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1. Introduction

One of the most crucial problems in construction blasting is to pragitthen mitigate
ground vibration J]. Blast induced ground vibration is considered as one of the most
important environmental hazards of mining operations and civil engigegemjects. Intense
vibration can cause critical damage to structures and plantsyrtb@r open-pit mines, dams,
and mine slopes, et@-3]. Researchers who deal with this undesirable phenomenon take into
account various range of parameters in order to mitigate thendatel effects of blasting.
Blast-influencing parameters can be divided into two categof#s uncontrollable
parameters, such as geological and geotechnical characteridtithe rockmass, and
controllable parameters, such as burden, spacing, stemmindri8ing, delay time, etc.

A number of researchers have worked in this area and have codsitifferent
combination of aforementioned parameters topredict the Petg&l@&felocity (PPV). This
specific parameter has been widely used in practice todsr@nd evaluate blast damages of
structures 2]. The conventional PPV models suggested by various researeh@&rsale
mostly based on the amount of explosive charge per delay and distanckldsirface to
monitoring point. Theymade their effort to take into consideration nmfiieential parameters
to propose empirical models. These days, researchers arewvasiaety of contemporary
function approximation methods, i.e. artificial neural network (ANMNupport vector
machine (SVM), adaptive neuro-fuzzy inference system (ANFd8hetic algorithm (GA),
etc, to predict the blast induced ground vibrat@i§.

Other approaches,like numerical, empirical, etc modelslarebeing used by various
researchers to evaluate the adverse effect of blastinge@has al. 17] used dimensional
analysis (DA) technique and montecarlo(MC) method to predicetieets of controllable
blasting parameters on flyrock distance in the Sungun copper mmae, In their
study,burden, spacing, stemming, blasthole length,blasthole drarpeteder factor, and
mean charge per blastholewere used as major controllablenglastiameters to constitute
stochastic model.

Babanouri et al. 18] used ‘linear superposition method’ at the Gol-E-Gohar iron ore
mine tosimulate the production blast seismograms based upon meagsrefmgngle-hole
shot vibrations, carried out at a distance of 39 m from the bldwg. pfoduction blast
seismograms were then used as input to predict the paioty time histories in the mine
wall using the three-dimensional discrete element method. In rthetarch a “simulated

annealing” search algorithm was employed to find the optimum wsa@fe unknown



parameters. The final results of time histories of partieddocity showed a good
agreementwith the measured time histories.

Hudaverdi 9] applied an innovative multivariate analysis procedure for the preulicti
of blast-induced ground vibration. He considered parameters retaggound vibration to
perform multivariate analysis. He classified the blasta ddb different groups of similarity
using hierarchical cluster analysis and then analyzed and confihreedembership groups
by the discriminant analysis. In his investigation, a lineé@criminant equation was
developed for the estimation of blast induced ground vibration usingsségmeanalysis. The
consequences of his study showed that using hierarchical clusigsia could reduce the
complexity of relationships between different parameteectffg ground vibration.

Dehghani and Ataee-Pou2(] carried out a study to develop a new formula based on
Dimensional Analysis (DA) to predict PPV. They used sensitamalysis between PPV and
each input parameter of ANN model in order to find the most tafeegparameters in
prediction of ground vibration and used them to apply DA technique. They ceddhadt
vibration is a function of the most important parameters such as pdaaler, charge per
delay, and burden. The suggested mathematical model was cdmpile available
conventional PPV predictors and found excellent blast results compamzhventional
predictors.

Choi et al. P1] established a safe blast guideline that can secureatbg ®f open pit
slopes against blast induced ground vibration in Pasir coal mine, Inaohesheir study,
first a general prediction equation for the ground vibratiorellevas derived. After that,
based on a numerical method, allowable ground vibration level waBisally, maximum
charge weight per hole was determined based on the scakmutdist

Differential Evolution (DE) is a small and simple mathenatimodel of a large and
naturally complex process of evolutia2?]. Since its inception in 1995, DE has earned a
reputation as a very effective global optimizer. WBIiEe is not a panacea, its record of
reliable and robust performance demands that it belongs in eventisciand engineer’s
“bag of tricks” 23)].

Khandelwal and Saad&24] proposed a new DA equation to predict the PPV and compare
their findings with the various conventional predictors. They found \ergfactory results
for the PPV prediction using DA equation compared to conventiondicpoes.

The present paper focuses on the application of DE Algorithm to plddgt induced
ground vibration ofJayant opencast mine, NCL, India. DE algorithmMuwltiple Linear

Regression (MLR) analysis are conducted in order to evaluatentr®wn coefficients of



DA-based model. The blast vibration prediction of DA-based modeinmad by DE and

MLR is compared with commonly used vibration predictors.

2. Conventional Predictors

PPV is one of the most pervasive damage indicator crite@ggess detrimental effects
of blasting on structures due to blasting. There is variety @iraral models suggested by
different researchers for prediction of blast induced ground vibratiothi$ study, four
widely used predictors are chosen in order to find the best approxir&#sty §-7]. Table
1 illustrates the empirical models which are based on scaehde laws. Scaled distance is
defined as a hybrid variable of distance fromblastface to monit@ang and maximum
amount of explosive charge used per delay. The unknown site constaashoémpirical
model can be approximated by the linear regression between PPV &l distance in a

log-log plane.

3. Field Study Description

The study was conducted at Jayant opencast mine of Northern Coalfiglded
(NCL), which is a subsidiary company of Coal India Limitedsllocated at Singrauli, Distt.
Sidhi (M.P.), India. The area of NCL lies geographically betwkatitudes of 240’ to 24
°12’ and longitudes 830’ to 82 45’ and belongs to Gondwana super group. This coalfield
was discovered in year 1840 and mining was started some time befdratlBota, Parari
and Nawanagar localities in fragmented way. The geologigalession is given in Table 2.

The total expansion of NCL containing rich coal horizons is about 2202 s ken
coalfield can be divided into two basins, viz. Moher sub-basin (31mgand Singrauli
Main basin (1890 sq km). Major part of the Moher sub-basin liethenSidhi district of
Madhya Pradesh and a small part lies in the Sonebhadra distdttanfPradesh. Singrauli
main basin lies in the western part of the coalfield. Thesgat coal mining activities and
explored blocks are concentrated in Moher sub-basin. It is divite@leven mining blocks
namely Kakri, Bina, Marrack, Khadia, Dhudhichua, Jayant, Nighahiphri, Moher, Gorbi
and Jhingurdah2p].

In this coalfield, coal seams have been confined in Barakar andydhj formations.
The boundary between Barakar and Raniganj formations is not clearTie dips of the
strata are gently varying betweeht@ 5. The area contains no major fault even along the
boundary of the basin. The characteristics of this field atehbeault is rare even along the

boundary. In the eastern part of the coalfield, in Moheea (Barakar formations),



there are four coal productive seams designated as Kota Beamseam, Lower Purewa
and Upper Purewa sea6]. Turra and Purewa coal seams vary from 15 to 30 m.

The Jingurda seam belongs to Raniganj formation is at places l#8kmvas reported
to be thickest coal seam in India. The different types of samelstare overlain and underlain
the coal seams. These are coarse, medium and fine-grainedosasddbllowed by
carbonaceous shaly intercalation of sandy shales.

The overburden in this area is mostly medium to coarse-grainadsteaes,
carbonaceous shales and shaly sandstones. The mine uses Iglige (24 n? bucket size
and 96 m boom length) in 40 m benches with 311 mm diameter blast dolegll as
excavators in other benches of 05-15 m height with 160 and 250 mm blkest Kohel and
MS connectors are used for initiation. The inter-hole delayerelly kept as 17-25 ms,

whereas, inter-row delay is two-four times the inter-holayde

4. Data Sets
4.1 Data Collection

The data sets used in this study are monitored from differentrableeand strategic
location in and around of Jayant open cast mine as per the Interh&amety of Rock
Mechanics (ISRM) standardg9]. Training and testing data sets are divided based on blast
hole diameter in measure the versatility of DE model, idstdaandomly dividing the data
sets into various categories. Therefore, thirty-five blast uignwarecords were used for the
training of differential evolution algorithm and multiple lineagmession method. The same
data sets are used for determination of site constants of canadntiodels. These data sets
are recorded at a region where the blast hole diameter is 2a0Tm understand the
capability of DE in comparison with conventional models, twentg blast vibration records
monitored at various locations are taken into account, where thehblastiameter is 160
mm. Tables 3 and 4 show the input and output parameters range, aloigewithean and
standard deviation, respectively. In Table 3, blast hole dexrie discarded because it

remains constant for all training data sets (250 mm).

4.2 Description of Blast Parameters and their Limitations
As described in Table 3, different effective blast parareedee taken into account in

order to predict blast induced ground vibratibhn.B, S 0 ,W, D, ¢ andyare parameters used

by a plethora of researchers for PPV prediction or blastingrpatesign 11,14, 16,19, and



20]. In proposed predictor2f], pandEare taken into account as indicators of geo-

mechanical parameters. In the present stydg, estimated byJ0]

,0:;"
‘ (1)

whereo, is the compressive strength aodis tensile strength of intact rock. One-hundred
seventy-four rock samples were tested to deterpirte Poisson’s ratio and P-wave velocity
as per ISRM standard81-33. Both pand E are regional parameters and there is an
uncertainty regarding their impacts on blast induced ground vibratiomaytbe suggested
that if pandE are regional parameters then they have minimum effect aiicpom of the
PPV.When variation of a parameter is significant, then it cataken as a major input
parameter. In this study, representative rock samples wheeted from exposed rock mass
of Singurali coal fields. Given the great variability in rock propsrteven within the same
rock type, it was consequently difficult, and not very meaningful, ®ospecific values for
specific rocks. However, in most of the discussion in rock mechaniddems, “rock” has
been thought of as a homogeneous material that can be characterizegdcimgcpic
parameters such as density, elastic moduli, etc., thain&mrm over regions at least as large
as a laboratory specimen. In most engineering calculations, ébnvenient, and often
practically necessary, to treat a rock mass as if iewamogeneous on the scale of a
borehole, or tunnel, for exampl&4]. It is considered that the rock is homogeneous and

isotropic so the effect ojp and E as geomechanical parameters can be assumed to not be
regional and as a consequence a specific valueofand E in each single data set can

introduce their effect on blast induced ground vibration in any sgigie

5. Differential Evolution Algorithm Theory and Background

Differential Evolution (DE) algorithm is one of the evolutionary altions demonstrated
to be an effective and robust method by applying in the optimization of s@fiknown
non-linear, non-differentiable and non-convex functios-36]. Compared with other
evolution algorithms, DE is easier to implement because it nesudsr fparameters and
exhibits fast convergence.The optimization procedures using Désdodlows B7]:

Step 1: Initial algorithm parameters. The major paramefel which remain constant

along the optimization process, are the population$iZescale factof, crossover rat€R,

and the maximum number of iteratioBEN.



Step 2: Population initialization. The algorithm starts byniglithe primary array with
NP vectors with randomly generated parameter valuess b matrix, D is the dimension of

the problem or the number of parameters. The generation method is
X =low [j]+(high[j]-low [j]).rand )

in whichi =1,2,... NP, j =1,2,.... D . Rand is random number with a uniform probability
distribution, andhigh[j]| and low[j] are the upper bound and lower bound of thih

column, respectively.

Step 3: Mutation. Each of these individual randomly-generated sectqr is

considered sequentially for genetic operations. For each of the chestns, three other

vectors X ,,X ;,X . are randomly chosen from the remaining vectors of the primary. arra

The mutation operation uses these three randomly chosen wegbocsluce a mutant vector
le:XA+F(XB_XC) 3) (

where X" is the new mutant vector atidis a scaling factor in the rangeosf F < 1.2.

Step 4: Crossover. In order to produce offspring and increasing theitgivarghe

population crossover operation can be used. In this stage, a ramteger number

randint (i ) in the range of[l,n] is generated. For each paramegterl,...,n, a random

number randnum(j )is generated in the spa[ﬂe:l]. Then a new vector is created from the

original X, parent and the mutant vector using the crossover criterion:

i

_| X if randnums< CRor randint (i) = j
| X, if randnum>CR and randint (i) # |

L]

(4)
whereCR s the crossover rate in the range{@gﬂ]
Step 5: Selection. At this stage if théndnum <CR new trial vector will be obtained

from the mutant vector)(i’f‘j ), otherwise the trail vector will be obtained from theepdr

vector.
The above mentioned steps restart until the stopping criterionseached and

consequently the final solution in the optimization processtained.

6. Empirical Models



There are many scientists conducting research to correlateustitudtdmage with peak
particle velocity. Significant declines in PPV value with dis@ from blast face to
monitoring point makes it predictable with acceptable accuracy doa atstriction on
blasting vibrations to be regulated either by means of mathehakpressiondg]. This
expression is mainly based on two major parameters, maximurgechar delayW) and
distance from blast face to monitoring poiB).(An empirical model is a definition of PPV
as a nonlinear function d andW. In this regard, site constants are the most influential
parameters which are highly different from place to place. thdhidy, thirty-five blast data
sets are used for evaluation of site constants. The site cai$tantf are determined using
four empirical models (Fig 1). The site constants of empiricadets are given in Table 5.
Then we can test each model and compare predicted PPV obtainedhbyneadel. As
mentioned before, there are two different categories of dédaused in this study. The first
datasets collected from a region where the diameter of blass ®I250 mm, used for
evaluation of unknown site constants of empirical predictors. Thetetting procedure of
each model has been carried out using data sets collected at aegibe with diameter of
blast holes of 160 mm.

After obtaining the site constants of conventional predictors,tj@re new blast data
sets are used in order to predict PPV. The correlation of deteion (CoD) is varies from

0.04 to 0.62 for different empirical models. If we consider the sinsquares of the
deviations of the observed y-values abguasss  =>"(y, - y)”and the sum of squares of
the deviations of thg values about the least-squares lingSE&s =Y (y, - y)’, the square of
coefficient of correlation is called the coefficient ofetetination given by39:

SS,, -SSE
SS

CoD =R*=

v )
The results revealed that Ambrasys-Hendron model has the highesarGoily four

empirical models for the PPV prediction. The relationship betwpredicted PPV by

different empirical models and monitored PPV are illustratdelgs. 2-5.

7. Dimensional Analysis M odel
Khandelwal and Saadat [24] proposed a model based on dimensionalsatealiygique
to predict blast induced ground vibration. In DA-based model, theomethip between PPV

and other effective parameters can be expressed as



Ln(\/%PPVJ =A +,6’1Ln(y\tl)\/25j+,82Ln(y[\j;H ]

S B
+,83|—n(:0) + :B4Ln(_j + ﬂsLn(_j
¢ ¢ ©)

whereg,, 5,,....B;are unknown coefficients. Equation (6) can be rewritten in a siorple

form as follows:

PPV = [lj x9

Jw
e VEy” v
9= 5’51H B> ﬂasﬁ4Bﬁ5
¢a3 [ P :'
where

a, = 2(181+ﬁ2)
a,=p+p5,-05
a,=pB,+0s ®

In this study, the unknown coefficients of DA-based model are evdluateg multiple

linear regression and differential evolution algorithm.

8. Multiple Linear Regression Analysis

MLR analysis is employed to generate a mathematical relatprthat describes
variations on the blast induced ground vibration and different influgrarameters. MLR is
based on least squares, which means that the model is fitlgicthe sum of squares of
differences of predicted and measured values are minimized. MgRen by the following
equation B9J:

Y=46+B8X+..+G X, +¢ 9)

whereY is the predicted variableX; (i =1,2,3,...P ‘are the predictorsf, is intercept of
Y ,B( =1,2,3,...P s the coefficient on theth predictor andf is the random error added

to allow for derivation between the deterministic part of tlesleh 5, + 58X, +...+ 5. X,

and the value of the dependent variable
In order to employ MLR analysis the terlm(\/gPPVJin eq. (6) is considered as

dependent variable while the right side terms indicate tlerdetistic part. After analysis by



conducting the same thirty-five blasting data sets used for ewgluaf site constants of

conventional predictors the following predictor is reached:

-1.14
PPV = (Lj x9

Jw
_ 5064.43/07EV_ ' [50'35H 09205650673 0.55]
a (10)

In the next step, twenty-one blast data sets measured mch ith 160 mm bore hole

J

diameter (the same data sets used for testing the convenpi@uittors) are taken into
account for demonstration of the capability of this model. The fittegults between

measured PPV and those of predicted by this model is illedtmat~ig 6.

9. Blasting Pattern Design Optimization Using DE
Based on eq. (7), the influence of suggested important paranwieblast induced
ground vibration is investigated using the DE algorithm. In the DE proegthe purpose is

to optimize the following objective function:
N
> (PPV, —PPV,)?
MSE =12 (11)
N

where PPV, and PPV+ represent predicted and measure outputs, respectively\ adhe

total number of input and output data 9dt&Eis known as mean square error.

The DE model is implemented in MATLAB software. In the DE atbon, the number
of unknowns isn=6 and the population size was takenN#=50. The mutation factor, the
crossover constant and the number of generations are 0.9, 0.7 andekpe@tively. The
reduction in MSE during DE implementation process is illustratdedg 7.

Using thirty-five blast data sets the unknown coefficients of 8ghas been evaluated.

Now we have a new empirical formula which can be rewritielésys:

Jw

_ 1064.22/Ey‘l‘°9 [5_0'51H -0.08 ;0485-207g 1.71]
2036
¢ (12)

In order to test the results obtained by the DE algorithm, tne &éast data sets used for

-1.18
PPV = [Lj x9

J

prediction of PPV based on empirical models are taken into accasiing results revealed

10



that the new empirical formula demonstrates the capabilitgrediction of blast induced
ground vibration with the highest CoD and the least MAE in compamgtn empirical

models. The results are illustrated in Fig 8.

10. Results and Discussion

As a results of DE algorithm and MLR analysis, a predicoodel proposed by
dimensional analysis technique were optimized. The proposed fornputasde the
opportunity to predict blast induced ground vibration using wide rangefeftieé blast
design parameters. The results obtained by DE model are very tdosetual site
measurement values in comparison with conventional predictors aritl iadel. The
comparison graph is illustrated in Fig 9. The underestimation or owea¢isin in all models
is inevitable, but this is not the final decision criteria ¢bnosing the best model for PPV
prediction. The mean absolute error (MAE) and CoDare two statisiescriptors indicating
how close are predicted PPV values to actual measured PR¥rdikay to Table6, the
proposed DA-based model optimized by DE has the highest CoD arldaiteMAE in
comparison with conventional predictors. The MAE is given by

MAE =1 3|PPy, - PPV, [= 135
= Ni= (13)

As the name suggests MAE is an average of the absolute grrefPV, —PPV; . In
the previous study2M] the advantages and disadvantages of the DA model are destmibed
the present study, an attempt has been made to predict thentlastd ground vibration of
Jayant opencast coal mine using new mathematical model. prdi®us studyZ4], MLR
was used to determine the unknown coefficient of formula and ficeer€y of that analysis
was concluded in comparison with conventional models. In that sthdyydrsatility of
proposed model for the PPV prediction was obtained using MLR an#éigsied by 105
blast data sets and tested by twelve new blast data sets.

In the present study, MLR and DE both are used to find the best passiltien for the
prediction of blast induced ground vibration using an equation obtained fronmsiomal
analysis technigue. However, results of the MLR model to prdtkcPPV were closer to the
measured PPV values, but it showed error in PPV prediction fod&avsets. To overcome
this, a DE approach is conducted to evaluate the unknown coeffioktiie DA-based

equation with higher accuracy and obtaining more satisfactory resuisting procedure.

11



As it illustrated in Fig 9, the results of DE model is velgse to measured PPV in
comparison with the prediction results of MLR model.

The results of DE-based suggested formula are more promising asfdctaty than
those of obtained by MLR-based approach both in terms of CoD and MAEsvdlbe
capability of DE-based proposed model is tested in a region whetehblas diameter were
160 mm.

It is a common practice among researchers to take 90% da¢detonine site constants
and remaining 10% data to verify the results. In this studyptimpose is to predict blast
induced ground vibration in a bench where blast hole diameter ism@6@nd comparing the
capability of different PPV predictors in that particular oegi The available number of
blasting data sets in that bench is twenty-one. For this reastead of considering three or
four data sets the whole available data sets are takercouard for testing the models.

The considerable merit of dimensional analysis technique can beénexihim prediction
of blast induced ground vibration. The first reason is that it cnduce the relationships
between various blasting parameters in a tangible mathemafscétl. iThe next reason is that
there are an infinite variety of correct solutions because of titialpggncomplete) tendency
of DA technique 24).

In new model one of the major parameters is the scaled cksi@in USBM model
considered in the procedure of DA technique. The purpose behind propositgsBé-
formula is enhancement of USBM model by taking into account other mihligparameters
used by various researchers for PPV prediction. It worth introdutting the design
capability of proposed model is mainly depended on the influence ofesop@ scaled

distance. Among conventional predictors, the Ambraysis-Hendron and UBSBHEIs
-f
demonstrate better capability. PPV in these predictors isedkfis a function O[W—Dw}

wherey is 1/2 for USBM, and 1/3 for Ambraeys-Hendron.

A very good agreement between predicted and monitored PPV valugsiised using
DE for optimization of DA model. DE can be implemented simpham®ptimizer program
that controls the non-linear relationships between blasting paené&or highly complex
analysis DE tend to be time consuming, however for more simpleepnebdithout rigorous
procedures the designer can be sure that his model is very effingkobmplete.On the other
hand, it is highly unlikely to obtain a model that would have the capjabflPPV prediction

with 100% accuracy. This can be concluded by achieving some valudsarisignificantly

12



overestimated or underestimated in testing procedure of all mddeésstudy is not about
finding a remedy for prediction of ground vibration with the most possibleracg, but the
ultimate goal of the authors is to suggest a model that has theshagituracy and the most
versatility among other available conventional predictors for blggtesign pattern in Jayan

opencast coal mine.

11. Conclusions

The purpose of this study is to develop a new model to predict Padkle Velocity
(PPV) at Jayant opencast coal mine based on various blastingn desiameters and
geomechanical data. A model proposed based on dimensional af@Kgitechnique was
used that takes into account 10 different effective paramfeteprediction of PPV.

The differential evolution (DE) algorithm and multiple lineagressions (MLR) method
were employed to find the best descriptor model for predicting lakiced ground
vibration. Thirty-five blast data sets monitored at a bench whikaxs hole diameter is 250
mm were considered to train DA-based model using DE algoritidrMLR method. After
obtaining the unknown coefficients of DA-based formula, twenty-one klash sets
monitored at another bench in the Jayant opencast coal mine wastrbdie diameter is 160
mm were taken into account for testing the capability of given udtasn The results were
compared based on two fitting parameter namely coefficient ofndiettion (CoD or R-
Square) and mean absolute error (MAE). From successful prediesialtsr of DE model, it
is confidently concluded that DE algorithm can be applied to finchdimelinear relationships
of different effective parameters used in DA-based formula.

In order to understand the efficiency of DE model the same efstaised in training and
test processes were applied to four widely used conventional PP\¢tprediSquare and
cubic root scaled distance predictors (USBM and Ambraseys-Hendmitheabest among
other empirical models. One of the major parameters us@dhiprocedure is square root
scaled distance used in USBM model.The enhancement of USBMiltotmy considering
various effective parameters and the implementation of DE fomization of DA-based
formula shows a better performance of PPV prediction. Although thmippd DA-based
model cannot be considered as a more universal and reliable BEi¢t@r than empirical
models, it can be regarded as a common base and versatile foropiediction of PPV at
Jayant opencast coal mine.

13
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Fig. 8. Relationship between measured and predicted PPV by DE
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Table

Table 1. Conventional predictors used in this study

Name Equation
United States Bureau of Mines —f
(USBM) PPV =K DJ
(Duvall and Fogelson, 1962) VW
f
Langefors—Kihlstrom PPV — K W
(Langefors and Kihlstrom,1963) D2/
Ambraseys—Hendron ppyv — k[ D B
(Ambraseys and Hendron, 1968) o wls

Bureau of Indian Standard (BIS) PPV — K f
(Indian Standard Institute, 1973) D2/3

PPV is Peak Particle Velocity (mm/s), D is the distance from blast face to monitoring point (m), W is the

é

maximum charge per delay (kg), and K & f are the site constants



Table 2. General geological succession of the Singrauli coalfields [27]

Age Group Formation  Lithology

Recent Alluvium

Upper Permian  Damuda Raniganj Fine grained sandstone, shale, carbonaceous shale
and white to grey clays with thick coal seams.

Middle Permian Barren Very course grained to ferruginous sandstone and

Measure shale with red-green clays.

Lower Permian Barakar Medium to coarse grained sandstone, shale carb.
Shale, white to pink clays and coal seams.

Upper Talchir Tillite, sandstone, needle shale, siltstone, boulder

Carboniferous conglomerate.

------------- Unconformity-------------
Precambrian Bijawar Phyllite, quartzite, schists and gneisses.




Table 3. Input parameters with range, mean and standard deviation

S. no Input parameter Symbol  Min Max Mean  SD

1 Hole depth (m) H 5 35 14.5 8.63

2 Burden (m) B 2 8 6 1.59

3 Spacing (m) S 3 9 7 1.93

4 Charge length (m) ) 1 28 8 7.99

5 '(\QS;‘ charge per delay W 50 5600 2400  2044.79
6 Distance (m) D 35 3000 475 833.64
7 Young's Modulus (Gpa) E 5.19 9.67 7.38 1.23

8 Blastability index P 0.18 0.35 0.25 0.046

9 Powder factor (kg/m3) /4 6.2 12.9 8.31 1.29




Table 4. Output parameter with range, mean and standard deviation

S.no Output Min Max Mean  SD
parameter

1 PPV 0.31 7202 731 14.58
(mm/s)




Table 5. Site constants determined for conventional predictors

Empirical Model Site Constant VValues
K B
USBM 17.82 -0.26
Longefors-Kihlstrom 13.76 -0.43
Ambraseys-Hendron 37.64 -0.37

BIS 13.76 -0.21




Table 6. CoD and MAE of different predictors

Model CoD MAE

Ambraseys-Hendron 0.62 2.94
USBM 0.36 2.56
Longefors-Kihlstrom 0.04 5.31
BIS 0.04 5.33
MLR 0.77 2.83

DE 083 1.25
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Fig 2. Relationship between measured and predicted PPV by Ambraseys-Hendron
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