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Abstract. This paper presents a canonical dual approach for solving
a general nonconvex problem in network optimization. Three challeng-
ing problems, sensor network location, traveling salesman problem, and
scheduling problem are listed to illustrate the applications of the pro-
posed method. It is shown that by the canonical duality, these nonconvex
and integer optimization problems are equivalent to unified concave max-
imization problem over a convex set and hence can be solved efficiently
by existing optimization techniques.
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1 Introduction

Let us consider the following nonconvex (primal) optimization problem that
arises in a wide range of applications:

(P) : min

{
P (x) =

1

2
xTQx− fTx+W (x) : x ∈ Xa

}
, (1)

where Q = {qij} ∈ Rn×n is a given symmetric matrix, f ∈ Rn is a given vector,
Xa ⊂ Rn is a convex open set, and W (x) is a nonconvex function. Note that in
the context of constrained optimization problems, the function W (x) could be
simply defined as a (nonsmooth) indicator function of a feasible space Xc:

W (x) =

{
0 if x ∈ Xc

+∞ otherwise.
(2)

If Xa = Rn and Xc = {x ∈ Rn| Ax ≤ b, l ≤ x ≤ u}, where A ∈ Rm×n is a
matrix, b ∈ Rm, and l,u ∈ Rn are given vectors, then Problem (P) reduces to
a linearly constrained quadratic program:

(Pq) : min

{
P (x) =

1

2
xTQx− fTx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn

}
. (3)
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It is well-known that even this most simple problem is NP-hard if Q is indefinite
and considerable efforts have been devoted to solve this type of problems.

The key idea of the canonical dual transformation is to choose a certain geo-
metrically reasonable measure (operator) ε = Λ(x) : Xa ⊂ Rn → Ea ⊂ Rm such
that the nonconvex functional W (x) can be recast by adopting the canonical
form W (x) = V (Λ(x)). Thus, the primal problem (P) can be written in the
following canonical form:

min {P (x) = V (Λ(x)) − U(x) : x ∈ Xa} , (4)

where U(x) = − 1
2x

TQx+ fTx. For the given canonical function V (ε), its Leg-
endre conjugate V ∗(ς) can be defined uniquely by the Legendre transformation,
and the following canonical duality relations hold:

ς = ∇V (ε) ⇔ ε = ∇V ∗(ς) ⇔ V (ε) + V ∗(ς) = εT ς. (5)

In finite deformation mechanics, the one-to-one canonical duality relation ς =
∇V (ε) is called the canonical constitutive law [1]. By this canonical duality,
the nonconvex term W (x) = V (Λ(x)) in the problem (P) can be replaced by
Λ(x)T ς − V ∗(ς) such that the nonconvex function P (x) is reformulated as

Ξ(x, ς) = Λ(x)T ς − V ∗(ς)− U(x), (6)

which is the so-called total complementary function introduced by Gao and
Strang in nonconvex mechanics [1]. By using this total complementary function,
the canonical dual function can be formulated as

P d(ς) = sta{Ξ(x, ς) : x ∈ Xa } = UΛ(ς)− V ∗(ς), (7)

where UΛ(ς) = sta{Λ(x)T ς − U(x) : x ∈ Xa} is the so-called Λ-conjugate of
U , which is defined on the dual feasible space Sa.

2 Challenging Problems and Applications

2.1 Wireless Network Localization

Consider the following general nonlinear programming problem arising from Eu-
clidean distance geometry (see [3]):

(P) min

⎧⎨⎩P (X) =
∑

(i,j)∈S

1

2
wij

(
1

2
‖xi − xj‖2 − μij

)2

+
1

2
〈X,AX〉 − 〈X,T〉 |X ∈ Xa

}
,

where the decision variable X = [x1,x2, · · · ,xn] = {xαi }i,α ∈ Rr×n is a matrix
(two-point tensor) with each column xi ∈ Rr as a position of each sensor such
that

‖xi − xj‖ =
(

r∑
α=1

(xαi − xαj )
2

) 1
2
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denotes the Euclidian distance between xi and xj , (i, j) ∈ S = {1, 2, · · · , n};
Xa ⊂ Rd×n is a feasible set; T = {T i

α} ∈ X ∗ = Rn×d is a given matrix; wij ≥
0 and μij ≥ 0 (∀i, j ∈ S) are given weights and parameters for each pair

(xi,xj), respectively; A = {Ai,β
α,j} is a fourth-order symmetric tensor, and AX =

{
∑n

j=1

∑r
β=1A

i,β
α,jx

β
j }i,α, the bilinear form 〈X,T〉 : Xa ×X ∗ → R is defined as

〈X,T〉 = tr(XT) =

n∑
i=1

d∑
α=1

Xα
i T

i
α.

Canonical Geometric Measure and Dual Problem Since

X = (x1,x2, · · · ,xn) ∈ Rr×n,

we have the identity

‖xi − xj‖2 = (xi − xj)
T (xi − xj) = (ei − ej)

TXTX(ei − ej),

where ei is the i-th standard unit vector in Rn. Introducing a linear (difference)
operator D : Xa → Rr×n×n such that

DX = {X(ei − ej)} = {xi − xj},

the canonical strain measure ξ can be defined as

ξ = {ξij} = Λ(X) =
1

2
(DX)T (DX) =

1

2

{
(ei − ej)

TXTX(ei − ej)
}
,

where Λ is the so-called geometrical nonlinear operator from Xa ⊂ Rr×n into

Va = {ε ∈ Rn×n| ξ = ξT , ξ + 0, ξii = 0, i = 1, · · · , n}.

Clearly, ξij =
1
2‖xi−xj‖2, which is corresponding to the Cauchy-Riemann strain

tensor in finite deformation theory. By introducing a quadratic function V : Va →
R,

V (ξ) =
1

2

∑
i,j

wij(ξij − μij)
2 =

1

2
〈(ξ − μ);W ◦ (ξ − μ)〉,

where W = {wij}, μ = {μij}, W ◦ μ = {wijμij} represents the Hadamard
product of two matrices, and 〈∗; ∗〉 denotes the bilinear operator of two matrices.
The primal problem (P) can now be reformulated in the canonical form:

(P) : min

{
Π(X) = V (Λ(X)) +

1

2
〈X,AX〉 − 〈X,T〉 : X ∈ Xa

}
.

By the canonical dual transformation, the canonical dual problem can be pro-
posed as follows:

(Pd) : sta

{
P d(ς) = −1

2
〈G+(ς)T,T〉 − 1

2
〈ς;W−1 ◦ ς〉 − 〈μ; ς〉 | ς ∈ Sa

}
,
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where,G(ς) = A+DT ςD withDT ς = (eTi −eTj )ς,G
+ represents the generalized

inverse of G, the dual feasible space Sa is a subset of Rn×n such that for a given
T, the matrix equation G(ς) X = T is solvable on Sa.

Theorem 1 (Complementary-Dual Principle). The problem (Pd) is a
canonical dual of the primal problem (P) in the sense that if ς̄ is a critical
point of (Pd), then

X̄ = G+(ς̄)T (8)

is a critical point of (P) and

P (X̄) = P d(ς̄).

In order to identify extremality of the analytical solution (8), we need to intro-
duce a useful feasible space

S+
a = {ς ∈ Sa | G(ς) ' 0}.

Theorem 2. Suppose that ς̄ ∈ S+
a is a critical point of the canonical dual func-

tion P d(ς̄) and X̄ = G+(ς̄)T. Then, X̄ is a global minimizer of P (X) on Rr×n

if and only if ς̄ is a global maximizer of P d(ς) on S+
a , i.e.,

P (X̄) = min
X∈Rr×n

P (X)⇔ max
ς∈S+

a

P d(ς) = P d(ς̄). (9)

This theory shows that if the canonical dual function P d(ς) has a critical point
in S+

a , then the nonconvex primal problem (P) is equivalent to a concave max-
imization problem (Pd) over a convex space S+

a , which can be solved easily by
well-developed optimization methods.

2.2 Traveling Salesman Problem

Consider the well-known Traveling salesman problem (TSP), which we need to
determine the shortest closed path passing through a set of n cities, with each
city visited exactly once. Suppose N = {1, 2, · · · , n} is the set of TSP cities, and
the distance between city i and city j is given by dij . Assume

dii = 0, dij = dji, ∀i, j ∈ N .

Define a Boolean decision variable xij according to

xij =

{
1 if city i is in the jth position,
0 otherwise.

(10)

To make sure the round trip, we assume

xi0 = xin, xi1 = xi(n+1), ∀i, j ∈ N .
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Let X = {xij} ∈ Rn×n, the Traveling salesman problem can be represented by
following quadratic programming problem [8]:

(P) Minimize P (X) =

n∑
i=1

n∑
k=1

n∑
j=1

xijdik · (xk(j+1) + xk(j−1))

subject to

n∑
j=1

xij = 1, ∀i ∈ N ,

n∑
i=1

xij = 1, ∀j ∈ N ,

xij ∈ {0, 1}, ∀i, j ∈ N .

Canonical Dual Problem. Let

G(μ) = A+ 2Diag (μ),

F (σ, τ ,μ) = μ−CTσ −DT τ .

By the canonical dual transformation [1], the canonical dual problem can be
stated as follows:

(Pd) Maximize P d(σ, τ ,μ) = −1

2
F (σ, τ ,μ)TG†(μ)F (σ, τ ,μ)− σT e− τT e

subject to σ �= 0, τ �= 0,μ �= 0,

σ ∈ Rn, τ ∈ Rn,μ ∈ Rnn,

where, A = {ast} ∈ Rnn×nn is a block matrix, which satisfies

ast =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dik, if s = (i− 1)N + j and t = (k − 1)N + (j − 1), ∀i, k, j ∈ N ,
dik, if s = (i− 1)N + j and t = (k − 1)N + (j + 1), ∀i, k, j ∈ N ,
dki, if s = (k − 1)N + (j − 1) and t = (i − 1)N + j, ∀i, k, j ∈ N ,
dki, if s = (k − 1)N + (j + 1) and t = (i − 1)N + j, ∀i, k, j ∈ N ,
0, otherwise,

C =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...
. . .

...
...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤⎥⎥⎥⎦ ∈ Rn×nn,

D =

⎡⎢⎢⎢⎣
1 0 · · · 0 · · · · · · 1 0 · · · 0
0 1 · · · 0 · · · · · · 0 1 · · · 0
...
...
. . .

...
...

...
...
...
. . .

...
0 0 · · · 1 · · · · · · 0 0 · · · 1

⎤⎥⎥⎥⎦ ∈ Rn×nn,

e = [1, · · · , 1, · · · , 1, · · · , 1]T ∈ Rn.
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Theorem 3 (Complementary-Dual Principle). Problem (Pd) is a canon-
ical dual of Problem (P) in the sense that if (σ̄, τ̄ , μ̄) is a KKT solution of
Problem (Pd), then the vector X̄ = {xij} ∈ Rn×n defined by

xij = y(i−1)n+j , ∀i, j ∈ N , and ȳ = G†(μ̄)F (σ̄, τ̄ , μ̄) ∈ Rnn (11)

is a KKT solution of Problem (P) and P (X̄) = P d(σ̄, τ̄ , μ̄).

To continue, let the feasible space X of problem (P) and the dual feasible space
Z be defined by

X =

⎧⎨⎩X ∈ Rn×n :

n∑
j=1

xij = 1,

n∑
i=1

xij = 1, xij ∈ {0, 1}, ∀i, j ∈ N

⎫⎬⎭
Z = {(σ, τ ,μ) ∈ Rn × Rn × Rnn : σ �= 0, τ �= 0,μ �= 0},
Z+

a = {(σ, τ ,μ) ∈ Z : G(μ) ' 0}.

We have the following theorem.

Theorem 4. Assume that (σ̄, τ̄ , μ̄) is a KKT point of P d(σ, τ ,μ) and X̄ de-
fined by (11). If (σ̄, τ̄ , μ̄) ∈ Z+

a , then X̄ is a global minimizer of P (X) and
(σ̄, τ̄ , μ̄) is a global maximizer of P d(σ, τ ,μ) with

P (X̄) = min
X∈X

P (X) = max
(σ,τ ,μ)∈Za

+
P d(σ, τ ,μ) = P d(σ̄, τ̄ , μ̄) (12)

2.3 Scheduling Problem in Supply Chain

In project scheduling, a set of resource-constrained jobs has to be scheduled so as
to minimize a given objective resources. The scheduling problem has a variety of
applications in manufacturing, production planning, project management, and
elsewhere.

We consider the problem to minimize the total cost of a schedule when the jobs
are subject to temporal constraints only (i.e., there are no resource constraints).
A common way to model scheduling problems as integer linear programs is to
use time indexed variables. Let

xjt =

{
1 if job j starts at time t,
0 otherwise,

where, j ∈ J = 0, · · · , n. Jobs 0 and n are assumed to be artificial jobs indicating
the project start and the project completion, respectively, dij be the integral
length of a time lag (i, j) between two jobs i, j ∈ J , and let L ⊆ J ×J be the set
of all given time lags, T be the deadline of the project, and t = 0, · · · , T , pi be
the processing time of activity i, the precedence relation (i, j) ∈ L if activity j
cannot start before activity i completes. Finally, let wjt be the net present value
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of activity j when starting at time t. This leads to the following integer linear
program:

(P) Minimize P (x) =

n∑
j=0

T∑
t=0

wjtxjt (13)

subject to

T∑
t=0

xjt = 1, j ∈ J,

T∑
t=0

t(xjt − xit) ≥ dij , (i, j) ∈ L, (14)

xjt ∈ {0, 1}, j ∈ J, t = 0, · · · , T. (15)

Canonical Dual Problem. Let

X = [x00, · · · , x0T , · · · , xn0, · · · , xnT ]T ,
W = [w00, · · · , w0T , · · · , wn0, · · · , wnT ]

T ,

D = [d00, · · · , d0n, · · · , dn0, · · · , dnn]T , dij = 0 if i ≥ j

and

B =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...
. . .

...
...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤⎥⎥⎥⎦ ∈ R(n+1)×[(T+1)×(n+1)],

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · T 0 · · · −T · · · · · · 0 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
. . .

. . .
...
. . .

...
...
. . .

...
0 · · · T 0 · · · 0 · · · · · · 0 · · · 0 0 · · · −T
...
. . .

...
...
. . .

...
. . .

. . .
...
. . .

...
...
. . .

...
0 · · · 0 0 · · · 0 · · · · · · 0 · · · T 0 · · · −T

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R[(n+1)×(n+1)]×[(T+1)×(n+1)],

By the canonical dual theory [1], the canonical dual problem can be stated as
follows:

(Pd) Maximize P d(σ, τ ,μ) = −1

2
F (σ, τ ,μ)TG+(μ)F (σ, τ ,μ)− σT e+ τT e

subject to σ > 0, τ ≥ 0,μ > 0,

σ ∈ Rn+1, τ ∈ R(n+1)×(n+1),μ ∈ R(T+1)×(n+1),

where,

G(μ) = 2Diag (μ), F (σ, τ ,μ) = μ−W −BTσ −AT τ .

And we have complementary-dual principle and optimization criterion similar
to Theorem 3 and Theorem 4.
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3 Conclusions

We have presented simple applications of the canonical duality theory for
three challenging problems. A general analytical solution is obtained by the
complementary-dual principle. Results show that by using the canonical dual
transformation, the nonconvex primal problem and integer programming prob-
lem can be converted to a unified concave maximization dual problem, which
can be solved by well-developed convex minimization techniques. The idea and
the method presented in this article can be used and generalized to solve much
more difficult problems in global optimization, network communication, and sci-
entific computations (see [2, 4–7]). The development of techniques is essential to
extrapolate the complexities of the real world.
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