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Abstract. Extremality, stationarity and regularity notions for a system of closed sets in
a normed linear space are investigated. The equivalence of different abstract “extremal”

settings in terms of set systems and multifunctions is proved. The dual necessary and

sufficient conditions of weak stationarity (the Extended extremal principle) are presented
for the case of an Asplund space.

1. Introduction

Starting with the pioneering work by Dubovitskii and Milyutin [8] it is quite natural when
dealing with optimality conditions to reformulate optimality in the original optimization
problem as a (some kind of) extremal behaviour of a certain system of sets. An easy
example is a problem of unconditional minimization of a real-valued function ϕ : X → R. If
x◦ ∈ X one can consider the sets Ω1 = epiϕ = {(x, µ) ∈ X × R : ϕ(x) ≤ µ} (the epigraph
of ϕ) and Ω2 = X × {µ : µ ≤ ϕ(x◦)} (the lower halfspace). The local optimality of x◦ is
then equivalent to the condition Ω1 ∩ intΩ2 ∩Bρ(x◦) = ∅ for some ρ > 0.

Considering set systems is a rather general scheme of investigating optimization problems.
Any set of “extremality” conditions leads to some optimality conditions for the original
problem.

When the sets are convex (or admit some convex approximations) extremality conditions
are given by the separation theorem. In the general case a nonconvex separation theorem
(the generalized Euler equation) was proved in [22]. By now it is generally referred to as the
Extremal principle (see [24, 33]) and has numerous applications to optimization, calculus
and economics. A different (but in a sense equivalent) scheme of investigating nonconvex
set systems was developed in [4].

Any necessary optimality conditions characterize in the nonconvex case not only opti-
mal solutions but some broader set of stationary points which can also be of interest. The
stationarity notion corresponding to the extremal principle conditions, namely weak station-
arity, was investigated in [21]. Introducing weak stationarity made possible to reformulate
the (Extended) extremal principle as a necessary and sufficient condition.
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Thus, Extended extremal principle states equivalence between primal (weak stationarity)
and dual (generalized Euler equation) conditions. Another equivalence is true: Extended
extremal principle itself is valid if and only if the space under consideration is Asplund.
The last statement adds one more line to the list of equivalent extremal characterizations of
Asplund spaces in [26].

When a stationarity condition is not true one can speak about (some kind of) regularity
of the set system. We are especially interested in investigating a strong regularity property
which corresponds to the absence of weak stationarity. It appears to be equivalent to the
metric regularity of some multifunction. Another regularity property for set systems is the
metric inequality developed in [12, 13, 29]. It is proved that regularity as defined in Section
2 is equivalent to the strong metric inequality and implies the property from [12, 13, 29].

The paper is organized as follows. The definitions of extremality, stationarity and regular-
ity for the set system are introduced in Section 2. Following [21] some constants character-
izing the mutual arrangement of sets in space are used in the definitions. The properties of
these constants and corresponding properties of set systems are investigated in this section.
More constants are introduced and investigated in Section 3.

Some special cases (convex sets, cones, the case of two sets) are considered in Section
4. It is proved, in particular, that in convex case all extremality and stationarity concepts
coincide, and when all but one sets Ω1, Ω2, . . . , Ωn have nonempty interior, they reduce to
the traditional condition ∩n−1

i=1 intΩi ∩ Ωn = ∅. In the case of two sets the notion of weak
stationarity (see Section 2) is equivalent to “extended extremality” defined in [18].

Sections 5 and 6 contain comparison of extremality and stationarity concepts adopted
in the current paper with other “extremal” settings for set systems: the metric inequality
[12, 13, 29] and the boundary condition from [4].

The case of a single set is considered in Section 7. Formally it does not follow from the
general setting for a set system.

Section 8 is devoted to the comparison of the extremality, stationarity and regularity
properties of set systems with those of multifunctions. Considering multifunctions is another
general framework of investigating optimization, complementarity and equilibrium problems.
Both approaches (in terms of set systems and in terms of multifunctions) are in a sense
equivalent, weak stationarity being a natural counterpart of metric regularity.

The final Section 9 presents the Extended extremal principle: the dual criterion for weak
stationarity in terms of Fréchet normal and strict normal cones.

Mainly standard notations are used throughout the paper. The ball of radios ρ centered
at x is denoted Bρ(x). We write Bρ if x = 0, and simply B if x = 0, ρ = 1. If Ω is a
set then int Ω, bdΩ and cl Ω are respectively its interior, the boundary and the closure.
When considering product spaces we will always assume that they are equipped with the
maximum-type norm: ‖(x1, x2)‖ = max(‖x1‖ , ‖x2‖).

2. Extremality, stationarity and regularity

Let us consider a system of closed sets Ω1, Ω2, . . . , Ωn (n > 1) in a normed space X with
x◦ ∈ ∩n

i=1Ωi.
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The following constants can be used for characterizing the mutual arrangement of sets
Ω1, Ω2, . . . , Ωn near x◦ ([21]):

θρ[Ω1, . . . ,Ωn](x◦) = sup

{
r ≥ 0 :

( n⋂
i=1

(Ωi − ai)
)⋂

Bρ(x◦) 6= ∅,∀ai ∈ Br

}
, (1)

θ[Ω1, . . . ,Ωn](x◦) = lim inf
ρ→+0

θρ[Ω1, . . . ,Ωn](x◦)/ρ, (2)

θ̂[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi→x◦

θ[Ω1 − ω1, . . . ,Ωn − ωn](0). (3)

(1) is defined for ρ ≥ 0. The denotation ωi
Ωi→ x◦ in (3) means that ωi → x◦ with ωi ∈ Ωi.

Evidently all the constants (1)–(3) are nonnegative (and can take the value +∞). When
investigating extremality-stationarity-regularity properties of the set system one needs to
check whether the corresponding constant is zero or strictly positive.

Definition 1. The system of sets Ω1, Ω2, . . . , Ωn is
(i) extremal at x◦ if θρ[Ω1, . . . ,Ωn](x◦) = 0 for all ρ > 0.
(ii) locally extremal at x◦ if θρ[Ω1, . . . ,Ωn](x◦) = 0 for some ρ > 0.
(iii) stationary at x◦ if θ[Ω1, . . . ,Ωn](x◦) = 0.
(iv) weakly stationary at x◦ if θ̂[Ω1, . . . ,Ωn](x◦) = 0.
(v) regular at x◦ if θ̂[Ω1, . . . ,Ωn](x◦) > 0.

The next proposition follows immediately from the definitions.

Proposition 1. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) in Definition 1.

Remark 1. Opposite implications are not true in general. θ[Ω1, . . . ,Ωn](x◦), in particular,
may be zero even if θρ[Ω1, . . . ,Ωn](x◦) > 0 for all ρ > 0. Take ϕ(x) = −x2 in the two-set
system mentioned in the Introduction. If to take ϕ(x) = x sin(1/x) for x 6= 0 and ϕ(0) = 0
then the system will be weakly stationary at 0 but not stationary.

Remark 2. Condition (iii) corresponds to the traditional notion of stationarity, while (iv)
means that arbitrarily close to x◦ there exist points whose properties are arbitrarily close to
the stationarity property.

Remark 3. All the constants (1)–(3) are local. It is actually sufficient to assume in the
rest of the paper that the sets are only locally closed near x◦. Formally the definitions above
can be applied also to nonclosed sets. However, to obtain meaningful results one needs to
assume closedness. Another possibility is to replace Ωi by cl Ωi in the right-hand side of (1).

Remark 4. The condition θ[Ω1, . . . ,Ωn](x◦) > 0 also defines a kind of regularity which
is weaker than the one defined in part (iv) of Definition 1. It can be referred to as weak
regularity. We will not use this concept in the current paper.

The above definition of local extremality can be equivalently reformulated in terms of
sequences.
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Proposition 2. The system of sets Ω1, Ω2, . . . , Ωn is locally extremal at x◦ if and only if
there exists a number ρ > 0 and sequences {aik} ⊂ X tending to zero, such that ∩n

i=1(Ωi −
aik) ∩Bρ(x◦) = ∅, k = 1, 2, . . ..

As it can be seen from Proposition 2, the notion of local extremality defined above is
equivalent to the initial one introduced in [22]: an arbitrarily small shift makes the sets
unintersecting in a neighborhood of x◦ (see examples in [21]). It defines a general notion of
extremality embedding different solution notions in optimization problems.

The simplest sufficient condition of regularity at x◦ is x◦ ∈ int ∩n
i=1 Ωi.

Proposition 3. The following assertions are equivalent:
(i) limρ→+0 θρ[Ω1, . . . ,Ωn](x◦) > 0.
(ii) x◦ ∈ int ∩n

i=1 Ωi.

Under these conditions θ[Ω1, . . . ,Ωn](x◦) = θ̂[Ω1, . . . ,Ωn](x◦) = +∞.

Proof. (ii) ⇒ (i). Let x◦ ∈ int ∩n
i=1 Ωi. Then Br(x◦) ⊂ Ωi for some r > 0 and all

i = 1, 2, . . . , n. Consequently x◦ ∈ Ωi − ai for any ai ∈ Br, and θρ[Ω1, . . . ,Ωn](x◦) ≥ r for
all ρ > 0. This implies (i), because the function ρ → θρ[Ω1, . . . ,Ωn](x◦) is monotone on the
set of positive numbers.

(i) ⇒ (ii). Let θρ[Ω1, . . . ,Ωn](x◦) > r > 0 for all ρ > 0. Then for any ρ > 0 and any
ai ∈ Br, i = 1, 2, . . . , n, there exists

x ∈ (
n⋂

i=1

(Ωi − ai))
⋂

Bρ(x◦).

Consequently ai ∈ Ωi−x, x◦+ai ∈ Ωi +x◦−x and Br(x◦) ⊂ Ωi +Bρ. Since this holds true
for all ρ > 0 and Ωi is closed one has Br(x◦) ⊂ Ωi, i = 1, 2, . . . , n, and Br(x◦) ⊂ ∩n

i=1Ωi.
If θρ[Ω1, . . . ,Ωn](x◦) > r > 0 for all ρ > 0 then it follows from (2) that θ[Ω1, . . . ,Ωn](x◦) =

+∞. If x◦ ∈ int ∩n
i=1 Ωi then

0 ∈ int
n⋂

i=1

(Ωi − ωi)

for all ωi ∈ Ωi sufficiently close to x◦. Thus θ[Ω1 − ω1, . . . ,Ωn − ωn](0) = +∞ and conse-
quently θ̂[Ω1, . . . ,Ωn](x◦) = +∞. �

The next proposition gives a weaker sufficient condition for θρ[Ω1, . . . ,Ωn](x◦) to be
positive, though it does not guarantee regularity.

Proposition 4. Let the following condition be true:
n−1⋂
i=1

intΩi ∩ Ωn 6= ∅. (4)

Then θρ[Ω1, . . . ,Ωn](x◦) > 0 for some ρ > 0.

Proof. It follows from (4) that there exists an x ∈ Ωn and an r > 0, such that B2r(x) ⊂ Ωi,
i = 1, 2, . . . , n− 1. If ai ∈ Br then y + ai ∈ Ωi, i = 1, 2, . . . , n− 1, where y = x− an. Thus
y ∈

⋂n
i=1(Ωi − ai) and θρ[Ω1, . . . ,Ωn](x◦) ≥ r > 0 for ρ = ‖x− x◦‖+ r. �
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The next two propositions give some relations between extremality-stationarity-regularity
properties of a set system and some its subsystem.

Proposition 5 (Reduction). Let n > 2. The following assertions hold:

(i) θρ[Ω1, . . . ,Ωn−1](x◦) ≥ θρ[Ω1, . . . ,Ωn](x◦).
(ii) θρ[∩n−1

i=1 Ωi,Ωn](x◦) ≥ θρ[Ω1, . . . ,Ωn](x◦).

Proof. The assertions are evident if to notice the next two simple facts:
(i) If (

⋂n
i=1(Ωi − ai)) ∩Bρ(x◦) 6= ∅ then (

⋂n−1
i=1 (Ωi − ai)) ∩Bρ(x◦) 6= ∅.

(ii) If (
⋂n

i=1(Ωi − ai)) ∩Bρ(x◦) 6= ∅ for all ai ∈ Br, i = 1, 2, . . . , n, then

(
n−1⋂
i=1

(Ωi − a1)) ∩ (Ωn − a2) ∩Bρ(x◦) 6= ∅

for all a1, a2 ∈ Br. �

Proposition 6. Let n > m ≥ 2. The following assertions hold:

(i) If one of the systems {Ω1, Ω2, . . . , Ωm} or {
⋂m

i=1 Ωi, Ωm+1, . . . , Ωn} is (locally)
extremal at x◦ then the system {Ω1, Ω2, . . . , Ωn} is (locally) extremal at x◦.

(ii) If one of the systems {Ω1, Ω2, . . . , Ωm} or {
⋂m

i=1 Ωi, Ωm+1, . . . , Ωn} is (weakly)
stationary at x◦ then the system {Ω1, Ω2, . . . , Ωn} is (weakly) stationary at x◦.

(iii) If the system {Ω1, Ω2, . . . , Ωn} is regular at x◦ then each of the systems {Ω1, Ω2,
. . . , Ωm} or {

⋂m
i=1 Ωi, Ωm+1, . . . , Ωn} is regular at x◦.

Combining (1)–(3), one can get the following representation:

θ̂[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi→x◦
ρ→+0

sup
{

r ≥ 0 :

( n⋂
i=1

(Ωi − ωi − ai)
)⋂

Bρ 6= ∅, ∀ai ∈ Br

}
/ρ. (5)

The next assertion is an immediate consequence of (5).

Proposition 7. θ̂[Ω1, . . . ,Ωn](x◦) > α > 0 if and only if there exists a δ > 0, such that( n⋂
i=1

(Ωi − ωi − ai)
)⋂

Bρ 6= ∅ (6)

for any ρ ∈ (0, δ], ωi ∈ Ωi ∩Bδ(x◦), ai ∈ Bαρ, i = 1, 2, . . . , n.

Due to Proposition 3 θ̂[Ω1, . . . ,Ωn](x◦) can be finite only if x◦ 6∈ int ∩n
i=1 Ωi. The next

proposition gives a more precise estimate.

Proposition 8. If x◦ ∈ bd ∩n
i=1 Ωi then θ̂[Ω1, . . . ,Ωn](x◦) ≤ 1.
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Proof. If x◦ ∈ bd ∩n
i=1 Ωi then x◦ ∈ bd Ωi for some i ∈ {1, 2, . . . , n} and there exists a

sequence {xk} 6⊂ Ωi approaching x◦. Denote by rk the distance from xk to Ωi. One has
rk > 0 since Ωi is closed. Without loss of generality we will assume that rk < 1. Select
ωk ∈ Ωi such that

‖xk − ωk‖ ≤ rk + r2
k

and denote ak = xk − ωk, ρk = rk − r2
k. Then Ωi ∩Bρk

(xk) = ∅ or

(Ωi − ωk − ak) ∩Bρk
= ∅

and it follows from Proposition 7 that

θ̂[Ω1, . . . ,Ωn](x◦) ≤ lim
k→∞

‖ak‖ /ρk = 1.

�

Thus, one always has either 0 ≤ θ̂[Ω1, . . . ,Ωn](x◦) ≤ 1 or θ̂[Ω1, . . . ,Ωn](x◦) = +∞ (when
x◦ ∈ int ∩n

i=1 Ωi). At the same time θ[Ω1, . . . ,Ωn](x◦) can obviously take any nonnegative
values.

3. More Constants

Let us consider two more constants related to the behavior of the set system {Ω1, Ω2,
. . ., Ωn} near x◦:

θ′ρ[Ω1, . . . ,Ωn](x◦) = sup{r ≥ 0 : Br ⊂ (Ωi ∩Bρ(x◦))− (Ωj ∩Bρ(x◦)),

∀i, j ∈ {1, 2, . . . , n}, i 6= j}, (7)

θ′′ρ [Ω1, . . . ,Ωn](x◦) = sup{r ≥ 0 : (Ωi − a1) ∩ (Ωj − a2) ∩Bρ(x◦) 6= ∅,
∀a1, a2 ∈ Br, i, j ∈ {1, 2, . . . , n}, i 6= j}. (8)

The difference of sets in (7) is understood in the algebraic sense:

Ω1 − Ω2 = {ω1 − ω2 : ω1 ∈ Ω1, ω2 ∈ Ω2}.
Obviously 0 ≤ θ′ρ[Ω1, . . . ,Ωn](x◦) ≤ 2ρ for any ρ > 0. This means that, in contrast to

θρ[Ω1, . . . ,Ωn](x◦) (see Proposition 3), θ′ρ[Ω1, . . . ,Ωn](x◦) always tends to zero when ρ → 0.
One always has the inequality

θ′′ρ [Ω1, . . . ,Ωn](x◦) ≥ θρ[Ω1, . . . ,Ωn](x◦)

and it can be strict. Take e.g. three halfspaces in R2:

Ω1 = {(x, y) : y ≥ 0}, Ω2 = {(x, y) : y ≤ x}, Ω3 = {(x, y) : y ≤ −x}.
Then Ω1∩Ω2∩Ω3 = {(0, 0)} and θρ[Ω1, . . . ,Ωn](x◦) = 0 while θ′′ρ [Ω1, . . . ,Ωn](x◦) is positive
for all ρ > 0.

Some relations between (1), (7) and (8) are given by the following proposition.

Proposition 9. The following assertions hold:
(i) If θρ[Ω1, . . . ,Ωn](x◦) > r ≥ 0 then θ′ρ+r[Ω1, . . . ,Ωn](x◦) ≥ 2r.
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(ii) If θ′ρ[Ω1, . . . ,Ωn](x◦) > r ≥ 0 then θ′′ρ+r/2[Ω1, . . . ,Ωn](x◦) ≥ r/2.

Proof. (i) If θρ[Ω1, . . . ,Ωn](x◦) > r ≥ 0 then by the definition (1)( n⋂
i=1

(Ωi − ai)
)
∩Bρ(x◦) 6= ∅

for any ai ∈ Br, i = 1, 2, . . . , n. In particular, for any i, j ∈ {1, 2, . . . , n}, i 6= j there exists

x ∈ [(Ωi − ai) ∩Bρ(x◦)] ∩ [(Ωj − aj) ∩Bρ(x◦)]

and consequently
0 ∈ [(Ωi − ai) ∩Bρ(x◦)]− [(Ωj − aj) ∩Bρ(x◦)]

and

ai − aj ∈ [Ωi ∩Bρ(x◦ + ai)]− [Ωj ∩Bρ(x◦ + aj)] ⊂ (Ωi ∩Bρ+r(x◦))− (Ωj ∩Bρ+r(x◦)).

Since ai and aj are arbitrary, one has

B2r ⊂ (Ωi ∩Bρ+r(x◦))− (Ωj ∩Bρ+r(x◦))

and θ′ρ+r[Ω1, . . . ,Ωn](x◦) ≥ 2r.
(ii) If θ′ρ[Ω1, . . . ,Ωn](x◦) > r ≥ 0, i, j ∈ {1, 2, . . . , n}, i 6= j, and a1, a2 ∈ Br/2 then

a1 − a2 ∈ Br and by definition (7)

a1 − a2 ∈ (Ωi ∩Bρ(x◦))− (Ωj ∩Bρ(x◦))

and consequently

0 ∈ ((Ωi − a1) ∩Bρ(x◦ − a1))− ((Ωj − a2) ∩Bρ(x◦ − a2)) ⊂
((Ωi − a1) ∩Bρ+r/2(x◦))− ((Ωj − a2) ∩Bρ+r/2(x◦)).

This means that

((Ωi − a1) ∩Bρ+r/2(x◦)) ∩ ((Ωj − a2) ∩Bρ+r/2(x◦)) 6= ∅.
The set in the left-hand side of the last inequality is exactly

(Ωi − a1) ∩ (Ωj − a2) ∩Bρ+r/2(x◦).

Thus θ′′ρ+r/2[Ω1, . . . ,Ωn](x◦) ≥ r/2. �

The next proposition summarizes some easy corollaries of Proposition 9.

Proposition 10. The following assertions hold:
(i) If θρ[Ω1, . . . ,Ωn](x◦) < ∞ then θ′r[Ω1, . . . ,Ωn](x◦) ≥ 2θρ[Ω1, . . . ,Ωn](x◦) for any

r ≥ ρ + θρ[Ω1, . . . ,Ωn](x◦).
(ii) If θρ[Ω1, . . . ,Ωn](x◦) = ∞ for some ρ > 0 then

supr>0 θ′r[Ω1, . . . ,Ωn](x◦) = ∞.
(iii) θ′ρ[Ω1, . . . ,Ωn](x◦) ≥ min(2θρ/2[Ω1, . . . ,Ωn](x◦), ρ).
(iv) θ′′r [Ω1, . . . ,Ωn](x◦) ≥ θ′ρ[Ω1, . . . ,Ωn](x◦)/2 for any

r ≥ θ′ρ[Ω1, . . . ,Ωn](x◦)/2 + ρ.
(v) θ′′ρ [Ω1, . . . ,Ωn](x◦) ≥ θ′ρ/2[Ω1, . . . ,Ωn](x◦)/2.
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It is possible to define some more constants based on (7) and (8) in the same way as (2)
and (3) were defined on the base of (1).

θ′[Ω1, . . . ,Ωn](x◦) = lim inf
ρ→+0

θ′ρ[Ω1, . . . ,Ωn](x◦)/ρ, (9)

θ′′[Ω1, . . . ,Ωn](x◦) = lim inf
ρ→+0

θ′′ρ [Ω1, . . . ,Ωn](x◦)/ρ, (10)

θ̂′[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi→x◦

θ′[Ω1 − ω1, . . . ,Ωn − ωn](0), (11)

θ̂′′[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi→x◦

θ′′[Ω1 − ω1, . . . ,Ωn − ωn](0). (12)

The next proposition follows from estimates (iii) and (v) of Proposition 10.

Proposition 11. The following assertions hold:
(i) 4θ′′[Ω1, . . . ,Ωn](x◦) ≥ θ′[Ω1, . . . ,Ωn](x◦) ≥ min(θ[Ω1, . . . ,Ωn](x◦), 1).
(ii) 4θ̂′′[Ω1, . . . ,Ωn](x◦) ≥ θ̂′[Ω1, . . . ,Ωn](x◦) ≥ min(θ̂[Ω1, . . . ,Ωn](x◦), 1).

The “zero” case is of special interest.

Proposition 12. The following assertions hold:
(i) (θ′′2ρ[Ω1, . . . ,Ωn](x◦) = 0) ⇒ (θ′ρ[Ω1, . . . ,Ωn](x◦) = 0) ⇒

(θρ/2[Ω1, . . . ,Ωn](x◦) = 0).
(ii) (θ′′[Ω1, . . . ,Ωn](x◦) = 0) ⇒ (θ′[Ω1, . . . ,Ωn](x◦) = 0) ⇒

(θ[Ω1, . . . ,Ωn](x◦) = 0).
(iii) (θ̂′′[Ω1, . . . ,Ωn](x◦) = 0) ⇒ (θ̂′[Ω1, . . . ,Ωn](x◦) = 0) ⇒

(θ̂[Ω1, . . . ,Ωn](x◦) = 0).

4. Special Cases

4.1. Convex sets. In the convex case, as one could expect, the concepts of extremality
and local extremality coincide and appear to be equivalent to both stationarity and weak
stationarity.

Proposition 13. Let Ω1, Ω2, . . . , Ωn be convex.
(i) If θρ[Ω1, . . . ,Ωn](x◦) > 0 for some ρ > 0 then θρ[Ω1, . . . ,Ωn](x◦) > 0 for all ρ > 0.
(ii) The function ρ → θρ[Ω1, . . . ,Ωn](x◦)/ρ, considered on the set of positive numbers,

is nonincreasing.
(iii) θ[Ω1, . . . ,Ωn](x◦) = supρ>0 θρ[Ω1, . . . ,Ωn](x◦)/ρ.
(iv) θ̂[Ω1, . . . ,Ωn](x◦) = θ[Ω1, . . . ,Ωn](x◦).

Proof. (i) Let θρ[Ω1, . . . ,Ωn](x◦) > 0 for some ρ > 0. Since the function ρ →
θρ[Ω1, . . . ,Ωn](x◦) is nondecreasing it is sufficient to show that θρ′ [Ω1, . . . ,Ωn](x◦) is pos-
itive for any positive ρ′ < ρ. Denote t = ρ′/ρ. It follows from (1) that for any positive
r < θρ[Ω1, . . . ,Ωn](x◦) and any ai ∈ Br, i = 1, 2, . . . , n, one has( n⋂

i=1

(Ωi − ai)
)⋂

Bρ(x◦) 6= ∅.
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Take arbitrary ai ∈ Btr, i = 1, 2, . . . , n, and select some

x ∈
( n⋂

i=1

(Ωi − ai/t)
)⋂

Bρ(x◦).

Then x + ai/t ∈ Ωi and, since Ωi is convex, xt + ai ∈ Ωi, where xt = x◦ + t(x− x◦). Thus

xt ∈
( n⋂

i=1

(Ωi − ai)
)⋂

Bρ′(x◦)

and consequently θρ′ [Ω1, . . . ,Ωn](x◦) ≥ tθρ[Ω1, . . . ,Ωn](x◦).
(ii) The last inequality can be rewritten as

θρ′ [Ω1, . . . ,Ωn](x◦)/ρ′ ≥ θρ[Ω1, . . . ,Ωn](x◦)/ρ.

(iii) The assertion follows from (ii) and the definition (2).
(iv) The inequality θ̂[Ω1, . . . ,Ωn](x◦) ≤ θ[Ω1, . . . ,Ωn](x◦) follows from the definition (3).

Let 0 < α < β < θ[Ω1, . . . ,Ωn](x◦). Then it follows from (iii) that there exists ρ > 0, such
that θρ[Ω1, . . . ,Ωn](x◦) > βρ and consequently( n⋂

i=1

(Ωi − ai)
)⋂

Bρ(x◦) 6= ∅

for any ai ∈ Bβρ, i = 1, 2, . . . , n. The last condition can be rewritten as( n⋂
i=1

(Ωi − x◦ − ai)
)⋂

Bρ 6= ∅.

Take arbitrary ωi ∈ Ωi ∩B(β−α)ρ(x◦). Then( n⋂
i=1

(Ωi − ωi − ai)
)⋂

Bρ 6= ∅

for any ai ∈ Bαρ and consequently

θρ[Ω1 − ω1, . . . ,Ωn − ωn](0) ≥ αρ

and
θ[Ω1 − ω1, . . . ,Ωn − ωn](0) ≥ α.

The conclusion follows from the definition (3). �

Proposition 14. Let Ω1, Ω2, . . . , Ωn be convex. Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) in
Definition 1.

If int Ωi 6= ∅, i = 1, 2, . . . , n− 1, then the first four conditions in Definition 1 are equiva-
lent to the following one:

n−1⋂
i=1

intΩi ∩ Ωn = ∅, (13)
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while condition (v) is equivalent to
n−1⋂
i=1

intΩi ∩ Ωn 6= ∅, (14)

Proof. The first assertion follows from Proposition 13. Condition (i) in Definition 1 implies
(13) (Proposition 4).

Let int Ωi 6= ∅, i = 1, 2, . . . , n− 1, and (13) hold true. Choose ω◦i ∈ Ωi, i = 1, 2, . . . , n−1,
and ρ > 0, such that B2ρ(ω◦i ) ⊂ int Ωi, i = 1, 2, . . . , n− 1. Denote

aik = k−1(x◦ − ω◦i ), i = 1, 2, . . . , n− 1, ank = 0.

We shall show that ( n⋂
i=1

(Ωi − aik)
)
∩Bρ(x◦) = ∅

for all sufficiently large k. If ‖aik‖ ≤ ρ then for i = 1, 2, . . . , n− 1 one has

(Ωi − aik) ∩Bρ(x◦) ⊂ Ωi ∩B2ρ(x◦)− aik = {ω − aik : ω ∈ Ωi ∩B2ρ(x◦)} =

{ω + k−1((ω◦i + ω − x◦)− ω) : ω ∈ Ωi ∩B2ρ(x◦)}.
In the last expression ω◦i + ω − x◦ ∈ B2ρ(ω◦i ) ⊂ intΩi and

ω + k−1((ω◦i + ω − x◦)− ω) ∈ intΩi

since Ωi is convex. Thus
(Ωi − aik) ∩Bρ(x◦) ⊂ intΩi

and it follows from (v) that ( n⋂
i=1

(Ωi − aik)
)
∩Bρ(x◦) = ∅.

This implies (ii) in Definition 1. �

Remark 5. As it follows from Proposition 14, for convex sets all of which except maybe
one are solid, the concept of extremality/stationarity takes the traditional form (13). From
the other hand, the concepts investigated in the current paper make sense and are applicable
for convex sets which are not necessarily solid.

4.2. Cones. Another special case that can be important for applications is the case of a sys-
tem of cones. It follows from the next proposition that all the properties under consideration
are determined by the constant θρ calculated for ρ = 1 (possibly for shifted cones).

Proposition 15. Let Ω1, Ω2, . . . , Ωn be cones. Then the following assertions hold.
(i) If ωi ∈ Ωi, i = 1, 2, . . . , n and ρ > 0 then

θρ[Ω1 − ω1, . . . ,Ωn − ωn](0) = ρθ1[Ω1 − ω1/ρ, . . . ,Ωn − ωn/ρ](0).

In particular, ρ → θρ[Ω1, . . . ,Ωn](0) is positively homogeneous:

θρ[Ω1, . . . ,Ωn](0) = ρθ1[Ω1, . . . ,Ωn](0).
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(ii) If ωi ∈ Ωi, i = 1, 2, . . . , n then

θ[Ω1 − ω1, . . . ,Ωn − ωn](0) = lim inf
t→∞

θ1[Ω1 − tω1, . . . ,Ωn − tωn](0).

In particular, θ[Ω1, . . . ,Ωn](0) = θ1[Ω1, . . . ,Ωn](0).
(iii) θ̂[Ω1, . . . ,Ωn](0) = infωi∈Ωi

θ1[Ω1 − ω1, . . . ,Ωn − ωn](0).

Proof. (i) Let ωi ∈ Ωi, i = 1, 2, . . . , n and ρ > 0. Since Ωi, i = 1, 2, . . . , n are cones inequality
(6) is equivalent to the condition( n⋂

i=1

(Ωi − ωi/ρ− ai/ρ)
)
∩B 6= ∅.

The conclusion follows from Proposition 7.
(ii) The assertion follows from (i) and the definition (2) by substituting ρ = 1/t.
(iii) The assertion follows from (ii) and the definition (3) since tωi when t → ∞ and

ωi → 0 can determine any point in Ωi. �

Proposition 16. Let Ω1, Ω2, . . . , Ωn be cones, x◦ = 0.
(i) (i) ⇔ (ii) ⇔ (iii) in Definition 1 and these conditions are equivalent to

θ1[Ω1, . . . ,Ωn](0) = 0.
(ii) The system of sets Ω1, Ω2, . . . , Ωn is weakly stationary at x◦ if and only if

inf
ωi∈Ωi

θ1[Ω1 − ω1, . . . ,Ωn − ωn](0) = 0.

Proposition 17. Let Ω1, Ω2, . . . , Ωn be cones. If θ′ρ[Ω1, . . . ,Ωn](0) > 0 for some ρ > 0
then Ωi − Ωj = X for any i, j ∈ {1, 2, . . . , n}, i 6= j.

Proof. Let θ′ρ[Ω1, . . . ,Ωn](0) > r > 0 for some ρ > 0 and i, j ∈ {1, 2, . . . , n}, i 6= j. It follows
from (7) that Br ⊂ (Ωi∩Bρ)−(Ωj∩Bρ). Then Br ⊂ Ωi−Ωj and consequently Ωi−Ωj = X
since Ωi − Ωj is a cone. �

4.3. Case n = 2. Considering (7) (and (9) and (11)) can be especially useful in the case of
two sets (n = 2). In this case one has θ′′ρ [Ω1,Ω2](x◦) = θρ[Ω1,Ω2](x◦) and the “derivate”
constants (10) and (12) reduce respectively to (2) and (3). It follows from Propositions 10
– 12 that the properties of θ′ρ[Ω1,Ω2](x◦) are very similar to those of θρ[Ω1,Ω2](x◦).

Proposition 18. The following assertions hold:
(i) (θρ[Ω1,Ω2](x◦) = 0) ⇒ (θ′ρ/2[Ω1,Ω2](x◦) = 0).
(ii) (θ′ρ[Ω1,Ω2](x◦) = 0) ⇒ (θρ/2[Ω1,Ω2](x◦) = 0).
(iii) (θ′[Ω1,Ω2](x◦) = 0) ⇔ (θ[Ω1,Ω2](x◦) = 0).
(iv) (θ̂′[Ω1,Ω2](x◦) = 0) ⇔ (θ̂[Ω1,Ω2](x◦) = 0).

Thus in the case of two sets all the concepts in Definition 1 can be equivalently described
in terms of (7), (9) and (11) instead of (1), (2) and (3). In particular, weak stationarity is
equivalent to “extended extremality” as defined in [18] (see also [19], [20]).
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On the other hand, the general case n ≥ 2 can be easily reduced to the case of two sets: one
can consider the system of two sets Ω̃1 = Ω1×Ω2×. . .×Ωn and Ω̃2 = {(x, x, . . . , x) : x ∈ X}
in Xn and the point x̃◦ = (x◦, x◦, . . . , x◦) ∈ Ω̃1 ∩ Ω̃2.

Proposition 19. The following inequalities hold:

θρ[Ω1, . . . ,Ωn](x◦) ≥ θρ[Ω̃1, Ω̃2](x̃◦) ≥ min(θ2ρ[Ω1, . . . ,Ωn](x◦)/2, ρ).

Proof. If 0 ≤ r < θρ[Ω̃1, Ω̃2](x̃◦) then

(Ω̃1 − ã) ∩ Ω̃2 ∩Bρ(x̃◦) 6= ∅

for any ã = (a1, a2, . . . , an) ∈ Br. Due to the definitions of Ω̃1 and Ω̃2 this means that for
any ai ∈ Br, i = 1, 2, . . . , n, there exists x ∈ Bρ(x◦), such that x ∈ Ωi − ai, i = 1, 2, . . . , n.
Thus, ( n⋂

i=1

(Ωi − ai)
)
∩Bρ(x◦) 6= ∅

and consequently θρ[Ω1, . . . ,Ωn](x◦) ≥ r. This proves the first inequality.
If 0 ≤ r < θ2ρ[Ω1, . . . Ωn](x◦)/2 then( n⋂

i=1

(Ωi − ai)
)
∩B2ρ(x◦) 6= ∅

for any ai ∈ B2r, i = 1, 2, . . . , n. In other words,

(Ω̃1 − ã) ∩ Ω̃2 ∩B2ρ(x̃◦) 6= ∅

for any ã ∈ B2r. Assume additionally that r ≤ ρ. Then

(Ω̃1 − ã1) ∩ (̃Ω2 − ã2) ∩Bρ(x̃◦) 6= ∅

for any ã1, ã2 ∈ Br. This proves the second inequality. �

Proposition 20. The system of sets Ω1, Ω2, . . . , Ωn is extremal (locally extremal, sta-
tionary, weakly stationary, regular) at x◦ if and only if the system of sets Ω̃1, Ω̃2 in Xn is
extremal (locally extremal, stationary, weakly stationary, regular) at x̃◦.

Remark 6. The analogs of Propositions 19 and 20 are true for the following system of two
sets in Xn−1: Ω̃1 = Ω1 × Ω2 × . . .× Ωn−1 and Ω̃2 = {(x, x, . . . , x) : x ∈ Ωn}.

5. Metric Inequality

Some other approaches based on comparing distances can be used for characterizing
stationarity/regularity properties of set systems. Let d(·, ·) be the distance function in X
associated with the norm. We will keep the same notation for point-to-set distances. Thus,
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d(x,Ω) = infω∈Ω ‖x− ω‖ is the distance from a point x to a set Ω and d(x, ∅) = ∞. Let us
introduce two more constants:

ϑ[Ω1, . . . ,Ωn](x◦) = lim sup
x→x◦

(
d(x,

n⋂
i=1

Ωi) / max
1≤i≤n

d(x,Ωi)

)
◦

, (15)

ϑ̂[Ω1, . . . ,Ωn](x◦) = lim sup
x→x◦
xi→0

(
d(x,

n⋂
i=1

(Ωi − xi)) / max
1≤i≤n

d(x + xi,Ωi)

)
◦

. (16)

The “extended” division operation (·/·)◦ is used in (15), (16) to simplify the definitions.
It makes division by zero legal. The formal rules are as follows: 1) (α/β)◦ = α/β, if β 6= 0;
2) (α/0)◦ = +∞, if α > 0; 3) (α/0)◦ = −∞, if α < 0; 4) (0/0)◦ = 0. The first three rules
are quite usual (the second and the third cases will never occur in (15), (16)). The fourth
rule is the most important one here. In the case x◦ ∈ int ∩n

i=1 Ωi it automatically leads to
ϑ̂[Ω1, . . . ,Ωn](x◦) = ϑ[Ω1, . . . ,Ωn](x◦) = 0. Otherwise the points where the numerator and
the denominator are both zero in the right-hand side of (15) or (16) can be ignored when
calculating the value of the upper limit.

Some easy corollaries of the definitions (15), (16) are summarized in the next two propo-
sitions.

Proposition 21. The following assertions hold:
(i) ϑ̂[Ω1, . . . ,Ωn](x◦) = lim supxi→0 ϑ[Ω1 − x1, . . . ,Ωn − xn](x◦).
(ii) If x◦ 6∈ int ∩n

i=1 Ωi then ϑ̂[Ω1, . . . ,Ωn](x◦) ≥ ϑ[Ω1, . . . ,Ωn](x◦) ≥ 1.
Otherwise ϑ̂[Ω1, . . . ,Ωn](x◦) = ϑ[Ω1, . . . ,Ωn](x◦) = 0.

Proposition 22. The following assertions hold:
(i) ϑ[Ω1, . . . ,Ωn](x◦) < ∞ if and only if there exists a β > 0 and a δ > 0 such that

d(x,
n⋂

i=1

Ωi) ≤ β max
1≤i≤n

d(x, Ωi) (17)

for all x ∈ Bδ(x◦). ϑ[Ω1, . . . ,Ωn](x◦) coincides with the exact lower bound of all
such β.

(ii) ϑ̂[Ω1, . . . ,Ωn](x◦) < ∞ if and only if there exists a β > 0 and a δ > 0 such that

d(x,

n⋂
i=1

(Ωi − xi)) ≤ β max
1≤i≤n

d(x + xi,Ωi) (18)

for all x ∈ Bδ(x◦), xi ∈ Bδ, i = 1, 2, . . . , n. ϑ̂[Ω1, . . . ,Ωn](x◦) coincides with the
exact lower bound of all such β.

The main “regularity” question is whether the corresponding constant is finite.

Remark 7. The condition formulated in part (i) of Proposition 22 is equivalent to the
regularity condition known as the metric inequality [12, 13, 29] (it is formulated in [12, 13, 29]
with the sum of the distances in the right-hand side instead of the maximum). The condition
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in part (ii) can be considered as the strong metric inequality. If (17) is valid for all x ∈ X
then the system of sets is said to be linear regular [28]. Collections of normal or downward
[34] sets are examples of linearly regular set systems.

Remark 8. The inequality ϑ̂[Ω1, . . . ,Ωn](x◦) ≥ ϑ[Ω1, . . . ,Ωn](x◦) can be strong. Take e.g.
Ω1 = Ω2 = {x◦}. Then evidently, ϑ[Ω1,Ω2](x◦) = 1, ϑ̂[Ω1,Ω2](x◦) = ∞. Thus, the strong
metric inequality is really stronger than its traditional counterpart.

The constant (16) appears to be closely related to (3).

Theorem 1. ϑ̂[Ω1, . . . ,Ωn](x◦) = 1/θ̂[Ω1, . . . ,Ωn](x◦).

Proof. Let us show that θ̂[Ω1, . . . ,Ωn](x◦) ≥ α for any α < 1/ϑ̂[Ω1, . . . ,Ωn](x◦). Chose an
arbitrary

β ∈ (ϑ̂[Ω1, . . . ,Ωn](x◦), 1/α).
Due to Proposition 22 there exists a δ > 0 such that (18) holds for all x ∈ Bδ(x◦), xi ∈ Bδ,
i = 1, . . . , n. Denote δ′ = δ/(α + 1). Let 0 < ρ ≤ δ′, ωi ∈ Ωi ∩Bδ′(x◦), ‖ai‖ ≤ αρ,
i = 1, . . . , n. Then

‖ωi − x◦ + ai‖ ≤ δ, i = 1, . . . , n,

and it follows from (18) for x = x◦, xi = ωi − x◦ + ai that the inequalities

d(0,
n⋂

i=1

(Ωi − ωi − ai)) ≤ β max
1≤i≤n

d(ωi + ai,Ωi) ≤ β max
1≤i≤n

‖ai‖ < ρ

hold true. Thus, (6) is valid, and it follows from Proposition 7 that the inequal-
ity θ̂[Ω1, . . . ,Ωn](x◦) ≥ α holds. Since α is arbitrary one has ϑ̂[Ω1, . . . ,Ωn](x◦) ≥
1/θ̂[Ω1, . . . ,Ωn](x◦).

Let us show that ϑ̂[Ω1, . . . ,Ωn](x◦) ≤ 1/α for any positive α < θ̂[Ω1, . . . ,Ωn](x◦). Due to
Proposition 7 there exists a δ > 0 such that (6) holds for all 0 < ρ ≤ δ, ωi ∈ Ωi ∩Bδ(x◦),
ai ∈ Bαρ, i = 1, . . . , n. Denote

δ′ = δ min[α/(α + 1), 1/(α + 3)]

and chose arbitrary points x ∈ Bδ′(x◦), xi ∈ Bδ′ , i = 1, . . . , n. Consider two cases.
1) d(x + xj ,Ωj) ≥ δ′(α + 1) for some j ∈ {1, . . . , n}. Take ρ = δ′/α, ωi = x◦, ai = xi.

Obviously ρ < δ, ‖ai‖ ≤ αρ, i = 1, . . . , n, and it follows from (6) that there exists an
x′ ∈ Bδ′/α(x◦) such that x′ + xi ∈ Ωi, i = 1, . . . , n. Thus,

d(x,
n⋂

i=1

(Ωi − xi)) ≤ ‖x− x′‖ ≤ δ′(α + 1)/α ≤ (1/α) max
1≤i≤n

d(x + xi,Ωi),

which implies ϑ̂[Ω1, . . . ,Ωn](x◦) ≤ 1/α due to Proposition 22.
2) d(x + xi,Ωi) < δ′(α + 1), i = 1, . . . , n. For any i = 1, . . . , n chose a point ωi ∈ Ωi such

that ‖x + xi − ωi‖ < δ′(α + 1). Evidently

‖ωi − x◦‖ < δ′(α + 3) ≤ δ.



STATIONARITY AND REGULARITY OF SET SYSTEMS 15

Take ai = x + xi − ωi, ρ = max1≤i≤n ‖ai‖ /α. Then ρ ≤ δ, ‖ai‖ ≤ αρ, i = 1, . . . , n, and one
can use condition (6) again: there exists an x′ ∈ Bρ(x) such that x′+xi = x′−x+ωi+ai ∈ Ωi,
i = 1, . . . , n. Consequently

d(x,
n⋂

i=1

(Ωi − xi)) ≤ ‖x− x′‖ ≤ (1/α) max
1≤i≤n

‖x + xi − ωi‖ .

Since ‖x + xi − ωi‖ can be made arbitrary close to d(x + xi,Ωi) by the appropriate choice
of ωi ∈ Ωi, the last inequality implies that

d(x,
n⋂

i=1

(Ωi − xi)) ≤ (1/α) max
1≤i≤n

d(x + xi,Ωi)

and consequently ϑ̂[Ω1, . . . ,Ωn](x◦) ≤ 1/α.
Since α is arbitrary one has ϑ̂[Ω1, . . . ,Ωn](x◦) ≤ 1/θ̂[Ω1, . . . ,Ωn](x◦). �

Corollary 1.1. The system of sets Ω1, Ω2, . . . , Ωn is regular at x◦ if and only if
ϑ̂[Ω1, . . . ,Ωn](x◦) < ∞. Under these conditions ϑ[Ω1, . . . ,Ωn](x◦) < ∞.

6. Boundary Condition

Another “extremal” setting based on considering set systems was developed in [4]. Instead
of considering the intersection of closed sets Ω1, Ω2, . . . , Ωn the authors consider their sum

n∑
i=1

Ωi =

{
ω =

n∑
i=1

ωi : ωi ∈ Ωi, i = 1, 2, . . . , n

}
.

The sets are not assumed to have a common point. Let x◦i ∈ Ωi, i = 1, 2, . . . , n. The main
“extremal” property investigated in [4] is whether the boundary condition

n∑
i=1

x◦i ∈ bd

(
n∑

i=1

Ωi

)
(19)

holds true.
Not surprisingly this condition appears closely related to the extremality concept consid-

ered above. In the framework of the current paper we are interested not only in extremality,
but also in regularity properties. Therefore a little more general setting will be discussed
here. We are going to introduce one more constant:

ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x
◦
n) = sup

{
r ≥ 0 : Br(

n∑
i=1

x◦i ) ⊂
n∑

i=1

(Ωi ∩Bρ(x◦i ))

}
. (20)

Note that the sets Ω1, Ω2, . . . , Ωn are considered locally when defining (20). The condition
(19) is equivalent to ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x

◦
n) = 0 for any ρ > 0.

Proposition 23. Define Ω̃1 = Ω1×Ω2× . . .×Ωn, Ω̃2 = {(x1, x2, . . . , xn) ∈ Xn :
∑n

i=1 xi =∑n
i=1 x◦i }, x̃◦ = (x◦1, x

◦
2, . . . , x

◦
n) ∈ Xn. The following assertions hold for any ρ > 0:

(i) θ2ρ[Ω̃1, Ω̃2](x̃◦) ≥ min(ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x
◦
n)/(2n), ρ).
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(ii) ζ2ρ[Ω1, . . . ,Ωn](x◦1, . . . , x
◦
n) ≥ min(θρ[Ω̃1, Ω̃2](x̃◦), ρ).

Proof. Evidently the sets Ω̃1, Ω̃2 are closed and x̃◦ ∈ Ω̃1 ∩ Ω̃2.
(i) Let 0 ≤ r < ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x

◦
n). Select arbitrary points ã1, ã2 ∈ Br/(2n) ⊂ Xn.

Then ã = ã1 − ã2 ∈ Br/n. If ã = (a1, a2, . . . , an) then ai ∈ Br/n ⊂ X, i = 1, 2, . . . , n, and
a =

∑n
i=1 ai ∈ Br. It follows from (20) that

n∑
i=1

x◦i + a ∈
n∑

i=1

(Ωi ∩Bρ(x◦i )).

This means that there exist ωi ∈ Ωi ∩Bρ(x◦i ), i = 1, 2, . . . , n, such that
n∑

i=1

(ωi − ai) =
n∑

i=1

x◦i .

In other words, ω̃ − ã ∈ Ω̃2, where ω̃ = (ω1, ω2, . . . , ωn) ∈ Ω̃1 ∩Bρ(x̃◦), and consequently

ω̃ − ã1 ∈ (Ω̃1 − ã1) ∩ (Ω̃2 − ã2) ∩Bρ+r/(2n)(x̃◦).

Assume additionally that r ≤ 2nρ. Then

(Ω̃1 − ã1) ∩ (Ω̃2 − ã2) ∩B2ρ(x̃◦) 6= ∅

and it follows from the definition (1) that θ2ρ[Ω̃1, Ω̃2](x̃◦) ≥ r/(2n). This proves the first
assertion.

(ii) Let 0 ≤ r < θρ[Ω̃1, Ω̃2](x̃◦). Select arbitrary a ∈ Br ⊂ X and take ã = (a, 0, . . . , 0) ∈
Xn. Then ã ∈ Br ⊂ Xn and it follows from (1) that

(Ω̃1 − ã) ∩ Ω̃2 ∩Bρ(x̃◦) 6= ∅.

This means that there exist ωi ∈ Ωi ∩Bρ+r(x◦i ), i = 1, 2, . . . , n, such that
n∑

i=1

ωi − a =
n∑

i=1

x◦i .

In other words,
n∑

i=1

x◦i + a ∈
n∑

i=1

(Ωi ∩Bρ+r(x◦i )).

Assume additionally that r ≤ ρ. Then it follows from (20) that

ζ2ρ[Ω1, . . . ,Ωn](x◦1, . . . , x
◦
n) ≥ r.

This proves the second assertion. �

Proposition 23 implies the following “extremality” statement.

Proposition 24. Let Ω̃1, Ω̃2, x̃◦ be as in Proposition 23. The following assertions hold:
(i) ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x

◦
n) = 0 for some ρ > 0 if and only if the system of sets Ω̃1,

Ω̃2 is locally extremal at x̃◦.
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(ii) ζρ[Ω1, . . . ,Ωn](x◦1, . . . , x
◦
n) = 0 for all ρ > 0 (i.e. the boundary condition (19) holds

true) if and only if the system of sets Ω̃1, Ω̃2 is extremal at x̃◦.

Thus, the boundary condition for a set system (both in local and global forms) is equiv-
alent to the (corresponding version of) extremality for another set system. The opposite
statement is also true.

Proposition 25. Let Ω1, Ω2, . . . , Ωn be closed sets in X and x◦ ∈ ∩n
i=1Ωi. Define Ω̃1 =

Ω1 × Ω2 × . . . × Ωn, Ω̃2 = {(x, x, . . . , x) ∈ Xn : x ∈ X}, x̃◦ = (x◦, x◦, . . . , x◦) ∈ X̃n. The
following assertions hold for any ρ > 0:

(i) ζ2ρ[Ω̃1, Ω̃2](x̃◦,−x̃◦) ≥ min(θρ[Ω1, . . . ,Ωn](x◦), ρ).
(ii) θρ[Ω1, . . . ,Ωn](x◦) ≥ ζρ[Ω̃1, Ω̃2](x̃◦,−x̃◦).

Proof. Evidently the sets Ω̃1, Ω̃2 are closed, x̃◦ ∈ Ω̃1, −x̃◦ ∈ Ω̃2 and 0 ∈ Ω̃1 + Ω̃2.
(i) Let 0 ≤ r < θρ[Ω1, . . . ,Ωn](x◦). Select arbitrary ã = (a1, a2, . . . , an) ∈ Br ⊂ Xn.

Then ai ∈ Br ⊂ X, i = 1, 2, . . . , n, and it follows from (1) that( n⋂
i=1

(Ωi − ai)
)⋂

Bρ(x◦) 6= ∅. (21)

This means that there exists ω̃ ∈ Ω̃1 ∩ Bρ+r(x̃◦), such that ω̃ − ã ∈ Ω̃2 ∩ Bρ(x̃◦), or
ã− ω̃ ∈ Ω̃2 ∩Bρ(−x̃◦). Consequently

ã ∈
(
Ω̃1 ∩Bρ+r(x̃◦)

)
+
(
Ω̃2 ∩Bρ(−x̃◦)

)
.

Since ã is arbitrary one has

Br ⊂
(
Ω̃1 ∩Bρ+r(x̃◦)

)
+
(
Ω̃2 ∩Bρ(−x̃◦)

)
.

Assume additionally that r ≤ ρ. Then it follows from (20) that the inequality
ζ2ρ[Ω̃1, Ω̃2](x̃◦,−x̃◦) ≥ r holds. This proves the first assertion.

(ii) Let 0 ≤ r < ζρ[Ω̃1, Ω̃2](x̃◦,−x̃◦). Select arbitrary ai ∈ Br ⊂ X, i = 1, 2, . . . , n, and
set ã = (a1, a2, . . . , an). Then ã ∈ Br ⊂ Xn and it follows from (20) that

ã ∈
(
Ω̃1 ∩Bρ(x̃◦)

)
+
(
Ω̃2 ∩Bρ(−x̃◦)

)
.

This means that there exist ωi ∈ Ωi ∩ Bρ(x◦), i = 1, 2, . . . , n, and x ∈ Bρ(x◦), such that
ai = ωi − x, i = 1, 2, . . . , n. Thus, x = ωi − ai ∈ (Ωi − ai)∩Bρ(x◦), i = 1, 2, . . . , n. In other
words, (21) holds true. Due to (1) this proves the second assertion. �

Proposition 26. Let Ω1, Ω2, . . . , Ωn, Ω̃1, Ω̃2, x◦, x̃◦ be as in Proposition 25. The following
assertions hold:

(i) The system of sets Ω1, Ω2, . . . , Ωn is locally extremal at x◦ if and only if
ζρ[Ω̃1, Ω̃2](x̃◦,−x̃◦) = 0 for some ρ > 0.

(ii) The system of sets Ω1, Ω2, . . . , Ωn is extremal at x◦ if and only if
ζρ[Ω̃1, Ω̃2](x̃◦,−x̃◦) = 0 for all ρ > 0.

Remark 9. The four propositions presented in this section extend and improve Proposition
2 from [4], which actually contained the following two implications (for the case n = 2):
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(i) (19) ⇒ the system of sets Ω̃1, Ω̃2 is locally extremal at x̃◦, where Ω̃1, Ω̃2, x̃◦ are as
in Proposition 23.

(ii) The system of sets Ω1, Ω2, . . . , Ωn is locally extremal at x◦ ⇒ x̃◦ ∈ bd (Ω̃1 + Ω̃2),
where Ω1, Ω2, . . . , Ωn, Ω̃1, Ω̃2, x◦, x̃◦ are as in Proposition 25.

The first assertion is covered by Proposition 24 above. The second one is not true. Firstly,
there should be 0 instead of x̃◦ in the right-hand side of the implication. Secondly, the local
extremality leads to the local version of (19):

0 ∈ bd
((

Ω̃1 ∩Bρ(x̃◦)
)

+
(
Ω̃2 ∩Bρ(−x̃◦)

))
for some ρ > 0 (see Proposition 26).

Remark 10. Two more constants can be defined based on (20) in the same way as (2)
and (3) were defined on the base of (1). One can use them for defining the correspondent
stationarity and regularity notions. Due to Propositions 23 and 25 they will be equivalent to
the corresponding notions investigated in the preceding sections.

7. Regularity of a Single Set

The case of a single set is not covered by the definitions and results presented above. Let
Ω be a closed set in X with x◦ ∈ Ω.

Definition 2. Ω is extremal (locally extremal, stationary, weakly stationary, regular) at x◦

if the system of two sets {Ω, Ω} is extremal (locally extremal, stationary, weakly stationary,
regular) at x◦.

As it follows from Proposition 18 in the case of two sets the constants (7), (9), (11)
are convenient for describing extremality-stationarity-regularity properties. In the current
setting they take the following form:

θρ[Ω](x◦) = sup{r ≥ 0 : Br ⊂ (Ω ∩Bρ(x◦))− (Ω ∩Bρ(x◦))}, (22)

θ[Ω](x◦) = lim inf
ρ→+0

θρ[Ω](x◦)/ρ, (23)

θ̂[Ω](x◦) = lim inf
ω1,ω2

Ω→x◦
θ′[Ω− ω1,Ω− ω2](0). (24)

Remark 11. Note that (24) is defined on the basis of (9), not of (23). This is because two
different shifts of a single set make two different sets.

Remark 12. The concept of set regularity adopted in Definition 2 is related to the property
of Ω−Ω to have the nonempty interior. It differs from other existing definitions of tangential
or normal regularity (see [3, 5, 6, 23]). For example, it follows from Proposition 29 below
that any convex set with the empty interior is extremal at each point.

Application of the results of the previous sections leads to the following statements.

Proposition 27. Ω is locally extremal at x◦ if and only if there exists a number ρ > 0 and
a sequence {ak} ⊂ X tending to zero, such that

Ω ∩ (Ω− ak) ∩Bρ(x◦) = ∅, k = 1, 2, . . . .
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Proposition 28. The following assertions are equivalent:
(i) x◦ ∈ bd Ω.
(ii) limρ→+0 θρ[Ω](x◦) = 0.
(iii) θ̂[Ω](x◦) ≤ 1.

Proposition 29. Let Ω be convex. The following assertions are equivalent:
(i) Ω is extremal at x◦.
(ii) Ω is locally extremal at x◦.
(iii) Ω is stationary at x◦.
(iv) Ω is weakly stationary at x◦.
(v) int Ω = ∅.

Proposition 30. Let Ω be a cone. The following assertions are equivalent:
(i) Ω is extremal at 0.
(ii) Ω is locally extremal at 0.
(iii) Ω is stationary at 0.
(iv) θ1[Ω](0) = 0.

Proposition 31. Let Ω be a cone. Ω is weakly stationary at 0 if and only if

inf
ω1,ω2∈Ω

θ′[Ω− ω1,Ω− ω2](0) = 0.

Remark 13. If Ω is a cone, the condition θρ[Ω](0) > 0 for some ρ > 0 means that Ω is
nonflattened (nonoblate) [35] which in its turn implies that Ω is generating: Ω − Ω = X.
If X is Banach these conditions are actually equivalent (see [1]).

8. Extremality, Stationarity and Regularity of Multifunctions

It is not surprising that the extremality-stationarity-regularity concepts defined above for
set systems are closely related to the similar notions for set-valued mappings (multifunc-
tions).

Let F : X ⇒ Y be a multifunction between normed spaces X and Y with a graph
gphF = {(x, y) ∈ X × Y : y ∈ F (x)} and (x◦, y◦) ∈ gph F .

Similarly to (1)–(3) the following three constants can be defined for characterizing the
local behavior of F near (x◦, y◦):

θρ[F ](x◦, y◦) = sup{r ≥ 0 : Br(y◦) ⊂ F (Bρ(x◦))}, (25)

θ[F ](x◦, y◦) = lim inf
ρ→+0

θρ[F ](x◦, y◦)
ρ

, (26)

θ̂[F ](x◦, y◦) = lim inf
(x,y)

gph F→ (x◦,y◦)

θ[F ](x, y). (27)

Definition 3. The multifunction F : X ⇒ Y is
(i) extremal at (x◦, y◦) if θρ[F ](x◦, y◦) = 0 for all ρ > 0.
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(ii) locally extremal at (x◦, y◦) if θρ[F ](x◦, y◦) = 0 for some ρ > 0.
(iii) stationary at (x◦, y◦) if θ[F ](x◦, y◦) = 0.
(iv) weakly stationary at (x◦, y◦) if θ̂[F ](x◦, y◦) = 0.
(v) regular at (x◦, y◦) if θ̂[F ](x◦, y◦) > 0.

Remark 14. The constants (25)–(27) are nonnegative. They characterize the covering
property [7] (or its absence when the corresponding constant is zero) of F either at the point
(x◦, y◦) (constants (25), (26)) or in its neighborhood (constant (27)). It is well known (see
e.g. [25, 33]) that the covering in a neighborhood (or linear openness) is equivalent to the
metric (or pseudo) regularity property [11, 13, 14, 30] (and to the Aubin property [2, 33]
of the inverse mapping). Thus the regularity in part (v) of Definition 3 is actually the
metric regularity. Besides the “covering” collection of constants (25)–(27) one can define
the corresponding “regularity” one in a similar way.

The relations between (25)–(27) and (1)–(3) are given by the following theorem.

Theorem 2. Define Ω1 = gph (F ), Ω2 = X × {y◦}. The following assertions hold.
(i) θρ[Ω1,Ω2](x◦, y◦) ≤ min(θρ[F ](x◦, y◦)/2, ρ) ≤ θ2ρ[Ω1,Ω2](x◦, y◦) for any ρ > 0.
(ii) θ[Ω1,Ω2](x◦, y◦) ≤ min(θ[F ](x◦, y◦)/2, 1) ≤ 2θ[Ω1,Ω2](x◦, y◦).
(iii) θ̂[Ω1,Ω2](x◦, y◦) ≤ min(θ̂[F ](x◦, y◦)/2, 1) ≤ 2θ̂[Ω1,Ω2](x◦, y◦).

Proof. (i) Let ρ > 0 and 0 ≤ r < θρ[Ω1,Ω2](x◦, y◦). Due to (1) this means that

(Ω1 − (a1, b1)) ∩ (Ω2 − (a2, b2)) ∩Bρ(x◦, y◦) 6= ∅

for any a1, b1, a2, b2 ∈ Br. Since

Ω2 − (a2, b2) = X × {y◦ − b2},

the last condition implies that for any b1, b2 ∈ Br one has y◦ − b2 ∈ Bρ(y◦) and

F−1(y◦ + b1 − b2) ∩Bρ(x◦) 6= ∅.

The first inclusion immediately yields r ≤ ρ while the second condition leads to the relation

B2r(y◦) ⊂ F (Bρ(x◦)),

which due to (25) means that θρ[F ](x◦, y◦) ≥ 2r. This proves the first inequality in (i).
Let 0 ≤ r ≤ ρ and 2r < θρ[F ](x◦, y◦), i.e. B2r(y◦) ⊂ F (Bρ(x◦)). Then

B2r(y◦) ⊂ F (B2ρ(x◦ + a1))

for any a1 ∈ Br. Consequently

F−1(y◦ + b1 − b2) ∩B2ρ(x◦ + a1) 6= ∅

for any a1, b1, b2 ∈ Br. The last condition can be rewritten as

Ω1 ∩ (Ω2 − (0, b2 − b1)) ∩B2ρ(x◦ + a1)× {y◦ + b1 − b2} 6= ∅

or
(Ω1 − (a1, b1)) ∩ (Ω2 − (a2, b2)) ∩B2ρ(x◦)× {y◦ − b2} 6= ∅
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for any a1, b1, a2, b2 ∈ Br. This means that θ2ρ[Ω1,Ω2](x◦, y◦) ≥ r, which proves the second
inequality in (i).

Inequalities (ii) and (iii) follow from (i). �

Corollary 2.1. Let Ω1, Ω2 be as in Theorem 2. The following assertions hold.
(i) F is extremal at (x◦, y◦) ⇔ {Ω1,Ω2} is extremal at (x◦, y◦).
(ii) F is locally extremal at (x◦, y◦) ⇔ {Ω1,Ω2} is locally extremal at (x◦, y◦).
(iii) F is stationary at (x◦, y◦) ⇔ {Ω1,Ω2} is stationary at (x◦, y◦).
(iv) F is weakly stationary at (x◦, y◦) ⇔ {Ω1,Ω2} is weakly stationary at (x◦, y◦).
(v) F is regular at (x◦, y◦) ⇔ {Ω1,Ω2} is regular at (x◦, y◦).

Thus, all the properties of the multifunction F defined in Definition 3 can be deduced
from the corresponding properties of the set system. The contrary is also true and the
concepts in Definitions 1 and 3 are in a sense equivalent.

Let us consider again a set system {Ω1, Ω2, . . . , Ωn} (n > 1) with x◦ ∈ ∩n
i=1Ωi.

Theorem 3. Define F : X ⇒ Xn : F (x) = (Ω1 − x)× (Ω2 − x)× . . .× (Ωn − x), x ∈ X.
The following assertions hold.

(i) θρ[Ω1, . . . Ωn](x◦) = θρ[F ](x◦, 0, . . . , 0) for any ρ > 0.
(ii) θ[Ω1, . . . Ωn](x◦) = θ[F ](x◦, 0, . . . , 0).
(iii) θ̂[Ω1, . . . Ωn](x◦) = θ̂[F ](x◦, 0, . . . , 0).

Proof. Due to the definition of F condition x◦ ∈ ∩n
i=1Ωi is equivalent to the inclusion

(0, . . . , 0) ∈ F (x◦), and condition

Br(0, . . . , 0) ⊂ F (Bρ(x◦))

means that for any ai ∈ Br, i = 1, 2, . . . , n there exists an x ∈ Bρ(x◦) such that ai ∈ Ωi−x,
i = 1, 2, . . . , n. This is equivalent to( n⋂

i=1

(Ωi − ai)
)⋂

Bρ(x◦) 6= ∅.

Due to the definitions (25) and (1) this proves (i). (ii) and (iii) follow immediately. �

Corollary 3.1. Let F : X ⇒ Xn be as in Theorem 3. The following assertions hold.
(i) {Ω1, . . . Ωn} is extremal at x◦ ⇔ F is extremal at (x◦, 0, . . . , 0).
(ii) {Ω1, . . . Ωn} is locally extremal at x◦ ⇔ F is locally extremal at (x◦, 0, . . . , 0).
(iii) {Ω1, . . . Ωn} is stationary at x◦ ⇔ F is stationary at (x◦, 0, . . . , 0).
(iv) {Ω1, . . . Ωn} is weakly stationary at x◦ ⇔ F is weakly stationary at

(x◦, 0, . . . , 0).
(v) {Ω1, . . . Ωn} is regular at x◦ ⇔ F is regular at (x◦, 0, . . . , 0).

Remark 15. The multifunction F defined in Theorem 3 was used in [13] and other pa-
pers when investigating properties of set systems. Due to Proposition 22 (ii) and Corollar-
ies 1.1 and 3.1 the “strong metric inequality” (18) is equivalent to the regularity of F at
(x◦, 0, . . . , 0). It is not difficult to show that the metric inequality (17) is equivalent to the
inverse mapping F−1 being Lipschitz upper semicontinuous [32] at 0.
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9. Dual Criteria

The stationarity and regularity properties of set systems were defined above in terms
of primal space elements. They admit some dual characterizations in terms of “normal”
elements.

Let X∗ denote the space (topologically) dual to X and 〈·, ·〉 be the bilinear form defining
duality between X and X∗.

Recall that the (Fréchet) normal cone to a set Ω at x◦ ∈ Ω is defined as

N(x◦|Ω) =

{
x∗ ∈ X∗ : lim sup

x
Ω→x◦

〈x∗, x− x◦〉
‖x− x◦‖

≤ 0

}
. (28)

This convex cone is a natural (and one of the simplest) generalization of the normal cone in
the sense of convex analysis.

Let us define one more constant for the system of closed sets Ω1,Ω2, . . . ,Ωn:

η[Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf

{(∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ /
n∑

i=1

‖x∗i ‖

)
∞

:

x∗i ∈ N(xi|Ωi), xi ∈ Ωi ∩Bδ(x◦), i = 1, . . . , n

}
. (29)

One more “extended” division operation (·, ·)∞ is used here. It differs from the (·, ·)◦ op-
eration, which was used in (15), (16), in the fourth rule definition: 4) (0/0)∞ = ∞. This
allows us to exclude the case x∗1 = x∗2 = · · · = x∗n = 0 when calculating (29). If this is the
only case (x◦ ∈ int ∩n

i=1 Ωi) one automatically gets η[Ω1, . . . ,Ωn](x◦) = ∞.
Note that the normal cones are “calculated” in (29) not at x◦ but at the points from

its neighborhood the size of which then tends to zero. This is an example of a “fuzzy”
definition.

The definition (29) can be simplified a little if to make use of the strict δ-normal cone
[16, 17, 20] (δ ≥ 0) to a closed set Ω at x◦ ∈ Ω:

N̂δ(x◦|Ω) =
⋃
{N(x|Ω) : x ∈ Ω ∩Bδ(x◦)} . (30)

(29) takes the following form:

η[Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf

{(∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ /

n∑
i=1

‖x∗i ‖

)
∞

:

x∗i ∈ N̂δ(x◦|Ωi), i = 1, . . . , n,

}
. (31)

Obviously N(x◦|Ω) ⊂ N̂δ(x◦|Ω) for any δ ≥ 0. Contrary to (28) the cone (30) is nonconvex
in general.
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One can use also the limiting normal cone [22, 23] based on (28), (30):

N̄(x◦| Ω) =
⋂
δ>0

cl ∗N̂δ(x◦| Ω), (32)

where the symbol cl ∗ denotes weak∗ sequential closure of a set (a collection of the limits of
all weakly∗ convergent sequences of elements of this set) in the dual space. In other words,
x∗ ∈ N̄(x◦|Ω) ⇔ there exist sequences {xk} ⊂ Ω, {x∗k} ⊂ X∗ such that x∗k ∈ N(xk|Ω),

k = 1, 2, . . . , and xk → x◦, x∗k
w∗

→ x∗ when k →∞. The analog of (29), (31) is defined as

η̄[Ω1, . . . ,Ωn](x◦) = inf

{(∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ /
n∑

i=1

‖x∗i ‖

)
∞

:

x∗i ∈ N̄(x◦|Ωi), i = 1, . . . , n,

}
. (33)

Remark 16. Of course, η̄[Ω1, . . . ,Ωn](x◦) = η[Ω1, . . . ,Ωn](x◦) if dim X < ∞. To be able to
apply (32) and (33) in infinite dimensions one needs to impose additional compactness-type
assumptions guaranteeing nontriviality of the limits in the weak∗ topology (see. [27]).

The condition η[Ω1, . . . ,Ωn](x◦) = 0 plays a crucial role when characterizing weak sta-
tionarity of the set system.

(29) can be rewritten as

η[Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf

{∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ :

x∗i ∈ N̂δ(x◦|Ωi), i = 1, . . . , n,

n∑
i=1

‖x∗i ‖ = 1

}
. (34)

Proposition 32. η[Ω1, . . . ,Ωn](x◦) = 0 if and only if for any δ > 0 there exist elements

ωi ∈ Ωi ∩Bδ(x◦), x∗i ∈ N(ωi|Ωi), i = 1, 2, . . . , n,

such that
n∑

i=1

‖x∗i ‖ = 1,

∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ < δ.

Remark 17. Adopting the terminology from [15, 18, 19, 22] (based on [8]) the condition
η[Ω1, . . . ,Ωn](x◦) = 0 (and its representation in Proposition 32) can be addressed to as the
generalized Euler equation. It can be considered as (some kind of) a separation property
for nonconvex sets. Note that it is formulated in a “fuzzy” form.

The next theorem proved in [21] gives the relations between (31) and (3) and dual con-
ditions of weak stationarity and regularity of set systems.
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Theorem 4. The following inequality holds:

θ̂[Ω1, . . . ,Ωn](x◦) ≤ η[Ω1, . . . ,Ωn](x◦). (35)

If X is Asplund and θ̂[Ω1, . . . ,Ωn](x◦) < 1 then

η[Ω1, . . . ,Ωn](x◦) ≤ θ̂[Ω1, . . . ,Ωn](x◦)

1− θ̂[Ω1, . . . ,Ωn](x◦)
. (36)

The first part of the theorem is elementary. The proof of the second part (the Asplund
space case) is based on the application of the two fundamental results of variational analysis:
the Ekeland variational principle [9] and the sum rule due to M. Fabian [10]. Recall that
a Banach space is called Asplund (see [31, 36]) if any continuous convex function on it is
Fréchet differentiable on a dense set of points. Asplund spaces form a rather broad subclass
of Banach spaces. It contains e.g. all reflexive spaces and all spaces that admit equivalent
norms, Fréchet differentiable at all nonnull points.

Corollary 4.1. If η[Ω1, . . . ,Ωn](x◦) = 0 then the system of sets Ω1, Ω2, . . . , Ωn is weakly
stationary at x◦.

If X is Asplund then the Extended extremal principle is true:
(i) The system Ω1, Ω2, . . . , Ωn is weakly stationary at x◦ if and only if

η[Ω1, . . . ,Ωn](x◦) = 0.

Remark 18. Due to Proposition 1 it follows from the second part of Corollary 4.1 that in
the Asplund space setting the equality η[Ω1, . . . ,Ωn](x◦) = 0 (the generalized Euler equation)
is a necessary condition of local extremality of the set system. This result first proved in
[22] (in a slightly weaker form) is currently known as the Extremal principle [24, 26]. The
stronger condition (i) in Corollary 4.1 is called the Extended extremal principle [20]. Taking
into account the extremal characterizations of Asplund spaces in [26] one can conclude that
asplundity of the space is not only sufficient but also necessary for the Extended extremal
principle to be valid (see [20]).

Theorem 5. The following assertions are equivalent:
(i) X is an Asplund space.
(ii) The Extremal principle is valid in X.
(iii) The Extended extremal principle is valid in X.
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