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for a class of mixed integer programming problems whose objective functions are the
difference of quadratic functions and convex functions are established. The numerical
examples are also presented to show the significance of the global optimality conditions
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1 Introduction

Consider the following mixed integer programming problem:

1
(MIP) min f(z) = ixTAx +d"z — g(x) (1.1)
st x; € [ug,vi],1 € L,
T; € {pj,pj—Fl,...,qj},j eM
where A is a n X n symmetric matrix, d € R", g(z) : R — R is a twice
continuously differentiable convex function on R™, L, M C {1,...,n} with
LNnM=0and LUM = {1,...,n}, u;,v; € R with u; < v;,V i € L, and

pj,q; are integers with p; < ¢;,Vj € M. We call problem (MIP) as a mixed
integer weakly concave programming problem. Throughout the paper, we let

Fi={z= (xl,...,mn)T|mi € [us,vs),i € Lyz; € {pj,pj+1,...,q;},j € M}.
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There are a vast number of applications of mixed integer programming
problems in many areas, such as engineering design, computational chemistry,
computational biology and reliability networks as well as optimization of
core reload patterns for nuclear reactors. For applications of mixed integer
programming models in optimization, see [1], [7], [9], [10], [11], [16], [17].

Most existing approaches to solve the mixed integer programming prob-
lems belong to the branch-and-bound, decomposition or outer approximation
methods. The discussion of the branch-and-bound methods can be found in
[3], [15], [18]. The generalized Benders decomposition method was proposed
in [8]. The outer approximation method can be seen in [5], [6]. It should be
noted that mixed integer nonlinear programming problems are very difficult
due to the nonlinearity and the mixture of continuous and discrete variables.
One extremely tough task is how to verify whether the found solutions are
global ones or not. Thus the global optimality conditions become the focus
of many researches in recent years. Recently, some global optimality condi-
tions characterizing global minimizer of quadratic minimization problem has
been discussed in [2], [14], [19], [21]. Reference [4] also discussed some global
optimality conditions for integer quadratic minimization problem when A is
a positive semidefinite matrix. Especially [13] established conditions which
ensure that a feasible point is a global minimizer of a quadratic minimization
problem subject to box constraints or binary constraints by using a new ap-
proach which makes use of a global subdifferential. Reference [20] presented
some global optimality conditions for quadratic programming problems with
mixed variables. Reference [12] have derived some global optimality condi-
tions for the minimization of the difference of quadratic and convex functions
over box constraints or binary constraints.

In this paper, we will establish some necessary and sufficient global opti-
mality conditions for the mixed integer weakly concave programming prob-
lems, which extend the results given in [12] and [20]. We also give some
numerical examples to show the significance of the global optimality condi-
tions.

The layout of the paper is as follows. Section 2 presents some neces-
sary global optimality conditions for problem (MIP). The sufficient global
optimality condition for (M IP) will be given in section 3.

2 Necessary global optimality conditions for
(MIP)

In this section, we will derive the necessary global optimality conditions for
problem (MIP). We use the following notations throughout this paper.
The real line is denoted by R and the n-dimensional FEuclidean space is
denoted by R™. For vectors z,y € R", + > y means that xz; > y;, for
i =1,...,n. The notation A > B means A — B is a positive semidefinite
and A < 0 means —A > 0. A diagonal matrix with diagonal elements
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a1,..., 0y is denoted by diag(aq,...,a,). Let A = (aij)nxn € S, denote

diag (A) := diag (a11,-..,ans) and diag (A) := diag (@11,...,dnn), where
S™ is the set of n X n symmetric matrices, and

G = min{O,aii}, Vie L,
e aiq, Vj eM

Let 8= (B1,...,53,)" € R", denote diag (8) := diag (B1,...,3). Let & €
F. For any ¢ € L,j € M, denote

—1, if .fz' = U;
%i o= ]., if T; = U; s (21)
sign(d+ Az — Vg(z)):, ifw; <z <
—1, if z; =p;
i‘j o= 1 if i’j = Qj ,(22)

sign(d + Az —Vyg(z));, ifz,=p;j+1,...,¢; -1

1 Ar (2.3
ba i = 2max{:17j(d+Aa:ng(as))j7:L'j(dJrAa:fVg(a;))j}7 (2.4)
1 qj — Py

bp: = (bsy,... bz )7, (2.5)
Fi: = [uiyvi]ﬂ (26)
Fi+ = Apjpj+ 1.4}, (2.7)

-1, (d+ Az —-Vg(@))r <0

where sign(d + Az — Vg(Z))r, =< 0, (d+ Az —Vg(Z))r =0

1, (d+Az—-Vg(@)r >0

Theorem 2.1. Let & € F, A= (aij)nxn € S™. If T is a global minimizer of
(MIP), then the following condition holds:

[NC1] diag(bz) =< diag(A).
Proof. Let T be a global minimizer of problem (MIP). Then we have
1 1
§xTAsc +d'x — §£TA:TU —d'z —g(x) +g(z) >0,Yr € F (2.8)

and we can get

1

5(az: —2)TA(x —2) + (x — 2)T(d + Az — Vg(z)) > 0,Vz € F. (2.9)
Let @ := (Z1,...,%5_1,Tk, Thals---,Zn)’, where x € F,x; € Fr. Then by
(2.9), we have

1
§(a:k — ) apk + (zp — Zp)(d + AZ — Vg(Z))p > 0,V € Fr,k=1,...,n.
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Now for any i € L,j € M we consider the following cases:
1°. If Z; = u;, then

1
~(i — %;)%as + (x; — ;) (d + AT — Vg(z)); > 0,Vz; € F;

2
1
< 5%’(%’ —Z;) + (d+ AZ = Vg(Z)): > 0,Vz; € (ui, vi]
(d+ AT — Vg(1)); > — L=l if g, <0
o F(d+ Az — V(@) < minfo, L1y

2

2°. If x; = v;, then

1
5(.’17% — .i'i)2a“‘ + (.’El — .i'z)<d + Az — Vg(a?))z >0,Vx; € F;
1
& 5%‘(%1‘ — %) + (d+ A7 — Vg(z)); <0,V; € [ui, v;)
o (d + Az — Vg(.’i‘))Z <0, ifa; >0
(d+ AT — Vg(z)); < =g if gy <0
& Zy(d+ Az — Vg(z)); < min{0, (o~ ui)as ’2“1')‘1“ 3.

3°. If u; < &; < v;, then

@%M+M*W®hgmm@%?%}
4°. If Z; = p;, then

1
55— z;) az; + (z; — ;) (d + Az — Vg(z)); > 0,Va; € F;
1

< 5%‘(%‘ —7j) + (d+ Az - Vg(7)); > 0,Vz; € {p; +1,...,q;}

(d+ Az — Vg(z)); > -, if a;; >0
(d+ AT - Vg(@)); > — L5 ifay; <0
(¢ *Pj)ajj}.

& F(d+ Az —Vg(@)); < min{%, .
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5°. If .fj = qj, then

1
(%5 = z;)2aj; + (x; — Z;)(d + Az — Vg(2)); > 0,Va; € F;
1
< iajj(xj —Zj) + (d+ Az — Vg(2)); <0,Yz; € {pj,...,q; — 1}
o (dJrA:f—Vg(;E))J S %, ifajj 20
(d+ Az — Vg(z)); < W=2)% - if g5 <0

(9 — pj)ajj .

& I;(d+ Az — Vg(x)); < min{%, :

6°. If z; € {pj—|—1,...,qj—1}, then

~(z; — #;)%a;; + (z; — 7;)(d + Az — Vg(z)); > 0,Va; € F,

= lajj(zj _jj) + (d_|—"4‘rE - vy(j))J > 07 sz € {pjv'--7jj - 1}
saji(r; —25) + (d+ Az — Vg(r)); <0, Vo e{zi+1,...,¢}

& U <@+ A7 - Vg(@); < 2, 055> 0
& ;(d+ AT - Vg(z)); < min{L, (9 = pi); _;’j)aﬁ' }.
Hence, if Z is a global minimizer of (MIP), then condition [NC1] holds. O
Example 2.1. Consider the problem
. 2 2 1 4
(EP1) min  f(x) = —x1° + 4xe” + 2129 — 221 — 1z4

st. xp €[-1,1]
s € {~1,0,1}.

_ —2 1 _ T _1 4
A_( 1 8 )vd_(_270) 7g($)—1.’1,'2,

then 1
flx) = §a:TAa: +d 'z — g(z).

For @ = (z1,Z2)T € F, we have
d+ AT = (—2 — 2%, 4+ X9, %1 + SEQ)T,(NZH = —2,099 = 8§,
N n AT o2 [ 0O 0
Vg(z) = (0,z3)",Vg(z) = ( 0 552 )

Hence the necessary condition (NC1) of Theorem 2.1 at T is

{ 281(—2 — 2%1 + Z2)/2 < -2 (2.10)

2max{Zo(Z1 + 872 — 273), T2(Z1 + 82 — 273)/2} < 8
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We can verify that (2.10) holds at Z if and only if z = (1,0)T. In fact & =
(1,0)T is the global minimizer of (EP1), since & = (1,0)T also satisfies the
sufficient global optimality condition [SC3] given by Corollary 3.2 in Section
3, see Example 3.1.

Corollary 2.1. Let Z € F, A= (a;j)nxn € S™. If L =10, and T is a global
minimizer of (MIP), then the following condition holds:

[NC2] diag(bz) = diag(A).

Obviously, condition [NC2] extends the condition [BNC1] given in [12]
for binary constraints F := [[I,{0,1}, i.e., [BNC1] is just [NC2] for the
special case: L =0,p; =0,q; =1,Vj € M.

Corollary 2.2. Let T € F, A= (aij)nxn € S™. If M =0, and Z is a global
minimizer of (MIP), then the following condition holds:

[NC3] 2.%‘1‘(@ + AT — Vg(:f))z — dii(vi — ui) <0

Note that the condition [NC3] is just the necessary condition [NC1] given
n [12] for box constraints F := []"",[u;,v;]. Moreover, if g(z) = 0, then
the condition [NC1] given in this paper extends the necessary condition
[NC1] given in [20] for quadratic programming problems with mixed variables
and also extends the necessary condition [NC1] given in [14] for quadratic
programming problems with binary constraints.

3 Sufficient global optimality conditions for (MIP)

In this section, we derive some sufficient global optimality conditions for
problem (MIP). Let F := {x € R" | z; € [u;,v;],x; € [p;,q;],9€ L,j € M}.

Theorem 3.1. (Global Sufficient Condition for (MIP)) Let z € F. If

= < y
IsC1] { bz, <0,Vie L

diag(bz) = A — V2g(z),Vz € F
hold, then Z is a global minimizer of (M IP).

Proof. Let G := diag(b;) and G := diag(bz,,...,bz, ), where

b min{0, bz, },i € L
Y bz,ieM ’
and let

%xTGac +(d=Vg(@) + (A—@)7) "z,

plx) = flz)-1(z),

~

—~
8

=
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then VZp(z) = A — V2g(z) — G is positive semidefinite for each z € F by
the second part of the [SC1]. Hence, (z) is convex on F. By Vy(z) = 0,
we know that Z is a global minimizer of ¢(z) on F, i.e.,

f(z) = f(@) > (z) — I(z),Vz € F.

It is easy to verify that

n n

l(x) —1l(z) = % Z(mk — 71)%bz, + Z(d —Vyg(z) + AZ) (v, — Z), Vo € F.
k=1 k=1

Thus [(z) — I(Z) > 0,Vx € F is equivalent to
1
i(xk — i‘k)Qbik + (d* Vg(:i) + Af)k(l’k — :i‘k) >0,Va, € Fr,k=1,...,n.

By the proof of Theorem 2.1, we know that the above inequalities holds if
and only if

i.e. bz, <0,Vi € L, which is exactly the first part of the [SC1].
Therefore, if [SC1] holds, then Z is a global minimizer of (M1P). O

Corollary 3.1. Letz € F, if g(x) =0 and if

= < ]
(5C2) { bz, <0,i€ L

diag(bz) = A
hold, then T is a global minimizer of (MIP).

Proof. Tt can be obtained directly from Theorem 3.1. O

Note that condition [SC2| extends the sufficient condition [SC1] for the
quadratic programming problems with mixed variables given in [20].

We denote the Hessian of g at = by V2g(z) = (gkt(2))nxn and define for
k=1,2,...,n,

aj = min{are — gk (2) = Dipap e | okt — gre(2) |: 2 € Fh

Q = ding(an, s, .., ):

A& = min{0, ax }, for k € L and &y = ay, for k € M.

Corollary 3.2. Let z € F, A = (aij)nxn € S”, if the diagonal matriz
Q = diag(ay, ..., ay,) satisfies

[SC3] diag(bs) < Q,

then T is a global minimizer of problem (MIP).
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Proof. If diag(bz) < @Q, then we have by, < 0,Vi € L and diag(bz) < Q. By
the definition of @), we have that

A—-V?g(z) - Q
a1 — 911(2) — Oy ai2 — 912(2) ce A1n — gln(z)
a21 — 921(2) a2 — 922(2) — Q2 ... a2n — gln(Z)
an1 — gnl(z) an2 — gn2(z) e Qpp — gnn(z) — Qp

By the definition of o we know that

n
are — grk(2) —ak > > | akr — gie(2) [> 0
=1tk

for any z € F and each k = 1,2,...,n. Then for any z € F the matrix
A —V?g(z) — Q is diagonally dominant with nonnegative diagonal elements.
It follows A—V?2g(x)—Q = 0,Vz € F. Hence diag(bz) < A—V2g(x),Vx € F.
By Theorem 3.1, we know that if [SC3] holds, then Z is a global minimizer
of problem (MIP). O

Example 3.1. Consider the problem (EP1) in Example 2.1.

1
(EP1) min  f(z) = —x1% + 42y + 21209 — 221 — 1%4

st. x € [-1,1]
T2 € {—1,07 1}
We can easily verify that (SC1) holds at ¥ = (1,0)T, thus it is a global

minimizer of (EP1). In fact, we can get aqn = —3, aa = 4, hence &1 =
—3,&9 = 4. Then the sufficient condition (SC1) of Theorem 3.1 at T is

271(—2 — 271 + Z2)/2 < -3 (3.1)
Qmax{;%g(fcl + 8Ty — 2@‘%),%2(.f1 + 8T — 2@%)/2} <4 ’
which holds at % if and only if & = (1,0)T.

Corollary 3.3. Letz € F. If M = () and for each k =1,2,...,n
- 1
[504] fk(a + AT — Vg(i))k — §dk(vk —ug) <0

holds, then T is a global minimizer of problem (MIP).

Note that the condition [SC4] is just the condition [SC1] given in [12] for
box constraints.

Let \g(x),k = 1,2,...,n, be the eigenvalues of (A — V?g(z)). We now
derive a sufficient condition for global optimality of (M IP) in terms of eigen-
values.
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Corollary 3.4. LetT € F, p:=min min Ag(z) and let
weF k=1,2,...,n

f; = min{0, u},Vi € L, fij := p,Vj € M.

If
[SCH) bz, < fi, for each k =1,2,...,n,

then T is a global minimizer of problem (MIP).

Proof. Let € F and I(z) = 227Gz + (d — Vg(z) + (A — G)z)Tz, where
G = pl with I the n x n identity matrix. From the definition of u, we know
that the eigenvalues of A —V?g(x) — G are nonnegative for any z € F, hence
A — V?g(z) — G is positive semidefinite. Then as in the proof of Theorem
3.1, we have that Z is a global minimizer of problem (MIP). O

Example 3.2. Consider the problem

11
(EP2) min f(x) := 5;3? + 202 4 gxg,Q + 2x120 — 8123 + 107223

+ 21 4+ 225 + 323
st. oz €[3,9)

1326[10,16]
x3 € {0,1,2,3}.
Let
11 2 -8
A= 2 2 10 |, d=(1,2,3)7,
-8 10 5

then f(z) = 22T Az + d¥z. Note that g(z) = 0 in this example. For & =

N
(T1,%2,Z3)" € F, we have

a+ AT
= (1411Z + 2%y — 8%3,2 + 271 + 2T2 + 10Z3,3 — 871 + 10Z5 + 53)"

and i = —9. It can be verified that [SC4] holds at 7 = (3,10,0)T, thus it is a
global minimizer of (EP2). In fact the sufficient condition [SC3] of Theorem
1 atz s

2.2:71(1 + 11x1 + 272 — 81‘3)/6 < -9

2T9(2 + 271 + 2T + 1023) /6 < —9

2max{z3(3 — 821 + 10Z3 + 5¥3), 23(3 — 871 + 10Z2 + 5x3)/3} < —9

We can easily check that the above condition holds at T if and only if T =
(3,10,0)T.

Remark 3.1. Note that if g(z) = 0 and A is a diagonal matriz, then the
necessary condition [NC1] is equivalent to the sufficient condition [SC1].
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