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Abstract: 

Differential kinematics offers a simplified alternative to closed form input-output 

equations needed to study the geometrical behaviour of linkages.  For most linkages 

these closed form equations are either too messy or not possible to obtain.  A fact that 

sometimes reflects negatively on how mechanical engineering students perceive the 

subject of Mechanism Analysis.  On the other hand, differential models can easily be 

utilised in numerical methods designed to encourage these students to tackle even 

more difficult problems than currently being considered in academic programs.  In 

this paper, an approach is presented to facilitate this process.  The mathematical 

procedure is based on the use of matrices referred to as kinematic Jacobians.  The 

determinants of these matrices offer invaluable insights into the linkage mobility as 

will be seen in the paper.  These matrices are explained and used in a practice 

numerical example given at the end of the paper. 

 

1. Background:  

Mechanical engineers are often called upon to design, or maintain, machines with 

parts that move in fashions which are specified mathematically, i.e. linkages.  That is 

why most mechanical engineering academic programs have in their cores a subject 
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crafted to equip students with necessary knowledge in the area of mechanism 

analysis.  This subject has traditionally been taught using graphical techniques, e.g. 

velocity and acceleration diagrams.  As such Ceccarelli (1998) suggests, “mechanism 

design teaching has been strongly restricted to fundamentals and past methodologies 

so that generally current schemes for designing have not been and were not included 

in regular teaching curricula.”  However, with affordable personal computers 

becoming widely available, the use of equation-based (i.e. analytical) teaching of 

mechanism analysis is beginning to be more favoured by both teaching staff and 

students.  Not only does equation-based kinematic analysis produce design-orientated 

insightful mathematical forms, but it also provides kinematic information that spans 

the whole range of the input link motion.  On the other hand, graphical techniques 

result in information relevant only to a given input link position at which the analysis 

is performed.  It may still be advisable, however, to briefly reflect on the velocity and 

acceleration diagrams just to highlight to students the vector nature of these kinematic 

quantities; but not to make these diagrams the core topic of the course as traditional 

teaching methods used to do.   

Textbooks are available to introduce students to the subject of mechanism analysis 

using both graphical and analytical techniques.  Excellent examples can be found in 

the works by Erdman et al. (2001), Norton (2001), Uicker et al. (2003) and Waldron 

and Kinzel (1999).  Some of these books feature chapters in which differential models 

are utilised in such a fashion that for any given linkage, a Jacobian matrix is obtained 

and employed to calculate the velocities of various links for a given crank velocity.  

However, the present paper suggests that this technique should be extended, for the 

benefit of students, to show that more than one Jacobian matrix can be obtained for a 

given linkage; and these matrices can be further utilised to gain a geometric insight 
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into the mobility of the linkage.  The paper then proceeds to assert the notion that an 

input-output differential model can be conveniently utilised in a simplified numerical 

procedure to conduct position analysis for the mechanism.  

 

Basically, the kinematic model is divided into three main analyses; the position 

analysis, the velocity analysis and eventually the acceleration analysis.  If a closed 

form solution is possible, the position analysis should result in the following 

functional form; 

( )q = f d,θ          (1) 

where d is a vector representation of the constant mechanism dimensions, ( )iq=q  is 

a vector of link freedoms (i.e. the parameters which determine the positions of various 

links), and the vector ( )jθ=θ  signifies the freedoms of the input links.  For a rotating 

link, the term, “freedom,” is used in this paper to denote the variable angle which is 

measured, in a right-hand sense, from the positive X-direction to a vector attached to 

the link and aligned with its pivot-to-pivot direction.  For a sliding link, the term 

refers to the distance measured from a point fixed to the line of sliding to the 

instantaneous position of the slider.  The focus of this paper is the planar single 

degree of freedom linkage, which features a single entry, θ , in the vector θ .   

 

Soon after having been introduced to the basic concepts of mechanism kinematics, 

students quickly realise that obtaining closed form solutions as stipulated in equation 

(1) is almost impossible to achieve for most linkages.  At this stage introducing a 

differential-model-based numerical technique to them would be met with appreciation 

and understanding.  This paper is intended to encourage lecturing staff to consider 
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including the topic in their undergraduate academic programs; hence, a simplified 

approach is adopted.  However, those interested to obtain a research-level overview, 

on numerical techniques used for mechanism analysis, are strongly advised to consult 

the book by Haug (1989).   

The mathematical medium which is employed to formulate the differential kinematic 

model is a matrix referred to here as the kinematic Jacobian.  This will be introduced 

in the following section.   

 

2. Mobility and kinematic Jacobians: 

The kinematic Jacobian lies in the core of the differential approach.  This is a square 

matrix which relates differential changes occurring to the freedoms of various links in 

a mechanism.  Haug (1989) demonstrated techniques to obtain the kinematic Jacobian 

in a systematic fashion utilising the geometric properties of constraints.  However, to 

maintain a focus on simplicity, this matrix is obtained here by differentiating the loop 

closure equation to develop the velocity model analytically.  Textbooks which offer 

useful examples of these differential models are the ones by Waldron and Kinzel 

(1999), Uicker et al. (2003) and Erdman et al. (2001).  Despite their outstanding 

contributions which are acknowledged by teachers and students alike, these textbooks 

do not exploit these differential models as much as suggested in the present paper.  

For closed-loop single degree of freedom linkages, these models are expressed in a 

form of a system of linear equations as follows; 

( ) ( ),qθ θ θ θ θJ d ,q q = g d        (2) 

where θ  is the freedom of any link not represented in the vector q , qd and θd  are 

vectors of constant mechanism dimensions, and the dots signify differentiation with 
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respect to time.  In the above equation, ( ),θ θ θg d  is the right-hand side vector of the 

linear system, and ( )qθJ d ,q  is an n n×  kinematic Jacobian matrix of the linkage, 

where n  is the number of unknown link-velocities.  Mobility analysis can be based 

on the mathematical characteristics of the linear set given in (2), in addition to the 

geometric aspects of rigid linkages.  Of particular importance to the analysis is the 

case in which the determinant, ( )qθJ d ,q , of the Jacobian ( )qθJ d ,q  vanishes.  In 

this singular case, it is advisable to re-arrange equation (2) in such a fashion that the 

velocity, say β , of a different link replaces θ  on the right-hand side of the equation.  

The corresponding determinant, ( )qnew newβJ d ,q , of the new resulting Jacobian 

should also be obtained and used to distinguish amongst the following cases; 

Case 1: if ( ) ( ) 0q qnew newθ β= =J d ,q J d ,q , the mechanism becomes singular 

in such a way that geometric constraints are lost.  Some examples on 

the occurrence of this situation are listed as follows; 

i. A slider-crank mechanism where the crank length is set equal to 

the length of the connecting rod.  The crank will become 

aligned in the vertical position with the connecting rod to 

suggest that the slider can, geometrically, remain stationary 

whilst the crank continues its rotational motion. 

ii. A parallelogram four-bar chain at the position in which all links 

are simultaneously aligned with the ground link.   

iii. A quick-return linkage with the crank length set equal to the 

distance between the rocker stationary pivot and the crank 
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stationary pivot.  Such an arrangement is singular at the instant 

when the crank end passes by the rocker stationary pivot. 

Case 2: if ( ) ( )0 and 0 then 0q qnew newθ β θ= ≠ =J d ,q J d ,q ; if θ  is the 

velocity of the input link, this suggests a lock-up of the mechanism.   

Case 3: if ( ) ( )0 and 0 then 0q qnew newθ β θ= ≠ =J d ,q J d ,q ; if θ  is the 

velocity of any link other than the input link, then either this link is at 

the end of a stroke, or going through a dwell.  This condition could be 

employed to find the stationary positions of various links. 

The next section offers an example on how to use the Jacobians to gain an insight into 

the kinematic behaviour of a four-bar linkage. 

 

3. The Jacobians of the four-bar chain: 

 

Figure 1.  A four-bar chain 

 

A four-bar chain is shown in Figure (1).  As measured from the positive X-direction, 

the freedoms of various links ( 2 3 40, , ,θ θ θ ), and their lengths, ( 1 2 3 4, , ,r r r r ), are used to 

write the position vectors 0
1

jr e=1r , 2
2 2

jr e θ=r , 3
3 3

jr e θ=r  and 4
4 4

jr e θ=r  where j  is 

the complex number operator and the dimensions are pointed out on the drawing.  The 
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loop closure equation can then be written ( 2 3 1 4+ = +r r r r ) and differentiated to obtain 

the following expression; 

( ) ( ) ( )32 422 2
2 2 3 3 4 4

jj jr e r e r eθ πθ π θ πθ θ θ++ ++ − = 0      (3) 

which is then resolved in the X- and Y-directions as follows; 

2 2 2 3 3 3 4 4 4

2 2 2 3 3 3 4 4 4

sin sin sin 0
and

cos cos cos 0

r r r

r r r

θ θ θ θ θ θ

θ θ θ θ θ θ

− − + =

+ − =

     (4) 

Equations (4) can be re-arranged such that 3 kinematic expressions are written as 

follows; 

2 3 4

3 2 2 2 2 3 3 3 2 4 4 4

4 2 2 4 3 3 3 4 4

sin sin sin
, and

cos cos cos

r r r

r r r
θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

J J J  

          (5) 

where the Jacobian matrices are given as follows; 

2

3

4

3 3 4 4

3 3 4 4

2 2 4 4

2 2 4 4

2 2 3 3

2 2 3 3

sin sin
,

cos cos

sin sin
and

cos cos

sin sin

cos cos

r r

r r

r r

r r

r r

r r

θ

θ

θ

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J

J

J

      (6) 

The determinants of these matrices can now be expressed as follows; 

( )
2 3 4 3 4sinr rθ θ θ= −J , ( )

3 2 4 2 4sinr rθ θ θ= −J  and ( )
4 3 2 3 2sinr rθ θ θ= −J  

Setting 
2

0θ =J  implies the condition 3 4 4(or )θ θ θ π= + ; i.e. links number 3 and 4 are 

aligned.  Obviously for a general case, where the lengths are selected such that 
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3
0θ ≠J  or 

4
0θ ≠J , the condition suggests a lock-up.  As indicated above, if 

2
0θ =J , proving that either 

3
0θ ≠J or 

4
0θ ≠J  is sufficient to conclude the lock-up.  

Likewise, setting 
4

0θ =J  implies the condition 3 2 2(or )θ θ θ π= +  which, if supported 

by either 
2

0θ ≠J  or 
3

0θ ≠J , suggests that link number 4 is at its extreme positions.  

Similar analysis can readily be carried out to discover that for link 3 to arrive at its 

extreme positions, the crank and the rockers have to be parallel to each other. 

If the mechanism was designed in such a way that 1 3r r=  and 2 4r r=  (i.e. a 

parallelogram where 2 4θ θ=  and 3 0θ =  during the mechanism motion), 
3θ

J  will 

always be equal to 0, even when the other two determinants have nonzero values.  

This reflects the fact that 3θ  is always 0, and the coupler is always parallel to the 

ground link.  At the two positions, 2 4 0θ θ= =  and 2 4θ θ π= = , where all links are 

aligned with the ground, the three determinants will simultaneously vanish to 

highlight the occurrence of singularity.  The reader is encouraged to repeat the 

mobility analysis presented in this section on a slider-crank linkage, and on a quick-

return linkage.   

 

4. Computational kinematics: 

After having been introduced to the differential model in equation (2) and to the level 

of insight which is obtainable from the Jacobian matrices, students should now be 

ready for the concepts of computational kinematics.  The initial step here is to arrange 

equation (2) in such a way that θ  is the velocity of the input.  An approximation is 

then adopted where for a small time interval, tδ , various time-derivatives may be 
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replaced by ratios of infinitesimal changes such that d
dt t

δ
δ

≈
q q  and d

dt t
θ δθ

δ
≈ .  This 

leads to a form of equation (2) where tδ  is cancelled out on both sides, and the small 

differential changes, δq , which occur as a result of a small differential motion, δθ , 

can be calculated as follows; 

( ) ( )1
,i q i iθ θ θδ θ δθ

−
=q J d ,q g d       (7) 

where 0,1,2, , 1i N= +  is the step number, and the updated values of the link 

freedoms are expressed as follows; 

1

1

i i i

i i

δ
θ θ δθ

+

+

= + ⎫
⎬= + ⎭

q q q
        (8) 

Also the velocities and accelerations of various links can be calculated with a 

reasonable degree of accuracy as follows; 

1
2

i
i

i i
i

t

t

δ
δ
δ δ

δ
+

⎫= ⎪⎪
⎬− ⎪=
⎪⎭

qq

q qq
        (9) 

The expression given for the acceleration in equation (9) reveals why the number of 

intervals used for the calculations, 1N + , should be greater than the number of 

intervals, N , on the axisθ −  by 1.   

The technique presented above employs the well known Euler method to find a 

numerical solution to the set of simultaneous differential equations represented by the 

mechanism differential model.  A differential-model-based technique is ideal to 

introduce to undergraduate students as a numerical tool for computational kinematics 

due to its non-iterative nature, ease of programming and ability to calculate the 

velocity and acceleration of links as easily as offered by equation (9).  That is why a 

differential-model-based technique has been adopted in this paper rather than a root-
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finding technique, such as the Newton-Raphson method.  Being iterative in nature, 

root finding techniques are computationally costly, and more suitable for finding 

solutions only for a few data points widely separated on the axisθ − .  This implies 

that calculations can be performed at a much smaller number of data points than 

needed by the Euler method.  However, a too small number of data points will impair 

the resolution of the obtained results and important information on the kinematic 

behaviour of the linkage may be missed.  Moreover, after the roots have been 

iteratively found at every data point, the velocity and acceleration solutions still have 

to be calculated by solving the two linear systems obtained by taking the first and 

second time-derivatives of the loop closure equations.   

Despite its simplicity, the Euler method is capable of producing accurate outcome so 

long as the number of intervals selected on the axisθ −  is large enough as will be 

shown by the practice example given in the next section.  The example also features a 

function proposed to quantify the calculation error, and monitor its development 

during the course of computation.   

 

5. Practice example: 

For this example, it is required to produce graphs to describe the kinematic behaviour 

of the linkage sketched in Figure (2); given a constant input velocity, 2θ , for link 2.  

After a few attempts to obtain a closed form solution to relate various link freedoms 

to the freedom of link 2 (i.e. 2θ ), students usually realise the degree of difficulty 

featured in this problem and start looking for alternative techniques.  At this stage, 

they are encouraged to consider the use of a differential-model-based numerical 

method as described above.  The analysis sets out by writing the loop closure 

equations as follows; 
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Figure 2.  A linkage used for the practice example – not to scale. 

 

5 3 1 2

5 4 1 6

+ = + ⎫
⎬+ = + ⎭

r r r r
r r r r

        (10) 

where 1
1 1

jr e θ=r , 2
2 2

jr e θ=r , 4
3 3

jr e θ=r , 4
4 4

jr e θ=r , 5
5 5

jr e θ=r  and 0 /2
6 6 6

j jx e h e π= +r .   

 

The various dimensions are described on the drawing, and the differentiation process 

will result in the following expression for the computational model; 
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2

5 2 2 2

4 2 2

3

6

sin
cos

0
0

r
r

r
x

θ

δθ θ δθ
δθ θ
δ
δ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

J        (11) 

where the Jacobian, 
2θ

J , is given as follows; 

2

5 5 3 4 4

5 5 3 4 4

5 5 4 4

5 5 4 4

sin sin cos 0
cos cos sin 0
sin sin 0 1

cos cos 0 0

r r
r r
r r

r r

θ

θ θ θ
θ θ θ
θ θ
θ θ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
⎣ ⎦

J      (12) 

 

It would be advisable to obtain another kinematic Jacobian, say 
4θ

J .  Unless 

otherwise required, the determinant of this second Jacobian would be calculated only 

if it was discovered that 
2θ

J  vanishes during the course of computation.  In this case, 

if 
4θ

J  also vanishes at the same value of 2θ , the linkage would be singular, which 

may warrant re-synthesis of its dimensions.  On the other hand, if 
4θ

J  does not 

vanish at the value of 2θ  where 
2θ

J  vanishes, a lock-up would be concluded which is 

also a problem that warrants re-synthesis.  In fact, for the mechanism to function 

properly, the value of 
2θ

J  should always be nonzero.  In other words, this value 

should remain either positive or negative during the course of computations, and 

should never intersect the 2 axisθ − , as shown in Figure (7).  This remark does not 

apply to the determinants of other kinematic Jacobians present in the mechanism, i. e. 

4θ
J , 

3r
J , 

5θ
J  nor 

6xJ , due to the fact that these determinants vanish at the extreme 

positions of their corresponding links.  They will also change sign as their 

corresponding links change direction of motion. 
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The loop closure equation which has the position vector of the input link can 

conveniently be used to quantify the accuracy of calculations if arranged in the 

following form; 

( )5 3 1 2+ − − =r r r r 0         (13) 

At a given angle 2( 1)iθ + , which is the value of 2θ  as updated at the end of step number 

i , the second vector term of equation (13), 2r , is accurately defined.  Had the vector 

sum ( )5 3 1+ −r r r  also been accurately defined, it would have been exactly equal to 2r  

so that the dot-product of the two vectors should produce the exact same scalar value 

of 2
2r .  Subsequently, a convenient approach to quantify the error is to subtract this 

dot-product from 2
2r  and then divide the difference by 2

2r  to obtain a relative 

perspective for this error.  Mathematically, this can be expressed as follows;  

( )5( 1) 4( 1) 2( 1)1
5 3( 1) 1 2

1 2
2

1 100
i i ij j jj

i
i

r e r e r e r e
er

r

θ θ θθ+ + +

+

+

⎛ ⎞+ − •
⎜ ⎟= − ×
⎜ ⎟
⎝ ⎠

   (14) 

where 1ier+  is the percentage error as calculated at the end of step number i .   

The numerical value of the error function for the practice example is depicted in 

Figure (8).  The greatest deviation was found to fall below -0.07%, which reveals the 

high level of accuracy obtainable from such a simplified computational approach. 

The above procedure has been coded in a MathCAD function to describe the 

computational model of the example problem.  The constant dimensions used for the 

simulation are as follows; 1 76θ = , 1 42r cm= , 2 13.027r cm= , 4 63.6r cm=  and 

5 15r cm= .  The initial congruent values of various freedoms have been measured, of 

a CAD drawing, as follows; 2 0θ = , 4 61θ = , 5 59θ = , 6 28.399x cm=  and 

3 31.893r cm= .  It was also found from the CAD drawing that 6 27.73h cm= , even 
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though it is not needed for the differential analysis.  The number of steps, N , is 

assigned the value of 7200, which implies that 2
2

7200
radπδθ = .  For the velocity and 

acceleration calculations, the constant speed, 2θ , of the crank is given as 100 rpm , 

which implies that 60
7200 100

t secδ =
×

.  The outcome of the analysis is shown in 

Figures 3 to 7.  In these figures, the values given for various kinematic variables 

(position, velocity, acceleration and Jacobian determinant) are expressed in relative 

terms as follows; 

max

relative i
i v

=
vv          (15) 

where iv  is a vector that contains the values for any kinematic variable.  Also, maxv  

signifies the maximum absolute value inside iv  and relative
iv  is the relative form of the 

vector. 

A closed-form solution for the practice example is presented in the attached appendix.  

Table 1 below features the values of the mechanism freedoms as obtained using both 

the closed-form solution and the simplified numerical method shown above.  To 

highlight the accuracy level obtainable using the computational technique, the 

analysis was conducted at four broadly-spaced values for 2θ  as shown in the table. 
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Figure 3.  Position, velocity, acceleration and Jacobian determinant of link 4. 

 

 
Figure 4.  Position, velocity, acceleration and Jacobian determinant of link 5. 
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Figure 5.  Position, velocity, acceleration and Jacobian determinant of slider 6 

 

 
Figure 6.  Axial position, velocity, acceleration and Jacobian determinant of slider 3 
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Figure 7.  The determinant 

2θ
J  of the input link 

 

 
Figure 8.  Percentage error of calculations as per equation (14). 
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Table 1.  Exact and numerical results at sample crank angles. 

 

2θ (deg

4θ (rad) 5θ (rad) 6x (cm) 3r (cm) 

Exact Numer. Exact Numer. Exact Numer. Exact Numer. 

30 0.9994 0.999 1.5248 1.525 24.921 24.928 38.377 38.375 

90 1.1271 1.127 2.314 2.314 6.988 7.009 47.321 47.323 

150 1.281 1.281 2.615 2.616 -4.954 -4.951 41.46 41.469 

300 1.059 1.058 1.0517 1.054 28.414 28.444 18.861 18.817 

 

6. Conclusions: 

Differential kinematics presents a simplified alternative to closed form analytical 

expressions needed to study the geometrical behaviour of linkages.  For most linkages 

these closed form expressions are either too messy or not possible to obtain.  With 

computers becoming readily available to students, it is beneficial to introduce 

differential-model-based numerical methods to these students and encourage them to 

venture into problems that bear higher levels of difficulty than currently being 

considered in most academic programs.  In this paper, an approach has been presented 

to facilitate this process.  The mathematical procedure is based on the use of 

kinematic Jacobians matrices, whose determinants offer direct reflections on the 

mechanism mobility.  These matrices have been explained and used in an example 

that can conveniently be implemented for classroom practice. 
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Appendix 

A closed-form solution for the practice example 

Reference is made to Figure 2, and to points A( , )a ax y , 6 6B( , )x h , C( , )c cx y  and 

5 5 5O ( , )o ox y  which are shown in the figure.  These points are employed to write three 

geometric constraint equations in three unknowns 6( , and )c cx x y  as follows; 

6 6

6 6

a c

a c

h y h y
x x x x
− −

=
− −

        (i) 

( ) ( )2 2 2
6 6 4 0c cx x y h r− + − − =       (ii) 

and 

( ) ( )2 2 2
5 5 5 0c o c ox x y y r− + − − =       (iii) 

where ( )2 2cosax r θ= , ( )2 2sinay r θ= , ( )5 1 1cosox r θ= −  and ( )5 1 1sinoy r θ= −  

It is possible to adopt an iterative Newton-Raphson method to solve the three non-

linear equations for a given 2θ  value.  However, to obtain a closed-form solution, (ii) 

and (iii) are manipulated together into the following equation; 

2 2
5 6 5 6 5 6 5 6 5 4( )(2 ) ( )(2 ) 0o c o o c ox x x x x y h y y h r r− − − + − − − + − =   (iv) 

Also, equation (i) can be used to express 6x as follows; 

( ) ( )6 6
6

c a a c

c a

x h y x h y
x

y y
− − −

=
−

      (v) 

Now, substitute the expression obtained for 6x  back in (iv) to develop a 3rd degree 

polynomial in cx  and cy  as follows; 
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( ) ( )
( ) ( )( )
( ) ( ) ( )
( ) ( )

3 2 2 2 2 2 2
5 6 5 4 1 6 6 5

2 2 2 2 2 2
5 6 2 6 5 4 1 5

2 2 2 2
6 6 5 6

2 2 2 2 2 2 2
6 5 5 4 1 6 2

2 4 4

2 2

2 4

2 0

o c a a o a c

o a c c a o a c

a c c a o a c c a c

a o a c a

y h y r r r h x h y y y y

x x y x h r y h r r r y y y

h y y x h x x y y x h y x

h x x y x r r r y h r

− + − − + + + −

+ − − + − − − −

− − + − + −

− − + − − + =

  (vi) 

The coordinates, cx  and cy  can be expressed, as functions of a single variable t , as 

follows; 

2

5 5 2

5 5 2

1
1

2
1

c o

c o

tx x r
t
ty y r
t

⎫−
= + ⎪⎪+

⎬
⎪= +
⎪+ ⎭

        (vii) 

where 5tan
2

t θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Substituting (vii) in (vi) will produce a 6th degree polynomial in t  as follows; 

6 5 4 3 2
6 5 4 3 2 1 0 0t t t t t tσ σ σ σ σ σ σ+ + + + + + =  

where the coefficients iσ  feature lengthy mathematical expressions constructed of the 

mechanism’s constant dimensions along with 2θ .  Out of the six roots obtained for 

this polynomial, only the two real ones will indicate possible solutions.  The designer 

should always select the root which agrees with the initial configuration of the 

mechanism being studied.  Once a root has been selected, it should be inserted in (vii) 

to find the values of cx  and cy  which will be subsequently plugged in (v) to find 6x , 

and used in ( )5 5 5atan2 ,c o c oy y x xθ = − −  to obtain 5θ .  The coordinates, cx  and cy , 

can also be used to obtain the value of 4θ  via ( )4 atan2 ,a c a cy y x xθ = − − .  Finally, 

the value of 3r is calculated by applying ( ) ( )2 2
3 a c a cr x x y y= − + − .  This procedure 

has to be repeated at all the desired values of 2θ .     END OF PAPER 
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Figure Captions 

Figure 1.  A four-bar chain 

Figure 2.  A linkage used for the practice example – not to scale. 

Figure 3.  Position, velocity, acceleration and Jacobian determinant of link 4. 

Figure 4.  Position, velocity, acceleration and Jacobian determinant of link 5. 

Figure 5.  Position, velocity, acceleration and Jacobian determinant of slider 6 

Figure 6.  Axial position, velocity, acceleration and Jacobian determinant of slider 3 

Figure 7.  The determinant 
2θ

J  of the input link 

Figure 8.  Percentage error of calculations as per equation (14). 

 

 

Table Caption 

Table 1.  Exact and numerical results at sample crank angles. 

 


