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  Abstract— In image retrieval, an effective dissimilarity measure 
is required to retrieve the perceptually similar images. 
Minkowski-type (𝒍𝒑 ) distance is widely used for image retrieval, 
however it has its limitations. It focuses on distance between 
image features and ignores the data distribution of the image 
features, which can play an important role in measuring 
perceptual similarity of images. 𝒍𝒑  also favours the most 
dominant components in calculating the total dissimilarity.  
  A data dependent measure, named 𝒎𝒑 -dissimilarity, which 
estimates the dissimilarity using the data distribution, has been 
proposed recently. Rather than relying on geometric distance, it 
measures the dissimilarity between two instances in each 
dimension as a probability mass in a region that encloses the two 
instances. It considers two instances in a sparse region to be more 
similar than in a dense region. Using the probability of data mass 
enables all the dimensions of feature vectors to contribute in the 
final estimate of dissimilarity, so it does not just heavily bias 
towards the most dominant components. However, relying only 
on data distribution and completely ignoring the geometric 
distance raise another limitation. This can result in finding two 
instances similar only due to being in a sparse region, however if 
the geometric distance between them is large then they are not 
perceptually similar. To address this limitation we proposed a 
new hybrid data dependent dissimilarity (HDDD) measure that 
considers both data distribution as well as geometric distance. 
Our experimental results using Corel database and Caltech 101 
show that (HDDD) leads to higher image retrieval performance 
than 𝒍𝒑 distance (𝒍𝒑𝑫) and 𝒎𝒑. 

Keywords—Image retrieval;  Dissimilarity measure; Data 
dependent dissimilarity measure 

I. INTRODUCTION 
    With development of the Internet and the advancement of 
image capturing devices along with the cheaper memory 
devices, the size of digital image collection is increasing 
rapidly. So, efficient and robust image retrieval system is 
increasingly in demand by different domains, e.g. fashion, 
crime prevention, publishing, medicine, and architecture, in 
order to make use of the images in a large database effectively. 
  In image retrieval, an image is presented to a database as a 
query and a set of perceptually similar images are retrieved. 
An effective image retrieval system requires images to be 
represented by a robust and discriminative feature 
vector/descriptor. Images can be described using different 
low-level features such as colour, shape and texture [1, 2]. In 

addition, an effective dissimilarity measure plays an important 
role in comparison of the query image feature vector and those 
of the stored images. Most researchers employ the 
Minkowski-type (𝑙!-norm) metric, particularly the (𝑙!-norm): 
well known as Euclidean Distance (ED), as the dissimilarity 
measure [3].  
  One of the challenging problems in image retrieval is the 
selection of an effective dissimilarity measure to compare the 
images. 𝑙!𝐷 is the main dissimilarity measure in many 
applications, such as data mining, clustering, and image 
retrieval [4]. As we will explain in greater detail in Section III, 
𝑙!𝐷 . has two main limitations: (1) it focuses on distance 
between features of images and ignores the data distribution of 
image features, which can play an important role in measuring 
perceptual similarity of images; and (2) 𝑙!𝐷   favours the most 
dominant components in calculating the total distance.  
  Psychologists have highlighted the important role of data 
distribution in humans perceiving similarity between instances 
in a dataset. They argued that the dissimilarity between two 
instances is influenced by other instances in the dataset. Two 
instances in a relatively dense area are perceptually less 
similar than two instances of the equal distance in less dense 
area [5]. For example two red apples among green apples 
perceptually look more similar than the same two red apples 
among other red apples. Based on this idea, a data dependent 
dissimilarity measure called “𝑚! −dissimilarity” has been 
proposed to address the problems with 𝑙!𝐷 [3]. 
  This data dependent dissimilarity measure [3] calculates the 
dissimilarity between two instances using data distribution in 
the dataset instead of geometric distance as used in 𝑙!𝐷 . 
Basically in this method, the value calculated to indicate the 
dissimilarity between two instances will also take into account 
their dissimilarity to the other instances in the dataset.  A 
region is defined between two instances. Two instances are 
less dissimilar if there are not many other similar instances 
falling in this region and they are more dissimilar if the 
number of similar instances is large. 
  The data dependent dissimilarity measure has shown 
promising results in classification of data such as music, text 
and digits. In this work we will investigate the performance of 
𝑚!-dissimilarity in image retrieval. To evaluate this method, 
we use two datasets, which are represented with two different 



sets of features, colour histograms and local binary patterns 
(LBP).  We use colour histograms as they are more intuitive to 
explain 𝑙!𝐷 limitations and 𝑚! strengths on Corel dataset as is 
discussed in following sections. Also, we used Caltech 101, 
represented by LBP features as a real world dataset to evaluate 
𝑚! performance.  
  The rest of the paper is organised as follows, two 
dissimilarity measures: 𝑙!𝐷  and 𝑚! -dissimilarity, are 
discussed in Section II. The experimental study results are 
provided in Section III, followed by conclusions in the last 
section. 

II.  DISSIMILARITY MEASURE BASED ON GEOMETRIC 
MODELS 

  In image retrieval, images are represented using feature 
vectors. To retrieve a similar set of images, an effective 
dissimilarity measure must be used to compare the feature 
vectors. In the following, we will review an existing 
dissimilarity measure commonly used in image retrieval and a 
new dissimilarity measure. 
A wide range of geometric dissimilarity measures are 
discussed in [4]. [6, 7] have each provided a comprehensive 
analysis and comparison of the dissimilarity metrics in image 
retrieval. The study in [6] has compared the  performance of 
Histogram Intersection, Minkowski-form, Quadratic  and 
Mahalanobis Distance. Its results have shown that ED has 
achieved the best retrieval results. [7] has compared the 
performance of sum of squared of absolute differences 
(SSAD), sum of absolute difference, maximum value, 
Canberra, city block, Minkowski (p=3) and ED on the same 
version of Corel database [8] which has been used in this 
work. Its results have also shown that the ED is the most 
suitable dissimilarity metric for image retrieval.  

Generally, the distance between two d -dimensional vectors 
x and y based on 𝑙!𝐷 is defined as follows [1]: 

 𝑙! 𝑥, 𝑦 = 𝑥 − 𝑦 ! = 𝑎𝑏𝑠 𝑥! − 𝑦! !
!

!!!

! !

 (1) 

where 𝑝 > 0, . ! is the 𝑝 order norm of a vector, 𝑥!  and 𝑦! 
are the 𝑖!! component of a vector and 𝑎𝑏𝑠(. ) is the absolute 
value. The limit condition is defined as: 

 𝑙! 𝑥, 𝑦 = 𝑥 − 𝑦 ! = 𝑚𝑎𝑥!  𝑎𝑏𝑠(𝑥! − 𝑦!) 
(2) 

 
𝑙!𝐷 is a popular choice of distance function as it intuitively 
corresponds to the distance defined in the real three-
dimensional world. It has been widely used in many image 
retrieval systems as the dissimilarity measure to compare the 
feature vectors derived from images  [9-13].  
  However, 𝑙!𝐷 has its limitations, it measures the distance 
between image features of two images and completely ignores 
the distribution of other image features in the dataset. 
However, the distribution of image features considerably 
impacts the perceptual similarity between images as it is 
shown in the following example. Consider two red apples 
among the many green apples; the red apples perceptually are 
more similar to each other than green apples. However, 

considering another data distribution where the two red apples 
are among other red apples. In this distribution, all the red 
apples perceptually are similar to each other and the similarity 
of that two red apples is perceptually more difficult to be 
spotted. So the data distribution impacts the perpetual 
similarity of images. 
  The other limitation of 𝑙!𝐷  is that it favours the most 
dominant components in calculating the total dissimilarity. 
This characteristic of 𝑙!𝐷 results in negligible contribution of 
feature dimensions that have small values compared with 
dimensions that have dominant values [14]. This has negative 
impact when we are looking for the similar objects, e.g. 
objects in different backgrounds. Using the colour histograms 
in this work, the image retrieval results based on 𝑙!𝐷 will be 
heavily bias the towards the dominant colours (e.g. ones of the 
background), so the detailed colours within the objects in the 
images might not have the satisfactory level of influence in 
retrieving the closest match. Following the previous example, 
consider the two red apples among green apples, however this 
time one of red apples is located on a black background and 
rest of apples on white background. Although, the red apples 
are perceptually more similar, 𝑙!𝐷 finds the greatest distance 
between red apples in white (query) and black backgrounds. 
This is the result of the great difference between the black 
background, which is the dominant colour located in the first 
bin and the white colour located at the last bin of histogram. 

III. DATA DEPENDENT  DISSIMILARITY MEASURE 
     
To address the discussed limitations of 𝑙!𝐷, a data dependent 
dissimilarity measure have been proposed [3]. This measure is 
called 𝑚! −dissimilarity and it focuses on the data distribution 
of the dataset instead of simply measuring the distance. It has 
been performed equal or better than 𝑙!𝐷  in context of 
information classification and retrieval problems. This method 
has been evaluated using text, music, digits and artificial 
datasets.  
  This idea is based on the distance-density model proposed by 
Krumhausl [5] which prescribes that two instances in a sparse 
region are more similar than two instances in a dense region. 
To measure the dissimilarity between two instances: x and y, it 
defines a region between them and search for other instances 
in the dataset that falls in this region. So, the data distribution 
plays the main role to determine the number of instances 
similar to x and y that fall in this region. If this number is 
large, then 𝑚! considers it as a dense region, and therefore x 
and y are less similar. Vice versa, if the number is small, then 
x and y are in sparse region and are considered more similar.  
  In order to measure the dissimilarity between x and y, 
𝑚! considers the relative positions of x and y with respect to 
the rest of the data distribution in each dimension. The 
dissimilarity between x and y in dimension 𝑖 can be estimated 
as the probability data in the region 𝑅!(𝑥, 𝑦) that encloses x 
and y. If there are many instances in 𝑅!(𝑥, 𝑦), then it will be 
considered as a dense region. Therefore x and y are likely to 
be more dissimilar in dimension 𝑖. Using the same power 



mean formulation as in 𝑙! − norm, the data dependent 
dissimilarity measure based on probability mass can be 
defined as: 

 𝑚! 𝑥, 𝑦 =
1
𝑑

𝑎𝑏𝑠
𝑅!(𝑥, 𝑦)
𝑁

!!

!!!

! !

 (3) 

 
where 𝑅!(𝑥, 𝑦)  is the data mass in which is the number of 
instances that fall in the region of 𝑅!(𝑥, 𝑦) , and 𝑛  is the 
number of instances in the dataset. The enclosing region is 
defined as follows. 𝑅! 𝑥, 𝑦 = min 𝑥! , 𝑦! − 𝜎,max 𝑥! , 𝑦! +
𝜎 , and 𝜎 is a small number 𝜎 ≥ 0. Although 𝑚! employs the 
same power mean formulation as 𝑙!, the core calculation is 
based on mass rather than distance. It signifies the degree of 
dissimilarity: the higher the measure, the more dissimilar the 
two instances are; just like 𝑙!. 

 
 
Fig.1. 𝑹𝒊(𝒙,𝒚) Defined Region between Two Instances using bins 

 
 
Calculation of 𝑚! is expensive as it requires a range search in 
each dimension, so to address this problem a new 
implementation has been propose in [15]. In this new 
implementation a histogram is used, the real values in each 
dimension 𝑖 are divided into 𝑚 bins. The number of points in 
each bin is computed as a preprocessing step, and then data 
mass between two points can be computed using number of 
bins between them. An illustration of defining 𝑅! 𝑥, 𝑦  using 
bins implementation is shown in Fig 1.  
 
To calculate the data mass between the query and each of the 
stored images, in each dimension of the colour histograms (96 
dimensions representing RGB channels), a region is defined 
using the values of query and each stored image. The 
neighbourhood of the region, as shown in Fig.1, is the 
standard deviation of all values in dataset of that dimension. 
The number of other images that their values in that dimension 
of colour histogram falling in the defined region is considered 
as data mass. As discussed before, the sparser data mass leads 
to a higher similarity.  
  As this method works based on the distribution of image 
feature vectors instead of only considering the distance 
between each dimension of them, it can address the 𝑙!𝐷′𝑠 
limitation with being in favour of the most dominant 
components. 𝑚! also considers the dissimilarity of the two 
instances with the rest of the data in dataset. Generally in a 
data distribution which has many similar images but are 
different in their details and these details play a more 

important role as compared with the rest of image, 𝑚! is more 
effective in retrieving perceptually more similar images.  
 

A. Experimental Study of 𝑚! 
 Since ED, which is a Minkowski-form (𝑙! ) distance where 
(p=2), has been shown to be the most effective existing 
dissimilarity metrics in image retrieval, we have chosen this 
metric as the baseline metric to compare with. In this section, 
we will compare the image retrieval performance of ED and 
𝑚!. Colour histograms as an important and useful tool for 
analyzing colour images that are invariant to rotation and 
translation are used in this work as image features. They carry 
the statistical information of the chosen colour space and have 
been used in several image retrieval research works  [16-22]. 

  In this study, we use colour histograms obtained from the 
RGB colour space. Each colour channel is quantized by steps 
of eight intensity values and this results in 32 bins for each 
colour channel (i.e. R, G and B), so a total of 96 dimension 
feature vectors will represent images. 

 Also, LBP [23] is a very efficient texture operator which 
labels the pixels of an image by thresholding the neighborhood 
of each pixel and considers the result as a binary number. Due 
to its discriminative power and computational simplicity, LBP 
texture operator has become a popular approach in various 
applications. We extracted the LBP features of Catlech 101 
dataset from neighbourhood of  8 pixels and resulted in a 
feature vector of size 944 dimensions.  

 

 
Fig. 2. Precision-recall curves of ED and mp based on the retrieval results for 

200 queries from Corel database 

B. Overall Performance Comparison 
  Image retrieval experiments have been carried out on a 
version of Corel database [8] that consists of 1000 images from 
different natural scenes categorized into 10 classes. Images are 
represented by RGB colour histograms with 32 bins for each 
colour channel, resulting in a feature vector of 96 dimensions. 
We randomly selected 200 images from the database as 
queries. ED and 𝑚! have been used as dissimilarity measures 
to retrieve set of similar images to the query from the database. 
The performance of image retrieval using each dissimilarity 



measure is evaluated using precision-recall curve. Fig. 2 shows 
the retrieval results of the 200 query images. It can be seen that 
𝑚! has produced better retrieval performance than ED. 

 Also, the experiment has been performed using LBP features 
and Caltech 101, which has 101 categories of images from 
different objects and totally 10k images in the dataset. In this 
experiment 20 percent of dataset has been used as queries. In 
this experiment we compared the performance of  𝑚! with ED, 
Cosine and city block distance metrics. Results been shown in 
Fig .3 shows the better retrieval performance achieved by 𝑚!.  

 
Figure 3. Precision-recall curves of  mp , Ed, cosine and cityblock based on 
the retrieval results for 2000 queries from Caltech 101 database 

C. Visual Examples 
  To visually investigate the performance of 𝑚! against ED, 
we present and compare two query images and their top 10 
retrieved images as shown in Figs.4-5 from experiment on 
Corel dataset using color histograms. Visual examples are 
selection from Corel dataset, which is represented by color 
histograms to provide better intuition of the results. In each set 
of images, the top left image is the query and the rest are the 
10 highest ranked retrieved images. Generally compared to 
ED, we can see 𝑚! has retrieved sets of images perceptually 
more similar to the query. 
  For example in Fig.4.b we can see the influence of dominant 
colour (the colour of sands in beach query) in the retrieved 
images. However in Fig.4.a, by using 𝑚!, we can see the 
detailed colours (such as red and blue) within the main objects 
in the query image have played a more prominent role in 
retrieving perceptually more similar images. 

D. Result analysis 
  To provide further insights into retrieving different images 
using ED and 𝑚!, we will analyse the colour histograms that 
are the basis of the calculating ED, as well as the data masses 
calculated by 𝑚!.  
  Figs.6-7 show the colour histograms for two query images 
and their respective top ranked retrieved images using ED and 
𝑚!. As we can see, the difference between the largest values 
in the colour histogram of the query image (Fig.6.d) and that 
of the top ranked image of using ED (Fig.6.e) is about 5000. 
However this difference between the histogram of the query 

image (Fig.6.d) and that of the top ranked retrieved image 
using 𝑚!  (Fig.6.f) is more than 10000. As discussed in 
Section II A, ED calculates the distance by only considering 
the values in corresponding dimensions in the colour 
histograms, and not the distribution of the values in all the 
colour histograms. As a result, the dominant dimensions will 
contribute substantially to the total distance calculated, 
whereas the contribution from the remaining dimensions 
might be negligible to impact the final retrieval outcome. For 
example in Fig.6, the colours of the sand (around histogram 
bins 28, 59 and 90) on the beach of the query image dominate 
the distance calculated, whereas the detailed colours, such as 
the skin colours of people (around histogram bins 21, 43 and 
74), though perceptually important when comparing similarity 
between these images, are not dominant enough to impact the 
final retrieval outcome. As a result, ED has retrieved Fig.6.b 
as the top rank rather than Fig.6.c. The colour histograms 
presented in Fig.9 also follow the same trend.  
  Next, we will analyse the data mass calculated from the two 
query images and their top ranked retrieved images using ED 
and  𝒎𝒑, as shown in Figs.8-9. Data mass is the basis for 𝒎𝒑 
calculation. 𝒎𝒑  takes into account of data distribution by 
defining a region and by looking for other images in the same 
bin that have values falling in this region.  𝒎𝒑 assigns the 
maximum dissimilarity (of a dimension) when majority of 
images having the values falling in the defined region and 
assigns minimum dissimilarity if less number of images 
having these values. So, the sparser data mass is considered as 
the higher similarity. 
  Figs.8.c and 9.c show the data mass between the feature 
vectors of each of the two query images and its top ranked 
retrieved image using 𝒎𝒑 . As we can see, the data mass 
between the query and top ranked retrieved image using 𝒎𝒑 is 
sparser than Figs.8.f and 9.f, which show the data mass of 
these query images and top ranked retrieved image using ED. 
Using 𝒎𝒑, this sparser data mass has resulted in Figs.8.b and 
9.b being ranked higher than Figs.7.e and 8.e.  

 
IV. LIMITATION OF 𝑚! 

 
In this section we will discuss the limitation that arise when 
we only rely on data distribution in defining the dissimilarity 
between two data points. A dissimilarity measure in image 
retrieval is supposed to retrieve images, which are 
perceptually similar. As we discussed data distribution has 
effect on perceptual similarity as considered in 𝑚!. However 
the geometric distance between two instances should not be 
ignored, as that measures the dissimilarity in real world. 𝑚! 
finds two instances similar when the data mass between them 
is low (they located in a sparse region), in this case we need to 
find whether they are perceptually similar in real world or not.  
 
Suppose, 𝑚!  find two instances similar based on low data 
mass between them but the geometric distance between them 
is large, they cannot be considered as similar in real world. We 
expect that when 𝑚! finds similarity between two instances 



their geometric distance is small as well. Similarly, we expect 
when 𝑚! find two instances dissimilar due to high data mass 
between them, their geometric distance be large as well to let 
us consider them dissimilar in real world. 
 
To provide a better insight we refers to the example provided 
in section II. In that example we discussed that if we have two 
red apples among many green apples those two red apples are 
perceptually more similar than if we place those two red 
apples among many other red apples. So it shows the effect 
data distribution in perceptual similarity of two images, which 
is considered by 𝑚!. But in another scenario consider we have 
one red apple among many green apples and we are looking 
for apples similar to a green apple (query), 𝑚! will find the 
red apple as the most similar one due to low data mass 
between a green and red apple compare to high data mass 
between green apples. However the red and green apples are 
very different and have a great geometric distance. In this case 
we are not considering any of green apples as the most similar 
because the data mass is high between any two green apples, 
however in real world they are similar (they have small 
geometric distance). 
 
We show this limitation through the following example based 
on how 𝑚! work in each dimension of feature vectors. Table.1 
shows a data distribution in one dimension. Suppose we have 
a dataset 𝑋 = 𝑥 1 ,… , 𝑥 10  in  𝑑 −dimensional space, to 
find the similar data to a query 𝑋(𝑄𝑢𝑒𝑟𝑦) 𝑚! calculates the 
data mass in each dimension of feature vectors between query 
and each of data points in the dataset, then will calculate the 
total dissimilarity using equation 3. 𝑚! will consider the low 
data mass between two point as lower dissimilarity and high 
data mass as higher dissimilarity. We will take a closer look at 
how data mass works in a dimension of feature vectors 𝑥!. To 
calculate the data mass, 𝑚!  defines a region that enclose 
𝑥! 𝑄𝑢𝑒𝑟𝑦 , 𝑥! 𝑗  𝑤ℎ𝑒𝑟𝑒 1 < 𝑗 < 10 and check how many 

points in the dataset has the value that fall in this region.  
 
 Looking at data mass between query and each data point in 
the dataset, we will find the lowest data mass 𝑥! 𝑄𝑢𝑒𝑟𝑦 ,
𝑥! 10  which is 2. So in this case based on the lowest mass 
𝑚! will find 𝑥! 10  as the closet to the query, however, if we 
look at their geometric distance 𝐸𝐷 𝑥! 𝑄𝑢𝑒𝑟𝑦 , 𝑥! 10  , 
they are very different compare to the rest of data points in the 
dataset. Hence, 𝑚! found the wrong closest match where the 
data mass between query and a data point was low but they are 
very different (having large spatial distance). However, there 
are many other points similar to the query as they have small 
distance, which are not considered as the closest match 
because the data mass between query and them was high.  
 
Generally, 𝑚!  has the limitation to define the dissimilarity 
when there is small data mass between two points but they are 
very different (they have large geometric distance). In this 
case 𝑚! will find two different data points as similar while it 

ignores the similar data points (have small geometric distance) 
due to high mass between them.  
 

Table 1. Data distribution in one dimension of feature vectors 

𝑋 … 𝑥! 
𝑥 𝑄𝑢𝑒𝑟𝑦  … 2 
𝑥 1  … 1 
𝑥 2  … 1 
𝑥 3  … 0 
𝑥 4  … 1 
𝑥 5  … 1 
𝑥 6  … 1 
𝑥 7  … 1 
𝑥 8  … 0 
𝑥 9  … 0 
𝑥 10  … 9 

 
 

V. HYBRID DATA DEPENDENT 
DISSIMILARITY (HDDD) 

 
To this end we have discussed about the advantages of 
considering data distribution as has been proposed in 𝑚! and 
also the limitation of such a method by completely ignoring 
the geometric distance in calculation of dissimilarity between 
two instances. To address the limitation of using 𝑚!  as a 
dissimilarity measure, we propose a hybrid data dependent 
dissimilarity ( 𝐻𝐷𝐷𝐷 ), which take advantage of data 
distribution and geometric distance at the same time. 
 
A. Proposed Method for HDDD 
 
We discussed that 𝑚! consider the low data mass between two 
points as higher similarity (less dissimilarity) and high data 
mass as less similarity (higher dissimilarity). However, we 
showed in previous section that if we have a low data mass 
between two points while the geometric distance between 
them is large, 𝑚! will not find the best closest match. This 
happens by ignoring the points, which are more similar 
(having smaller geometric distance), but the data mass 
between them is high. To address this limitation we need to 
give a proper weight to the data mass between two points in 
each dimension.  
 
We need to set a proper weight when data mass between two 
points is high but they have small geometric distance (they are 
similar). The weight needs to lower the data mass proportional 
to the distance between two points. The reason for choosing a 
weight proportional to the geometric distance between two 
points and not using a constant weight is as follows. Using 𝑚! 
as a dissimilarity measure, we expect that closest matches to 
query be similar and meaningful in real world as well. It 
means the closest matches are desirable to have smaller 
geometric distance to the query compare to the rest of 
instances in the dataset. So basically 𝑚!  should rank its 



closest matches proportional to their distance to the query, 
means data points with smaller distance should be ranked 
higher compare to the ones with larger distance. The other 
reason that the weight should be proportional to distance and 
cannot be a constant number is as follows. Suppose we have 
equal data mass between the query point and two other points 
in the dataset while their geometric distance between are 
different, we expect to find the point with smaller distance to 
query as the closest match, however 𝑚! based on the equal 
data mass will find both of them as the closest match. So using 
a constant weight will result that weighted data mass between 
them again will be equal which does not help in solving the 
problem.  
 
 We propose to change the equation 3, to: 
 

 𝐻𝐷𝐷𝐷 𝑥, 𝑦 =
1
𝑑

𝑎𝑏𝑠 𝑊
𝑅!(𝑥, 𝑦)
𝑁

!!

!!!

! !

 (4) 

 
Where 𝑊 is the weight that lower the data mass when it is 
high between two points while having small geometric 
distance, which we set that to 𝛼 𝐸𝐷 𝑥, 𝑦 , where 0 < 𝛼 < 1. 
In this case data mass will be weighted proportional to 
geometric distance, so when 𝑚! search for the closest match it 
also considers their similarity in real world (geometric 
distance) along with the data distribution. 

B. Experimental study of HDDD 
 
To evaluate the proposed dissimilarity measure, we will use 
the two datasets has been used in this work previously, Corel 
and Caltech 101, and will represent images using LBP 
features. As we discussed we proposed to use the weight 
where data mass between query and a point from dataset is 
high while their spatial distance is small. So to determine the 
high data mass in each dimension, we consider data mass 
above the mid point between minimums and maximum of data 
masses. Also for determining the small spatial distance we 
consider distances below the mid point between minimum and 
maximum of distances of query and all data points in each 
dimension. The 𝛼 is set to 0.6 as it showed best performance 
in our experiments.  We used ED as the spatial distance as it 
showed the best performance among other 𝑙! −norms in Fig 3.  
The overall retrieval results using HDDD, 𝑚!  and ED for 
Corel and Caltech 101 datasets are shown in Figs 10-11. 
As it can be seen the retrieval results has been improved using 
HDDD over 𝑚! and ED.   

C. Visual Examples 
In this section we present visual examples to give a better 
insight about the performance of HDDD against 𝑚! , we 
present and compare two query images and their top 10 
retrieved images as shown in Figs.12-13 images are selected 
from Corel dataset represented by LBP features. Using visual 
examples we can see how our proposed dissimilarity measure 
could address the discussed limitation of 𝑚!. In each set of 

images, the top left image is the query and the rest are the 10 
highest ranked retrieved images. Generally compared to 𝑚!, 
𝐻𝐷𝐷𝐷 has retrieved sets of images perceptually more similar 
to the query. 
For example in Fig 12.a, retrieved images in ranks 1-2 are not 
form the same class with query and this has been improved in 
Fig 12.b using 𝐻𝐷𝐷𝐷. Also in Fig 13.a, retrieved images in 
ranks 4-5 belong to a different class with query while in Fig 
13.b all the retrieved images are from the same class with 
query. 

 
Figure 10. Precision-recall curves of  HDDD, mp  and Ed based on the 

retrieval results from Corel. 

 
Figure 11. Precision-recall curves of  HDDD, mp  and Ed based on the 

retrieval results from Caltech 101. 

C. Result Analysis 
In this section we show the limitation of 𝑚! in completely 
ignoring the spatial distance between two images and how 
𝐻𝐷𝐷𝐷  could improve it. 𝑚!  is calculated based on the 
average data mass in all dimensions between query and each 
dataset image, so smaller data mass in each dimension will 
result in smaller 𝑚!.  In Fig 12.a 𝑚!, ranked retrieved images 
based on data mass between query and each image in the 
dataset, the smaller data mass made the elephant (𝑚! = 6.43) 
and the other irrelevant image from food class 𝑚! =
6.53  come up in the first and second rank compare to the 



relevant image in the third rank where 𝑚! = 6.59 . 
However, the Euclidean distance between query, elephant 
𝐸𝐷 = 3.8  and food dish 𝐸𝐷 = 2.9  are larger than distance 

between query and third rank which is relevant image 
𝐸𝐷 = 1.01 . So ignoring the distance and only relying on 

data mass caused that smaller data mass retrieved images, 
which are very different with query in highest ranks.  
 
The same scenario is in Fig 13.a where 𝑚!retrieved images 
based on lower data mass in high ranks while they are 
different and having larger distance to the query compare to 
the relevant images that are ranked lower due to the higher 
data mass (while having relatively smaller distance to the 
query). Data masses between query, rank 4 and 5 are 
𝑚! = 6.72, 7.03  which are lower than data mass between 

query and rank 6 𝑚! = 7.8  however ED for the formers are 
2.6, 2.3 Which is much larger than ED for latter,1.3.  
 
As we showed relying only on data mass between two 
instances, may result in following situation: 𝑚!ranks instances 
with lower data mass but different with query (large distance) 
higher than instances similar to the query (small distance) 
which has higher data mass. In 𝐻𝐷𝐷𝐷 , we used the ED as the 
weight in each dimension where data mass is high between 
query and dataset image but the distance is small. This 
improved the result by ranking those images higher than the 
ones with small data mass but large distance. The results in 
Figs 12.13.b show this effect visually.  
 

VI. CONCLUSIONS 
 
In this work, we studied 𝑚! strengths and limitations as a data 
dependent dissimilarity measure for image retrieval. Our 
experimental results show that 𝑚!  outperforms ED, Cosine 
and cityblock distance in retrieving perceptually more similar 
images. We also showed the limitation of 𝑚! by completely 
ignoring the spatial distance and only relying on data 
distribution. This could result in retrieving irrelevant images in 
high ranks, which has large distance to the query by only 
considering low data mass between them. We proposed a new 
hybrid data dependent dissimilarity measure by considering 
both data distribution and spatial distance. The proposed 
dissimilarity measure could perform better than 𝑚! and yield 
perceptually more similar retrieved images.   
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(b) using ED 

Figure 4. Top 10 retrieval for Query 1. 
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(b) using ED 

Figure 5. Top 10 retrieval for Query 2.
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(b) using HDDD 

Figure 12. Top 10 retrieval for Query 1. 
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Figure 13. Top 10 retrieval for Query 2 
 


