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Abstract— Memetic algorithm (MA) often perform better
than other evolutionary algorithm due to their combining the
local search with the process of global optimization. However,
like any other evolutionary algorithm (EA), MA due to the
problem of genetic drift often result in sub-optimal solutions.
The problem is more aggravated when EAs are applied to
search complex landscape of NP complete problem like protein
structure prediction. In this paper, to help mitigate the problem
of genetic drift and also to cover large search space, we propose
a novel initial population generation process and a novel MA
which applies clusters for seeding the initial population. Apart
from reducing the impact of genetic drift, the proposed MA also
avoids processing of unnecessary individuals in the population,
thus significantly reducing the computational burden, especially
for large protein sequences. Simulation results presented using
the 2D lattice HP model show the superiority of the proposed
algorithm.

I. INTRODUCTION

Due to an astronomically large number of possible protein
structures for a corresponding primary sequence of amino
acids, prediction for optimal protein structure is usually per-
formed by applying evolutionary algorithms (EAs). Although
most of the EAs perform well for a global search, they are
found to be inefficient in exploiting the surrounding search
space leading to sub-optimal solutions [1]. In contrast, EAs
in combination with local optimization procedures have been
shown to improve their precision [1], [2]. In this context,
local improvement procedure or local search is analogous
to the learning that occurs during the lifetime of an indi-
vidual. However, another way in which learning (i.e. local
search) and evolution can interact is instead of coding the
improvements back onto the individual, the improvement can
be transferred to other individuals which Dawkins coined
as meme [3]. Memetic algorithm (MA) incorporates this
concept for local improvement [4] capturing the domain
knowledge of individuals and passing it to the next gener-
ations. Research [5] has shown that evolutionary searches
based on memes are more effective than those applying
only genes for evolution. MA is a class of stochastic global
search techniques which combine domain knowledge based
local search heuristics and multi-agent systems within the
framework of EAs [6]. MA does not have any core or clear
architecture, but rather a flexible local search architecture
that can be adapted for different problem domains [4]. For
this reason, MA has been successful for a wide range of
optimization problems such as combinatorial, continuous,
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dynamic, and multi-objective, etc [4].
Because of genetic drift, the MA like any other EA, suffers
from the problem of population shift towards one of the
possible solution peaks during optimization using EAs for a
multimodal function with several peaks. Generation of a large
initial population [2], [7] may not always be feasible because
the evolution of a large number of individuals increases
computational cost.
In order to overcome this limitation, in this paper, we propose
a novel technique of clustering to extend our novel memetic
algorithm (NMA) [8] which will increase the optimization
search space and keep the computational cost down. The
performance of the proposed clustered memetic algorithm
architecture is tested with the aid of a NP-complete bioin-
formatics problem, protein structure prediction (PSP) for
2D hydrophobic-hydrophilic (HP) lattice model [9].We have
introduced a novel dynamic individual generation (DIG)
technique for HP model protein here and have showed that
DIG guarantees a Self Avoiding Walk (SAW) and in addition,
the technique is much faster than the traditional approach.
Several evolutionary algorithms including ant colony op-
timization (ACO), tabu search (TS), self organizing map
(SOM), progressive-based computing approaches (e.g. chain
growth (CG), pruning enrichment Rosenbluth method
(PERM)) have been used to solve protein structure prediction
(PSP) problem and a detailed review of those algorithms
can be found in [10]. Recent literature shows that immune
algorithm (IM) [11] and estimation of distribution algorithm
(EDA) [12] have also been used to solve protein structure
prediction on an HP model. Though memetic algorithm
shows success in different problem domains, less effort has
been made to solve PSP using memetic algorithm. The rest of
the paper is organized as follows: section II describes new
initial random population generation technique; section III
explains our novel clustering technique; empirical results are
shown in section IV and ends with a short conclusion out-
lining the summary of this paper and future work directions.

II. POPULATION INITIALIZATION

In EAs, an initial population of randomly generated can-
didate solutions comprises first generation. An individual, xxx,
is a sequence of genes and each gene takes value randomly
from a set of possible values. If l(xxx) is the length of the gene
sequence of individual xxx then an individual with a binary
gene string can be defined as in eqn. 1

xxx = x1x2x3 . . . xl(xxx) where ∀ixi ∈ {0, 1} (1)

For PSP problem, initial individual generation is not as
straight forward as in many other applications because of
the requirement of Self Avoiding Walk or SAW so that no
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Fig. 1. Flow-Diagram of General Random Initialization For PSP

two residues cross each other. An individual protein is said
to be SAW iff two residues, ri and rj, where i 6= j do not
have the same position in the lattice.

A. Traditional Method

Traditionally, an individual in a 2D HP model is generated
using random moves (genes) that could not guarantee a
SAW individual. This necessitates a SAW check process
for discarding non-SAW individuals and also the generation
of that individual again. This process is repeated until the
necessary number of individuals is generated. The flow
diagram of this process is shown in Fig. 1.

Considering 2D relative encoding [13] involves three dif-
ferent possible moves, namely, F -Forward; L-Left; R-Right
as shown in Fig 2(a). From eqn. 1, the conformation moves
of an individual with relative encoding in 2D square lattice
can be defined as eqn. 2.

xCi
xCixCi

= x1x2x3 . . . x(l−2) where ∀ixi ∈ {F,L,R}. (2)

Since the first move of a conformation is always a forward
(F) move [13], a protein sequence of l, there can be (l − 2)
possible moves in any conformation. This results in a large
number (i.e. Np = 3(l−2)) of possible conformations some
of which are invalid due to SAW requirement.
As this process involves in random selection of moves, SAW
individual generation using this process takes an exponen-
tially long time. Considering a sequence of length more than
4 residues can have non-SAW individuals, we note that a se-
quence of 5 residues can have two non-SAW individuals and
the number of non-SAW individuals increases exponentially
as the number of residues in a sequence increases. If the
length of a non-SAW conformation is increased, it continues
to remain non-SAW irrespective of what the next moves.
Hence, in the worst case, there can be an exponentially
large, Nw =

(
2× 3(l−5)

)
, non-SAW conformations. This

is because, the worst case appears when a loop is formed

at the beginning and continues to grow. A confirmation of
5 residues can have two non-SAW individuals by forming
loops (in relative encoding FLLL and FRRR). If moves are
increased of these two non-SAW conformations they will
remain non-SAW. As in relative 2D encoding there are 3
possible moves at any point thus taking into consideration
a protein of length l there can be 3l−5 possible moves for
rest of the resides of these two conformations. Assuming the
probability of getting a non-SAW for a conformation with
the worst case being Pwt, for a protein of length l, Pwt is
calculated as shown by eqn. 3.

Pwt =
Nw
Np

=
2× 3(l−5)

3(l−2)
=

2

33
= 0.074 (3)

We note that, the worst case probability of forming a non-
SAW is fixed irrespective of the length of the protein.

B. Proposed Method

In the proposed method, dynamic individual generation
(DIG), conformation is generated randomly but by using 2D
points of the lattice and absolute moves together instead
of relative moves alone as in the traditional method. The
process starts from the mid point of the lattice model. The
process begins with a possible move set, SPi , {E(east),
W(west), N(north), S(south)} for each residue i, and is
updated according to possible moves of the residue. Then
before taking any random move for i form SPi

, we verify
whether the position in the lattice is previously occupied by
another residue or not. If the position is empty then the move
is implemented for the residue and the point in the lattice
is updated accordingly. If not, then the move is discarded
from the SPi

and again a random move is chosen from
the truncated SPi

. If SPi
becomes empty, then the process,

recognizing that the previous move was a wrong move passes
the control back to the previous residue, (i − 1). A new
move, ignoring the earlier move, is taken from the truncated
move set SPi−1 . This process is continued till all moves are
generated for the individual.

Algorithm 1 Dynamic Individual Generation (Part 1)
1: procedure INITIALIZATION . Random initialization
2: indvCount← 0
3: while indvCount < PopulationSize do . Untill all the

individual generated
4: startPoint = latticeCenter
5: PointsList.add(startPoint)
6: UpdateLattice(startPoint)
7: secondPoint = eastNeighbour(startPoint)
8: PointsList.add(secondPoint)
9: UpdateLattice(secondPoint)

10: GetPointsMinusTwo(2, E, secondPoint). 2 denotes two
points have been generated

11: end while
12: end procedure

The algorithm for the implementation of the proposed
method is shown in two parts: Algorithm-1 and Algorithm-2.
In Algorithm-1, the computation of first two points, which
are fixed for any conformation, is carried out. In Algorithm-
2, the recursive generation of rest of the points is performed.



The worst case scenario causing maximum back tracking
occurs only with a spiral conformation. The probability of
spiral conformations reduces exponentially with the increase
in sequence length. There is exactly one way to form this
and if the length of the spiral in is Sl then the probability
of forming this spiral in is 1

3

(Sl−2). This is because, from
each residue i to the probability of choosing the following
point of the residue (i + 1) is 1

3 because it can go back to
the previous residue (i−1). The proposed method guaranties
that it will come out of the spiral conformation after visiting
all the possible moves inside and once it comes out of the
spiral in conformation it will never revisit that path again. So
our proposed method of individual generation is complete as
it always guaranties termination with a SAW individual. As

Algorithm 2 Dynamic Individual Generation (Part 2)
1: procedure GETPOINTSMINUSTWO (indx, prvMove, prvPoint) .

Generates Rest of the Points
2: if index = ProteinLength then
3: return true
4: else
5: PossMoveSet= ConstructPossMovesSet(prvMove)
6: NonPossMoveSet={}
7: while true do
8: curMove=GetRandMove(PossMoveSet,NonPossMoveSet)
9: if !isOccupied(curMove, prevPoint) then

10: PointsList.add(TakeTheMove(curMove,prvPoint))
11: UpdateLattice(PointList[indx])
12: if GetPointsMinusTwo(indx+1,curMove,PointList[indx])

then
13: return true
14: else
15: UndoLattice(PointList[indx])
16: PointList.remove(indx)
17: NonPossibleMoveSet.add(curMove)
18: if PossMoveSet.Count=NonPossMoveSet.Count then
19: return false
20: end if
21: end if
22: else
23: NonPossibleMoveSet.add(curMove)
24: if PossMoveSet.Count=NonPossMoveSet.Count then
25: return false
26: end if
27: end if
28: end while
29: end if
30: end procedure

we are following relative encoding, the algorithm kicks off
by fixing the first two points for first move as a forward (F)
move. Next, for any residue i, the conformation has three
possible neighbor points for the following (i+ 1)th residue.
To keep track of allowed moves at any point i, we maintain
two sets: SPi

(Set of all Possible moves) and SNP i
(Set of

Not-Possible moves).
As shown in (Algorithm. 2) for any ith residue, SPi is first
initialized (line 5-6) with all permissible moves and SNP i

as an empty set. A free location is chosen from SPi
in a

random manner (line 8). If the point is already occupied by
another residue, the random move becomes invalid and gets
included in the set SNP i (line 23). Another random move is
chosen from {SPi

− SNP i
}. If SPi

= SNP i
(line 24), this

implies that the move taken at (i − 1) was invalid. Hence,
we undo the move (line 15-16) and is added into the SNP i

set (line 17) of (i− 1)th residue. The control returns to the
previous position (line 15) in a recursive manner returning

false (line 25). A new move is again chosen randomly for
(i− 1) (line 8). This process continues until all valid points
are found for the sequence (line 2) whereupon it terminates.
So the algorithm will always terminate with a SAW confor-
mation and still it is a random process.

Lemma 1. The DIG guarantees Self Avoiding Walk and a
valid conformation .

Proof. SNP i keeps track of the moves that are not per-
missible at any point i. This ensures it will not to follow
same path again and again. A residue takes a point in
the lattice only if the point is not already occupied by
another residue thus this ensures the generation of a SAW
conformation all the time. Furthermore, the number of total
possible conformations is more than the number of non-SAW
conformations conformation which essentially confirms that
the proposed process will always terminate with a SAW
conformation.

Lemma 2. In a DIG, the probability of a worst case scenario
(upper bound) reduces exponentially with sequence length.

Proof. As stated earlier, in proposed the DIG method, the
worst case scenario occurs only when the conformation forms
a spiral in as shown in Fig. 2(b), 2(c) and 2(d). If the 2D
rectangular spiral in type conformation has a dimension of
a × b then the number of residues on the boundary will be
as shown in eqn. 4.

2a+ 2(b− 2) = 2a+ 2b− 4

= 4(a− 1) when a = b, for square
(4)

The number of points inside the boundary will be equal to
eqn. 5.

(a− 2)× (b− 2) = ab− 2a− 2b+ 4

= (a− 2)2 when a = b, for square
(5)

In case of a square spiral there will be the maximum number
of points inside the boundary. Considering the case of a spiral
for a square of length a. By adding eqn. 4 and eqn. 5 we
find eqn. 6 as the total number of points in the square spiral.

a2 = 4(a− 1) + (a− 2)2 (6)

The eqn. 6 shows that the number of points inside the
boundary is polynomial whereas the number of points on
the boundary is linear. If a conformation results in a spiral,
then it will search all the possible combinations inside. If
the number of residues needing a position inside the spiral
is more than the number of available points inside, it results
in maximum backtracking. Eventually, it will comeback
through backtracking according to the proposed algorithm
but that will be the worst case scenario for this algorithm.
The eqn. 7 when the length of the square is greater or equal
9, the number of points inside will be greater than the number
of points in the boundary. That also means that there must
be at least (92 +1) to get the worst case spiral in where the
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Fig. 2. (a) shows relative move sets. The worst case scenario for different values of a are shown in (b), (c) and (d)

number of points needed to back track is greater than the
number of points not needed to back track.

(a− 2)2 − 4(a− 1) > 0

a2 − 8a− 8 > 0

(a− 4)2 > 8

a > 6
√
2 or a > 8.49

(7)

To get a spiral for a square of length a at least 4(a −
1) + 1 points (one more that the number of points form the
boundary) are needed. So, the required number of moves
is 4(a − 1) − 1 and 34(a−1)−1 different conformations in
relative encoding. From this many only 2 will form a spiral
for a 2D square lattice. The probability of reaching at this
spiral condition is shown in eqn. 8 taht is the worst case
probability of the proposed method, Pwp.

Pwp =
2

34(a−1)−1
= 2×

(
1

3

)4(a−1)−1

= 2×
(
1

3

)4a−5

(8)

So, the probability of forming a spiral is exponentially
reduces with the length of the square a, and in turn, with
the length of the sequence, Sl as a ∝ Sl.
In the traditional approach, it can happen that a loop has
been formed at any of the stage with a minimum of 4
moves (FLLL or FRRR) but it continues to build the rest
of the conformation. The probability of getting this type of
conformation is 2×

(
1
3

)4
and in the worst case this can form

at the beginning of the conformation and the probability of
that is 2 ×

(
1
3

)3
. So it is fixed and much higher than the

proposed approach.

Following part of this paper elaborates the novel clustering
technique.

III. CLUSTERING NMA

A simple genetic algorithm (GA), when applied to a multi-
modal function, converge to only one of the peaks. Moreover
this peak is randomly chosen due to the well-known genetic
drift: the simple GA has no means of deciding amongst the
different global peaks, and only the stochastic variations due
to the genetic operators can make the population drift to one
of these peaks [14]. As a result, convergence may be very
slow until the population drifts to one of the basins or, even
worse, the algorithm may get stuck in a local optimum.

Memes can preserve domain knowledge of peaks efficiently
and it can also transfer the knowledge to other individuals
thus enabling the EA to explore and exploit the entire search
space effectively, thereby, preventing the occurrence of local
optima. However, since genetic drift drives all individuals
to one peak, a single set of population will fail to identify
memes corresponding to different peaks of the search space.
Therefore making it necessary to explore and exploit the
entire search space to get rid of local optima. Preserving the
domain information of each of the peaks in EAs will help
to explore and exploit the entire search space effectively.
Memes can preserve domain knowledge of peaks efficiently
and can also transfer the knowledge to other individuals.
The literature [15] shows that clustering data set helps to
segregate global optima effectively and efficiently but a set
of limited individuals cannot cover all the possible peaks.
Considering large initial population to cover all possible
peaks may not always be feasible due to large computational
time [2], [7]. To overcome these problems, we propose a
novel initial data set clustering technique to help in both
exploring various peaks and covering as many individuals as
possible efficiently.
The proposed method for clustering works in two stages.
In stage 1, the number of clusters, say κ, are formed for
a new population set. Each cluster evolves independently
using NMA [8] for a specified number of iterations, Iκ ,
thereby generating a set of best individuals in each cluster.
The substructures (memes) present in the best individuals
carry the base information of the peak to which the solution
is converging. These memes from each cluster are then used
to generate new individuals resulting in one main cluster
of population. Next, in stage 2,we generate Nκ individuals
from the memes of each cluster. If N is the total number of
individuals then Nκ = N

κ . After that, the newly generated
individuals from memes that will evolve in the main cluster
using NMA [8] with regular crossover, mutation and using
a set of improved local search techniques. The overall
architecture of the proposed clustering NMA is shown in
Fig. 3.
The meme generation technique with the entire mechanism
of transferring domain knowledge through the memes and
the resulting improved local search techniques are described
in subsequent sections.
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A. Meme Generation

To generate meme in each cluster, we use our schema
preservation technique reported earlier [8]. If we set the cut
off value, χ, to a higher value (i.e. greater than 0.8) which
means that same move occurred at the same position of
the best individual more that 80% times, then the schema
generated by this method will be the base substructure of
the best individuals of the region the solution converges
and we can call it a meme. This technique identifies the
substructures that remain fixed in the best individuals.
We modify the schema preservation technique when
creating a list of best individuals. Rather than using relative
encoding for comparison between different individuals
isomorphic encoding [13] is used whereas memes are

kept in relative encoding. Isomorphic encoding is a better
for differentiating between two individuals than relative
encoding. For example, lets consider two conformations
in relative encoding FRLLRLLRLLR and FLRRLRRLRRL
as shown in Fig. 4(a) and Fig. 4(b). Though the relative
encodings are different, the conformations are basically the
same, that is, a reflection of each other. The isomorphic
encodings for these two conformations are same. So,
comparing using isomorphic encoding will ensure that these
types of identical conformations do not appear in the list.

B. Local Improvement

Local improvement is done using meme replacement, pull
move and mutation operation, adaptively within the tabu
search framework. In tabu search, tabu list ensures the same
individual is not generated earlier.

1) Meme Replacement: In main cluster, meme replace-
ment technique is used as a local improvement. Meme
structure is a tuple containing the substructure in relative
encoding, the start point and the end point. All memes
generated from different clusters are kept in a list and in the
meme replacement method each meme is used as a candidate
for improvement. A reflection of each meme is also used
during the meme replacement that ensures no information
is lost due to reflection of the conformation. Although
isomorphic encoding is better for ensuring diversity, relative
encoding is better at representing a substructure than a iso-
morphic encoding because representation of substructure in
isomorphic encoding varies with previous moves whereas in
relative encoding it does not vary with previous moves, rather
it depends on the current move. This means, a substructure
with relative encoding can be placed as it is and does not
need any conversion. On the other hand, if memes were kept
using isomorphic encoding then they could not be placed as it
is rather they would need a conversion mechanism for meme
replacement. As an example, in Fig. 4(c) the substructure in
dashed rectangle has three occurrences and all of them have
relative encoding RLL whereas the isomorphic encoding are
different; 314, 142 and 423.

2) Pull Move: Local improvement by pull move, intro-
duced by Lesh et al [16] which was subsequently extended by



[17], [18], [19], is very effective in exploiting the neighbour.
On top of this we propose some related improvements on
pull moves which ensures all possible neighbour exploitation.
There are twelve possible scenarios for a pull move in a 2D
lattice. We have defined a conformation in a 2D lattice and
redefined a possible pull move scenario for a 2D lattice.

Definition III.1. (Conformation in a 2D Square Lattice) A
conformation in a 2D Square Lattice, C2L, as an ordered pair
C2L = (V,E) where,
V = {A1, A2, . . . , AN} where N is the number of amino
acids and
E = ∀1<i<N{(Ai−1, Ai) ∪ (Ai, Ai+1)}.
Here, V is the set of vertices of amino acids and E is the
set of lines connecting the amino acids where the length of
each line can be defined as ∀0<j<N |(Aj , Aj+1)| = 1 and
each vertex of amino acid can be defined as ∀1≤i≤N{Ai =
(xi, yi)}.

Definition III.2. (Redefined Pull Move) A pull move is
possible iff starting at a vertex (amino acid) Ai where
1 ≤ i < N , there is an empty space on either sides of
Ai+1 in a 2D square lattice and there is an empty space in
the corresponding side of Ai or it is occupied by Ai−1.

According to definition III.2 twelve (12) different scenar-
ios of pull move may occur as we advance through the chain
of a conformation, C2L as shown in the Fig. 5. Formally, we
define the direction of

−−−−−→
Ai, Ai+1 as

−→
d and the two sides of the

direction,
−→
d , on a 2D plane as a positive(+) and a negative

(−) side. We also define positive(+) side of Ai+1 as C and
negative(−) side of Ai+1 as Ć and likewise positive(+) side
of Ai as L and negative(−) side of Ai as Ĺ. Then if we get
an empty space at C and either L is empty or occupied by
Ai−1 then a pull move is possible at the positive side of

−→
d .

The same orientation can occur for Ć & Ĺ in the negative
side of

−→
d which will create a possibility of pull move on

the negative side of
−→
d . More interestingly, both of these two

scenarios can occur at the same time which will create room
for pull moves on both the sides. This makes three different
scopes for pull move in a direction and there can be four
such directions as shown in the Fig. 5 which will generate
twelve possible pull move scenarios in total.

Definition III.3. (Reverse Pull Move) A reverse pull move
is possible iff starting at a vertex (amino acid) Ai where
1 < i ≤ N , there is an empty space on either sides of Ai−1
in a 2D square lattice and there is an empty space on the
corresponding side of Ai or it is occupied by Ai+1.

According to definition III.3 there are twelve(12) different
scenarios of pull move that may occur as we advance through
the chain of a conformation, C2L in reverse direction as
shown in the Fig. 6. Formally, if we define the direction
of
−−−−−→
Ai, Ai−1 as

−→
d′ then the two sides of the direction,−→

d′ , on a 2D plane can be defined as a positive(+) and a
negative(−) side. We define positive(+) side of Ai−1 as C
and negative(−) side of Ai−1 as Ć and likewise positive(+)

TABLE I
BENCHMARK SEQUENCES, HERE E* SHOWS THEIR OPTIMUM FITNESS

Inst. Len. Sequence E* Ref
B1 48 2ph2p2h2p2h5p10h6p2(2h2p)h2p5p -23 [13]
B2 50 2h3(ph)p4hp2(h3p)h4p2(h3p)hp4h3

(ph)p2h
-21 [13]

B3 60 2p3hp8h3p10hph3p12h4p6hp2hphp -36 [13]
B4 64 12h2(ph)2(2p2h)2ph2p2(2h2p)2(hpph)

hp2(ph)p12h
-42 [13]

B5 85 4h4p12h6p12h3p12h3p12h3ph2p2h2p2h2
phph

-53 [13]

B6 100a 3p2h2p4h2p3h2(phh)p4h8p6h2p6h9php
2hp11h2p3hp2hph2php3h6p3h

-50 [13]

B7 100b 6php2h5p3hp5hp2h4p2h2p2hp5hp10hp2h
p7h11p7h2php3h6php2h

-48 [13]

side of Ai as L and negative(−) side of Ai as Ĺ. If we get an
empty space at C and either L is empty or occupied by Ai+1

then there is a possible pull move at positive side of
−→
d′ . The

same situation can occur for Ć & Ĺ in the negative side of−→
d′ which will generate a possible pull move situation on the
negative side of

−→
d′ . So, same as pull move at the forward

direction, there can be twelve different possibilities of pull
move that can occur in reverse direction as well.

With this reverse pull move it is possible to exploit
possible neigbours that would not be possible with only the
general pull move. For instance, Fig. 7 shows the difference
between general pull move and the proposed reverse pull
move. Residue Ak+4 comes to the position of L in general
pull move and other residues Aj where j < k+4 are updated
as per the definition of pull move [16]. Whereas in reverse
pull move Ak+6 comes to the position of L and other residues
Aj where j > k+6 are updated as per the definition of pull
move.

3) Mutation: Local improvement by mutation is another
way to exploit the neighbour of a conformation C2L. To
make the mutation process effective, we set a mutation pivot
first using definition III.4. Subsequently we performed a two
point mutation on it based on mutation pivot. We have found
that a two point mutation is more effective than a single point
mutation.

Definition III.4. (Mutation Pivot) A vertex (amino acid)
Ai = (xi, yi) where 1 < i < N is a mutation pivot iff
there is an empty cell in its four neighbours. Formally, if
there is an empty cell among {(xi, yi+1), (xi, yi−1), (xi+
1, yi), (xi − 1, yi)}.

IV. EXPERIMENTAL RESULT

Experiments are carried based on the benchmark se-
quences shown in Table I. Only challenging benchmark
sequences are considered here as comparisons for shorter
length sequences have already been presented using NMA
in [8]. Performance analysis between the proposed initial
population generation algorithm and the traditional popula-
tion generation algorithm is shown in section IV-A. Outputs
of Clustered NMA for different sequence of protein are
shown in section IV-B.
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Ĺ

L

- right

+ right

(a) right

i + 1 i i− 1

Ć
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Ĺ

L

- right

+ right

(a) right

i− 1 i i + 1

Ć
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TABLE II
TIME (IN SECOND) NEEDED TO GENERATE 200 INDIVIDUALS OF

DIFFERENT LENGTH SEQUENCES

Seq. Run1 Run2 Run3 Run4 Avg

Pr
op

os
ed

B2 0.093 0.078 0.062 0.078 0.077
B3 0.109 0.093 0.093 0.093 0.097
B4 0.124 0.124 0.140 0.109 0.124
B5 0.249 0.187 1.265 0.156 0.464
B6 0.234 0.296 0.249 0.234 0.253
B7 1.374 0.874 0.218 12.640 3.776

Tr
ad

iti
on

al

B2 1.609 1.546 1.671 1.718 1.636
B3 5.843 6.171 6.234 6.593 6.210
B4 11.343 10.109 11.515 10.109 10.769
B5 191.123 167.123 191.983 148.264 174.623
B6 1291.429 1139.570 1104.586 1031.790 1141.844
B7 1038.524 1044.368 1027.946 971.087 1020.481

A. Initial Population

A comparison between traditional and proposed method
of population generation is shown in Table. II. Longer
length sequences (see Table I) are specifically chosen for
the comparison to make the impact more conspicuous. In
evolutionary algorithms besides initial random population,
10%-20% new random individuals are also needed during
replacement due to elitism or other improvement techniques
in every generation. Hence, if the new random individual
generation takes longer time then it will affect overall perfor-
mance of the whole algorithm. The difference in the average
time needed for individual generation in the proposed and
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Fig. 8. Comparison of average time (in second) needed in individual
generation of different length between tradition and proposed method

traditional approach is shown in the semi-log plot (Fig. 8).

B. Clustered NMA

If we can formulate memes correctly then they will pre-
serve the base information of peaks when they are be used
to generate new individuals they pass on the information. So
the new individuals, therefore, should at least reproduce the
same peak or a better peak than initials clusters in the course
of evolution. Based on this hypothesis, we have set the initial
cluster size κ = 4 and each of the clusters generates N = 200
individuals. Every cluster is evolved Iκ = 50 for iterations



TABLE III
RESUT FOR CLUSTERED NMA (NUMBER OF ITERATION NEEDED TO

REACH THE FITNESS IS SHOWN IN BRACKET)
Se

q

R
un

C
lu

st
er

-
1

C
lu

st
er

-
2

C
lu

st
er

-
3

C
lu

st
er

-
4

Fi
na

l

B1
1 -21 -21 -22 -21 -22(22)
2 -22 -22 -22 23(27)
3 -21 -22 -21 -22 -22(1)

B2
1 -21(41)
2 -21(25)
3 -21(23)

B3
1 -36(27)
2 -35 -35 -35 -34 -35(1)
3 -34 -35 -34 -34 -35(1)

B4
1 -40 -39 -39 -39 -40(13)
2 -36 -39 -38 -36 -40(37)
3 -39 -42(35)

B5
1 -49 -49 -49 -50 -50(23)
2 -46 -50 -51 -49 -51(376)
3 -48 -49 -48 -48 -50(1692)

B6
1 -44 -45 -44 -42 -45(1)
2 -45 -45 -45 -45 -45(1)
3 -45 -45 -47 -45 -47(1)

B7
1 -42 -44 -42 -44 -44(1)
2 -42 -43 -44 -42 -45(259)
3 -45 -46 -46 -45 -46(19)

TABLE IV
RESULTS ACHIEVED BY DIFFERENT SEARCH ALGORITHMS

Inst. BestIM [11] BestEDA [12] BestGGA [13] BestCMA

B1 -23 -23 -23 -23
B2 -21 -21 -21 -21
B3 -35 -35 -36 -36
B4 -42 -42 -42 -42
B5 -52 -52
B6 -48 -48
B7 -47 -46

for generating memes and then the memes are transferred
from these clusters to the main cluster. The algorithm was
run sequentially for different benchmark sequences as shown
in (see Table I). The simulation was carried out for up to a
maximum of 3 hours or earlier if the optimum was obtained.
The results for different sequences are shown in Table III
using clustered NMA where same fitness does not necessarily
mean same structure. From the results, it is clear that main
cluster is able to reproduce at least the same peak or produces
a better peak than the stage 1 clusters. The best result
achieved from our proposed clustered NMA (CMA) after
running the algorithm for 6 hours is compared with other
approaches in Table IV showing that our proposed technique
produces competitive results compare to other approaches.

V. CONCLUSION

Random population generation, which is an important part
of any EA including memetic algorithm, is constrained, in
the case of protein structure Prediction, by the need for an in-
dividual to satisfy SAW. The proposed MA incorporating the
novel DIG technique generates individuals quickly even for
longer protein sequences. The clustering technique presented
here establishes that when the memes are properly identified,

they contain correct domain information of peaks. If this in-
formation is passed to other individuals, it reproduces better
or at least the same peaks. We have shown that both meme
generation technique and the meme replacement technique
presented in this paper play a significant role in proposed
clustered memetic algorithm. The proposed clustered novel
memetic algorithm is easily scalable in a grid or distributed
architecture environment.
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