ri,j ∈ F n ∪ F
}
,

C`(g1, . . . , gk) = F ng1 + · · ·+ F ngk (7)

=

{
m1∑
j=1

`1,jg1 + · · ·+
mk∑
j=1

`k,jgk

∣∣∣∣ `i,j ∈ F n ∪ F
}

are called the right ideal generated by g1, . . . , gk and, respectively the left ideal generated by
g1, . . . , gk. A one-sided ideal is a left or right ideal. The case of left ideals is dual to that of right
ideals, which means that every assertion concerning right ideals comes together with an equivalent
statement expressed in terms of left ideals with the order of all products interchanged. This is
why we consider only right ideals in what follows.

2 Main Theorem

We use standard concepts and refer the readers to the monographs [5, 7, 17] for background
information and preliminaries. Let G be a group, I and Λ nonempty sets, and let e be the identity
of G. Denote by G0 = G∪{θ} the group G with zero θ adjoined. Let P = [pλi] be a (Λ× I)-matrix
with entries pλi ∈ G0, for all λ ∈ Λ, i ∈ I. The Rees matrix semigroup M0(G; I,Λ;P ) over G
with sandwich-matrix P is the set consisting of zero θ and all triples (g; i, λ), for i ∈ I, λ ∈ Λ,
g ∈ G0, where all triples (θ; i, λ) are identified with θ, and multiplication is defined by the rule

(g1; i1, λ1)(g2; i2, λ2) = (g1pλ1i2g2; i1, λ2), (8)
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for g1, g2 ∈ G, i1, i2 ∈ I, λ1, λ2 ∈ Λ. Rees matrix semigroups play crucial roles is semigroup theory.
Since this article belongs to an intersection of several research directions and is intended also for
the readers specializing in data mining, let us refer to [6, 16] for examples of recent results.

A semigroup S is said to be combinatorial if every subgroup of S is a singleton. Throughout
we assume that T = M0(G; I,Λ;P ) is a finite combinatorial Rees matrix semigroup with nonzero
sandwich-matrix and S is a subsemigroup of T . Then it is well known and easy to verify that
the group G is a singleton, i.e., G = {e}. Therefore we can use shorthand notation (i, λ) for each
nonzero element (e; i, λ) in M0(G; I,Λ;P ), so that we have T = (I × Λ) ∪ {θ} and

(i1, λ1)(i2, λ2) =

{
(i1, λ2) if pλ1i2 6= θ
θ otherwise,

(9)

for g1, g2 ∈ G, i1, i2 ∈ I, λ1, λ2 ∈ Λ. Further, let Q be a subset of T . If j ∈ I, µ ∈ Λ, then we use
the following notation:

Q∗µ = Q ∩ {(i, µ) | i ∈ I}, (10)

Qj∗ = Q ∩ {(j, λ) | λ ∈ Λ}, (11)

Qjµ = Q ∩ {(j, µ)}. (12)

For any X ⊆ I, Y ⊆ Λ, let

QX∗ = ∪i∈XQi∗, (13)

Q∗Y = ∪λ∈YQ∗λ, (14)

QXY = ∪i∈X,λ∈YQiλ. (15)

Let us define the subsets

I(S) = {i ∈ I | Si∗ 6= ∅}, (16)

Λ(S) = {λ ∈ Λ | S∗λ 6= ∅}, (17)

L(S) = {λ ∈ Λ(S) | (∀i ∈ I(S)) pλi = θ}. (18)

For any i ∈ I, denote by Ei(S) the set of all subsets Y of Λ(S) \ L(S) such that {i} × Y ⊆ S
and besides, for each j ∈ I(S), the set Y contains an even number of elements λ with pλj 6= θ.
Let Zi(S) be the set of all the subsets in Ei(S) that have the largest cardinality in Ei(S). Put
Ni(S) = |Y | for any Y ∈ Zi(S). This makes sense, since the cardinalities of all subsets in each
Zi(S) coincide.

Further, denote by E(S) the set of all unions of the form

⋃
i∈I(S)

({i} × Yi) (19)
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where Yi ∈ Ei(S) for all i. Likewise, let Z(S) be the sets of all unions of the form (19), where
Yi ∈ Zi(S) for all i. We can let N(S) = |Y | for any Y ∈ Z(S), because the cardinalities of all
subsets in Z(S) are equal to each other. Clearly, E(S) and Z(S) are subsets of the power set of
S, and N(S) =

∑
i∈I(S) Ni(S).

Theorem 1. Let T = M0(G; I,Λ;P ) be a finite Rees matrix semigroup over the group G = {e},
and let S be a subsemigroup of T . Let Cr(g1, . . . , gk) be a right ideal with the largest weight in
F0[S]. Then the weight of Cr(g1, . . . , gk) is equal to

wt(Cr(g1, . . . , gk)) = max

{
|S∗L(S)|+N(S), max

λ∈Λ(S)
|S∗λ|

}
. (20)

Corollary 2. Let T = M0(G; I,Λ;P ) be a finite Rees matrix semigroup over the group G = {e},
and let S be a subsemigroup of T . Then the largest number of errors of binary classifiers, which
can be corrected by a multiple classifier defined by the set of the form Cr(g1, . . . , gk) in F0[S] is
equal to

max

{
b(|S∗L(S)|+N(S)− 1)/2c, max

λ∈Λ(S)
b(|S∗λ| − 1)/2c

}
. (21)

Remark 1. We can replace max
λ∈Λ(S)

by max
λ∈Λ(S)\L(S)

in Theorem 1 and Corollary 2, because λ ∈ L(S)

implies |S∗λ| ≤ |S∗L(S)|.

Remark 2. Since every finite subsemigroup of an infinite combinatorial Rees matrix semigroup
T embeds in a finite Rees matrix subsemigroup of T , it is no increase to generality to shift the
word “finite” from T to S in the hypothesis of Theorem 1.

Remark 3. It is well known and easy to verify that a Rees matrix semigroup M0(G; I,Λ;P )
over a group and with nonzero sandwich-matrix is combinatorial if and only if the group G is a
singleton. Since the case of zero sandwich-matrix is trivial, this means that Theorem 1 handles
all combinatorial Rees matrix semigroups.

The following example shows that it is impossible to drop the condition that G = {e} from the
main theorem and corollary.

Example 1. Let G = {e, g} be the group of order two, I = {i}, Λ = {λ1, λ2, λ3}, P =

 e
e
e

 ,
T = M0(G; I,Λ;P ), and let S = T . Then L(S) = ∅, S∗L(S) = ∅,

Ei(S) = {{λ1, λ2}, {λ1, λ3}, {λ2, λ3}},
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and so Zi(S) = Ei(S), and Ni(S) = 2. Hence every subset in E(S) has two elements, and so the
same is true of Z(S); whence N(S) = 2. Besides, |S∗λ| = 2 for all λ ∈ Λ. Therefore the right-hand
side of equality (20) is equal to 2. However, it is easily seen that the element

g = (e; i, λ1) + (e; i, λ2) + (g; i, λ2) + (g; i, λ3)

generates a right ideal of weight 4 in F0[S], and so equality (21) does not hold in this example,
since

wt(Cr(g)) > max

{
|S∗L(S)|+N(S), max

λ∈Λ(S)
|S∗λ|

}
. (22)

3 Proofs

To simplify notation, for any element s in S, we denote by the same letter s the element 1s of
F0[S], too. In other words, we identify the elements of S with their images in F0[S]. For any
subset X in S, we put

gX =

{ ∑
x∈X\{θ} x if X 6⊆ {θ},

0 otherwise.

Evidently, if X and Y are disjoint subsets of S, then gX∪Y = gX + gY . For any

r =
∑
s∈S

rss ∈ F0[S],

the support of r is the set
supp(r) = {t ∈ T | rt 6= 0}. (23)

Let us define the set

Ann `(F0[S]) = {x ∈ F0[S] | xF0[S] = 0}. (24)

For j ∈ I, µ ∈ Λ, X ⊆ S, and any r ∈ F0[S], we put

rj =
∑
λ∈Λ

r(j,λ) ∈ F0[S], (25)

rµ =
∑
i∈I

r(i,µ) ∈ F0[S], (26)

rX =
∑
s∈X

rss ∈ F0[S]. (27)
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Lemma 1. Let T = M0(G; I,Λ;P ) be a Rees matrix semigroup over the group G = {e}, and let
S be a finite subsemigroup of T . Then an element

r =
∑
s∈S

rss ∈ F0[S]

belongs to Ann `(F0[S]) if and only if supp(r) \ S∗L(S) ∈ E(S).

Proof. Consider any element r of F0[S]. Put X = supp(r), X0 = X∩S∗L(S) and X1 = X \X0 =
X \S∗L(S), so that r = gX0 +gX1 . Since it follows from (18) that gX0 ∈ Ann `(F0[S]), our task is to
show that gX1 ∈ Ann `(F0[S]) if and only if X1 ∈ E(S). Therefore, to simplify notation, further
we may assume that r = gX1 and X = X1.

The ‘if’ part. Suppose that X ∈ E(S). In order to show that r belongs to Ann `(F0[S]), we
choose an arbitrary element y = (j, µ) ∈ S, where j ∈ I(S) and µ ∈ Λ(S), and we are going to
verify that ry = 0. Since gX1 =

∑
i∈I g(X1∩Si∗), it suffices to demonstrate that g(X1∩Si∗)y = 0, for

each i ∈ I.

Now, fix any i ∈ I(S). It follows from (3) and (9) that

g(X1∩Si∗)y =
∑

λ:(i,λ)∈X1

(i, λ) · (j, µ) =
∑

λ:(i,λ)∈X1,pλj 6=θ

(i, µ).

Given that X1 = supp(r) \ S∗L(S) ∈ E(S), we see that Si∗ ∩ X1 belongs to Ei(S); whence the
number of elements (i, λ) ∈ X1 satisfying pλj 6= θ is even. Since F = GF (2), we get g(X1∩Si∗)y = 0.
Hence ry = 0. It follows that r ∈ Ann `(F0[S]), as required.

The ‘only if’ part. Suppose that r ∈ Ann `(F0[S]). Clearly, X = ∪i∈I(S)Xi, where Xi = X∩Si∗.
Since F = GF (2), we get r =

∑
i∈I(S) gXi . In order to prove that X belongs to E(S), it suffices

to verify that, for each i ∈ I(S), the set

Yi = {λ | (i, λ) ∈ Xi}

belongs to Ei. To this end, we fix i ∈ I(S).

Consider an arbitrary element j in I(S). Picking any µ ∈ Λ(S) and letting y = (j, µ), we get
ry = 0 by the choice of r. It follows from (3), (9) and (18) that gXiy = 0.

Therefore the number of elements (i, λ) ∈ Xi satisfying pλj 6= θ is even. Hence the number of
λ ∈ Λ(S) such that pλj 6= θ is even. This is equivalent to saying that the set Yi belongs to Ei(S).
Therefore supp(r) ∈ E(S). This completes the proof. 2
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Lemma 2. Let T = M0(G; I,Λ;P ) be a Rees matrix semigroup over the group G = {e}, and let
S be a finite subsemigroup of T . Then, for any subset Y ∈ Z(S), the right ideal generated by the
element gS∗L(S)

+ gY has weight equal to |S∗L(S)|+N(S).

Proof. Since Z(S) ⊆ E(S), Lemma 1 implies that gS∗L(S)
+ gY ∈ Ann `(F0[S]). Therefore (6)

shows that the right ideal Cr(gS∗L(S)
+ gY ) is equal to the set

{0, gS∗L(S)
+ gY },

and so its weight is equal to wt(gS∗L(S)
+ gY ) = |S∗L(S)|+N(S). 2

Lemma 3. Let T = M0(G; I,Λ;P ) be a Rees matrix semigroup over the group G = {e}, and let
S be a finite subsemigroup of T . Let λ be an element of Λ such that the cardinality |S∗λ| achieves
the maximum value. Then the right ideal generated by the element gS∗λ has weight equal to |S∗λ|.

Proof. Consider an arbitrary nonzero element x in the right ideal Cr(gS∗λ). Since F = GF (2),
it follows from (2), (3), (4), (6) and (9) that there exists a finite subset Y of S and an element
f ∈ F such that

x = fgS∗λ +
∑
y∈Y

gS∗λy.

Take any element y = (j, µ) ∈ Y , where j ∈ I(S), µ ∈ Λ(S). If pλj = θ, then S∗λy = θ in S,
and so gS∗λy = 0, which means that we can delete y from the set Y . So we assume that pλj 6= θ.
Then (9) implies that S∗λy ⊆ S∗µ. The maximality of |S∗λ| shows that S∗λy = S∗µ. Therefore
we get gS∗λy = gS∗µ . Since f ∈ F = GF (2), repeating we see that there exist elements µ1, . . . , µk
such that

x = gS∗µ1
+ · · ·+ gS∗µk

and
|S∗λ| = |S∗µ1| = · · · = |S∗µk |.

Since F = GF (2), we see that µi1 = µi2 implies gS∗µi1
+ gS∗µi2

= 0. It follows that wt(x) ≥ |S∗λ|.

This means that wt(Cr(gS∗λ)) ≥ |S∗λ|. Since Cr(gS∗λ) contains the element gS∗λ with weight equal
to |S∗λ|, we get wt(Cr(gS∗λ)) = |S∗λ|, as required. 2

Proof of Theorem 1. The maximality of wt(Cr(g1, . . . , gk)) and Lemma 2 show that

wt(Cr(g1, . . . , gk)) ≥ |S∗L(S)|+N(S).

Likewise Lemma 3 implies that wt(Cr(g1, . . . , gk)) ≥ maxλ∈Λ(S) |S∗λ|. Hence we get

wt(Cr(g1, . . . , gk)) ≥ max{|S∗L(S)|+N(S), max
λ∈Λ(S)

|S∗λ|}. (28)
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To prove the reversed inequality, take a nonzero element x with minimal weight in Cr(g1, . . . , gk).
Note that wt(Cr(g1, . . . , gk)) = wt(x) = | supp(x)|.

If x ∈ Ann `(F0[S]), then Lemma 1 tells us that supp(x) \ S∗L(S) ∈ E(S). The cardinality
of any set in E(S) does not exceed N(S). Therefore | supp(x) \ S∗L(S)| ≤ N(S). It follows that
wt(x) ≤ |S∗L(S)|+N(S). Therefore wt(Cr(g1, . . . , gk)) ≤ |S∗L(S)|+N(S) in this case.

On the other hand, if x /∈ Ann `(F0[S]), then there exists an element y = (j, µ) such that
xy 6= 0, where j ∈ I(S), µ ∈ Λ(S). It follows from (3) and (9) that supp(xy) ⊆ S∗µ, and so
wt(xy) ≤ |S∗µ|. Since xy ∈ Cr(x) ⊆ Cr(g1, . . . , gk), we get wt(Cr(g1, . . . , gk)) ≤ |S∗µ|.

Therefore, in both of these cases we get

wt(Cr(g1, . . . , gk)) ≤ max{|S∗L(S)|+N(S), max
λ∈Λ(S)

|S∗λ|}. (29)

Equality (20) follows from (28) and (29). This completes the proof. 2

Proof of Corollary 2. It is well known and easy to verify that every multiple classifier, defined
by a set that is a linear space of weight W , can correct

⌊
W−1

2

⌋
errors of binary classifiers. Therefore

Corollary 2 follows from Theorem 1 immediately. 2
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