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Abstract. A 36-km road built in 1961 between Ayers Rock (Uluru) and the Olgas (Kata Tjuta), Northern Territory,
Australia had seriously deteriorated by the 1980s. A newly aligned road, which was ecologically located and avoid
sensitive Aboriginal sites, was completed early in 1991. The old road was rehabilitated by deep ripping,filling with imported
sand and topsoil and by grading logs and windrows1 over the new surface. This paper reports on the effectiveness of the
rehabilitation technique used in reinstating vegetation over 8 years and considers whether this rehabilitation aim was met.
Plant colonisationand successionweremonitoredon15pairedplots, one in the rehabilitated roadand theother in theadjacent
undisturbed habitat (with four exceptions) and also on the windrows. Sites at eight creek crossings and those subject to fire
and rabbit activity were also monitored. Different landscape units responded in different ways to the rehabilitation.
Herbaceous species from imported sand plainfill and top soil eventually dominated the road where they were introduced and
were likely to persist in most areas because of local recruitment. The revegetation of the road has stabilised the old road
surface as observed by the reduced erosion although succession did not always approach the reference site communities
because of a greater resemblance to the Simpson Land System. Over the 8 years of monitoring considerable changes in
vegetation occurred and are probably continuing. Only the road sites in the Simpson Land System approached the condition
of the adjacent undisturbed vegetation because the vegetation of the other two land systems became closer to that of
the Simpson Land System rather than to that of the surrounding vegetation. It is recommended that the introduced
Buffel grass, known to alter landscape-level processes by reducing native herbaceous species and increasing risk of
high intensity wildfire, which is most evident at creek crossings, should be controlled. Recommendations are made for
improved management.

Additional keywords: Karee Land System, Killen Land System, plant density, plant succession, old road, Simpson Land
System.

Introduction

Long-term monitoring is vital in order to understand responses
of vegetation structure and ecological processes over temporal
and spatial scales in natural environments (Tongway and Ludwig
2007). These types of studies are particularly relevant to
vegetation rehabilitation efforts but little, if any, long-term
monitoring has been carried out in Australia (Thompson and
Thompson 2004; Clarke et al. 2005). Although rehabilitation
practices and management have increased in number over the
last few decades (McDonald and Williams 2009; Christian-Smith
and Merenlender 2010; Suding 2011), most work in Australia has
been associated with restoring mined sites or riparian zones
(Norman et al. 2006; Grant and Koch 2007). Arid-zone
restoration is particularly problematical because of variable

rainfall (Allen 1995) and seeding is a problem because of removal
by seed-harvesting ants (DeFalco et al. 2009). No attempts have
been yet documented in Australia of revegetation of a linear
feature, such as a road, in the arid zone.

Impacts on the native arid-zone vegetation recorded over the
last 200 years since European settlement include variable weather
regimes, increased incident and extent of fire, grazing, invasive
species and mining (Cohen 1990; Bowman 1998; Sinclair 2005;
Stafford Smith et al. 2007). The most benign being fire as soil
surface is little disturbed and the seed bank can survive
(Wijayratne and Pyke 2012). It is well documented that grazing of
hard-hoofed stock not only damages the actual vegetation but
also breaks up the fragile cryptogamic crust essential for
sustainable ecosystem function (Dunne 1989). The damage from
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feral vertebrates, such as the rabbit, has also been well
documented (Moseby et al. 2009) but the impact of invasive
weeds, such as Buffel grass, now increasing its range, has only
recently been reported (Clarke et al. 2005; Smyth et. al. 2009;
Miller et al. 2010). Revegetation in the arid zone is difficult to
achieve partly because of the low, sporadic and unpredictable
annual rainfall. Rehabilitation of a lengthy, heavily used road
requires techniques not before attempted.

The closure and rehabilitation of the 36 km of degraded main
road in Australia’s so-called arid ‘Red Centre’ between Ayers
Rock (Uluru) and the Olgas (Kata Tjuta) in 1991 provides an
example of revegetation of a linear feature in an arid zone. It was
an important step towards the ecological and cultural protection
of the unique landscape surrounding these two iconic and highly
visited features of the Uluru-Kata Tjuta National Park and World
Heritage Area (Fig. 1). The road had been constructed in 1961
and had seriously deteriorated by the 1980s because of increased
traffic, grading, unsuitable alignment and occasional flooding.
Sunken sections of road were capturing runoff from Kata Tjuta
and adjacent sand dunes, re-directing the natural runoff pattern
and washing away topsoil from the road with each rainfall event
(Griffin and Nelson 1989).

An independent report recommended that the old road be
decommissioned and rehabilitation works be conducted within
the year of road closure in 1991with the aim of stabilising the road
surface and revegetating it to be ecologically sustainable, and
returning it to as close to the condition of the surrounding
undisturbed vegetation as possible (Griffin and Nelson 1989).
The recommendations were carried out by early 1992. To assess
whether the recommended rehabilitation techniques achieved the
goals set, quantitative vegetation and visual erosion monitoring
were carried out along the old road at regular intervals after
rehabilitation to identify (2) the changes in plant density and
floristic composition following the rehabilitation, (1) the areas of
erosion, and (3) the locations of introduced (weed) plant species.
This paper assesses the effectiveness of the rehabilitation
techniques in meeting the rehabilitation aims used on the Old
Kata Tjuta Road over 8 years from 1992 to 1999.

Sites

The Old Kata Tjuta Road extends west from near the present
Uluru Entry Station to Kata Tjuta for ~36 km and traverses three
land systems, the Gillen, Karee and Simpson (Fig. 1a, b). It
traverses six major (3b, 3c, 3d, 3e, 4a and 4b) and three minor land
units (5f1, 5f2 and 5a2) (Allan 1984) within the major systems
(Saxon 1984).

The Gillen Land System covers the Uluru and Kata Tjuta
monoliths (high ridges and mountain ranges), foothills, fans and
alluvial fans and plains with some watercourses. It comprises
rugged sandstone and alluvial soil types. Vegetation cover is
sandy open woodland and mulga. The Karee Land System covers
gently sloping plains, low dunes together with mulga drainage
depressions and is of much more uniform topography than the
Gillen Land System.

The Simpson Land System includes sand plains and dune
fields that occur within Uluru-Kata Tjuta National Park
(Table 1). Hummock grasslands with Triodia pungens (Soft
Spinifex) dominate the dune slopes, and shrubs dominate the

dune crests. Acacia aneura (Mulga) and perennial grasses occur
on the red earth swales (Fig. 2), and T. pungens with occasional
Allocasuarina sp. (Desert Oak) occurs on the red earthy sand
swales (Allan 1984). Minor vegetation assemblages are found on
rocky outcrops, in creeks and gorges, and around salt lakes (Allan
1984). All creek crossings sampled were within drainage lines of
Land Unit 3b. The botanical names used follow the Australian
Plant Names Index (2012).

At Uluru, average annual rainfall from 1987 to 2000 (14 years)
was 332 mm. Months of highest rainfall were from January to
March, and the lowest in July and August, indicating a
predominately semiarid climate (Australian Bureau of
Meteorology 2010). Rainfall data used in analyses were obtained
from the Yulara meteorological station (1987–91), and from the
Uluru weather monitoring station (1992–99). Examination of the
rainfall records for two monitoring stations has shown that,
although sometimes large short-term differences occur, in the
long term, rainfall at Yulara and Uluru are usually of similar
magnitude. During the period of fieldwork, annual rainfall
averaged ~200 mm with very low rainfall in 1996. Months of
highest rainfall were from the end of February to March, and
from the end of November and December.

Rehabilitation treatment

Rehabilitation of the road involved first ripping, mainly
longitudinally along the road surface, but if slope was excessive, a
sinuating pattern of rips were made (Fig. 3). The depressions were
filled with imported sand from the Simpson Land System, (Land
Unit 5d1, Allan 1984; Fig. 4). Ripping has been shown to be
beneficial in restoring infiltration capacity (Luce 1997). Finally
the windrows were scalped of top soil from the edge of the road
and the material graded over the road into the centre so that the
surface was re-contoured to relate to the surrounding
environment. A single trial site (site 23), was established in
September 1992 along a 200–300 m stretch of road with brush to
provide cover.

On long slopes, diversion banks were cut diagonally across the
rehabilitated road every 200–300 m to force water into adjacent
land units where the slope was 3% or more. These diversion banks
were constructed over the whole 35 km of the road and their
position was determined by slope. No maintenance has been
carried out on the road since then and traffic has been minimal and
restricted to the occasional maintenance and indigenous vehicle
(Fig. 5).

Monitoring methods

Seven sites for monitoring were located within the Simpson Land
System, four in theKareeLandSystemand four in theGillenLand
System (Tables 1 and 2) with an additional eight unpaired sites at
creek crossings in the Gillen System. Sites were selected using air
photo interpretation in conjunction with land unit and vegetation
community maps and ground truthing (Low and Foster 1992).
Care was taken to locate sites within the six major (3b, 3c, 3d, 3e,
4a, 4b) and three minor (5f1, 5f2, 5a2) land units (Fig. 1). Ruiz-
Jaen and Aide (2005) note that at least two reference sites should
be established. In this project at least four and maximum six sites
were located on each of three land systems. At each site, paired
plots (sub-sites) were chosen, with one plot of each pair located
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Fig. 1. (a) Map showing new and old routes of the Kata Tjata roads andland systems (Gi, Gillen; Ka, Karee; and Si,
Simpson) and (b) map showing land units (2, annual grassland/some low trees and shrubs, 3b, sparse bloodwood/
mixed shrubs and perennial grasses, 3c, annual grasses/very sparse shrub cover, 3d, scattered bloodwood and mulga
overperennialgrasses, 3e, openannual short grasses/scatteredmulgaor corkwoodandvariable shrubcover., 4a, dense
mulga groves/sparse perennial grass understorey and annual short grass intergrove, 4b, clumped or scattered mulga,
5a1, hummock grassland dominated by soft spinifex/scattered shrub and desert oaks, 5a2, hummock grassland
dominated by hard spinifex/scattered shrub and desert oaks, 5b1, open mallee scrub/sparse soft spinifex understorey,
5c1, open woodland/desert oaks with hard spinifex/shrubs on dune crests, 5d1, hummock grassland dominatedby soft
spinifex/shrubs on crests/mulga and perennial grasses on red earth swales,, 5f1, hummock grassland dominated by
hard spinifex on dunes/dense mulga on red earth swales, 5f2, hummock grassland dominated by soft spinifex on
dunes/dense mulga on red earth swales).



Table 1. Paired sites sampled, listed according to land system and land unit with a description of each land unit

Sites for comparison Land system Land unit Description of land unit (Allan 1984)

1 and 2 Simpson 5f1 (minor) A parallel dune system of short aligned ridges and long linear swales of medium-textured
red earths or red earthy sands. Hummock grasslands with soft spinifex (Triodia
pungens) dominate the dune slopes and mulga is restricted to red earth swales

3, 4 and 5 Simpson 5f2 (minor) A parallel dune system of short aligned ridges and long linear swales of medium-textured
red earths or red earthy sands. Hummock grasslands with hard spinifex (Triodia
basedowii) dominate the dune slopes and mulga is restricted to red earth swales. Three
sites were located here to compare vegetation recovery post-fire (5) and following road
rehabilitation (3) with the natural undisturbed site (4)

6 and 7 Simpson 5f2 (minor)/
5a2 (minor)

Sites in mallee shrubland on a transitional area of sand plain between upland systems and
the dune fields. Hummock grasslands dominated by hard spinifex (T. basedowii).
Scattered shrubs and desert oaks occur. Combined with the above

8 and 9 Karee 4b (major) Gently sloping plains with sandy loam soils down slope of unit 4a. Clumped or scattered
mulga over perennial and annual grasses

10 and 11 Gillen 3c (major) Sites on calcareous interfluves between drainage lines in fans and alluvium radiating from
Kata-Tjuta. Annual grasses with very sparse shrub cover

12 and 13 Gillen 3d (major) Sites on sandy interfluves between drainage lines in fans and alluvium radiating from
Kata-Tjuta. Scattered Bloodwoods and Witchetty Bush over perennial grasses

14 and 15 Karee 4a (major) Gently sloping plains with clayey loam soils fringing the fans and alluvium areas.
Contour-aligned groves of dense mulga with a sparse perennial grass understorey and
annual short grass intergrove vegetation

Fig. 2. The creation of a ‘Triodia road” is clearly delineated as the road
passes through an Acacia aneura community. The access track at right
follows the windrows.

Fig. 3. The sand quarry where the fill for the rehabilitation of the road was
sourced. Notice the depth of the soil removed (over 1 metre). Some road areas
may have been filled with soil from this depth, hence the poor growth results
for some areas.

Fig. 5. Site 6A and B in 1992 (SimpsonLand System). Initial revegetation in
this sandy land unit where road fill is similar to adjacent soils is progressing
well.

Fig. 4. Natural vegetation surrounding the source material of the road fill.
This Fig. shows a soft spinifex community dominated by Triodia pungens,
with Grevillea juncifolia in the foreground and Allocasuarina decaisneana
and Aluta maisonneuvii to the left.



on the rehabilitated roadway and the other, a reference site,
located 20–50 m away from the road in the adjacent native
vegetation. On the roadway, both the road and windrow were
sampled. In six cases, in the adjacent native vegetation, sites
disturbed byfire or rabbits were also sampled (Tables 1 and 2). No
true controls were possible because of management requirements
to restore the whole length of the road. Each monitoring site was
25� 200 m. Twenty-five quadrats of 1 m2 each, selected at
random by a quadrat throw at every 10 m were used at each sub-
site to estimate herbage mass, cover, species composition and
frequency. The exception was at sub-site 1c in 1994, where 24
quadrats were used. In 1992, floristic composition and cover,
seedling and tree presence and abundance were measured on the
15 sites and all sites were photographed. In order to compare the
rate of revegetation between naturally disturbed areas and
artificially disturbed areas, some sites were included that had
been burnt (sites 5, 5b, 2a, 2b, 7) and others where rabbit
disturbance was evident (sites 11a and 11b) (Table 2). Site 5 was
located in a naturally burnt area of a mulga/sand plain community
although sub-site 5b was only partially burnt. Wildfire burnt the
reference sites sub sites 2a, 2b (partially burnt) and 7a after
selection. A further eight unpaired, reconstructed creek crossing
sites in (3b) of the Gillen Land System were selected in 1992
where soil erosion was assessed by aerial photographic
interpretation and recovery in vegetation measured by eye
(Table 3).

The measurements noted above were carried out on six dates;
August–September 1992, December 1993, October–November
1994, October 1995, November 1997 and October–November
1999. Standard field survey techniques were used (McDonald
et al. 1984). Both numbers of species per quadrat and the density
of each species were recorded in the 25 quadrats per sub-site. The
sub-sites were located along defined permanent transects and
stratified in that the road verge, the margin and centre of the road
was all sampled to minimise variation. The density of juvenile
woody plants was determined from the total number of each
species present in a 2000� 2-m belt transect within each site. The

per cent foliage cover of mature trees and shrubs was measured
using the Bitterlich gauge (Bastin 1989). Total biomass and
proportional composition of the herbage were quantified using a
Dry Weight Rank estimate (Griffin et al. 1997). Photographs of
all 23 sites were taken from marked photo points (usually 4) per
sub-site.

Creek crossings were selected for photographic monitoring
and for observation of species succession through time post-
rehabilitation in 1992, 1994, 1995, 1997 and 1999 but the number
of quadrats employed varied between years and sites. At sites 16
and 17, additional data was collected from the undisturbed creek
bed upstream from the disturbance.

Standard statistical techniques were used to display and
interpret vegetation changes both through time and in relation to
environmental variables. Multivariate analysis using PATN
version 2.3.1 (www.patn.com.au/, accessed 19 November 2011)
was employed for classification and correlation of per cent
composition of the herbage data and for comparison analysis of
the density of juvenile tree and shrub species. Canoco 3.1 was
used for the ordinations while S-plus 5 was employed to display
the results of Canoco analysis. Ordination of the data through
Canoco was an indirect gradient analysis by the unimodal
detrended method with the data untransformed. Ordinations are
presented as scatterplots. On these scatterplots, sites that appear

Table 2. Paired rehabilitated road, naturally disturbed and reference sites sampled, listed by land system

Land system Rehabilitated road sites Natural vegetation sites
Road bed Road

windrow
Naturally disturbed Natural undisturbed

vegetation (reference)

Simpson 1A 1B 2a (naturally burnt) 2b (partly burnt)
1C 1D – 2c
3A 3B 5a (naturally burnt) 4a
3C 3D 5b (partly burnt) 4b
6A 6B 7a (naturally burnt) –

6C 6D – 7b

Karee 8A 8B – 9a
8C 8D – 9b
14A 14B – 15a
14C 14D – 15b

Gillen 10A 10B 11a (rabbit warren) –

10C 10D 11b (rabbit warren) –

12A 12B – 13a
12C 12D – 13b
23A (brush cover),

23B (no brush)
– – –

Table 3. Unpaired reconstructed creek crossings (drainage lines) listed
by land system, land unit and ground type

Unpaired sites Rehabilitation type Land system Land unit

16 Earthen Gillen 3b
17 Rocky Gillen 3b
18 Rocky Gillen 3b
19 Rocky Gillen 3b
20 Earthen Gillen 3b
21 Rocky Gillen 3b
22 Bedrock Gillen 3b
24 Earthen Gillen/Karee 3b/4a

http://www.patn.com.au/


near each other are similar in species composition. The further
apart sites are, the more dissimilar they are in species composition
in that year. If a species name appears close to a site label, then
the site is dominant in that species. The points for each year have
been joined to provide a trajectory as a visual aid to following
the change over time for that site. Correlation between the sub-
sites and extrinsic variables, based on the ordination analysis
(through PATN), was designed to reveal relationships between
variables as well as indicate the degree of influence each variable
had on the composition of each sample. For the purposes of this
analysis, a correlation result of 0.6 or higher revealed a strong
influence on the composition of a sample by the environmental
variable.

Results

Vegetation responses to the restoration treatment are presented
under headings that describe the different plant variables
measured. They comprise herbage mass, ordination of
composition, abundance of seedling emergence, juvenile tree and
shrub density, abundance of overstorey, significant correlations
and comments on reconstructed creek crossings and effect of
brush cover.All variables showed apositive response over time of
monitoring apart from brush cover as described in more detail
below.

Photographs of sites in different years after restoration are
shown in Figs 2, 5–21. Over the 8 years, herbage mass on all
restored road, windrow and reference sites showed a similar
gradual increase except for the reference site on the Karee Land
System, which was almost stable (Hill et al. 2002) and the
Simpson System 1A where the increase was considerably
more rapid.

Succession is illustrated by the ordinations using vegetation
data for all sampling periods for sites 1–15, which are shown
in Figs 23–29. The most significant changes shown by the
ordinations are noted below.

Grasses and herbaceous plants

In the Simpson Land System, trends for sites 1 as well as 2,
although variable, cluster with T. pungens by 1999 with burnt
sites (sub-sites 2A, 2B) showing the closest affiliation with
this species. By 1997, T. pungens and Eragrostis eriopoda
(Woollybutt Grass) were becoming uniform across all sub-sites
(Fig. 23). In the same system, on all sub-sites of sites 3, 4, 5,
(Figs 14–18, 24) dominant species have changed with Triodia
basedowii (Hard Spinifex) becoming more dominant though
time, although the road sub-site changed from a Sida fibulifera
(Silver Sida) dominance, in 1992, to E. eriopoda, with a
T. pungens influence in 1999. The dominant species of windrows
sub-site 3B were Sida cardiophylla and Rulingia loxophylla
although in 1999 the site was heading towards E. eriopoda
dominance. The burnt sub-site (sub-site 5A) was similar to the
windrows (Fig. 24). On sites 6 and 7, R. loxophylla has remained
dominant on the windrows throughout monitoring but T. pungens
replaced T. basedowii on the reference site and road (Fig. 25).

In the Karee Land Systems, the road and windrow sites in
all years have supported a different species composition
compared with the surrounding natural vegetation (i.e. on the
reference sites). Pioneer species dominated first followed by

E. eriopoda by 1999 (sub-sites 8A and 8B) (Fig. 26). The natural
vegetation site (sub-site 9A) was variable throughout. There was
low variability within sites 14 and 15 in the same system, as points
for all years were relatively close together for the road sub-site
14A,with T.pungens dominant.Roadandwindrowsub-sites 14B
and 15B rehabilitated independently of each other and of the
reference sites as represented by the lines projected in different
directions. The species have been determined by the disturbance
and fill seed store (Fig. 27).

Within the Gillen Land System, the trajectories of each sub-
site 10A, 10B (Figs 8, 9) and 11B were similar, although
Sclerolaena cornishiana (Cartwheel Burr) dominated the road
and windrows, and Eremophea spinosa the reference sites in
later years (Fig. 28). In the same land system, the road site (sub-
site 12A) has clustered closely in the T. pungens species space
continually, although T. pungens comprised less than 10% of
windrows. The reference sites (sub-site 13A) and the windrows
(sub-site 12B) were similar in that they were variable over time
but with Sclerolaena convexula (Tall Copper Burr) dominant in
1999 (Fig. 29).

Tree and shrub seedling emergence

Seedling abundance is displayed as total number of individuals
counted for individual sites in theSimpson System and for all sites
combined in the other two land systems.

The overall pattern shows that three dune species, Alyogyne
pinoniana (Sand Hibiscus), Aluta maisonneuvei (Desert Heath
Myrtle) and Acacia ligulata (Umbrella Bush), have germinated
and persisted along the length of the rehabilitated road throughout
the monitoring period (Figs 30, 32). In general, Acacia aneura
(Mulga) was the most common seedling species on the reference
sites except for the sub-site shown in Fig. 29 and Acacia victoriae
(Acacia Bush) on the road and windrow sub-sites except for the
sub-sites shown in Figs 30 and 33. Acacia ligulata (Umbrella
Bush) seedlings were more common on the road and windrow
than on the natural vegetation sites.

On each land system, the dominant seedlings of the natural
Simpson Land System (Fig. 30) were always the species
that germinated. These were A. ligulata, A. melleodora,
A. maisonneuvei and A. pinoniana, which persisted on the road
throughout, with particular seedling abundance on the reference
sub sites, except for A. ligulata seedlings, which were highest on
the road and windrows (Fig. 30).

In the Gillen Land System, the rehabilitated road has mostly
regenerated with the common Gillen Land System species but
some Simpson Land System seedlings (A. maisonneuvei and
A. pinoniana) were recorded in the first years. Increased numbers
of A. victoriae occurred on road and windrows (Fig. 31).

Acacia aneura seedlings were the only ones recorded on all
sub-sites in the Karee Land System but rehabilitating sites
(windrows and road) were dominated by Simpson Land System
species (Fig. 32).

Juvenile tree and shrub density

Reference site 2of theSimpsonSystem wasdominated in1999by
juvenile A. maisonneuvi, Eremophila wilsii (Sandhill Native
Fuschia) and Micromyrtus flaviflora (Yellow Heath Myrtle)
although the rehabilitating windrows and road (sites 1W and 1R)



Fig. 9. The same site (Site 10) in 1999. This figure. illustrates the dramatic
change in species composition and dominance since 1992. The ground cover
is becoming similar to adjacent areas. Acetosa vesicaria is absent. The site
is dominated by dune field species including: Triodia pungens, Aristida spp.
and Aluta maisonneuvii. Once again the growth at this site can be attributed
to being overlain with topsoil, not subsoil like Site 12.

Fig. 11. The same site (10) in 1999, 8 years later. The site has revegetated
well and now looks similar to the adjacent vegetation. The successful
revegetation of this site with appropriate species is typical of the rehabilitated
sites of the Simpson Land System.

Fig. 8. Site 10 in 1992, 10 months after rehabilitation (Gillen Land System).
The road has revegetated more quickly than Site 12 due to being overlain with
topsoilfill. Theweed species Acetosa vesicariahas colonised the road surface.

Fig. 6. Site 12A and B (Gillen Land System) 10 months after rehabilitation
in 1992. The road remains bare, whilst Acetosa vesicaria dominates the verge.
Note the relatively poor growth due to being overlain with sub soil.

Fig. 7. The same site (Site 12A and B) in 1999, 8 years after rehabilitation.
Note the dominance of the dune field species Triodia pungens and Eragrostis
eriopoda. Also note the relatively poor herbaceous cover at this site due to the
use of subsoil fill material.

Fig. 10. Site 6A and B in 1992 (Simpson Land System). Initial revegetation
in this sandy land unit where road fill is similar to adjacent soils is progressing
well.



have clustered within the dune field species (Fig. 34). The
dominant juvenile species present in these rehabilitated areas
were A. melleodora and A. pinoniana. Both road and windrows at
site 8 (Karee) are located in a transitional species space in the
ordination plot because of dominance by Acacia murrayana
(Colony Wattle), common in dunefields and other sandy soils
(Latz 1995). Only windrows at site 14 (Karee) carried juvenile
species representative of the local system (Fig. 33).

This pattern is clearer in the trajectories of juveniles for all sites
and for all years in the Simpson System (Figs 34, 35). On sites 1
and 2 the trajectory for the road (site 1R) is away from
A. pinoniana dominance in 1992 because of the increased density
of juvenile A. melleodora in 1994 and 1997, and returns to
A. pinoniana dominance in 1999 as Fig. 34. Although the
windrows were dominated by Senna pleurocarpa (Fire Bush) in
1992, by 1999 the dominant species of juvenile plants was more

Fig. 15. Site 5, a control burnt site 10 months after burn in 1992. Rulingia
loxophylla has abundantly resprouted from rootstock. Rulingia also
resprouted profusely at many of the scalped windrow sites.

Fig. 16. Site 4, the adjacent unburnt control site, 1992 (Simpson Land
System). This site hasn’t been burnt for quite a while as evident from
the presence of mature spinifex clumps. Triodia pungens and Eragrostis
eriopoda are well established.

Fig. 12. Site 14C and D (Karee Land System) 1992, 10 months after
the rehabilitation. Lack of growth due to land fill being sub-soil and local
windrow material was insufficient to cover land fill. The windrow has been
colonised by pioneer species such as Salsola kali and the introduced
Ruby Dock.

Fig. 14. A mulga swale south of Site 3, 1999, in Simpson Land System.
Scalped material from the windrow to recover local top soil to cover the sand
plain land fill was insufficient and the windrow area to the left was left
unproductive. In contrast to this, the road area to the right has regenerated
well.

Fig. 13. Site 14C and D eight years after rehabilitation is dominated by
dune field species Triodia pungens and Acacia ligulata. Alyogyne pinoniana
has germinated and died within the eight-year period. The windrows are
comparatively bare, possibly due to scalping during rehabilitation, Acacia
aneura delineates the surrounds and Triodia pungens the road.



Fig. 22. Runoff from in front of pond bank on the road south of Kata Tjuta
near Site 12 has lead to rilling on the lower end of the pond bank. However,
the runoff has been effectively dispersed as sheet flow over the natural plain
downstream.

Fig. 20. Site 23B Brush cover trial site, uncovered site, 1999. Although
slower to start, after 8 years of rehabilitation the uncovered site has a similar
level of vegetative cover to the covered site (see Fig. 19) and supports a greater
species diversity.

Fig. 19. Site 23A Brush covered site in 1999. This site has remained covered
throughout the monitoring period. It has regenerated well.

Fig. 18. Unburnt control site (Site 4) in 1999. Although more established,
the vegetation of this site is similar to that of the adjacent burnt control site
(refer Fig. 17 above). The site is dominated by Triodia pungens with Acacia
aneura shrubs in the background. Grevillea juncifolia has matured and died.

Fig. 17. Site 5, burnt control eight years later (refer Fig. 15). Rulingia
loxophylla has been replaced by Triodia pungens. This site is nowfloristically
similar to the adjacent unburnt control site (Site 4).

Fig. 21. A mulga swale in the the Old Kata Tjuta Road in Karee LS 8 years
after rehabilitation. The reconstructed surface has held its form quite well.
However, revegetation is much slower to respond here due to the sand used
as landfill originating from deep within the soil profile.
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similar to the natural (reference) site 2. There are two reference
sites for sites 4 and 5 (Table 2) and both cluster for the first three
monitoring occasions (Fig. 35) but by 1999 density of juvenile
plants of each site had become dominated by different species
resulting in the trajectories moving in opposing directions.
Windrow 3W appears in a transitional species space between the
reference sites and the road (Fig. 35). By 1999 this trajectory was
in harmony with the reference site 5. The road (site 3R) follows an
isolated trajectory initially dominated by S. pleurocarpa in 1992
influenced largely by A. melleodora later (Fig. 35). In 1992 both
the road, site 6R, and the windrows, site 6W, recorded juvenile
densities distinctly different from the reference sites (7) (Fig. 36).
Monitoring in following years indicated that the road and
windrows at these localities are revegetating with trees and shrubs
that closely approximate the surrounding vegetation (Fig. 36).

In the Gillen Land System, the trajectories of both road sites
(sites 10R and 12R) were distinct from the windrows and
reference sites, predominately because of dune field species
dominance (Fig. 37). The trajectory of road site 10R was heavily
influenced by the dune field species A. pinoniana in 1992 and
1999 but in intervening years was dominated by A. victoriae.
The trajectory of reference site 13 remains within a small and
isolated area of the ordination plot, indicating a relative stability
in the densities of the dominant juvenile tree and shrub species
(Fig. 37). Despite interference from rabbits at site 11, the
rehabilitated windrows are within a similar juvenile density
space as the natural reference site. Distinct differences in the
composition of juvenile tree and shrub species densities between
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Fig. 29. Ordination of herbage composition for Gillen land system, sites 12
and 13 (1992–1999). Sub-site locations are represented by continuous line
for road (12A); dashed line for windrow (12B); and dashed and dotted line
for natural vegetation (13A). The number represents the year sampled.
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the natural (13), and road (site 12R) monitoring sites has resulted
in each site plotting in areas of alluvial or dunefield species
dominance, respectively. The windrows site (site 12W) has
occupied a transitional area and by 1999 was tending towards the
natural replicate of site 13.

Generally, the rehabilitating road and windrow sites of the
Karee Land System are divergent from the reference sites,
especially for the trajectories of sites 14R and 14W, in the dune
field species space in 1999 (Figs 12, 13, 38). Site 14R showed the
greatest divergence from the reference sites in juvenile tree and
shrub species compared with all other monitored sites. The
dominant juvenile species are those of dune fields in contrast to
the A. aneura dominance of the natural reference site (site 15)

(Fig. 38), its (site 14R) trajectory of the site starting and
continuing in a different direction to the surrounding vegetation
(Fig. 36). The short trajectories of reference sites 9 and 15 are
indicative of a relatively stable species composition and
dominance. Reference site 15 has short trajectories through the
species space being persistently dominated by A. aneura and
influenced by Corymbia opaca (Bloodwood). Although the
trajectory of both the road (site 8R) and windrows (site 8W),
moved towards the natural replicate in 1994, the results of the
remaining monitoring years has been divergent with the road site
clearly moving towards dune field species. Although the
windrows site, site 14W, is becoming more similar to the
reference sites by 1999, it remains in a transitional species space.
There were no juvenile tree or shrub species recorded in the
windrow sites in 1992.

Correlation analysis

A range of previous rainfall parameters and land forms were
found to be positively correlated with the composition of
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herbaceous species. Some soil attributes, such as topography
and pH, were also positively correlated with juvenile shrub
emergence on all sites. The strongest correlations were with
rainfall over the previous 6–48 months for all monitoring
occasions for sites 1–13. For sites 14 and 15, level of disturbance,
depth of fill and soil attributes were the most significant. Details
of the correlations are given in Hill et al. (2002).

Abundance of overstorey

Only two (sites 8 and 12) of the seven road and windrows sites
in the Simpson system have developed trees or shrubs with a

sufficient height and canopy width to be measured. However,
this type of vegetation was variable from year to year. Species
included the classic dune field species, A. ligulata, A. murryana,
A. pinoniana and Senna artemisiodies subsp. artemisiodies
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Fig. 35. Ordination of juvenile tree and shrub densities for Simpson land
system, sites 3, 4 and 5 (1992–1999). Sub-site locations are represented by
continuous line for road (1R); dashed line for windrow (3W); and dashed
and dotted line for natural vegetation (4, 5). The number represents the year
sampled.
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(Silver Cassia). By 1999, only A. ligulata had measurable canopy
on site 12 (Fig. 7).

Reconstructed creek crossings

For sites 16, 17, 19 and 20, species in the undisturbed area of
the creeks tended to be native to the local land system although
numbers were fewer than in rehabilitated creeks. Acacia
masionneuvii was present sporadically as were Triodia spp.
Perennial tree and shrub seedlings, native to the local system
and present in reconstructed areas, were A. tetragonophylla,
A. victoriae, C. opaca and Hakea suberea (Long Leafed
Corkwood). Cenchrus ciliaris (Buffel grass) occurred at each site
throughout. Up to the 1999 survey, minor erosion in the Karee
and Gillen Land Units had been located in a few areas of low
vegetative cover and sloping conditions such as creek crossings
or diversion banks that were too short to divert runoff water
away from the road (Fig. 22). Apart from these few cases, using
a subjective assessment of photogrammetry, it is clear that the
physical reconstruction of creeks has persisted over the long term.
Visual observations indicate that diversion banks have been
relatively effective in limiting erosion from the rehabilitated road.

Floristic data showed that sites 18 and 21 were initially
dominated by the weed, Acetosa vesicaria (Rosy Dock) (53.6
and 63.6% of herbage mass DM, respectively), but by 1999
Atriplex elacophylla (Annual Saltbush), was dominant (51.8%
of herbage mass DM) on site 18 but was only 25.4% of herbage
mass DM on site 21, which is likely to be a natural succession.
Themeda triandra (Kangaroo Grass) was also present at low
densities. The exotic Cenchrus ciliaris was present on sites 18
and 21 comprising 5.0% of the DM of the herbaceous layer
(1992–97). On the other hand, native grasses, Themeda triandra
(30.5%), Panicum decompositum (Native Millet) (18.9% of
herbage mass DM) and Dactyloctenium radulans (Button Grass)
(47.6% of herbage mass DM) in some years were dominant on
site 22.

Brush cover study

In the brush cover study, the uncovered site 23B, although
slower to revegetate, had a greater species richness by almost
two-thirds than the brush-covered site (23A) by 1999 but, without
replication, this result is not indicative of an effect. Triodia
pungens and Eragrostis eriopoda persisted on both sites
(Figs 19, 20).

Detailed results for each year of succession are filed at the
Uluru-Kata Tjuta National Park office at Uluru and in Canberra
at the Department of Environment, Water, Heritage and the Arts,
and are available on request.

Discussion

The data presented here show broad-scale trends of increasing
plant density and herbage mass over 9 years. It also shows that
plant composition is highly variable over time even on some
reference sites and that seedlings recorded on windrows and old
road sites are generally more similar in composition to each other
than to the surrounding vegetation with juvenile trees and shrubs
following the same pattern.

In each land system, as might be expected, the road and
windrow sites in the Simpson Land System are rehabilitating

with similar juvenile tree and shrub species to those found
naturally in the Simpson Land System because it was the origin of
the imported fill. However, plant succession on the road of the
other two land systems was more variable over the whole period.
In addition, trajectories of sites on similar land systems were not
necessarily similar or always determined by the origin of the
soil fill as a positive correlation was found between succession
progress and rainfall preceding date of monitoring (Hill et al.
2002).

The mechanical method of rehabilitation used here, that did
not include seeding or planting, worked well in the Simpson
System but not so well for the Gillen and Karee Systems.

The results emphasise the importance of rehabilitating sites
with soil sourced from the same land unit especially as it has been
shown for the arid zone that vegetation is influenced more by
geomorphic strata than by management (Sparrow et al. 2003).
Holden and Miller (1995) had no success in direct seeding for
restoration in the arid zone but considerable success was achieved
in this study in the Simpson Land System using the existing soil
store of seeds only. As the majority of viable seed is within the
top 10 cm for most soil types (Lawrie 1984; Grant and Koch
1997; Simpson 1999), rehabilitation fill would need to be
stripped from this stratum from each land unit rather than from
any other source. Pragmatic and conservation issues made this
unacceptable for Karee and Gillen Systems. As some of the
sources of soil originated from depths greater than 10 cm, it is
assumed that, in line with the findings of Blomquist and Lyon
(1995) when studying sand dunes in Nevada, USA, the topsoil
may have contained viable seed.

One problem was that the low frequency of monitoring,
together with the variation in seasons of sampling, created
challenges for the analysis and interpretation of the data. Another
problem was the presence and spread of two introduced species
within and adjacent to the rehabilitated road in the Karee and
Gillen Land Systems. Acetosa vesicaria was the only introduced
species that was identified in the Simpson Land System but
C. ciliaris poses the greatest threat to ecosystems as it can alter
the intensity of wildfires by burning more vigorously and for
longer than native ground cover species. Fires of C. ciliaris can
damage the soil’s seed bank as well as kill mature trees that
would normally be unaffected by fire (Miller et al. 2010).
Although the current infestation is relatively small, removal of
this species is a high priority for the maintenance of the
biological significance of Uluru-Kata Tjuta National Park and is
of a greater importance to ecosystem conservation than any of
the physical rehabilitation discussed or recommended in this
paper. Attention should be given to reducing the spread of this
weed particularly along drainage lines in wet conditions and by
vehicle movements.

Conclusions

The main findings were:
(1) Revegetation of the old road was satisfactory 8 years after

restoration.
(2) Species colonising the rehabilitated road were dominated

by those present in land fill, which came from the Simpson
Land System regardless on which land system they were
situated.



(3) The extrinsic attribute with highest correlation to the
composition of herbaceous species in the absence of
disturbance was rainfall over the previous 6–48 months.

(4) Erosion was reduced and observed to become negligible
following the construction of diversion banks.

(5) Brush cover did not have any effect on speed of revegetation
nor on floristic composition over the 8 years of monitoring.

(6) Burning initially slowed revegetation but, after 8 years, there
was no difference between burnt and unburnt sites.

(7) No vegetation type was stable and even on reference sites
some change in dominance was evident.

(8) The method described for rehabilitating a road in the arid
zone is satisfactory on the same land system from which the
filler soil is sourced but restoration to adjacent undisturbed
vegetation is not achieved with filler soil from a different
source.

In summary, the aim of producing vegetation cover, that is
ecologically sustainable and as close to the original state as
possible, was partially achieved. Even after 8 years, however, the
rehabilitated sites were still dissimilar and much more variable in
plant species composition than the reference sites.

Future management could include additional monitoring to
include not only plants but also ground-living invertebrates,
particularly decomposer organisms, as their density and
composition in undisturbed vegetation, compared with
rehabilitated sites, could give a more complete indication of
sustainability and resilience of the restoration efforts than that of
plant data alone.

Acknowledgements

W. A. Low Ecological Services wish to thank the Anangu of Mutitjulu for
permission to work in the area and also for advice and assistance. We are also
grateful to the staff of Uluru and Kata Tjuta National Park for help of various
kinds. Ashley Sparrow, Gary Bastin and Vanessa Chewings assisted and
advised on data manipulation, statistical analysis and mapping and we are
grateful to them.Wealsowould like to thank theHerbariumfor identifications.
Numerous staff of LowEcol assisted with data collection and reporting. The
work was conducted under various ANPWS contracts.

References

Allan, G. E. (1984). Fire history and land units of Uluru. In: ‘Anticipating
the Inevitable’. (Ed. E. C. Allan.) pp. 13–24. (CSIRO: Melbourne.)

Allen, E. B. (1995). Restoration ecology: limits and possibilities in arid and
semi-arid lands. In: ‘Proceedings of Wildland Shrub and Arid Land
Restoration Symposium’. (Eds B. A. Roundy, E. D. McArthur, J. S. Haley
and D. K. Mann.) pp. 7–15. (U.S. Forest Service: Ogden, UT.)

Australian Bureau of Meteorology (2010). Australian Bureau of
Meteorology. Available at: http://reg.bom.gov.au/ (accessed February
2010).

Australian Plant Names Index (2012). Australian Plant Name Index.
Available at: www.anbg.gov.au/apni/ (accessed October 2012).

Bastin, G. N. (1989). ‘Centralian Range Assessment Programme.’ Technical
Bulletin No. 151. (Department of Primary Industries and Fisheries: Alice
Springs.)

Blomquist, K. W., and Lyon, G. E. (1995). Effects of soil quality and depth
on seed germination and seedling survival at the Nevada Test site. In:
‘Proceedings of Wildland Shrub and Arid Land Restoration Symposium’.
(Eds B. A. Roundy, E. D. McArthur, J. S. Haley and D. K. Mann.)
pp. 57–93. (U.S. Forest Service: Ogden, UT.)

Bowman, D. M. J. S. (1998). Tansley Review No. 101. The impact of
Aboriginal landscape burning on the Australian biota. New Phytologist
140, 385–410. doi:10.1046/j.1469-8137.1998.00289.x

Christian-Smith, J., and Merenlender, A. M. (2010). The disconnect between
restoration goals and practices: a case study of watershed restoration in the
Russian River Basin, California. Restoration Ecology 18, 95–102.
doi:10.1111/j.1526-100X.2008.00428.x

Clarke, P. J., Latz, P. K., and Albbrecht, D. E. (2005). Long-term changes in
semi-arid vegetation: invasion of an exotic perennial grass has larger
effects than rainfall variability. Journal of Vegetation Science 16,
237–248. doi:10.1111/j.1654-1103.2005.tb02361.x

Cohen, S. (1990). Reconstruction of South Australia’s arid lands: the
conservation option. Proceedings of the Ecological Society of Australia
16, 459–465.

DeFalco, L. A., Esque, T. C., Kane, J. M., and Nicklas, M. B. (2009). Seed
banks in a degraded desert shrubland: influence of soil surface condition
and harvester ant activity on seed abundance. Journal of Arid
Environments 73, 885–893. doi:10.1016/j.jaridenv.2009.04.017

Dunne, J. (1989). Cryptogamic soil crusts in arid ecosystems. Rangelands 11,
180–182.

Grant, C. D., and Koch, J. M. (1997). Ecological aspects of soil seed-banks in
relation to bauxite mining. II. Twelve-year-old rehabilitated mines.
Australian Journal of Ecology 22, 177–184. doi:10.1111/j.1442-9993.
1997.tb00657.x

Grant, C., and Koch, J. (2007). Decommissioning Western Australia’s first
bauxite mine: co-evolving vegetation restoration techniques and targets.
Ecological Management & Restoration 8, 92–105. doi:10.1111/j.1442-
8903.2007.00346.x

Griffin, G. F., and Nelson, D. J. (1989). ‘Environmental Guidelines for the
Rehabilitation of the Existing Kata Tjuta Road.’ (CSIRO Division of
Wildlife and Ecology: Alice Springs.)

Griffin, G. F., Pearce, G., Chewings, V. H., and Pickup, G. (1997). ‘Video
Imaging for Measuring and Monitoring Environment in the Central
Australian Ranges.’ CARGIS No. 20. (CSIRO: Alice Springs.)

Hill, A., Forth, F., and Low, W. A. (2002). ‘Review of Rehabilitation
and Vegetation Establishment on the Old Kata Tjuta (Mt Olga) Road in
Uluru-Kata Tjuta National Park 1992–2001. Data and Observations.’
(Environment Australia, Biodiversity Group, Parks Australia: Canberra.)

Holden, M., and Miller, C. (1995). New arid-land revegetation techniques at
Joshua Tree National Monument. In: ‘Proceedings of Wildland Shrub and
Arid Land Restoration Symposium’. (Eds B. A. Roundy, E. D. McArthur,
J. S. Haley and D. K. Mann.) pp. 99–101. (U.S. Forest Service: Ogden,
UT.)

Latz, P. (1995). ‘Bushfires and Bush Tucker. Aboriginal Plant Use in Central
Australia.’ (I.A.D. Press: Alice Springs.)

Lawrie, J. W. (1984). Regeneration at Weipa Bauxite. Mining Magazine 3,
206–213.

Low, W. A., and Foster, E. C. (1992). ‘Monitoring Revegetation of the old
Olga’sRoad inUluruNationalPark: IntroductionandSiteEstablishment.’
Report to Uluru National Park. (Australian Nature Conservation Agency:
Darwin.)

Luce, C. H. (1997). Effectiveness of road ripping in restoring infiltration
capacity of forest roads. Restoration Ecology 5, 265–270. doi:10.1046/
j.1526-100X.1997.09731.x

McDonald, T., and Williams, J. (2009). A perspective on the evolving science
and practice of ecological restoration in Australia. Ecological
Management & Restoration 10, 113–125. doi:10.1111/j.1442-8903.20
09.00472.x

McDonald, R. C., Isbell, R. F., Speight, J. G., Walker, J., and Hopkins,
M. S. (1984). ‘Australian Soil and Land Survey.’ (Inkata Press:
Melbourne.)

Miller, G., Friedel, M., Adam, P., and Chewings, V. (2010). Ecological
impacts of buffel grass (Cenchrus ciliaris L.). invasion in central Australia
– does field evidence support a fire-invasion feedback? The Rangeland
Journal 32, 353–365. doi:10.1071/RJ09076

http://reg.bom.gov.au/
www.anbg.gov.au/apni/
dx.doi.org/10.1046/j.1469-8137.1998.00289.x
dx.doi.org/10.1111/j.1526-100X.2008.00428.x
dx.doi.org/10.1111/j.1654-1103.2005.tb02361.x
dx.doi.org/10.1016/j.jaridenv.2009.04.017
dx.doi.org/10.1111/j.1442-9993.1997.tb00657.x
dx.doi.org/10.1111/j.1442-9993.1997.tb00657.x
dx.doi.org/10.1111/j.1442-8903.2007.00346.x
dx.doi.org/10.1111/j.1442-8903.2007.00346.x
dx.doi.org/10.1046/j.1526-100X.1997.09731.x
dx.doi.org/10.1046/j.1526-100X.1997.09731.x
dx.doi.org/10.1111/j.1442-8903.2009.00472.x
dx.doi.org/10.1111/j.1442-8903.2009.00472.x
dx.doi.org/10.1071/RJ09076


Moseby, K. E., Stott, J., and Crisp, H. (2009). Movement patterns of feral
predators in an arid environment – implications for control through poison
baiting. Wildlife Research 36, 422–435. doi:10.1071/WR08098

Norman, M. A., Koch, J. M., Grant, C. D., Morald, T. K., and Ward, S. C.
(2006). Vegetation succession after bauxite mining in Western Australia.
Restoration Ecology 14, 278–288. doi:10.1111/j.1526-100X.2006.00
130.x

Ruiz-Jaen, M. C., and Aide, T. M. (2005). Restoration success: how is it being
measured? Restoration Ecology 13, 569–577. doi:10.1111/j.1526-100X.
2005.00072.x

Saxon, E. C. (1984). Fire history and land units of Uluru. In: ‘Anticipating
the Inevitable: A Patch Burn Strategy of Fire Management at Uluru
(Ayers Rock-Mt Olga) National Park’. pp. 13–24.(CSIRO: Melbourne.)

Simpson, B. (1999). Rehabilitation at the Granites Gold Mine: a study of
unmined vegetation and seed banks. BSc Honours Thesis, Flinders
University, Australia.

Sinclair, R. (2005).Long-termchanges in vegetation, gradual and episodic, on
the TGB Osborn Vegetation Reserve, Koonamore, South Australia
(1926–2002). Australian Journal of Botany 53, 283–296. doi:10.1071/
BT04144

Smyth, A., Friedel, M., and O’Malley, C. (2009). The influence of buffel
grass (Cenchrus ciliaris) on biodiversity in an arid Australian landscape.
The Rangeland Journal 31, 307–320. doi:10.1071/RJ08026

Sparrow, A. D., Friedel, M. H., and Tongway, D. J. (2003). Degradation and
recovery processes in arid grazing lands of central Australia. Part 3:
implications at landscape scale. Journal of Arid Environments 55,
349–360. doi:10.1016/S0140-1963(03)00027-2

Stafford Smith, D. M., McKeon, G. M., Watson, I. W., Henry, B. K., Stone,
G. S., Hall, W. B., and Howden, S. M. (2007). Learning from episodes of
degradation and recovery in variable Australian rangelands. Proceedings
of the National Academy of Sciences of the United States of America 104,
20 690–20 695. doi:10.1073/pnas.0704837104

Suding, K. N. (2011). Towards an era of restoration in ecology: successes,
failures andopportunities ahead.AnnualReview of EcologyEvolution and
Systematics 42, 465–487. doi:10.1146/annurev-ecolsys-102710-145115

Thompson, S. A., and Thompson, G. G. (2004). Adequacy of rehabilitation
monitoring practices in the Western Australian mining industry.
Ecological Management & Restoration 5, 30–33. doi:10.1111/j.1442-
8903.2004.00172.x

Tongway, D., and Ludwig, J. (2007). Landscape function as a target for
restoring natural capital in semi-arid Australia. In: ‘Restoring Natural
Capital: Science, Business and Practice’. (Eds J. Aronson, S. J. Milton and
J. N. Bignaut.) pp. 76–84. (Island Press: Washington.)

Wijayratne, U. C., and Pyke, D. A. (2012). Burial increases seed longevity of
two Artemisia tridentata (Asteraceae) sub-species. American Journal of
Botany 99, 438–447. doi:10.3732/ajb.1000477

dx.doi.org/10.1071/WR08098
dx.doi.org/10.1111/j.1526-100X.2006.00130.x
dx.doi.org/10.1111/j.1526-100X.2006.00130.x
dx.doi.org/10.1111/j.1526-100X.2005.00072.x
dx.doi.org/10.1111/j.1526-100X.2005.00072.x
dx.doi.org/10.1071/BT04144
dx.doi.org/10.1071/BT04144
dx.doi.org/10.1071/RJ08026
dx.doi.org/10.1016/S0140-1963(03)00027-2
dx.doi.org/10.1073/pnas.0704837104
dx.doi.org/10.1146/annurev-ecolsys-102710-145115
dx.doi.org/10.1111/j.1442-8903.2004.00172.x
dx.doi.org/10.1111/j.1442-8903.2004.00172.x
dx.doi.org/10.3732/ajb.1000477

	UB Research.pdf
	183Uluru



