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ABSTRACT

A novel tropical cyclone (TC) detection technique designed for coarse-resolution models is tested and

evaluated. The detector, based on the Okubo–Weiss–Zeta parameter (OWZP), is applied to a selection of

Coupled Model Intercomparison Project, phase 3 (CMIP3), models [Commonwealth Scientific and Industrial

Research Organisation Mark, version 3.5 (CSIRO-Mk3.5); Max Planck Institute ECHAM5 (MPI-ECHAM5);

and Geophysical Fluid Dynamics Laboratory Climate Model, versions 2.0 (GFDL CM2.0) and 2.1 (GFDL

CM2.1)], and the combined performance of the model and detector is assessed by comparison with observed

TC climatology for the period 1970–2000. Preliminary TC frequency projections are made using the three

better-performing models by comparing the detected TC climatologies between the late twentieth and late

twenty-first centuries. Very reasonable TC formation climatologies were detected in CSIRO-Mk3.5, MPI-

ECHAM5, and GFDL CM2.1 for most basins, with the exception of the North Atlantic, where a large un-

derdetection was present in all models. The GFDL CM2.0 model was excluded from the projection study

because of a systematic underdetection in all basins. The above detection problems have been reported in

other published studies, which suggests model rather than detector limitations are mostly responsible. This

study demonstrates that coarse-resolution climate models do in general produce TC-like circulations with

realistic geographical and seasonal distributions detectable by the OWZP TC detector. The preliminary

projection results are consistent with the published literature, based on higher-resolution studies, of a global

reduction of TCs between about 6% and 20%, with amuch larger spread of results (about120% to250%) in

individual basins.

1. Introduction

The enormous social and economic impact of tropical

cyclones (TCs) around the world has led to strong in-

terest in potential changes in TC behavior in a warming

climate. The potentially serious consequences of more

frequent or more intense TCs have created high demand

for regionally specific projections of future TC behavior.

Given the possibility of significant preemptive invest-

ment in adaptation programs, it is especially important

that the uncertainty in the projections is well understood

and well communicated. It is difficult to quantify the

uncertainty regarding the ability of models to reproduce

accurate climatologies of TC-like circulations and the

ability of TC detectors to identify these circulations

accurately (e.g., Tory et al. 2013a). While this un-

certainty is largely unquantifiable at present, confidence

in TC projections has been improved by considering the

similarity of results frommultiplemodels (e.g., Camargo

et al. 2005; Emanuel et al. 2008; Knutson et al. 2010;

Walsh et al. 2013). It follows that similar improved

confidence could be gained from the application of dif-

ferent TC detectors to these models. In this paper, we

document, in unprecedented detail, the results of a new

and alternative TC detection technique (Tory et al.

2013a,b).

Global climate models (GCMs) have been generating

TC-like circulations for decades (e.g., Manabe et al.

1970). Subsequent studies have demonstrated that some

GCMs are capable of reproducing reasonably realistic

TC structure, climatology, and interannual variability

(e.g., Bengtsson et al. 1982, 1995; Wu and Lau 1992;

Vitart et al. 1997; Camargo et al. 2005; Walsh et al. 2013;

Strachan et al. 2013), despite even the highest-resolution

GCMs not being able to resolve TC structures at
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observed scales. While this resolution issue remains

there will always be some subjectivity in determining

which TC-like circulation should be classified as a TC

and which should not. As discussed in Tory et al.

(2013a), traditional TC detection techniques require

threshold values of specific TC characteristics (e.g.,

lower troposphere relative vorticity, warm core, wind

speed) to be met for a TC to be declared. In such tech-

niques the thresholds have been adjusted to give the best

match between the GCM and observed TC climatol-

ogies. These adjusted thresholds form the definition of

the model TC, that is, they define the GCM TC. Both

the GCM TC definition and the climatology of GCM

TC-like circulations contain some error. Tuning to best

reproduce observed TC climatology helps minimize

the combined error, but in doing so, the GCM TC

definition is adjusted to compensate for any model- or

basin-specific biases or idiosyncrasies, which imposes

a model- or basin-specific bias to the GCMTC definitions.

Arguably, the greatest model bias is associated with

the GCM grid resolution, which effectively imposes

a limit on the horizontal gradients of wind speed. As

a result, GCM TC-like circulations tend to be much

larger than observed TCs and have weaker maximum

wind speeds. Given that observed TCs are largely de-

fined by their maximum wind speed, the lower wind

speeds of GCM TC-like circulations require a revised

wind speed threshold to define the GCM TC in order to

account for grid-resolution dependency. Walsh et al.

(2007) proposed a semiobjective1 technique for deter-

mining the TCwind speed threshold as a function of grid

resolution, which, when applied across model basins and

models, helps minimize the above-mentioned error

compensation. However, many models still show vary-

ing skill in reproducing TC climatologies from basin to

basin. Additionally, because some thresholds were ad-

justed to best reproduce TC climatology, it is not clear

whether the GCM definition is inappropriate in the

underperforming basin or whether the GCM over- or

underproduces TC-like circulations.

Bengtsson et al. (2007) avoided grid-dependent thresh-

olds by tracking warm-cored circulations that exceed an

850-hPa relative vorticity threshold applied to data de-

graded to a common coarse resolution. However, this

detection method did not distinguish between tropical

depressions and TCs (Bengtsson et al. 2007, p. 402).

Strachan et al. (2013) refined the warm-core criteria to

reduce the number of tropical depressions included in

the detections.

In their detection scheme, Tory et al. (2013a,b) at-

tempted to avoid themodel resolution bias by using only

large-scale parameters, resolvable in contemporary

GCMs. They chose also to avoid the above-mentioned

error compensation by developing and tuning their de-

tection technique in reanalysis data, which is applied di-

rectly to a selection of Coupled Model Intercomparison

Project, phase 3 (CMIP3), GCMs in this paper. While

the Okubo–Weiss–Zeta parameter (OWZP) detection

technique showed good performance (Tory et al. 2013a),

it was not possible (and it was not their intention) to

judge which detection scheme performed the best. In-

stead, the authors suggested that all methods could be

used in parallel. The very different philosophies behind

each method suggest their respective strengths and

weaknesses should differ, and together they should help

reduce the uncertainty of TC projections. In this paper

we document the performance of the OWZP TC pro-

jection technique in four CMIP3 GCMs and consider

the projected changes in TC frequency in each model.

The remainder of the paper is structured as follows.

Section 2 outlines various datasets used in this study.

Section 3 summarizes the OWZP TC detection and

tracking methodology. In section 4 the OWZP TC de-

tection results are presented for the current climate from

a selection of CMIP3 models, and in section 5 these

results are compared with equivalent future climate re-

sults to provide projections into possible changes in TC

frequency in a warming climate. The results are sum-

marized in section 6.

2. Models and observational data

The GCMs assessed in this paper were obtained from

the World Climate Research Programme (WCRP)

CMIP3 multimodel dataset described by Meehl et al.

(2007). TheWCRP CMIP3 dataset comprises 24 ocean–

atmosphere coupled models that were used for the

Fourth Assessment Report (AR4) of the Intergov-

ernmental Panel on Climate Change (IPCC). Since the

main emphasis of this study is to demonstrate the per-

formance of the OWZP TC detection scheme in climate

models rather than to make future projections of TC

activity, we applied the detection scheme to the four

models with daily data2 readily available to us at the time

(see Table 1 for the names and host institutes of these

models; model descriptions and associated references

1 While the technique can be applied objectively, subjectivity is

unavoidable in the design, and subjective adjustments have been

made in its application [as discussed in the introduction of Tory

et al. (2013)].

2 The data are daily averaged, which results in smeared circu-

lations elongated in the direction of storm motion.
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can be found at http://www-pcmdi.llnl.gov/ipcc/

model_documentation/ipcc_model_documentation.php).

The late-twentieth-century simulations (between 1970

and 2000) are used in this study to assess the TC cli-

matology as determined by the OWZP TC detector.

While not the main purpose of this paper, we comment

on projected changes in TC frequency using the OWZP

TC detector. Because of relatively small frequency

changes, only the most extreme greenhouse gas scenario

(A2) and the longest projection time period are con-

sidered (i.e., the late twenty-first century, 2081–2100).

A more detailed TC frequency projection study is cur-

rently underway using all available CMIP5 data.

For current climate TC verification, the International

Best Track Archive for Climate Stewardship (IBTrACS)

database is used (Knapp et al. 2010; http://www.ncdc.

noaa.gov/oa/ibtracs). The IBTrACS data are a compre-

hensive compilation of quality-controlled global TC

best-track data sourced from various meteorological

organizations and agencies around the world. The

IBTrACS database contains the storm location, maxi-

mum sustained wind, and central pressure, available

at 6-hourly intervals (i.e., 0000, 0600, 1200, and 1800

UTC), during the lifetime of a TC. In this study, only

data at 24-h intervals (0000 UTC) are considered to be

consistent with the temporal resolution of the climate

model data. We choose to define a TC as any system in

the IBTrACS database that reached the 10-min maxi-

mum sustained wind speed of at least 17 m s21 at any

0000 UTC time during its lifetime. The genesis location

is assumed to be the position where the wind speed first

reaches 17 m s21. To compare the GCM TC detections

with the most reliable observational TC data, only

the twentieth-century satellite era (i.e., 1970–2000) is

considered in this paper.

3. Detection and tracking methodology

The OWZ variable that underpins the OWZP TC

genesis parameter was introduced in Tory et al. (2013b),

and the detection and tracking algorithmswere described

in detail in Tory et al. (2013a,b). A brief overview of

the methodology is given here. As mentioned in the

introduction, the philosophy behind the OWZP TC

detection method differs from conventional TC de-

tectors that attempt to directly identify TC circulations.

The OWZP method instead attempts to identify the

large-scale environment in which a TC will form, and

a TC is declared if the environment remains favorable

for a sufficient period of time. OWZ is used to identify

regions of near solid-body rotation in the low to mid-

troposphere [which Tory et al. (2013b) argue is neces-

sary for TC formation]. It takes the place of relative

vorticity used in other detection schemes and genesis

parameters.

As a TC declaration is dependent on favorable for-

mation conditions persisting for a number of model time

periods, tracking of precursor disturbances is required

just to identify TCs. The OWZP TC detection is a two-

step process, in which 1) circulations with the dynamic

potential to support TC formation are identified and

tracked before 2) TCs are determined by a more rigor-

ous dynamic and thermodynamic assessment of the

storm tracks over a set period of time. For a circulation

to be included in a storm track, a set of ‘‘initial’’

thresholds must be satisfied at two or more neighboring

grid points (step 1). Then a set of ‘‘core’’ thresholdsmust

be met at three consecutive time periods somewhere in

the storm track before a TC is declared (step 2). The two

sets of thresholds used in this paper are provided in

Table 1 of Tory et al. (2013a), labeled ‘‘Initial’’ and

‘‘Criterion 1.’’

4. Evaluation of model TC climatology

The thresholds and other conditions used in the

OWZPTC detectionmethod were developed and tuned

in European Centre for Medium-Range Weather Fore-

casts (ECMWF) Interim Re-Analysis (ERA-Interim)

reanalyses (Tory et al. 2013a). They are applied directly

to the CMIP3 models in this paper without any further

adjustment. This ensures that the detection method is

TABLE 1. List of CMIP3 models investigated in this study.

Model Model institution (country)

Atmosphere

resolution

Ocean

resolution

Commonwealth Scientific and Industrial Research

Organisation Mark, version 3.5 (CSIRO-Mk3.5)

CSIRO Marine and Atmospheric

Research (Australia)

1.98 3 1.98 0.88 3 1.98

Max Planck Institute ECHAM5

(MPI-ECHAM5)

Max Plank Institute (Germany) 1.98 3 1.98 1.58 3 1.58

Geophysical Fluid Dynamics Laboratory Climate

Model, version 2.0 (GFDL CM2.0)

Geophysical Fluid Dynamics Laboratory

(United States)

2.08 3 2.58 0.38–18 3 18

Geophysical Fluid Dynamics Laboratory Climate

Model, version 2.1 (GFDL CM2.1)

Geophysical Fluid Dynamics Laboratory

(United States)

2.08 3 2.58 0.38–18 3 18
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independent of the GCMs.3 While this approach mini-

mizes error compensation between detection and model

errors, which occurs when the detectionmethod is tuned

to best reproduce TC climatology, it cannot separate the

detection error from the model error. Thus, our analysis

of the CMIP3 TC climatologies using the OWZP TC

detection method reflects the combined performance

of the models and detection method. TC formation lo-

cations, TC frequency, and seasonal and interannual

variability are considered in the performance assess-

ment of the following CMIP3 models: CSIRO-Mk3.5,

MPI-ECHAM5, GFDL CM2.0, and GFDL CM2.1 (see

Table 1 for model details).

a. Geographical distribution of TC genesis positions
and frequency

The geographical distribution of observed and mod-

eled TC formation locations are shown in Figs. 1 and 2

for the period 1970–2000. Each formation position is de-

noted by a black dot in Fig. 1, and for ease of comparison

in the higher-density formation regions, smoothed spatial

density maps are presented in Fig. 2. The spatial density

maps are obtained by first binning TCs into a regular

2.58 3 2.58 grid and then smoothing the gridded data by

generating probability density functions (PDFs) com-

puted from anisotropic Gaussian functions (e.g., Ramsay

et al. 2008; Chand and Walsh 2009).

As can be seen in Figs. 1a and 2a, the most concen-

trated area of TC genesis globally is in the eastern North

Pacific (ENP) basin around 158N, 1108W. In the western

North Pacific (WNP), genesis is spread over a large area,

with maxima occurring around the Philippines and ex-

tending into the central Pacific. A secondary maximum

is also observed in the South China Sea. TCs in the north

Indian (NI) basin mainly form in the Bay of Bengal re-

gion. In the North Atlantic (NA) basin, TC genesis lo-

cations are widely distributed over a large area with

predominant formations in the Gulf of Mexico and the

region spanning part of the Caribbean Sea and the

tropical NA basin (the so-called main development re-

gion: 68–188N, 208–608W). In the South Pacific (SP) ba-

sin, TCs usually form in the Coral Sea region (between

1508E and 1808) with a rapid decrease eastward. In the

Australian region, maximum genesis density occurs in

the Gulf of Carpentaria and off the northwest coast in

the Timor Sea. TCs in the south Indian (SI) basin are

spread across the region with maximum formation

around about 708E longitude.

The observed spatial patterns are generally well rep-

licated in the four CMIP3 models (Figs. 1b–e, 2b–e),

with OWZP detections in the two somewhat higher-

resolution models (1.98 3 1.98, MPI-ECHAM5 and

CSIRO-Mk3.5; Figs. 1b,c and 2b,c) reproducing the

formation density reasonably well. However, a closer

inspection on regional scales highlights biases and de-

ficiencies. The mean annual TC formation frequency for

each 2.58 latitude and longitude band is given in Fig. 3. In
MPI-ECHAM5 there is a poleward bias in the detected

formation maxima (Fig. 3a) with an overdetection of

formation particularly in the Bay of Bengal (808–908E)
in the NI basin (Figs. 1b, 2b, and 3c) and east of about

1308W in the SP basin (Figs. 1b, 2b, and 3b). Also evi-

dent is a marked deficiency of TC detections in the NA

basin, particularly poleward of about 258N (Figs. 1b, 2b).

FIG. 1. Genesis positions of TCs (a) observed in IBTrACS and

those detected using the OWZP technique in (b) MPI-ECHAM5,

(c) CSIRO-Mk3.5, (d) GFDL CM2.0, and (e) GFDL CM2.1 over

the period 1970–2000.

3 It was necessary to use relative humidity and specific humidity

on the 925-hPa level, instead of 950 hPa because that level was not

available in the daily CMIP3 pressure-level data.
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South Atlantic TC formation is also detected in MPI-

ECHAM5, where TCs rarely form. Elsewhere, the TC

formation distribution compares well with the observations.

The TC formation detections in CSIRO-Mk3.5 are

similar to MPI-ECHAM5, with the main difference

being an even greater deficit of NA TCs (Figs. 1c, 2c).

The WNP basin is slightly overdetected in CSIRO-

Mk3.5 in both formation density and areal spread (Fig.

2c), and a slight underdetection is evident for the ENP

basin (Fig. 2c, 3c; 1208–1008W). While MPI-ECHAM5

appears to have a slightly better representation of TCs in

the ENP and NA basins compared to CSIRO-Mk3.5,

the latter model is free from the latitudinal bias evident

in MPI-ECHAM5 (Fig. 3a).

Fewer TCs were detected in the two slightly coarser

models (2.08 3 2.58, GFDL CM2.0 and GFDL CM2.1),

with a significant underdetection in the GFDL CM2.0

model (Figs. 1d, 2d). This result is consistent withWalsh

et al. (2013), who noted a difference in detection rate of

more than a factor of 2, despite the models having the

same resolution and convection scheme. While the

GFDL CM2.1 model (Figs. 1e, 2e) does not suffer from

the same underdetection issues as GFDL CM2.0, a no-

table deficiency in the formation density is evident in the

ENP and NA basins. The formation densities in the

Southern Hemisphere basins generally compare well

with observations, although a handful of South Atlantic

TCs have been detected.

With the exception of GFDL CM2.0, TC formation

locations are in general realistically distributed in all

basins except for the NA. Other studies that used lower-

resolution models (e.g., Camargo et al. 2005) have also

noted similar deficiencies in the NA basin. This could be

because of an inability to adequately represent African

easterly waves that provide the majority of TC pre-

cursors in the NA basin (e.g., Thorncroft and Hodges

2001). More recent investigations using very fine reso-

lutionmodels (e.g., Chauvin et al. 2006; Zhao et al. 2009)

have noted a considerable improvement in model TCs

over the NA basin. On the other hand, our preliminary

CMIP5 studies have shown that the CSIRO-Mk3.6

model, with the same grid spacing as CSIRO-Mk3.5,

producesmore realistic numbers of TCs in theNAbasin.

Excluding the GFDL CM2.0 model, these results

demonstrate that the GCMs generally reproduce ob-

served TC climatology reasonably well as detected by

the OWZP detection technique. As the OWZP was

developed independently of the GCMs, we assume any

model and detector error cancellation is small, and the

good replication of the observed TC climatology in-

dicates good performance of both the detector and

model. Next, we further evaluate the GCM and OWZP

TC detector performance with more quantitative com-

parisons between modeled and observed TCs.

b. Climatological means

The mean number of model-detected and observed

TCs per year (NTCs) for the globe, the two hemispheres,

and each ocean basin over the period 1970–2000 is

shown in Fig. 4. The boundaries for the six TC basins

used in this study are defined in Fig. 4a. Statistical sig-

nificance tests for evaluating the difference between the

FIG. 2. Anisotropic Gaussian density distribution of TC genesis

positions in a 2.58 3 2.58 grid box for TCs (a) observed in IB-

TrACS and OWZP detected in (b) MPI-ECHAM5, (c) CSIRO-

Mk3.5, (d) GFDL CM2.0, and (e) GFDL CM2.1 over the period

1970–2000.
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mean values of TCs in observations and model data are

conducted using the bootstrap resampling method

(Efron and Tibshirani 1991). This method is based on

the assumption that the empirical density function as-

sociated with the 30 years of data is a reasonable esti-

mate of the unknown population density function. In

this study, the two sets of data are resampled separately

1000 times and the associated mean statistics for each

bootstrap sample are calculated, giving a total of 1000

bootstrap distribution samplemeans for each set of data.

The two distributions are then compared using their

respective 95% confidence intervals. If bootstrap confi-

dence intervals for the two distributions overlap, then

the means of the two sets of data are considered statis-

tically similar.

On average, about 88 TCs formed per year globally

from 1970 to 2000 (Fig. 4b). Of these, about 34% formed

in the Southern Hemisphere (Fig. 4c) and 66% in the

Northern Hemisphere (Fig. 4d). The observed climato-

logical mean NTCs are well reproduced by the OWZP

TC detections in the CSIRO-Mk3.5 andMPI-ECHAM5

models, both globally and in the two hemispheres (Figs.

4b–d). The GFDL CM2.1 model detections better rep-

resent the observed climatology in the Southern Hemi-

sphere than in theNorthernHemisphere. In theNorthern

Hemisphere TCs are underdetected in the WNP, ENP,

and NA basins. Because of the substantial under-

detection of TCs in the GFDL CM2.0 model in all TC

basins, this model will be mostly excluded from the

following discussion.

At a basin-wide scale, the model-detected TC num-

bers are statistically similar to the observed TC numbers

(at the 95% significance levels) in the SP basin (Fig. 4e)

and in the SI basin (Fig. 4f). In the NI basin (Fig. 4g),

only the number of GFDL CM2.1 model-detected TCs

is statistically similar to that observed, while NI TCs are

overdetected in CSIRO-Mk3.5 andMPI-ECHAM5. An

overdetection might be expected here given a similar

overdetection by the OWZP detector when applied to

the ERA-Interim reanalyses (Tory et al. 2013a). In the

WNP basin (Fig. 4h), the MPI-ECHAM5 and GFDL

CM2.1 detection distributions appear to reproduce well

the observed climatology, while there is an overdetection

in CSIRO-Mk3.5. The numbers of CSIRO-Mk3.5 and

FIG. 3. Distribution of TC genesis positions expressed in terms of amean annual frequency for each 2.58 (a) latitude
band, (b) Southern Hemisphere longitude band, and (c) Northern Hemisphere longitude band. Solid black line

represents observed TCs.
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FIG. 4. (a) Boundaries for the six TC basins. (b)–(j) Comparison of observed (gray) and model mean TC frequency globally, hemi-

spherically, and in the individual basins. Asterisk (plus) indicates 95% (90%) statistical significance level.
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MPI-ECHAM5 model-detected TCs are statistically

similar to those observed in the ENP basin (Fig. 4i). The

systematic TC underdetection in the NA basin noted

above is clearly evident in Fig. 4j.

It is likely that some of the difference between the

observed and detected TC climatology is due to a sys-

tematic bias in each combination of model and detection

scheme. If the differences can be largely explained by

such a bias, then it would be expected that the percentage

of basinwide TC numbers to global TC numbers should

match between the models and observations. These per-

centages are listed in Table 2. The relative hemispheric-

detected TC distribution in the CSIRO-Mk3.5 model

differs from the observed distributions by only 0.2%. No

such close agreement exists for the other models, which

suggests detected and observed climatology differences

are not dominated by systematic biases. A comparison

of the observed and modeled TC percentages within

individual basins leads to the same conclusion for all

models. The highest percentage of TCs are observed in

the WNP basin at about 30%, which is similar to that

found in all models except CSIRO-Mk3.5, which has

nearly 40% detected in that basin. The lowest observed

TC percentage is in the NI basin with about 6%. All

models demonstrate a higher NI basin percentage than

this amount, which perhaps should be expected given

the overprediction of the detector in that basin (men-

tioned above). However, the smallest percentage in all

models is the NA basin rather than the NI. The 11.6% of

global TCs observed in the NA basin is not even closely

matched by the models, which range from about 2% to

5%. This further highlights the difficulty of these models

in matching the NA basin TC climatology. The relatively

small observed fraction of NA TCs means this significant

NA underdetection does not have a severe impact on the

global or Northern Hemisphere climatology.

c. Seasonal variability

In this section we compare the model-detected to

observed TC seasonal variability to test how well cli-

mate models capture TC formation frequency from

month to month throughout the year. Figure 5 shows the

average number of model-detected and observed TCs in

the six TC basins around the globe. On the whole, the

model-detected TCs capture the phase of seasonal var-

iability quite well. The main difference in these plots is

the amplitude associated with biases mentioned in the

previous subsection. The TC season in the SP (Fig. 5a)

and SI (Fig. 5b) basins, for example, extends from

November to April, with peak activity between January

and March. However, on rare occasions, and possibly

tied to the El Ni~no–Southern Oscillation (ENSO), TC

formations in these basins can be observed as early as

October and as late as June (e.g., Ramage and Hori

1981). These features of seasonal variability are well

captured in all models examined in this study.

Over the WNP basin, TCs are observed throughout

the year, with high activity in boreal summer months

peaking around the month of August (e.g., Chan 2005).

This seasonal feature is very well reproduced in the

OWZP detections from the CSIRO-Mk3.5 and MPI-

ECHAM5 models (Fig. 5d). However, the two GFDL

detections show a slight bias in peak activity toward the

months of September and October.

The observed peak TC activity in the ENP basin oc-

curs from July to September (Fig. 5e), with few TCs

occurring before June and after October. This pattern

is very realistically replicated in the MPI-ECHAM5–

detected TCs. The detected TCs in the CSIRO-Mk3.5

and GFDL CM2.1 models slightly underestimate the

peak activity, with a 1-month late bias in the latter.

In the NA basin, the observed TC activity peaks

around September, with a few formations likely as early

as May and as late as December (Fig. 5f). All models

(except GFDL CM2.0) are able to realistically replicate

this seasonal variability, but with substantial underes-

timation of the peak activity.

The observed seasonal cycle of NTCs in the NI basin

has two peaks: one in May–June and a larger one in

September–December. The relatively quiescent period

during July–August is associated with the Indian summer

monsoon. These two peaks are reproduced by all models

except GFDL CM2.0, but with slight variations in phase.

The MPI-ECHAM5 model, however, has a larger peak

for the May–June period than the September–December

period.

d. Interannual variability

For completeness, we also examine the interannual

variability of model-detected and observed TCs. Be-

cause the interannual variability of climate models is

not expected to be phase locked with observations, we

use the coefficient of variability (CV) to assess the in-

terannual variability of model-detected TCs instead of

TABLE 2. Percentage of total global TCs present in each basin

and hemisphere. The global ratio of observed to model-detected

TCs is given in the last column. Basin acronyms are as described in

text; SH is SouthernHemisphere andNH is NorthernHemisphere.

SP SI NI WNP ENP NA SH NH Ratio

OBS 14.6 19.6 5.9 29.7 18.6 11.6 34.2 65.8 1.00

CSIRO-Mk3.5 10.4 23.5 8.0 40.8 15.0 2.2 34.0 66.0 1.08

MPI-ECHAM5 12.7 21.7 8.5 28.7 17.4 4.9 40.5 59.5 1.04

GFDL CM2.0 15.8 30.8 13.9 30.4 6.2 2.5 47.1 52.9 0.26

GFDL CM2.1 14.2 26.4 9.5 32.4 13.1 2.9 42.0 58.0 0.80
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correlation coefficients. The CV is considered an ap-

propriate measure of dispersion when comparing data

with different mean values. It is defined as the ratio of

the standard deviation to the mean. To better compare

with observations, each model CV is normalized by the

observed CV. Thus, the closer the normalized CV is to

unity, the better themodel representation of interannual

variability.

The normalized CVs of the CSIRO-Mk3.5, MPI-

ECHAM5, and GFDL CM2.1 models (Table 3) are

within 50% of unity for all TC basins except for the NA

basin, where underdetections are known to be sub-

stantial. The greatest deviation from unity in all basins

occurs for the GFDL CM2.0 model. With the exception

of that model, the normalized CVs suggest the models

capture interannual TC variability reasonably well for

most TC basins. While a physical explanation is beyond

the scope of this paper, it is likely that variability of

ENSO in themodels and its well-documented link to TC

variability (e.g., Camargo et al. 2010) may explain some

of the differences in interannual variability, as the

models examined here are capable of generating ENSO-

like features (Guilyardi et al. 2009).

e. Comparison with other detectors

It is difficult to make performance comparisons with

other techniques because there are very few published

studies of TC detections in CMIP3 models. In the few

studies of which we are aware, the performance assess-

ments are not particularly comprehensive and tend to be

limited to global maps of TC formation density (Walsh

et al. 2010, 2013). Conclusions drawn on differences

between models or detection schemes are mostly qual-

itative. With the exception of Fig. 3 of Walsh et al.

(2010), most images are too small for easy comparison

with our results. Figure 3 of Walsh et al. (2010) contains

TC detection frequency using two different detection

schemes for one model (CSIRO-Mk3.5) for the period

January–March. However, a later paper (Walsh et al.

2013) notes that the results from one of the detection

schemes were in error. The figure depicting the results

from the other detection scheme (based on Camargo

and Zebiak 2002) is reproduced here in Fig. 6 with an

equivalent plot from theOWZP detector. The plots show

the 20-yr climatology of a 3-month period (January–

March) for the CSIRO-Mk3.5 model. In general, the two

FIG. 5. Seasonal cycle of the number of observed and model-detected TCs for each TC basin.
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TC distributions look quite similar. The main difference

appears to be a broader and more southward distribu-

tion of Southern Hemisphere formation locations de-

tected by the OWZP scheme, and perhaps a slightly

greater eastward distribution in the SP basin. It is pos-

sible that the Camargo and Zebiak (2002) scheme

identifies circulations earlier than the OWZP scheme,

the latter requiring all thresholds and conditions to be

satisfied for three consecutive 0000 UTC time periods.

Although it is difficult to make precise comparisons

withWalsh et al.’s (2013) graphical results, it is apparent

that the OWZP detections are slightly higher in the NA

basin than the CSIRO detector for the MPI-ECHAM5

and CSIRO-Mk3.5 models. While the detections from

bothmethods (Fig. 7) depict a TC frequencymuch lower

than observed, the comparison does appear to illustrate

that the OWZP detector perhaps has a slightly greater

ability to detect NA TCs.

5. Projected changes in TC frequency

The main focus of this paper is to demonstrate the

performance of the OWZP TC detector in a selection of

CMIP3 climate models. Thus, it is not our intention to

make any conclusive statements about changing TC

frequency in a future climate. However, given that the

OWZP detections in three of the CMIP3 climate models

appear to well reproduce the observed TC climatology,

it is of interest to apply the detector to at least one future

climate scenario for each of the three models. In antic-

ipation that future changes in TC frequency will be small

compared to the projection uncertainty, we chose the

highest emissions scenario (A2; Nakicenovic et al. 2000)

and the greatest time range (100 yr) available. The three

models used are CSIRO-Mk3.5, MPI-ECHAM5, and

GFDL CM2.1, and the two time periods analyzed are

1981–2000 and 2081–2100. In the following discussion,

all references to the CMIP3 model results refer to the

model–OWZP–detector combination.

A decrease in TC frequency is projected in all three

models for the late twenty-first century, both globally

and hemispherically (Figs. 8a–c). Error bars have been

added to give some indication of the uncertainty of the

mean annual TC numbers (95% significance level using

the bootstrap sampling method). However, it is impor-

tant to remember that this represents only the un-

certainty that the sample mean is representative of

a hypothetical larger sample. In no way does it represent

uncertainties in amodel’s ability to generate realistic TC

climatologies or the detector’s ability to accurately de-

tect model TCs. At present we do not have a method for

calculating or estimating these uncertainties and can

thus only consider them qualitatively. Of the three

models, only the CSIRO-Mk3.5 and theMPI-ECHAM5

projected decreases are statistically significant at the

95% significance level. Globally, the percentage decrease

TABLE 3. Normalized CV for TC frequency in each basin and

model. The model CV is normalized by the observed CV. Values

greater (less) than one represent greater (less) variability than

observed.

SP SI NI WNP ENP NA

CSIRO-Mk3.5 1.12 0.67 0.70 0.82 0.75 2.69

MPI-ECHAM5 0.88 0.82 0.60 0.64 0.60 1.45

GFDL CM2.0 2.54 1.71 0.83 1.70 2.22 4.37

GFDL CM2.1 0.96 0.91 0.72 0.98 0.93 2.61

FIG. 6. TC detection distributions for the months January–March from 1980 to 1999. (top)

Basin-dependent scheme of Camargo andZebiak (2002), reproduced fromFig. 3 ofWalsh et al.

(2010). (bottom) OWZP scheme.
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ranges from 6% to 20% for the GFDL CM2.1 and MPI-

ECHAM5models, respectively (Fig. 9). In the Southern

Hemisphere the decrease in TC frequency ranges from

4% to 24% for the GFDL CM2.1 and MPI-ECHAM5

models, respectively, and an equivalent decrease of 6%

to 19% in the Northern Hemisphere. These decreases

are consistent with the recent work of Knutson et al.

(2010). While it is unclear whether these changes exceed

the true uncertainty of the calculated mean annual TC

numbers, some confidence can be gained from the fact

the three models are consistent in predicting a decrease

in TC frequency.

The same cannot be said for projected TC frequency

changes in the individual basins (Figs. 8d–i). In the SP

basin, the CSIRO-Mk3.5 model projects an increase of

about 23%, whereas a similar magnitude decrease is

projected in the MPI-ECHAM5 model, and there is no

change in the GFDL CM2.1 model (Fig. 9). However,

none of these changes is significant at the 95% confidence

level. As a consequence, it is difficult to draw conclu-

sions regarding changes in TC frequency from these data

alone. Similarly, projections include both decreases and

increases in the ENP and NA basins (Fig. 9), with only

one model in each basin projecting a change that is

significant at the 95% confidence level (CSIRO-Mk3.5,

ENP basin, and MPI-ECHAM5, NA basin). Again, it

could be misleading to argue that these data support any

change in TC frequency, especially in the NA basin,

where these models have trouble reproducing the cur-

rent TC climatology. In the other three basins (i.e., SI,

NI, and WNP basins), all models project a decrease in

TC frequency, although only three of the nine changes

are significant at the 95% confidence level [CSIRO-

Mk3.5 and MPI-ECHAM5 in the SI basin (Fig. 8e) and

MPI-ECHAM5 in the WNP basin (Fig. 8g)].

The above discussion would suggest there is limited

value in the projected TC frequency changes from the

data presented here. However, despite the uncertainty,

themajority of basinwide projections (13 out of 18) show

fewer TCs, and all of the six hemispheric and three

global projections also show fewer TCs. This qualitative

model ensemble result can be useful if provided with

sufficient caveats explaining the uncertainty. Additional

model ensemble results are provided in Fig. 10, which

shows the geographic distribution of the late-twentieth-

and the late-twenty-first-century ensemble mean TC

formation density (Figs. 10a,b) and the difference be-

tween the two (Fig. 10c). The three-model ensemble

mean tendency of Fig. 10c demonstrates that reduced

TC frequency is widespread across all basins.

Seasonal variation in TC frequency for the late-

twenty-first-century simulations are similar to their

FIG. 7. TC frequency plots for the months July–September from 1980 to 1999, for the ENP and NA basins, in (top)

MPI-ECHAM5 and (bottom) CSIRO-Mk3.5 using (left) the Walsh et al. (2007) detector and (right) the OWZP

detector. The left panels are reproduced from Walsh et al. (2013).
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FIG. 8.Mean number of TCs for the late-twentieth-century simulations (black) and

late-twenty-first-century simulations (gray), globally, hemispherically, and for the

individual TC basins for three models (CSIRO-Mk3.5, MPI-ECHAM5, and GFDL

CM2.1). Error bars represent 95% significance level obtained using the bootstrap

sampling method.
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twentieth-century counterparts, indicating that no model

projected future change in the seasonal cycle (Fig. 11).

Peak activity in some cases is slightly reduced in the fu-

ture climate simulations, consistent with the overall pro-

jected decrease. In the SP basin, the ECHAM5 and

GFDLCM2.1 models, for example, project slightly lower

peak activity in the future climate compared with the

current climate. In the WNP basin, reduction in TC

numbers for future climate mainly occurs in the late TC

season. This is in agreement with a fine-resolution ex-

periment (;20 km) of Murakami et al. (2011).

In general, there is overall TC projection frequency

consistency between these results and other finer-

resolution studies (e.g., Zhao et al. 2009; Knutson et al.

2010; Murakami andWang 2010; Murakami et al. 2011).

This suggests lower-resolution models, such as those ex-

amined here using the OWZP TC detector, are well ca-

pable of representing current and future TC climatology.

6. Summary

A novel TC detection technique (OWZP; Tory et al.

2013a,b) was applied to a selection of CMIP3 global

climate models, and a comprehensive assessment of

the combined detector and model performance in re-

producing observed TC climatology was documented.

Three models (CSIRO-Mk3.5, MPI-ECHAM5, and

GFDL CM2.1) produced very reasonable TC forma-

tion climatologies in most basins, with the exception

being a large and systematic underprediction in the

North Atlantic basin, which is consistent with other

studies (e.g., Camargo et al. 2005). In terms of TC

formations, these three models also showed good sea-

sonal variation (Fig. 5) and interannual variability

(Table 3). The fourth model (GFDL CM2.0) suffered

from a large, systematic underprediction in all basins

[as also found by Walsh et al. (2013)]. As such, it was

considered to be of no value for future climate pro-

jections of TC formation.

When verifying against observed TC climatology, it is

difficult to separate model error from detector error;

thus, the performance assessment reflects the combined

performance of the model and detector. The fact that

other studies using different detectors also identified

poor performance in the North Atlantic basin and in

the GFDL CM2.0 model suggests the models are re-

sponsible for the underperformance rather than the de-

tector. The good performance in the remaining models

and basins represents good combined model and

FIG. 9. Fractional change in mean TC frequency between the late twentieth and late twenty-

first centuries for the three models. Changes that are significant at 95% and 90% confidence

levels are indicated by asterisk and plus symbols, respectively.

FIG. 10. Anisotropic Gaussian density distribution of ensemble-

mean TC genesis positions per year in a 2.58 3 2.58 grid box (a) for

the late-twentieth-century simulations and (b) for the late-twenty-

first-century simulations. (c) The difference in TC density between

(a) and (b).
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detector performance. If the compensation between

model and detector error is minimal, then both the

model and detector performed well. Although it is not

possible to measure any such error compensation, the

OWZPwas designed to minimize this compensation. It

follows that the OWZP TC detection method applied

to coarse-resolution models is likely to be particularly

robust.

The main focus of this paper was to document the

OWZP TC detection performance in CMIP3 models.

While a preliminary TC projection analysis was possible

using just three models, more models would be required

for a comprehensive projection study. The changes we

found in TC detection rates between the late twentieth

and twenty-first centuries are consistent with higher-

resolution studies (e.g., Zhao et al. 2009; Knutson et al.

2010; Murakami andWang 2010; Murakami et al. 2011).

Our results are summarized as follows:

d Averaged across the globe, a decrease in TC de-

tections of 6%–20%, consistent with the 6%–34%

reported by Knutson et al. (2010).
d A much larger spread of projections in individual

basins, consistent with the 23% increase to 45%

decrease reported in Knutson et al. (2010) and other

studies.
d No overall change in the seasonal variability of TC

formation by the end of the twenty-first century,

consistent with other higher-resolution studies (e.g.,

Murakami and Wang 2010; Murakami et al. 2011).

These projection results are subject to considerable

uncertainty, especially as only three models were avail-

able. A broader set of possible future outcomes provided

by a larger suite ofmodels would offer greater insight into

the largely unquantifiable uncertainty. (A more com-

prehensive study is currently underway using CMIP5

model data.)Additional insight should also be possible by

applying a suite of TC detectors. TheOWZPTCdetector

is based on fundamentally different principles to other

detectors in the literature (e.g., Camargo and Zebiak

2002; Walsh et al. 2007; Bengtsson et al. 2007; Strachan

et al. 2013) and, together with these detectors, would thus

be highly valuable for analyzing TC climatology in global

climate models.
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