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1. Introduction 

One of the most crucial problems in construction blasting is to predict and then mitigate 

ground vibration [1]. Blast induced ground vibration is considered as one of the most 

important environmental hazards of mining operations and civil engineering projects. Intense 

vibration can cause critical damage to structures and plants nearby the open-pit mines, dams, 

and mine slopes, etc. [2-3]. Researchers who deal with this undesirable phenomenon take into 

account various range of parameters in order to mitigate the detrimental effects of blasting. 

Blast-influencing parameters can be divided into two categories [2]: uncontrollable 

parameters, such as geological and geotechnical characteristics of the rockmass, and 

controllable parameters, such as burden, spacing, stemming, sub-drilling, delay time, etc. 

A number of researchers have worked in this area and have considered different 

combination of aforementioned parameters topredict the Peak Particle Velocity (PPV).  This 

specific parameter has been widely used in practice to forecast and evaluate blast damages of 

structures [2]. The conventional PPV models suggested by various researchers [4-7] are 

mostly based on the amount of explosive charge per delay and distance from blast face to 

monitoring point.Theymade their effort to take into consideration more influential parameters 

to propose empirical models. These days, researchers are using variety of contemporary 

function approximation methods, i.e. artificial neural network (ANN), support vector 

machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), 

etc, to predict the blast induced ground vibration [8-16]. 

Other approaches,like numerical, empirical, etc models are also being used by various 

researchers to evaluate the adverse effect of blasting. Ghasemi et al. [17] used dimensional 

analysis (DA) technique and montecarlo(MC) method to predict the effects of controllable 

blasting parameters on flyrock distance in the Sungun copper mine, Iran. In their 

study,burden, spacing, stemming, blasthole length,blasthole diameter, powder factor, and 

mean charge per blastholewere used as major controllable blasting parameters to constitute 

stochastic model. 

Babanouri et al. [18] used ‘linear superposition method’ at the Gol-E-Gohar iron ore 

mine tosimulate the production blast seismograms based upon measurements of single-hole 

shot vibrations, carried out at a distance of 39 m from the blast. The production blast 

seismograms were then used as input to predict the particle velocity time histories in the mine 

wall using the three-dimensional discrete element method. In their research a “simulated 

annealing” search algorithm was employed to find the optimum values of unknown 
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parameters. The final results of time histories of particle velocity showed a good 

agreementwith the measured time histories. 

Hudaverdi [19] applied an innovative multivariate analysis procedure for the prediction 

of blast-induced ground vibration. He considered parameters related to ground vibration to 

perform multivariate analysis. He classified the blasts data into different groups of similarity 

using hierarchical cluster analysis and then analyzed and confirmed the membership groups 

by the discriminant analysis. In his investigation, a linear discriminant equation was 

developed for the estimation of blast induced ground vibration using regression analysis. The 

consequences of his study showed that using hierarchical cluster analysis could reduce the 

complexity of relationships between different parameters affecting ground vibration. 

Dehghani and Ataee-Pour [20] carried out a study to develop a new formula based on 

Dimensional Analysis (DA) to predict PPV. They used sensitivity analysis between PPV and 

each input parameter of ANN model in order to find the most effective parameters in 

prediction of ground vibration and used them to apply DA technique. They concluded that 

vibration is a function of the most important parameters such as powder factor, charge per 

delay, and burden. The suggested mathematical model was compared with available 

conventional PPV predictors and found excellent blast results compared to conventional 

predictors.  

Choi et al. [21] established a safe blast guideline that can secure the safety of open pit 

slopes against blast induced ground vibration in Pasir coal mine, Indonesia. In their study, 

first a general prediction equation for the ground vibration level was derived. After that, 

based on a numerical method, allowable ground vibration level was set. Finally, maximum 

charge weight per hole was determined based on the scaled distance. 

Differential Evolution (DE) is a small and simple mathematical model of a large and 

naturally complex process of evolution [22]. Since  its  inception  in 1995,  DE  has  earned  a  

reputation  as  a  very  effective  global  optimizer. While DE is not a panacea, its record of 

reliable and robust performance demands that it belongs in every scientist and engineer’s 

“bag of tricks” [23]. 

Khandelwal and Saadat [24] proposed a new DA equation to predict the PPV and compare 

their findings with the various conventional predictors. They found very satisfactory results 

for the PPV prediction using DA equation compared to conventional predictors.  

The present paper focuses on the application of DE Algorithm to predict blast induced 

ground vibration ofJayant opencast mine, NCL, India. DE algorithm and Multiple Linear 

Regression (MLR) analysis are conducted in order to evaluate the unknown coefficients of 
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DA-based model. The blast vibration prediction of DA-based model optimized by DE and 

MLR is compared with commonly used vibration predictors. 

 

2. Conventional Predictors 

PPV is one of the most pervasive damage indicator criteria to assess detrimental effects 

of blasting on structures due to blasting. There is variety of empirical models suggested by 

different researchers for prediction of blast induced ground vibration. In this study, four 

widely used predictors are chosen in order to find the best approximation of PPV [4-7]. Table 

1 illustrates the empirical models which are based on scaled distance laws. Scaled distance is 

defined as a hybrid variable of distance fromblastface to monitoring point and maximum 

amount of explosive charge used per delay. The unknown site constants of each empirical 

model can be approximated by the linear regression between PPV and scaled distance in a 

log-log plane.  

 

3. Field Study Description 

The study was conducted at Jayant opencast mine of Northern Coalfields Limited 

(NCL), which is a subsidiary company of Coal India Limited. It is located at Singrauli, Distt. 

Sidhi (M.P.), India. The area of NCL lies geographically between latitudes of 24o 0’ to 24 
o12’ and longitudes 82o 30’ to 82o 45’ and belongs to Gondwana super group. This coalfield 

was discovered in year 1840 and mining was started some time before 1857 at Kota, Parari 

and Nawanagar localities in fragmented way. The geological succession is given in Table 2. 

The total expansion of NCL containing rich coal horizons is about 2202 sq km. The 

coalfield can be divided into two basins, viz. Moher sub-basin (312 sq km) and Singrauli 

Main basin (1890 sq km). Major part of the Moher sub-basin lies in the Sidhi district of 

Madhya Pradesh and a small part lies in the Sonebhadra district of Uttar Pradesh. Singrauli 

main basin lies in the western part of the coalfield. The present coal mining activities and 

explored blocks are concentrated in Moher sub-basin.  It is divided into eleven mining blocks 

namely Kakri, Bina, Marrack, Khadia, Dhudhichua, Jayant, Nighahi, Amlohri, Moher, Gorbi 

and Jhingurdah [25]. 

In this coalfield, coal seams have been confined in Barakar and Raniganj formations. 

The boundary between Barakar and Raniganj formations is not clear here. The dips of the 

strata are gently varying between 20 to 50. The area contains no major fault even along the 

boundary of the basin. The characteristics of this field are that the fault is rare even along the 

boundary. In the  eastern  part  of  the  coalfield,  in  Mohar  area  (Barakar  formations),  
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there  are  four  coal productive seams designated as Kota seam, Turra seam, Lower Purewa 

and Upper Purewa seam [26].Turra and Purewa coal seams vary from 15 to 30 m. 

The Jingurda seam belongs to Raniganj formation is at places 138 m thick was reported 

to be thickest coal seam in India. The different types of sandstones are overlain and underlain 

the coal seams. These are coarse, medium and fine-grained sandstones, followed by 

carbonaceous shaly intercalation of sandy shales.   

The overburden in this area is mostly medium to coarse-grained sandstones, 

carbonaceous shales and shaly sandstones. The mine uses large dragline (24 m3 bucket size 

and 96 m boom length) in 40 m benches with 311 mm diameter blast holes as well as 

excavators in other benches of 05-15 m height with 160 and 250 mm blast holes. Nonel and 

MS connectors are used for initiation. The inter-hole delay is generally kept as 17-25 ms, 

whereas, inter-row delay is two-four times the inter-hole delay.  

 

4. Data Sets 

4.1 Data Collection 

The data sets used in this study are monitored from different vulnerable and strategic 

location in and around of Jayant open cast mine as per the International Society of Rock 

Mechanics (ISRM) standards [29]. Training and testing data sets are divided based on blast 

hole diameter in measure the versatility of DE model, instead of randomly dividing the data 

sets into various categories. Therefore, thirty-five blast vibration records were used for the 

training of differential evolution algorithm and multiple linear regression method. The same 

data sets are used for determination of site constants of conventional models. These data sets 

are recorded at a region where the blast hole diameter is 250 mm. To understand the 

capability of DE in comparison with conventional models, twenty-one blast vibration records 

monitored at various locations are taken into account, where the blast hole diameter is 160 

mm. Tables 3 and 4 show the input and output parameters range, along with their mean and 

standard deviation, respectively. In Table 3, blast hole diameter is discarded because it 

remains constant for all training data sets (250 mm). 

 

4.2 Description of Blast Parameters and their Limitations 

As described in Table 3, different effective blast parameters are taken into account in 

order to predict blast induced ground vibration. H, B, S,δ ,W, D,ϕ andγ are parameters used 

by a plethora of researchers for PPV prediction or blasting pattern design [11,14, 16,19, and 
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20]. In proposed predictor [24], ρ andEare taken into account as indicators of geo-

mechanical parameters. In the present study, ρ is estimated by [30] 

c

t

σρ
σ

=
                                                                      (1)

 

where cσ is the compressive strength and tσ is tensile strength of intact rock. One-hundred 

seventy-four rock samples were tested to determineρ , E, Poisson’s ratio and P-wave velocity 

as per ISRM standards [31–33]. Both ρ and E are regional parameters and there is an 

uncertainty regarding their impacts on blast induced ground vibration. It may be suggested 

that if ρ and E are regional parameters then they have minimum effect on prediction of the 

PPV.When variation of a parameter is significant, then it can be taken as a major input 

parameter. In this study, representative rock samples were collected from exposed rock mass 

of Singurali coal fields. Given the great variability in rock properties, even within the same 

rock type, it was consequently difficult, and not very meaningful, to cite specific values for 

specific rocks. However, in most of the discussion in rock mechanics problems, “rock” has 

been thought of as a homogeneous material that can be characterized by macroscopic 

parameters such as density, elastic moduli, etc., that are uniform over regions at least as large 

as a laboratory specimen. In most engineering calculations, it is convenient, and often 

practically necessary, to treat a rock mass as if it were homogeneous on the scale of a 

borehole, or tunnel, for example [34]. It is considered that the rock is homogeneous and 

isotropic so the effect of ρ and E as geomechanical parameters can be assumed to not be 

regional and as a consequence a specific value for ρ and E in each single data set can 

introduce their effect on blast induced ground vibration in any single shot. 

 

5. Differential Evolution Algorithm Theory and Background 

Differential Evolution (DE) algorithm is one of the evolutionary algorithms demonstrated 

to be an effective and robust method by applying in the optimization of some well-known 

non-linear, non-differentiable and non-convex functions [35-36]. Compared with other 

evolution algorithms, DE is easier to implement because it needs fewer parameters and 

exhibits fast convergence.The optimization procedures using DE are as follows [37]: 

Step 1: Initial algorithm parameters. The major parameters of DE which remain constant 

along the optimization process, are the population size NP, scale factor F, crossover rate CR, 

and the maximum number of iterations GEN. 
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Step 2: Population initialization. The algorithm starts by filling the primary array with 

NP vectors with randomly generated parameter values, N P D× matrix, D is the dimension of 

the problem or the number of parameters. The generation method is  

[ ] [ ] [ ]( ).ijX low j high j low j rand= + −                                       (2) 

in which 1,2, ,i NP= … , 1,2, ,j D= … . Rand is random number with a uniform probability 

distribution, and [ ]high j
 
and [ ]low j

 
are the upper bound and lower bound of the j th 

column, respectively. 

Step 3: Mutation. Each of these individual randomly-generated vectors ijX  is 

considered sequentially for genetic operations. For each of the chosen vectors, three other 

vectors , ,A B CX X X  are randomly chosen from the remaining vectors of the primary array. 

The mutation operation uses these three randomly chosen vectors to produce a mutant vector 

1 ( )m
A B CX X F X X= + −                                                   (3) 

where 1
mX  is the new mutant vector and � is a scaling factor in the range of0 1.2F< ≤ . 

Step 4: Crossover. In order to produce offspring and increasing the diversity of the 

population crossover operation can be used. In this stage, a random integer number 

( )randint i in the range of [ ]1,n  is generated. For each parameter1, ,j n= … , a random 

number ( )randnum j is generated in the space[ ]0,1 . Then a new vector is created from the 

original  iX  parent and the mutant vector using the crossover criterion: 

( )
( )

,'
,

,

if   or 

if   an

 

 d 

m
i j

i j
i j

X randnum CR randint i j
X

X randnum CR randint i j

 ≤ ==  > ≠                                   (4)

 

where CR is the crossover rate in the range of [ ]0,1
.
 

Step 5: Selection. At this stage if the randnum C R≤ new trial vector will be obtained 

from the mutant vector ( ,
m
i jX ), otherwise the trail vector will be obtained from the parent 

vector. 

The above mentioned steps restart until the stopping criterions are reached and 

consequently the final solution in the optimization process is obtained.  

 

6. Empirical Models 
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There are many scientists conducting research to correlate structural damage with peak 

particle velocity. Significant declines in PPV value with distance from blast face to 

monitoring point makes it predictable with acceptable accuracy and allow restriction on 

blasting vibrations to be regulated either by means of mathematical expression [38]. This 

expression is mainly based on two major parameters, maximum charge per delay (W) and 

distance from blast face to monitoring point (D). An empirical model is a definition of PPV 

as a nonlinear function of D and W. In this regard, site constants are the most influential 

parameters which are highly different from place to place. In this study, thirty-five blast data 

sets are used for evaluation of site constants. The site constants K and f are determined using 

four empirical models (Fig 1). The site constants of empirical models are given in Table 5. 

Then we can test each model and compare predicted PPV obtained by each model. As 

mentioned before, there are two different categories of data sets used in this study. The first 

datasets collected from a region where the diameter of blast holes is 250 mm, used for 

evaluation of unknown site constants of empirical predictors. Then the testing procedure of 

each model has been carried out using data sets collected at another region with diameter of 

blast holes of 160 mm.  

After obtaining the site constants of conventional predictors, twenty-one new blast data 

sets are used in order to predict PPV. The correlation of determination (CoD) is varies from 

0.04 to 0.62 for different empirical models. If we consider the sum of squares of the 

deviations of the observed y-values about y  as 2
( )yy iSS y y= −∑ and the sum of squares of 

the deviations of the y values about the least-squares line as 2
ˆ( )iSSE y y= −∑ , the square of 

coefficient of correlation is called the coefficient of determination given by [39]: 

2 yy

yy

SS SSE
CoD R

SS

−
= =

                                                     (5) 
 

The results revealed that Ambrasys-Hendron model has the highest CoD among four 

empirical models for the PPV prediction. The relationship between predicted PPV by 

different empirical models and monitored PPV are illustrated in Figs. 2-5.  

 

7. Dimensional Analysis Model 

Khandelwal and Saadat [24] proposed a model based on dimensional analysis technique 

to predict blast induced ground vibration. In DA-based model, the relationship between PPV 

and other effective parameters can be expressed as 
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2 2

1 2

3 4 5( )

D D H
Ln PPV Ln Ln

E W W

S B
Ln Ln Ln

γ γ δ γλ β β

β ρ β β
ϕ ϕ

     
= + +      

    

   + + +   
                                      (6) 

where 1 2 5, ,...,β β β are unknown coefficients. Equation (6) can be rewritten in a more simple 

form as follows: 

1

2

3 51 2 4

3

D
PPV

W

e E
H S B

α

α
β ββ β β

λ

α

ϑ

γϑ δ ρ
ϕ

 = × 
 

 =














                                             

(7) 

where 

 

 

 (8) 

 

In this study, the unknown coefficients of DA-based model are evaluated using multiple 

linear regression and differential evolution algorithm. 

 

8. Multiple Linear Regression Analysis 

MLR analysis is employed to generate a mathematical relationship that describes 

variations on the blast induced ground vibration and different influential parameters. MLR is 

based on least squares, which means that the model is fit such that the sum of squares of 

differences of predicted and measured values are minimized. MLR is given by the following 

equation [39]: 

0 1 1 ... P PY X Xβ β β ξ= + + + +                                                   (9) 

where Y is the predicted variable, ( 1,2,3,..., )iX i P= are the predictors, oβ  is intercept of 

Y , ( 1,2,3,..., )i i Pβ = is the coefficient on the i-th predictor and ξ is the random error added 

to allow for derivation between the deterministic part of the model, 0 1 1 ... P PX Xβ β β+ + + , 

and the value of the dependent variable Y .  

In order to employ MLR analysis the term Ln PPV
E

γ 
  
 

in eq. (6) is considered as 

dependent variable while the right side terms indicate the deterministic part. After analysis by 

( )1 1 2

2 1 2

3 4 5

2

0.5

α β β
α β β
α β β

= +
= + −
= +






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conducting the same thirty-five blasting data sets used for evaluation of site constants of 

conventional predictors the following predictor is reached: 

0.35 0.62 0.55
0.0

1.14

1.07
0.92 0.56

7

5064.45

D
PPV

W

E
H S B

ϑ

γϑ δ ρ
ϕ

−

−
− −

−

 = × 
 








=  


                             (10)

 

In the next step, twenty-one blast data sets measured in a bench with 160 mm bore hole 

diameter (the same data sets used for testing the conventional predictors) are taken into 

account for demonstration of the capability of this model. The fitting results between 

measured PPV and those of predicted by this model is illustrated in Fig 6. 

 

9. Blasting Pattern Design Optimization Using DE 

Based on eq. (7), the influence of suggested important parameters on blast induced 

ground vibration is investigated using the DE algorithm. In the DE procedure, the purpose is 

to optimize the following objective function: 

2

1

( )
N

O T
i

PPV PPV
MSE

N
=

−
=
∑

                                          (11) 

where PPVO and PPVT represent predicted and measure outputs, respectively, and N is the 

total number of input and output data sets.MSEis known as mean square error. 

The DE model is implemented in MATLAB software. In the DE algorithm, the number 

of unknowns is n=6 and the population size was taken as NP=50. The mutation factor, the 

crossover constant and the number of generations are 0.9, 0.7 and 1000, respectively. The 

reduction in MSE during DE implementation process is illustrated in Fig 7. 

Using thirty-five blast data sets the unknown coefficients of eq. (7) has been evaluated. 

Now we have a new empirical formula which can be rewrite as follows: 

 

1.18

0.51 2.07 1.71
0.36

1.09
0.08 0.481064.22

D
PPV

W

E
H S B

ϑ

γϑ δ ρ
ϕ

−−
−

−

−
−

 = × 
 

 




= 









                                (12)

 

In order to test the results obtained by the DE algorithm, the same blast data sets used for 

prediction of PPV based on empirical models are taken into account. Testing results revealed 
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that the new empirical formula demonstrates the capability of prediction of blast induced 

ground vibration with the highest CoD and the least MAE in comparison with empirical 

models. The results are illustrated in Fig 8. 

 

10. Results and Discussion 

As a results of DE algorithm and MLR analysis, a prediction model proposed by 

dimensional analysis technique were optimized. The proposed formulas provide the 

opportunity to predict blast induced ground vibration using wide range of effective blast 

design parameters. The results obtained by DE model are very close to actual site 

measurement values in comparison with conventional predictors and MLR model. The 

comparison graph is illustrated in Fig 9. The underestimation or overestimation in all models 

is inevitable, but this is not the final decision criteria for choosing the best model for PPV 

prediction. The mean absolute error (MAE) and CoDare two statistical descriptors indicating 

how close are predicted PPV values to actual measured PPV. According to Table 6, the 

proposed DA-based model optimized by DE has the highest CoD and the least MAE in 

comparison with conventional predictors. The MAE is given by 

1 1

1 1n n

o T i
i i

MAE PPV PPV
n n

η
= =

= − =∑ ∑
                                          (13)

 

As the name suggests MAE is an average of the absolute errors i o TPPV PPVη = − . In 

the previous study [24] the advantages and disadvantages of the DA model are described. In 

the present study, an attempt has been made to predict the blast induced ground vibration of 

Jayant opencast coal mine using new mathematical model. In the previous study [24], MLR 

was used to determine the unknown coefficient of formula and the efficiency of that analysis 

was concluded in comparison with conventional models. In that study, the versatility of 

proposed model for the PPV prediction was obtained using MLR analysis trained by 105 

blast data sets and tested by twelve new blast data sets.  

In the present study, MLR and DE both are used to find the best possible solution for the 

prediction of blast induced ground vibration using an equation obtained from dimensional 

analysis technique. However, results of the MLR model to predict the PPV were closer to the 

measured PPV values, but it showed error in PPV prediction for few data sets. To overcome 

this, a DE approach is conducted to evaluate the unknown coefficients of the DA-based 

equation with higher accuracy and obtaining more satisfactory results in testing procedure. 
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As it illustrated in Fig 9, the results of DE model is very close to measured PPV in 

comparison with the prediction results of MLR model. 

The results of DE-based suggested formula are more promising and satisfactory than 

those of obtained by MLR-based approach both in terms of CoD and MAE values. The 

capability of DE-based proposed model is tested in a region where blast holes diameter were 

160 mm. 

It is a common practice among researchers to take 90% data to determine site constants 

and remaining 10% data to verify the results. In this study, the purpose is to predict blast 

induced ground vibration in a bench where blast hole diameter is 160 mm and comparing the 

capability of different PPV predictors in that particular region. The available number of 

blasting data sets in that bench is twenty-one. For this reason, instead of considering three or 

four data sets the whole available data sets are taken into account for testing the models. 

The considerable merit of dimensional analysis technique can be examined in prediction 

of blast induced ground vibration. The first reason is that it can introduce the relationships 

between various blasting parameters in a tangible mathematical result. The next reason is that 

there are an infinite variety of correct solutions because of the partial (incomplete) tendency 

of DA technique [24]. 

In new model one of the major parameters is the scaled distance of USBM model 

considered in the procedure of DA technique. The purpose behind proposing DA-based 

formula is enhancement of USBM model by taking into account other influential parameters 

used by various researchers for PPV prediction. It worth introducing that the design 

capability of proposed model is mainly depended on the influence of square-root scaled 

distance. Among conventional predictors, the Ambraysis-Hendron and USBM models 

demonstrate better capability. PPV in these predictors is defined as a function of 
f

D

Wψ

−
 
  

where ψ  is 1/2 for USBM, and 1/3 for Ambraeys-Hendron. 

A very good agreement between predicted and monitored PPV values is obtained using 

DE for optimization of DA model. DE can be implemented simply as an optimizer program 

that controls the non-linear relationships between blasting parameters. For highly complex 

analysis DE tend to be time consuming, however for more simple problems without rigorous 

procedures the designer can be sure that his model is very efficient and complete.On the other 

hand, it is highly unlikely to obtain a model that would have the capability of PPV prediction 

with 100% accuracy. This can be concluded by achieving some values which are significantly 
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overestimated or underestimated in testing procedure of all models. This study is not about 

finding a remedy for prediction of ground vibration with the most possible accuracy, but the 

ultimate goal of the authors is to suggest a model that has the highest accuracy and the most 

versatility among other available conventional predictors for blasting design pattern in Jayan 

opencast coal mine. 

 

11. Conclusions 

The purpose of this study is to develop a new model to predict Peak Particle Velocity 

(PPV) at Jayant opencast coal mine based on various blasting design parameters and 

geomechanical data. A model proposed based on dimensional analysis (DA) technique was 

used that takes into account 10 different effective parameters for prediction of PPV. 

The differential evolution (DE) algorithm and multiple linear regressions (MLR) method 

were employed to find the best descriptor model for predicting blast induced ground 

vibration. Thirty-five blast data sets monitored at a bench where blast hole diameter is 250 

mm were considered to train DA-based model using DE algorithm and MLR method. After 

obtaining the unknown coefficients of DA-based formula, twenty-one blast data sets 

monitored at another bench in the Jayant opencast coal mine where blast hole diameter is 160 

mm were taken into account for testing the capability of given formulas. The results were 

compared based on two fitting parameter namely coefficient of determination (CoD or R-

Square) and mean absolute error (MAE). From successful prediction results of DE model, it 

is confidently concluded that DE algorithm can be applied to find the non-linear relationships 

of different effective parameters used in DA-based formula. 

In order to understand the efficiency of DE model the same data sets used in training and 

test processes were applied to four widely used conventional PPV predictors. Square and 

cubic root scaled distance predictors (USBM and Ambraseys-Hendron) are the best among 

other empirical models. One of the major parameters used in DA procedure is square root 

scaled distance used in USBM model.The enhancement of USBM formula by considering 

various effective parameters and the implementation of DE for optimization of DA-based 

formula shows a better performance of PPV prediction. Although the optimized DA-based 

model cannot be considered as a more universal and reliable PPV predictor than empirical 

models, it can be regarded as a common base and versatile model for prediction of PPV at 

Jayant opencast coal mine. 
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Table 1. Conventional predictors used in this study 

Name Equation 

United States Bureau of Mines 

(USBM) 

(Duvall and Fogelson, 1962) 

f
DPPV K
W

 
 
 
 
 
 
 



  

Langefors–Kihlstrom 

(Langefors and Kihlstrom,1963) 2/3

f
WPPV K

D

 
 
 
 
 

  

Ambraseys–Hendron 

(Ambraseys and Hendron, 1968) 1/3

f
D

W
PPV K


 
 
 

  

Bureau of Indian Standard (BIS) 

(Indian Standard Institute, 1973) 2/3

f
W

PPV K
D

 
  

 

 

PPV is Peak Particle Velocity (mm/s), D is the distance from blast face to monitoring point (m), W is the 

maximum charge per delay (kg), and K & f  are the site constants 

 

  

Table



Table 2. General geological succession of the Singrauli coalfields [27] 

Age Group Formation Lithology 

Recent Alluvium 

Upper Permian Damuda Raniganj Fine grained sandstone, shale, carbonaceous shale 

and white to grey clays with thick coal seams. 

Middle Permian  Barren 

Measure 

Very course grained to ferruginous sandstone and 

shale with red-green clays. 

Lower Permian  Barakar Medium to coarse grained sandstone, shale carb. 

Shale, white to pink clays and coal seams. 

Upper 

Carboniferous 

 Talchir Tillite, sandstone, needle shale, siltstone, boulder 

conglomerate. 

                             -------------Unconformity------------- 

Precambrian  Bijawar Phyllite, quartzite, schists and gneisses. 

 

  



Table 3. Input parameters with range, mean and standard deviation  

S. no  Input parameter Symbol Min Max Mean SD 

1 Hole depth (m) H 5 35 14.5 8.63 

2 Burden (m) B 2 8 6 1.59 

3 Spacing (m) S 3 9 7 1.93 

4 Charge length (m)   1 28 8 7.99 

5 
Max charge per delay 

(kg) 

W 
50 5600 2400 2044.79 

6 Distance (m) D 35 3000 475 833.64 

7 Young's Modulus (Gpa) E 5.19 9.67 7.38 1.23 

8 Blastability index    0.18 0.35 0.25 0.046 

9 Powder factor (kg/m3)    6.2 12.9 8.31 1.29 

 

  



Table 4. Output parameter with range, mean and standard deviation  

S. no  Output 

parameter 

Min Max Mean SD 

1 PPV 

(mm/s) 

0.31 72.02 7.31 14.58 

 

  



Table 5. Site constants determined for conventional predictors 

Empirical Model Site Constant Values 

 K B 

USBM 17.82 -0.26 

Longefors-Kihlstrom 13.76 -0.43 

Ambraseys-Hendron 37.64 -0.37 

BIS 13.76 -0.21 

 

 

  



Table 6. CoD and MAE of different predictors 

Model CoD MAE 

Ambraseys-Hendron 0.62 2.94 

USBM 0.36 2.56 

Longefors-Kihlström 0.04 5.31 

BIS 0.04 5.33 

MLR  0.77 2.83 

DE  0.83 1.25 

 

 



 

Fig 1. Log-Log plots between PPV and scaled distance for various conventional models (D is the 

distance from blast face to monitoring point (m), W is the maximum charge per delay (kg))
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Fig 2. Relationship between measured and predicted PPV by Ambraseys-Hendron 
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Fig 3. Relationship between measured and predicted PPV by BIS 
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Fig 4. Relationship between measured and predicted PPV by Langeforse-Kihlstrom 
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Fig 5. Relationship between measured and predicted PPV by USBM 
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Fig 6. Relationship between measured and predicted PPV by MLR 
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Fig 7. MSE vs Generation during DE implementation process 
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Fig 8. Relationship between measured and predicted PPV by DE 
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Fig 9. Comparison graph using different predictors 




