
Hyperbolic smoothing in nonsmooth optimization
and applications

Alia Al Nuaimat

This thesis is submitted in total fulfilment of the
requirement for the degree of Doctor of Philosophy

School of Science, Information Technology and
Engineering, Faculty of Science,
Federation University Australia

PO Box 663
University Drive, Mount Helen
Ballarat, VIC 3353, Australia.

2014

Abstract

Nonsmooth nonconvex optimization problems arise in many applications including economics,

business and data mining. In these applications objective functions are not necessarily differentiable

or convex. Many algorithms have been proposed over the past three decades to solve such problems.

In spite of the significant growth in this field, the development of efficient algorithms for solving this

kind of problem is still a challenging task.

The subgradient method is one of the simplest methods developed for solving these problems.

Its convergence was proved only for convex objective functions. This method does not involve any

subproblems, neither for finding search directions nor for computation of step lengths, which are

fixed ahead of time. Bundle methods and their various modifications are among the most efficient

methods for solving nonsmooth optimization problems. These methods involve a quadratic program-

ming subproblem to find search directions. The size of the subproblem may increase significantly

with the number of variables, which makes the bundle-type methods unsuitable for large scale non-

smooth optimization problems. The implementation of bundle-type methods, which require the use

of the quadratic programming solvers, is not as easy as the implementation of the subgradient meth-

ods. Therefore it is beneficial to develop algorithms for nonsmooth nonconvex optimization which

are easy to implement and more efficient than the subgradient methods.

In this thesis, we develop two new algorithms for solving nonsmooth nonconvex optimization

problems based on the use of the hyperbolic smoothing technique and apply them to solve the pump-

ing cost minimization problem in water distribution. Both algorithms use smoothing techniques. The

first algorithm is designed for solving finite minimax problems. In order to apply the hyperbolic

smoothing we reformulate the objective function in the minimax problem and study the relationship

between the original minimax and reformulated problems. We also study the main properties of the

hyperbolic smoothing function. Based on these results an algorithm for solving the finite minimax

i

problem is proposed and this algorithm is implemented in GAMS. We present preliminary results of

numerical experiments with well-known nonsmooth optimization test problems. We also compare the

proposed algorithm with the algorithm that uses the exponential smoothing function as well as with

the algorithm based on nonlinear programming reformulation of the finite minimax problem.

The second nonsmooth optimization algorithm we developed was used to demonstrate how smooth

optimization methods can be applied to solve general nonsmooth (nonconvex) optimization problems.

In order to do so we compute subgradients from some neighborhood of the current point and define

a system of linear inequalities using these subgradients. Search directions are computed by solving

this system. This system is solved by reducing it to the minimization of the convex piecewise lin-

ear function over the unit ball. Then the hyperbolic smoothing function is applied to approximate

this minimization problem by a sequence of smooth problems which are solved by smooth optimiza-

tion methods. Such an approach allows one to apply powerful smooth optimization algorithms for

solving nonsmooth optimization problems and extend smoothing techniques for solving general non-

smooth nonconvex optimization problems. The convergence of the algorithm based on this approach

is studied. The proposed algorithm was implemented in Fortran 95. Preliminary results of numerical

experiments are reported and the proposed algorithm is compared with an other five nonsmooth opti-

mization algorithms. We also implement the algorithm in GAMS and compare it with GAMS solvers

using results of numerical experiments.

ii

Statement of Authorship

Except where explicit reference is made in the text of the thesis, this professional thesis contains no

material published elsewhere or extracted in whole or in part from a thesis by which I have qualified

for or been awarded another degree or diploma. No other persons work has been relied upon or used

without due acknowledgment in the main text and bibliography of the thesis.

Signed: Date:

iii

Acknowledgement

First of all, I would like to acknowledge my great appreciation to my principal supervisor Associate

Professor Adil Bagirov. It has been a great pleasure working with Associate Professor Bagirov over

the years; learning from such a great Mathematician. I would like to thank him for accepting me as

one of his students and for his great support during my PhD. His care, support, knowledge, availability

and guidance was of inestimable value. The appreciation I have toward him is beyond words. The

whole time I have spent as his student has definitely been a challenging and stimulating part of my

life. Also, I would like to thank both my associate supervisors, Dr David Yost and Dr Andrew Barton,

for their valued encouragement and ongoing advice with my research.

In addition to the invaluable support of all my supervisors, this PhD thesis would not have been

possible without the financial support of the School of Science, Information Technology and Engi-

neering (SITE). Then too, I would like to recognize Professor Sidney Morris, former head of Grad-

uate School of Information Technology and Mathematical Science (GSITMS), for openly accepting

me and financially supporting my studies, from the time of my arrival in Ballarat Australia. I also

greatly appreciate the support and help from Dean of SITE, Professor John Yearwood, for allowing

me study my PhD study in such encouraging and supportive environment.

As well as all the preceding, it would be remiss of me not to also acknowledge Associate Profes-

sor Andrew Stranieri, the Director of Centre for Informatics and Applied Optimization (CIAO), for

his direction and timely advice which was always so positive and encouraging. I also wish to sin-

cerely thank Mr Frank Williams for his ongoing efforts and meticulous proof-reading of my research,

thereby enriching the final outcome and quality of my thesis.

All of the persons highlighted herein have been most professional in their approach and each in

their own special way has enhanced the quality of my research, plus the timely completion of my

Doctoral thesis.

iv

Dedication

I dedicate this thesis to my husband Suleiman, my son Talal, my daughter Sally and my parents.

v

List of publication

Journal papers

1. Bagirov, A.M., Al Nuiamat, A., and Sultanova, N., Hyperbolic smoothing function method for

minimax problems, Optimization, 62(6), 2013, 759–782.

2. Bagirov, A. M., Jin, L., Karmitsa, N., Al Nuaimat, A., and Sultanova, N., Subgradient method

for nonconvex nonsmooth optimization, Journal of Optimization Theory and Applications,

157(2), 2013, 416–435.

3. Bagirov, A. M., Barton, A. F., Mala-Jetmarova, H., Al Nuaimat, A., Ahmed, S. T., Sultanova,

N., and Yearwood, J., An algorithm for minimization of pumping costs in water distribution

systems using a novel approach to pump scheduling, Mathematical and Computer Modelling,

57(34), 2013, 873–886.

4. Bagirov, A. M., Ahmed, S. T., Barton, A. F., Mala-Jetmarova, H., Al Nuaimat, A., Sultanova,

N. Comparison of metaheuristic algorithms for pump operation optimization. 14th Water Dis-

tribution Systems Analysis Conference, 2012.

5. Bagirov, A. M., Barton, A. F., Mala-Jetmarova, H., Al Nuaimat, A., Ahmed, S. T., Sultanova,

N., and Yearwood, J., Minimization of pumping costs in water distribution systems using ex-

plicit and implicit pump scheduling, Hydrology and Water Resources Symposium, 2012.

6. Bagirov, A.M., Ozturk, G., Sultanova, N., and Al Nuaimat, A., Nonsmooth nonconvex opti-

mization via smooth optimization, (Submitted).

vi

Conference and workshop presentations

1. Al Nuaimat, A., A Generalized Subgradient Algorithm for Unconstrained Nonsmooth, Non-

convex Optimization, The 2011 IFORS conference in Nonsmooth Optimization III,

2. Al Nuaimat, A., An algorithm for minimization of pumping costs in water distribution sys-

tems using a novel progressive approach for pump scheduling, The 9th EUROPT Workshop on

Advances in Continuous Optimization July, 2011.

vii

Contents

Abstract i

Statement of authorship ii

Acknowledgement iii

Dedication iv

List of publication v

Introduction 2

1 Background 8

1.1 Notations and Definitions . 8

1.2 Nonsmooth Analysis . 9

1.3 Nonsmooth Optimization Theory . 12

2 Nonsmooth Optimization Methods 15

2.1 Subgradient methods . 16

2.2 Cutting plane methods . 18

2.3 Bundle methods . 20

2.3.1 Standard bundle method . 21

2.3.2 Variable metric bundle type methods . 24

2.3.3 Limited memory bundle methods . 25

2.3.4 Quasisecant method . 25

2.4 Methods based on smoothing techniques . 26

viii

2.4.1 Exponential penalty smoothing method . 28

2.4.2 Hyperbolic smoothing functions . 29

2.5 Optimization methods in water management . 30

3 Hyperbolic smoothing function method for minimax problems 35

3.1 Reformulation of minimax problem . 35

3.2 Hyperbolic smoothing of the maximum function . 46

3.3 Minimization algorithm . 52

3.4 Numerical results . 54

3.4.1 Results for unconstrained minimax problems 56

3.4.2 Results for general nonsmooth optimization problems 57

3.5 Conclusions . 58

4 Nonsmooth optimization via smooth optimization 62

4.1 Quasisecants and their Properties . 63

4.2 Computation of descent directions . 69

4.3 Solving subproblem for finding search directions 75

4.4 Minimization algorithms . 80

4.5 Computation of (h, δ)-stationary points . 80

4.6 Numerical experiments . 84

4.6.1 Results for unconstrained minimax problems 85

4.6.2 Results for general nonsmooth unconstrained problems 86

4.6.3 Results with GAMS . 86

4.7 Conclusions . 87

5 Minimization of pumping costs in water distribution systems 92

5.1 Optimization model . 93

5.1.1 The objective function . 95

5.1.2 Constraints . 98

ix

5.1.3 Formulation of optimization problem . 100

5.2 Solution algorithm and its implementation . 102

5.3 Test problem and numerical results . 104

5.3.1 Example . 104

5.4 Conclusions . 105

6 Conclusion and recommendations for future research 111

Bibliography 125

Appendix 125

A Test problems for minimax optimization 126

B Test problems for general nonsmooth optimization 138

x

List of Tables

4.1 GAMS results . 91

1

List of Figures

2.1 Hyperbolic smoothing of the function (2.11). 30

3.1 Number of CONOPT iterations for unconstrained minimax problems. 59

3.2 Number of SNOPT iterations for unconstrained minimax problems. 59

3.3 Number of SNOPT function calls for unconstrained minimax problems. 60

3.4 Number of CONOPT iterations for general nonsmooth optimization problems. 60

3.5 Number of SNOPT iterations for general nonsmooth optimization problems. 61

3.6 Number of SNOPT function calls for general nonsmooth optimization problems. . . 61

4.1 Graph of test problem 2.3 (Spiral). 88

4.2 Number of function evaluations for unconstrained minimax problems. 88

4.3 Number of subgradient evaluations for unconstrained minimax problems. 89

4.4 Number of function evaluations for general nonsmooth problems. 89

4.5 Number of subgradient evaluations for general nonsmooth problems. 90

5.1 An example of a timeline. 98

5.2 The algorithm for pumping cost minimization. 106

5.3 The water distribution system. 107

5.4 The optimal pump schedule. 107

5.5 Inflow and outflow from the network. 108

5.6 Time series water volume graphs for Tanks 1, 2 and 3. 109

5.7 Time series water flow graphs for Pumps 10 and 335. 110

2

Introduction

Optimization models are widely used in solving many practical problems including those in eco-

nomics, operational research, mechanics and optimal control. In many applications optimization

problems are nonsmooth, that is in these problems objective and/or constraint functions have dis-

continuous gradients. Nonsmooth optimization problems are among most difficult in optimization.

Over the last four decades a great deal of effort has been devoted to design algorithms for solving

nonsmooth optimization problems. To date, problems of nonsmooth optimization have been mainly

tackled by variants of the bundle methods [37, 44, 48, 61, 64, 65, 96], subgradient (including the space dila-

tion) methods [88] and algorithms based on smoothing techniques [81].

The subgradient method is one of the simplest methods for solving nonsmooth optimization prob-

lem. It was originally developed by N. Shor and then was modified by many authors (see [17, 83, 88]

and more recent papers [1, 13, 67, 68, 69]). Its convergence was proved only for convex objective func-

tions. The subgradient method uses one subgradient and one function evaluation at each iteration. It

does not involve any subproblems neither for finding search directions nor for computation of step

lengths. Moreover, step lengths are fixed ahead of time. Therefore, it is easy to implement this

method. Although this method is very slow it is well known that some of its modifications might be

more successful for solving large scale problems than other nonsmooth optimization methods. For

example space dilation was proposed by Shor[88] to accelerate the direction finding towards the min-

imum where a linear operator is constructed at each iteration to change the metric of the space (for

more of these modifications see [68, 69]). In general, subgradient methods have several important lim-

itations (e.g.lack of implementable stopping test, lack of decrease of the objective function at each

iteration, possible poor rate of convergence, etc). Nevertheless, they are extremely popular among

practitioners, because of their simplicity of implementation.

To date, bundle methods are considered to be the most efficient methods in nonsmooth optimiza-

3

tion. The fundamental idea of bundle methods is usually to approximate the subdifferential of the

objective function by gathering subgradients from previous iterations in one bundle. By doing this,

information about the local behavior of the objective function is obtained. The bundle methods are

based on the use of convex models to the objective function and as a result it is efficient for minimiza-

tion of convex functions, however it is not always efficient for minimization of nonconvex functions.

These methods involve a quadratic programming subproblem to find search directions. The size of the

subproblem may increase significantly as the number of variables increase which makes the bundle-

type methods unsuitable for large scale nonsmooth optimization problems. Therefore most of the

versions of the bundle method are not applicable for solving large scale nonsmooth optimization prob-

lems (convex or nonconvex). Recently, the limited memory bundle method [46, 45, 40, 41, 42]has been

proposed where aggregate subgradients and Quasi-Newton updates for sparse problems are combined

to find search directions. At each iteration of this method only three subgradients with a certain type

of the quasi- Newton updates are used to find search directions. The limited memory bundle method

is a hybrid of the variable metric bundle methods and the limited memory variable metric methods.

The method exploits simple aggregation of subgradients, and calculates the search direction using a

limited memory approach. As a result, the time-consuming quadratic subproblem appearing in stan-

dard bundle methods need not to be solved and the number of stored subgradients is independent of

the dimension of the problem. The efficiency of this method has been proved by numerical results

[45].

The quasisecant method was introduced in [7]. Unlike bundle methods this method does not rely

on the convex model of the objective function f , instead it uses quasisecants which are overestimators

of the objective function in some neighborhood of the current point. Results from [7] demonstrate that

the quasisecant method is more efficient for solving nonconvex nonsmooth optimization problems

than some versions of the bundle method. Moreover, results from [45] show that it is efficient for

solving large scale problems. At the same time the quasisecant method requires more function and

quasisecant (subgradient) evaluations than the bundle methods.

In [9], a subgradient method for nonsmooth nonconvex optimization problems called SUNNOPT

4

has been proposed to solve especially nonconvex optimization problems. Similar to the subgradient

method, the SUNNOPT method does not contain any subproblem to find either descent direction or

step length. A bundle of information of the objective function is used in some neighborhood of the

iteration point and the direction finding procedure is very simple. Aggregation of only two subgra-

dients or quasisecants are used in the search direction finding procedure. Versions of SUNNOPT

using subgradients and quasisecants have been presented and numerical results are shown to prove its

efficiency for both small and large scale problems.

Minimax problems arise in multiple disciplines including engineering design [89], control system

design [21], economics [11], machine learning [4]. These problems are nonsmooth problems because

of the presence of the ”max”. There are several different approaches to solve this problem (see,

for example, [28, 33]). Moreover, conventional nonsmooth optimization algorithms such as the bundle

methods and its variations can also be applied to solve this problem [5, 7, 44, 48, 61]. Any Minimax prob-

lem can also be reformulated as a nonlinear programming problem and therefore efficient nonlinear

programming techniques can be applied to solve it. One of the methods to solve such problems is ap-

plying a smoothing technique to replace the original nonsmooth problem by an approximate smooth

one. Smoothing methods bring these problems close to continuously differentiable programming

problems which can be solved by the conventional smooth optimization methods. The main feature

of smoothing methods is to approximate the nonsmooth problems by a sequence of parameterized

smooth continuously differentiable problems. Different smoothing techniques have been developed

to replace the maximum function in minimax problem by a smooth function including the exponen-

tial and hyperbolic smoothing functions. In [15] Ben-Tal and Teboulle introduce a general smoothing

approach that utilizes recession functions to approximate a nondifferentiable optimization problem. It

covers several types of problems including minimax problems using the so called recession function.

The exponential smoothing function for the maximum function f(x) = max
i=1,...,m

fi(x)is as follows

Fε(x) = ε log

m∑
i=1

exp

fi(x)

ε (1)

5

where ε is called the precision parameter. The exponential smoothing function has been commonly

used to construct many smoothing approximation algorithms for problems with min and max func-

tions. Several smoothing methods are based on using exponential smoothing function (1). The func-

tion (1) was first proposed in [50] within the structure of a penalty function method. The precision

parameter in the exponential smoothing function may become extremely small too fast and cause

ill-conditioning and floating-point overflow. In their paper [81] the authors made an effort to address

this issue by introducing a feedback precision adjustment rule whereby the precision parameters are

constructed by a subroutine. The goal is to ensure that the precision parameter remains large when

away from the solution and is decreased when the solution is approached.

Another smoothing function is a hyperbolic smoothing function which is introduced for the func-

tion max{0, t} the first time in [97]:

φ(t, τ) =
t+
√
t2 + τ2

2
,

where τ > 0 is the precision parameter. In [98], the authors consider a problem of covering plane do-

mains by circles which is modeled as a min-max-min problem which enables them to take advantage

of the hyperbolic smoothing function to develop a minimization algorithm which solves a sequence

of approximating problems. In the paper [99] this technique was applied to solve the cluster analysis

problem using its nonsmooth optimization formulation.

Despite some applications hyperbolic smoothing functions have not been studied extensively so

far. In this thesis we study this smoothing technique in detail. In order to apply the hyperbolic

smoothing to the finite maximum functions these functions are represented as a sum of the maximum

of two functions by adding a new variable. We study the relationship between the set of stationary

points of the latter function and that of the original maximum function. The new function is ap-

proximated using hyperbolic smoothing functions and differential properties of the approximating

function are studied. It is demonstrated that smooth optimization solvers can be applied to minimize

the approximating function. We design an algorithm for solving minmax problems using the hyper-

6

bolic smoothing. Furthermore, we present results of numerical experiments using two solvers from

GAMS: CONOPT and SNOPT. We also compare these results with those obtained using exponential

smoothing and also nonlinear programming reformulations of minimax problems. Such an approach

allows one to solve the finite minimax problem using existing powerful smooth optimization solvers.

The smooth function approximates the objective function and this approximation is controlled by the

precision parameter(s).

Next we extend this method for solving general nonsmooth nonconvex optimization problems.

In this approach the problem of finding search directions is reduced to the minimization of a con-

vex piecewise linear function over the unit ball. The hyperbolic smoothing functions are applied to

approximate the convex piecewise linear function by a smooth function which is minimized to find

search directions. We present convergence results for the proposed algorithm. The algorithm is im-

plemented in Fortran 95. Results of numerical experiments are reported and the proposed algorithm

is compared with another five nonsmooth optimization algorithms. We also implement the algorithm

in GAMS and compare it with GAMS solvers using results of numerical experiments.

The proposed methods is applied to solve Pump scheduling problem in water distribution system.

Outline of the Thesis

This thesis is organized into six chapters beginning with a background discussion in Chapter 1

which introduces the reader to nonsmooth optimization fields from nonsmooth optimization analy-

sis to nonsmooth optimization theory. Chapter 2 presents an overview of nonsmooth optimization

methods and Chapter 3 describes the application of the hyperbolic smoothing to the finite maximum

functions. Then, Chapter 4 provides a description for solving general nonsmooth nonconvex prob-

lems. Chapter 5 describes the minimization of pumping costs in water distribution systems. Whilst,

Chapter 6 concludes the thesis and gives recommendations for future research directions.

7

Chapter 1

Background

The chapter is organized as follows. First we introduce basic notations and definitions that will

be used throughout the rest of this thesis, followed by basic definitions and results of Nonsmooth

Analysis and Optimization. We also present some properties of the subgradients and subdifferentials

for convex function. Following that, we give the extension of these concept to a nonconvex case.

Finally, we give the necessary optimality conditions and linearizations for locally Lipschitz functions.

1.1 Notations and Definitions

IRn is the n-dimensional real Euclidean space, we denote by x = (x1, . . . , xn) a point in IRn, and

we denote by 〈x, y〉 :=
n∑
i=1

xiyi an inner product of the two points x, y ∈ IRn, and ‖ · ‖ denotes the

associated Euclidean norm.

S1 := {x ∈ IRn : ‖x‖ = 1} is the unit sphere, whereas Bε(x) := {y ∈ IRn : ‖y− x‖ < ε} is the

open ball centered at x with the radius ε > 0. Furthermore, an open ball with radius ε > 0 centered

at 0 is denoted by Bε := Bε(0n).

A set S ⊂ IRn is called convex if λx + (1 − λ)y ∈ S for any x, y ∈ S and λ ∈ [0, 1]. A linear

combination
∑k

i=1 λixi is called a convex combination of points x1, ..., xk ∈ IRn if each λi ≥ 0 and∑k
i=1 λi = 1. The convex hull of a set S, denoted by conv S, is the smallest convex set containing S.

A function f : IRn → IR is convex function if

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

8

for all x, y ∈ IRn and λ ∈ [0, 1].

A function f : IRn → IR is said to be Locally Lipschitz at (or near) the point x if there exist a

numbers δ, L > 0 such that

|f(y)− f(z)| ≤ L‖f(y)− f(z)‖

for all y, z ∈ Bδ(x).

1.2 Nonsmooth Analysis

The theory of Nonsmooth analysis was first developed for convex functions. Here we first go

over a number of definitions and results for convex analysis. Second, define the subgradient and also

the subdifferential of the convex function, and then finally we generalize these results to nonconvex

locally Lipschitz functions.

Definition 1. The directional derivative f ′(x, d) of the function f : IRn → IR at x in the direction of

d ∈ IRn is defined as

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t

Definition 2. A function f : IRn → IR is called upper semicontinuous at x ∈ IRn if for every

sequence {xk} converging to x

lim sup
k→∞

f(xk) ≤ f(x),

and is called lower semicontinuous if

f(x) ≤ lim inf
k→∞

f(xk),

Definition 3. The subdifferential of a convex function f : IRn → IR at x ∈ IRn is the set

∂cf(x) = {g ∈ IRn|f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ IRn}

where g ∈ ∂cf(x) is called a subgradient of f at x.

9

For any differentiable function , ∂cf(x) = {∇f(x)}.

Definition 4. Let ε > 0. The ε-subdifferential of the convex function f : IRn → IR is the set

∂εf(x) := {g ∈ IRn|f ′(x) ≥ f(x) + 〈g, x′ − x〉 − ε, ∀x′ ∈ IRn}

each element ξ ∈ ∂εf(x) is called an ε-subgradient of the convex function f at x.

Theorem 1 (Rademacher). [25] Let S be an open set. A function f : S → IR that is locally Lipschitz

continuous on S is differentiable almost everywhere on S.

The next theorem presents the relationship between subdifferential and the directional derivative.

Theorem 2. Let f : IRn → IR be convex function at x ∈ Rn. Then for all x ∈ Rn

(i) ∂f(x) is a nonempty, convex, and compact set such that ∂f(x) ⊆ BL(0),

(ii) ∂cf(x) = {g ∈ Rn : f ′(x, d) ≥ 〈g, d〉}, ∀d ∈ Rn,

(iii) f ′(x, d) = max
g∈∂cf(x)

{〈g, d〉}, ∀d ∈ Rn,

where L is a Lipschitz constant of f .

The classical directional derivative and subdifferential, in general, do not exist for locally Lips-

chitz function. F. Clarke introduced the generalizations of directional derivatives and subdifferentials

for locally Lipschitz functions [25].

Definition 5. The generalized directional derivative f0(x, d) of the locally Lipschitz function f :

IRn → IR at x ∈ Rn in the direction d ∈ IRn is defined as

f◦(x; d) = lim sup
y→x
t↓0

f(y + td)− f(y)

t
.

Definition 6. (Clarke subdifferential) [25] The subdifferential ∂f(x) of a locally Lipschitz function

f : IRn → IR at a point x ∈ IRn is given by

∂f(x) := {g ∈ IRn|f◦(x, d) ≥ 〈g, d〉 ∀d ∈ IRn} .

10

Here g ∈ ∂f(x) is called a subgradient of f at x.

According to Rademacher theorem locally Lipschitz functions are differentiable almost every-

where and their subdifferential can also be defined as follows:

∂f(x) = conv
{

lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists

}
.

Definition 7. A locally Lipschitz function f : IRn → IR is called regular at x iff it is directionally

differentiable at x and

f ′(x, d) = f0(x, d), ∀d ∈ IRn.

The following theorem summarizes some properties of the Clarke subdifferential.

Theorem 3. [61] Let f : IRn → IR be locally Lipschitz function at x ∈ Rn with constant K. Then

(i) ∂f(x) is nonempty, convex, compact set such that ∂f(x) ⊆ BK(0),

(ii) f◦(x; v) = max{〈ξ, v〉|ξ ∈ ∂f(x), ∀x ∈ IRn},

(iii) the mapping ∂f(·) is upper semi-continuous.

Note that, for convex function the Clarke subdifferential coincides with the subdifferential from

Definition (3). This means that the Clarke subdiiferential is the generalization of the subdifferential

for convex functions. Furthermore, for any locally Lipschitz function f , we have∇f(x) ∈ ∂f(x).

The Goldstein ε-subdifferential for locally Lipschitz functions is defined as follows.

Definition 8. Let f : IRn → IR be a locally Lipschitz function at x ∈ Rn ε > 0, then the Goldstein

ε-subdifferential of the Lipschitz function f : IRn → IR is the set

∂Gε f(x) := conv{∂f(y)|y ∈ B̄ε(x)}

where, g ∈ ∂Gε f(x) is called an ε-subgradient of the function f at x.

11

1.3 Nonsmooth Optimization Theory

In this section, we present basic results from nonsmooth optimization including necessary and

sufficient conditions for a minimum. Moreover, linearization of local Lipschitz functions using sub-

gradients will be discussed.

We consider the following unconstrained optimization problem:

minimize f(x) subject to x ∈ IRn, (1.1)

where the objective function f : IRn → IR is assumed to be locally Lipschitz.

Definition 9. A point x? ∈ IRn is called a global minimum of f if it satisfies f(x?) ≤ f(x) for all

x ∈ Rn.

Definition 10. A point x? ∈ IRn is called a local minimum of f if there exists ε > 0 such that

f(x?) ≤ f(x) for all x ∈ Bε(x?).

Theorem 4. Let f : IRn → IR be a locally Lipschitz at x? ∈ IRn and attains its local minimum at x?.

Then

(i) 0 ∈ ∂f(x?) and

(ii) 0 ∈ ∂Gε f(x?),

(iii) f◦(x?, d) ≥ 0, ∀d ∈ IRn.

The point x∗ ∈ IRn is called stationary iff 0 ∈ ∂f(x∗). Stationarity is a necessary condition for

local optimality and, in the convex case, it is also sufficient for global optimality.

In order to develop nonsmooth optimization algorithms for unconstrained optimization problem

(1.1), linearization of the objective function needs to be built. Using these linearizations we are able

to construct a piecewise linear local approximation to the unconstrained optimization problem.

12

Definition 11. Let f : IRn → IR be a locally Lipschitz function at x and let ξ ∈ ∂f(x) be an arbitrary

subgradient. Then the ξ-linearization of f at x is the function f̄ξ : IRn → IR defined by

f̄ξ(y) := f(x) + 〈ξ, y − x〉, ∀y ∈ IRn

and the linearization of f at x is the function f̂x: IRn → IR such that

f̂x(y) := max{f̄ξ(y)|ξ ∈ ∂f(x)}, ∀y ∈ IRn.

Some basic properties of the linearization f̂x are presented in the following theorem.

Theorem 5. Let f : IRn → IR be locally Lipschitz at x. Then the linearization f̂x is convex and

(i) f̂x(x) = f(x),

(ii) f̂x(y) = f(x) + f◦(x; y − x), ∀y ∈ IRn,

(iii) ∂f̂x(x) = ∂f(x).

Finding descent direction for a locally Lipschitz function is an important step of any optimization

algorithm. We first give the general definition of a descent direction for any function, then modify it

using generalized directional derivatives and subdifferential.

Definition 12. The direction d ∈ IRn is called a descent direction for the function f : IRn → IR at

x ∈ IRn if there exists ε > 0 such that f(x+ td) < f(x), ∀ t ∈ (0, ε].

Theorem 6. Let f : IRn → IR be locally Lipschitz at x, the direction d ∈ IRn is a descent direction

for f at x if any of the following holds:

(i) f◦(x; d) < 0,

(ii) 〈ξ, d〉 < 0, ∀ξ ∈ ∂f(x),

13

(iii) 〈ξ, d〉 < 0, ∀ξ ∈ ∂Gε f(x),

(iv) d is a descent for the linearization f̂x.

14

Chapter 2

Nonsmooth Optimization Methods

We consider the following unconstrained minimization problem:

minimize f(x) subject to x ∈ IRn, (2.1)

where the objective function f : IRn → IR is assumed to be locally Lipschitz and this function is not

necessarily either differentiable or convex.

Numerous algorithms have been developed for solving problem (2.1), with similar basic structure.

Their main point of difference is based on the specification of search directions and the selection of

step size. The general structure of an iterative algorithm for solving the nonsmooth optimization

problem (2.1) can be described as follows.

Step 1. Initialization Step: Choose a starting point x1 ∈ Rn. Set the iteration counter to i:=1.

Step 2. Stopping criterion: If the optimality condition at xi is satisfied then stop. Otherwise, go to step

3.

Step 3. Direction finding: Find a search direction di using either the subgradient gi ∈ ∂f(xi) or some

approximation to the subdifferential ∂f(xi).

Step 4. Line search: Select an appropriate step size λi > 0, and compute xi+1 = xi + λidi. Increase i

by 1, and go to step 2.

The desirable choices of the direction di, and the step size λi, have been the principal points of

research focus in solving Problem (2.1). There exist two types of numerical techniques that are used

15

to solve nonsmooth optimization problems: deterministic methods and stochastic methods. Deter-

ministic optimization algorithms guarantee under some assumptions that, starting from a given initial

point, an algorithm converges with deterministic steps in a finite number of iterations. On the other

hand, stochastic methods cannot adopt the same methodology. Stochastic methods are not guaranteed

to achieve the same solution in any single run. Deterministic algorithms have often been shown to

be better than stochastic ones at solving large scale nonsmooth nonconvex problems at a consider-

able computational cost and quality of the solution [53]. In this thesis, we will focus on Deterministic

optimization methods. The most popular deterministic optimization algorithms are accordingly di-

vided into three main classes; subgradient methods, bundle methods and methods based on smoothing

techniques. In this chapter we will review some of these algorithms.

2.1 Subgradient methods

The subgradient method was originally developed by N. Shor in the mid 1960s and then modified

by many authors (see [17, 83, 88] and more recent papers [1, 13, 67, 68, 69]).

It generalizes the steepest descent method of smooth optimization by replacing the gradient by

an arbitrary subgradient. The subgradient method uses one subgradient and one function evaluation

at each iteration. It does not involve any subproblems either for finding search directions or for

computation of step lengths. Therefore, it is easy to implement. In addition it can be immediately

applied to a far wider variety of problems. The memory requirement of subgradient methods can be

much smaller than the bundle type methods, which means it can be used for extremely large problems

for which bundle type methods cannot be used. Although the subgradient method is very slow it is

well known that some of its modifications might be more successful for solving large scale problems

than other nonsmooth optimization methods [68, 69]. The convergence of the subgradient method was

proved only for convex problems.

Consider the minimization problem (2.1). In the smooth case, it is convenient to use the steepest

16

descent method which takes the ant-gradient direction with fixed step size.

dk = −∇f(xk) (2.2)

where∇f(xk) is the gradient at the current iteration point.

The steepest descent method is one of the simplest optimization methods, though easy to imple-

ment, however, this method has the disadvantage of the large number of zigzag moves [55]. As a result,

the conjugate gradient method has been developed, which is more efficient where gradients at pre-

vious iteration points are taken into account to compute the descent search direction. The conjugate

gradient method has improved convergence rate the steepest descent method.

In the nonsmooth case of Problem (2.1), the gradient may not always exist at x. We assume

that the objective function f is a locally Liptchitz function, where at least one subgradient can be

calculated at any given point x, which is a mild assumption about most nonsmooth optimization

problems.

The subgradient method is a generalization of steepest descent method (2.2) for smooth optimiza-

tion problems. The idea of the subgradient method is quite simple by replacing the gradient ∇f(xk)

by an arbitrary subgradient ξk ∈ ∂f(xk). If xk is not a stationary point then ξk 6= 0 and we compute

the search direction by normalizing the subgradient ξk:

dk = −ξk/‖ξk‖. (2.3)

Then the subgradient algorithm can be constructed as follows

Algorithm 1. Subgradient algorithm

Step 1. Choose a starting point x1 ∈ IRn. Set k:=1

Step 2. Given xk , calculate f(xk), and an arbitrary subgradient ξk ∈ ∂f(xk). If the stopping criterion

is satisfied, then stop.

Step 3. compute dk = −ξk/‖ξk‖.

17

Step 4. Select an appropriate step length λk > 0.

Step 5. Set xk+1 := xk + λkdk, put k := k + 1 and go to step 2.

There are some requirements for the step size λk to guarantee the global convergence. The step

length λk should be defined so that to satisfy the following conditions:

1. The constant step size λk is chosen as a sufficiently small.

2. The step size λk satisfies the following condition:

λk > 0,

∞∑
k=0

λk =∞.

The convergence of subgradient methods is proved for only convex problems. To our best knowl-

edge such proof does not exist for nonconvex nonsmooth functions. Moreover, the subgradient

method does not guarantee the decrease of the objective at each iteration. In addition, subgradi-

ent method does not have practical termination criteria other than a maximum limit on the number of

iterations. Poor performance of subgradient methods can happen when the direction is almost orthog-

onal to a direction pointing toward a minimum. Because of these difficulties with the choice of the

step length, there have been many attempts to improve the search and step length [12, 38, 82, 88]. The

space dilation methods were introduced [88], which can be considered as a nondifferentiable version

of Quasi-Newton methods. These methods are based on accommodating previous iteration informa-

tion. Similar to the use of the Hessian matrix or its approximation in quasi-Newton approaches, a

suitable matrix is generated to multiply the subgradient in order to deflect the direction toward an

optimal direction. One approach uses space dilation along the gradient, another approach uses space

dilation along the difference of the two successive subgradients.

2.2 Cutting plane methods

Cutting-plane methods were proposed by Cheney and Goldstein [23] as well as by Kelley [47].

The cutting plane methods rely on construction of the lower approximation (underestimation) of the

18

objective function. This approximation is used to find the minimum of the original function. They

are based on minimization of piecewise-affine approximation of the objective function, in which a

new direction is obtained from the set of the previous subgradients, as opposed to using only one

subgradient at a time, without a memory of past iterations on subgradient methods. The idea behind

cutting plane methods is to approximate f using a piecewise linear function, in other words, to replace

f by a so-called cutting plane model. At the current iteration k, the piecewise linear approximation

of the objective function f can be defined as follows

f̂k(x) := max{f(xj) + 〈ξj , x− xj〉|j ∈ Jk}, x ∈ IRn

where ξj is the subgradient at the trial points xj around the current point xk, f̂k(x) is an underesti-

mator for convex function f and Jk is a set of subgradients calculated so far. Note that the idea of the

Cutting plane is to replace the original function f by its approximation f̂k(x). The next iterate is then

defined where the search direction dk is calculated by solving the following minimization problem:

minf̂k(xk + d)− f(xk) subject to d ∈ IRn (2.4)

which can be modified to the following linear problem.

min υ

st. υ ≥ f(xj) + 〈ξj , x− xj〉, j ∈ Jk,

The cutting plane method does not always have a solution and is not used in practice due to poor

convergence results. Furthermore, Cutting plane method can be very slow when new iterates move

too far away from the previous ones. In order to improve the rate of convergence we can obtain the

search direction by solving the following local subproblem

19

min υ +
1

2
‖d‖2 (2.5)

st. υ ≥ −αkj + ξTj d for all j ∈ Jk,

where the regularizing quadratic penalty term is added to guarantee the existence of the solution dk

and to keep the approximation local enough, where the search direction can obtain as follows

dk = −
∑
j∈Jk

λkj ξj

It is easy to see that the search direction at xk is obtained as a convex combination of some

subgradients at the points yj , where λkj is the solution of the dual problem.

The main steps of the Cutting plane algorithm are as follows.

Algorithm 2. (Cutting plane algorithm)

Step 1. let δ > 0 a given stopping tolerance, S 6= ∅ be a compact convex set containing a minimum

point of f , choose any starting point x1 ∈ S, and set k := 1.

Step 2. If

‖f(xk)− f̂k−1(xk)‖ < δ,

then stop.

Step 3. Compute the search direction dk at x = xk as a solution of problem (2.5).

Step 4. Take tk = 1 constant step size, and set xk+1 := xk + dk, Set k := k + 1 and go to Step 2.

2.3 Bundle methods

Basically, subgradient methods use only one subgradient at each iteration, without a memory of

past information iterations. If, instead, the past information obtained so far is kept, it is possible to

20

define piecewise-affine approximation of the objective function. The bundle method uses piecewise

affine approximations to find search directions. These methods are among most efficient in nonsmooth

optimization. In what follows we give a review regarding the bundle algorithms.

2.3.1 Standard bundle method

The bundle method was first introduced by C. Lemaréchal in [52] and then modified by many

authors [5, 7, 35, 36, 43, 48, 61, 65]. The basic idea of bundle methods is to approximate the subdifferential

of the objective function by gathering subgradients from previous iterations into a bundle, which

can be used to describe the local behavior of the objective function, as opposed to using only the

current subgradients (like in the subgradient method). This subgradient information serves for the

construction of a piecewise linear local approximation to the objective function. A search direction

for this approximation is usually obtained as a solution of quadratic programming subproblem [61].

The global convergence of bundle methods with a bounded number of stored subgradients can be

guaranteed [48].

The basic idea of bundle type algorithms consists of replacing the subdifferential by some poly-

tope approximation. Indeed, if the approximation is sufficiently good the algorithm will find a descent

direction and a new point xk+1 will decrease the value of the objective function. In case the approxi-

mation is bad we stay at xk and try to improve the approximation by adding further subgradients.

Consider the nonsmooth unconstrained minimization problem (2.1). Bundle method produces

a sequence of points xk ⊂ IRn that converges to a global minimum of a convex function f or a

stationary point of the nonconvex function f . First, we define the Cutting plane model function f̂(x)

that approximates the objective function at the iteration point xk by

f̂k(x) := max
j∈Jk

f(yk) + 〈ξj , x− yk〉 − αkj , j ∈ Jk ⊂ {1, ..., k},

αkj = f(xk)− f(yk) + 〈ξj , x− yk〉 ∀j ∈ Jk.

21

Here ξj ∈ ∂f(yj) is the subgradient of the trial point yj ∈ IRn from previous iteration, and Jk

nonempty index set, αkj is called linearization error which measures how good the model of the orig-

inal problem is. For a convex functionf the linearization error αkj is nonnegative, but for nonconvex

case it can be negative. Therefore, the linearization error for nonconvex functions was replaced by

the subgradient locality measure βkj

βkj = max{|αkj |, γ(xk − yj)ω},

here γ > 0 is called a distance measure parameter, ω ≥ 1 is called a locality measure parameter.

The next iteration is obtained as

yk+1 := xk + dk,

where the search direction dk is calculated as

dk := arg min
d∈Rn

{
f̂k(xk + d) +

1

2
〈d,Dkd〉

}
, (2.6)

where Dk is symmetric, positive definite n× n matrix that accumulates information about the curva-

ture of the objective function f in a ball around the point xk [62]. The role of the stabilization term

1
2〈d,Dkd〉 is to keep the approximation f̂k of the objective function f local enough.

A serious step is taken

xk+1 = yk+1 (2.7)

and Jk+1 = Jk ∪ {k + 1} for all j ∈ Jk,

if f(yk+1) is significantly less than f(xk), otherwise, a null step is taken

xk+1 = xk (2.8)

and set Jk+1 = Jk ∪ {k + 1} for all j ∈ Jk.

22

By updating the index set Jk we improve the Cutting plane model f̂k+1 in both steps. Notice that

the quadratic direction finding minimization problem (2.6) can be rewritten as follows

min ν +
1

2
〈d,Dkd〉 (2.9)

st. −βkj + 〈d, ξj〉 ≤ ν for all j ∈ Jk,

The solution dk of problem (2.9) can be found by solving quadratic dual problem as follows

dk = −
∑
j∈Jk

λkjDk−1ξj

where
∑

j∈Jk λj = 1 and λj ≥ 0, for all j ∈ Jk.

Bundle methods have been developed for solving problem (2.1), with similar basic structure.

Their main point of difference is based on the choice of the Cutting plane approximation f̂k, the

linearization error βkj and stabilizing matrix Dk
[62].

Algorithm 3. (Standard Bundle algorithm)

Step 1. (Initialization) Choose the stopping tolerance δ , line search parameter ε, distance measure

parameter γ > 0. Choose any starting point x1 ∈ IRn, positive definite matrix D1, set y1 = x1,

J1 = {1}. Set the iteration counter k := 1.

Step 2. (Direction finding) Solve the quadratic dual problem of problem (2.9) to find the direction dk

and the minimal value $k of problem (2.9).

Step 3. (Stopping criterion) If

$k < δ,

then stop with xk the final solution.

Step 4. (Line search) Determine the step size tk by a line search algorithm. If

f(xk + tkdk) ≤ f(xk)− εtk$k

23

do Serious step

xk+1 := xk + tkdk

otherwise do Null step

xk+1 := xk

Step 5. (updating) Determine the stabilization matrix Dk+1 using an updating formula. Determine

the index set Jk+1 and go to Step 2.

The convergence of bundle methods can be proved under some assumptions [48]. The computa-

tional results show that the bundle methods perform significantly better than the subgradient method

for minimizing nonsmooth convex functions. However, a solution to quadratic Problem (2.9) is time

consuming for large scale nonsmooth optimization problems. Several types of bundle methods have

been developed to avoid such costly computation. Variable metric bundle type methods are the most

powerful method among them, where the time cosuming quadratic Problem (2.9) does not need to be

solved.

Bundle methods need relatively large bundles to solve the problems efficiently. In other words,

the size of the bundle has to be approximately the same as the number of variables [48]

2.3.2 Variable metric bundle type methods

The variable metric method for convex unconstrained minimization was proposed in [56]. Since

this method is relatively robust and efficient even in the nonsmooth case, it has been extended for

convex nonsmooth unconstrained minimization in [94]. Variable metric bundle methods are hybrid

methods of the standard variable metric method and standard bundle method. The idea of the method

is to use only three subgradients for direction determination; one at the current point xk, the other at a

trial point yk+1, and the last aggregated one containing information from past iterations. This means

that the dimension of quadratic programming subproblem is only three. Therefore, the size of the

bundle does not need to grow with the dimension of the problem. To ensure the global convergence,

the matrices are chosen to be uniformly positive definite. However, these methods use dense ap-

24

proximations of the Hessian matrix to calculate the search direction which become inefficient when

the dimension of the problem increases. Practical optimization problems often involve nonsmooth

functions of hundreds of variables; which can be a dilemma.

2.3.3 Limited memory bundle methods

For large scale nonsmooth optimization problems, it can be time consuming to use the variable

metric bundle methods. Thus, a hybrid method of a variable metric bundle methods[57, 94] and a

limited memory variable metric methods [20, 74] has been proposed [40, 41, 42]. In this method the ap-

proximation of the Hessian matrix updates uses the information of the last few iterations to define a

variable metric approximation. In practice, this means that the approximation of the Hessian matrix

is not as accurate as that of the original variable metric bundle methods but both the storage space

required and the number of operations used are significantly smaller. The Limited memory bundle

method efficiency has been proved by numerical results. At each iteration of this method only three

subgradients with a certain type of the quasi Newton updates are used to find search directions. The

method exploits simple aggregation of subgradients, and calculates the search direction using a lim-

ited memory approach. As a result, the time consuming quadratic subproblem appearing in standard

bundle methods need not be solved and the number of stored subgradients is independent of the di-

mension of the problem. SR1 update and BFGS update of the matrix in descent direction finding

are used individually for a null step and a serious step to guarantee the convergence of the algorithm.

2.3.4 Quasisecant method

In bundle methods, the subdifferential of the objective function is approximated using those sub-

gradients that provide good underestimators from previous iterations. For convex functions, it is easy

to find relevant subgradients from the previous iterations. However for nonconvex functions subgradi-

ent information produces only local approximation to the objective function and should be discounted

when no longer relevant. Unlike the convex case, in the nonconvex case, in general, not all subgra-

dients provide a tight local approximation to a function. Therefore, subgradients which provide such

25

an approximation of a function in some neighborhood of a point are of big interest. To address this

problem (at least partially) the notion of the quasisecant was introduced in [7]. quasisecants will be

explained in greater detail in section (4.1). It was demonstrated that quasisecants can be efficiently

computed for some nonsmooth functions. These include convex functions, functions represented as a

maximum of a finite number of smooth functions, functions represented as a difference of two convex

(DC) functions. Some interesting functions such as functions represented as a maxima of minima of

a finite number of smooth convex functions (which includes continuous nonconvex piecewise linear

functions), functions represented as a sum of minima of a finite number of smooth convex functions

can be easily represented as a difference of two (nonsmooth) convex functions. Quasisecants are

approximate subgradients. Quasisecant provide overestimation for the objective function in some

neighborhood with a point. The computational results of the quasisecant method for solving well

known nonsmooth optimization show that the bundle method performs significantly better than the

quasisecant method for convex functions whereas the quasisecant method outperforms the bundle

method for nonconvex nonregular problems.

2.4 Methods based on smoothing techniques

Consider the minimization problem

minimize f(x) subject to x ∈ IRn (2.10)

where

f(x) = max
i∈I

fi(x), I = {1, . . . ,m}, (2.11)

and the functions fi, i ∈ I are continuously differentiable.

These problems are nonsmooth problems because of the presence of the ”max” operator and ap-

pears in many application , such as vehicle routing (see, for example, [2, 3]), location (see, for exam-

ple, [16, 32]), resource-allocation (see, for example, [60, 78]), structural optimization (see, for example,

26

[10, 24]) and many more.

There exist many algorithms for solving Problem (2.10) (see, for example, [28, 33]). Moreover,

conventional nonsmooth optimization algorithms such as the bundle methods and its variations can

also be applied to solve this problem [5, 7, 44, 48, 61]. Problem (2.10) can also be reformulated as a

nonlinear programming problem and therefore efficient nonlinear programming techniques can be

applied to solve it.

One of the methods to solve nonsmooth optimization problems is applying a smoothing tech-

nique to replace the original nondifferentiable problem by an approximate smooth one. Smoothing

techniques bring these problems close to continuously differentiable equations or continuously differ-

entiable programming problems which can be solved by the conventional smooth optimization meth-

ods. It has been shown that the smoothing approximation techniques are efficient methods for solving

certain specially structured nonsmooth problems. Many of the algorithms are based on reformulat-

ing the problem. Smoothing methods have been developed for solving many important optimization

problems including min-max problems. The main feature of smoothing methods is to approximate

the nonsmooth nondifferentiable problems by a sequence of parameterized smooth continuously dif-

ferentiable problems, and to trace the smooth path which leads to solutions. The accuracy of the

approximation is controlled by some parameter, which is called a smoothing or precision parameter.

In the last decade many smooth approximation functions have been developed. A smooth approxi-

mation of the ”max” function simplifies the problem and facilitates a platform for us to study related

problems.

Recently, different smoothing techniques have been developed to replace the objective function

f in Problem (2.10) by a smooth function. Such an approach allows one to solve the finite minimax

problem using smooth optimization solvers. The smooth function approximates the objective function

f and this approximation is controlled by the precision parameter(s). We can divide smoothing tech-

niques into two main classes. Smoothing techniques from the first class try to smooth the objective

function only in some neighborhood of the so-called kink points (points where the function f is not

differentiable) whereas smoothing techniques from the second class smooth the objective function f

27

globally.

The paper [103] introduces different functions to smooth the finite maximum function at the kink

points. In the paper [34], the authors reformulate the finite minimax problem replacing the maximum

function by the sum of more simple maximum functions and develop smooth approximations of the

reformulated function. This smooth function approximates the reformulated function only at the

points where the function is not differentiable.

Smoothing techniques from the second class include the exponential and hyperbolic smoothing

functions. The general approach for smoothing was introduced in [15] where different smoothing

functions, including exponential smoothing function, were considered. The paper [93] considers the

logarithmic barrier function of the epigraph of the maximum function to smooth it. In the paper [102],

the author introduces a smoothing method for minimax problems based on the exponential smoothing

function. He proves its convergence and provides results of preliminary numerical experiments. The

paper [81] introduces another version of smoothing technique using exponential smoothing. A feed-

back precision-adjustment rule is used to update the precision parameter in the exponential smoothing

function which allows to avoid the ill-conditioning associated with large precision parameters.

In the paper [100], a truncated exponential smoothing function is introduced which is later com-

bined with a Newton-Armijo algorithm to solve a minimax problem. A generalization of the expo-

nential smoothing algorithm for finite min-max-min problems was considered in [90]. A smoothing

technique is applied twice, once to eliminate the inner min operator and once more to eliminate the

max operator.

2.4.1 Exponential penalty smoothing method

Ben-Tal and Teboulle [15], introduced a smoothing technique for nondifferentiable optimization

problems with maximum objective functions. The tool they used to generate such an approximate

problem is through the use of the recession approximate problem by a smooth optimization problem

which contains a smoothing parameter. This parameter controls the accuracy of the approximation.

This smoothing approach has also been proposed and used to smooth min-max problems by Polak

28

[81]. This method is called exponential smoothing function.

Consider

Ψ(x) = max
i=1,...,m

fi(x), i = 1, ...,m,

where the functions fi, i = 1, ...,m are continuously differentiable.

Let µ > 0 be a smoothing parameter. Define the following function [81]

Ψµ(x) =
1

µ
log

m∑
i=1

expµfi(x). (2.12)

It follows from (2.12) that

1. Ψ(x) ≤ Ψµ(x) ≤ Ψ(x) + 1
µ logm.

2. Ψµ(x) is decreasing with respect to µ.

3. Ψµ(x)→ Ψ(x)as µ→ +∞.

4. Ψµ(x) is twice continuously differentiable for all µ > 0.

2.4.2 Hyperbolic smoothing functions

The paper [97] was the first instance where the hyperbolic smoothing function was considered. In

the paper [98], the problem of the optimal covering of plane domains by circles was solved by applying

a hyperbolic smoothing technique and in the paper [99] this technique was applied to solve the cluster

analysis problem using its nonsmooth optimization formulation.

The hyperbolic function was introduced for the following function:

f(x) = max{0, x}. (2.13)

The hyperbolic smoothing of this function is as follows:

φτ (x) =
x+
√
x2 + τ2

2
, (2.14)

29

where τ > 0 is a precision parameter.

Proposition 1. The function φτ (x) has the following properties:

1. φτ (·) is an increasing convex C∞ function;

2. f(x) < φτ (x) ≤ f(x) +
τ

2
, ∀x ∈ IR.

Proof. The proof is straightforward.

The hyperbolic function for smoothing the function (2.13) is illustrated in Figure (2.1) where blue

curve shows the smoothing function.

-3.2 -2.4 -1.6 -0.8 0.8 1.6 2.4 3.2

-2.4

-1.8

-1.2

-0.6

0.6

1.2

1.8

2.4

Figure 2.1: Hyperbolic smoothing of the function (2.11).

2.5 Optimization methods in water management

Application of optimization methods in water management is an emerging field in operations re-

search. There are several problems in water management where optimization techniques have been

successfully applied, such as design and rehabilitation of water distribution systems, operation of wa-

ter distribution systems, operations of a reservoir system and groundwater management (see, for ex-

ample, [49, 70] and also website of International Federation of Operations Research Societies (IFORS)).

Water distribution networks represent one of the largest infrastructure assets of industrial society

[91], with energy costs for pumping being a significant part of the operational cost of water distribution

30

networks worldwide [54, 92]. As such, the optimal pump scheduling can save a significant amount of

operational cost of the water distribution system. However, finding the best schedule for a number

of pumps, supplying water to satisfy a variable demand and reducing the energy consumption, is a

very difficult task. The difficulty is mainly due to the discrete nature of the variables and the size of

the solution space [91]. This problem can be formulated as an optimization problem which may have

a large number of continuous and discrete variables. It also contains many physical and operational

constraints depending on the system.

The problem of efficient scheduling of pumps has been subject to research over the last several

decades. In the early stage, optimization models for scheduling pump operations explicitly included

hydraulic constraints along with other physical and operational constraints [26, 76, 77]. Because hy-

draulic constraints are very difficult to fully describe for a given water distribution system, it is not

easy to design efficient algorithms based on such an approach.

A review of some early optimization approaches to pump scheduling can be found in [75]. An

iterative dynamic programming method was developed in [104] to find an optimal schedule of pump

operations. This method uses the forecasted demands for 24 hours, the initial and final conditions in

the reservoirs as well as the hydraulic properties of the whole system. A linear programming approach

was proposed in [79]. The paper [86] describes a multi-objective optimization formulation using both

the energy cost and the pump switching criterion as objective functions. In this paper, the genetic

algorithm was modified to solve the multi-objective optimization problem. Various versions of the

genetic algorithm were developed in [19, 27] for solving pump optimization problems. In all above

mentioned papers, the authors try to explicitly include hydraulic constraints into the optimization

model.

In the paper [18], the authors propose an approach which is based on the maximization of the use

of low-cost power (e.g. overnight pumping). They formulate the operational optimization of water

distribution networks as a mixed integer nonlinear programming problem. The paper [91] proposes

an approach to determine a penalty term in the objective function of the pumping cost minimization

problem. This term depends on the degree of failure and on the set pressure criteria. A version of the

31

genetic algorithm was developed based on this approach.

In the paper [54], a schedule of pumps is explicitly defined based on time controlled triggers,

where the maximum number of pump switches is specified beforehand. A pump schedule is divided

into a series of integers with each integer representing the number of hours for which a pump is ac-

tive/inactive. An algorithm based on an ant colony optimization was developed to solve the optimal

pump scheduling problem. An approach which decomposes a water supply system into several sub-

systems and a planning period into operational periods was proposed in [71]. The pump discharges

are discretized and arranged by heuristic methods in order to reduce the number of times pumps are

switched on. A dynamic programming method is consequently applied to solve the optimization

problem.

An adaptive search algorithm is proposed in [80]. This algorithm selects which pumps to switch

on or off, using a combination of influence coefficients and pipe network pressure readings. When the

pressure increases or drops beyond the allowable values, the pump which has the greatest influence

and delivers water at least cost is selected to correct the pressure by either turning it on or off as

required. The algorithm iterates between the optimization and the simulation models until the optimal

solution is found.

The paper [85] develops an approach for determining the optimal scheduling of pumps in the

water distribution system with water quality considerations. In this approach, bound constraints on

the state variables are incorporated into the objective function using the augmented lagrangian penalty

method. The solution of the optimization problem is obtained by interfacing a hydraulic and water

quality simulation code, EPANet, with a nonlinear optimization code, GRG2. In the paper [92], the

authors propose algorithms based on the combination of the genetic and direct search methods such

as the Hooke and Jeeves, and Fibonacci methods for solving the pumping cost minimization problem.

It is demonstrated that the hybrid methods are superior to the pure genetic algorithm in finding a good

solution quickly when applied to both a test problem and a large existing water distribution system.

The development of hydraulic simulation packages led to the design of more efficient algorithms

for solving pumping cost minimization problems. The use of such packages allows to avoid difficulty

32

with explicit inclusion of hydraulic constraints in the optimization models. This approach, which

integrates a hydraulic simulation model with an optimization model, is now widely used to optimize

pump operations. It should be noted that algorithms proposed in papers [18, 54, 71, 80, 85, 91, 92] iterate

between optimization and simulation models to find optimal solutions to the pumping cost minimiza-

tion problem.

The discrete (binary) nature of some variables and the size of the solution space are among the

main difficulties of optimizing water distribution systems operation [91]. More specifically, the pump-

ing cost minimization problem is a mixed integer nonlinear programming problem. Conventional op-

timization methods are not directly applicable for solving such problems, because these methods are

suitable mostly for optimization problems which have only continuous variables. Population based

methods such as evolutionary algorithms and various meta-heuristics are well suited to deal with

both discrete and continuous variables. These algorithms have been widely used to solve pumping

cost minimization problems. However, population based algorithms have the following drawbacks.

Firstly, they require a large number of the objective and constraint function evaluations, which is not

acceptable when these evaluations are expensive. Secondly, they are inefficient for solving large scale

problems. Thirdly, these algorithms sometimes cannot locate a solution with high accuracy and as a

result, they may produce only suboptimal solutions.

Conventional deterministic methods of optimization are more accurate than the population based

algorithms. Algorithms for solving pumping cost minimization problems contain both optimization

and simulation components, and direct search methods are more suitable for their solution than gradi-

ent based or Newton-like methods. The significant advantage of direct search methods is that they do

not require any gradient or Hessian information, and can be applied for solving optimization problems

with noisy input data. This makes direct search methods attractive for solving pumping cost mini-

mization problem. The papers [85, 92] propose algorithms based on the combination of the population

based methods with the various direct search methods. Results presented in these papers demonstrate

that such algorithms are able to obtain more accurate solutions than the population based methods.

These results also illustrate that population based methods are efficient to generate feasible solutions

33

to the pumping cost minimization problem, whereas direct search methods can be applied starting

from those identified feasible solutions to get more accurate ones.

Different approaches have been proposed to reduce the number of discrete variables in the pump-

ing cost minimization problems. One such approach was proposed in [92] where level of water in

tanks is considered as a decision variable.

34

Chapter 3

Hyperbolic smoothing function method for

minimax problems

In this chapter we study hyperbolic smoothing technique in more detail. In order to apply the hy-

perbolic smoothing to the finite maximum functions we represent them as a sum of maximum of two

functions by adding a new variable. We study the relationship between the set of stationary points of

the latter function and that of the original maximum function. The new function is approximated using

hyperbolic smoothing functions and differential properties of the approximating function are studied.

It is demonstrated that smooth optimization solvers can be applied to minimize the approximating

function. We present results of numerical experiments using two solvers from GAMS: CONOPT and

SNOPT. We also compare these results with those obtained using exponential smoothing and also

nonlinear programming reformulations of minimax problems.

The structure of this chapter is as follows. We reformulate the finite maximum function in Section

3.1. Section 3.2 describes the hyperbolic smoothing function for the general maximum functions. The

minimization algorithm is described in Section 3.3. Results of numerical experiments are presented

in Section 3.4. Section 3.5 concludes the chapter.

3.1 Reformulation of minimax problem

In this section we will reformulate the minimax problem (2.10) to make the application of the

hyperbolic smoothing to its objective function possible.

35

Consider the following maximum function:

f(x) = max
i∈I

fi(x), I = {1, . . . ,m}. (3.1)

At a point x ∈ IRn consider the set:

R(x) = {i ∈ I : fi(x) = f(x)}.

Using an additional variable t ∈ IR we introduce the following function:

F (x, t) = t+
∑
i∈I

max{0, fi(x)− t}. (3.2)

For a given (x, t) the index set I can be represented as follows:

I = I1 ∪ I2 ∪ I3,

where

I1 ≡ I1(x, t) = {i ∈ I : fi(x) < t},

I2 ≡ I2(x, t) = {i ∈ I : fi(x) = t},

I3 ≡ I3(x, t) = {i ∈ I : fi(x) > t}.

Denote by Ψi(x, t) = max{0, fi(x) − t}, i ∈ I . Then for the subdifferential of the function Ψi

we have

∂Ψi(x, t) =


{0n+1}, i ∈ I1,

co {0n+1, (∇fi(x),−1)}, i ∈ I2,

{(∇fi(x),−1)}, i ∈ I3.

Since fi, i ∈ I are regular functions then Ψi are regular as well and therefore we can write the

36

expression for the subdifferential of F at the point (x, t) as follows:

∂F (x, t) = {(0n, 1)}+
∑
i∈I1

0n+1 +
∑
i∈I2

co {0n+1, (∇fi(x),−1)}+

∑
i∈I3

(∇fi(x),−1)

 . (3.3)

Proposition 2. Suppose that functions f and F are defined by (2.11) and (3.2), respectively. Then

f(x) = min
t∈IR

F (x, t).

Proof. For any fixed x ∈ IRn define the following function:

ϕx(t) = t+
∑
i∈I

max{0, fi(x)− t}.

Observe that the function ϕx is convex piecewise linear and

ϕx(f(x)) = f(x) = F (x, f(x)).

Then the function ϕx is subdifferentiable at any t ∈ IR and

∂ϕx(t) = [1− |I2| − |I3|, 1− |I3|] . (3.4)

Here | · | stands for the cardinality of a set. For t = f(x) we have that I2 = R(x) 6= ∅ and therefore

|I2| ≥ 1. Moreover for this t one has I3 = ∅ and |I3| = 0. Then it follows from (3.4) that

0 ∈ ∂ϕx(f(x))

and t = f(x) is a global minimizer of ϕx. Furthermore, for any fixed x ∈ IRn

F (x, t) = ϕx(t) ≥ ϕx(f(x)) = f(x) = F (x, f(x)) ∀t ∈ IR.

37

This completes the proof.

Proposition 3. 1) Assume that a point x∗ ∈ IRn is a stationary point of f . Then (x∗, t∗) is a stationary

point of the function F where t∗ = f(x∗).

2) Assume that a point (x∗, t∗) is a stationary point of the function F . Then x∗ ∈ IRn is a

stationary point of f .

Proof. 1) First we assume that x∗ is a stationary point of the function f and will prove that (x∗, t∗) is

a stationary point of the function F where t∗ = f(x∗). Since

t∗ = f(x∗) = max
i∈I

fi(x
∗),

t∗ ≥ fi(x
∗) for all i ∈ I and thus I3 = ∅. Moreover, I2 6= ∅ since at least one of the functions

fi, i ∈ I is active at x∗. Then the subdifferential of the function F at the point (x∗, t∗) is as follows:

∂F (x∗, t∗) = {(0n, 1)}+
∑
i∈I2

co {0n+1, (∇fi(x∗),−1)}. (3.5)

It is easy to see that (∇fi(x∗), 0) ∈ ∂F (x∗, t∗). It is also obvious that R(x∗) = I2 at the point

(x∗, t∗). Since x∗ is a stationary point of the function f we get that 0n ∈ co {∇fi(x∗) : i ∈ I2}.

Then there exists λi, i ∈ I2 such that

0n =
∑
i∈I2

λi∇fi(x∗), λi ≥ 0,
∑
i∈I2

λi = 1. (3.6)

The subdifferential ∂F (x∗, t∗) is a polytope and it follows from (3.5) that points (∇fi(x∗), 0), i ∈ I2

are among extreme points of this polytope. Then (3.6) implies that 0n+1 ∈ ∂F (x∗, t∗), that is the

point (x∗, t∗) is stationary for the function F .

2) Now assume that (x∗, t∗) is a stationary point of the function F . We will prove that x∗ is a

stationary point of the function f . There are three cases:

• Case 1: t∗ > f(x∗);

38

• Case 2: t∗ = f(x∗);

• Case 3: t∗ < f(x∗).

We will consider each of these cases separately.

Case 1. If t∗ > f(x∗) = max
i∈I

fi(x
∗), then t∗ > fi(x

∗) for any i ∈ I and therefore index sets I2 and I3

are empty. Hence it follows from (3.3) that ∂F (x∗, t∗) = {(0n, 1)} and therefore 0n+1 /∈ ∂F (x∗, t∗)

which contradicts the fact that (x∗, t∗) is a stationary point of F . This means that Case 1 cannot

happen.

Case 2. If t∗ = f(x∗) then t∗ ≥ fi(x
∗) for all i ∈ I . Therefore I2 6= ∅ and I3 = ∅. Hence it follows

from (3.3) that

∂F (x∗, t∗) = {(0n, 1)}+
∑
i∈I2

co {0n+1, (∇fi(x∗),−1)}.

The subdifferential ∂F (x∗, t∗) is a polytope and any extreme point V of this subdifferential can be

expressed in one of the following forms:

• V = (0n, 1);

• There exists a subset Ī2 ⊆ I2 such that , |Ī2| ≥ 1 and

V =

∑
i∈Ī2

∇fi(x∗),−|Ī2|+ 1

 . (3.7)

Let {w0, w1, . . . , wK} be a set of extreme points of the subdifferential ∂F (x∗, t∗). Herew0 = (0n, 1)

and w1, . . . , wK are in the form of (3.7). The number K > 0 denotes the total number of extreme

points of the form (3.7). Since (x∗, t∗) is a stationary point 0n+1 ∈ ∂F (x∗, t∗), there exists λk, k =

0, . . . ,K such that

λ0w0 +

K∑
k=1

λkwk = 0 (3.8)

and

λ0 +

K∑
k=1

λk = 1, λ0 ≥ 0, λk ≥ 0, k = 1, . . . ,K. (3.9)

39

It is clear that λ0 6= 1. Otherwise all λk = 0, k = 1, . . . ,K and we will have λ0w0 = 0 which is not

possible. This means that λk > 0 for at least one k = 1, . . . ,K.

For each extreme point wk, k = 1, . . . ,K there exists Ī2 ⊆ I2 such that Ī2 6= ∅ and the point wk

can be represented in the form (3.7). Then the point wk can be expressed as follows: wk = (uk, vk)

where

uk =
∑
i∈Ī2

∇fi(x∗)

and

vk = −|Ī2|+ 1.

Then it follows from (3.8) and (3.9) (notice that w0 = (0n, 1)) that

K∑
k=1

λkuk = 0,
K∑
k=1

λk ≤ 1, λk ≥ 0.

Notice also that
K∑
k=1

λk > 0. Let λ̄ =
K∑
k=1

λk and we define new coefficients

λ̄k =
λk
λ̄
≥ 0, k = 1, . . . ,K.

Then
K∑
k=1

λ̄kuk = 0,

K∑
k=1

λ̄k = 1. (3.10)

We can rewrite each uk as

uk =
∑
i∈I2

mki∇fi(x∗),

where mki = 0 or mki = 1, k = 1, . . . ,K, i ∈ I2. Moreover,

∑
i∈I2

mki ≥ 1 ∀ k = 1, . . . ,K.

40

Then it follows from (3.10) that

K∑
k=1

λ̄k
∑
i∈I2

mki∇fi(x∗) = 0.

Reordering it we get ∑
i∈I2

(
K∑
k=1

λ̄kmki

)
∇fi(x∗) = 0. (3.11)

Denote by

αi =
K∑
k=1

λ̄kmki ≥ 0, i ∈ I2.

It is easy to see that

ᾱ =
∑
i∈I2

αi ≥ 1.

Indeed,

ᾱ =
∑
i∈I2

αi =
∑
i∈I2

K∑
k=1

λ̄kmki =

K∑
k=1

λ̄k
∑
i∈I2

mki ≥
K∑
k=1

λ̄k = 1.

Now (3.11) implies that ∑
i∈I2

αi∇fi(x∗) = 0.

Let ᾱi =
αi
ᾱ

. Then ∑
i∈I2

ᾱi∇fi(x∗) = 0,
∑
i∈I2

ᾱi = 1, ᾱi ≥ 0. (3.12)

Since I2 = R(x∗) it follows from (3.12) that 0n ∈ ∂f(x∗) = co {∇fi(x∗) : i ∈ I2} and therefore x∗

is a stationary point of f .

Case 3. Now let us assume that t∗ < f(x∗). Then the set I3 is never empty and there are four possible

combinations:

1) |I3| = 1, I2 = ∅. Then using (3.3) we get

∂F (x∗, t∗) = {(∇fj(x∗), 0)}, j ∈ I3.

41

Since 0n+1 ∈ ∂F (x∗, t∗) it follows that∇fj(x∗) = 0n and thus x∗ is a stationary point of f .

2) |I3| = 1, I2 6= ∅. In this case we have only one active function fj at x∗,where j ∈ I3 and

R(x∗) = {j}. Then (3.3) implies that the subdifferential of the function F at (x∗, t∗) is as follows:

∂F (x∗, t∗) = {(0n, 1)}+
∑
i∈I2

co {0n+1, (∇fi(x∗),−1)}+ {(∇fj(x∗),−1)}

= {(∇fj(x∗), 0)}+
∑
i∈I2

co {0n+1, (∇fi(x∗),−1)}.

It is clear that this subdifferential is a polytope and any one of its extreme points U can be expressed

in one of the following forms:

• U = (∇fj(x∗), 0);

• There exists a subset Ī2 ⊆ I2 such that , |Ī2| ≥ 1 and

U =

∇fj(x∗) +
∑
i∈Ī2

∇fi(x∗),−|Ī2|

 , j ∈ I3. (3.13)

Let {z0, z1, . . . , zL} be a set of extreme points of the subdifferential ∂F (x∗, t∗). Here z0 = (∇fj(x∗), 0)

, j ∈ I3 and z1, . . . , zL are in the form of (3.13). The number L > 0 is the total number of extreme

points of the form (3.13). Let λi, i = 0, . . . , L be coefficients of the points z0, . . . , zL in their con-

vex combination. It is easy to see that no convex combination of these points will give us a 0n+1

element unless all λi = 0 i = 1, . . . , L and λ0 = 1. Since 0n+1 ∈ ∂F (x∗, t∗) we have that

λ0(∇fj(x∗), 0) = 0n+1 from which follows that ∇fj(x∗) = 0n and 0n ∈ ∂f(x∗), that is x∗ is a

stationary point of the function f .

3) |I3| > 1, I2 = ∅. Then

∂F (x∗, t∗) =


∑
i∈I3

∇fi(x∗),−|I3|+ 1



42

and therefore 0n+1 /∈ ∂F (x∗, t∗), which contradicts the fact that (x∗, t∗) is a stationary point of F .

This means that this case cannot happen.

4) |I3| > 1, I2 6= ∅. In this case it follows from (3.3) that

∂F (x∗, t∗) =


∑
i∈I3

∇fi(x∗),−|I3|+ 1

+
∑
i∈I2

co {0n+1, (∇fi(x∗),−1)}.

Since −|I3| + 1 ≤ −1 from the construction of the polytope ∂F (x∗, t∗) it is not difficult to see

that for any extreme point the last component will be less than or equal to −1 and therefore 0n+1 /∈

∂F (x∗, t∗). This contradicts the fact that (x∗, t∗) is a stationary point of F which means that this case

cannot happen.

Remark 1. One can see from the proof of Proposition 3 that if (x∗, t∗) ∈ IRn+1 is a stationary point

of the function F then only the following cases are possible:

1) t∗ = f(x∗);

2) t∗ < f(x∗).

In the second case the set I3 is a singleton which means that the set R(x∗) is also a singleton. There-

fore, the function f is differentiable at the point x∗. In most minimax problems stationary points are

the so-called kink points where function f is not differentiable. This means that for most of mini-

max problems t∗ = f(x∗). Moreover, results presented above demonstrate that any stationary point

(x∗, t∗) of the function F can represented as (x∗, f(x∗)).

Proposition 4. 1) Assume that a point x∗ ∈ IRn is a local minimizer of f . Then (x∗, t∗) is a local

minimizer of the function F , where t∗ = f(x∗).

2) Assume that a point (x∗, t∗) is a local minimizer of the function F . Then x∗ ∈ IRn is a local

minimizer of f .

Proof. 1) If x∗ is a local minimizer of f then there exists ε > 0 such that

f(x) ≥ f(x∗) ∀x ∈ Bε(x∗).

43

We will prove that F (x, t) ≥ F (x∗, t∗) for any x ∈ Bε(x∗) and t ∈ IR. Note that F (x∗, t∗) = f(x∗).

Take any x ∈ Bε(x∗), t ∈ IR and consider the following index set J(x):

J(x) = {i ∈ I : fi(x)− t ≥ 0}.

There are two cases:

1. J(x) = ∅;

2. J(x) 6= ∅.

In the first case t > f(x), which means that F (x, t) = t > f(x) ≥ f(x∗) = F (x∗, t∗). In the second

case there is at least one index j ∈ J for which fj(x) = max
i∈I

fi(x) ≥ f(x∗) and we can write

F (x, t) = t+
∑
i∈I

max{0, fi(x)− t}

= t+ max{0, fj(x)− t}+
∑

i∈I,i 6=j
max{0, fi(x)− t}

= fj(x) +
∑

i∈J(x),i 6=j

max{0, fi(x)− t}

≥ f(x∗) +
∑

i∈J(x),i 6=j

max{0, fi(x)− t}.

It is clear that ∑
i∈J(x),i 6=j

max{0, fi(x)− t} ≥ 0.

Then we get that F (x, t) ≥ f(x∗) = F (x∗, t∗). Since x ∈ Bε(x
∗), t ∈ IR are arbitrary this

completes the proof that (x∗, t∗) is a local minimizer of F .

2) Now assume that (x∗, t∗), x∗ ∈ IRn, t∗ ∈ IR is a local minimizer of the function F . This means

that there exists ε > 0 such that

F (x, t) ≥ F (x∗, t∗) ∀x ∈ Bε(x∗), t ∈ IR, |t− t∗| < ε.

44

According to the proof of Proposition 3 (see Remark 1) only the following two cases are possible:

1) t∗ = f(x∗);

2) t∗ < f(x∗) and the index set I3 is a singleton.

In the case 1) we have that there exists ε > 0 such that F (x∗, t∗) ≤ F (x, t) for all x ∈ Bε(x∗)

and t, |t − f(x∗)| < ε. Since the function f is continuous for ε > 0 there exists δ > 0 such that

|f(x)− f(x∗)| < ε for all x ∈ Bδ(x∗). If δ1 = min{ε, δ} then

F (x∗, f(x∗)) ≤ F (x, f(x)) ∀x ∈ Bδ1(x∗).

It follows from Proposition 2 that

f(x∗) = F (x∗, f(x∗)) ≤ F (x, f(x)) ≤ F (x, t)

for all x ∈ Bδ1(x∗) and t ∈ IR. This means that

f(x∗) ≤ min
t∈IR

F (x, t) = f(x)

for all x ∈ Bδ1(x∗), that is the point x∗ is a local minimizer of f .

In the case 2) we have that the index set I3 = I3(x∗, t∗) is a singleton. Assume that I3(x∗, t∗) =

{i} for some i ∈ I . Then it is obvious that

f(x∗) = fi(x
∗) = F (x∗, t∗).

Since (x∗, t∗) is a local minimizer of F there exists ε > 0 such that

F (x∗, t∗) ≤ F (x, t) ∀x ∈ Bε(x∗) and ∀t : |t− t∗| < ε.

45

For sufficiently small δ > 0 such that δ ∈ (0,min{ε, fi(x∗)− t∗}) we have

I1(x∗, t̄) = I \ {i}, I2(x∗, t̄) = ∅, I3(x∗, t̄) = {i}, t̄ = t∗ + δ.

Then it follows from the continuity of the functions fi, i ∈ I that there exists ε1 ∈ (0, ε) such that

I1(x, t̄) = I \ {i}, I2(x, t̄) = ∅, I3(x, t̄) = {i} ∀x ∈ Bε1(x∗).

This means that

F (x, t̄) = fi(x) = f(x) ∀x ∈ Bε1(x∗).

and therefore

f(x) = F (x, t̄) ≥ F (x∗, t∗) = f(x∗) ∀x ∈ Bε1(x∗).

Thus, x∗ is a local minimizer of the function f .

Remark 2. The reformulation F of the objective function f in minimax problem (2.10) was consid-

ered in [34] where the authors also proved that the values of global minima of functions f and F are

equal.

3.2 Hyperbolic smoothing of the maximum function

In this section we study hyperbolic smoothing functions for the general finite maximum functions

using their reformulation (3.2).

Applying (2.14) we get the following hyperbolic smoothing of the function F :

Φτ (x, t) = t+
∑
i∈I

fi(x)− t+
√

(fi(x)− t)2 + τ2

2
, τ > 0. (3.14)

46

Proposition 5. For any x ∈ IRn and t ∈ IR

0 < Φτ (x, t)− F (x, t) ≤ mτ

2
.

Proof. The result follows from Proposition 1.

The gradient of the function Φτ is as follows:

∇Φτ (x, t) = (G1τ (x, t), G2τ (x, t)) (3.15)

where

G1τ (x, t) =
1

2

∑
i∈I

(1 + βiτ (x, t))∇fi(x), (3.16)

G2τ (x, t) = 1− 1

2
|I| − 1

2

∑
i∈I

βiτ (x, t). (3.17)

βiτ (x, t) =
fi(x)− t√

(fi(x)− t)2 + τ2
. (3.18)

Proposition 6. Assume that

v = lim
τ→0
∇Φτ (x, t).

Then v ∈ ∂F (x, t).

Proof: Rewriting the first component of∇Φτ (x, t) we obtain

G1τ (x, t) =
1

2

[∑
i∈I1

(1 + βiτ (x, t))∇fi(x) +
∑
i∈I2

(1 + βiτ (x, t))∇fi(x)

+
∑
i∈I3

(1 + βiτ (x, t))∇fi(x)
]
.

(3.19)

47

It is clear that for any x ∈ IRn and t ∈ IR

lim
τ→0

βiτ (x, t) =


−1, i ∈ I1,

0, i ∈ I2,

1, i ∈ I3.

Then taking limit as τ → 0 we get

lim
τ→0

G1τ (x, t) =
1

2

[∑
i∈I1

0n +
∑
i∈I2

∇fi(x) +
∑
i∈I3

2∇fi(x)
]

=
∑
i∈I1

0n +
∑
i∈I2

1

2
∇fi(x) +

∑
i∈I3

∇fi(x).

Performing similar calculations for the second component of∇Φτ (x, t) we obtain the following

lim
τ→0

G2τ (x, t) = 1− 1

2
|I| − 1

2

−∑
i∈I1

1 +
∑
i∈I2

0 +
∑
i∈I3

1


= 1− 1

2
|I2| − |I3|.

Therefore

v = lim
τ→0
∇Φτ (x, t) =

∑
i∈I1

0n +
∑
i∈I2

1

2
∇fi(x) +

∑
i∈I3

∇fi(x), 1− 1

2
|I2| − |I3|

 . (3.20)

Comparing (3.3) and (3.20) it is easy to see that v ∈ ∂F (x, t).

Proposition 7. Assume that sequences {xk}, {tk} and {τk} are given such that xk ∈ IRn, tk ∈

IR, tk ≥ f(xk) and τk > 0, k = 1, 2, Moreover, we assume xk → x, tk → t, τk → 0 as

k →∞ and

v = lim
k→∞

∇Φτk(xk, tk).

Then v ∈ ∂F (x, t).

48

Proof. Since tk ≥ f(xk) we have that I3(xk, tk) = ∅ for k > 0. Moreover, one can see that there

exists k0 > 0 such that

I1(xk, tk) ⊇ I1(x, t),

I2(xk, tk) ⊆ I2(x, t)

for all k ≥ k0. We will consider two cases:

1) t > f(x);

2) t = f(x).

In Case 1) I2(x, t) = ∅. Therefore I1(x, t) = I and I1(xk, tk) = I for all k ≥ k0. It follows from

(4.24) that

∇Φτk(xk, tk) = (0n, 1)

for all k ≥ k0. Then in this case v = (0n, 1). Hence (3.3) implies that the subdifferential of the

function F at the point (x, t) is:

∂F (x, t) = {(0n, 1)}

that is v ∈ ∂F (x, t).

In Case 2 I2(x, t) 6= ∅. Define the following two index sets

I4 = {i ∈ I : i ∈ I1(xk, tk) ∀ k ≥ k0 and fi(x) = t},

Ī2 = {i ∈ I : ∃k1 > 0 such that i ∈ I2(xk, tk) ∀ k ≥ k1}.

It is clear that I2(x, t) = I4
⋃
Ī2. For any i ∈ I1(xk, tk) one can rewrite βiτk(xk, tk) as

βiτk(xk, tk) = −

√
1−

τ2
k

(fi(xk)− tk)2 + τ2
k

.

49

Then we get

lim
k→∞

βiτk(xk, tk) =


−1, i ∈ I1(x, t) \ I4,

−α, α ∈ [0, 1], i ∈ I4,

0, i ∈ Ī2.

It should be noted that the number α might not be unique. Applying (3.19) for (xk, tk) and τk > 0

we get

G1τk(xk, tk) =
1

2

[∑
i∈I1(xk,tk)\I4

(1 + βiτk(xk, tk))∇fi(xk)

+
∑
i∈I4

(1 + βiτk(xk, tk))∇fi(xk) +
∑

i∈I2(xk,tk)

(1 + βiτk(xk, tk))∇fi(xk)
]
.

Then we have

lim
k→∞

G1τk(x, t) =
1

2

[∑
i∈I1(x,t)

0n +
∑
i∈I4

(1− α)∇fi(x) +
∑
i∈Ī2

∇fi(x)
]
.

We get the following result for the second component G2τk(xk, tk) of the gradient∇Φiτk(xk, tk):

lim
k→∞

G2τk(xk, tk) = 1− 1

2
|I| − 1

2

−∑
i∈I1

1−
∑
i∈I4

α+
∑
i∈Ī2

0


= 1− 1

2

(
(1− α)|I4|+ |Ī2|

)
.

Thus

v =

∑
i∈I4

(1− α)

2
∇fi(x) +

∑
i∈Ī2

1

2
∇fi(x), 1− 1

2

(
(1− α)|I4|+ |Ī2|

) .

Using (3.3) we can observe that v can be represented as a sum of (0n, 1) and convex combinations of

elements with the coefficient (1− α)/2 for i ∈ I4 and with the coefficient 1/2 for i ∈ Ī2. Therefore

v ∈ ∂F (x, t). This completes the proof.

Proposition 8. Suppose that functions fi, i ∈ I are continuously differentiable and their gradients

50

∇fi are locally Lipschitz. Then the gradient∇Φτ is also locally Lipschitz for any given τ > 0.

Proof. The gradient∇Φτ (x, t) can be rewritten as:

∇Φτ (x, t) =

(
1

2

∑
i∈I

(1 + βiτ (x, t))∇fi(x), 1− 1

2
|I| − 1

2

∑
i∈I

βiτ (x, t)

)
. (3.21)

It is obvious that the function βiτ (x, t) is locally Lipschitz for any fixed τ > 0. Then it follows from

(3.21) that the gradient∇Φτ is also locally Lipschitz.

Proposition 9. Suppose that functions fi, i ∈ I are twice continuously differentiable and Q ⊂ IRn+1

is any bounded subset. Then for any (x, t) ∈ Q and u = (y, s) ∈ IRn+1, y ∈ IRn, s ∈ IR and for

given τ > 0 there exists an L = L(x, t, τ) <∞ such that

〈u,∇2Φτ (x, t)u〉 ≤ L‖u‖2.

Proof. Using notations introduced in the proof of Proposition 8 we can write the Hessian of the

function Φτ as

∇2Φτ (x, t) =

 An×n BT
n

Bn C


where

An×n =
1

2

∑
i∈I

(∇2fi(x) + µi(x, t)∇fi(x)T∇fi(x) + βi(x, t))∇2fi(x),

BT
n = −1

2

∑
i∈I

µi(x, t)∇fi(x)T ,

Bn = −1

2

∑
i∈I

µi(x, t)∇fi(x),

C =
1

2

∑
i∈I

µi(x, t).

51

Here

µi(x, t) =
τ2

[(fi(x)− t)2 + τ2]3/2
.

It is easy to see that ‖βi(x, t)‖ ≤ 1, 0 ≤ µi(x, t) ≤ 1 and C ≤ 1

2
m, where m = |I|.

〈u,∇2Φτ (x, t)u〉 = 〈y,An×ny〉+ 2s〈y,Bn〉+ Cs2.

Since Q ⊂ IRn+1 is bounded subset by continuity of gradients ∇fi, i ∈ I there exists a number

K <∞ such that ‖∇fi(x)‖ ≤ K and 〈y,∇2fi(x)y〉 ≤ K‖y‖2. Then

〈y,An×ny〉 ≤
1

2
m(K2 + 2K)‖y‖2,

2s〈y,Bn〉 ≤ 2|s|‖y‖‖Bn‖ ≤ mK|s|‖y‖.

Therefore

2s〈y,Bn〉 ≤


mKs2, ‖y‖ ≤ |s|,

mK‖y‖2, |s| ≤ ‖y‖

and

〈u,∇2Φτ (x, t)u〉 ≤


1

2
m(K2 + 2K)‖y‖2 +m(K +

1

2
)s2, ‖y‖ ≤ |s|,

1

2
m(K2 + 4K)‖y‖2 +

1

2
ms2, |s| ≤ ‖y‖.

Let L = max

{
1

2
m(K2 + 2K),m(K +

1

2
),

1

2
m(K2 + 4K),

1

2
m

}
. Hence

〈u,∇2Φτ (x, t)u〉 ≤ L(‖y‖2 + s2) = L‖u‖2.

3.3 Minimization algorithm

In this section we describe an algorithm for solving the finite minimax problem (2.10).

52

We propose to replace Problem (2.10) by the sequence of the following smooth problems:

minimize Φτk(x, f(x)), (3.22)

where τk → 0 as k →∞. Results from Section 3.2 demonstrate that smooth optimization algorithms

can be applied to solve Problem (3.22). We will call such algorithms smooth optimization solvers.

Remark 3. It should be noted that one can choose the precision parameter τ > 0 sufficiently small

and solve Problem (3.22) only once. However, such an approach may make Problem (3.22) ill-

conditioned which will require significantly more computational efforts. The use of the sequence

{τk} may help to prevent such situations.

We propose the following algorithm for solving Problem (2.10). Let {τk}, {εk} be given se-

quences such that τk > 0, εk > 0 and τk, εk → 0 as k →∞.

Algorithm 4. Algorithm for solving minimax problems.

Step 1 (Initialization). Select any starting point x0 ∈ IRn and set t0 := f(x0), k := 0.

Step 2. Starting from the point xk apply a smooth optimization solver to Problem (3.22) to find a

point x̄ such that

‖∇Φτk(x̄, f(x̄))‖ < εk. (3.23)

Step 3. Set xk+1 := x̄, tk+1 := f(x̄), k := k + 1 and go to Step 2.

Remark 4. For some problems the choice of sequences {τk} and {εk} might be important. If τk

quickly converges to 0 then the ill-conditioned behavior of the problem may gradually increase. In

this case a large number of iterations is required to satisfy the condition (3.23). In order to avoid this

one should ensure that the sequence {τk} converges to 0 slower than the sequence {εk}.

Next we will prove the convergence of Algorithm 4. For the starting point x0 consider the follow-

ing set:

L(x0) = {x ∈ IRn : f(x) ≤ f(x0)}.

53

Proposition 10. Assume that the set L(x0) is bounded for any starting point x0 ∈ IRn. Then any

accumulation point of the sequence {xk} generated by Algorithm 4 is a stationary point of Problem

(2.10).

Proof. It is clear that xk ∈ L(x0) for all k ≥ 0. Since the set L(x0) is bounded the sequence {xk}

has at least one accumulation point. Assume that x∗ is an accumulation point of the sequence {xk}

and for the sake of simplicity assume that xk → x∗ as k → ∞. It follows from Proposition 19 that

0n+1 ∈ ∂F (x∗, f(x∗)), that is (x∗, f(x∗)) is a stationary point of F . Then applying Proposition 3

we get that x∗ is a stationary point of Problem (2.10).

3.4 Numerical results

In this section we present results of testing Algorithm 4 using well-known nonsmooth optimiza-

tion test problems. We also present comparison of this algorithm with the algorithm based on the

exponential smoothing technique as well as with the algorithm based on the nonlinear programming

reformulation of the minimax problem (2.10) using numerical results.

In our experiments we use Problems 2.1-7, 2.9-12, 2.14-16, 2.18-25 from Chapter 2 and Problems

3.2, 3.4-9, 3.12, 3.15, 3.17, 3.19, 3.20, 3.22-24 from Chapter 3 of [58]. The description of these

problems can be found in Appendix. More specifically we used CB2, WF, SPIRAL, EVD52, Rosen-

Suzuki, Polak 6, PBC3, Kowalik-Osborne, Davidson 2, OET5, OET6, EXP, PBC1, EVD61, Filter,

Wong 1, Wong 2, Wong 3, Polak 2, Polak 3, Watson, Osborne 2, Crescent, CB3, DEM, QL, LQ,

MIFFLIN1, MIFFLIN2, Shor, El-Attar, Gill and Maxq. We do not use all test problems from [58]

because for some of them not all input data is available and in some others objective functions are

unbounded from below. In addition some of these problems are not minimax problems. It should be

noted that all problems from Chapter 2 of [58] (CB2, WF , SPIRAL, EVD52, Rosen-Suzuki, Polak 6,

PBC3, Kowalik-Osborne, Davidson 2, OET5, OET6, EXP, PBC1, EVD61, Filter, Wong 1, Wong 2,

Wong 3, Polak 2, Polak 3, Watson and Osborne 2) are minimax problems whereas objective functions

in problems from Chapter 3 of [58] (Crescent, CB3, DEM, QL, LQ, MIFFLIN1, MIFFLIN2, Shor,

54

El-Attar, Gill and Maxq) are either maximum functions or composition of maximum functions.

We used two solvers CONOPT and SNOPT from the general algebraic modeling system GAMS

for solving smoothing as well as nonlinear programming problems under consideration. CONOPT

is a multi-method solver and SNOPT is a large scale sequential quadratic programming (SQP) based

nonlinear programming solver. More details on CONOPT and SNOPT as well as on GAMS can be

found in [39].

In implementation of Algorithm 4 we choose the sequence {τk} as follows: τk+1 = 0.2τk, k =

1, . . . , p, τ1 = 10. The same sequence was used for the algorithm based on the exponential smooth-

ing. We tried to solve all problems with the relative accuracy 10−4. In order to achieve this accuracy

it is sufficient to take p = 9. The sequence {εk} was defined by default using solvers’ accuracy.

It should be noted the sequence {τk} can be chosen differently for different problems so as to

significantly accelerate convergence of the algorithm, however, it is not clear how it can be done for

specific problems.

We analyze the results using the performance profiles introduced in [31]. Given a set of solvers S

and a set of problems P one can define performance ratio for each solver as follows:

rq,s =
tq,s

min{tq,s : s ∈ S}
.

Here tq,s stands for CPU time (or number of function evaluations or number of (sub)gradient eval-

uations) used by solver s ∈ S for solving problem q ∈ P . Then a parameter rM is chosen so that

rM ≥ rq,s for all q ∈ P and s ∈ S. Moreover, rq,s = rM if and only if solver s does not solve

problem q. The performance profile ρs(µ) is defined as

ρs(µ) =
1

nq
size {q ∈ P : rq,s ≤ µ} .

Here nq is the number of problems in P . It is clear that µ ∈ [1, rM].

In the performance profiles, the value of ρs(µ) at µ = 1 gives the percentage of test problems

for which the corresponding algorithm is the best (it uses least iterations or function calls) and the

55

value of ρs(µ) at the rightmost abscissa gives the percentage of test problems that the corresponding

algorithm can solve, that is, the robustness of the algorithm (this does not depend on the measured

performance). Moreover, the relative efficiency of each algorithm can be directly seen from the

performance profiles: the higher the particular curve, the better the corresponding algorithm. For

more information on performance profiles, see [31].

For all problems we compare the efficiency of the algorithms both in terms of number of iterations

(for CONOPT and SNOPT) and function calls (only for SNOPT). We do not compare the CPU time

because for most of them the CPU time used by algorithms is close to 0.

Results of numerical experiments are presented in Figures 3.1–3.6. We present results for the

single starting points from the literature and for 10 randomly generated starting points, separately. In

the next two subsections we discuss results for two types of problems.

3.4.1 Results for unconstrained minimax problems

In this subsection we present results for test problems with maximum objective functions.

Figure 3.1(a) illustrates results obtained using the CONOPT solver with a single starting point

given in [58]. These results demonstrate that the use of the NLP reformulation allows one to find the

best solutions in almost 70% of cases, whereas the exponential smoothing gives the best results in

20% of cases and the hyperbolic smoothing achieves the best results only in 10% of cases. However,

these results also demonstrate that the use of smoothing techniques leads to more reliable algorithms

because they solved more problems with the required accuracy than the algorithm based on the NLP

reformulation. The latter algorithm solved only about 70% of all problems. Moreover, the use of the

NLP reformulation may lead to generation of infeasible solutions which is not the case for smoothing

techniques. In this case the algorithm based on the exponential smoothing is slightly better than the

algorithm based on the hyperbolic smoothing both in the sense of efficiency and reliability.

Figure 3.1(b) presents results obtained using the CONOPT solver with 10 randomly generated

starting points. These results are very similar to those presented in Figure 3.1(a) for a single starting

point. One of the main differences is that the algorithm based on the hyperbolic smoothing is slightly

56

better than the algorithm based on the exponential smoothing in the sense of reliability.

Figures 3.2(a) and (b) illustrate results for the number of iterations obtained using the SNOPT

solver with a single starting point and with 10 randomly generated starting points, respectively. These

results demonstrate that the algorithm based on the NLP reformulation is more efficient than other

two algorithms (it is the best for 85% of problems with a single starting point and almost 55% of

problems with 10 starting points). One can see that the algorithm based on the hyperbolic smoothing

is more robust than other two algorithms (it solved all problems with a single starting point and 82%

of problems with 10 starting points). Again the algorithm based on the NLP reformulation produced

infeasible solutions.

Results presented in Figures 3.3(a) and (b) using the number of function calls are similar to those

given in Figures 3.2(a) and (b), respectively. Again one can see from these figures that the algorithm

based on the NLP reformulation is the most efficient and the algorithm based on the hyperbolic

smoothing is the most robust one.

3.4.2 Results for general nonsmooth optimization problems

In this subsection we present results for test problems with both maximum objective functions

and objective functions represented as a sum of maximum functions.

Figures 3.4 (a) and (b) present results obtained using the CONOPT with a given single and 10

random starting points, respectively. These results show that the algorithm based on the NLP re-

formulations is the most efficient and the algorithm based on the exponential smoothing is the most

robust for this type of problems.

Results based on the number of iterations and function calls for SNOPT solver with a given

single and 10 random starting points are presented in Figures 3.5 (a), (b) and Figures 3.6 (a), (b),

respectively. These results show that the algorithm based on the NLP reformulations is again the

most efficient and the algorithm based on the hyperbolic smoothing (exponential smoothing in the

case of a single starting point) is the most robust for this type of problems.

57

3.5 Conclusions

In this chapter, we studied the hyperbolic smoothing function for the general finite minimax prob-

lems. In order to apply the hyperbolic smoothing we reformulated the maximum function using one

additional variable. We studied the relationship between the set of stationary points of the original

minimax problem and the reformulated one including relationship between their sets of local mini-

mizers. We approximated the maximum objective function by using its reformulation and applying

the hyperbolic smoothing function. This smoothing allows us to apply smooth optimization solvers

for solving minimax problems. We applied two solvers: CONOPT and SNOPT from the GAMS. We

presented results of numerical experiments using nonsmooth optimization test problems with objec-

tive functions represented as a maximum of finite smooth functions and also as a sum of maximum

functions. We also compared the algorithm based on the hyperbolic smoothing functions with the

algorithm based on the exponential smoothing function and also with the algorithm based on the NLP

reformulation. Based on the results presented we can draw the following conclusions:

1. The algorithm based on the NLP reformulation is fastest among three algorithms and it is the

most efficient, although it may not always find feasible solution which is not the case for the

algorithms based on smoothing techniques.

2. Algorithms based on the both hyperbolic and exponential smoothing techniques are more robust

than the algorithm based on the NLP reformulation.

3. Results also demonstrate that outcomes of the algorithms based on the smoothing techniques

depend on the optimization solver used.

58

0.7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of iterations (single starting point)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of iterations (10 starting points)

Figure 3.1: Number of CONOPT iterations for unconstrained minimax problems.

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of iterations (single starting point)

0 4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of iterations (10 starting points)

Figure 3.2: Number of SNOPT iterations for unconstrained minimax problems.

59

0.7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of function calls (single starting point)

0 7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of function calls (10 starting points)

Figure 3.3: Number of SNOPT function calls for unconstrained minimax problems.

0.7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of iterations (single starting point)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of iterations (10 starting points)

Figure 3.4: Number of CONOPT iterations for general nonsmooth optimization problems.

60

0 7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of iterations (single starting point)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of iterations (10 starting points)

Figure 3.5: Number of SNOPT iterations for general nonsmooth optimization problems.

0.7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(a) Number of function calls (single starting point)

0 7

0.8

0.9

1

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ s
(µ
) Hyperbolic

Exponential

NLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 101

ρ s
(µ
)

µ

Hyperbolic

Exponential

NLP

(b) Number of function calls (10 starting points)

Figure 3.6: Number of SNOPT function calls for general nonsmooth optimization problems.

61

Chapter 4

Nonsmooth optimization via smooth opti-

mization

In this chapter, we propose a different approach for solving general nonsmooth nonconvex op-

timization problems. In this approach the problem of finding search directions is reduced to the

minimization of a convex piecewise linear function over the unit ball. The hyperbolic smoothing

technique is applied to approximate the convex piecewise linear function by a smooth function which

is minimized to find search directions. Such an approach allows us to apply powerful methods of

smooth optimization for finding search directions in nonsmooth optimization problems.

We study the convergence of the proposed algorithm. The algorithm is implemented in Fortran

95. Results of numerical experiments are reported and the proposed algorithm is compared with five

other nonsmooth optimization algorithms. We also implement the algorithm in GAMS and compare

it with GAMS solvers using results of numerical experiments.

The structure of the chapter is as follows. We describe an algorithm for the computation of descent

directions in Section 4.2. Section 4.3 presents an algorithm for solving the subproblem to find search

directions. The proposed minimization algorithm is studied in Section 4.4. We present the results of

numerical experiments and their discussion in Section 4.6. Section 4.7 concludes the chapter.

62

4.1 Quasisecants and their Properties

In this section, we present the definition and some properties of quasisecants. This notion is

crucial to design the minimization algorithm in the next sections. Unlike convex case, in general,

in nonconvex case not all subgradients provide a good local approximation to a function. There-

fore, we try to choose those subgradients which provide either overestimation or underestimation in

some neighborhood of a point. Quasisecants are in fact approximate subgradients and they provide

overestimation to a function in some neighborhood of a point.

Take any direction d ∈ S1 and any number h > 0. Let

∂d,hf(x) :=
⋃

t∈[0,h]

∂f(x+ td).

The set ∂d,hf(x) is a union of all subdifferentials over the set conv {x, x+ hd}. It is obvious that for

any ε > 0 there exists δ > 0 such that

∂d,hf(x) ⊂ ∂f(x) +Bε, ∀h ∈]0, δ[.

Definition 13. A vector v ∈ IRn is called a quasisecant of a locally Lipschitz function f : IRn → IR

at the point x in the direction d ∈ S1 with the length h > 0 iff

f(x+ hd)− f(x) ≤ h〈v, d〉 (4.1)

and

v ∈ ∂d,hf(x) +BO(h). (4.2)

Here O(h) ≥ 0 for all h ≥ 0 and O(h) → 0 as h ↓ 0. In general, O depends also on x. We call

(4.1) a quasisecant inequality.

63

Remark 5. By the Lebourg’s mean value theorem (see [25]) for any x, y ∈ IRn there exists α ∈]0, 1[

such that

f(y)− f(x) = 〈v, y − x〉 (4.3)

for some v ∈ ∂f(αx+(1−α)y). This theorem demonstrates that quasisecants always exist for locally

Lipschitz functions (even with O(h) ≡ 0). Unfortunately, one cannot apply Lebourg’s theorem to

compute quasisecants. Therefore, we relax two conditions in this theorem to define quasisecants. We

replace the equality (4.3) by the inequality (4.1) and also the strict condition v ∈ ∂f(αx+ (1− α)y)

by the more tractable condition (4.2).

The notion of the quasisecant was first introduced in [7]. It was demonstrated that quasisecants

can be efficiently computed for some nonsmooth functions. These include convex functions, func-

tions represented as a maximum of a finite number of smooth functions, functions represented as a

difference of two convex (DC) functions. Some interesting functions such as functions represented

as a maxima of minima of a finite number of smooth convex functions (which includes continuous

nonconvex piecewise linear functions), functions represented as a sum of minima of a finite number

of smooth convex functions can be easily represented as a difference of two (nonsmooth) convex

functions. However, in general, the computation of quasisecants is not an easy task.

Here we will demonstrate the calculation of quasisecants for convex and DC functions. For the

convex function f one has

f(x+ hd)− f(x) ≤ h〈v, d〉, ∀v ∈ ∂f(x+ hd).

This means that any subgradient v ∈ ∂f(x+hd) is a quasisecant at the point x in the direction d with

the length h. Moreover, for convex functions in (4.2) O(h) ≡ 0 for all h > 0.

Now consider the function

f(x) = f1(x)− f2(x),

where f1 and f2 are convex functions. The function f is quasidifferentiable [29] and its subdifferential

64

∂f(x) and superdifferential ∂f(x) at x are as follows:

∂f(x) = ∂f1(x), ∂f(x) = −∂f2(x).

Assume that the sets ∂f1(x) and ∂f2(x) are polytopes (this condition is satisfied for all DC functions

mentioned above).

Take any v1 ∈ ∂f1(x + hd), v2 ∈ ∂f2(x) and compute v = v1 − v2. Then it follows from

convexity of the functions f1 and f2 that

f(x+ hd)− f(x) ≤ h〈v, d〉.

However not all vectors v, defined in this way, are approximate subgradients of the function f at x,

that is not all such vectors v satisfy the condition (4.2) in the definition of quasisecants. In order to

compute vectors which satisfy both conditions (4.1) and (4.2) we use the following scheme from [5, 6].

For sufficiently small number α ∈]0, 1[define n vectors:

e1(α) := (α, 0, . . . , 0),

e2(α) := (α, α2, 0, . . . , 0),

. . . := . . . ,

en(α) := (α, α2, . . . , αn).

Compute subgradients v1 ∈ ∂f1(x+ hd) and v2 ∈ ∂f2(x) such that

v1 := argmax {〈v, ej(α)〉 : v ∈ ∂f1(x+ hd)}, j = 1, . . . , n,

v2 := argmax {〈w, ej(α)〉 : w ∈ ∂f2(x)}, j = 1, . . . , n.

It is shown in [5, 6] that if the subdifferentials ∂f1(x+ hd) and ∂f2(x) are polytopes then there exists

α0 > 0 such that subgradients v1 and v2 exist and they are unique for all α ∈]0, α0[. Moreover, the

65

vector v = v1 − v2 is an approximate subgradient of f satisfying (4.2). Thus, the vector v, computed

using this scheme, satisfies both conditions (4.1) and (4.2) and therefore it is a quasisecant of f at x.

Furthermore, this quasisecant can be approximated applying the algorithm from [5, 6] which uses only

values of f .

We will use v(x, d, h) to denote the quasisecant v at the point x in the direction d and with the

length h > 0. We define the setQh(x) of all possible quasisecants at the point x with the given length

h > 0:

Qh(x) := {w ∈ IRn : ∃d ∈ S1 such that w = v(x, d, h)}

and its closed convex hull

Wh(x) := convQh(x).

Since the subdifferential ∂f(x) is a convex compact set at any x ∈ IRn we get that the set Qh(x) is

bounded at any x for given h > 0. Moreover, the set Wh(x) is convex and compact.

Finally, we define the set Q0(x) of limit points of quasisecants at the point x:

Q0(x) :=

{
w ∈ IRn : ∃({dk} ⊂ S1, {hk > 0}) s.t. lim

k→∞
hk = 0 and w = lim

k→∞
v(x, dk, hk)

}

and its convex hull

W0(x) := convQ0(x).

It is obvious that the set Q0(x) is compact and the set W0(x) is convex and compact.

Next we will study relationships between the subdifferential ∂f(x) and the sets Qh(x), Wh(x),

Q0(x), W0(x). In order to establish these relationships we need an additional assumption on O(x, h)

in (4.2) of the definition of quasisecants.

Assumption 1. At any given point x ∈ IRn there exists δ = δ(x) > 0 such thatO(y, h) ↓ 0 uniformly

as h ↓ 0 for all y ∈ Bδ(x) that is for any ε > 0 there exists h(ε) > 0 such that O(y, h) < ε for all

h ∈]0, h(ε)[and y ∈ Bδ(x).

66

Convex functions satisfy this assumption since in this case O(x, h) ≡ 0 for all x ∈ IRn and

h > 0.

Proposition 11. At a given point x ∈ IRn for any ε > 0 there exists h(ε) > 0 such that

Qh(x) ⊂ ∂f(x) +Bε and Wh(x) ⊂ ∂f(x) +Bε, ∀h ∈]0, h(ε)[.

Proof. The proof follows from the upper semicontinuity of the subdifferential mapping and Definition

13 of quasisecants.

Proposition 12. Assume that a function f satisfies Assumption 1. Then at a given point x ∈ IRn for

any ε > 0 there exist δ = δ(ε) > 0 and h(ε) > 0 such that

Qh(y) ⊂ ∂f(x) +Bε and Wh(y) ⊂ ∂f(x) +Bε

for all h ∈]0, h(ε)[and y ∈ Bδ(x).

Proof. It follows from the definition of the set Qh(y) that

Qh(y) ⊂
⋃
d∈S1

∂d,hf(y) +BO(y,h).

Since the function f satisfies Assumption 1, for any ε > 0 there exist δ1 = δ1(ε) > 0 and h1(ε) > 0

such that O(y, h) < ε for all y ∈ Bδ1(x) and h ∈]0, h1(ε)[. Then we have

Qh(y) ⊂
⋃
d∈S1

∂d,hf(y) +Bε

for all y ∈ Bδ1(x) and h ∈]0, h1(ε)[. Upper semicontinuity of the subdifferential mapping implies

67

that for ε > 0 there exist δ2 = δ2(ε) > 0 and h2(ε) > 0 such that

⋃
d∈S1

∂d,hf(y) ⊂ ∂f(x) +Bε

for all y ∈ Bδ2(x) and h ∈]0, h2(ε)[. Then by taking δ = δ(ε) = min{δ1(ε), δ2(ε)} and h(ε) =

min{h1(ε), h2(ε)} we complete the proof.

Proposition 13. Assume that a function f : IRn → IR is locally Lipschitz. Then

Q0(x) ⊂ ∂f(x) and W0(x) ⊂ ∂f(x), x ∈ IRn.

Proof. It follows from Proposition 11 and the definition of the sets Q0(x) and W0(x).

Proposition 14. Let f : IRn → IR be a locally Lipschitz function at x. Then

max
w∈W0(x)

〈w, d〉 ≤ f0(x, d) ∀d ∈ IRn.

If, in addition, the function f is also directionally differentiable, then

f ′(x, d) ≤ max
w∈W0(x)

〈w, d〉 ∀d ∈ IRn.

Proof. The first inequality follows from Proposition 13 and the second one follows from the defini-

tions of quasisecants and the set W0(x).

The following corollary follows from Proposition 14.

Corollary 1. Suppose that the function f : IRn → IR is regular at x. Then

∂f(x) = W0(x).

68

4.2 Computation of descent directions

Consider the following unconstrained minimization problem:

minimize f(x) subject to x ∈ IRn (4.4)

where the objective function f is locally Lipschitz. This function is not necessarily differentiable or

convex. Furthermore, there is not any assumption on the structure of this function.

We start with the definition of the (h, δ)-stationary points (see, also [7]).

Definition 14. Let h > 0 and δ > 0 be given numbers. A point x is called an (h, δ)-stationary point

for Problem (4.4) iff:

min{‖v‖ : v ∈Wh(x)} ≤ δ.

For sufficiently small h and δ the (h, δ)-stationary point can also be considered as an approximate

stationary point. Indeed, it follows from Proposition 11 that at a point x ∈ IRn for any ε > 0 there

exists h(ε) > 0 such that

Wh(x) ⊂ ∂f(x) +Bε

for all h ∈ (0, h(ε)). If x is an (h, δ)-stationary for some h ∈ (0, h(ε)) and δ > 0 then

0 ∈ ∂f(x) +Bε+δ. (4.5)

In this section we present an algorithm for the computation of descent directions of the objective

function f in Problem (4.4). Let numbers h > 0, c ∈ (0, 1) and the tolerance δ > 0 be given.

Algorithm 5. An algorithm for the computation of the descent direction.

69

Step 1. Choose any d1 ∈ S1, compute a quasisecant v1 = v(x, d1, h). Set V1(x) := {v1} and k := 1.

Step 2. Compute d̄ as the solution to the following minimization problem:

minimize max
i=1,...,k

〈vi, d〉 s.t. d ∈ S1. (4.6)

If Dk ≡ maxi=1,...,k 〈vi, d̄〉 > −δ, then stop. Otherwise go to Step 3.

Step 3. If

f(x+ hd̄)− f(x) ≤ chDk, (4.7)

then stop. Otherwise set dk+1 = d̄ and go to Step 4.

Step 4. Compute a quasisecant vk+1 = v(x, dk+1, h), construct the set

Vk+1(x) = co {Vk(x)
⋃
{vk+1}},

set k := k + 1 and go to Step 2.

The most important step in Algorithm 5 is Step 2 where one solves the minimization problem

(4.6) to find search directions.

Next we will show that Algorithm 5 is terminating, that is after a finite number of steps we either

conclude that x is an (h, δ)-stationary point or find the descent direction. First, we will prove the

following propositions.

Proposition 15. If Dk > −δ, then

min
v∈Vk(x)

‖v‖ < δ. (4.8)

Proof. Let ṽ be a solution to the following problem:

min
1

2
‖v‖2 subject to v ∈ Vk(x). (4.9)

70

If ṽ = 0 then (4.8) is true. Now we assume that ṽ 6= 0. Since ṽ is the solution to (4.9) it follows from

the necessary condition for a minimum that

〈ṽ, v − ṽ〉 ≥ 0, ∀v ∈ Vk(x)

which means

‖ṽ‖2 ≤ 〈ṽ, v〉, ∀v ∈ Vk(x). (4.10)

Since Dk > −δ then

max
i=1,...,k

〈vi, d〉 > −δ, ∀d ∈ S1. (4.11)

Consider d̃ = −ṽ/‖ṽ‖. Then it follows from (4.11) that there exists i ∈ {1, . . . , k} such that

〈ṽ, vi〉 < δ‖ṽ‖.

Then the proof follows from (4.10).

Corollary 2. If Dk > −δ, then the point x is an (h, δ)-stationary point.

Proof. Since Vk(x) ⊂Wh(x) it follows from Proposition 15 that in this case

min
v∈Wh(x)

‖v‖ ≤ δ.

This completes the proof.

Remark 6. It follows from Proposition 15 that if Dk > −δ in Step 2 of Algorithm 5, then the point

x ∈ IRn is an approximate stationary point satisfying (4.5) for given δ > 0 and for some ε > 0.

Corollary 3. If Dk ≥ 0 then 0 ∈ Vk(x).

Proof. Assume the contrary, that is 0 6∈ Vk(x). Then ṽ 6= 0, where ṽ is the solution to Problem (4.9).

71

Since Dk ≥ 0 then

max
i=1,...,k

〈vi, d〉 ≥ 0, ∀d ∈ S1. (4.12)

Consider d̃ = −ṽ/‖ṽ‖. Then it follows from (4.12) that there exists i ∈ {1, . . . , k} such that

〈ṽ, vi〉 ≤ 0.

However, it follows from (4.10) that 〈ṽ, vi〉 ≥ ‖ṽ‖2 > 0 ∀i ∈ {1, ..., k}. We have arrived at a

contradiction, which completes the proof.

Proposition 16. If min
v∈Vk(x)

‖v‖ < δ then Dk > −δ.

Proof. Assume the contrary that is min
v∈Vk(x)

‖v‖ < δ but Dk ≤ −δ. This means that

〈vi, d̄〉 ≤ −δ, i = 1, . . . , k,

where d̄ ∈ S1 is the solution of the problem (4.6). Let

‖ṽ‖ = min
v∈Vk(x)

‖v‖.

Since ṽ ∈ Vk(x)

ṽ =
∑
i∈I

αivi,
∑
i∈I

αi = 1, αi ∈ (0, 1], i ∈ I ⊆ {1, . . . , k}.

We get

〈ṽ, d̄〉 ≤ −δ. (4.13)

On the other hand ∣∣〈ṽ, d̄〉∣∣ ≤ ‖ṽ‖‖d̄‖ = ‖ṽ‖ < δ

which contradicts (4.13).

72

Proposition 17. Let f be a locally Lipschitz function defined on IRn and L > 0 be a Lipschitz

constant at x. Then Algorithm 5 terminates after finite number of steps.

Proof: If both conditions for the termination of the algorithm are not satisfied, then a quasisecant

vk+1 6∈ Vk(x). Indeed, in this case

f(x+ hd̄)− f(x) > chDk.

It follows from the definition of the quasisecant vk+1 that

f(x+ hd̄)− f(x) ≤ h〈vk+1, d̄〉

and therefore

〈vk+1, d̄〉 > cDk.

Then

−〈vk+1, d̄〉 < −cDk ≤ −c(−δ)

and

〈vk+1, d̄〉 > −cδ. (4.14)

Assume the contrary that is vk+1 ∈ Vk(x). Since Dk ≤ −δ

〈vi, d̄〉 ≤ −δ, i = 1, . . . , k.

Since vk+1 ∈ Vk = co {v1, ..., vk} we can write it as a convex combination of the vi

vk+1 =
k∑
i=1

αivi

73

where
k∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , k. Then

〈vk+1, d̄〉 =

〈
k∑
i=1

αivi, d̄

〉
=

k∑
i=1

〈αivi, d̄〉 =
k∑
i=1

αi〈vi, d̄〉 ≤ −δ,

which contradicts (4.14).

Now we will show that Algorithm 5 is terminating. Assume the contrary. Then Algorithm 5

generates an infinite sequence {dk} of directions dk ∈ S1. (4.14) implies that

〈vk, dk〉 > −cδ, ∀ k = 2, 3, (4.15)

It follows from Theorem 3.1.4 [61] that ‖v‖ ≤ L for all v ∈ ∂f(x). The direction dk+1 is a solution

to the minimization problem (4.6). Since we assume that algorithm is not terminating we have

max
i=1,...,k

〈vi, dk+1〉 ≤ −δ.

Therefore dk+1 is the solution to the system

〈vi, d〉+ δ ≤ 0, i = 1, . . . , k.

Then we get

‖dk+1 − dj‖ >
(1− c)δ

L
, ∀ j = 2, . . . , k. (4.16)

Indeed, if there exists j ∈ {2, . . . , k} such that

‖dk+1 − dj‖ ≤
(1− c)δ

L

then we have

|〈vj , dk+1〉 − 〈vj , dj〉| ≤ (1− c)δ.

74

This means that

〈vj , dj〉 ≤ 〈vj , dk+1〉+ (1− c)δ ≤ −cδ

which contradicts (4.15). The inequality (4.16) can be rewritten as follows:

min
j=2,...,k

‖dk+1 − dj‖ >
(1− c)δ

L
.

Thus Algorithm 5 generates a sequence {dk} of directions dk ∈ S1 such that the distance between

dk and the set of all previous directions is bounded below. Since the set S1 is bounded the number of

such directions is finite.

4.3 Solving subproblem for finding search directions

In this section we design an algorithm for solving Problem (4.6) in Step 2 of Algorithm 5, which

is the most important step in this algorithm. In order to solve this problem we reduce it to the mini-

mization of the convex piecewise linear function over the unit ball. This problem can be solved using

two different approaches. In the first approach we replace the constrained problem by the uncon-

strained one using a distance function, whereas in the second approach we consider the problem as

is. In both cases we apply hyperbolic smoothing technique to replace problems by the sequence of

smooth problems. Then smooth optimization solvers are applied to solve them. In the rest of this

section we describe these two approaches in detail.

Recall that the objective function in Problem (4.6) is as follows:

ϕk(d) = max
i=1,...,k

〈vi, d〉. (4.17)

Then Problem (4.6) can be rewritten as

minimize ϕk(d) subject to d ∈ S1. (4.18)

75

In addition to Problem (4.18) we also consider the following convex programming problem:

minimize ϕk(d) subject to d ∈ B1 = {y ∈ IRn : ‖y‖ ≤ 1}. (4.19)

Denote by G1k and G2k sets of solutions and by D1k and D2k the optimal values of Problems (4.18)

and (4.19), respectively. The relationship between these two problems are established in the following

proposition.

Proposition 18. 1) If D2k = 0 then D1k ≥ 0. If in this case D1k = 0 then G1k ⊂ G2k, otherwise

G1k 6⊂ G2k.

2) If D2k < 0 then G1k = G2k and D1k = D2k.

Proof. Notice that the objective function ϕk is positively homogeneous that is

ϕk(λd) = λϕk(d) ∀d ∈ IRn and λ ≥ 0. (4.20)

Since 0 ∈ B1 always D2k ≤ 0. Moreover, since S1 ⊂ B1 one has D1k ≥ D2k. Therefore we

consider only two cases: 1) D2k = 0 and 2) D2k < 0.

Case 1) If D2k = 0 then D1k ≥ 0, which triggers the stopping criterion in Algorithm 5. Moreover,

in this case 0 ∈ Vk(x) according to Corollary 3. Now take any d̄ ∈ G1k. If D1k = 0 then ϕk(d̄) = 0

and ϕk(d) ≥ ϕk(d̄) = 0 for all d ∈ S1. Since for any d ∈ B1 there exists d0 ∈ S1 and λ ∈ [0, 1]

such that d = λd0. Then it follows from (4.20) that ϕk(d) ≥ 0 for all d ∈ B1. Therefore d̄ ∈ G2k.

If D1k > 0 then (4.20) implies that ϕk(d) > 0 for all d ∈ B1, d 6= 0. This means that in this case

G2k = {0} and therefore G1k 6⊂ G2k.

Case 2) Now let us consider the case when D2k < 0. We will prove that in this case G1k = G2k

which means that D1k = D2k. Let d0 be the solution to the problem (4.19). It is clear that d0 6= 0.

Then d0 ∈ S1. Indeed, assume that d0 /∈ S1. Then we can find d̄ = λd0, where λ > 1, d̄ ∈ S1 ⊂ B1.

Applying (4.20) we have

ϕk(d̄) = λϕk(d0) = λD2k < D2k

76

which contradicts that d0 is the solution to Problem (4.19). Then we get that all solutions of Problem

(4.19) lie on the unit sphere S1. This means that G1k = G2k and therefore D1k = D2k.

An important consequence of this proposition is that we can replace the nonconvex minimization

problem (4.18) by the convex programming problem (4.19). It is obvious from this proposition that

solving Problem (4.19) we get exactly either the same stopping criterion or the same descent direction

as can be obtained by solving (4.18).

We apply smoothing techniques to replace Problem (4.19) by the sequence of smooth problems.

The hyperbolic smoothing technique is used for this purpose [98, 99]. This technique for minimax

problems was studied in [8]. Next, we apply results from [8] to Problem (4.19). Consider the function:

Fk(d, t) = t+
k∑
i=1

max(0, 〈vi, d〉 − t).

It is clear that Fk(d, ϕk(d)) = ϕk(d). It is proved in [8] that the set of minimizers of functions Fk

and ϕk coincide when t = ϕk(d). Define a function

Φk(d) ≡ Fk(d, ϕk(d)), d ∈ IRn.

Then we can reformulate the problem (4.19) as follows:

minimize Φk(d) subject to d ∈ B1. (4.21)

For a given (d, ϕk(d)) the index set I can be represented as follows:

I = I1 ∪ I2,

where

I1 = {i ∈ I : 〈vi, d〉 < ϕk(d)},

I2 = {i ∈ I : 〈vi, d〉 = ϕk(d)}.

77

The subdifferential of the function Φk at d can be written as follows:

∂Φk(d) = {(0n, 1)}+
∑
i∈I2

co {0n+1, (vi,−1)}. (4.22)

Applying (3.14) to the function Φk we get:

Hτ (d) = ϕk(d) +
∑
i∈I

〈vi, d〉 − ϕk(d) +
√

(〈vi, d〉 − ϕk(d))2 + τ2

2
, τ > 0. (4.23)

According to Proposition 5 from [8]

0 < Hτ (d)− Φk(d) ≤ kτ

2
.

The gradient of the function Hτ is as follows:

∇Hτ (d) = (G1τ (d), G2τ (d)) (4.24)

where

G1τ (d) =
1

2

∑
i∈I

(1 + βiτ (d)) vi, (4.25)

G2τ (d) = 1− 1

2
|I| − 1

2

∑
i∈I

βiτ (d). (4.26)

βiτ (d) =
〈vi, d〉 − ϕk(d)√

(〈vi, d〉 − ϕk(d))2 + τ2
. (4.27)

From Proposition 6 [8] it follows that if z = lim
τ→0
∇Ψτ (d) then z ∈ ∂F (d, ϕ(d)). The proof of the

following proposition can be found in [8].

Proposition 19. Assume that sequences {dk} and {τk} are given such that dk ∈ IRn and τk > 0, k =

78

1, 2, Moreover, dk → d, τk → 0 as k →∞ and

z = lim
k→∞

∇Ψτk(dk).

Then z ∈ ∂F (d, ϕ(d)).

We therefore can replace a nonsmooth optimization problem (4.21) by the following smooth prob-

lem

minimize Ψkτ (d) subject to d ∈ B1. (4.28)

One can apply any smooth optimization solver to solve the constrained problem (4.28).

Another option is to reduce the constrained problem (4.28) to an unconstrained one. In order to do

so we apply Lemma 5.1.5 from [61] to Problem (4.28) and replace it by the following unconstrained

problem:

minimize Ψkτ (d) + L̂gB1(d) subject to d ∈ IRn (4.29)

where L̂ ≥ L andL > 0 is the Lipschitz constant of the function ϕk which can be computed explicitly

as follows:

L = max
i=1,...,k

‖vk‖.

Let gB1 be a distance function of the set B1. This function can be expressed as follows:

gB1(d) = max{0, ‖d‖2 − 1}.

Now we can apply the hyperbolic smoothing technique to approximate the function gB1 :

Pτ (d) =
‖d‖2 − 1 +

√
(‖d‖2 − 1)2 + τ2

2
.

Then the constrained problem (4.28) can be reformulated as a smooth unconstrained optimization

problem:

minimize Ψkτ (d) + L̂Pτ (d) subject to d ∈ IRn. (4.30)

79

Smooth optimization techniques can be applied to solve Problem (4.30). In order to solve Problem

(4.19) we take a sequence {τk} of precision parameters τ where τk → +0 as k →∞ and solve either

Problem (4.29) or Problem (4.30). It is shown in [8] that the sequence of solutions to these problems

will converge to the set of solutions of Problem (4.19).

4.4 Minimization algorithms

In this section we design two algorithms for solving Problem (4.4). The first algorithm can find

the so-called (h, δ)-stationary points of Problem (4.4) for given h > 0 and δ > 0, whereas the sec-

ond one computes its Clarke stationary points. Finding (h, δ)-stationary points of Problem (4.4) for

sufficiently small h, δ > 0 is equivalent to the finding of its approximate stationary points satisfying

(4.5).

4.5 Computation of (h, δ)-stationary points

Let h > 0, δ > 0, c1 ∈ (0, 1), c2 ∈ (0, c1] be given numbers. An algorithm for finding

(h, δ)-stationary points proceeds as follows.

Algorithm 6. Computation of (h, δ)-stationary points of Problem (4.4).

Step 1. Select any starting point x0 ∈ Rn and set k = 0.

Step 2. Apply Algorithm 5 for the computation of the descent direction at x = xk for given δ > 0

and c1 ∈ (0, 1). This algorithm finds dk ∈ S1 such that

Dk = max
i=1,...,k

〈vi, dk〉 = min
d∈S1

max
i=1,...,k

〈vi, d〉.

Furthermore, either Dk > −δ or for the search direction dk ∈ S1,

f(xk + hdk)− f(xk) ≤ c1hDk. (4.31)

80

Step 3. If Dk > −δ then stop. Otherwise go to Step 4.

Step 4. Compute xk+1 = xk + σkdk, where σk is defined as follows

σk = argmax {σ ≥ 0 : f(xk + σdk)− f(xk) ≤ c2σDk} .

Set k = k + 1 and go to Step 2.

In the next proposition we prove that Algorithm 6 is finitely convergent to the set of (h, δ)-

stationary points of Problem (4.4).

Proposition 20. Suppose that function f is bounded below, i.e.

f∗ = inf {f(x) : x ∈ Rn} > −∞. (4.32)

Then Algorithm 6 terminates after finite many iterations m > 0 and produces the (h, δ)-stationary

point xm where

m ≤ m0 ≡
⌊
f(x0)− f∗
c2hδ

⌋
+ 1. (4.33)

Proof. Assume the contrary, that is the sequence {xk} generated by Algorithm 6 is infinite and the

points xk are not (h, δ)-stationary points for any k = 1, 2, This means that

Dk ≤ −δ, ∀k = 1, 2, . . .

Then descent direction dk will be found at xk so that the sufficient decrease condition (4.31) is satis-

fied:

f(xk + hdk)− f(xk) ≤ c1hDk ≤ c2hDk.

81

It follows from the definition of σk that σk ≥ h. Therefore, we have

f(xk+1)− f(xk) = f(xk + σkdk)− f(xk)

< c2σkDk

≤ c2hDk,

which along with the condition Dk ≤ −δ implies that

f(xk+1) ≤ f(x0)− (k + 1)c2hδ.

Therefore, f(xk) → −∞ as k → ∞ which contradicts (4.32). Clearly, the upper bound for the

number of iterations m necessary to find the (h, δ)-stationary point is m0 given by (4.33).

Remark 7. The use of quasisecants (that is Algorithm 5) allows us to design a very simple procedure

for the estimation of the step-length σk, k ≥ 0 in Step 4 of Algorithm 6. Since c2 ≤ c1 always

σk ≥ h. In order to estimate σk we define a sequence θm = mh, m ≥ 1. Then σk is defined as the

largest θm satisfying the inequality in Step 4 of Algorithm 6.

Now we design an algorithm for finding stationary points of Problem (4.4), that is points x satis-

fying the condition 0 ∈ ∂f(x). Let ε > 0 be a tolerance.

Algorithm 7. Computation of stationary points of Problem (4.4).

Step 1. Select sequences {hj}, {δj} such that hj > 0, δj > 0 and hj → 0, δj → 0 as j → ∞.

Choose any starting point x0 ∈ Rn, and set k = 0.

Step 2. If hk ≤ ε and δk ≤ ε, then stop with xk as the final solution.

Step 3. Apply Algorithm 6 starting from the point xk with h = hk and δ = δk. This algorithm finds

an (hk, δk)-stationary point xk+1 after finitely many iterations m > 0.

Step 4. Set k = k + 1 and go to Step 2.

82

Next we prove the convergence of Algorithm 7. For point x0 ∈ Rn, we consider the level set

L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

Proposition 21. Suppose that the objective function f in Problem (4.4) is locally Lipschitz and sat-

isfies Assumption 1, the set L(x0) is bounded for the starting point x0 and ε = 0 in Algorithm 7.

Then any accumulation point of the sequence {xk} generated by this algorithm is a stationary point

of Problem (4.4).

Proof. Since the function f is locally Lipschitz and the set L(x0) is bounded, f∗ > −∞. Therefore,

according to Proposition 20 the sequence of (hk, δk)-stationary points will be generated after a finite

number of iterations for all k > 0. Since for any k > 0, the point xk+1 is (hk, δk)-stationary point, it

follows from the definition of the (hk, δk)-stationary points that

min{‖v‖ : v ∈Whk(xk+1)} ≤ δk.

It is obvious that xk ∈ L(x0) for all k > 0. The boundedness of the set L(x0) implies that the

sequence {xk} has at least one accumulation point. Let x∗ be an accumulation point and xki → x∗

as i→∞. The inequality above implies that

min{‖v‖ : v ∈Whki−1
(xki)} ≤ δki−1. (4.34)

It follows from Proposition 12 that at the point x∗ for any τ > 0 there exists η > 0 such that

Wh(y) ⊂ ∂f(x∗) +Bτ

for all y ∈ Bη(x∗) and h ∈ (0, η). Since the sequence {xki} converges to x∗, there exists i0 such that

xki ∈ Bη(x∗) for all i > i0. On the other hand, since δk, hk → 0 as k →∞ there exists k0 > 0 such

that δk < τ and hk < η for all k > k0. Then there exists i1 such that ki > k0 + 1 for all i > i1. Let

83

i2 = max{i0, i1}, It follows that

Whki
(xki) ⊂ ∂f(x∗) +Bτ (4.35)

for all i > i2. (4.34) and (4.35) imply that for any i > i2

min{‖v‖ : v ∈ ∂f(x∗)} ≤ 2τ.

Since τ is arbitrary 0 ∈ ∂f(x∗). This completes the proof.

4.6 Numerical experiments

In this section we present results of testing and comparison of the proposed method. We call the

proposed method SSM - Subgradient Smoothing Method. We compare the SSM with the following

nonsmooth optimization algorithms:

1. The Proximal bundle method (PBUN) (see [61]);

2. The Variable metric bundle method (PVAR) [57];

3. The Newton-bundle method (PNEW) [56];

4. The Discrete gradient method (DGM) [5];

5. The Quasisecant method (QSM) [7].

The well-known nonsmooth optimization academic test problems were used to test algorithms. These

test problems include Problems 2.1-4, 2.6, 2.10-12, 2.19-25, 3.1-2, 3.4-12, 3.15-20, 3.22-25 from [58].

We do not use all test problems from [58] because for some of them not all input data is available

and for some other problems objective functions are unbounded from below. Since we use many

starting points for each test problem we excluded problems with many local solutions to make easier

comparison of algorithms. Accordingly, we used test problems with very few local solutions. One

example of such problems is Problem 2.3 (Spiral). Its graph is given in Figure 4.1.

84

Parameters in the SSM were chosen as follows: c1 = 0.2, c2 = 0.05, hj+1 = 0.5hj , j ≥ 1, h1 =

1, δj ≡ 10−7, ∀j ≥ 0. We implemented the SSM as well as DGM and QSM in Lahey Fortran 95 and

used Fortran implementation of PBUN, PVAR and PNEW described in [59]. Numerical experiments

were carried out on PC Intel(R)Core(TM)2 with CPU 1.86 GHz and 1.97GB of RAM.

We used 20 random starting points for each problem and starting points are the same for all

algorithms. All the algorithms tested are so-called local algorithms and they do not intend to find

always the global minimum of a nonconvex objective function. Starting from the same point the

algorithms may converge to different local minimizers. We say that an algorithm solves the nonconvex

nonsmooth optimization problem if it finds its local minimizer even if this local minimizer is different

from the global one. An algorithm finds a solution to a problem with a tolerance ε > 0 if

|f̄ − flocal| ≤ ε(1 + |flocal|).

Here f̄ is the value of the objective function at the solution found by an algorithm and flocal is the

closest to f̄ among values of an objective function at its known local minimizers. We analyze the

results using the performance profiles introduced in [31].

We compare the efficiency of the algorithms both in terms of number of function and subgradient

evaluations. We do not compare the CPU time because for most of test problems the CPU time used

by the algorithms is almost 0. We present results with ε = 10−4. In the next two subsections we

discuss results for different types of test problems.

4.6.1 Results for unconstrained minimax problems

Results for this type of problem are presented in Figures 4.2 and 4.3. We do not include the DGM

in Figure 4.3 because it is the derivative-free method.

Results presented in Figure 4.2 demonstrate that the PNEW is the most efficient for this class of

problems and the QSM is the most robust method in terms of function evaluations. The proposed

method (SSM) is the second most robust method. It solved more than 90 % of problems. However,

85

it requires more function evaluations than most other algorithms used in numerical experiments. One

can see from Figure 4.3 the PBUN is the most efficient in terms of subgradient evaluations and again

the QSM is the most robust methods and the SSM is the second most robust method.

4.6.2 Results for general nonsmooth unconstrained problems

Results for general nonsmooth unconstrained problems are presented in Figures 4.4 and 4.5.

Again we do not include the DGM in Figure 4.5.

Results presented in Figures 4.4 and 4.5 are quite similar to those presented in Figures 4.2 and

4.3 for minimax problems. Again the PNEW is the most efficient in terms of function evaluations

and the PBUN is the most efficient in terms of subgradient evaluations. The QSM is the most robust

method (it solved all problems for all starting points). The proposed algorithm is the second most

robust (along with the PVAR). It solved 90 % of problems.

4.6.3 Results with GAMS

In this subsection we demonstrate the GAMS implementation of the proposed algorithm and

compare it with the DNLP option of solvers included in GAMS. CONOPT, MINOS and SNOPT

solvers were used for this purpose (for details of these solvers, see [39]). The same solvers were used

to solve the subproblem for finding descent directions in the proposed method. We selected 10 test

problems with different number of variables. For each test problem we used starting points from [58].

Results are given in Table 4.1, where the following notation is used:

• n - number of variables;

• fopt - optimum value;

• fv - function value obtained by an algorithm;

• nf , ns, nit - the number of function evaluations; the number of subgradient evaluations; the

number of iterations, respectively.

86

• N/A means that this feature is not applicable for a given solver.

Results presented in Table 4.1 demonstrate the proposed method is much more efficient than the

DNLP option of solvers. The latter solvers failed to solve most of the test problems with required ac-

curacy. Results also show that the use of various solvers for finding search directions in the proposed

method may lead to different solutions (and also to a different number of function and subgradient

evaluations). The use of these solvers allowed to find solutions with required accuracy, however the

solver MINOS failed to find solutions in test problems MAXQ and GOFFIN.

4.7 Conclusions

In this chapter, we developed a new algorithm for solving nonsmooth optimization problems. The

main difference between the proposed and other existing nonsmooth optimization methods is that in

the proposed method one can use smooth optimization solvers for finding descent directions. This

allows one to use powerful smooth optimization methods for solving general nonsmooth optimization

problems.

We presented results of numerical experiments using well-known nonsmooth optimization test

problems. The proposed algorithm was implemented both in Fortran and GAMS to compare it with

other nonsmooth optimization techniques as well as nonsmooth optimization solvers in GAMS. Re-

sults demonstrate that the proposed algorithm is one of the most robust algorithms in nonsmooth

optimization and it considerably outperforms the DNLP option of solvers in GAMS.

87

Figure 4.1: Graph of test problem 2.3 (Spiral).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

ρ
s(
μ
)

μ

SSM

DGM

QSM

PBUN

PVAR

PNEW

SSM

DGM

QSM

PBUN

PVAR

PNEW

Figure 4.2: Number of function evaluations for unconstrained minimax problems.

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

ρ
s(
μ

)

μ

SSM

QSM

PBUN

PVAR

PNEW

SSM

QSM

PBUN

PVAR

PNEW

SSM

QSM

PBUN

PVAR

PNEW

Figure 4.3: Number of subgradient evaluations for unconstrained minimax problems.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11

ρ
s(
μ

)

μ

SSM
QSM
PBUN
PVAR
PNEW
SSM
QSM
PBUN
PVAR
PNEW
SSM
DGM
QSM
PBUN
PVAR
PNEW

Figure 4.4: Number of function evaluations for general nonsmooth problems.

89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

ρ
s(
μ
)

μ

SSM

QSM

PBUN

PVAR

PNEW

SSM

QSM

PBUN

PVAR

PNEW

Figure 4.5: Number of subgradient evaluations for general nonsmooth problems.

90

Table 4.1: GAMS results

Prob. The method DNLP
n fopt fv nf ns fv nf nit

CONOPT
CB2 2 1.95222 1.9522 175 47 1.9523 41 N/A
WF 2 0 0.0000 219 52 0.0000 41 N/A
SPIRAL 2 0 0.0000 85810 10873 0.0480 91 N/A
Crescent 2 0 0.0000 130 19 0.0000 16 N/A
EVD52 3 3.59972 3.6000 221 34 3.7595 32 N/A
Wong1 7 680.63006 680.7588 1074 202 700.7282 32 N/A
Polak2 10 54.59815 54.6037 297 91 54.6036 43 N/A
Polak3 11 3.70348 3.7039 301 69 3.9047 73 N/A
Maxq 20 0 0.0000 853 227 0.0000 224 N/A
Goffin 50 0 0.0001 10845 3365 0.0041 39435 N/A

MINOS
CB2 2 1.95222 1.9522 201 57 1.9523 22 173
WF 2 0 0.0000 219 52 0.0000 7 96
SPIRAL 2 0 0.0000 9294 1306 0.1250 8 77
Crescent 2 0 0.0001 130 19 0.0000 15 125
EVD52 3 3.59972 3.6000 216 35 4.2126 14 145
Wong1 7 680.63006 680.6972 455 130 681.4484 319 1947
Polak2 10 54.59815 54.6036 511 109 60.9528 4 52
Polak3 11 3.70348 3.7037 288 52 4.0400 48 278
Maxq 20 0 62.7313 207 42 0.0000 72 375
Goffin 50 0 52.7149 4577 1307 152.4616 105 704

SNOPT
CB2 2 1.95222 1.9522 385 111 1.9522 300 1251
WF 2 0 0.0000 219 52 0.0000 18 112
SPIRAL 2 0 0.0000 6316 851 0.1250 9 68
Crescent 2 0 0.0001 130 19 0.0004 26 178
EVD52 3 3.59972 3.6000 216 35 3.5997 194 470
Wong1 7 680.63006 680.6974 361 114 686.0448 100 417
Polak2 10 54.59815 54.6036 265 89 54.6036 38 134
Polak3 11 3.70348 3.7037 778 105 4.0006 54 184
Maxq 20 0 0.0000 2373 713 0.0000 130 611
Goffin 50 0 0.0001 12321 3859 111.4632 303 1321

91

Chapter 5

Minimization of pumping costs in water

distribution systems

The operation of a water distribution system is a complex task which involves scheduling of

pumps, regulating water levels of storages, and providing satisfactory water quality to customers at

required flow and pressure. Pump scheduling is one of the most important tasks of the operation of

a water distribution system as it represents the major part of its operating costs. In this chapter, a

novel approach for modeling of explicit pump scheduling to minimize energy consumption by pumps

is introduced, which uses a pump’s start/end run times as continuous variables, and binary integer

variables to describe a pump’s status at the beginning of the scheduling period. This is different from

other approaches where binary integer variables for each hour are typically used, which is considered

very impractical from an operational perspective. The problem is formulated as a mixed integer

nonlinear programming problem replaced by the sequence of smooth optimization problems and a

new algorithm is developed for its solution. This algorithm is based on the combination of the grid

search with the Hooke-Jeeves pattern search method. The performance of the algorithm is evaluated

using literature test problems applying the hydraulic simulation model EPANet [84].

Results from this chapter were obtained in collaboration with other colleagues. More specifically,

the optimization was developed in collaboration with A. Bagirov, A. Barton, H. Mala Jetmarova and

N. Sultanova. Its smoothed version was developed by myself and numerical testing was carried out

by S.T. Ahmed.

The structure of this chapter is as follows. The pumping cost minimization problem is formulated

92

in Section 5.1. An algorithm for solving the optimization problem is presented in Section 5.2. Section

5.3 provides the description of test problems as well as the results of numerical experiments using

these test problems. Section 5.4 concludes the chapter.

5.1 Optimization model

In this section, we formulate both the objective function and constraints of the pumping cost

minimization problem.

We consider a water distribution network which consists of one main (unlimited) source of wa-

ter, storages, pump stations, pipes and demand nodes. We assume that initial storage water levels,

demands and demand patterns, peak and off peak electricity tariffs are known.

The amount of energy consumed by a pump depends on flow through the pump, head supplied

by the pump and wire-to-water efficiency. These parameters can be calculated using a hydraulic

simulator (i.e. EPANet) for a known pump schedule. Pump energy costs also depend on the energy

price given by electricity tariffs. These tariffs may vary during a scheduling period consisting of an

expensive peak and cheaper off-peak periods. In this chapter, we restrict the number of on/off pump

switches. However, we do not incorporate the pump maintenance costs and demand charge costs into

the objective function. Therefore, our objective function consists of only energy consumed by the

pumps.

Combined water volume in all storages can be different at the beginning and end of the scheduling

period, which means that it is allowed both to decrease and to increase of the water level in all

storages. Nevertheless, the difference between combined water volume at the beginning and end of

the scheduling period cannot be greater than some predefined number.

We use the following notations for parameters in the pumping cost minimization problem which

are partially adopted from [54]:

• [T1, T2] and [T3, T4] - off peak intervals and [T2, T3] peak interval during one scheduling day.

In real applications, for example, T1 = 0, T2 = 7, T3 = 22, T4 = 24;

93

• NSW - the maximum number of switches for all pumps during one day. We assume that

NSW ≥ 2;

• Np - number of pumps;

• Ns - number of storages;

• Nd - number of demand nodes;

• R1 and R2 - energy tariffs during peak and off-peak intervals, respectively ($/kWh). In real

applications R1 > R2;

• Emi - energy consumption rate of pump m during interval i (kWh/h), m = 1, . . . , Np, i =

1, . . . , NSW − 1. It can be constant or may depend on flow rate and head. It can be found from

the pump’s performance curve.

• Hji - head supplied at demand node j during the time period i, i = 1, . . . , NSW − 1, j =

1, . . . , Nd;

• Hmin
j - minimum head required at the demand node j, j = 1, . . . , Nd;

• Hmax
j - maximum head allowed at the demand node j, j = 1, . . . , Nd;

• Qmi - flow rate through pumpm during the interval i (m3/s), m = 1, . . . , Np, i = 1, . . . , NSW−

1;

• hmi - total dynamic head supplied by the pumpm during the interval i (m), m = 1, . . . , Np, i =

1, . . . , NSW − 1;

• em - overall wire-to-water efficiency of the pump m, m = 1, . . . , Np;

• Hj,min
S - minimum level of water in the storage j, j = 1, . . . , Ns;

• Hj,max
S - maximum level of water in the storage j, j = 1, . . . , Ns.

We use the following notations for decision variables in the pumping cost minimization problem:

94

• tmi - time when pump m is switching on or off, tmi ∈ [0, 24], i = 1, . . . , NSW . τm =

(tm1, . . . , tm,NSW
) is a vector of start/end run times for the pump m. Let τ = (τ1, . . . , τNp).

Here tm1 = 0 and tm,NSW
= 24;

• Xm - shows whether pumpm is operating during the initial interval [tm1, tm2],m = 1, . . . , Np.

Let X = (X1, . . . , XNp). If Xm = 1 then the pump m is operating at the initial interval

[tm1, tm2] and it is not operating if Xm = 0.

Remark 8. We use only one binary variable for each pump, which is sufficient to describe the sched-

ule for one pump for the whole scheduling period (i.e. one day). Indeed, if Xm is known for the

first interval [tm1, tm2], then it is 1 − Xm for the second interval [tm2, tm3], Xm for the third inter-

val [tm3, tm4] and so on. This significantly reduces the number of binary variables in the pumping

cost minimization problem. Moreover, the use of start/end run times as decision variables allows a

reduction in the number of continuous variables.

5.1.1 The objective function

Given particular start/end run times tmi, i = 1, . . . , NSW at the interval i and initial schedule

Xm for pump m, m = 1, . . . , Np, the total cost of energy, in general, is calculated as follows

f(X, τ) =

Np∑
m=1

(energy consumption cost+ demand charge+ pump maintenance cost).

This chapter does not consider the demand charge and pump maintenance cost, and formulates the

objective function on a daily (24 hours) basis. Additionally, only two (peak and off-peak) tariff

periods are considered.

As already described, information on pump status at the initial time interval is sufficient to deter-

mine its status in all subsequent time intervals. Then any pump’s on/off intervals can be divided into

two parts: the first part contains all intervals where the status of the pump is the same as its status in

the initial interval, and the second part contains all other intervals. In order to take into account peak

and off peak periods, the cost function for the off peak period (low cost) is written for the whole day

95

and added to the difference between the peak (high cost) and off peak periods.

The cost function for a given pump m can be expressed as a sum of four functions as follows:

F (Xm, τm) = F1(Xm, τm) + F̄1(Xm, τm) + F2(Xm, τm) + F̄2(Xm, τm), (5.1)

F1(Xm, τm) = R1Xm

N̄∑
i=1

Em,2i−1(tm,2i − tm,2i−1), (5.2)

F̄1(Xm, τm) = R1(1−Xm)

NSW−N̄−1∑
i=1

Em,2i(tm,2i+1 − tm,2i), (5.3)

F2(Xm, τm) = (R2 −R1)Xm

N̄∑
i=1

Em,2i−1 max{0, wm,2i − um,2i−1}, (5.4)

F̄2(Xm, τm) = (R2 −R1)(1−Xm)

NSW−N̄−1∑
i=1

Em,2i max{0, wm,2i+1 − um,2i}. (5.5)

Here

• Emi is the energy consumption rate at the interval [tmi, tm,i+1], i = 1, . . . , NSW −1 of a pump

m which depends on the flow through the pump, head supplied by the pump and efficiency at

which it operates:

Emi =
KmQmihmi

em
,

where Km is a given constant for pump m. For example, Km = 0.01019 [54];

• N̄ = bNSW /2c where bac stands for the largest integer number less than or equal to a;

• umi = max{T2, tmi}, wmi = min{T3, tmi}, i = 1, . . . , NSW are introduced to find intersec-

tions between intervals [tmi, tm,i+1] and the peak period [T2, T3].

The function F1(Xm, τm) defined by (5.2) represents the energy cost for all time intervals where

the status of the pump m is the same as its status in the initial interval [tm1, tm2]. This function is

96

0 if this pump is off at the interval [tm1, tm2]. The function F̄1(Xm, τm) defined by (5.3) represents

the energy cost for all other intervals. This function is 0 if the pump is on at the interval [tm1, tm2].

Both functions are calculated for off peak rate for the whole day. In order to take into account the

peak period, we introduce two additional functions F2(Xm, τm) and F̄2(Xm, τm), which add the

difference between peak and off peak rates in the peak period. The function F2(Xm, τm) defined by

(5.4) represents the cost difference between peak and off peak rates for all intervals where the status

of the pump m is the same as its status in the initial interval [tm1, tm2]. The function F̄2(Xm, τm)

defined by (5.5) represents the cost difference between peak and off peak rates for all other intervals.

Functions (5.4) and (5.5) are approximated using the hyperbolic smoothing technique. Then we

have the following approximations of these functions:

F2µ(Xm, τm) = (R2 −R1)Xm

N̄∑
i=1

Em,2i−1
(wm,2i − um,2i−1) +

√
(wm,2i − um,2i−1)2 + µ2

2
,

F̄2µ(Xm, τm) = (R2 −R1)(1−Xm)

NSW−N̄−1∑
i=1

Em,2i
(wm,2i+1 − um,2i) +

√
(wm,2i+1 − um,2i)2 + µ2

2
.

Then the function F (Xm, τm) can be approximated by the following smooth function:

Fµ(Xm, τm) = F1(Xm, τm) + F̄1(Xm, τm) + F2µ(Xm, τm) + F̄2µ(Xm, τm), (5.6)

Figure 5.1 shows an example of the timeline for one scheduling period (i.e. one day) with five

intervals on which pumps switch on and off alternatingly. Assuming that the dashed lines represent

intervals during which the pumps are off (Xm = 0), and the solid lines represent intervals during

which the pumps are on, we will have functions F1(Xm, t) = 0 and F2(Xm, t) = 0, F̄1(Xm, t) =

R1[Em,2(t3−t2)+Em,4(t5−t4)] and F̄2(Xm, t) = (R2−R1)Em,2(t3−T2)+(R2−R1)Em,4(T3−t4).

97

 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6

 𝑇𝑇1 = 0 𝑇𝑇2 = 7 𝑇𝑇3 = 22 𝑇𝑇4 = 24

Figure 5.1: An example of a timeline.

Remark 9. It should be noted that off peak may start at midnight in some water distribution networks.

This case is even simpler, because there are only two intervals: [T1, T2] and [T2, T3] where T1 = 0

and T3 = 24. However, in this Chapter we consider a more complex case when the off peak period

starts and ends during the day.

The objective function, which is the total pumping cost for the whole water distribution system

with Np pumps, can be written as follows:

fµ(X, τ) =

Np∑
m=1

Fµ(Xm, τm). (5.7)

Since the functions F1, F̄1 are nonconvex and functions F2µ, F̄2µ are nonconvex, the objective func-

tion f is nonconvex.

Remark 10. We consider only pumping cost as the objective function, so it does not include the

maintenance costs. Maintenance costs can be measured by using the number of pump switches.

Frequent switching of pumps cause wear and tear which, in turn, can increase maintenance costs. As

a result, the minimization of the number of pump switches can reduce maintenance costs. However,

our objective function allows us to automatically take into account this constraint, since we define

the maximum number NSW − 1 of time intervals a priori. Therefore, there is no need to additionally

define those constraints.

5.1.2 Constraints

In this subsection, we formulate the constraints of the pumping cost minimization problem. These

constraints include hydraulic constraints representing conservation of mass of flow and energy, and

98

system constraints such as minimum and maximum limits on storage levels, and minimum and max-

imum pressure requirements at demand nodes.

We do not require that storage water levels should be fully recovered by the end of the scheduling

period. This means that it is allowed to have some deficit of water in all storages. Thus constraints on

storages are determined by their minimum and maximum water levels as well as the combined water

volumes in all storages.

Denote by HjI
S , the initial water level, and HjE

S , the final water level in storage j, j = 1, . . . , Ns.

Then we require that

Hj,min
S ≤ HjI

S ≤ H
j,max
S ,

Hj,min
S ≤ HjE

S ≤ H
j,max
S , j = 1, . . . , Ns.

Denote also by D, the ratio of the allowed difference in the combined water volume in all storages

(in %). Then we have the following constraints on the volume of water at the end of the scheduling

period:

−D ≤ VI − VE
VI

× 100 ≤ D,

where

VI =

Ns∑
j=1

VjI , VE =

Ns∑
j=1

VjE .

VjI and VjE are volumes of water in storages j = 1, . . . , Ns at the beginning and end of the scheduling

period, respectively.

It is required that consumers are supplied water at adequate pressures. Therefore, the optimization

model must include maximum and minimum pressure constraints at customer demand nodes

Hmin
j ≤ Hji ≤ Hmax

j , j = 1, . . . , Nd.

Additionally we require that start/end run times satisfy the following condition:

0 = tm1 < tm2 ≤ . . . ≤ tm,M−1 ≤ tmM = 24, M = NSW .

99

We do not explicitly describe constraints representing conservation of mass of flow and energy, be-

cause these are maintained by a hydraulic simulator EPANet.

5.1.3 Formulation of optimization problem

The pumping cost minimization problem is reduced to the following optimization problem:

minimize fµ(X, τ) (5.8)

subject to

Xm ∈ {0, 1}, m = 1, . . . , Np, (5.9)

Hj,min
S ≤ HjI

S ≤ H
j,max
S , Hj,min

S ≤ HjE
S ≤ H

j,max
S , j = 1, . . . , Ns, (5.10)

−D ≤ VI − VE
VI

× 100 ≤ D, (5.11)

Hmin
j ≤ Hji ≤ Hmax

j , j = 1, . . . , Nd, (5.12)

0 = tm1 < tm2 ≤ . . . ≤ tm,NSW−1 ≤ tm,NSW
= 24. (5.13)

The Problem (5.8)-(5.13) contains both continuous (tmi) and integer variables (Xm). The number of

continuous variables isNp(NSW −2) and the number of integer variables isNp (which is the number

of pumps).

Constraint (5.10) will be maintained by a hydraulic simulator EPANet, so it will not be included

in the final objective function. In order to take into account the constraint (5.13), we will use the

100

following penalty function:

P (τ) =
m∑
k=1

NSW−1∑
i=1

max{0, tmi − tm,i+1}.

(5.11) and (5.12) are not maintained by EPANET.

Applying the hyperbolic smoothing to the function P (τ) we approximate it by the following

smooth function:

Pµ(τ) =
m∑
k=1

NSW−1∑
i=1

(tmi − tm,i+1) +
√

(tmi − tm,i+1)2 + µ2

2
.

Then Problem (5.8)-(5.13) can be rewritten as follows:

minimize Gµ(X, τ) ≡ fµ(X, τ) + γPµ(τ) (5.14)

subject to

Xm ∈ {0, 1}, m = 1, . . . , Np, (5.15)

Hj,min
S ≤ HjI

S ≤ H
j,max
S , Hj,min

S ≤ HjE
S ≤ H

j,max
S , j = 1, . . . , Ns, (5.16)

−D ≤ VI − VE
VI

× 100 ≤ D, (5.17)

Hmin
j ≤ Hji ≤ Hmax

j , j = 1, . . . , Nd. (5.18)

Here γ > 0 is a penalty coefficient.

This problem is a smooth optimization and can be solved using any smooth optimization algo-

rithm. We use the Hooke-Jeeves algorithm for its solution.

101

5.2 Solution algorithm and its implementation

In this section, we describe both an algorithm for solving the pumping cost minimization problem

(5.14)-(5.18) and its implementation. This algorithm is based on the combination of the optimization

and hydraulic simulation. The optimization method is applied to generate pump schedules using only

the objective function (5.14) and constraints (5.15), whereas a hydraulic simulator is used to check the

hydraulic feasibility of those schedules. Thus hydraulic constraints and limits on storage levels are

enforced implicitly by the hydraulic simulator. The constraint (5.18), minimum and maximum pres-

sure heads at demand nodes, was not included in the optimization problem at this stage. Nevertheless,

the minimum pressure head was controlled by the simulator. We apply the Hooke-Jeeves method for

minimization of the objective function (5.14) and the package EPANet for hydraulic simulation (for

details of EPANet system, see [84]).

The Hooke-Jeeves method is a direct search method which does not require gradient information.

It is based on two types of moves: exploratory and pattern. Exploratory moves are moves along

the coordinate directions. The length of these moves is determined by step sizes which should be

initialized by the user. Pattern moves are determined by the first and last points obtained by the

exploratory moves. The direction from the first point to the last point is considered as the most

favorable search direction. The step length in this phase depends on the distance between these two

points, in fact, on the step sizes from the exploratory moves. When no further improvements are

made through exploration moves around the base point, the step size can be reduced and the process

repeated. If the step size in exploratory moves is less than some predefined threshold, then the method

stops and the last base point is accepted as the approximate solution. Details of the Hooke-Jeeves

method can be found in [87]. Direct search methods and the Hooke-Jeeves method, in particular,

are very suitable for solving optimization problems, where the part of constraints are maintained by

simulation.

In order to implement the Hooke-Jeeves method, one should provide the starting point, the initial

and final values of the step size in exploratory phase. In the pumping cost minimization problem,

102

the set of starting schedules is defined using the grid on the start/end run times and combinations

of on/offs of pumps. Therefore, the initial value of the step size depends on the size of grids. In

our implementation, the initial step size in the exploratory phase is 2 hours. The final value of the

step size depends on EPANet’s hydraulic time step. In our implementation, the final step size in the

exploratory phase of the Hooke-Jeeves method is 10 minutes. For small water networks, values of the

binary variable X can be obtained by considering all possible combinations of on/offs. However in

large water networks, this variable is also part of optimization.

Figure 5.2 demonstrates a flowchart of the algorithm.

Some explanation on the algorithm follows. In the first step, the initial and smallest values of the

step size is set in the Hooke-Jeeves method. In the second step of the algorithm, the grid on start/end

run times of pumps and combinations of their on/offs is applied to generate a set of schedules. Such

an approach allows the generation of starting points from different parts of the search space. In calcu-

lations, we choose the step in the grid search for start/end run times to be four hours. In the third step

of the algorithm, the simulation package EPANet is applied to select hydraulically feasible schedules.

All these schedules are starting points for the Hook-Jeeves method, which is applied starting from

each of these points to find a hydraulically feasible schedule with lower objective function value.

Here, the algorithm iterates between the optimization and simulation to check hydraulic feasibility of

schedules generated by the Hooke-Jeeves method. Additionally, the EPANet returns dynamic pres-

sure heads and flow rate for each pump which are used to compute the objective function (5.14).

Search directions in the exploratory phase of the Hooke-Jeeves method are determined by the

decrease or increase of the combined water volume in all storages. If there is a decrease in this volume,

then we allow the Hooke-Jeeves method to only increase the pump(s) operation time. Otherwise, we

allow this method to decrease the pump(s) operation time. The smallest time step in the Hooke-

Jeeves method is 10 minutes. As a result, the Hooke-Jeeves method finds a set of local solutions to

the pumping cost minimization problem. In the last step of the algorithm, we choose the solution

among all local minimizers with the lowest objective function value and accept it as the estimate to

the global minimizer of the pumping cost minimization problem (5.14)-(5.18).

103

In our numerical experiments, we use the following values of parameters:

• T1 = 0, T2 = 7, T3 = 22, T4 = 24;

• NSW = 5;

• D = 10%;

• γ = 100.

The proposed algorithm was implemented in programming language C.

5.3 Test problem and numerical results

To verify the efficiency of the proposed algorithm, it has been applied to solve one test problem

generated using the software package EPANet and one test problem from the literature. In this section,

a description of those test problems and the results obtained applying the proposed algorithm are

presented.

The simulation starts at 00:00 in the morning and ends at 23:59 at night. For hydraulic purposes,

10 minute hydraulic time step intervals are used to achieve a reasonable precision.

5.3.1 Example

EPANet Net3 example network is chosen as the test problem for testing the algorithm. The system

has two water sources, three elevated water tanks, 120 pipes, 94 nodes and 2 pumping stations. The

water distribution system for this test problem is given in Figure 5.3 where the following modifications

were made:

1. Status of Pump 10 was kept open instead of closed from the start of the simulation.

2. All control statements for Pumps 10 and 335 were removed. This means that Pump 10 no

longer supplies water at a given fixed time of the day. On the other hand, Pump 335 is not

controlled by water level of Tank 1 and Link 330 remains closed the whole day.

104

We use the following values of parameters in the simulation:

• Peak tariff R1 = 0.1194 $/kWh;

• Off-peak tariff R2 = 0.0244 $/kWh;

• Wire-to-water efficiency of both pumps: e1 = e2 = 0.75.

Results for this example are presented in Figures 5.3-5.7. The lowest value found for the energy

consumption cost (that is the value of the objective function (5.8)) is $347.66. The schedule rep-

resenting this value is given in Figure 5.4. This schedule corresponds to 4.10% deficit in the total

volume of the water in the network.

The graph in Figure 5.5 shows water inflow and outflow into and from the network, respectively,

as well as the combined water level in all tanks during the scheduling day.

Graphs in Figure 5.6 demonstrate how water volume in tanks changes during the scheduling

period (one day) for the optimal schedule.

Graphs in Figure 5.7 show the water flow from the pumps during one day corresponding to the

optimal schedule.

5.4 Conclusions

In this chapter, a novel algorithm was developed for solving pumping cost minimization problems.

We proposed a new approach for modeling of explicit pump scheduling by considering pump start/end

run times and pump status at the beginning of the scheduling period as decision variables. Such an

approach allows for the significant reduction of the number of binary variables in the pumping cost

minimization problem. This approach also allows for the easy generation of a set of hydraulically

feasible solutions using a hydraulic simulator to cover the whole search space.

An algorithm was developed which involves both optimization and simulation to find the optimal

pumping schedule. The Hooke-Jeeves direct search method is applied for optimization starting from

feasible points generated by the grid search. The EPANet package was used to perform hydraulic

simulations. The performance of the algorithm was evaluated using test problem from the EPANet.

105

Figure 5.2: The algorithm for pumping cost minimization.

106

PUMP 10

PUMP 335

TANK 3

TANK 1

TANK 2

LAKE

RIVER

LEGEND

RESERVOIR

PUMP

TANK

NODE

Figure 5.3: The water distribution system.

pmp3

pmp2

pmp1

 00:00 9:00 17:00 23:59

 00:00 15:58 23:59

00:00 6:30 12:30 23:59
Pump 10

Pump 335

On Off

On Off

 00:00 9:00 17:00 23:59

 00:00 9:00 17:00 23:59

Figure 5.4: The optimal pump schedule.

107

0.00

1000000.00

2000000.00

3000000.00

4000000.00

5000000.00

6000000.00

7000000.00

8000000.00

Water in Tanks (US Gallons) Inflow into Net 3 (U.S Gallons) Outflow from Net 3 (U.S Gallons)

Figure 5.5: Inflow and outflow from the network.

108

fbest = 361.08 and deficit percentage = 3.88 Epanet Calculation 349.89

On/Off [1][1] = 1.00 pbest[1][2] = 0.00 pbest[1][3] = 14.50 pbest[1][4] = 17.00 pbest[1][5] = 24.00

On/Off [2][1] = 1.00 pbest[2][2] = 0.00 pbest[2][3] = 9.00 pbest[2][4] = 17.00 pbest[2][5] = 24.00

fbest = 347.66 and deficit percentage = 4.10 Epanet Calculation 338.76

On/Off [1][1] = 1.00 pbest[1][2] = 0.00 pbest[1][3] = 6.50 pbest[1][4] = 12.50 pbest[1][5] = 24.00

On/Off [2][1] = 1.00 pbest[2][2] = 0.00 pbest[2][3] = 9.00 pbest[2][4] = 17.00 pbest[2][5] = 24.00

Time series water volume graphs for tanks

Time series water level graph for tanks 1, 2 and 3 are shown for the following result

fbest = 347.66 and deficit percentage = 4.10 Epanet Calculation 338.76

On/Off [1][1] = 1.00 pbest[1][2] = 0.00 pbest[1][3] = 6.50 pbest[1][4] = 12.50 pbest[1][5] = 24.00

On/Off [2][1] = 1.00 pbest[2][2] = 0.00 pbest[2][3] = 9.00 pbest[2][4] = 17.00 pbest[2][5] = 24.00

Tank 1

Tank 2

Tank 3

Reference:

Van Zyl, J., Savic, D. A., Walters, G. A. (2004) “Operational Optimization of Water Distribution Systems
Using a Hybrid Genetic Algorithm.” Journal of Water Resource Planning and Management,
130(2), 160-170

Rossman, L. A. (2000). Epanet 2 users manual, U.S. Environmental Protection Agency, Cincinnati.

Tank 2

Tank 3

Reference:

Van Zyl, J., Savic, D. A., Walters, G. A. (2004) “Operational Optimization of Water Distribution Systems
Using a Hybrid Genetic Algorithm.” Journal of Water Resource Planning and Management,
130(2), 160-170

Rossman, L. A. (2000). Epanet 2 users manual, U.S. Environmental Protection Agency, Cincinnati.

Figure 5.6: Time series water volume graphs for Tanks 1, 2 and 3.

109

Pump 335

Demand

General Default Demand Pattern

 Pattern 1 1.34 1.94 1.46 1.44 .76 .92

 Pattern 1 .85 1.07 .96 1.1 1.08 1.19

Pattern 1 1.16 1.08 .96 .83 .79 .74

Pattern 1 .64 .64 .85 .96 1.24 1.67

Demand Pattern for Node 123

Pump 335

Demand

General Default Demand Pattern

 Pattern 1 1.34 1.94 1.46 1.44 .76 .92

 Pattern 1 .85 1.07 .96 1.1 1.08 1.19

Pattern 1 1.16 1.08 .96 .83 .79 .74

Pattern 1 .64 .64 .85 .96 1.24 1.67

Demand Pattern for Node 123

Figure 5.7: Time series water flow graphs for Pumps 10 and 335.

110

Chapter 6

Conclusion and recommendations for fu-

ture research

This thesis deals with the problem of solving nonsmooth and in particular, nonconvex optimiza-

tion problems. More specifically, our aim is to develop new algorithms for solving minimax and more

general nonsmooth nonconvex optimization problems. In nonsmooth optimization there are efficient

algorithms for solving convex problems however the development of numerical methods for solving

nonconvex problems still remains a crucial research topic.

There are several reasons why investigating into nonsmooth nonconvex optimization is important.

First, smooth optimization algorithms cannot be applied to solve such problems due to the absence of

any convergence results. Second, algorithms for convex nonsmooth optimization are heavily based on

the convex models and they are not always efficient for nonconvex problems. Third, the convergence

of nonsmooth optimization algorithms which are not based on convex models, such as the subgradient

method, can be proved only under convexity assumption.

In this thesis, we have developed two new algorithms for solving nonsmooth nonconvex problems.

The first algorithm is developed for solving finite minimax problems, whereas the second algorithm

solves general nonsmooth (nonconvex) optimization problems. Both algorithms are based on the use

of the hyperbolic smoothing technique. In addition, we studied their convergence and present results

of numerical experiments with well-known nonsmooth optimization test problems. The comparison

of the proposed methods with other methods is demonstrated using results of numerical experiments.

111

Our contribution

As previously stated, the design of algorithms for solving nonsmooth optimization problems

which are applicable for nonconvex problems is an important task. In order to do that, we designed

two methods which are based on the hyperbolic smoothing technique. First, we developed and stud-

ied in detail the hyperbolic smoothing method for solving the finite minimax problems. We proved

its convergence. The proposed algorithm is easy to implement. It contains simple procedures for

finding descent directions and step lengths. We presented results of numerical experiments using

well-known nonsmooth optimization test problems including nonsmooth, nonconvex problems. In

the second method we designed new nonsmooth optimization algorithms for solving general nons-

mooth nonconvex problems by extending the hyperbolic smoothing technique, and using numerical

experiments, we demonstrated its performance for nonsmooth nonconvex problems. Finally, we ap-

plied them for solving pumping cost minimization problems, indicating their capability in dealing

with real world problems and its ability of finding an optimal pump schedule. These two proposed

algorithms are explained shortly as follows:

1. Hyperbolic smoothing technique and minimax problems

Despite of some applications, the hyperbolic smoothing technique has not been studied in detail

until now. In this thesis we study this smoothing technique in more detail. In order to apply

the hyperbolic smoothing to the finite maximum functions they are represented as a sum of

the maximum of two functions. We study the relationship between the set of stationary points

of the smooth function and that of the original function. The new function is approximated

using hyperbolic smoothing functions and differential properties of the approximating function

are studied. In short, it is shown that smooth optimization solvers can be used to minimize

the approximating function. This algorithm is as simple to implement, and at the same time

it is numerically efficient. On the other hand, we implement the algorithm in GAMS and

compare it with GAMS solvers using results of numerical experiments. We also compared

112

the algorithm based on the hyperbolic smoothing functions with the algorithm based on the

exponential smoothing function and also with the algorithm based on the NLP reformulation.

The results demonstrated that algorithm based on smoothing techniques is robust and most of

the time can find feasible solutions, which is not the case for the algorithms based on the NLP

reformulation.

2. Solving nonsmooth nonsmooth nonconvex optimization problems

We developed a new algorithm for solving general nonsmooth nonconvex optimization prob-

lems. The proposed method allows one to use smooth optimization solvers for finding descent

directions. This makes it possible to use powerful smooth optimization algorithms for solving

general nonsmooth optimization problems. We presented results of numerical experiments us-

ing nonsmooth optimization test problems. The proposed algorithm was implemented in both

Fortran and GAMS to compare it with other nonsmooth optimization techniques along with

nonsmooth optimization solvers in GAMS. Results show that the new algorithm is robust and

it significantly outperforms the DNLP solver in GAMS.

3. Minimization of pumping costs in water distribution systems

We proposed a new method for modeling of pump scheduling to minimize energy usage. This

approach is different from others where binary integer variables for each hour are usually used,

which is regarded as very unrealistic. The problem is formulated as a mixed integer nonlinear

programming problem and a new algorithm is developed for its solution. This algorithm relies

on the combination of the grid search with the Hooke-Jeeves pattern search method and hyper-

bolic smoothing technique. The performance of the algorithm is evaluated using the hydraulic

simulation model EPANet.

Future work

1. Constrained nonsmooth optimization

Our focus in this thesis was on unconstrained optimization problems. Though, we might con-

113

vert the constrained optimization problems in to unconstrained problems, this needs setting

some parameters which can make the problem difficult. In this connection, it might be useful

to do additional research to extend the proposed methods into constrained problems.

2. Large scale nonsmooth optimization problems

We successfully tested the algorithms on some large scale nonsmooth problems. However

algorithms based on smoothing techniques for solving large scale problems have never been

studied extensively. It is worthwhile to study such algorithms.

114

Bibliography

[1] Anstreicher, K.M., and Wolsey, L.A., Two well-known properties of subgradient optimization,

Mathematical Programming, 120(1), 2009, 213–220. (document), 2.1

[2] Applegate, D., Cook, W., Dash, S., and Rohe, A., Solution of a minmax vehicle routing prob-

lem, INFORMS Journal on Computing, 14(2), 2002, 132–143. 2.4

[3] Arkin, E.M., Hassin, R., and Levin, A., Approximations for minimum and minmax vehicle

routing problems, J. Algorithms, 59(1), 2006, 1–18. 2.4

[4] Bagirov, A.M., and Ugon, J., Supervised data classification via max-min separability, Contin-

uous Optimization, 35(4), 2005, 175–207. (document)

[5] Bagirov, A.M., Karasozen, B., and Sezer, M., Discrete gradient method: Derivative-free

method for nonsmooth optimization, Journal of Optimization Theory and Applications, 137(2),

2008, 317–334. (document), 2.3.1, 2.4, 4.1, 4.6

[6] Bagirov, A., and Ganjehlou, A.N., An approximate subgradient algorithm for unconstrained

nonsmooth, nonconvex optimization, Mathematical Methods of Operations Research, 67(2),

2008, 187–206. 4.1

[7] Bagirov, A.M., and Ganjehlou, A.N., A quasisecant method for minimizing nonsmooth func-

tions, Optimization Methods and Software, 25(1), 2010, 3–18. (document), 2.3.1, 2.3.4, 2.4,

4.1, 4.2, 4.6

[8] Bagirov, A.M., Al Nuiamat, A., and Sultanova, N., Hyperbolic smoothing function method for

minimax problems, Optimization, 62(6), 2013, 759–782. 4.3, 4.3, 4.3, 4.3

115

[9] Bagirov, A. M., Jin, L., Karmitsa, N., Al Nuaimat, A., and Sultanova, N., Subgradient Method

for Nonconvex Nonsmooth Optimization, Journal of Optimization Theory and Applications,

157(2), 2013, 416–435. (document)

[10] Banichuk, N.V., Minimax approach to structural optimization problems. Journal of Optimiza-

tion Theory and Applications, 20(1), 1976, 111–127. 2.4

[11] Baumol, W. J., Economic theory and operations analysis, 1977. (document)

[12] Bazaraa, M.S, and Sherali, H.D., On the Choice of Step Size in Subgradient Optimization,

European Journal of Operational Research, 7(4), 1981, 380–388. 2.1

[13] Beltran, C., and Heredia, F.J., An effective line search for the subgradient method, Journal of

optimization theory and applications, 125(1), 2005, 1–18. (document), 2.1

[14] Ben-Israel, A., A Newton-Raphson method for the solution of systems of equations, Journal

of Mathematical Analysisand Application, 15(2), 1966, 243–253.

[15] Ben-Tal, A., and Teboulle, M., A smoothing technique for nondifferentiable optimization prob-

lems, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1989, 1–11. (document), 2.4,

2.4.1

[16] Berman, O., Drezner, Z., Wang, R.M., and Wesolowsky, G.O., The minimax and maximin

location problems on a network with uniform distributed weights, IIE Trans, 35(11), 2003,

1017–1025. 2.4

[17] Bertsekas, D.P., Nonlinear Programming, Athena Scientific, New York, 1999. (document), 2.1

[18] Biscos, C., Mulholland, M., Le Lann, M.V., Buckley, C.A., and Brouckaert, C.J., Optimal

operation of water distribution networks by predictive control using MINLP, Water Sa, 29(4),

2004, 393–404. 2.5

[19] Bugeda, G., JA-Dyesidyeri, J.P., and Schoenauer, M., Optimal pump scheduling for water

supply using genetic algorithms, Proceedings of the International Congress on Evolutionary

116

Methods for Design, Optimization and Control with Applications to Industrial Problems: EU-

ROGEN 2003, Barcelona, 2003. 2.5

[20] Byrd, R.H., Nocedal, J., and Schnabel, R.B., Representations of quasi-Newton matrices and

their use in limited memory methods, Mathematical Programming, 63(1-3), 1994, 129–156.

2.3.3

[21] Chow, E., and Willsky, A., Analytical redundancy and the design of robust failure detection

systems. Automatic Control, IEEE Transactions on, 29(7), 1984, 603–614. (document)

[22] Chen, X., A verification method for solutions of nonsmooth equations, Computing, 58, 1997,

281–294.

[23] Cheney, E.W., and Goldstein, A.A., Newton’s method for convex programming and Tcheby

cheff approximation, J.Numerische Mathematik, 1(1), 1959, 253–268. 2.2

[24] Cherkaev, E., and Cherkaev, A., Minimax optimization problem of structural design, Comput.

Struct, 86, 2008, 1426–1435 2.4

[25] Clarke, F. H., Optimization and Nonsmooth Analysis, New York, John Wiley, 5, 1983. 1, 1.2,

6, 5

[26] COHEN, D., SHAMIR, U., and SINAI, G., Optimal operation of multi-quality water supply

systems-II: The Q-H model, Engineering Optimization, 32(6), 2000, 687–720. 2.5

[27] Dandy, G.C., Simpson, A.R., and Murphy, L.J., An improved genetic algorithm for pipe net-

work optimization, Water Resour. Res., 32(2), 1996, 449–458. 2.5

[28] Demyanov, V.F., and Malozemov, V.N., Introduction to minimax, Wiley, New York, 1974.

(document), 2.4

[29] Demyanov, V.F., and Rubinov, A.M., Constructive Nonsmooth Analysis. Peter Lang, Frankfurt

am Main, 1995. 4.1

117

[30] Dennis, J.E. and Schnabel, R.B., Numerical methods for unconstrained optimization and non-

linear equations, Society for Industrial Mathematics, 1996.

[31] Dolan, E.D., and More, J.J., Benchmarking optimization software with performance profiles,

Mathematical Programming, 91, 2002, 201–213. 3.4, 4.6

[32] Drezner, Z., Wesolowsky, G.O., Single facility lp-distance minimax location, SIAM J. Alg.

Disc. Meth, 1, 1980, 315–321. 2.4

[33] Du, D.Z., and Pardalos, P.M. (eds), Minimax and Applications, Kluwer Academic Publishers,

Dordrecht, 1995. (document), 2.4

[34] Feng, Y., Hongwei, L., Shuisheng, Z., and Sanyang, L., A smoothing trust-region Newton-CG

method for minimax problem, Applied Mathematics and Computation, 199, 2008, 581–589.

2.4, 2

[35] Fuduli, A., Gaudioso, M., and Giallombardo, G., A DC piecewise affine model and a bundling

technique in nonconvex nonsmooth minimization, Optimization Methods and Software, 19(1),

2004, 89–102. 2.3.1

[36] Fuduli, A., Gaudioso, M., and Giallombardo, G., Minimizing nonconvex nonsmooth functions

via cutting planes and proximity control, SIAM J. on Optimization, 14(3), 2004, 743–756. 2.3.1

[37] Fukushima, M., and Qi, L., A globally and superlinearly convergent algorithm for nonsmooth

convex minimization, SIAM Journal on Optimization, 6(4), 1996, 1106–1120. (document)

[38] Fumero, F., A Modified Subgradient Algorithm for Lagrangean Relaxation, Computers and

Operations Research, 28(1), 2001,33–52. 2.1

[39] GAMS: The Solver Manuals, GAMS Development Corporation, Washington, D.C., 2004. 3.4,

4.6.3

118

[40] Haarala, N., Large-Scale Nonsmooth Optimization: Variable Metric Bundle Method with Lim-

ited Memory. PhD thesis, University of Jyväskylä, Department of Mathematical Information

Technology, 2004. (document), 2.3.3

[41] Haarala, N., Miettinen, K., and Mäkelä, M.M., New limited memory bundle method for large-

scale nonsmooth optimization, Optimization Methods and Software, 19(6), 2004, 673–692.

(document), 2.3.3

[42] Haarala, N., Miettinen, K., and Mäkelä, M.M., Globally convergent limited memorey bundle

method for large-scale nonsmooth optimization, Mathematical Programming, 109(1), 2007,

181–205. (document), 2.3.3

[43] Hare, W., and Sagastizábal, C., A Redistributed Proximal Bundle Method for Nonconvex Op-

timization, SIAM J. on Optimization, 20(5), 2010, 2442–2473. 2.3.1

[44] Hiriart-Urruty, J.B., and Lemaréchal, C., Convex Analysis and Minimization Algorithms,

Springer Verlag, Heidelberg, Vol. 1 and 2, 1993. (document), 2.4

[45] Karmitsa, N., Bagirov, A., and Mäkelä, M. M., Comparing different nonsmooth minimization

methods and software Optimization Methods and Software, 27(1), 2012, 131–153. (document)

[46] Karmitsa, N.M.S, Mäkelä, M.M., and Ali, M.M., Limited memory interior point bundle

method for large inequality constrained nonsmooth minimization, Applied Mathematics and

Computation, 198(1), 2008, 382-400. (document)

[47] Kelley, Jr, J.E., The cutting-plane method for solving convex programs, Journal of the Society

for Industrial and Applied Mathematics, 8(4), 1960, 703–712. 2.2

[48] Kiwiel, K.C., Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math-

ematics, Springer-Verlag, Berlin, 1133, 1985. (document), 2.3.1, 2.3.1, 2.4

[49] Korkmaz, S., Ledoux, E., and Önder, H., Application of the coupled model to the Somme river

basin, Journal of Hydrology, 366, 2009, 21–34. 2.5

119

[50] Kort, B.W., and Bertsekas, D.P., A new penalty function method for constrained minimization,

In Decision and Control, 11th Symposium on Adaptive Processes. Proceedings of the 1972

IEEE Conference on, 11, 1972, 162–166. (document)

[51] Kropat, E., Weber, G.W., and Ruckmann, J.J., Regression analysis for clusters in gene-

environment networks based on ellipsoidal calculus and optimization, Dynamics of Contin-

uous, Discrete and Impulsive Systems Series B, 17(5), 2010, 639–657.

[52] Lemaréchal, C., Combining Kelley’s and conjugate gradient methods, 9th International sym-

posium on mathematical programming, (Budapest, Hungary, 1976). 2.3.1

[53] Liberti, L., and Kucherenko, S., Comparison of deterministic and stochastic approaches to

global optimization, International Transactions in Operational Research, 12(3), 2005, 263–

285. 2

[54] Lopez-Ibanez, M., Devi Prasad, T., and Paechter, B., Ant colony optimization for optimal

control of pumps in water distribution networks, Journal of Water Resources, Planning and

Management, ASCE, 134(4), 2008, 337–346. 2.5, 5.1, 5.1.1

[55] Luenerger, D. C., Linear and Nonlinear Programming, 2nd Edition, Addition Wesley, Reading,

MA, 1989. 2.1

[56] Lukśan, L., and Vlcek, J., A bundle-Newton method for nonsmooth unconstrained minimiza-

tion, Mathematical Programming: Series A and B, 83(1), 1998,373–391. 2.3.2, 4.6

[57] Lukśan, L., and Vlćek, J., Globally Convergent Variable Metric Method for Convex Nons-

mooth Unconstrained Minimization, Journal of Optimization Theory and Applications, 102(3),

1999, 593–613. 2.3.3, 4.6

[58] Lukśan, L., and Vlćek, J., Test problems for nonsmooth unconstrained and linearly constrained

optimization, Technical report No. 798, Institute of Computer Science, Academy of Sciences of

the Czech Republic, 2000. 3.4, 3.4.1, 4.6, 4.6.3

120

[59] Lukśan, L., and Vlćek, J., Algorithm 811: NDA: Algorithms for nondifferentiable optimiza-

tion, ACM Transaction on Math. Software, 27(2), 2001, 193–213. 4.6

[60] Luss, H., Minimax resource-allocation problems: Optimization and parametric analysis, Eu-

ropean Journal of Operational Research, 60(1), 1992, 76–86. 2.4

[61] Mäkelä, M.M., and Neittaanmaki, P., Nonsmooth optimization: analysis and algorithms with

applications to optimal control, World Scientific, Singapore, 1992. (document), 3, 2.3.1, 2.4,

4.2, 4.3, 4.6

[62] Mäkelä, M.M., Survey of Bundle Methods for Nonsmooth Optimization, Optimization Meth-

ods and Software, Optimization Methods and Software, 17(1), 2002, 1–29. 2.3.1, 2.3.1

[63] Martinez, J., and Qi, L., Inexact Newton Methods for Solving Non-smooth Equations, Journal

of Computational and Applied Mathematics, 60(1), 1995, 127–145.

[64] Mifflin, R., An algorithm for constrained optimisation with semismooth functions, Mathemat-

ics of Operations Research, 2(2), 1977, 191–207. (document)

[65] Mifflin, R., Sun, D., and Qi, L., Quasi-Newton bundle-type methods for nondifferentiable

convex optimization, SIAM J. on Optimization, 8(2), 1998, 583–603. (document), 2.3.1

[66] Moré,J.J., Garbow, B. S., and K. E. Hillstrom, Testing unconstrained optimization software,

ACM Transactions on Mathematical Software (TOMS), 7(1), 1981, 17–41.

[67] Nedić, A., and Ozdaglar, A., Subgradient methods for saddle-point problems, J. Optim. Theory

Appl., 142(1), 2009, 205–228. (document), 2.1

[68] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A., Robust stochastic approximation ap-

proach to stochastic programming, SIAM J. on Optimization, 19(4), 2009, 1574–1609. (docu-

ment), 2.1

[69] Nesterov, Y., Primal-dual subgradient methods for convex problems. Mathematical Program-

ming, 120(1), 2009, 221–259. (document), 2.1

121

[70] Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., Karamouz, M.,

Minsker, B., Ostfeld, A., Singh, A., and Zechman, E., State of the Art for genetic algorithms

and beyond in water resources planning and management, Journal of Water Resources, Plan-

ning and Management, ASCE, 136(4), 2010, 412–432. 2.5

[71] Nitivattananon, V., Sadowski, E.C., and Quimpo, R.G., Optimization of water supply sys-

tem operation, Journal of Water Resources, Planning and Management, ASCE, Septem-

ber/October, 1996, 374–384. 2.5

[72] Nie, P.Y., An SQP approach with line search for a system of nonlinear equations, Mathematical

and computer modelling, 43, 2006, 368–373.

[73] Nie, P.Y., A derivative-free method for the system of nonlinear equations, Nonlinear analysis:

real world applications, 7, 2006, 378–384.

[74] Nocedal, J., Updating quasi-Newton matrices with limited storage, Mathematics of computa-

tion, 35(151), 1980, 773–782. 2.3.3

[75] Ormbsee, L.E., and Lansey, K.E., Optimal control of water supply pumping systems, Journal

of Water Resources, Planning and Management, ASCE, 120(2), 1994, 237–252. 2.5

[76] Ostfeld, A., and Shamir, U., Optimal operation of multiquality networks. I: Steady-state con-

ditions, Journal of Water Resources Planning and Management, 119(6), 1993, 645–662. 2.5

[77] Ostfeld, A., and Shamir, U., Optimal Operation of Multiquality Networks. II: Unsteady Con-

ditions, Journal of Water Resources Planning and Management, 119(6), 1993, 663–684. 2.5

[78] Pang, J.S., and Yu, C.S., A minmax resource-allocation problem with substitutions, European

Journal of Operational Research, 41(2), 1989, 218–223. 2.4

[79] Pasha, M.F.K., and Lansey, K., Optimal pump scheduling by linear programming, In: Proceed-

ings of World Environmental and Water Resources Congress, Kanzas city, May 17-21, 2009,

395–404. 2.5

122

[80] Pezeshk, S., and Helweg, O.J., Adaptive search optimization in reducing pump operating costs,

Journal of Water Resources, Planning and Management, ASCE, January/February, 1996, 57–

63. 2.5

[81] Polak, E., Royset, J.O., and Womersley, R.S., Algorithms with adaptive smoothing for finite

minimax problems, Journal of Optimization Theory and Applications, 119(3), 2003, 459–484.

(document), 2.4, 2.4.1

[82] Polyak, B.T., A General Method of Solving Extremum Problems, Soviet Mathematics, 8(3),

1967,593–597. 2.1

[83] Polyak, B.T., Introduction to Optimization, Optimization Software Inc., New York, 1987. (doc-

ument), 2.1

[84] Rossman, L.A., EPANET, Risk Reduction Engineering Laboratory, U.S. Environmental Pro-

tection Agency, Cincinnati, Ohio, 2003. [www.epa.gov/ORD/NRMRL/wswrd/epanet.html] 5,

5.2

[85] Sakarya, A.B.A., and Mays, L.W., Optimal operation of water distribution pumps consider-

ing water quality, em Journal of Water Resources, Planning and Management, ASCE, 126(4),

2000, 210–220. 2.5

[86] Savic, D.A., Walters, G.A., and Schwab, M., Multiobjective genetic algorithms for pump

scheduling in water supply, Evolutionary Computing, AISB, International Workshop, Selected

papers, Springer-Verlag, 1997. 2.5

[87] Schwefel, H.P., Numerical optimisation of computer models, Wiley, Chichester, United King-

dom, 1981. 5.2

[88] Shor, N., Minimization methods for non-differentiable functions, Springer, 1985. (document),

2.1, 2.1

123

[89] Simpson, T.W., Poplinski, J.D., Koch, P. N., and Allen, J.K., Metamodels for computer-based

engineering design: survey and recommendations, Engineering with computers, 17(2), 2001,

129–150. (document)

[90] Tsoukalas, A., Parpas, P., and Rustem, B., A smoothing algorithm for finite minmaxmin prob-

lems, Optimization Letters, 3, 2009, 49–62. 2.4

[91] Van Dijk, M., Van Vuuren, S.J., and Van Zyl, J.E., Optimising water distribution systems using

a weighted penalty in a genetic algorithm, Water SA, 34(5), 2008, 537–548. 2.5

[92] Van Zyl, J.E., Savic, D.A., and Walters, G.A., Operational optimization of water distribution

systems using a hybrid genetic algorithm, Journal of Water Resources, Planning and Manage-

ment, ASCE, 130(2), 2004, 160–170. 2.5

[93] Vazquez, F.G., Gunzel, H., and Jongen, H.Th., On logarithmic smoothing of the maximum

function, Annals of Operations Research, 101, 2001, 209–220. 2.4

[94] Vlček, J., and Lukśan, L., Globally convergent variable metric method for nonconvex non-

differentiable unconstrained minimization, Journal of Optimization Theory and Applications,

111(2), 2001,407–430. 2.3.2, 2.3.3

[95] Weber, G.W., Uǵur, Ö., Taylan, P., and Tezel, A., On optimization, dynamics and uncertainty: a

tutorial for gene-environment networks, Discrete Applied Mathematics, 157(10), 2009, 2494–

2513.

[96] Wolfe, P.H., A method of conjugate subgradients of minimizing nondifferentiable convex func-

tions, Mathematical Programming Study, 3, 1975, 145–173. (document)

[97] Xavier, A.E., Penalizaćao hiperbólica, I Congresso Latino-Americano de Pesquisa Operacional

e Engenharia de Sistemas, 8 a 11 de Novembro, Rio de Janeiro, Brasil, 1982, 468–482. (doc-

ument), 2.4.2

124

[98] Xavier, A.E, and Fernandes, A.A., Optimal Covering of Plane Domains by Circles Via Hyper-

bolic Smoothing, Journal of Global Optimization, 31(3), 2005, 493-504. (document), 2.4.2,

4.3

[99] Xavier, A.E., The hyperbolic smoothing clustering method, Pattern Recognition, 43, 2010,

731–737. (document), 2.4.2, 4.3

[100] Xiao, Y., and Yu, B., A truncated aggregate smoothing Newton method for minimax problems,

Applied Mathematics and Computation, 216, 2010, 1868–1879. 2.4

[101] Xu, H., and Chang, X.W., Approximate Newton Methods for Nonsmooth Equations, Journal

of Optimization Theory and Applications, 93(2), 1997, 373–394.

[102] Xu, S., Smoothing method for minimax problems, Computational Optimization and Applica-

tions, 20(3), 2001, 267–279. 2.4

[103] Zang, I., A smoothing-out technique for min-max optimization, Mathematical Programming,

19, 1980, 61–77. 2.4

[104] Zessler, U., and Shamir, U., Optimal operation of water distribution systems, Journal of Water

Resources Planning and Management, 115(6), 1989, 735–752. 2.5

125

Appendix A

Test problems for minimax optimization

Problem 2.1 CB2

F (x) = max
1≤i≤3

fi(x),

f1(x) = x2
1 + x4

2,

f2(x) = (2− x1)2 + (2− x2)2,

f3(x) = 2 exp(x2 − x1),

x̄1 = 2, x̄2 = 2.

Problem 2.2 WF

F (x) = max
1≤i≤3

fi(x),

f1(x) =
1

2
(x1 +

10x1

x1 + 0.1
+ 2x2

2),

f2(x) =
1

2
(−x1 +

10x1

x1 + 0.1
+ 2x2

2),

f3(x) =
1

2
(x1 −

10x1

x1 + 0.1
+ 2x2

2),

x̄1 = 3, x̄2 = 1.

126

Problem 2.3 SPIRAL

F (x) = max(f1(x), f2(x)),

f1(x) = (x1 −
√
x2

1 + x2
2 cos

√
x2

1 + x2
2)2 + 0.005(x2

1 + x2
2),

f2(x) = (x2 −
√
x2

1 + x2
2 sin

√
x2

1 + x2
2)2 + 0.005(x2

1 + x2
2),

x̄1 = 1.41831, x̄2 = − 4.79462.

Problem 2.4 EVD52

F (x) = max
1≤i≤6

fi(x),

f1(x) = x2
1 + x2

2 + x2
3 − 1,

f2(x) = x2
1 + x2

2 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 + 1,

f5(x) = 2x3
1 + 6x2

2 + 2(5x3 − x1 + 1)2,

f6(x) = x2
1 − 9x3,

x̄i = 1, i = 1, 2, 3.

problem 2.5 Rosen-Suzuki

F (x) = max
1≤i≤4

fi(x),

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10(x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8),

f3(x) = f1(x) + 10(x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10),

f4(x) = f1(x) + 10(2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5),

x̄i = 0, i = 1, 2, 3, 4.

127

Problem 2.6 Polak 6

F (x) = max
1≤i≤4

fi(x),

f1(x) = (x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + 2x2
3

+x2
4 − 5(x1 − (x4 + 1)4)− 5(x2 − (x1 − (x4 + 1)4)4)− 21x3 + 7x4,

f2(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+x2
3 + x2

4 + (x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4) + x3 − x4 − 8),

f3(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + 2(x2 − (x1 − (x4 + 1)4)4)2

+x2
3 + 2x2

4 − (x1 − (x4 + 1)4)− x4 − 10),

f4(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+x2
3 + 2(x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)− x4 − 5),

x̄i = 0, i = 1, 2, 3, 4.

Problem 2.7 PBC3

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) =
x3

x2
exp(−tix1) sin(tix2)− yi,

yi =
3

20
e−ti +

1

52
e−5ti − 1

65
e−2ti(3 sin 2ti + 11 cos 2ti),

ti = 10(i− 1)/20, 1 ≤ i ≤ 21,

x̄i = 1, 1 ≤ i ≤ 3.

Problem 2.9 Kowalik-Osborne

F (x) = max
1≤i≤11

|fi(x)|,

fi(x) =
x1(u2

i + x2ui)

u2
i + x3ui + x4

− yi.

128

i yi ui

1 0.1957 4.0000

2 0.1947 2.0000

3 0.1735 1.0000

4 0.1600 0.5000

5 0.0844 0.2500

6 0.0627 0.1670

7 0.0456 0.0125

8 0.0342 0.1000

9 0.0323 0.0833

10 0.0235 0.0714

11 0.0246 0.0625

x̄1 = 0.250, x̄2 = 0.390, x̄3 = 0.415, x̄4 = 0.390.

Problem 2.10 Davidson 2

F (x) = max
1≤i≤20

|fi(x)|,

fi(x) = (x1 + x2ti − exp(ti))
2 + (x3 + x4 sin(ti)− cos(ti))

2.

ti = 0.2i, 1 ≤ i ≤ 20,

x̄1 = 25, x̄2 = 5, x̄3 = −5, x̄4 = −1.

Problem 2.11 OET5

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) = x4 − (x1t
2
i + x2ti + x3)2 −

√
ti.

ti = 0.25 + 0.75(i− 1)/20, 1 ≤ i ≤ 21,

x̄i = 1.0, 1 ≤ i ≤ 4.

129

Problem 2.12 OET6

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) = x1e
x3ti + x2e

x4ti − 1

1 + ti
,

ti = −0.5 + (i− 1)/20, 1 ≤ i ≤ 21,

x̄1 = 1.0, x̄2 = 1.0, x̄3 = −3.0, x̄4 = −1.0.

Problem 2.14 EXP

F (x) = max
1≤i≤21

fi(x),

fi(x) =
x1 + x2ti

1 + x3ti + x4t2i + x5t3i
− exp(ti),

ti = −1 + (i− 1)/10, 1 ≤ i ≤ 21,

x̄1 = 0.5, x̄2 = 0, x̄3 = 0, x̄4 = 0, x̄5 = 0.

Problem 2.15 PBC1

F (x) = max
1≤i≤30

|fi(x)|,

fi(x) =
x1 + x2ti + x3t

2
i

1 + x4ti + x5t2i
−
√

(8ti − 1)2 + 1 arctan(8ti)

8ti
,

ti = −1 + 2(i− 1)/29, 1 ≤ i ≤ 30,

x̄1 = 0, x̄2 = −1, x̄3 = 10, x̄4 = 1, x̄5 = 10.

130

Problem 2.16 EVD61

F (x) = max
1≤i≤51

|fi(x)|,

fi(x) = x1 exp(−x2ti) cos(x3ti + x4) + x5 exp(−x6ti)− yi,

yi = 0.5e−ti − e−2ti + 0.5e−3ti + 1.5e−1.5ti sin 7ti + e−2.5ti sin 5ti,

ti = 0.1(i− 1), 1 ≤ i ≤ 51,

x̄1 = 2, x̄2 = 2, x̄3 = 7,

x̄4 = 0, x̄5 = −2, x̄6 = 1

Problem 2.18 Filter

F (x) = max
1≤i≤41

|fi(x)|,

fi(x) =

(
(x1 + (1 + x2) cosϑi)

2 + ((1− x2) sinϑi)
2

(x3 + (1 + x4) cosϑi)2 + ((1− x4) sinϑi)2

) 1
2

·(
(x5 + (1 + x6) cosϑi)

2 + ((1− x6) sinϑi)
2

(x7 + (1 + x8) cosϑi)2 + ((1− x8) sinϑi)2

) 1
2

x9 − yi,

yi = |1− 2ti|, ϑi = πti

ti = 0.01(i− 1), 1 ≤ i ≤ 6,

ti = 0.07 + 0.03(i− 7), 7 ≤ i ≤ 20, t21 = 0.5,

ti = 0.54 + 0.03(i− 22), 22 ≤ i ≤ 35,

ti = 0.95 + 0.01(i− 36), 36 ≤ i ≤ 41,

x̄1 = 0.00, x̄2 = 1.00, x̄3 = 0.00, x̄4 = −0.15,

x̄5 = 0.00, x̄6 = −0.68, x̄7 = 0.00, x̄8 = −0.72,

x̄9 = 0.37.

131

Problem 2.19 Wong 1

F (x) = max
1≤i≤5

fi(x),

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7

−4x6x7 − 10x6 − 8x7,

f2(x) = f1(x) + 10(2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127),

f3(x) = f1(x) + 10(7x1 + 3x2 + 10x2
3 + x4 − x5 − 282),

f4(x) = f1(x) + 10(23x1 + x2
2 + 6x2

6 − 8x7 − 196),

f5(x) = f1(x) + 10(4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7),

x̄1 = 1, x̄2 = 2, x̄3 = 0, x̄4 = 4, x̄5 = 0, x̄6 = 1, x̄7 = 1.

132

Problem 2.20 Wong 2

F (x) = max
1≤i≤9

fi(x),

f1(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 +

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) = f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) = f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(4x1 + 5x2 − 3x7 + 9x8 − 105),

f7(x) = f1(x) + 10(10x1 − 8x2 − 17x7 + 2x8),

f8(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f9(x) = f1(x) + 10(−8x1 + 2x2 + 5x9 − 2x10 − 12),

x̄1 = 2, x̄2 = 3, x̄3 = 5, x̄4 = 5, x̄5 = 1, x̄6 = 2,

x̄7 = 7, x̄8 = 3, x̄9 = 6, x̄10 = 10.

133

Problem 2.21 Wong 3

F (x) = max
1≤i≤18

fi(x),

f1(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + (x11 − 9)2

+10(x12 − 1)2 + 5(x13 − 7)2 + 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16 + (x17 − 2)2

+13(x18 − 2)2 + (x19 − 3)2 + x2
20 + 95,

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) = f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) = f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(4x1 + 5x2 − 3x7 + 9x8 − 105),

f7(x) = f1(x) + 10(10x1 − 8x2 − 17x7 + 2x8),

f8(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f9(x) = f1(x) + 10(−8x1 + 2x2 + 5x9 − 2x10 − 12),

f10(x) = f1(x) + 10(x1 + x2 + 4x11 − 21x12),

f11(x) = f1(x) + 10(x2
1 + 5x11− 8x12 − 28),

f12(x) = f1(x) + 10(4x1 + 9x2 + 5x2
13 − 9x14 − 87),

f13(x) = f1(x) + 10(3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10),

f14(x) = f1(x) + 10(14x2
1 + 35x15 − 79x16 − 92),

f15(x) = f1(x) + 10(15x2
2 + 11x15 − 61x16 − 54),

f16(x) = f1(x) + 10(5x2
1 + 2x2 + 9x4

17 − x18 − 68),

f17(x) = f1(x) + 10(x2
1 − x2 + 19x19 − 20x20 + 19),

f18(x) = f1(x) + 10(7x2
1 + 5x2

2 + x2
19 − 30x20),

x̄1 = 2, x̄2 = 3, x̄3 = 5, x̄4 = 5, x̄5 = 1, x̄6 = 2, x̄7 = 7,

x̄8 = 3, x̄9 = 6, x̄10 = 10, x̄11 = 2, x̄12 = 2, x̄13 = 6, x̄14 = 15,

x̄15 = 1, x̄16 = 2, x̄17 = 1, x̄18 = 2, x̄19 = 1, x̄20 = 3.

134

Problem 2.22 Polak 2

F (x) = max{f(x+ 2e2), f(x− 2e2)},

f(x) = exp(10−8x2
1 + x2

2 + x2
3 + 4x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9 + x2

10),

e2 = second column of the unit matrix,

x̄1 = 100, x̄i = 0.1, 2 ≤ i ≤ 10.

Problem 2.23 Polak 3

F (x) = max
1≤i≤10

fi(x),

fi(x) =
10∑
j=0

1

i+ j
exp

(
(xj+1 − sin(i− 1 + 2j))2

)
,

x̄i = 1, 1 ≤ i ≤ 11.

Problem 2.24 Watson

F (x) = max
1≤i≤31

|fi(x)|,

f1(x) = x1,

f2(x) = x2 − x2
1 − 1,

fi(x) =
n∑
j=2

(j − 1)xj

(
i− 2

29

)j−2

−

 n∑
j=1

xj

(
i− 2

29

)j−1
2

, 3 ≤ j ≤ 31

x̄i = 0, 1 ≤ i ≤ 20.

135

Problem 2.25 Osborne 2

F (x) = max
1≤i≤65

|fi(x)|,

fi(x) = yi − x1 exp(−x5ti)− x2 exp(−x6(ti − x9)2)− x3 exp(−x7(ti − x10)2)−

x4 exp(−x8(ti − x11)2),

ti = 0.1(i− 1), 1 ≤ i ≤ 65.

136

i yi i yi i yi

1 1.366 23 0.694 45 0.672

2 1.191 24 0.644 46 0.708

3 1.112 25 0.624 47 0.633

4 1.013 26 0.661 48 0.668

5 0.991 27 0.612 49 0.645

6 0.885 28 0.558 50 0.632

7 0.831 29 0.533 51 0.591

8 0.847 30 0.495 52 0.559

9 0.786 31 0.500 53 0.597

10 0.725 32 0.423 54 0.625

11 0.746 33 0.395 55 0.739

12 0.679 34 0.375 56 0.710

13 0.608 35 0.372 57 0.729

14 0.655 36 0.391 58 0.720

15 0.616 37 0.396 59 0.636

16 0.606 38 0.405 60 0.581

17 0.602 39 0.428 61 0.428

18 0.626 40 0.429 62 0.292

19 0.651 41 0.523 63 0.162

20 0.724 42 0.562 64 0.098

21 0.649 43 0.607 65 0.054

22 0.649 44 0.653

x̄1 = 1.30, x̄2 = 0.65, x̄3 = 0.65, x̄4 = 0.70, x̄5 = 0.60, x̄6 = 3.00,

x̄7 = 5.00, x̄8 = 7.00, x̄9 = 2.00, x̄10 = 4.50, x̄11 = 5.50.

137

Appendix B

Test problems for general nonsmooth op-

timization

Problem 3.1 Rosenbrock

F (x) = 100(x2 − x2
1)2 + (1− x1)2,

x̄1 = −1.2, x̄2 = 1.0.

Problem 3.2 Crescent

F (x) = max{x2
1 + (x2 − 1)2 + x2 − 1,−x1 − (x2 − 1)2 + x2 + 1},

x̄1 = −1.5, x̄2 = 2.0.

Problem 3.3 CB2

F (x) = max{x2
1 + x4

2, (2− x1)2 + (2− x2)2, 2e−x1+x2},

x̄1 = 1.0, x̄2 = −0.1.

138

Problem 3.4 CB3

F (x) = max{x4
1 + x2

2, (2− x1)2 + (2− x2)2, 2e−x1+x2},

x̄1 = 2, x̄2 = 2.

Problem 3.5 DEM

F (x) = max{5x1 + x2,−5x1 + x2, x
2
1 + x2

2 + 4x2},

x̄1 = 1, x̄2 = 1.

Problem 3.6 QL

F (x) = max
1≤i≤3

fi(x),

f1(x) = x2
1 + x2

2,

f2(x) = x2
1 + x2

2 + 10(−4x1 − x2 + 4),

f3(x) = x2
1 + x2

2 + 10(−x1 − 2x2 + 6),

x̄1 = 1, x̄2 = 5.

Problem 3.7 LQ

F (x) = max{−x1 − x2,−x1 − x2 + (x2
1 + x2

2 − 1)},

x̄1 = −0.5, x̄2 = −0.5.

Problem 3.8 MIFFLIN1

F (x) = −x1 + 20 max{x2
1 + x2

2 − 1, 0},

x̄1 = 0.8, x̄2 = 0.6.

139

Problem 3.9 MIFFLIN2

F (x) = −x1 + 2(x2
1 + x2

2 − 1) + 1.75|x2
1 + x2

2 − 1|,

x̄1 = −1, x̄2 = −1.

Problem 3.10 Wolfe

F (x) = f1(x), x1 ≥ |x2|,

F (x) = f2(x), 0 < x1 ≤ |x2|,

F (x) = f3(x), x1 ≤ 0,

f1(x) = 5
√

9x2
1 + 16x2

2,

f2(x) = 9x1 + 16|x2|,

f3(x) = 9x1 + 16|x2| − x9
1,

x̄1 = 3, x̄2 = 2.

Problem 3.11 Rosen-Suzuki

F (x) = max{f1(x), f1(x) + 10f2(x), f1(x) + 10f3(x), f1(x) + 10f4(x)},

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8,

f3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10,

f4(x) = x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5,

x̄i = 0, 1 ≤ i ≤ 4.

140

Problem 3.12 Shor

F (x) = max
1≤i≤10

{bi
5∑
j=1

(xj − aij)2},

A =



0 0 0 0 0

2 1 1 1 3

1 2 1 1 2

1 4 1 1 2

3 2 1 0 1

0 2 1 0 1

1 1 1 1 1

1 0 1 2 1

0 0 2 1 0

1 1 2 0 0



, b =



1

5

10

2

4

3

1.7

2.5

6

3.5


x̄1 = 0, x̄2 = 0, x̄3 = 0, x̄4 = 0, x̄5 = 1.

Problem 3.15 El-Attar

F (x) =
50∑
i=1

|x1e
−x2ti cos(x3ti + x4) + x5e

−x6ti − yi|,

yi = 0.5e−ti − e−2ti + 0.5e−3ti + 1.5e−1.5ti sin 7ti + e−2.5ti sin 5ti,

ti = 0.1(i− 1), 1 ≤ i ≤ 51,

x̄1 = 2, x̄2 = 2, x̄3 = 7, x̄4 = 0, x̄5 = −2, x̄6 = 1.

141

Problem 3.16 Maxquad

F (x) = max
1≤i≤5

(xTAix+ xT bi),

Aikj = Aijk = ej/k cos(jk) sin(i), j < k,

Aijj =
j

10
| sin(i)|+

∑
k 6=j
|Aijk|,

bij = ej/i sin(ij),

x̄i = 0, 1 ≤ i ≤ 10.

Problem 3.17 Gill

F (x) = max{f1(x), f2(x), f3(x)}

f1(x) =
10∑
i=1

(xi − 1)2 + 10−3
10∑
i=1

(x2
i − 1/4)2,

f2(x) =
30∑
i=2

 10∑
i=2

xj(j − 1)(
i− 1

29
)j−2 −

 10∑
j=1

xj(
i− 1

29
)j−1

2

− 1

2

+x2
1 + (x2 − x2

1 − 1)2,

f3(x) =
10∑
i=1

[
100(xi − x2

i−1)2 + (1− xi)2
]
,

x̄i = −0.1, 1 ≤ i ≤ 10.

Problem 3.18 Steiner 2

F (x) =
√
x2

1 + x2
m+1 +

√
(ā21 − xm)2 + (ā22 − x2m)2 +

m∑
j=1

pj

√
(aj1 − xj)2 + (aj2 − xj+m)2 +

m−1∑
j=1

p̃j

√
(xj − xj+1)2 + (xj+m − xj+m+1)2, m = 6,

142

ā21 = 5.5, ā22 = −1.0,

a11 = 0.0, a12 = 2.0, p1 = 2, p̃1 = 1,

a21 = 2.0, a22 = 3.0, p2 = 1, p̃2 = 1,

a31 = 3.0, a32 = −1.0, p3 = 1, p̃3 = 2,

a41 = 4.0, a42 = −0.5, p4 = 5, p̃4 = 3,

a51 = 5.0, a52 = 2.0, p5 = 1, p̃5 = 2,

a61 = 6.0, a62 = 2.0, p6 = 1,

x̄1 = (a11 + a21)/3, x̄1+m = (a12 + a22)/3,

x̄1 = (x̄j−1 + aj1 + a(j+1)1)/3, x̄1+m = (x̄j−1+m + aj2 + a(j+1)2)/3, 2 ≤ j ≤ m− 1,

x̄1 = (x̄m−1 + am1 + ā21)/3, x̄1+m = (x̄2m−1 + am2 + ā22)/3.

Problem 3.19 Maxq

F (x) = max
1≤i≤20

x2
i ,

x̄i = i, i = 1, . . . , 10, x̄i = −i, i = 11, . . . , 20.

Problem 3.20 Maxl

F (x) = max
1≤i≤20

|xi|,

x̄i = i, i = 1, . . . , 10, x̄i = −i, i = 11, . . . , 20.

Problem 3.22 Goffin

F (x) = 50 max
1≤i≤50

xi −
50∑
i=1

xi,

x̄i = i− 25.5, i = 1, 2, . . . , 50.

143

Problem 3.23 MXHILB

F (x) = max
1≤i≤50

∣∣∣∣∣
50∑
i=1

xj
i+ j − 1

∣∣∣∣∣ ,
x̄i = 1, i = 1, 2, . . . , 50.

Problem 3.24 L1HILB

F (x) =
50∑
i=1

∣∣∣∣∣∣
50∑
j=1

xj
i+ j − 1

∣∣∣∣∣∣ ,
x̄i = 1, i = 1, 2, . . . , 50.

Problem 3.25 Shell Dual

F (x) = 2

∣∣∣∣∣
5∑
i=1

dix
3
i+10

∣∣∣∣∣+

5∑
i=1

5∑
j=1

cijxi+10xj+10−,

10∑
i=1

bixi + 100

(
5∑
i=1

max(0, Pi(x))−Q(x)

)
,

Pi(x) =
10∑
j=1

aijxj − 2
5∑
j=1

cijxj+10 − 3dix
2
i+10 − ei, 1 ≤ i ≤ 5,

Q(x) =

15∑
i=1

min(0, xi),

x̄i = 10−4, i = 1, 2, . . . , 15, i 6= 7, x̄7 = 60.

144

	Abstract
	Statement of authorship
	Acknowledgement
	Dedication
	List of publication
	Introduction
	1 Background
	1.1 Notations and Definitions
	1.2 Nonsmooth Analysis
	1.3 Nonsmooth Optimization Theory

	2 Nonsmooth Optimization Methods
	2.1 Subgradient methods
	2.2 Cutting plane methods
	2.3 Bundle methods
	2.3.1 Standard bundle method
	2.3.2 Variable metric bundle type methods
	2.3.3 Limited memory bundle methods
	2.3.4 Quasisecant method

	2.4 Methods based on smoothing techniques
	2.4.1 Exponential penalty smoothing method
	2.4.2 Hyperbolic smoothing functions

	2.5 Optimization methods in water management

	3 Hyperbolic smoothing function method for minimax problems
	3.1 Reformulation of minimax problem
	3.2 Hyperbolic smoothing of the maximum function
	3.3 Minimization algorithm
	3.4 Numerical results
	3.4.1 Results for unconstrained minimax problems
	3.4.2 Results for general nonsmooth optimization problems

	3.5 Conclusions

	4 Nonsmooth optimization via smooth optimization
	4.1 Quasisecants and their Properties
	4.2 Computation of descent directions
	4.3 Solving subproblem for finding search directions
	4.4 Minimization algorithms
	4.5 Computation of (h,)-stationary points
	4.6 Numerical experiments
	4.6.1 Results for unconstrained minimax problems
	4.6.2 Results for general nonsmooth unconstrained problems
	4.6.3 Results with GAMS

	4.7 Conclusions

	5 Minimization of pumping costs in water distribution systems
	5.1 Optimization model
	5.1.1 The objective function
	5.1.2 Constraints
	5.1.3 Formulation of optimization problem

	5.2 Solution algorithm and its implementation
	5.3 Test problem and numerical results
	5.3.1 Example

	5.4 Conclusions

	6 Conclusion and recommendations for future research
	Bibliography
	Appendix
	A Test problems for minimax optimization
	B Test problems for general nonsmooth optimization

