

Towards Understanding Malware Behaviour by the Extraction of API calls

Mamoun Alazab
Internet Commerce Security

Laboratory (ICSL)
University of Ballarat

m.alazab@ballarat.edu.au

Sitalakshmi Venkataraman
Internet Commerce Security

Laboratory (ICSL)
University of Ballarat

s.venkatraman@ballarat.edu.au

Paul Watters
Internet Commerce Security

Laboratory (ICSL)
University of Ballarat

p.watters@ballarat.edu.au

Abstract— One of the recent trends adopted by malware

authors is to use packers or software tools that instigate code
obfuscation in order to evade detection by antivirus scanners.
With evasion techniques such as polymorphism and
metamorphism malware is able to fool current detection
techniques. Thus, security researchers and the anti-virus
industry are facing a herculean task in extracting payloads
hidden within packed executables. It is a common practice to
use manual unpacking or static unpacking using some software
tools and analyse the application programming interface (API)
calls for malware detection. However, extracting these features
from the unpacked executables for reverse obfuscation is
labour intensive and requires deep knowledge of low-level
programming that includes kernel and assembly language.
This paper presents an automated method of extracting API
call features and analysing them in order to understand their
use for malicious purpose. While some research has been
conducted in arriving at file birthmarks using API call features
and the like, there is a scarcity of work that relates to features
in malcodes. To address this gap, we attempt to automatically
analyse and classify the behavior of API function calls based on
the malicious intent hidden within any packed program. This
paper uses four-step methodology for developing a fully
automated system to arrive at six main categories of suspicious
behavior of API call features.

Keywords—Malware, API calls, code obfuscation, feature
extraction.

I. INTRODUCTION
alware has numerous synonyms such as, malicious
software, malicious code (MC) and malcode. Malware
contains code designed to perform illegal activities,

cause damage, and affect the integrity and the functionality
of digital electronic devices. For the purpose of this research,
we adopt the malware description given by McGraw and
Morrisett [1] as “any code added, changed, or removed from
a software system in order to intentionally cause harm or
subvert the intended function of the system”. Sophistication
in malware offers a new class of criminal activity that has
created new challenges for law and forensic examiners [2].
Literature studies [3] [4] [5] on malware detection have
shown that not all types of malware can be detected by one
single technique. There two main techniques used for
malware detection, namely, signature-based detection and
anomaly-based (behavioural) detection. Anti-malware

engines use signatures or 'byte sequences' to detect known
malware. These signatures are generated by human experts
by disassembling the file and selecting pieces of unique
code. Signature-based detection is very effective for known
malware, but the noteworthy weakness is the incapability to
detect anonymous malware and hence is not effective against
“zero day attack” (unknown malware) [6]. Code obfuscation
has created another challenge for digital forensic examiners,
namely the detection rate of new and unknown malware that
is currently only being detected between 70 to 80% [7] [8]
[9] and identifying benign code as malicious (false alarm
rate or false positive) is quite high [7]. Signature based
detection suffers from two hindrances, first, high false
positive [7] (identifying benign files as malware) and
second, high false negative (fail to detect malware) [8].
Therefore, in this research we focus on anomaly based
detection using feature extraction such as application
programming interface (API) calls and code obfuscation
features. The obfuscation features include behaviours based
on the content of malware such as source address,
destination address, ASCII, UNICODE, and other contents
that are relevant for the analysis [3] [5].

The Portable Executable (PE) is divided into sections.
Each section provides different information, such as the file
header, the number of DLL and the number of API calls.
However, the information in the PE file header could be
modified easily, and it has some difference from the true
calls of program [34]. The existing techniques and methods
do not perform sufficient statistical analyses to determine if
the anomaly was ‘actually’ malicious. Therefore, in this
research, we have used static anomaly-based detection
analysis which consists of an introspection of the program
codes to determine various dynamic properties of these
codes in an isolated environment. We apply this technique
to extract and identify the API function calls used by
malware for 386 file samples that are uniquely named
according to their MD5 value. We have obtained recent
malware samples that were collected between July 2009 and
November 2009 from honeypots, the Honeynet project and
other sources. Our approach is static analysis of the malware
based on the Windows API calling sequence and how to
extract those windows calls that reflect the behaviour of a
file.

M

2010 Second Cybercrime and Trustworthy Computing Workshop

978-0-7695-4186-0/10 $26.00 © 2010 IEEE

DOI 10.1109/CTC.2010.8

52

The paper is organized as follows: the next section
highlights the main contributions of the study, in section 3
we describe the background of this research, which is based
on a thorough foundation on API calls and PE file formats,
and section 4 provides the methodology adopted and the
system architecture of the fully-automated system
implemented for this research study. We then discuss in
section 5, the experimental results. Finally, we provide the
limitations and future work of this ongoing research in
section 6, and conclusions in section 7.

II. CONTRIBUTIONS OF THE PAPER
Recently, API calls have been explored for modeling
program behaviour. There are studies [10] [11] [12] [35] that
have used analysis of API calls for generation of birthmark
on Portable execution (PE). Use of statistical analysis of file
binary content including statistical N-gram modeling
techniques [13] [14] [36] have been tested in identifying
malcode in document files and does not have sufficient
resolution to represent all class of file types. From our study
on related work [15] [16] [17] [18] [19] [20] [21], we find
that the statistical modeling of hidden malcode that
predominantly use Windows API calling sequence for
evading detection is yet to be explored. This is a motivation
for this research towards a positive contribution in
understanding malware behavior through statistical analyses
of API calls.

In this paper, using the static analysis tool IDAPro
disassembler [29], we disassemble, analyze and extract the
API function calls from the binary content of malware, and
statically identify the behavior from the API calls. We
present a novel approach to automate and extract the API
function calls from the malware binary content. We have
applied a static anomaly based detection technique that
consists of examining the malware programs without it
being executed, so as to determine the behavior of the actual
execution, and have combined it with API call feature
extraction for reflecting the overall behavior of a file.

III. BACKGROUND
Understanding the API call features and the format of

program executables (PE) is of critical importance for
identifying the hidden malcodes. Hence, some background
information pertaining to API calls and PE structure that are
exploited by malwares are presented here.

A. API Call Features
The core of the Windows O/S consists of the application

programming interface (API). Windows API enables the
programs to exploit the power of Windows and hence
malware authors make use of the API calls as a vehicle to
perform malicious actions [9]. The Windows API function
calls comprises of functional levels such as system services,
user interfaces, network resources, windows shell and
libraries, etc. Since the API calls reflect the functional levels

of a program, analysis of the API calls would lead to an
understanding of the behaviour of the file. Malicious code are
able to disguise their behaviour by using API functions
provided under Win32 environment to implement their tasks.
Therefore, in binary static analysis we focus on identifying
all Windows API call features to understand the malware
behaviour.

In the Windows O/S, user applications rely on the
interface provided within a set of libraries, such as
kernel32.dll, ntdll.dll and user32.dll in order to access system
resources including files, processes, network information and
the registry. This interface is known as the Win32 API.
Applications may also call functions in ntdll.dll known as the
Native API. The Native API functions perform system calls
in order to have the kernel provide the requested service. Our
approach extracts and analyses these API call features
including hooking of the system services that are responsible
to manage files. The extracted calls are confined to those that
affect the files. Various features related to the calls that create
or modify files or even get information from the file to
change some value and information about the DLLs loaded
by the malware before the actual execution are considered.
We then perform statistical testing on the extracted features
to determine the malware class based on suspicious
behaviours.

B. Malware Executable File Format
The Win32 Portable Executable (PE) file format

introduced by Microsoft is the standard executable format for
all versions of the operating systems on all supported
processors. Therefore, our approach is tested directly on the

TABLE I
PORTABLE EXECUTION STRUCTURE

Section Table
DOS Header
COFF File Header
Optional Header
Standard fields
NT additional fields
Optional Header Data Directories
 Export Table
 Import Table
 Resource Table
 Exception Table
 Certificate Table
 Base Relocation Table
 Debug
 Architecture
 Global Ptr
 TLS Table
 Load Config Table

 Bound Import
 Import Address Table (IAT)
 Delay Import Descriptor
 COM+ Runtime Header
 Reserved
Section Table
 .text
 .rdata
 .data
 .idata
 .rsrc

53

PE format files. Most programs in windows are constructed
by accessing the Windows API through functions available in
dynamic link library (DLL) on the system. Microsoft
provides a great number of DLLs, and each DLL can be used
by more than one program at the same time.

For the obfuscated malware detection system, this paper
focuses on extraction and analysis of features from API call
sequences and how to automate the entire detection process.
In order automate the inspection of these features in the PE, it
is important to understand the PE structure as the data
structures on secondary memory (Hard Disk) are the same
data structures that are used dynamically in main memory
(RAM). For example, when the function LoadLibrary is
called to load the executable into memory, a data structure
such as the IMAGE_NT_HEADERS is created identical on
disk and in the memory. However, the Windows loader is
responsible for deciding what section the PE need to be
mapped in. Hence, the mapping between the two memory is
consistent, such as the higher offsets in the file in disk is
similar in position to higher memory addresses when mapped
into main memory. Since a PE file have a different sections
and headers, we have used the free PE tools [22] to view and
analyse the PE files. Table 1 provides a good understanding
of the PE structure that includes DOS headers and PE
headers. The PE header start with the signature of the PE, file
properties, such as the number of sections and timestamp, as
shown in Table 1. The section table has code sections (.text),
and data sections (.data). The .text section is the default
section for code and the .data section stores writable global
variables and also contains the file’s Original Entry Point
(OEP) which refers to the execution entry point (where the
file execution begins) of a portable executable file. Finally,
the .rdata section contains read-only data.

 Traditional detection engines search for signatures to
detect and identify known malwares. However, the malware
authors can fool the detection engine by applying obfuscation

technique using packers or polymorphism to safeguard the
malware code and its data structures from being detected.

IV. METHODOLOGY AND IMPLEMENTATION
In this section we describe the methodology adopted for

automating the API extraction, analysis and malicious
behavior identification process. Figure 1 shows the system
architecture of such an automated process. We used Python
programming language to implement the following main
steps of the fully automated system:

Step 1: Unpack the malware.
Step 2: Disassemble the binary executable to retrieve

the assembly program.
Step 3: Extract API calls and important machine-code

features from the disassembly program.
Step 4: Map the API calls with MSDN library and

analyse the malicious behaviour.

Step 1: Unpack the malware
Packers are commonly used today for code obfuscation or

compression. Packers are software programs that are able to
be used to compress and encrypt the PE in secondary
memory and restore the original executable image, when
loaded into main memory (RAM) [9]. Recently, malware
authors have used packers to avoid detection and to run
malware faster. Packing the malware makes the obfuscation
method difficult to understand and the malware authors only
need to change a small number of lines of code in order to
change the malware signature. This is mainly as changing
any byte sequence in the PE results in a new different byte
sequence in the new produced packed PE [28] [37]. Malware
authors are continually developing new techniques for

Figure 1 A fully-automated architecture for API call extraction and analysis of malware behaviour

54

creating malware that cannot be detected by AV engines, and
their level of sophistication is continuing to grow.

Researchers have been trying to build semi-automated
tools for automatically unpacking malware, such as
PolyUnpack [23], Renovo [24], OmniUnpack [25], Ether
[26], and Eureka [9]. PolyUnpack is an automated unpacking
technique for extracting the hidden code through process
execution and uses the Windows debugging API to single-
step. The second tool, Renovo, is implemented using the
QEMU emulator and supports multiple layers of unpacking.
However, OmniUnpack uses a coarse-grained execution
tracking approach at the page-level protection mechanism
available in hardware in order to identify when the code gets
executed from a page that was newly modified. Eureka, is
similar to OmniUnpack except that Eureka tracks execution
at the system call level. Eureka follows statistical bigram
analysis and coarse-grained execution tracing method and
provides several Windows API resolution techniques that
identify API calls based on their functionality in the
unpacked code. Lastly, Ether, is based on an application of
hardware virtualization extension such as Intel VT, and
resides outside the operating system. By studying these semi-
automated tools, we observe that none of them are
completely meeting the purpose of analyzing the behavior of
malware by extracting API call features.

In our experiment conducted on 386 samples of malware,
we used PEiD [27], a detector used for most common
packers, cryptors, compilers and even signature-based packer
detection in PE files. The result is that we found about 77%
of these malware to be packed and 23% to be unpacked, as
shown in Figure 2. From the result in Figure 2, we can
determine that the majority of malware change their byte
sequence or 'Signature' by applying packing techniques so as
to evade detection by virus scanners.

Step 2: Disassemble the binary executable
All data set files collected were preprocessed for anomaly

testing. In order to translate a program into an equivalent
high-level-language program based on the binary content, we
have used the most reliable disassembly tool used for static
analysis, namely, Interactive Disassembler Pro (IDA Pro)
[29] since it can disassemble all types of non executable and
executable files (such as ELF, EXE, PE, etc.). Also, we have
selected the IDA Pro as a component of the automation
process of this research work because it automatically
recognizes API calls for various compilers and can be further
extended with our Python programs and compiled plugins,
resulting in incredibly powerful implementation with flexible
levels of analysis and control. IDA Pro loads the selected file
into memory to analyse the relevant program portion to
create an IDA database whose components are stored in four
files: .id0 that contains the content of a B-tree-style database,
.id1 that contains flags describing each program byte, .nam
that contains index information related to program locations,
and .til that is used to store information concerning local type
definitions to a given database. IDA Pro generates the IDA
database files into a single IDB file (.idb) by disassembling
and analysing the binary of the file. Our fully-automated
system using Python programming language generates .idb
automatically from the set of malware samples (Figure 1).

 Step 3: Extract API calls
IDA Pro provides access to its internal resources via an

API that allows users to create plug-ins to be executed by
IDAPro We have made use of SQLite [30], a software library
that implements a self-contained transactional SQL database
engine. Our Python program automatically runs and creates
the plugin to use SQLite with IDA Pro for generating the

Nothing found 23%

Upack 6%

Petite 4%

PELock 8%

PECompact 4%

UPX 10%AsProtecect 3%

Microsoft Visual C++ 2%

Microsoft Visual Basic 2%

MEW 2%

kkrunchy 6%

Borland Delphi 4%

Armadillo 21%

FSG 5%

Figure 2: Distribution of obfuscation packers used in malware

55

database (.db). We have developed an interface for accessing
the database file (.db) so that the results from the assembly
code of the malware stored in the database could be used for
better binary analysis.

#include <idc.idc>
 static main()
 {
 …
 RunPlugin("ida2sqlite3",1);
 Message("Alldone, exiting\n");
 …
 Exit(0);
 }

IDASQLit plugin generates eight tables (Blocks,

Functions, Instructions, Names, Maps, Stacks, Segments,
TargetBinaries), each of them contains different information
about the binary content. Function table contains all the
recognizable API system calls and non-recognizable function
names and the length (start and the end location of each
function). Instructions table contains all the operation code
(OP) and their addresses and block addresses. Maps table
contains the function address and source of block address and

the destination of the function address. Names table contains
function addresses, the name of the function and the type of
the function. Stacks table contains function address, the stack
name, and the start and the end address. Segments table
contains information that describes each segment in an
executable file, segment name (Code, Data, BSS, _idata, _tls,
_rdata, _reloc, and _rsrc) and the segment length. Finally,
TargetBinaries contain the file name, path name, MD5, and
start and the end of analyses.

Step 4: API call mapping and feature analysis
As a reference for this step, we downloaded the Windows

application programming interface (API) from The Microsoft
Developer Network (MSDN) [31]. We implemented in
Python the required processes to compare and match the API
from MSDN and the API calls generated in the database (.db
of Step 3) for the malware sample set. In addition, to list all
the API calls that are associated with malcode and to analyse
the features, we have considered the machine opcodes such
as Jump and Call operations as well as the function type
(import or function). Sample code snippets are as shown
below.

TABLE 1
MAIN MALICIOUS BEHAVIOUR GROUPS OF API CALL FEATURES

Behaviour Malware Category API Function Calls

 Behaviour 1 Search Files to Infect

FindClose, FindFirstFile, FindFirstFileEx, FindFirstFileName, TransactedW,
FindFirstFileNameW, FindFirstFileTransacted, FindFirstStream, TransactedW,
FindFirstStreamW, FindNextFile, FindNextFileNameW, FindNextStreamW, SearchPath.

Behaviour 2 Copy/Delete Files

CloseHandle, CopyFile, CopyFileEx, CopyFileTransacted, CreateFile,
CreateFileTransacted, CreateHardLink, CreateHardLink, Transacted,
CreateSymbolicLink, CreateSymbolic, LinkTransacted, DeleteFile,
DeleteFileTransacted.

Behaviour 3 Get File Information

GetBinaryType, GetCompressed, FileSize, GetCompressedFile, SizeTransacted,
GetFileAttributes, GetFileAttributesEx, GetFileAttributes, Transacted,
GetFileBandwidth, Reservation, GetFileInformation, ByHandle, GetFileInformation,
ByHandleEx, GetFileSize, GetFileSizeEx, GetFileType, GetFinalPathName, ByHandle,
GetFullPathName, GetFullPathName, Transacted, GetLongPathName,
GetLongPathName, Transacted, GetShortPathName, GetTempFileName, GetTempPath.

Behaviour 4 Move Files

MoveFile, MoveFileEx, MoveFileTransacted, MoveFileWithProgress.

Behaviour 5 Read/Write Files

OpenFile, OpenFileById, ReOpenFile, ReplaceFile, WriteFile, CreateFile, CloseHandle.

Behaviour 6 Change File Attributes

SetFileApisToANSI, SetFileApisToOEM, SetFileAttributes,
SetFileAttributesTransacted, SetFileBandwidthReservation,
SetFileInformationByHandle, SetFileShortName, SetFileValidData

56

SELECT function_address,src_block_address,name
from Maps, Names"
Where (op='call' or op='jmp') and (type='import'
or type='function')

 For the analysis of malware behaviour, we have
considered features such as frequency of call, call sequence
pattern and actions immediately preceding or after call.
Some actions that lead to invalid memory reference or
undefined register or invalid jump target help in refining the
extracted features for analysis.

We have developed a fully-automated system that
integrates well with IDA Pro and SQlite using Python
programming to perform all the four steps described above
and have performed experimental testing for all the 386
malware samples.

V. EXPERIMENTAL RESULTS
All executable programs, malicious or not, have the goal

to perform an action using API calls. Disguised malicious
code uses a different, relatively peculiar action which is
called suspicious behavior. Behavior identification is
becoming a rich area to study and as explained earlier, the
malware authors target their malware on the commonly used
NTFS by using API functions provided under Win32
environment to implement their functions. A statistical
analysis of the Windows API calling sequence reflects the
behavior of a particular piece of code. In this research work,
the API call features from the binary of a program were
extracted and analysed to understand their malicious behavior
and finally to classify the program as malicious or benign.
The extracted features were subjected to a statistical test to
determine the malware class based on suspicious behaviours.
As a result of our experimental analysis on the 386 malware
samples, we have identified six main groups of commonly
used API function call features that are based on the

malicious behavior patterns (Table 1) and these are listed
below:

1) Search files to infect.
2) Copy/Delete files.
3) Get file information.
4) Move Files.
5) Read /Write files.
6) Change file attributes.

Figure 3 shows the frequency distribution of these six

main groups of API calls invoked within the experimental
dataset for malicious purposes. From Figure 3, it is clear that
the most prominent behavior commonly exhibited by
malwares is to infect file through API calls that perform
read/write files.

VI. LIMITATIONS AND FUTURE WORK
The system call interface is the facility that the OS offers

to user-mode applications. UNIX operating system had a well
document clearly defined set of system calls. The MINIX
operating system has a system call interface consisting of
only 53 routines. Everything that the MINIX operating
system is capable of doing ultimately can be resolved into
one or more of these system calls. The Window operating
system, which refers to its system call interface as the native
API of Windows, has not provided an official document for
its native API. However, today Windows is the basis of
predominant operating systems in use, such as Windows
2000, Windows XP, Windows Server 2003, Windows Server
2008, Windows Vista, Windows 7 [32] [33]. Therefore, this
research is a step towards addressing malware that try to
target on windows operating system with the view of
affecting more computer users. Hence, this research work
has limitations in its application exclusively to malware that
make use of Windows API calls.

48737

19815 26453

26

50129

61

1

10

100

1000

10000

100000

Search files to
infect

 Copy/Delete
files

Files Information Move Files Read/Write Files Set File

Figure 3: API call distribution of malware samples

57

Future work entails extracting binary N-gram features
complement the API cal features and to train the classifier
resulting in building a model using support vector machine
(SVM). We would also test the model against large sets of
malware samples for verifying the accuracy of the modelled
system.

VII. CONCLUSION
A statistical analysis of the Windows API calling

sequence reflects the behavior of a particular piece of code.
In this research project, the API calls from the binary of a
program were extracted to analyse the most common
malware behavior patterns and to classify program
executables as malicious or benign. The extracted calls were
subjected to a statistical test to determine the malware class
based on suspicious behavior. The entire static detection
process was a fully-automated system and a four-step
methodology was adopted for developing the system.
Experimental tests were conducted using 386 samples of
malware and we have arrived at six main categories of
suspicious behavior of API call features. These being i)
Search files to infect, ii) Copy/Delete files,.iii) Get file
information, iv) Move Files, v) Read /Write files and vi)
Change file attributes. Among these, API calls for Read
/Write files were predominantly used by malware as a vehicle
to infect the program.

ACKNOWLEDGEMENTS
This research was conducted at the Internet Commerce

Security Laboratory and was funded by the State Government
of Victoria, IBM, Westpac, the Australian Federal Police and
the University of Ballarat. We wish to thank Seokwoo Choi
and Robert Layton for their technical help and invaluable
comments.

REFERENCES
[1] G. McGraw and G. Morrisett, “Attacking malicious code: A report to

the infosec research council”, IEEE Software, 2000, 17(5), 33–44.
[2] Bergeron, J.; Debbabi, M.; Desharnais, J.; Erhioui, M.; Lavoie, Y. &

Tawbi, N., "Static detection of malicious code in executable
programs", In Symposium on Requirements Engineering for
Information Security, Citeseer, 2001, 184-189.

[3] Vinod, P.; Jaipur, R.; Laxmi, V. & Gaur, M., “Survey on Malware
Detection Methods”, Hack. 2009, 74.

[4] M. Christodorescu and S. Jha, “Testing malware detectors”, In
Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2004), Boston, MA, USA,
ACM Press, 2004, 34–44.

[5] Christodorescu, M. & Jha, S., “Static analysis of executables to detect
malicious patterns”, Proceedings of the 12th conference on USENIX
Security Symposium, 2003, 12, 169-186.

[6] Alazab, M.; Venkatraman, S. & Watters, P., “Effective digital forensic
analysis of the NTFS disk image”, Ubiquitous Computing and
Communication Journal, 2009, 4, 1.

[7] Keizer, G., “Symantec false positive cripples thousands of Chinese
PCs”
http://www.computerworld.com/s/article/9019958/Symantec_false_po
sitive_cripples_thousands_of_Chinese_PCs?intsrc=hm_list, August
2009.

[8] Alazab, M., Venkatraman, S. and Watters, P., ‘Digital Forensic
Techniques for Static Analysis of NTFS Images, Proceedings of
International Conference on Information Technology (ICIT2009).
IEEE Computer Society, ISBN 9957-8583-0-0. 2009.

[9] Sharif, M.; Yegneswaran, V.; Saidi, H.; Porras, P. & Lee, W.,
"Eureka: A framework for enabling static malware analysis",
Computer Security - ESORICS, Lecture Notes in Computer Science
LNCS, Springer, 2008, 5283/2008, 481-500.

[10] Tamada, H.; Okamoto, K.; Nakamura, M.; Monden, A. & Matsumoto,
K.,M, "Dynamic software birthmarks to detect the theft of windows
applications", International Symposium on Future Software
Technology, 2004.

[11] Okamoto, K.; Tamada, H.; Nakamura, M.; Monden, A. & Matsumoto,
K., "Dynamic Software Birthmarks Based on API Calls", IEICE
Transactions on Information and Systems, 2006, J89-D, 1751-1763.

[12] Choi, S.; Park, H.; Lim, H. & Han, T., "A static birthmark of binary
executables based on API call structure", Advances in Computer
Science--ASIAN 2007. Computer and Network Security, Lecture
Notes in Computer Science LNCS, Springer, 2008, 4846/2008, 2-16.

[13] Wang, C.; Pang, J.; Zhao, R.; Fu, W. & Liu, X., “Malware Detection
Based on Suspicious Behavior Identification”, Education Technology
and Computer Science, International Workshop on, IEEE Computer
Society, 2009, 2, 198-202.

[14] Li, W.; Wang, K.; Stolfo, S. & Herzog, B., “Fileprints: Identifying file
types by n-gram analysis”, the Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security, 2005.

[15] Venkatraman, S., "Autonomic Context-Dependent Architecture for
Malware Detection", Proceedings of International Conference on e-
Technology (e-Tech2009), International Business Academics
Consortium, ISBN 978-986-83038-3-6, 8-10 January, Singapore,
2009, 2927-2947.

[16] Microsoft, 2007, “Understanding Anti-Malware Technologies”,
http://download.microsoft.com/download/0/c/0/0c040c8f-2109-4760-
a750-96443fd14ef2/Understanding Malware Research and Response
at Microsoft.pdf, August 2009 .

[17] Bruschi, D.; Martignoni, L. & Monga, M., “Detecting self-mutating
malware using control-flow graph matching”, Lecture Notes in
Computer Science, Springer, 2006, 4064, 129.

[18] MetaPHOR,
http://securityresponse.symantec.com/avcenter/venc/data/w32.sim-
ile.html, August 2009.

[19] P. Ferrie and P. Sz¨or. Zmist opportunities. Virus Bullettin, 2001.
[20] Perriot, F. & Ferrie, P., “Principles and practise of x-raying”, Virus

Bulletin Conference, 2004, 51-56.
[21] Turner, D. Semantic internet security threat report: Trends for january

06 - june 06. X .
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-
whitepaper_symantec_internet_security_threat_report_x_09_2006.en-
us.pdf. 2006.

[22] NEOx, PE Tools, http://www.uinc.ru, March 2010.
[23] Royal, P.; Halpin, M.; Dagon, D.; Edmonds, R. & Lee, W.,

"PolyUnpack: Automating the Hidden-Code Extraction of Unpack-
Executing Malware", IEEE Computer Society, the 22nd Annual
Computer Security Applications Conference (ACSAC'06), 2006, 289-
300.

[24] Kang, M.; Poosankam, P. & Yin, H. " Renovo: A hidden code
extractor for packed executables", Workshop On Rapid Malcode
WORM'07 Proceedings of the 2007 ACM workshop on Recurring
malcode, 2007, 46 – 53.

[25] Martignoni, L.; Christodorescu, M. & Jha, S., "OmniUnpack: Fast,
Generic, and Safe Unpacking of Malware", Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2007.

[26] Dinaburg, A.; Royal, P.; Sharif, M. & Lee, W., "Ether: Malware
analysis via hardware virtualization extensions", Proceedings of the
15th ACM conference on Computer and communications security,
2008, 51-62.

[27] Snaker, Qwerton, Jibz & xineohP, PEiD, http://www.peid.info/, 2008.
[28] Yan, W.; Zhang, Z.; Ansari, N. & Micro, T., "Revealing packed

malware", IEEE Security & Privacy, 2008, 6, 65-69.

58

[29] IDA Pro Dissasember, DataRescue, An Advanced Interactive Multi-
processor Disassembler, http://www.datarescue.com, October, 2009.

[30] SQLite, www.sqlite.org/, February 2010.
[31] Windows API Functions, MSDN, http://msdn.microsoft.com/en-

us/library/aa383749%28VS.85%29.aspx. January 2010.
[32] Alazab, M., “Investigation techniques for static analysis of NTFS file

system images”, 2009 Annual Research Conference, Internet Security,
University of Ballarat.

[33] Purcell, D. & Lang, S., “Forensic Artifacts of Microsoft Windows
Vista System”, Lecture Notes in Computer Science, Springer, 2008,
5075, 304-319.

[34] Wang, C.; Pang, J.; Zhao, R. & Liu, X.
"Using API Sequence and Bayes Algorithm to Detect Suspicious
Behavior", 2009 International Conference on Communication
Software and Networks, 2009, 544-548.

[35] Choi, S.; Park, H.; Lim, H. & Han, T., "A static API birthmark for
Windows binary executables", Journal of Systems and Software,
Elsevier, 2009, 82, 862-873.

[36] Stolfo, S.; Wang, K. & Li, W., "Towards Stealthy Malware
Detection", Malware Detection, Springer, 2007, 27, 231-249.

[37] Sun, L.; Ebringer, T. & Boztas, S., "An automatic anti-anti-VMware
technique applicable for multi-stage packed malware", Malicious and
Unwanted Software, 2008. MALWARE 2008. 3rd International
Conference on, 2008, 17-23.

59

