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Abstract— One of the recent trends adopted by malware 

authors is to use packers or software tools that instigate code 
obfuscation in order to evade detection by antivirus scanners. 
With evasion techniques such as polymorphism and 
metamorphism malware is able to fool current detection 
techniques. Thus, security researchers and the anti-virus 
industry are facing a herculean task in extracting payloads 
hidden within packed executables.  It is a common practice to 
use manual unpacking or static unpacking using some software 
tools and analyse the application programming interface (API) 
calls for malware detection.  However, extracting these features 
from the unpacked executables for reverse obfuscation is 
labour intensive and requires deep knowledge of low-level 
programming that includes kernel and assembly language.  
This paper presents an automated method of extracting API 
call features and analysing them in order to understand their 
use for malicious purpose.  While some research has been 
conducted in arriving at file birthmarks using API call features 
and the like, there is a scarcity of work that relates to features 
in malcodes.  To address this gap, we attempt to automatically 
analyse and classify the behavior of API function calls based on 
the malicious intent hidden within any packed program.  This 
paper uses four-step methodology for developing a fully 
automated system to arrive at six main categories of suspicious 
behavior of API call features. 
 

Keywords—Malware, API calls, code obfuscation, feature 
extraction.  

I. INTRODUCTION 
alware has numerous synonyms such as, malicious 
software, malicious code (MC) and malcode. Malware 
contains code designed to perform illegal activities, 

cause damage, and affect the integrity and the functionality 
of digital electronic devices. For the purpose of this research, 
we adopt the malware description given by McGraw and 
Morrisett [1] as “any code added, changed, or removed from 
a software system in order to intentionally cause harm or 
subvert the intended function of the system”. Sophistication 
in malware offers a new class of criminal activity that has 
created new challenges for law and forensic examiners [2]. 
Literature studies [3] [4] [5] on malware detection have 
shown that not all types of malware can be detected by one 
single technique. There two main techniques used for 
malware detection, namely, signature-based detection and 
anomaly-based (behavioural) detection.  Anti-malware 

engines use signatures or 'byte sequences' to detect known 
malware. These signatures are generated by human experts 
by disassembling the file and selecting pieces of unique 
code.  Signature-based detection is very effective for known 
malware, but the noteworthy weakness is the incapability to 
detect anonymous malware and hence is not effective against 
“zero day attack” (unknown malware) [6].  Code obfuscation 
has created another challenge for digital forensic examiners, 
namely the detection rate of new and unknown malware that 
is currently only being detected between 70 to 80% [7] [8] 
[9] and identifying benign code as malicious (false alarm 
rate or false positive) is quite high [7]. Signature based 
detection suffers from two hindrances, first, high false 
positive [7] (identifying benign files as malware) and 
second, high false negative (fail to detect malware) [8]. 
Therefore, in this research we focus on anomaly based 
detection using feature extraction such as application 
programming interface (API) calls and code obfuscation 
features.  The obfuscation features include behaviours based 
on the content of malware such as source address, 
destination address, ASCII, UNICODE, and other contents  
that are relevant for the analysis [3] [5]. 

The Portable Executable (PE) is divided into sections. 
Each section provides different information, such as the file 
header, the number of DLL and the number of API calls. 
However, the information in the PE file header could be 
modified easily, and it has some difference from the true 
calls of program [34].  The existing techniques and methods 
do not perform sufficient statistical analyses to determine if 
the anomaly was ‘actually’ malicious. Therefore, in this 
research, we have used static anomaly-based detection 
analysis which consists of an introspection of the program 
codes to determine various dynamic properties of these 
codes in an isolated environment.  We apply this technique 
to extract and identify the API function calls used by 
malware for 386 file samples that are uniquely named 
according to their MD5 value. We have obtained recent 
malware samples that were collected between July 2009 and 
November 2009 from honeypots, the Honeynet project and 
other sources. Our approach is static analysis of the malware 
based on the Windows API calling sequence and how to 
extract those windows calls that reflect the behaviour of a 
file.  
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The paper is organized as follows: the next section 
highlights the main contributions of the study, in section 3 
we describe the background of this research, which is based 
on a thorough foundation on API calls and PE file formats, 
and section 4 provides the methodology adopted and the 
system architecture of the fully-automated system 
implemented for this research study. We then discuss in 
section 5, the experimental results.  Finally, we provide the 
limitations and future work of this ongoing research in 
section 6, and conclusions in section 7.  

II. CONTRIBUTIONS OF THE PAPER 
Recently, API calls have been explored for modeling 
program behaviour. There are studies [10] [11] [12] [35] that 
have used analysis of API calls for generation of birthmark 
on Portable execution (PE).  Use of statistical analysis of file 
binary content including statistical N-gram modeling 
techniques [13] [14] [36] have been tested in identifying 
malcode in document files and does not have sufficient 
resolution to represent all class of file types.  From our study 
on related work [15] [16] [17] [18] [19] [20] [21], we find 
that the statistical modeling of hidden malcode that 
predominantly use Windows API calling sequence for 
evading detection is yet to be explored.  This is a motivation 
for this research towards a positive contribution in 
understanding malware behavior through statistical analyses 
of API calls.    

In this paper, using the static analysis tool IDAPro 
disassembler [29], we disassemble, analyze and extract the 
API function calls from the binary content of malware, and 
statically identify the behavior from the API calls. We 
present a novel approach to automate and extract the API 
function calls from the malware binary content.  We have 
applied a static anomaly based detection technique that 
consists of examining the malware programs without it 
being executed, so as to determine the behavior of the actual 
execution, and have combined it with API call feature 
extraction for reflecting the overall behavior of a file. 

III. BACKGROUND 
Understanding the API call features and the format of 

program executables (PE) is of critical importance for 
identifying the hidden malcodes.  Hence, some background 
information pertaining to API calls and PE structure that are 
exploited by malwares are presented here. 

A. API Call Features 
The core of the Windows O/S consists of the application 

programming interface (API). Windows API enables the 
programs to exploit the power of Windows and hence 
malware authors make use of the API calls as a vehicle to 
perform malicious actions [9].  The Windows API function 
calls comprises of functional levels such as system services, 
user interfaces, network resources, windows shell and 
libraries, etc. Since the API calls reflect the functional levels 

of a program, analysis of the API calls would lead to an 
understanding of the behaviour of the file. Malicious code are 
able to disguise their behaviour by using API functions 
provided under Win32 environment to implement their tasks. 
Therefore, in binary static analysis we focus on identifying 
all Windows API call features to understand the malware 
behaviour.  

In the Windows O/S, user applications rely on the 
interface provided within a set of libraries, such as 
kernel32.dll, ntdll.dll and user32.dll in order to access system 
resources including files, processes, network information and 
the registry. This interface is known as the Win32 API. 
Applications may also call functions in ntdll.dll known as the 
Native API. The Native API functions perform system calls 
in order to have the kernel provide the requested service. Our 
approach extracts and analyses these API call features 
including hooking of the system services that are responsible 
to manage files. The extracted calls are confined to those that 
affect the files. Various features related to the calls that create 
or modify files or even get information from the file to 
change some value and information about the DLLs loaded 
by the malware before the actual execution are considered. 
We then perform statistical testing on the extracted features 
to determine the malware class based on suspicious 
behaviours.  

B. Malware Executable File Format 
The Win32 Portable Executable (PE) file format 

introduced by Microsoft is the standard executable format for 
all versions of the operating systems on all supported 
processors. Therefore, our approach is tested directly on the 

TABLE I 
PORTABLE EXECUTION STRUCTURE 

Section Table 
DOS Header 
COFF File Header   
Optional Header  
Standard fields 
NT additional fields 
Optional Header Data Directories 
 Export Table  
 Import Table 
 Resource Table 
 Exception Table  
 Certificate Table 
 Base Relocation Table 
 Debug 
 Architecture 
 Global Ptr 
 TLS Table 
 Load Config Table 

 Bound Import 
 Import Address Table (IAT) 
 Delay Import Descriptor 
 COM+ Runtime Header 
 Reserved 
Section Table  
 .text  
 .rdata  
 .data  
 .idata  
 .rsrc  
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PE format files. Most programs in windows are constructed 
by accessing the Windows API through functions available in 
dynamic link library (DLL) on the system. Microsoft 
provides a great number of DLLs, and each DLL can be used 
by more than one program at the same time. 

For the obfuscated malware detection system, this paper 
focuses on extraction and analysis of features from API call 
sequences and how to automate the entire detection process. 
In order automate the inspection of these features in the PE, it 
is important to understand the PE structure as the data 
structures on secondary memory (Hard Disk) are the same 
data structures that are used dynamically in main memory 
(RAM). For example, when the function LoadLibrary is 
called to load the executable into memory, a data structure 
such as the IMAGE_NT_HEADERS is created identical on 
disk and in the memory. However, the Windows loader is 
responsible for deciding what section the PE need to be 
mapped in. Hence, the mapping between the two memory is 
consistent, such as the higher offsets in the file in disk is 
similar in position to higher memory addresses when mapped 
into main memory.  Since a PE file have a different sections 
and headers, we have used the free PE tools [22] to view and 
analyse the PE files. Table 1 provides a good understanding 
of the PE structure that includes DOS headers and PE 
headers. The PE header start with the signature of the PE, file 
properties, such as the number of sections  and timestamp, as 
shown in Table 1. The  section table has code sections (.text), 
and data sections (.data). The .text section is the default 
section for code and the .data section stores writable global 
variables and also contains the file’s Original Entry Point 
(OEP) which refers to the execution entry point (where the 
file execution begins) of a portable executable file. Finally, 
the .rdata section contains read-only data.   

 Traditional detection engines search for signatures to 
detect and identify known malwares. However, the malware 
authors can fool the detection engine by applying obfuscation 

technique using packers or polymorphism to safeguard the 
malware code and its data structures from being detected.   

IV. METHODOLOGY AND IMPLEMENTATION 
In this section we describe the methodology adopted for 

automating the API extraction, analysis and malicious 
behavior identification process.  Figure 1 shows the system 
architecture of such an automated process.  We used Python 
programming language to implement the following main 
steps of the fully automated system: 

 
Step 1:  Unpack the malware. 
Step 2:  Disassemble the binary executable to retrieve 

the assembly program. 
Step 3: Extract API calls and important machine-code 

features from the disassembly program. 
Step 4:  Map the API calls with MSDN library and 

analyse the malicious behaviour. 

Step 1: Unpack the malware  
Packers are commonly used today for code obfuscation or 

compression. Packers are software programs that are able to 
be used to compress and encrypt the PE in secondary 
memory and restore the original executable image, when 
loaded into main memory (RAM) [9]. Recently, malware 
authors have used packers to avoid detection and to run 
malware faster. Packing the malware makes the obfuscation 
method difficult to understand and the malware authors only 
need to change a small number of lines of code in order to 
change the malware signature.  This is mainly as changing 
any byte sequence in the PE results in a new different  byte 
sequence in the new produced packed PE [28] [37].  Malware 
authors are continually developing new techniques for 

 

 
 

Figure 1 A fully-automated architecture for API call extraction and analysis of malware behaviour 
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creating malware that cannot be detected by AV engines, and 
their level of sophistication is continuing to grow.  

Researchers have been trying to build semi-automated 
tools for automatically unpacking malware, such as 
PolyUnpack [23], Renovo [24], OmniUnpack [25], Ether 
[26], and Eureka [9]. PolyUnpack is an automated unpacking 
technique for extracting the hidden code through process 
execution and uses the Windows debugging API to single-
step.  The second tool, Renovo, is implemented using the 
QEMU emulator and supports multiple layers of unpacking. 
However, OmniUnpack uses a coarse-grained execution 
tracking approach at the page-level protection mechanism 
available in hardware in order to identify when the code gets 
executed from a page that was newly modified. Eureka, is 
similar to OmniUnpack except that Eureka tracks execution 
at the system call level. Eureka follows statistical bigram 
analysis and coarse-grained execution tracing method and 
provides several Windows API resolution techniques that 
identify API calls based on their functionality in the 
unpacked code. Lastly, Ether, is based on an application of 
hardware virtualization extension such as Intel VT, and 
resides outside the operating system. By studying these semi-
automated tools, we observe that none of them are 
completely meeting the purpose of analyzing the behavior of 
malware by extracting API call features. 

In our experiment conducted on 386 samples of malware, 
we used PEiD [27], a detector used for most common 
packers, cryptors, compilers and even signature-based packer 
detection in PE files. The result is that we found about 77% 
of these malware to be packed and 23% to be unpacked, as 
shown in Figure 2. From the result in Figure 2, we can 
determine that the majority of malware change their byte 
sequence or 'Signature' by applying packing techniques so as 
to evade detection by virus scanners.   

Step 2: Disassemble the binary executable  
All data set files collected were preprocessed for anomaly 

testing. In order to translate a program into an equivalent 
high-level-language program based on the binary content, we 
have used the most reliable disassembly tool used for static 
analysis, namely,  Interactive Disassembler Pro (IDA Pro) 
[29] since it can disassemble all types of non executable and 
executable files (such as ELF, EXE, PE, etc.). Also, we have 
selected the IDA Pro as a component of the automation 
process of this research work because it automatically 
recognizes API calls for various compilers and can be further 
extended with our Python programs and compiled plugins, 
resulting in incredibly powerful implementation with flexible 
levels of analysis and control. IDA Pro loads the selected file 
into memory to analyse the relevant program portion to 
create an IDA database whose components are stored in four 
files: .id0 that contains the content of a B-tree-style database, 
.id1 that contains flags describing each program byte, .nam 
that contains index information related to program locations, 
and .til that is used to store information concerning local type 
definitions to a given database. IDA Pro generates the IDA 
database files into a single IDB file (.idb) by disassembling 
and analysing the binary of the file. Our fully-automated 
system using Python programming language generates .idb 
automatically from the set of malware samples (Figure 1). 

 Step 3: Extract API calls  
IDA Pro provides access to its internal resources via an 

API that allows users to create plug-ins to be executed by 
IDAPro We have made use of SQLite [30], a software library 
that implements a self-contained transactional SQL database 
engine. Our Python program automatically runs and creates 
the plugin to use SQLite with IDA Pro for generating the 

Nothing found  23%

Upack  6%

Petite 4%

PELock  8%

PECompact 4%

UPX 10%AsProtecect 3%

Microsoft Visual C++  2%

Microsoft Visual Basic  2%

MEW  2%

kkrunchy 6%

Borland Delphi 4%

Armadillo 21%

FSG 5%

 
Figure 2: Distribution of obfuscation packers used in malware 
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database (.db). We have developed an interface for accessing 
the database file (.db) so that the results from the assembly 
code of the malware stored in the database could be used for 
better binary analysis. 

 
#include <idc.idc> 
  static main() 
  { 
   … 
  RunPlugin("ida2sqlite3",1); 
  Message("Alldone, exiting\n"); 
  … 
  Exit(0); 
  } 

 
IDASQLit plugin  generates eight tables (Blocks, 

Functions, Instructions, Names, Maps, Stacks, Segments, 
TargetBinaries),  each of them contains  different information 
about the binary content.  Function table contains all the 
recognizable API system calls and non-recognizable function 
names and the length (start and the end location of each 
function). Instructions table contains all the operation code 
(OP) and their addresses and block addresses. Maps table 
contains the function address and source of block address and 

the destination of the function address. Names table contains 
function addresses, the name of the function and the type of 
the function. Stacks table contains function address, the stack 
name, and the start and the end address. Segments table 
contains information that describes each segment in an 
executable file, segment name (Code, Data, BSS, _idata, _tls, 
_rdata, _reloc, and _rsrc) and the segment length. Finally, 
TargetBinaries contain the file name, path name, MD5, and 
start and the end of analyses. 

Step 4: API call mapping and feature analysis  
As a reference for this step, we downloaded the Windows 

application programming interface (API) from The Microsoft 
Developer Network (MSDN) [31]. We implemented in 
Python the required processes to compare and match the API 
from MSDN and the API calls generated in the database (.db 
of Step 3) for the malware sample set.  In addition, to list all 
the API calls that are associated with malcode and to analyse 
the features, we have considered the machine opcodes such 
as Jump and Call operations as well as the function type 
(import or function).  Sample code snippets are as shown 
below.  

TABLE 1 
MAIN MALICIOUS BEHAVIOUR GROUPS OF API CALL FEATURES 

 

Behaviour Malware Category API Function Calls 

 Behaviour 1 Search Files to Infect 

FindClose, FindFirstFile, FindFirstFileEx, FindFirstFileName, TransactedW, 
FindFirstFileNameW, FindFirstFileTransacted, FindFirstStream, TransactedW, 
FindFirstStreamW, FindNextFile, FindNextFileNameW, FindNextStreamW, SearchPath. 
 

Behaviour 2 Copy/Delete Files 

 
CloseHandle, CopyFile, CopyFileEx, CopyFileTransacted, CreateFile, 
CreateFileTransacted, CreateHardLink, CreateHardLink, Transacted, 
CreateSymbolicLink, CreateSymbolic, LinkTransacted, DeleteFile, 
DeleteFileTransacted. 
 

Behaviour 3 Get File Information 

 
GetBinaryType, GetCompressed, FileSize, GetCompressedFile, SizeTransacted, 
GetFileAttributes, GetFileAttributesEx, GetFileAttributes, Transacted, 
GetFileBandwidth, Reservation, GetFileInformation, ByHandle, GetFileInformation, 
ByHandleEx, GetFileSize, GetFileSizeEx, GetFileType, GetFinalPathName, ByHandle, 
GetFullPathName, GetFullPathName, Transacted, GetLongPathName, 
GetLongPathName, Transacted, GetShortPathName, GetTempFileName, GetTempPath. 
 

Behaviour 4 Move Files 
 
MoveFile, MoveFileEx, MoveFileTransacted, MoveFileWithProgress. 
 

Behaviour 5 Read/Write Files 
 
OpenFile, OpenFileById, ReOpenFile, ReplaceFile, WriteFile, CreateFile, CloseHandle. 
 

Behaviour 6 Change File Attributes 

 
SetFileApisToANSI, SetFileApisToOEM, SetFileAttributes, 
SetFileAttributesTransacted, SetFileBandwidthReservation, 
SetFileInformationByHandle, SetFileShortName, SetFileValidData 
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SELECT function_address,src_block_address,name  
from Maps, Names" 
Where (op='call' or op='jmp') and (type='import' 
or type='function') 

 

 For the analysis of malware behaviour, we have 
considered features such as frequency of call, call sequence 
pattern and actions immediately preceding or after call.    
Some actions that lead to invalid memory reference or 
undefined register or invalid jump target help in refining the 
extracted features for analysis.  

We have developed a fully-automated system that 
integrates well with IDA Pro and SQlite using Python 
programming to perform all the four steps described above 
and have performed experimental testing for all the 386 
malware samples. 

V. EXPERIMENTAL RESULTS 
All executable programs, malicious or not, have the goal 

to perform an action using API calls. Disguised malicious 
code uses a different, relatively peculiar action which is 
called suspicious behavior. Behavior identification is 
becoming a rich area to study and as explained earlier, the 
malware authors target their malware on the commonly used 
NTFS by using API functions provided under Win32 
environment to implement their functions. A statistical 
analysis of the Windows API calling sequence reflects the 
behavior of a particular piece of code. In this research work, 
the API call features from the binary of a program were 
extracted and analysed to understand their malicious behavior 
and finally to classify the program as malicious or benign. 
The extracted features were subjected to a statistical test to 
determine the malware class based on suspicious behaviours. 
As a result of our experimental analysis on the 386 malware 
samples, we have identified six main groups of commonly 
used API function call features that are based on the 

malicious behavior patterns (Table 1) and these are listed 
below: 

1) Search files to infect. 
2) Copy/Delete files. 
3) Get file information. 
4) Move Files. 
5) Read /Write files. 
6) Change file attributes. 

 
Figure 3 shows the frequency distribution of these six 

main groups of API calls invoked within the experimental 
dataset for malicious purposes.  From Figure 3, it is clear that 
the most prominent behavior commonly exhibited by 
malwares is to infect file through API calls that perform 
read/write files.   

VI. LIMITATIONS AND FUTURE WORK 
The system call interface is the facility that the OS offers 

to user-mode applications. UNIX operating system had a well 
document clearly defined set of system calls. The MINIX 
operating system has a system call interface consisting of 
only 53 routines. Everything that the MINIX operating 
system is capable of doing ultimately can be resolved into 
one or more of these system calls. The Window operating 
system, which refers to its system call interface as the native 
API of Windows, has not provided an official document for 
its native API. However, today Windows is the basis of 
predominant operating systems in use, such as Windows 
2000, Windows XP, Windows Server 2003, Windows Server 
2008, Windows Vista, Windows 7 [32] [33]. Therefore, this 
research is a step towards addressing malware that try to 
target on windows operating system with the view of 
affecting more computer users.  Hence, this research work 
has limitations in its application exclusively to malware that 
make use of Windows API calls. 

48737
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Figure 3: API call distribution of malware samples 
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Future work entails extracting binary N-gram features 
complement the API cal features and to train the classifier 
resulting in building a model using support vector machine 
(SVM). We would also test the model against large sets of 
malware samples for verifying the accuracy of the modelled 
system. 

VII. CONCLUSION 
A statistical analysis of the Windows API calling 

sequence reflects the behavior of a particular piece of code. 
In this research project, the API calls from the binary of a 
program were extracted to analyse the most common 
malware behavior patterns and to classify program 
executables as malicious or benign. The extracted calls were 
subjected to a statistical test to determine the malware class 
based on suspicious behavior. The entire static detection 
process was a fully-automated system and a four-step 
methodology was adopted for developing the system. 
Experimental tests were conducted using 386 samples of 
malware and we have arrived at six main categories of 
suspicious behavior of API call features.  These being  i) 
Search files to infect, ii) Copy/Delete files,.iii) Get file 
information, iv) Move Files, v) Read /Write files and vi) 
Change file attributes.  Among these, API calls for Read 
/Write files were predominantly used by malware as a vehicle 
to infect the program. 
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