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Abstract

The canonical duality theory is studied, through a discussion on a general global
optimization problem and applications on fundamentally important problems. This
general problem is a formulation of the minimization problem with inequality con-
straints, where the objective function and constraints are any convex or nonconvex
functions satisfying certain decomposition conditions. It covers convex problems,
mixed integer programming problems and many other nonlinear programming prob-
lems. The three main parts of the canonical duality theory are canonical dual trans-
formation, complementary-dual principle and triality theory. The complementary-
dual principle is further developed, which conventionally states that each critical
point of the canonical dual problem is corresponding to a KKT point of the primal
problem with their sharing the same function value. The new result emphasizes that
there exists a one-to-one correspondence between KKT points of the dual problem
and of the primal problem and each pair of the corresponding KKT points share the
same function value, which implies that there is truly no duality gap between the
canonical dual problem and the primal problem. The triality theory reveals insightful
information about global and local solutions. It is shown that as long as the global
optimality condition holds true, the primal problem is equivalent to a convex problem
in the dual space, which can be solved e�ciently by existing convex methods; even if
the condition does not hold, the convex problem still provides a lower bound that is
at least as good as that by the Lagrangian relaxation method. It is also shown that
through examining the canonical dual problem, the hidden convexity of the primal
problem is easily observable.

The canonical duality theory is then applied to dealing with three fundamentally
important problems. The first one is the spherically constrained quadratic problem,
also referred to as the trust region subproblem. The canonical dual problem is one-
dimensional and it is proved that the primal problem, no matter with convex or
nonconvex objective function, is equivalent to a convex problem in the dual space.
Moreover, conditions are found which comprise the boundary that separates instances
into “hard case” and “easy case”. A canonical primal-dual algorithm is developed,
which is able to e�ciently solve the problem, including the “hard case”, and can
be used as a unified method for similar problems. The second one is the binary
quadratic problem, a fundamental problem in discrete optimization. The discussion
is focused on lower bounds and analytically solvable cases, which are obtained by
analyzing the canonical dual problem with perturbation techniques. The third one
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is a general nonconvex problem with log-sum-exp functions and quartic polynomials.
It arises widely in engineering science and it can be used to approximate nonsmooth
optimization problems. The work shows that problems can still be e�ciently solved,
via the canonical duality approach, even if they are nonconvex and nonsmooth.
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Glossary

R Real numbers.
R

+

Nonnegative real numbers.
R

++

Positive real numbers.
Rn n-dimensional Euclidean space.
Rn⇥m n⇥m-dimensional real matrices space.
Sn {A 2 Rn⇥n| AT = A}.
Sn

+

all positive semidefinite matrices in Sn.
Sn

++

all positive definite matrices in Sn.
{a, b}n Set of n-dimensional vectors whose components are a or b.
|S| Cardinality of the set S.
kxk Euclidean norm, i.e., kxk

2

.

{x
i

}n
i=1

Column vector (x
1

, . . . , x
n

)T .
e All-ones vector.
I Identity matrix.
AT Transpose of matrix A.
A† Moore-Penrose or pseudo-inverse of matrix A.
tr(A) Trace of matrix A.
rank(A) Rank of matrix A.
diag(A) Diagonal vector of matrix A.
diag(x) Diagonal matrix with diagonal elements x

1

, . . . , x
n

.
A �B Hadamard product of matrices, i.e. A �B = {a

ij

b
ij

}n
i,j=1

.
A · B Inner product of matrices, i.e. A · B = tr(AB).
Q � 0 Denotes Q is a positive definite matrix.
Q ⌫ 0 Denotes Q is a positive semidefinite matrix.

f ⇤ Conjugate function of f .
domf Domain of function f .
rf Gradient of function f .
r2f Hessian of function f .
@f/@x Partial derivative of function f with respect to x.
exp(x) Exponential function ex.
log(x) Logarithmic function log

e

x.
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Chapter 1

Introduction

The Canonical duality theory was developed from Gao and Strang’s original work for
solving a general nonconvex/nonsmooth variational problem [54]:

min{⇧(�) = W (D�)� F (�) | � 2 X
c

}. (1.1)

The function F (�) models the external energy and must be linear on its domain
X

a

; while the function W : W
a

! R models the internal energy and must possess
“objectivity”1. Here the linear operator D : X

a

! W
a

assigns each configuration
� to an internal variable ✏ = D�. The feasible set X

c

= {� 2 X
a

| D� 2 W
a

}
is called the kinetically admissible space. Through the model (1.1), the canonical
duality theory can be illustratively described, and more detailed explanations can be
found in the recent paper [48].

The “objectivity” that the internal energy W must possess is mathematically
defined in [38] (Definition 6.1.2). In Euclidean space, the definition is given as follows:
let X

a

✓ Rn, W
a

2 Rm, and R = {R 2 Rn⇥m | RT = R�1}, i.e., the set of all
orthogonal matrices; a real-valued function W : W

a

! R is said to be “objective”,
if W

a

and W satisfy R✏ 2 W
a

,W (R✏) = W (✏), 8✏ 2 W
a

, 8R 2 R. Geometrically,
it means that the domain and the function are invariant under any rotations about
the origin.

There are principally three parts which comprise the canonical duality theory:

1) a canonical dual transformation, which is used to reformulate nonconvex or
discrete problems arising in di↵erent systems as a unified canonical dual prob-
lems;

2) a complementary-dual principle, which illustrates the perfect duality relation
between the primal and dual problems (there are no duality gaps) and provides
unified analytical solutions for the primal problem in terms of the canonical
dual solutions;

1Here, the word means that the function only depends on certain measure of its variables [48],
in contrast to the meaning of target or goal in “objective function” in mathematical optimization.
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3) a triality theory, which reveals an intrinsic duality pattern, being composed of
canonical min-max duality, double-min duality and double-max duality, which
can be used to identify global optimal solutions and local solutions.

The canonical duality theory has been used successfully for solving a wide range of
di�cult problems, within a unified framework. The applications of canonical duality
in global optimization include solving quadratic problems [32, 42, 46, 47, 51], poly-
nomial optimization problems [44], transportation problems [52], location problems
[49, 111], network optimization problems [114], geometry problems [115], fixed point
problems [118], fractional programming problems [113], optimization problems in
machine learning [112, 82, 81], and mixed integer programming problems [128, 110].
Recently, an open problem left in the triality theory has been solved [56] and some
e�cient algorithms have been developed [55].

As emphasized in the paper [48], the “objectivity” is a necessity for the canonical
duality theory. However, many optimization problems arising in the real world do
not possess the “objectivity”, even if they are convex. For example, when the ma-
trix Q is indefinite, the quadratic function h(x) = 1

2

x

TQx can not be transformed
into W (Dx) with D being a linear operator and W being “objective”. The objec-
tive here is to investigate the theory and applications of the canonical duality for
general convex/nonconvex optimization problems, which may not possess the “ob-
jectivity”. In mainly two aspects, the thesis attempt to achieve positive results: (1)
revealing insightful relations that might not otherwise be observed; (2) inspiring the
development of unified solution methods.

In this thesis, the investigation of the canonical duality theory focuses on a gen-
eral optimization problem, which is only assumed to satisfy certain decomposition
conditions and where the “objectivity” is not a necessity. This general problem cov-
ers convex problems, mixed integer programming problems and many other nonlinear
programming problems. The three main parts of the canonical duality theory are
then developed. The complementary-dual principle, which conventionally only says
that each critical point of the canonical dual problem is corresponding to a KKT
point of the primal problem with they sharing the same function value, is further
developed, and it truly reveals that there are no duality gaps between primal and
dual problems. In the case where all operators are quadratic, the triality theory
is proposed, and besides the global optimality condition, comprehensive relations
among certain local solutions are also presented. Through examining the canonical
dual problem, the hidden convexity of the primal problem is discussed.

Then the canonical duality theory is applied to dealing with three fundamentally
important problems. The first one is the spherically constrained quadratic problem,
also referred to as the trust region subproblem. The di�culty here is to e�ciently
solve problems in “hard case”. By applying the canonical duality, a boundary that
separates instances into “hard case” and “easy case” is discovered, and it inspires a
canonical primal-dual algorithm. The second problem is the binary quadratic prob-
lem, a fundamental problem in discrete optimization. The discussion is focused on
lower bounds and analytically solvable cases, which are obtained by analyzing the
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canonical dual problem with perturbation techniques. The third one is a noncon-
vex problem with log-sum-exp functions and quartic polynomials. It arises widely
in engineering science and it can be used to approximate nonsmooth optimization
problems. The discussion attempts to show that the optimization problems, even if
they are nonconvex and nonsmooth, can still be e�ciently solved via the canonical
duality approach.

The remaining chapters are organized as follows. In Chapter 2, the basic defi-
nitions and results of convex analysis, mathematical optimization, and Lagrangian
duality are presented as a preparation for the later discussions. In Chapter 3, the
canonical duality theory for the proposed optimization problem is developed; both
the general case and the case where operators are quadratic are discussed. Then,
three important problems are provided to illustrate the application of the canonical
duality theory: the spherically constrained quadratic problem in Chapter 4, the bi-
nary quadratic problem in Chapter 5, and a nonconvex problem with log-sum-exp
functions and quartic polynomials in Chapter 6. In the end, the key findings are
summarized in Chapter 7, with some remarks on the future directions.

The work in Chapter 4 has been presented in The 3rd World Congress of Global
Optimization (July 8-12, 2013, The Yellow Mountains, China) and published in
[24] and [25]. The work in Chapter 6 has been presented in The 5th International
Conference on Optimization and Control with Applications (December 4-8, 2012,
Beijing, China) and published in [23].
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Chapter 2

Preliminaries

2.1 Convex analysis

In this section, convex sets, convex functions and their properties, and the theory of
conjugate are introduced. For more comprehensive descriptions and proofs, refer to
[21, 12].

2.1.1 Convex sets

A set C 2 Rn is said to be convex if the line segment joining any two points in the
set also belongs to the set, i.e., if for any x

1

,x
2

2 C and any � 2 [0, 1], we have

�x
1

+ (1� �)x
2

2 C.

The line segment, �x
1

+ (1� �)x
2

with � 2 [0, 1], consists of all points between x

1

and x

2

on the line that passes through. The form
P

n

i=1

�
i

x

i

with
P

n

i=1

�
i

= 1,�
i

�
0, i = 1, . . . , n is called a convex combination of x

1

, . . . ,x
n

. If the nonnegativity
conditions, �

i

� 0, i = 1, . . . , n, are dropped, the combination is known as an a�ne
combination, and if the multipliers �

i

, i = 1, . . . , n are simply required to be in R,
the form is known as a linear combination.

For any C 2 Rn, the smallest convex set containing C is called convex hull, which
is the set of all convex combinations of points in C:

conv(C) =
(

nX

i=1

�
i

x

i

| x

i

2 C,�
i

� 0, i = 1, . . . , n,
nX

i=1

�
i

= 1

)
.

Hence, if C is a convex set, its convex hull is C itself.
The following foundamental sets are convex: (1) hyperplanes, {x | a

T

x = b}; (2)
halfspaces, {x | a

T

x  b} and {x | a

T

x < b}; (3) Euclidean balls, {x | kx�x

0

k  r};
(4) polyhedra, {x | a

T

j

x  b
j

, j = 1, . . . ,m, cT

k

x = d
k

, k = 1, . . . , p}.
Convexity is preserved under some operations, which appears to be useful in

convex analysis. If C
i

, i = 1, . . . , n are convex, then \n

i=1

C
i

is convex. The property
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still hold if n is infinity. The a�ne mapping also preserves the convexity: if C
is convex and f : Rn ! Rm is an a�ne function, then the image of C under f ,
f(C) = {f(x) | x 2 C}, is convex.

A set K ✓ Rn is called a cone if ↵x 2 K for every x 2 K and ↵ � 0. If, in
addition, K is convex, K is called a convex cone. From its definition, we know that
a cone always contains the zero point. A cone K ✓ Rn is called a proper cone if it
is convex, closed, solid and pointed, where solid means K has nonempty interior and
pointed means K contains no line.

The following convex cones are well-known and important in mathematical opti-
mization:

• the nonnegative orthant

Rn

+

= {x 2 Rn | x � 0},

• the set of symmetric matrices

Sn = {X 2 Rn⇥n | X = XT},

• the set of symmetric positive semidefinite matrices

Sn

+

= {X 2 Sn | X ⌫ 0},
Sn

++

= {X 2 Sn | X � 0},

• the second-order cone (quadratic cone, Lorentz cone or ice-cream cone )

SOCn = {(x, t) 2 Rn+1 | kxk  t},

• the set of symmetric copositive matrices

COPn = {X 2 Sn | y

TXy � 0, 8y 2 Rn

+

},

• the set of symmetric completely positive matrices

CPn = {Y =
kX

i=1

y

i

y

T

i

| k > 0,y
i

2 Rn

+

, i = 1, . . . , k}.

Among them, Rn

+

, Sn

+

, SOCn, COPn and CPn are proper cones. Moreover, it is true
that

CPn ✓ Sn

+

✓ COPn.

Let K be a cone in Rn. An associated cone which is called dual cone is defined
by

K⇤ = {y 2 Rn | x

T

y � 0 for all x 2 K}.
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The dual cone K⇤ is always a convex cone, even when the original cone K not. We
have the following properties: (1) K⇤ is closed and convex; (2) K

1

✓ K
2

implies
K⇤

2

✓ K⇤
1

; (3) If K has nonempty interior, then K⇤ is pointed; (4) If the closure of K
is pointed then K⇤ has nonempty interior; (5) K⇤⇤ is the closure of the convex hull
of K.

If K⇤ = K, then K is called a self-dual cone. Among the convex cones presented
above, we have

(Rn

+

)⇤ = Rn

+

, (Sn

+

)⇤ = Sn

+

, and (SOCn)⇤ = SOCn.

Whereas, the symmetric copositive matrices cone and the symmetric completely
positive matrices cone are dual to each other, i.e.,

(CPn)⇤ = COPn and (COPn)⇤ = CPn.

Here, only the proof for Sn

+

is presented. By the definition, the dual cone for Sn

+

is

(Sn

+

)⇤ = {Y 2 Sn⇥n | X ·Y � 0, 8X 2 Sn

+

},
where X·Y = tr(XY ), denoting the inner product of two matrices. Suppose Y 2 Sn

+

.
Then, for any X 2 Sn

+

, we have

X ·Y =
nX

i=1

�
i

(u
i

u

T

i

)·Y =
nX

i=1

�
i

u

T

i

Y u

i

� 0,

where �
i

� 0, i = 1, . . . , n are the eigenvalues of X and u

i

, i = 1, . . . , n are the
corresponding eigenvectors. This shows that Y 2 (Sn

+

)⇤. Now suppose Y 2 (Sn

+

)⇤.
For any x 2 Rn, as xx

T 2 Sn

+

, we have x

TY x = xx

T ·Y � 0, which is equivalent to
Y 2 Sn

+

.
At the end of this part, we present a very important result about the separation

of two convex sets. Let C
1

and C
2

be nonempty convex sets in Rn and suppose that
C
1

\ C
2

is empty. Then there exists a hyperplane that separates C
1

and C
2

; that is,
there exists a nonzero vector p 2 Rn such that

inf{pT

x | x 2 C
1

} � sup{pT

x | x 2 C
2

}.

2.1.2 Convex functions

Let D be a nonempty set in Rn. The function f : D ! R is said to be convex if the
set D is convex and

f(�x
1

+ (1� �)x
2

)  �f(x
1

) + (1� �)f(x
2

)

for each x

1

,x
2

2 D and for each � 2 (0, 1). The function f is called strictly convex
on D if f satisfies the above inequality with  being replaced by <. The function f
is called concave (strictly concave) on D if �f is convex (strictly convex) on D. An

6



important property of convex and concave functions is that they are continuous on
the interior of their domain.

Examples given below are some important convex functions that arise very often
in practice.

1. (Nonnegative weighted sums) Let f
1

, . . . , f
m

: Rn ! R be convex functions.
Then f(x) =

P
m

j=1

↵
j

f
j

(x) with ↵
j

� 0, j = 1, . . . ,m is a convex function.

2. (Pointwise maximum) Let f
1

, . . . , f
m

: Rn ! R be convex functions. Then
f(x) = max{f

1

(x), . . . , f
m

(x)} is also convex.

3. (Composition with an a�ne mapping) Let g : Rm ! R be a convex function,
and let h : Rn ! Rm be an a�ne function of the form h(x) = Ax + b with
A 2 Rm⇥n and b 2 Rm. Then the composite function f = g(h(x)) : Rn ! R
is a convex function.

4. (Inverse) Suppose that g : Rn ! R is a concave function. Let D = {x | g(x) >
0}. Then the function f(x) = 1/g(x) : D ! R is convex on D.

5. (Supremum) Suppose that g(x,y) : C ⇥ D ! R is convex in x for each fixed
y 2 D. Then the function f(x) = sup

y2D g(x,y) is convex in x.

6. (Minimization) Suppose that g(x,y) : C ⇥ D ! R is convex in (x,y). Then
the function f(x) = inf

y2D g(x,y) is convex in x.

The ↵-sublevel set of a convex function f : D ! R is defined by

D
↵

= {x 2 D | f(x)  ↵}.
If f is concave, its ↵-superlevel set is defined by {x 2 D | f(x) � ↵}. All sublevel
sets of a convex function are convex, but the converse is not true.

The epigraph of a function f : D ! R is a subset of Rn+1 defined by

epif = {(x, t) | x 2 D, f(x)  t}.
The hypograph of f is defined by

hyp f = {(x, t) | x 2 D, f(x) � t}.
It is true that a function being convex is equivalent to its epigraph being a convex
set.

For di↵erentiable functions, besides the definition and epigraph, there are other
necessary and su�cient conditions that can be used to characterize convexity. Sup-
pose that D is a nonempty open convex set in Rn and f : D ! R is di↵erentiable,
i.e., its gradient rf exists at each point in D. Then f is convex if and only if for
any x̄ 2 D, we have

f(x) � f(x̄) +rf(x̄)T (x � x̄) 8x 2 D.

7



While, f is strictly convex if and only if the above inequality is strict for any x 6= x̄.
It is also true that f is convex if and only if for each x

1

,x
2

2 D we have

(rf(x
2

)�rf(x
1

))T (x
2

� x

1

) � 0;

Similarly, f is strictly convex if and only if the above inequality is strict for any
distinct x

1

,x
2

2 D.
From a computational standpoint, checking the above conditions is di�cult. If the

function is twice di↵erentiable, a simple and more manageable characterization, at
least for quadratic functions, can be obtained. Let f : D ! R be twice di↵erentiable
on D. Then f is convex if and only if the Hessian matrix is positive semidefinite,

r2f(x) ⌫ 0,

at each point in D. If the Hessian matrix r2f is positive definite at each point, then
f is strictly convex. But, the converse for strictly convexity does not hold, i.e., for
a general strictly convex function, its Hessian may not be positive definite at each
point in D. While if f is a quadratic function, the strict convexity is equivalent to
positive definiteness.

There is an insightful connection between the univariate and multivariate cases.
Consider a function f : Rn ! R, and for any point x̄ 2 Rn and a nonzero direction
d 2 Rn, define F

(

¯

x;d)

(�) = f(x̄ + �d) as a function of � 2 R. Then f is (strictly)
convex if and only if F

(

¯

x;d)

(�) is (strictly) convex for all x̄ and d 6= 0 in Rn.

2.1.3 Conjugate functions

Fenchel’s conjugate for convex functions plays an essential role in duality, including
the canonical duality theory discussed in this study. Let D be a nonempty set in Rn.
The Fenchel conjugate (conjugate for short) of f : D ! Rn is defined as

f ⇤(y) = sup
x2D

{xT

y � f(x)}.

The conjugate f ⇤(y) is the point-wise supremum of a family of a�ne functions. Thus,
it is a convex function, without regard to whetherf is convex or not. The domain of
the conjugate function contains all y 2 Rn for which the supremum is finite. Passing
from f to the conjugate f ⇤ is called the Legendre-Fenchel transformation.

Immediately, we have the following inequality, which is called Fenchel’s inequality
( also known as Fenchel-Young inequality),

f(x) + f ⇤(y) � x

T

y

for all x,y in the domains.
Suppose that D is a nonempty open convex set and the convex function f is

di↵erentiable, thus continuously di↵erentiable ( or smooth) [106]. Given ȳ, any
x̄ that maximizes x

T

ȳ � f(x) satisfies ȳ = rf(x̄), and, conversely, if x̄ satisfies

8



ȳ = rf(x̄), then x̄ maximizes x

T

ȳ � f(x). Thus, the following equivalence always
holds

y = rf(x) () f(x) + f ⇤(y) = x

T

y. (2.1)

In the case when f is di↵erentiable, the conjugate is closely related to the Legendre
conjugate. Let (rf)�1 denote the inverse mapping of rf , defined by

(rf)�1(y) = {x | y = rf(x)}.
Let C be the image of D under the gradient mapping rf . The Legendre conjugate
is defined as

g(y) = y

T (rf)�1(y)� f((rf)�1(y)).

For a general di↵erentiable convex function, (rf)�1(y) may contain more than one
elements for some y, and thus the gradient mapping rf is not one-to-one. However,
here we can show that the Legendre conjugate g(y) is always well-defined (i.e., single-
valued) under the assumption above. For a given y, no matter which x we choose
in (rf)�1(y), by the relationship (2.1) we get the same value y

T

x � f(x) = f ⇤(y).
Thus, g is the restriction of f ⇤ to C. The process of passing from f to the Legendre
conjugate g is referred to as Legendre transformation.

In general, the conjugate function f ⇤ need not be di↵erentiable. One of the
corner-stone results in convex analysis states that the di↵erentiability dualizes under
the Legendre-Fenchel transformation to the strict convexity: the conjugate function
f ⇤ is essentially smooth if and only if f is strictly convex (Theorem 26.3 in [106]).
Let C = int(domf ⇤). Here, function f ⇤ is essentially smooth if (1) it is di↵erentiable
throughout C, which should not be empty, and (2) lim

i!1 krf ⇤(x
i

)k = +1 when-
ever x

1

,x
2

, . . . , is a sequence in C converging to a boundary point x of C. Notice that
if C = Rn a smooth convex function is essentially smooth. When f ⇤ is di↵erentiable,
by the equivalence (2.1), we have

rf ⇤(ȳ) = x̄

for any ȳ and x̄ satisfying ȳ = rf(x̄). Thus, ȳ maximizes x̄

T

y � f ⇤(y), which
implies that

f ⇤⇤(x̄) = sup
y2domf

⇤
{x̄T

y � f ⇤(y)} = x̄

T

ȳ � f ⇤(ȳ) = f(x̄). (2.2)

Conversely, if the last equality in (2.2) holds, then it is true that rf ⇤(ȳ) = x̄.
Therefore, we have

y = rf(x) () x = rf ⇤(y) () f(x) + f ⇤(y) = x

T

y. (2.3)

In addition, if f(x) is twice di↵erentiable, then the mapping rf is one-to-one
if and only if the Hessian matrix r2f is nonsingular. Given x and y satisfying
y = rf(x), let F (x,y) = rf(x) � y. If r2f(x) is nonsingular, which also means
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that the Jacobian of F (x,y) is not zero, the equation F (x,y) = 0 uniquely defines
a di↵erentiable function x = x(y) in the neighborhood of (x,y), which implies that
f ⇤(y) = x

T

y � f(x) is di↵erentiable and we have rf ⇤(y) = x(y). Thus, rf ⇤ is
the inverse mapping of rf and is di↵erentiable, and the conjugate function f ⇤(y) is
actually twice di↵erentiable, with r2f ⇤(y) = rx. Taking derivative on both sides
of y = rf(x) with respect to y, we have I = rxr2f(x). Therefore, by replacing
rx with r2f ⇤(y), it shows that the Hessian matrices of f(x) and f ⇤(x) are inverse
to each other, i.e.,

r2f ⇤(y) =
�r2f(x)

��1

. (2.4)

2.2 Optimization problems and optimality condi-
tions

In this section, a general optimization problem is described and then optimality
conditions are introduced. A special class of optimization problems, called convex
optimization problems, is of particular interest. For the proof of the main results,
refer to [12].

2.2.1 Problem statements

A mathematical optimization problem, or just optimization problem, is generally for-
mulated as:

min
x

f(x) (2.5)

s.t. g(x)  0

h(x) = 0

x 2 X
0

,

in which x = {x
i

}n
i=1

2 Rn, g(x) = {g
i

(x)}m
i=1

and h(x) = {h
i

(x)}l
i=1

. Here, f(x),
g
i

(x), i = 1, . . . ,m and h
i

(x), i = 1, . . . , l are functions defined on Rn, and X
0

is a
subset of Rn.

The function f is called the objective function (also called criterion function or
cost function). The restrictions g(x)  0 and h(x) = 0 are called constraints, of
which the former consists of inequality constraints and the latter consists of equality
constraints. The set X

0

might typically include lower and upper bounds on the
variables, which even if implied by the other constraints can play a useful role in
some algorithms. Alternatively, this set might represent some specially structured
constraints that are highlighted to be exploited by the optimization routine, or it
might represent certain regional containment or other complicating constraints that
are to be handled separately via a special mechanism. A vector x 2 X

0

satisfying
all the constraints is called a feasible solution to the problem. The collection of
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all such solutions forms the feasible region. A feasible solution that minimizes the
objective function is called an optimal solution or simply a solution. If x̄ is an optimal
solution, then we have f(x) � f(x̄) for any feasible solution x. If there exists an
"-neighborhood N

"

(x̄) around x̄ such that f(x̄)  f(x) for all x 2 N
"

(x̄), then x̄ is
called a local optimal solution or simply a local solution; while if f(x̄) < f(x) for all
x 2 N

"

(x̄) and x 6= x̄, x̄ is called a strict local solution. In contrast to local solutions,
an optimal solution is also called a global optimal solution or simply a global solution.
Clearly, a global solution is also a local solution. In this context (a minimization
problem), a global solution and a local solution can also be, respectively, called a
global minimizer and a local minimizer.

Optimization problems can be categorized into families or classes, by charac-
terizing particular forms of the target and constraint functions. The optimization
problem (2.5) is called a linear program if the objective function f and constraint
functions g

i

, i = 1, . . . ,m and h
i

, i = 1, . . . , l are linear and X
0

is a polyhedral set.
If the optimization problem is not linear, it is called a nonlinear program. From the
point of view of convexity, optimization problems can be grouped into convex opti-
mization problems and nonconvex optimization problems. The problem (2.5) is called
a convex optimization problem, if f and g

i

, i = 1, . . . ,m are convex, h
i

, i = 1, . . . , l
are a�ne, that is, h(x) = Ax�b, and X

0

is a convex set; otherwise, it is a nonconvex
optimization problem. The standard form of convex optimization problems is

min
x

f(x) (2.6)

s.t. g(x)  0

Ax = b

x 2 X
0

.

2.2.2 Optimality conditions

We assume that X
0

is a nonempty open set, f and g
i

, i = 1, . . . ,m are di↵erentiable
and h

i

, i = 1, . . . , l are continuously di↵erentiable.

Unconstrained problems

A vector d is called a descent direction of f : Rn ! R at x if there exists a � > 0 such
that f(x+ �d) < f(x) for all � 2 (0, �). It can be proved that if rf(x)Td < 0, d is
a descent direction of f at x; conversely, if d is a descent direction, rf(x)Td  0.
Thus, for a di↵erentiable function f , if x̄ is a local minimizer, we have

rf(x̄) = 0.

In addition, if f is twice di↵erentiable, the Hessian matrix being positive semidefinite
at the point is another necessary condition. Then, for a twice di↵erentiable function
f , if x̄ is a local minimizer, we have

rf(x̄) = 0 and r2f(x̄) ⌫ 0.
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However, these conditions are only necessary conditions, for if r2f(x̄) = 0, the
point could be neither a local minimizer nor a local maximum (such a point is called
a saddle point). If ⌫ is replaced with � in the conditions, they become su�cient
conditions for the point being a strict local minimizer. While, if the function f is
convex, the condition rf(x̄) = 0 alone is su�cient to guarantee that x̄ is a local
minimizer, and actually, the point x̄ is also a global minimizer.

KKT conditions

First we consider the case where there are only inequality constraints. Let X
g

=
{x 2 X

0

| g(x)  0} be the feasible region. Let

F = {d | d 6= 0, x̄ + �d 2 X
g

for all � 2 (0, �) for some � > 0}
be the cone of feasible directions of X

g

at a point x̄ 2 X
g

, and

D = {d | f(x̄ + �d) < f(x̄) for all � 2 (0, �) for some � > 0}
be the cone of improving directions of f at a point x̄ 2 X

g

. Then, if x̄ is a local
minimizer, it is obvious that F \ D = ;, i.e., all the feasible directions will not be
improving or descent directions.

Let I = {i | g
i

(x̄) = 0} be the index set for the active (or binding or tight )
constraints. As any vector d satisfying rg

i

(x̄)Td < 0 is a descent direction of g
i

at
x̄, if let

F
0

= {d | rg
i

(x̄)Td < 0, i = 1, . . . ,m},
we have F

0

✓ F , and similarly we have D
0

✓ D where

D
0

= {d | rf(x̄)Td < 0}.
Hence, F

0

\D
0

= ; is a necessary condition for the point x̄ being a local minimizer.
By the result of separation of two convex sets, F

0

\D
0

= ; implies that there exist
u
0

, u
i

, i 2 I such that

u
0

rf(x̄) +
X

i2I

u
i

rg
i

(x̄) = 0 (2.7)

(u
0

,u
I

) � 0 (2.8)

(u
0

,u
I

) 6= 0, (2.9)

where u

I

= {u
i

}
i2I .

Conditions (2.7-2.9), together with the feasibility condition, x̄ 2 X
g

, are called FJ
(short for Fritz John) conditions, and points satisfying FJ conditions are called FJ
points. It is shown above that FJ conditions are necessary conditions of a point being
a local minimizer. However, FJ conditions may be trivial: each point withrg

i

(x̄), i 2
I being linearly dependent is an FJ point, and in some instances, each feasible
solution could be an FJ point (see examples in [12]). If rg

i

(x̄), i 2 I are linearly
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independent, it must be true that u
0

> 0, which leads to KKT (short for Karush-
Kuhn-Tucker) conditions. The KKT conditions are precisely the FJ conditions with
the added requirement that u

0

> 0, and they encompass FJ points for which there
exist values (u

0

,u
I

) such that u
0

> 0 and hence force the gradient of objective
function to play a role in the optimality conditions.

When rg
i

(x̄), i 2 I are linearly independent, without loss of generality, we can
let u

0

be equal to one in the conditions (2.7-2.9), which then becomes

rf(x̄) +
X

i2I

u
i

rg
i

(x̄) = 0

u
i

� 0, i 2 I

As g
i

for i /2 I are also di↵erentiable at x̄, the forgoing conditions can also be written
as

rf(x̄) +
mX

i=1

u
i

rg
i

(x̄) = 0

u
i

g
i

(x̄) = 0, i = 1, . . . ,m

u
i

� 0, i = 1, . . . ,m.

Here, for i /2 I, as g
i

(x̄) < 0, the condition in the second equation will force u
i

to
be zero, which results in disappearance of u

i

rg
i

(x̄) for i /2 I in the first equation.
These conditions, together with the feasibility condition, are called KKT conditions:

g(x̄)  0 (2.10)

x̄ 2 X
0

(2.11)

u
i

g
i

(x̄) = 0, i = 1, . . . ,m (2.12)

u � 0 (2.13)

rf(x̄) +rg(x̄)u = 0, (2.14)

in which u = {u
i

}m
i=1

and rg(x̄) = (rg
1

(x̄), . . . ,rg
m

(x̄)) 2 Rn⇥m. The scalars u
i

are called the Lagrangian (or Lagrange) multipliers. The requirement that g
i

(x̄) 
0, i = 1, . . . ,m, x̄ 2 X

0

is called the primal feasibility condition, whereas the condition
rf(x̄) +

P
m

i=1

u
i

rg
i

(x̄) = 0, u
i

� 0, i = 1, . . . ,m is referred to as the dual feasibility
condition. The restriction u

i

g
i

(x̄) = 0, i = 1, . . . ,m is called the complementary
slackness condition. Any point x̄ meeting the KKT conditions, i.e., there exist
Lagrangian multipliers such that conditions (2.10-2.14) hold, is called a KKT point.

It should be pointed out that when X
0

is an open set and the requirement is
met that rg

i

(x̄), i 2 I are linearly independent, KKT conditions are necessary local
optimality conditions. If the linear independence does not hold true at a local so-
lution, there may not exist multipliers such that conditions (2.12-2.14) are satisfied
and hence it is not a KKT point.
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Next, consider the general problem with both inequality and equality constraints.
KKT conditions can be written as:

g(x̄)  0 (2.15)

h(x̄) = 0 (2.16)

x̄ 2 X
0

(2.17)

u
i

g
i

(x̄) = 0, i = 1, . . . ,m (2.18)

u � 0 (2.19)

rf(x̄) +rg(x̄)u +rh(x̄)v = 0, (2.20)

where v = {v
i

}l
i=1

and rh(x̄) = (rh
1

(x̄), . . . ,rh
l

(x̄)) 2 Rn⇥l.
Similarly, for the general problem, KKT conditions may not be necessary for a

point being a local solution. There are several requirements under which the KKT
conditions become necessary for a point being a local solution. These requirements
are referred to as constraint qualifications. The requirement that rg

i

(x̄), i 2 I
are linearly independent is called linear independence constraint qualification for the
problem with only inequality constraints. For the general problem, with both in-
equality and equality constraints, the linear independence constraint qualification is
that

rg
i

(x̄), i 2 I and rh
i

(x̄), i = 1, . . . , l are linearly independent.

For the convex problem (2.6), a widely known constraint qualification is the one
called Slater’s constraint qualification: there exists a feasible solution such that

g(x) < 0.

Under certain convexity assumptions on f , g
i

and h
i

, the KKT conditions will be
su�cient local optimality conditions. Let x̄ be a KKT point. If h

i

, i = 1, . . . , l are
a�ne functions and f and g

i

, i 2 I are convex in the neighbourhood N
"

(x̄) for some
" > 0, then x̄ is a local minimizer. Immediately, for the convex problem (2.6), any
KKT point is a local minimizer and, actually, a global minimizer. Thus, when the
Slater’s constraint qualification holds true, the KKT conditions become necessary
and su�cient for a point being an optimal solution to the convex problem (2.6);
that is, x̄ is an optimal solution of (2.6) if and only if there exists (u,v) such that
conditions (2.15-2.20) hold true.

Saddle point optimality conditions

The Lagrangian function1 for the problem (2.5) is defined as

L(x,u,v) = f(x) + u

T

g(x) + v

T

h(x).

1It should be noticed that the original definition of Lagrangian function comes from Lagrange’s
work on applying the principle of stationary action to classical mechanics [80].
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A solution (x̄, ū, v̄) is called a saddle point of the Lagrangian function if x̄ 2 X
0

,
ū � 0 and

L(x̄,u,v)  L(x̄, ū, v̄)  L(x, ū, v̄) (2.21)

for all x 2 X
0

and all (u,v) 2 Rm+l with u � 0. The equation (2.21) implies that x̄

minimises L(x, ū, v̄) over X
0

, i.e.,

L(x̄, ū, v̄) = min {L(x, ū, v̄) | x 2 X
0

} , (2.22)

and (ū, v̄) maximises L(x̄,u,v) over all (u,v) 2 Rm+l with u � 0, i.e.,

L(x̄, ū, v̄) = max
�
L(x̄,u,v) | (u,v) 2 Rm+l,u � 0

 
. (2.23)

If (x̄, ū, v̄) is a saddle point of the Lagrangian function, then x̄ is a global so-
lution of the problem (2.5). From the primal feasible condition and complementary
slackness condition, we have

f(x̄) = L(x̄, ū, v̄).

Moreover, since h(x) = 0 and ū

T

g(x)  0 hold true for each feasible solution x, we
have

L(x, ū, v̄) = f(x) + ū

T

g(x) + v̄

T

h(x)  f(x).

By the equation (2.22), it is proved that f(x̄)  f(x) for all feasible solutions x, and
thus x̄ is a global solution.

A saddle point is always a KKT point. If (x̄, ū, v̄) is a saddle point, it is clear
that we must have g(x̄)  0 and h(x̄) = 0, otherwise the right side of the equation
(2.23) will be +1. From the inequality

f(x̄) + ū

T

g(x̄) + v̄

T

h(x̄) � f(x̄) + u

T

g(x̄) + v

T

h(x̄),

we have ū

T

g(x̄) � u

T

g(x̄). If let u = 0, we then have ū

T

g(x̄) � 0. But the
feasibility of x̄ shows that ū

T

g(x̄)  0. Thus, it must be true that ū
i

g
i

(x̄) = 0, i =
1, . . . ,m, which is the complementary slackness condition. As X

0

is supposed to be
an open set, the minimiser x̄ is a stationary point of L(x, ū, v̄), that is,

r
x

L(x̄, ū, v̄) = rf(x̄) +rg(x̄)ū +rh(x̄)v̄ = 0.

Therefore, x̄ is a KKT point and (ū, v̄) are the corresponding Lagrangian multipliers.
However, a KKT point is generally not a saddle point, since it may not even a local

minimizer. Suppose x̄ is a KKT point and (ū, v̄) are the corresponding Lagrangian
multipliers. Then, if x̄ solves the minimization problem in (2.22), (x̄, ū, v̄) is a saddle
point. It is obvious that if L(x, ū, v̄) is a convex function with respect to x, x̄ is
a minimizer of L(x, ū, v̄) since r

x

L(x̄, ū, v̄) = 0. Hence, for the convex problem
(2.6), any KKT points are saddle points. Therefore, the KKT conditions and saddle
point optimality conditions are equivalent for the convex problem (2.6), which further
implies that when the Slater’s condition holds true, x̄ is a global solution of (2.6) if
and only if there exist (ū, v̄) such that (x̄, ū, v̄) is a saddle point for the Lagrangian
function.
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2.3 Lagrangian duality and convex optimization
problems

Given the problem (2.5), several closely related problems can be derived, which are
called dual problems. The original problem can be solved indirectly by solving its dual
problem and the latter may be easier than the former. Among the various duality
formulations, the Lagrangian duality formulation is most well-known. It has been
successfully applied to deal with convex and nonconvex problems and also discrete
optimization problems.

2.3.1 Lagrangian duality

Let
d(u,v) = inf{L(x,u,v) | x 2 X

0

}.
The Lagrangian dual problem for the problem (2.5) is defined as

sup
u,v

d(u,v) (2.24)

s.t. u � 0.

Accordingly, the problem (2.5) is called the primal problem. The function d(u,v)
is called the Lagrangian dual function, and the optimization problem that evaluates
d(u,v) is sometimes referred to as the Lagrangian dual subproblem. The Lagrangian
multipliers u and v are also called dual variables. When the supremum is achievable,
we can replace sup with max.

Notice that it is the set X
0

where the infimum is taken for the Lagrangian function.
Given an optimization problem, di↵erent Lagrangian dual functions can be defined by
handling di↵erently the constraints, i.e., which constraints are treated as g(x)  0
and h(x) = 0 and which constraints are included in the set X

0

. This choice can
a↵ect both the optimal value of (2.24) and the e↵ort expended in evaluating and
updating the dual function during the course of solving the dual problem. Hence, an
appropriate selection of the set X

0

must be made, depending on the structure of the
problem and the purpose for solving (2.24).

There are significant relations between the primal and dual problems. For any
feasible solution x to the primal problem (2.5) and any feasible solution (u,v) to
the dual problem (2.24), we have

d(u,v)  f(x) + u

T

g(x) + v

T

h(x)  f(x),

where the second inequality results from h(x) = 0 and u

T

g(x)  0. It shows that
the objective value of any feasible solution to the dual problem yields a lower bound
on the objective value of any feasible solution to the primal problem. This result is
referred to as the weak duality. Immediately, we have

sup{d(u,v) | u � 0}  inf{f(x) | x 2 X
0

, g(x)  0,h(x) = 0}. (2.25)
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Hence, if there exist x̄ and (ū, v̄) such that f(x̄) = d(ū, v̄), then x̄ and (ū, v̄) are
optimal solutions to (2.5) and (2.24), respectively.

The Lagrangian dual function d(u,v) may assume the value of �1 for some
vectors (u,v). For example, if inf{f(x) | x 2 X

0

, g(x)  0,h(x) = 0} = �1, then
d(u,v) = �1 for each u � 0. Whereas, if sup{d(u,v) | u � 0} = 1, then the
primal problem has no feasible solution, since d(u,v) is upper bounded by f(x).

If the strict inequality in (2.25) holds true, there is a duality gap between the
primal and dual problems. Only when there is no duality gap, the primal problem
can be solved by solving the dual problem; otherwise, the dual problem is only able
to provide a lower bound for the primal problem and it is called the Lagrangian
relaxation problem. If the equality in (2.25) holds, i.e.,

sup{d(u,v) | u � 0} = inf{f(x) | x 2 X
0

, g(x)  0,h(x) = 0}, (2.26)

then we say that strong duality holds.
The strong duality generally does not hold for the problem (2.5). Whereas, for

the convex problem (2.6), we usually have strong duality, but not always. Suppose
X

0

is a nonempty open set. Then, for the convex problem (2.6), (x̄, ū, v̄) satisfies
the KKT conditions if and only if x̄ and (ū, v̄) are optimal solutions to the primal
and dual problems and f(x̄) = d(ū, v̄). The proof is direct and simple. If x̄ is
a KKT points with Lagrangian multipliers (ū, v̄), then x̄ must be a minimiser of
L(x, ū, v̄) over X

0

, because L(x, ū, v̄) is a convex function with respect to x and the
dual feasible conditions implies that r

x

L(x̄, ū, v̄) = 0. Thus, we have

f(x̄) = f(x̄) + ū

T

g(x̄) + v̄

T

h(x̄) = min{L(x, ū, v̄) | x 2 X
0

} = d(ū, v̄),

that is, x̄ and (ū, v̄) are optimal solutions to the primal and dual problems with no
duality gap. Conversely, from the strong duality f(x̄) = d(ū, v̄), equality holds true
through the following

d(ū, v̄) = inf{L(x, ū, v̄) | x 2 X
0

}
 f(x̄) + ū

T

g(x̄) + v̄

T

h(x̄)

= f(x̄) + ū

T

g(x̄)

 f(x̄).

In particular, we have ū

T

g(x̄) = 0 and x̄ is a minimizer of L(x, ū, v̄) in the open set
X

0

, which implies r
x

L(x̄, ū, v̄) = 0. Hence, (x̄, ū, v̄) satisfies the KKT conditions.
As discussed in the previous section, for the convex problem (2.6), the KKT

conditions are su�cient conditions for the point being a global solution, but not
necessary conditions. When any of the constraint qualifications holds true, a global
solution x̄ must be also a KKT point, and then there exist Lagrangian multipliers
(ū, v̄) such that (ū, v̄) solves the dual problem and there is no duality gap. For
example, if the Slater’s constraint qualification holds true, i.e., there is a point x 2 X

0

such that
g(x) < 0, and Ax = b,
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we have the strong duality.
For the convex problem (2.6) with a nonempty open set X

0

, the strong duality
with the infimum in (2.26) being achievable is also equivalent to the existence of a
saddle point: (x̄, ū, v̄) is a saddle point of the Lagrangian function if and only if x̄

and (ū, v̄) are optimal solutions to the primal and dual problems with no duality
gap. It is because (x̄, ū, v̄) being a saddle point is equivalent to it satisfying the
KKT conditions. The equivalence can also be seen in another way. The following
equality holds true

inf{f(x) | g(x)  0,h(x) = 0,x 2 X
0

} = inf
x2X0

sup
(u,v),u�0

L(x,u,v),

because the supremum of L(x,u,v) over (u,v) with u � 0 will be infinity if x does
not satisfy g(x)  0 and h(x) = 0. Then, the strong duality (2.26) can also be
expressed as

sup
(u,v),u�0

inf
x2X0

L(x,u,v) = inf
x2X0

sup
(u,v),u�0

L(x,u,v).

Thus, if the infimum and supremum are achievable, there must be a saddle point.

2.3.2 Convex optimization problems

Some broadly known convex optimization problems and their Lagrangian dual prob-
lems are presented.

Linear program

The linear program (LP) is normally written in the following standard form:

min
x

c

T

x (2.27)

s.t. Ax = b

x � 0,

where A 2 Rl⇥n, c 2 Rn and b 2 Rl. The problem has inequality constraints
g(x) = �x  0 and equality constraints h(x) = Ax � b, with X

0

= Rn.
The Lagrangian function for the problem (2.27) is

L(x,u,v) = c

T

x � u

T

x + v

T (Ax � b),

from which we obtain the dual function,

d(u,v) = inf
x2Rn

L(x,u,v) =

(
�v

T

b AT

v � u + c = 0

�1 otherwise
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The Lagrangian dual problem of the standard LP is then formulated as

max
u,v

� v

T

b (2.28)

s.t. AT

v � u + c = 0

u � 0.

The dual variable u can be omitted, and the equality constraints will become in-
equality constraints. The problem (2.28) is then equivalent to

max
v

� v

T

b (2.29)

s.t. AT

v + c � 0,

which is an LP in inequality form. The strong duality between (2.27) and (2.29)
always holds true.

Conversely, if the problem (2.29) is treated as the primal problem, then its dual
problem is exactly the problem (2.27). It can be verified by rewriting the problem
(2.29) into an equivalent minimization problem and then applying the procedure of
constructing the Lagrangian dual problem.

Quadratic program

The problem (P
0

) is called a quadratic program (QP), if the objective function is
a quadratic function, and the constraint functions are a�ne. If the inequality con-
straints are also quadratic functions, the problem is then a quadratically constrained
quadratic problem (QCQP):

min
x

1

2
x

TQ
0

x � x

T

f

0

(2.30)

s.t.
1

2
x

TQ
i

x � x

T

f

i

 c
i

, i = 1, . . . ,m

Ax = b,

where Q
i

2 Sn, i = 0, 1, . . . ,m, f

i

2 Rn, i = 0, 1, . . . ,m, b 2 Rl, and c
i

2 R, i =
1, . . . ,m. Here, for a general QCQP, Q

i

, i = 0, 1, . . . ,m are not supposed to be
positive semidefinite. While if Q

i

, i = 0, 1, . . . ,m are positive semidefinite, the target
and inequality constraint functions are convex and the problem becomes a convex
QCQP.

The Lagrangian function for the problem (2.30) is

L(x,u,v) =
1

2
x

TG(u)x � x

T

f(u)� u

T

c � v

T

b

where

G(u) = Q
0

+
mX

i=1

u
i

Q
i

, and f(u) = f

0

+
mX

i=1

u
i

f

i

� AT

v.
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Notice that given (u,v), the positive semidefiniteness of Q
0

+
P

m

i=1

u
i

Q
i

is only
necessary for L(x,u,v) being lower bounded; if Q

0

+
P

m

i=1

u
i

Q
i

has eigenvalues of
the value of 0, the su�ciency will be achieved by recruiting the additional condition
that f

0

+
P

m

i=1

u
i

f

i

� AT

v is perpendicular to the subspace generated from the
corresponding eigenvectors.

If Q
0

� 0, we have Q
0

+
P

m

i=1

u
i

Q
i

� 0 for any u � 0 and thus the Lagrangian
function is always lower bounded. The dual function then can be analytically defined
and the dual problem can be formulated as

max � 1

2
f(u)TG(u)�1

f(u)� u

T

c � v

T

b (2.31)

s.t. u � 0.

We have the strong duality between (2.30) and (2.31) if the Slater’s condition holds
true.

Second-order cone program

A quadratic program is called a second-order cone program (SOCP) if it is of the
form

min
x

f

T

0

x (2.32)

s.t. kQ
i

x + f

i

k  c

T

i

x + d
i

, i = 1, . . . ,m

Ax = b,

where Q
i

2 Rn

i

⇥n and A 2 Rl⇥n. Here, the matrices Q
i

need not be symmetric.
The inequality constraints in (2.32) require that (Q

i

x + f

i

, cT

i

x + d
i

) 2 SOCn, and
they are referred to as second-order cone constraints. By the fact that each convex
quadratic constraint can be written in the form of a second-order cone constraint
with c

i

= 0, a convex QCQP can also be formulated as an SOCP.
Let

y

i

= Q
i

x + f

i

and t
i

= c

T

i

x + d
i

,

and place the constraints ky
i

k  t
i

into the set X
0

, that is,

X
0

= {(x,y, t) | x 2 Rn, ky
i

k  t
i

, i = 1, . . . ,m},

where y = (y
1

, . . . ,y
m

) and t = {t
i

}m
i=1

. The Lagrangian function for the SOCP is

L(x,y, t,u,v,w) = (f
0

�
mX

i=1

QT

i

u

i

�
mX

i=1

v
i

c

i

+ AT

w)Tx +
mX

i=1

(uT

i

y

i

+ v
i

t
i

)

�
mX

i=1

u

T

i

f

i

� v

T

d � w

T

b
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where u = (u
1

, . . . ,u
m

), v = {v
i

}m
i=1

, w = {w
i

}l
i=1

and d = {d
i

}m
i=1

. The dual
function is lower bounded only when the first item in the Lagrangian function is zero
and (u

i

, v
i

) 2 SOCn for i = 1, . . . ,m. Thus, the dual problem for the problem (2.32)
is

max
u,v,w

�
mX

i=1

u

T

i

f

i

� v

T

d � w

T

b (2.33)

s.t. f

0

�
mX

i=1

QT

i

u

i

�
mX

i=1

v
i

c

i

+ AT

w = 0

ku
i

k  v
i

, i = 1, . . . ,m.

The Slater’s conditions are

kQ
i

x + f

i

k < c

T

i

x + d
i

, i = 1, . . . ,m

for some x 2 Rn.

Semidefinite program

A semidefinite program (SDP) is an optimization problem in the space Sn of the form

min
X

C ·X (2.34)

s.t. A
i

·X = b
i

, i = 1, . . . ,m

X 2 Sn

+

,

where X is the variable in Sn, and C,A
i

2 Sn, i = 1, . . . ,m. As mentioned pre-
viously, C ·X = tr(CX) denotes the inner product. There is an analogy between
LPs and SDPs: in the SDP, the objective function and equality constraints are also
linear, in the space Sn, and the positive semidefiniteness of X is corresponding to
the nonnegativity of x.

Let X
0

= Sn

+

. The Lagrangian function for the SDP is then

L(X,u) = C ·X +
mX

i=1

u
i

(A
i

·X � b
i

)

= (C +
mX

i=1

u
i

A
i

)·X � u

T

b,

in which u = {u
i

}m
i=1

and b = {b
i

}m
i=1

. Since the cone Sn

+

is self-dual, if C +P
m

i=1

u
i

A
i

/2 Sn

+

, the dual function will be equal to �1. Thus, the dual problem for
(2.34) is

max
u

� u

T

b (2.35)

s.t. C +
mX

i=1

u
i

A
i

⌫ 0.
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For the SDP, the Slater’s condition is that there exists a feasible solution X 2 Sn

such that X � 0.

Copositive program

If Sn

+

expands into COPn, the SDP problem becomes a copositive program (COP),

min
X

C ·X (2.36)

s.t. A
i

·X = b
i

, i = 1, . . . ,m

X 2 COPn.

Since Sn

+

✓ COPn, every SDP is a COP. Comparing to SDPs, the Lagrangian dual
problem can be similarly constructed for the COP. As the dual cone of COPn is CPn,
the dual function is equal to �u

T

b when C +
P

m

i=1

u
i

A
i

2 CPn; otherwise, the dual
function is unbounded below. So the dual problem is

max
u

� u

T

b (2.37)

s.t. C +
mX

i=1

u
i

A
i

2 CPn.

The Slater’s condition for the COP is that there exists a feasible solution X of (2.36)
such that X 2 intCOPn.

Geometric program

An optimization problem of the following form is called a geometric program (GP),

min
x

f
0

(x) (2.38)

s.t. f
i

(x)  1, i = 1, . . . ,m

h
i

(x) = 1, i = 1, . . . , l,

where f
i

are posynomials,

f
i

(x) =
K

iX

k=1

↵
ik

x
a

(1)
ik

1

x
a

(2)
ik

2

· · · xa

(n)
ik

n

, i = 0, 1, . . . ,m,

and h
i

are monomials,

h
i

(x) = �
i

x
c

(1)
i

1

x
c

(2)
i

2

· · · xc

(n)
i

n

, i = 1, . . . , l.

Here, ↵
ik

> 0, i = 0, 1, . . . ,m, k = 1, . . . , K
i

and �
i

> 0, i = 1, . . . , l. The problem
(2.38) is the standard form of a GP. The GP in the standard form is not a convex
optimization problem, since posynomials are not convex functions. However, it can
be transformed to a convex problem by a change of variables.
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Let y
i

= log x
i

, b
ik

= log↵
ik

and d
i

= log �
i

. The problem (2.38) can be equiva-
lently turned into the following problem:

min
y

K0X

k=1

exp(aT

0k

y + b
0k

) (2.39)

s.t.
K

iX

k=1

exp(aT

ik

y + b
ik

)  1, i = 1, . . . ,m

exp(cT

i

y + d
i

) = 1, i = 1, . . . , l,

where a

ik

= {a(j)
ik

}n
j=1

and c

i

= {c(j)
i

}n
j=1

, which is further equivalent to

min
y

f̃
0

(y) = log
K0X

k=1

exp(aT

0k

y + b
0k

) (2.40)

s.t. f̃
i

(y) = log
K

iX

k=1

exp(aT

ik

y + b
ik

)  0, i = 1, . . . ,m

h̃
i

(y) = c

T

i

y + d
i

= 0, i = 1, . . . , l.

By the fact that the log-sum-exp function

g(x) = log
nX

i=1

exp(x
i

)

is convex, the problem (2.40) is a convex problem. It is referred to as the convex
form for the GP.

In order to obtain the dual problem, first let

t
ik

= a

T

ik

y + b
ik

, i = 0, 1, . . . ,m, k = 1, . . . , K
i

,

and replace a

T

ik

y + b
ik

in the problem (2.40) with t
ik

. The Lagrangian function is
then formulated as

L(y, t,u,v,w) = log
K0X

k=1

exp(t
0k

) +
mX

i=1

u
i

log
K

iX

k=1

exp(t
ik

)

+
mX

i=0

K

iX

k=1

v
ik

(aT

ik

y + b
ik

� t
ik

) +
lX

i=1

w
i

(cT

i

y + d
i

),

in which t = {t
ik

}, u = {u
i

}, v = {v
ik

} and w = {w
i

}. Given (u,v,w), the
Lagrangian function L is convex with respect to t and linear with respect to y. Take
derivatives of L with respect to (y, t), we can analytically define the dual function
as

d(v,w) = �
K0X

k=1

v
0k

log v
0k

�
mX

i=1

K

iX

k=1

v
ik

log
v
ikP

K

i

k=1

v
ik

+
mX

i=0

K

iX

k=1

v
ik

b
ik

+
lX

i=1

w
i

d
i

.
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Notice that the multipliers u
i

do not appear in the dual function, which results from
the relation

P
K

i

k=1

v
ik

= u
i

, induced by letting the derivatives of L be equal to zero.
Therefore, the dual problem is

max
v,w

d(v,w) (2.41)

s.t.
mX

i=0

K

iX

k=1

v
ik

a

ik

+
lX

i=1

w
i

= 0,

K0X

k=1

v
0k

= 1,

v
ik

� 0, i = 0, . . . ,m, k = 1, . . . , K
i

.

The Slater’s condition for a GP requires that there exists a point y such that the
inequalities constraints hold strictly,

log
K

iX

k=1

exp(aT

ik

y + b
ik

) < 0, i = 1, . . . ,m.
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Chapter 3

Canonical Duality Theory

3.1 Problem statements

Consider the following global optimization problem:

(P) min
x

⇧(x) = g
0

(x) (3.1)

s.t. g
i

(x)  0, i = 1, . . . ,m,

x 2 Rn.

It is assumed that g
i

(x), i = 0, 1, . . . ,m are functions (not necessary convex) that
can be written as

g
i

(x) = V
i

(⇤
i

(x)) + ⇤
i0

(x)

with ⇤
i

(x) : Rn ! E
i

✓ Rp and ⇤
i0

(x) : Rn ! E
i0

✓ R being twice continuously
di↵erentiable, where ⇤

i

(x) = {⇤
ik

(x)}p
k=1

, and V
i

(⇠
i

) : Rp ! R being strictly convex
and di↵erentiable. We denote as

X = {x 2 Rn | g
i

(x)  0, i = 1, . . . ,m}

the feasible region of the problem (P). Of course, It is assumed that the problem
(P) has at least one optimal solution in X .

A broad range of optimization problems can be formulated as the problem (P),
which is illustrated by the applications in the following chapters. In [83], a related
problem is discussed. Based on the problem (P), the three parts of the canonical
duality theory are detailedly presented. The complementary-dual principle is further
developed, and it is proved that there exists a one-to-one correspondence between
KKT points of the primal problem and the canonical dual problem and each pair of
corresponding KKT points share the same function value. Then the triality theory is
presented, and it is proved that solving globally the primal problem becomes a convex
optimization problems as long as there is a KKT point in the positive semidefinite
region in the dual space. It is shown that the canonical duality covers the classical
Lagrangian duality for convex optimization problems.
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The rest of the chapter is organised as follows: the canonical duality theory for
the problem (P) is discussed in Section 3.2. Then, in Section 3.3, the case where
operators are quadratic is discussed, for which the triality theory is proposed and
proved. All the results are explained by examples in the end.

3.2 Canonical duality theory

3.2.1 Canonical dual problem

For each of V
i

(⇠
i

), i = 0, 1, . . . ,m, a duality mapping is introduced

&

i

= {&
ik

}p
k=1

= rV
i

(⇠
i

) : E
i

! E⇤
i

✓ Rp. (3.2)

If V
i

, i = 0, 1, . . . ,m are canonical functions [38], that is, the inverse mapping
(rV

i

)�1(&
i

) is single-valued, we have

⇠

i

= rV ⇤
i

(&
i

)

where V ⇤
i

(&
i

) is the conjugate of V
i

(⇠
i

) and it is defined by

V ⇤
i

(&
i

) = sup
⇠

i

2Rn

{&T

i

⇠

i

� V
i

(⇠
i

)}.

Since V
i

, i = 0, 1, . . . ,m are assumed to be strictly convex in Rp, by Theorem 26.3
[106] the conjugate functions V ⇤

i

(&
i

) are di↵erentiable. Then the following equivalence
holds true:

&

i

= rV
i

(⇠
i

) , ⇠

i

= rV ⇤
i

(&
i

) , ⇠

T

i

&

i

= V
i

(⇠
i

) + V ⇤
i

(&
i

). (3.3)

From the equation (3.3), we then have

V
i

(⇤
i

(x)) = &

T

i

⇤
i

(x)� V ⇤
i

(&
i

) (3.4)

for each x satisfying &

i

= rV
i

(⇤
i

(x)).
Let ⇠ = (⇠

0

, ⇠
1

, . . . , ⇠
m

), & = (&
0

, &
1

, . . . , &
m

), E
a

= E
0

⇥ E
1

⇥ · · · ⇥ E
m

and E⇤
a

=
E⇤
0

⇥ E⇤
1

⇥ · · · ⇥ E⇤
m

. The pair (⇠, &) is called canonical duality pair on E
a

⇥ E⇤
a

. As
the Lagrangian is introduced in Lagrangian duality, here the total complementary
function [43, 45, 51, 47, 56, 116] (or the extended Lagrangian [38, 54]) is defined from
Rn ⇥ Rm

+

⇥ E⇤
a

to R:

⌅(x,�, &) = ⇤
00

(x) + &

T

0

⇤
0

(x)� V ⇤
0

(&
0

) +
mX

i=1

�
i

(⇤
i0

(x) + &

T

i

⇤
i

(x)� V ⇤
i

(&
i

)),

where � = {�
i

}m
i=1

2 Rm

+

are the Lagrangian multipliers associated with inequality
constraints g

i

(x)  0, i = 1, . . . ,m. From the total complementary function, the
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canonical dual function is then defined by

⇧d(�, &) = ext
x2Rn{⌅(x,�, &)}

= U(�, &)� V ⇤
0

(&
0

)�
mX

i=1

�
i

V ⇤
i

(&
i

), (3.5)

where

U(�, &) = ext
x2Rn{⇤

00

(x) + &

T

0

⇤
0

(x) +
mX

i=1

�
i

(⇤
i0

(x) + &

T

i

⇤
i

(x))}

and ext{·} denotes computing extrema for the function in braces.
Since ⌅ is di↵erentiable with respect to x, all extrema happen at critical points.

Let F (x,�, &) = {F
i

(x,�, &)}n
i=1

denote the partial derivative of the function in
U(�, &) with respect to x,

F (x,�, &) = r⇤
00

(x) +r⇤
0

(x)&
0

+
mX

i=1

�
i

(r⇤
i0

(x) +r⇤
i

(x)&
i

), (3.6)

which is also the partial derivative of ⌅(x,�, &) with respect to x. As ⇤
i

(x), i =
0, 1, . . . ,m are assumed twice continuously di↵erentiable, F

i

(x,�, &), i = 1, . . . , n
then have continuous partial derivatives with respect to x. On the other hand, with
respect to (�, &), F

i

(x,�, &), i = 1, . . . , n also have continuous partial derivatives.
Given a pair (�, &), any stationary point x in (3.5) is a solution of the following
system of equations

F (x,�, &) = 0. (3.7)

By the implicit function theorem, in an appropriate neighborhood of each (x,�, &)
that satisfies (3.7) and has a nonzero Jacobin

J
F

= det(
@F (x,�, &)

@x
) 6= 0, (3.8)

a unique set of continuous functions

x = x(�, &) (3.9)

is determined by the system (3.7). Then, in the neighborhood, the function U(�, &)
and thus the dual function ⇧d(�, &) are well-defined. Substituting x with x(�, &) in
U(�, &), the dual function ⇧d(�, &) can then be rewritten as

⇧d(�, &) =⇤
00

(x(�, &)) + &

T

0

⇤
0

(x(�, &))� V ⇤
0

(&
0

)+
mX

i=1

�
i

(⇤
i0

(x(�, &)) + &

T

i

⇤
i

(x(�, &))� V ⇤
i

(&
i

)). (3.10)

27



Because the implicit function theorem also guarantees that the function x(�, &)
is continuously di↵erentiable, the dual function is di↵erentiable. Taking a partial
derivative with respect to �

i

, we have

@⇧d(�, &)

@�
i

=
@x(�, &)

@�
i

F (x,�, &) + ⇤
i0

(x) + &

T

i

⇤
i

(x)� V ⇤
i

(&
i

).

Since F (x(�, &),�, &) = 0, the first item in the partial derivative vanishes. Hence,
we have

@⇧d(�, &)

@�
=
�
⇤

i0

(x) + &

T

i

⇤
i

(x)� V ⇤
i

(&
i

)
 
m

i=1

. (3.11)

Similarly, the partial derivatives of ⇧d(�, &) with respect to & are

@⇧d(�, &)

@&
0

= ⇤
0

(x)�rV ⇤
0

(&
0

), (3.12)

@⇧d(�, &)

@&
i

= �
i

(⇤
i

(x)�rV ⇤
i

(&
i

)) . i = 1, . . . ,m (3.13)

Let S
a

✓ Rm ⇥ E⇤
a

denote a dual feasible region on which the canonical dual
function ⇧d(�, &) is well-defined, that is, for each (�, &) 2 S

a

there exists a vector x

such that (3.7) and (3.8) hold. The canonical dual problem is defined as

(Pd) ext{⇧d(�, &) | � � 0, (�, &) 2 S
a

}. (3.14)

The complementary-dual principle discussed below states that the canonical dual
problem (Pd) is perfectly dual to the primal problem (P), that is, there is no duality
gap between (P) and (Pd). If the global optimality condition holds true, solving the
problem (P), either convex or nonconvex, becomes solving a convex subproblem in
the dual space.

3.2.2 Complementary-dual principle

The duality relation between (P) and (Pd) is illustrated by the following result.

Theorem 1 Assume x̄ is a KKT point of the primal problem (P) with a Lagrangian
multiplier �̄. Let I = {i | �̄

i

> 0} and &̄

i

, i = 0, 1, . . . ,m be any vectors that satisfy
&̄

i

= rV
i

(⇤
i

(x̄)) for i 2 {0} [ I. If (�̄, &̄) 2 S
a

, then (�̄, &̄) is a KKT point of the
dual problem (Pd).

Let (�̄, &̄) be a KKT point of the dual problem (Pd) and x̄ be a vector defined by
(3.9), i.e., x̄ = x(�̄, &̄). If x̄ satisfies g

i

(x̄)  0 for i = 1, . . . ,m, then x̄ is a KKT
point of the primal problem (P) and �̄ is the corresponding Lagrangian multiplier.

Moreover, for both statements, we have

⇧(x̄) = ⌅(x̄, �̄, &̄) = ⇧d(�̄, &̄). (3.15)
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Proof: From the assumption that x̄ is a KKT point of the primal problem (P) and
�̄ is the corresponding the Lagrangian multiplier, the following KKT conditions hold

rg
0

(x̄) +
mX

i=1

�̄
i

rg
i

(x̄) = 0 (3.16)

g
i

(x̄)  0, i = 1, . . . ,m (3.17)

�̄ � 0 (3.18)

�̄
i

g
i

(x̄) = 0, i = 1, . . . ,m (3.19)

The condition (3.16) can also be written as

r⇤
00

(x̄) +r⇤
0

(x̄)rV
0

(⇠̄
0

) +
mX

i=1

�̄
i

�r⇤
i0

(x̄) +r⇤
i

(x̄)rV
i

(⇠̄
i

)
�
= 0, (3.20)

where ⇠̄

i

= ⇤
i

(x̄), i = 0, 1, . . . ,m. By the definition, &̄

i

= rV
i

(⇠̄
i

) for i 2 {0} [ I,
the equation (3.20) means that we have

F (x̄, �̄, &̄) = 0.

Hence, the partial derivatives of ⇧d at (�̄, &̄) will follow the expressions in (3.11-3.13).
By the equivalence in (3.3) and the condition (3.17), we have 0 � g

i

(x̄) = ⇤
i0

(x̄) +
&̄

T

i

⇤
i

(x̄)�V ⇤
i

(&̄
i

), i 2 I. On the other hand, the Fenchel-Young inequality shows that
we always have ⇤

i0

(x)+ &̄

T

i

⇤
i

(x̄)�V ⇤
i

(&̄
i

)  g
i

(x̄)  0 for i 2 {1, 2, . . . ,m}\I. Thus,
there exits a vector ⌘̄ � 0 such that r

�

⇧d(�̄, &̄) + ⌘̄ = 0, where, by the condition
(3.19), we have ⌘̄

i

= 0 for i 2 I. Therefore, (�̄, &̄) and ⌘̄ satisfy the following
conditions

r
�

⇧d(�̄, &̄) + ⌘̄ = 0 (3.21)

r
&0⇧

d(�̄, &̄) = 0 (3.22)

r
&

i

⇧d(�̄, &̄) = 0 (3.23)

�̄ � 0 (3.24)

⌘̄ � 0 (3.25)

�̄
i

⌘̄
i

= 0, i = 1, . . . ,m (3.26)

It is proved that (�̄, &̄) is a KKT point of the dual problem with the multiplier ⌘̄.
Conversely, let ⌘̄ be the multiplier that, together with (�̄, &̄), satisfies the condi-

tions (3.21–3.26). Let I = {i : �̄
i

> 0}. The conditions (3.22) and (3.23) implies that
we have &̄

i

= rV
i

(⇤
i

(x̄)) and g
0

(x̄) = ⇤
i0

(x̄)+V
i

(⇤
i

(x̄)) = ⇤
i0

(x̄)+&̄

T

i

⇤
i

(x̄)�V ⇤
i

(&̄
i

)
for i 2 {0} [ I. Then we have conditions (3.17) and (3.19) hold because of (3.21),
(3.25) and (3.26). The condition (3.16) is proved by the fact that

rg
0

(x̄) +
mX

i=1

�̄
i

rg
i

(x̄) = F (x̄, �̄, &̄) = 0.
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So x̄ is proved to be a KKT point of the primal problem with the multiplier �̄.
Since x̄ and (�̄, &̄) satisfy the relation in (3.9), it is obvious that

⇧d(�̄, &̄) = ⌅(x̄, �̄, &̄).

Because of the condition (3.19) and ⇧(x̄) = g
0

(x̄) = ⇤
00

(x̄) + &

T

0

⇤
0

(x̄)� V ⇤
0

(&
0

), we
have

⌅(x̄, �̄, &̄) = ⇧(x̄).

Thus, the equation (3.15) is proved. 2

Given a KKT point of the dual problem, if �̄ > 0, then x̄ must be a feasible
solution of the primal problem. Actually, we have g

i

(x̄) = 0, i = 1, . . . ,m. It is
because, by the condition (3.26), �̄ > 0 implies that ⌘̄ = 0, and, by the condition
(3.23), we have ⇤

i

(x) = rV ⇤
i

(&
i

) for i = 1, . . . ,m. The conditions (3.21–3.23) with
⌘̄ = 0 also means that (�̄, &̄) is a critical point of the dual function. Thus, we have
the following result.

Corollary 2 If (�̄, &̄) 2 S
a

is a critical point of ⇧d(�, &) with �̄ > 0, then the vector
x̄ = x(�̄, &̄) defined by (3.9) is a KKT point of the primal problem (P).

3.2.3 Global optimality condition

Let G(x,�, &) denote the Jacobian matrix of F (x,�, &), that is,

G(x,�, &) =
@F (x,�, &)

@x
.

The matrixG is also the second partial derivative of the total complementary function
⌅(x,�, &) with respect to x. The function ⌅ is certainly twice di↵erentiable on x,
as ⇤

i

(x), i = 0, 1, . . . ,m are assumed to be twice di↵erentiable. Let

S+

c

= {(�, &) 2 S
a

| � � 0, G(x,�, &) ⌫ 0, 8x 2 Rn}.

We have the following results about the global optimality.

Theorem 3 Let (�̄, &̄) be a KKT point of the dual problem (Pd) and x̄ = x(�̄, &̄)
be defined by (3.9). If (�̄, &̄) 2 S+

c

, then (�̄, &̄) is a global maximizer of ⇧d(�, &) on
S+

c

; if, in addition, g
i

(x̄) � 0, i = 1, . . . ,m, then x̄ is a global solution for the primal
problem (P), with

⇧(x̄) = min
x2X

⇧(x) = max
(�,&)2S+

c

⇧d(�, &) = ⇧d(�̄, &̄). (3.27)
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Proof: If (�̄, &̄) 2 S+

c

, the definition of S+

c

implies that the funtcion ⌅(x, �̄, &̄) is
convex with respect to x. Thus, we have

⌅(x̄, �̄, &̄) = min
x2Rn

⌅(x, �̄, &̄)

 min
x2Rn

⇧(x) +
mX

i=1

�̄
i

g
i

(x)

 min
x2Rn

,g

i

(x)0

⇧(x) +
mX

i=1

�̄
i

g
i

(x)

 min
x2Rn

,g

i

(x)0

⇧(x) (3.28)

where the first inequality results from the facts that �̄ � 0, ⇧(x) � &̄

T

0

⇤
0

(x)�V ⇤
0

(&̄
0

)
and g

i

(x) � &̄

T

i

⇤
i

(x)�V ⇤
i

(&̄
i

). While, because (�̄, &̄) is a KKT point and x̄ is defined
by (3.9), as shown in Theorem 1, if g

i

(x̄) � 0, i = 1, . . . ,m, the vector x̄ is a KKT
point of the primal problem and the equation (3.15) holds. Therefore, x̄ must be a
global solution of the primal problem and the first equality in (3.27) is proved.

On the other hand, given x, the function ⌅(x,�, &) is concave with &, because of
the convexity of V ⇤

i

(&
i

), i = 0, 1, . . . ,m. Thus,

⌅(x̄, �̄, &̄) = max
(�,&)2S+

c

⌅(x̄,�, &)

� max
(�,&)2S+

c

min
x2Rn

⌅(x,�, &)

= max
(�,&)2S+

c

⇧d(�, &) (3.29)

where the inequality results from the convexity of ⌅(x,�, &) with respect to x when
(�, &) 2 S+

c

. Combining with the equation (3.15), we have proved that (�̄, &̄) must
be a global solution of the dual function over S+

c

and thus the last equality in (3.27)
is true. 2

By the Corollary 2, if �̄ > 0, the feasibility of x̄ will become redundant.

Corollary 4 Let (�̄, &̄) be a critical point of ⇧d(�, &). If (�̄, &̄) 2 S+

c

and �̄ > 0,
then the vector x̄ = x(�̄, &̄) defined by (3.9) is a global solution of the primal problem
(P).

Combining with the complementary-dual principle, the theorem also indicates
that ⇧d(�̄, &̄) has the smallest value among all the KKT points of the dual problem
with the corresponding x = x(�, &) being feasible.

The dual function ⇧d may not have a maximizer in S+

c

, because the function ⇧d

may not be defined on the boundary of S+

c

. However, the weak duality always holds
true.

Corollary 5 It is always true that

sup
(�,&)2S+

c

⇧d(�, &)  min
x2X

⇧(x). (3.30)
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3.3 Quadratic operators and triality theory

In this section, we discuss the case where the geometrical operator ⇤(x) is quadratic,
which commonly arises in applications.

3.3.1 Canonical duality with quadratic operators

For i = 0, 1, . . . ,m, let

⇤
i0

(x) =
1

2
x

TAi

0

x � x

T

b

i

0

, and ⇤
i

(x) =

⇢
1

2
x

TAi

k

x � x

T

b

i

k

�
p

k=1

, (3.31)

in which Ai

k

2 Sn and b

i

k

2 Rn.
The total complementary function ⌅(x,�, &) in this case can be written as

⌅(x,�, &) =
1

2
x

TG(�, &)x � x

T

f(�, &)� V ⇤
0

(&
0

)�
mX

i=1

�
i

V ⇤
i

(&
i

) (3.32)

with

G(�, &) =A0

0

+
pX

k=1

&
0k

A0

k

+
mX

i=1

�
i

Ai

0

+
mX

i=1

pX

k=1

�
i

&
ik

Ai

k

, and

f(�, &) = b

0

0

+
pX

k=1

&
0k

b

0

k

+
mX

i=1

�
i

b

i

0

+
mX

i=1

pX

k=1

�
i

&
ik

b

i

k

.

Then, the equation (3.7) becomes

F (x,�, &) = G(�, &)x � f(�, &) = 0. (3.33)

So the Jacobin matrix is G(�, &), and the condition (3.8) becomes

det(G(�, &)) 6= 0.

The region S
a

where the dual function is well-defined now can be written as

S
a

= {(�, &) 2 Rm ⇥ E⇤
a

| det(G(�, &)) 6= 0}, (3.34)

and the dual function becomes

⇧d(�, &) = �1

2
f(�, &)TG(�, &)�1

f(�, &)� V ⇤
0

(&
0

)�
mX

i=1

�
i

V ⇤
i

(&
i

). (3.35)

Notice that as the matrix G(�, &) appears in the dual function ⇧d(�, &) in the form of
the inverse. ⇧d(�, &) may converge to infinity as points approach to any point (�, &)
where det(G(�, &)) = 0. So it may not possess Lipschitz continuity around points
with zero determinant of the matrix G. The dual function ⇧d(�, &) is di↵erentiable,
and its partial derivatives (3.11), (3.12) and (3.13) can be obtained by applying the
derivative of the inverse (see Appendix).
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3.3.2 Triality theory

We then consider a case of the problem (P) where there are no inequality constraints:

(P
0

) min
x2Rn

⇧(x). (3.36)

A more special problem of (P
0

) has been addressed in [46, 56]. It is a problem of
minimizing a forth-order (or quartic) polynomial,

min
x2Rn

1

2

mX

k=1

�
k

(
1

2
x

TAk

x � ck)2 +
1

2
x

TQx � x

T

f

in which Q,Ak 2 Sn, f 2 Rn, �
k

2 R
++

and ck 2 R. The objective function
is a discretized form of the so-called double-well potential, first proposed by van
der Waals in thermodynamics in 1895 [108], which is the mathematical model for
natural phenomena of bifurcation and phase transitions in areas such as cosmology,
continuum mechanics, material science, and quantum field theory [57, 71, 75].

As there are no inequality constraints in the problem (P
0

), the variables � and &

i

for i = 1, . . . ,m will disappear from the dual problem and hence & = &

0

2 Rp. The
equation (3.33) then becomes

G(&)x � f(&) = 0, (3.37)

with

G(&) = A0

0

+
mX

k=1

&
k

A0

k

and f(&) = b

0

0

+
mX

k=1

&
k

b

0

k

.

The dual function then becomes

⇧d(&) = �1

2
f(&)TG(&)�1

f(&)� V ⇤
0

(&) (3.38)

with the feasible region

S
a

= {& 2 E⇤
a

| det(G(&)) 6= 0}.
In (3.38), if G(&) � 0, the first item of the dual function ⇧d will be concave in

the neighborhood of &. Combining with the convexity of V ⇤
0

(&), the dual function
⇧d will be concave in the neighborhood. Thus, we have the following result about
the convexity of ⇧d.

Lemma 6 If
S+

c

= {& 2 S
a

| G(&) ⌫ 0}
is convex, the dual function ⇧d is a concave function on S+

c

.

Before we present the following result, another subregion in S
a

is introduced

S�
c

= {& 2 S
a

| G(&) � 0}.
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Theorem 7 (Triality Theorem) Suppose that &̄ is a critical point of the dual
function ⇧d(&) in (3.38) and x̄ = G(&̄)�1

f(&̄).

1. (min-max duality) If &̄ 2 S+

c

, then &̄ is a global maximizer of ⇧d(&) over S+

c

and x̄ is a global minimizer of ⇧(x); moreover, the following equalities hold

⇧(x̄) = min
x2Rn

⇧(x) = max
&2S+

c

⇧d(&) = ⇧d(&̄). (3.39)

2. (double-max duality) If &̄ 2 S�
c

, then &̄ is a local maximizer of ⇧d(&) if and
only if x̄ is a local maximizer of ⇧(x); there exists a neighborhood of (x̄, &̄),
X

o

⇥ S
o

⇢ Rn ⇥ S�
c

, such that

⇧(x̄) = max
x2X

o

⇧(x) = max
&2S

o

⇧d(&) = ⇧d(&̄). (3.40)

3. (double-min duality) If &̄ 2 S�
c

, we have the following cases:

(a) If p = n, then &̄ is a local minimizer of ⇧d(&) if and only if x̄ is a
local minimizer of ⇧(x); there exists a neighborhood of (x̄, &̄), X

o

⇥ S
o

⇢
Rn ⇥ S�

c

, such that

⇧(x̄) = min
x2X

o

⇧(x) = min
&2S

o

⇧d(&) = ⇧d(&̄). (3.41)

(b) If p < n, then &̄ is a local minimizer or a saddle point of ⇧d(&) if and only
if x̄ is a saddle point of ⇧(x);

(c) If p > n, then &̄ is a saddle point of ⇧d(&) if and only if x̄ is a local
minimizer or a saddle point of ⇧(x).

Proof: If &̄ 2 S+

c

, from the global optimality in Theorem 3, it is true that &̄ is a
global maximizer of ⇧d(&) over S+

c

, x̄ = G(&̄)�1

f(&̄) is a global minimizer of (P
0

)
and equalities in (3.39) hold.

In the rest of this proof, we assume that &̄ is a critical point of ⇧d(&) in S�
c

. Since
&̄ is a critical point, we have

0 =
@⇧d(&̄)

@&
k

=
1

2
f(&̄)TG(&̄)�1A0

k

G(&̄)�1

f(&̄)� b

0T

k

G(&̄)�1

f(&̄)� c0
k

� @V ⇤
0

(&̄)

@&
k

,

for k = 1, . . . , p. By substituting G(&̄)�1

f(&̄) with x̄, we then have

rV ⇤
0

(&̄) =

⇢
1

2
x̄

TA0

k

x̄ � x̄

T

b

0

k

�
p

k=1

= ⇤
0

(x̄), (3.42)

which, by (3.3), is equivalent to

&̄ = rV
0

(⇠̄) (3.43)
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where ⇠̄ = ⇤
0

(x̄). Hessian matrices of ⇧(x) and ⇧d(&) at x̄ and &̄ can then be
written as

r2⇧(x̄) = G(&̄) +r⇤
0

(x̄)r2V
0

(⇠̄)r⇤
0

(x̄)T , (3.44)

r2⇧d(&̄) = �r2V ⇤
0

(&̄)�r⇤
0

(x̄)TG(&̄)�1r⇤
0

(x̄). (3.45)

Then Lemma 44 and the fact of r2V ⇤
0

(&̄) = (r2V
0

(⇠̄))�1 show that, by letting
P = G(&̄), U = r2V

0

(⇠̄) and D = r⇤
0

(x̄), we have the following equivalence

r2⇧(x̄) � 0 , r2⇧d(&̄) � 0. (3.46)

Thus, it is proved that &̄ being a local maximizer of (Pd

0

) is equivalent to x̄ being a
local maximizer of (P

0

).
Then we prove the double-min duality. From the expressions in (3.44) and (3.45),

we know that only when the second items in r2⇧(x̄) and r2⇧d(&̄) are positive
definite, the conditions r2⇧(x̄) ⌫ 0 and r2⇧d(&̄) ⌫ 0 may hold true. Thus, when
the condition r2⇧(x̄) ⌫ 0 is true, it can be proved that r2V

0

(⇠̄) is invertible and
rank(r⇤

0

(x̄)) = p. When p = n, the matrix r⇤
0

(x̄) is also invertible. By letting
P = �r⇤

0

(x̄)r2V
0

(⇠̄)r⇤
0

(x̄)T , U = �G(&̄) and D = I in Lemma 44, the following
equivalent relation can be derived

r⇤
0

(x̄)r2V
0

(⇠̄)r⇤
0

(x̄)T +G(&̄) ⌫ 0

() �G(&̄)�1 � �r⇤
0

(x̄)r2V
0

(⇠̄)r⇤
0

(x̄)T
��1 ⌫ 0. (3.47)

The positive semidefiniteness on the right side is further equivalent to

�r⇤
0

(x̄)TG(&̄)�1r⇤
0

(x̄)�r2V
0

(⇠̄)�1 ⌫ 0,

of which the left side is r2⇧d(&̄), as r2V
0

(⇠̄)�1 = r2V ⇤
0

(&̄). Thus, it is proved that
when p = n, &̄ being a local minimizer of (Pd

p

) is equivalent to x̄ being a local
minimizer of (P

p

)
If the second items in r2⇧(x̄) and r2⇧d(&̄) are positive definite, we have the

following inequalities about the rank,

n = rank(r⇤
0

(x̄)r2V
0

(⇠̄)r⇤
0

(x̄)T )  rank(r⇤
0

(x̄))  min{n, p} (3.48)

p = rank(r⇤
0

(x̄)TG(&̄)�1r⇤
0

(x̄))  rank(r⇤
0

(x̄))  min{n, p}. (3.49)

Thus, when p < n, the Hessian r2⇧(x̄) can not be positive semidefinite, otherwise,
as mentioned above, it must be true that rank(r⇤

0

(x̄)) = p, which will cause con-
tradiction in (3.48). Hence, x̄ can not be a local minimizer when p < n. Combining
with the double-max duality, we have proved that &̄ is a local minimizer or a saddle
point of ⇧d(&) if and only if x̄ is a saddle point of ⇧(x). Similarly, when p > n, we
can prove that &̄ is a saddle point of ⇧d(&) if and only if x̄ is a local minimizer or a
saddle point of ⇧(x).

Combining with Theorem 1, equations (3.39), (3.41) and (3.41) are also proved.
2
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3.3.3 Hidden convexity

Three special cases are discussed, which, appearing as nonconvex problems, are ac-
tually equivalent to convex problems. The hidden convex nature of these problems
can be easily verified by examining their canonical dual problems.

Case 1

In the first case, all the matrices in (3.31) are diagonal matrices,

Ai

k

= diag(ai

k

), k = 0, 1, . . . , p, i = 0, 1, . . . ,m,

and, except b

0

0

, all coe�cients of linear items in the quadratic operators all vanish,
that is,

b

0

k

= 0, k = 1, . . . , p, and b

i

k

= 0, k = 0, 1, . . . , p, i = 1, . . . ,m.

For simplicity, we assume that domV ⇤
i

= Rn, i = 0, 1, . . . ,m.
Then, G and f becomes

G(�, &) =diag

 
a

0

0

+
pX

k=1

&
0k

a

0

k

+
mX

i=1

�
i

a

i

0

+
mX

i=1

pX

k=1

�
i

&
ik

a

i

k

!
,

f(�, &) = b

0

0

,

and the canonical dual function in (3.35) can be written as

⇧d(�, &) =� 1

2

nX

j=1

(b0
0j

)2/(a0
0j

+
pX

k=1

&
0k

a0
kj

+
mX

i=1

�
i

ai
0j

+
mX

i=1

pX

k=1

�
i

&
ik

ai
kj

)

� V ⇤
0

(&
0

)�
mX

i=1

�
i

V ⇤
i

(&
i

), (3.50)

where b0
0j

is the jth entry of b

0

0

and ai
kj

is the jth entry of a

i

k

for k = 0, 1, . . . , p, i =
0, 1, . . . ,m.

It is obvious that, as long as b0
0j

6= 0, there is a ‘wall’, the hyperplane defined by
letting the denominator be equal to zero, to which when the point (�, &) approaches
from one side of the wall, the function value converges to �1 or +1. These hyper-
planes form the boundary of the positive semidefinite region S+

c

= {(�, &) | G � 0},
which in this case is a convex polytope, consisting of all points that can make the
denominators be positive. Immediately, we have the following result. The proof of
the result is direct and hence omitted here.

Theorem 8 If, for any j such that the hyperplane

a0
0j

+
pX

k=1

&
0k

a0
kj

+
mX

i=1

�
i

ai
0j

+
mX

i=1

pX

k=1

�
i

&
ik

ai
kj

= 0

contains a part of the boundary of S+

c

, we have b0
0j

6= 0, then there must exist a
critical point of ⇧d(�, &) in S+

c

, and the corresponding vector x = G�1

f is a global
solution of the primal problem.
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Case 2

The second case is of the form of (3.36), where the operator⇤
0

(x) is a scalar function,
hence denoted by ⇤

0

(x). Accordingly, V
0

and the canonical dual function will become
univariant functions. We assume that A0

1

� 0 and domV ⇤
0

= R.
By applying the eigendecomposition, the matrices A0

1

and A0

0

can be simulta-
neously diagonalized. Thus, without loss of generality, we can just consider the
following problem:

min
x2Rn

⇧(x) = V
0

(
1

2
x

T

x � b

T

x) +
1

2
x

Tdiag(q)x � p

T

x, (3.51)

where q = {q
i

}n
i=1

with

q
1

= . . . = q
k

< q
k+1

 . . .  q
n

.

Its canonical dual function is

⇧d(&) = �1

2

nX

i=1

(p
i

+ &b
i

)2

q
i

+ &
� V ⇤

0

(&). (3.52)

The region S+

c

, under the assumption of domV ⇤
0

= R, becomes

S+

c

= {& | & > �q
1

}.
Notice that, if

P
k

i=1

(p
i

� q
1

b
i

)2 6= 0, the line of & = �q
1

is a pole of the dual
function ⇧d(&), i.e., as & approaches to �q

1

from the right side the function value of
⇧d(&) converges to �1. When

P
k

i=1

(p
i

� q
1

b
i

)2 = 0, the first derivative

r⇧d(&) =
1

2

nX

i=1

✓
(p

i

� q
i

b
i

)2

(q
i

+ &)2
� b2

i

◆
�rV ⇤

0

(&)

will be well-defined at & = �q
1

. If r⇧d(�q
1

)  0, because of the strict concavity
of ⇧d, there will not exist any critical points in S+

c

. While for both situations,P
k

i=1

(p
i

� q
1

b
i

)2 6= 0 or r⇧d(�q
1

) > 0 , if lim
&!+1 r⇧d(&) < 0, there must be a

critical point in S+

c

. Hence, we have the following result, which provides necessary
and su�cient conditions for the existence of critical points in S+

c

.

Theorem 9 Assume

lim
&!+1

rV ⇤
0

(&) > �1

2
b

T

b.

The function ⇧d(&) in (3.52) has a critical point in S+

c

if and only if

kX

i=1

(p
i

� q
1

b
i

)2 6= 0 (3.53)

or

1

2

nX

i=k+1

(p
i

� q
i

b
i

)2

(q
i

� q
1

)2
� 1

2
b

T

b �rV ⇤
0

(�q
1

) > 0. (3.54)
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If we define

⇧̄d(&) =

(
⇧d(&) & 2 S+

c

�1

2

P
n

i=k+1

(p

i

�q1b
i

)

2

q

i

�q1
� V ⇤

0

(�q
1

) & = �q
1

the new dual function ⇧̄d(&) is well-defined on

S̄+

a

= {& | & � �q
1

}.
Moreover, it is di↵erentiable, and the derivative r⇧̄d(&) is equal to r⇧d(&). The
following result shows that the problem (3.51) actually possesses hidden convexity.

Theorem 10 Assume

lim
&!+1

rV ⇤
0

(&) > �1

2
b

T

b

and let &̄ be a maximizer of the concave maximization problem

max{⇧̄d(&) | & 2 S̄+

a

}. (3.55)

If &̄ > �q
1

, let

x̄
i

=
p
i

+ &̄b
i

q
i

+ &̄
, i = 1, . . . , n;

if &̄ = �q
1

, let x̄ be any vector satisfying

1

2
x̄

T

x̄ � b

T

x̄ = rV ⇤
0

(�q
1

), and x̄
i

=
p
i

� q
1

b
i

q
i

� q
1

, i = k + 1, . . . , n.

Then, x̄ is a global solution of the primal problem (3.51), and

⇧(x̄) = ⇧̄d(&̄).

Proof: If &̄ > �q
1

, an interior point of S+

c

, it is a critical point, and hence the
point x̄ = G(&̄)�1

f(&̄) is a global solution of the problem (3.51). Now we discuss the
situation when &̄ = �q

1

. By Theorem 9, this situation can only happen when

kX

i=1

(p
i

� q
1

b
i

)2 = 0 and
1

2

nX

i=k+1

(p
i

� q
i

b
i

)2

(q
i

� q
1

)2
� 1

2
b

T

b �rV ⇤
0

(�q
1

)  0.

On the other hand, any solution x̄ with

x̄
i

=
p
i

� q
1

b
i

q
i

� q
1

, i = k + 1, . . . , n, and x̄
i

2 R, i = 1, . . . , k

is a solution of the equation G(&̄)x = f(&̄). Then we have

1

2
x̄

T

x̄ � b

T

x̄ =
kX

i=1

(
1

2
x̄2

i

� b
i

x̄
i

) +
1

2

nX

i=k+1

(p
i

� q
i

b
i

)2

(q
i

� q
1

)2
� 1

2
b

T

b,
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and we are always able to choose x̄
i

, i = 1, . . . , k such that ⇠̄ = 1

2

x̄

T

x̄ � b

T

x̄ =
rV ⇤

0

(�q
1

). By the equivalence in (3.3), it holds true that V
0

(⇠̄) = ⇠̄&̄ � V ⇤
0

(&̄), from
which we have ⇧(x̄) = ⇧̄d(&̄). Thus x̄ is a global solution of the primal problem
(3.51). The theorem is proved. 2

This result shows that, by solving the problem (3.62), which is a convex opti-
mization problem, we can find a global solution for the primal problem (3.51). It
also shows that if the maximizer is on the boundary of S̄+

a

, the primal problem has
infinitely many global solutions.

Case 3

The third case is a constrained problem, with only one constraint:

min
x

⇤
00

(x) (3.56)

s.t. V
1

(⇤
11

(x))  0,

where we assume that the matrix A1

1

in ⇤
11

(x) is positive definite and domV ⇤
1

= R.
Similar to the situation in the case 2 above, A0

0

and A1

1

can be simultaneously
diagonalized, by rotating and scaling the vector x, and the problem (3.56) can be
equivalently transformed into the following problem:

min
x

1

2
x

Tdiag(q)x � p

T

x (3.57)

s.t. V
1

(
1

2
x

T

x � b

T

x)  0,

where the entries of q = {q
i

}n
i=1

are in nondecreasing order, i.e.,

q
1

= . . . = q
k

< q
k+1

 . . .  q
n

.

Its canonical dual function is then

⇧d(�, &) = �1

2

nX

i=1

(p
i

+ �&b
i

)2

q
i

+ �&
� �V ⇤

1

(&). (3.58)

The set S+

c

then is

S+

c

= {(�, &) | � � 0, �& > �q
1

}.
Unfortunately, the set S+

c

is not always convex: if q
1

 0, S+

c

is convex; if q
1

> 0,
S+

c

is not convex. If let ⌧ = �&, we can transform the set S+

c

into a convex one and
cancel the variable & in ⇧d(�, &) by replacing & with ⌧/�. However, the replacing is
not legal when � = 0.

Let

⇧̂d(�, ⌧) = �1

2

nX

i=1

(p
i

+ ⌧b
i

)2

q
i

+ ⌧
� �V ⇤

1

(
⌧

�
), (3.59)
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and
Ŝ+

a

= {(�, ⌧) | � > 0, ⌧ > �q
1

}.
It can be verified that ⇧̂d(�, ⌧) is a convex function over Ŝ+

a

. Inspired by Theorem
9, we have the following result.

Lemma 11 Assume

lim
⌧!+1

rV ⇤
1

(
⌧

�
) > �1

2
b

T

b

for any � > 0. If (�̄, ⌧̄) 2 Ŝ+

a

is a critical point of ⇧̂d(�, ⌧), then we have

kX

i=1

(p
i

� q
1

b
i

)2 6= 0 (3.60)

or

1

2

nX

i=k+1

(p
i

� q
i

b
i

)2

(q
i

� q
1

)2
� 1

2
b

T

b �rV ⇤
1

(
�q

1

�̄
) > 0. (3.61)

However, here only necessary conditions are identified, because it is di�cult to
predict the behavior of ⇧̂d(�, ⌧) when � approaches to the boundary of Ŝ+

a

. If, in
addition, we know the value of ��V ⇤

1

( ⌧
�

) in ⇧̂d(�, ⌧) will converge to �1 when �
approaches to the boundary, the conditions (3.60) and (3.61) will become su�cient
for the existence of a critical point.

Let
S̄+

a

= {(�, ⌧) | � > 0, ⌧ � �q
1

}
and

⇧̄d(�, ⌧) =

(
⇧̂d(�, ⌧) (�, ⌧) 2 Ŝ+

a

�1

2

P
n

i=k+1

(p

i

�q1b
i

)

2

q

i

�q1
� �V ⇤

1

(�q1

�

) ⌧ = �q
1

, � > 0

Then we have the following result, which is similar to Theorem 10.

Theorem 12 Assume

lim
⌧!+1

rV ⇤
1

(
⌧

�
) > �1

2
b

T

b

for any � > 0, and let (�̄, ⌧̄) be a maximizer of the concave maximization problem

max{⇧̄d(�, ⌧) | (�, ⌧) 2 S̄+

a

}. (3.62)

If ⌧̄ > �q
1

, let

x̄
i

=
p
i

+ ⌧̄b
i

q
i

+ ⌧̄
, i = 1, . . . , n;

if ⌧̄ = �q
1

, let x̄ be any vector satisfying

1

2
x̄

T

x̄ � b

T

x̄ = rV ⇤
1

(
�q

1

�̄
), and x̄

i

=
p
i

� q
1

b
i

q
i

� q
1

, i = k + 1, . . . , n.

Then, x̄ is a global solution of the primal problem (3.51), and

⇧(x̄) = ⇧̄d(�̄, ⌧̄).
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3.3.4 Convex optimization for global solutions

From the expression of Hessian matrix of ⇧d(&) in (3.45), it is obvious that if G(&)
is positive definite r2⇧d(&) will be negative definite. Thus, the dual function ⇧d(&)
is concave over S+

c

, and calculating the maximizer over S+

c

, i.e.

max
&2S+

c

⇧d(&) (3.63)

becomes a convex optimization problem. As soon as we solve this convex problem,
the maximizer can be checked: if it is a critical point, the Triality Theorem (Theorem
7) guarantees that the corresponding primal solution is a global solution.

We then discuss the general quartic polynomial problem

min
x2Rn

⇧(x) =
1

2

mX

i=1

(
1

2
x

TA
i

x � x

T

b

i

)2 +
1

2
x

TQx � x

T

p. (3.64)

Its canonical dual function is

⇧d(&) = �1

2
f(&)TG(&)�1

f(&)� 1

2
&

T

&, (3.65)

where

G(&) = Q+
mX

i=1

&
i

A
i

and f(&) = p +
mX

i=1

&
i

b

i

.

By introducing an extra variable t, the maximization problem (3.63) then equiva-
lently becomes

max
&

t (3.66)

s.t. & 2 S+

c

⇧d(&)� t � 0

Let

X =

2

4
2G(&) 0 f(&)

0 2I &

f(&)T &

T �t

3

5 and B =


2G(&) 0

0 2I

�
.

Then ⇧d(&) � t is the Schur complement of B in X. From the Schur complement
condition for positive definiteness, the last constraint in (3.66) is equivalent to

X ⌫ 0.

If relax the semidefinite region S+

c

into {& 2 Rm | G(&) ⌫ 0}, we get an SDP problem

max
&

t (3.67)

s.t. X ⌫ 0

Corollary 13 If &̄ is an optimal solution of the SDP problem (3.67) with G(&̄) � 0,
then it is a critical point of the canonical dual function ⇧d(&) and the corresponding
solution x̄ = G(&̄)�1

f(&̄) is an optimal solution of the quartic polynomial problem
(3.64).
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3.3.5 Examples

In the end, we use examples to illustrate results discussed above. In order to use
graphs to clearly show the duality relations, all examples are of dimensions not larger
than 2.

A strictly convex quadratic function is a natural choice for the function V
i

(⇠
i

),
and it arises in many applications. If all V

i

are quadratic functions, as mentioned
above, the function ⇧(x) becomes a quartic polynomial. This case has been discussed
in [46, 56], where examples can be found for understanding the triality theory.

Here, we discuss a more general case where V
i

could be a quadratic function or a
fourth-order polynomial,

V
i

(⇠
i

) = ↵⇠4
i

,

which is strictly convex when ↵ > 0. Consider the following minimization problem

min
x2Rn

⇢
⇧(x) = W (x) +

1

2
x

TQx � x

T

p

�
,

where

W (x) =
1

4

✓
1

2
x

TA
1

x � x

T

b

1

� c
1

◆
4

+
1

2

✓
1

2
x

TA
2

x � x

T

b

2

� c
2

◆
2

.

Here, A
1

, A
2

, Q 2 S2, b

1

, b
2

,p 2 R2 and c
1

, c
2

2 R. Its canonical dual function, which
is of dimension 2, is then formulated as

⇧d(&) =� 1

2
f(&)G(&)�1

f(&)� c
1

&
1

� c
2

&
2

� 3

4
&
4/3

1

� 1

2
&2
2

,

in which
G(&) = Q+ &

1

A
1

+ &
2

A
2

, and f(&) = p + &
1

b

1

+ &
2

b

2

.

Three instances are given below to show the duality relations described in the
Triality Theorem for the three cases, n = p, n > p and n < p.

Instance 1

In the function ⇧(x), we let the matrices be

A
1

=

✓
3 0
0 8

◆
, A

2

=

✓
10 6
6 �3

◆
, and Q =

✓
2 4
4 0

◆
,

the vectors be

b

1

=

✓�6
�7

◆
, b

2

=

✓�6
�2

◆
, and p =

✓�6
�5

◆
,

and the scalars be c
1

= 6 and c
2

= �5. Hence, for this instance, we have n = p = 2.
The graphs and contours of ⇧(x) and ⇧d(&) are shown in Figure 3.1.
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x ⇧(x) optimality & ⇧d(&) S
a

optimality

x

1

�22.921 global minimizer &

1

-22.921 S+

c

local maximizer
x

2

8.405 local minimizer &

2

8.405 saddle point
x

3

16.99 local minimizer &

3

16.99 S�
c

local minimizer
x

4

37.70 saddle point &

4

37.70 S�
c

saddle point
x

5

66.17 saddle point &

5

66.17 local maximizer
x

6

5037.1 saddle point &

6

5037.1 S�
c

saddle point
x

7

13092.9 local maximizer &

7

13092.9 S�
c

local maximizer

Table 3.1: Dualities for Instance 1.

The primal function ⇧(x) has 7 critical points,

x

1

= (�2.124, 1.136), x

2

= (0.927,�1.510), x

3

= (�0.734,�2.588),

x

4

= (0.082,�2.169), x

5

= (0.732,�0.285), x

6

= (�4.031,�1.218),

x

7

= (�2.041,�0.881),

which are corresponding to the 7 critical points of the dual function ⇧d(&
1

, &
2

),

&

1

= (1.440, 0.683), &

2

= (�0.217, 0.016), &

3

= (�0.783,�0.521),

&

4

= (�6.479,�6.935), &

5

= (�15.122, 10.130), &

6

= (�594.32, 86.835),

&

7

= (�3415.5, 21.457).

The Table 3.1 shows clearly the min-max, double-max and double-min dualities of
Triality Theorem.

Instance 2

In this instance, we let the second item in W (x) vanish, i.e., A
2

= 0, b

2

= 0 and
c
2

= 0, and all other coe�cients be the same with Instance 1. We still have n = 2,
but p = 1 and ⇧d becomes a univariate function. The contour of ⇧(x) and graph of
⇧d(&) are shown in Figure 3.2.

The primal function ⇧(x) has 5 critical points,

x

1

= (�3.109, 1.014), x

2

= (0.973,�1.415), x

3

= (1.068,�1.098),

x

4

= (�3.987,�2.281), x

5

= (�2.000,�0.875),

and, correspondingly, the dual function ⇧d(&) has 5 critical points,

&
1

= 1.154, &
2

= �0.256, &
3

= �0.407,

&
4

= �1.862, &
5

= �3417.4.

The dualities are shown in Table 3.2.
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x ⇧(x) optimality & ⇧d(&) S
a

optimality

x

1

�26.358 global minimizer &
1

-26.358 S+

c

local maximizer
x

2

8.394 local minimizer &
2

8.394 local minimizer
x

3

8.425 saddle point &
3

8.425 local maximizer
x

4

40.334 saddle point &
4

40.334 S�
c

local minimizer
x

5

12871.9 local maximizer &
5

12871.9 S�
c

local maximizer

Table 3.2: Dualities for Instance 2.

x ⇧(x) optimality & ⇧d(&) S
a

optimality

x
1

�20.887 global minimizer &

1

-20.887 S+

c

local maximizer
x
2

6.973 local minimizer &

2

6.973 S�
c

saddle point
x
3

113.22 local maximizer &

3

113.22 S�
c

local maximizer

Table 3.3: Dualities for Instance 3.

Instance 3

At last, we have a look at an instance with the primal problem being of one dimension.
The coe�cients A

1

, A
2

, Q, b

1

, b

2

and f are all scalars now. Let

A
1

= �8, A
2

= 8, Q = �8, b
1

= �5, b
2

= 2, f = 8, c
1

= �3, c
2

= 5.

The primal function ⇧(x) is univariate and the dual function ⇧d(&) is of dimension
2.

The function ⇧(x) has 3 critical points,

x
1

= 1.61, x
2

= �0.567, x
3

= 0.591,

and, correspondingly, the function ⇧d(&) has 3 critical points,

&

1

= (0.317, 2.148), &

2

= (�1.405,�2.581), &

3

= (94.69,�4.785).

The dualities are shown in Table 3.3.
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Figure 3.1: Instance 1: The two above are the graph and contour of ⇧(x); the two
below are the graph and contour of ⇧d(&

1

, &
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) on S+
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Figure 3.2: Instance 2: The left one is the contour of ⇧(x); the right one is the graph
of ⇧d(&).
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Chapter 4

Spherically constrained quadratic
minimization

4.1 Introduction

In this chapter, we consider the spherically constrained quadratic minimization prob-
lem,

(P
sqp

) min
x

⇧(x) = x

T

Qx � 2fT

x (4.1)

s.t. x 2 X
where Q 2 Sn and f 2 Rn. The feasible region is defined as

X = {x 2 Rn | kxk  r} ,
with r being a positive real number and kxk = kxk

2

representing `
2

norm in Rn.
Problem (P

sqp

) arises naturally in computational mathematical physics with ex-
tensive applications in engineering sciences. From the point of view of the systems
theory, if the vector f 2 Rn is considered as an input (or source), then the solu-
tion x 2 Rn is referred to as the output (or state) of the system. By the fact that
the capacity of any given system is limited, the spherical constraint in X is nat-
urally required for virtually every real-world system. For example, in engineering
structural analysis, if the applied force f 2 R1 is big enough, the stress distribu-
tion in the structure will reach its elastic limit and the structure will collapse. For
elasto-perfectly plastic materials, the well-known von Mises yield condition is a non-
linear inequality constraint kxk

2

 r imposed on each material point1 (see Chapter
7 of [38]). By the finite element method, the variational problem in structural limit
analysis can be formulated as a large-size nonlinear optimization problem with m

1The well-known Tresca yield condition kxk1  r is equivalent to a box constraint at each
material point. It was shown in the well-known experiment by Taylor and Quinney in 1931 that
the von Mises yield condition is better than the Tesca yield condition for metal structures (see [38]
p. 404.)
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quadratic inequality constraints (m depends on the number of total finite elements).
Such problems have been studied extensively in computational mechanics for more
than fifty years and the so-called penalty-duality finite element programming [35, 34]
is one of the well-developed e�cient methods for solving this type of problem in en-
gineering sciences.

In mathematical programming, the problem (P
sqp

) is known as a trust region
subproblem, which arises in trust region methods [29, 102]. In papers, two similar
problems are also discussed: in [72, 131, 21], the convexity of the quadratic constraint
is removed; while in [122, 15], the constraint is replaced by a two-sided (lower and
upper bounded) quadratic constraint. Although the function ⇧(x) may be noncon-
vex, it is proved that the problem (P

sqp

) possesses the hidden convexity, which means
that (P

sqp

) is actually equivalent to a convex optimization problem [15, 130]. For
each optimal solution x̄, there exists a Lagrange multiplier µ̄ such that the following
conditions hold [120]:

(Q + µ̄I)x̄ = f , (4.2)

Q + µ̄I ⌫ 0, (4.3)

kx̄k  r, µ̄ � 0, µ̄(kx̄k � r) = 0. (4.4)

Let �
1

be the smallest eigenvalue of the matrix Q. From conditions (4.3) and
(4.4), we have

µ̄ � max{0,��
1

}.
If the problem (P

sqp

) has no solutions on the boundary of X , then Q must be positive
definite and kQ�1

fk < r, which leads to µ̄ = 0. Now suppose the solution x̄ is on
the boundary of X . If (Q+ µ̄I) � 0, we have k(Q+ µ̄I)�1

fk = r and the multiplier
µ̄ can be easily found. While if det(Q+ µ̄I) = 0, it becomes very challenging to solve
the problem [121, 104, 73, 107, 33] and the situation is referred to as “hard case”
(see [90]). Mathematically speaking, when the problem is in the hard case, there
are multiple solutions for the equation (Q + µ̄I)x = f and they are in the form
x = (Q+ µ̄I)†f + ⌧ x̃ with (Q+ µ̄I)x̃ = 0. As pointed out in [107, 121, 33, 65], the
hard case always implies that f is perpendicular to the subspace generated by all the
eigenvectors corresponding to �

1

. We show by Theorem 16 and Example 2 that this
condition is only a necessary condition for the problem being in the hard case. Many
methods have been proposed for handling the problem (P

sqp

), especially focusing
on the hard case: Newton type methods [59, 90], methods recasting the problem in
terms of a parameterized eigenvalue problem [121, 107], methods sequential searching
Krylov subspaces [61, 65], semidefinite programming methods [104, 33], and the D.C.
(di↵erence of convex functions) method [124].

Here, we discuss global solutions for the problem (P
sqp

) via the canonical duality
theory, especially when it is in the hard case. We first show in the next section
that by the canonical dual transformation, this constrained nonconvex problem can
be reformulated as a one-dimensional optimization problem. The complementary-
dual principle shows that the one-dimensional problem is canonically dual to (P

sqp

)
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in the sense that there is a one-to-one correspondence between KKT points of the
two problems and each pair of corresponding KKT points share the same function
value. The canonical min-max duality in Triality Theorem provides a su�cient and
necessary condition for identifying global optimal solutions. In order to solve the
hard case, a perturbation method is proposed in Section 4.3 and then a canonical
primal-dual algorithm is developed in Section 4.4. Numerical results are presented
in Section 4.5. The chapter finishes with some conclusion remarks.

4.2 Canonical duality and optimality

4.2.1 Canonical dual problem

By the fact that the condition kxk  r is a physical constraint (required by math-
ematical model), it must be written in canonical form. Therefore, instead of the
`
2

norm, the canonical dual transformation is to introduce a quadratic measure
⇠ = ⇤(x) = x

T

x : Rn ! E
a

= {⇠ 2 R | ⇠ � 0}
Then the total complementary function can be obtained:

⌅(x, �) = x

T

G(�)x � 2fT

x,

where G(�) = Q + �I. The canonical dual feasible region is

S
a

= {� 2 R | detG(�) 6= 0 } .
For any given � 2 S

a

, the canonical dual function ⇧d : S
a

! R is well defined and
can be formulated as

⇧d(�) = ext {⌅(x, �) | x 2 Rn} = �f

T

G(�)�1

f � r2�.

The canonical dual problem is to find extreme points �̄ of ⇧d(�) such that

⇧d(�̄) = ext
�
⇧d(�) | � � 0, � 2 S

a

 
. (4.5)

We need to emphasize that ⇧d(�) is a function of a scalar variable � 2 S
a

⇢ R,
regardless of the dimension of the primal problem, and the inequality detG(�) 6= 0
is actually not a constraint (the Lagrange multiplier for this inequality is zero).
Therefore, the KKT points for this canonical dual problem are much easier to be
obtained than that for the primal problem. By the canonical duality theory, we have
the following result.

Theorem 14 (Analytical Solution and Complementary-Dual Principle [42])
Suppose that the symmetrical matrix Q has m ( n) distinct eigenvalues �

i

, i =
1, . . . ,m and i

d

 m of them are strictly negative such that �
1

< �
2

< · · · < �
i

d

<
0  �

i

d

+1

< · · · < �
m

. Then for a given vector f 2 Rn and a su�ciently large r > 0,
the canonical dual problem (4.5) has at most 2i

d

+ 1 KKT points �̄
i

satisfying

�̄
1

> ��
1

> �̄
2

� �̄
3

> ��
2

> · · · > ��
i

d

> �̄
2i

d

� �̄
2i

d

+1

> 0.
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For each �̄
i

, i = 1, . . . , 2i
d

+ 1, the vector

x̄

i

= G(�̄
i

)�1

f (4.6)

is a KKT point of the primal problem (P
sqp

), and we have

⇧(x̄
j

) � ⇧(x̄
i

) = ⌅(x̄
i

, �̄
i

) = ⇧d(�̄
i

)  ⇧d(�̄
j

) 8i, j = 1, . . . , 2i
d

+ 1, i  j.

Theorem 14 shows that the nonconvex function ⇧(x) is canonically dual (without
duality gaps) to ⇧d(�) at each KKT point (x̄

i

, �̄
i

), and the function values of ⇧d(�
i

)
are in an opposite order with its critical points �

1

> �
2

� . . . (see Figure 4.1).
Clearly, the KKT solution x̄

1

is a global minimizer of the primal problem (P
sqp

).

-15 -10 -5 5 10 15 20

-400

-200

200

400

Figure 4.1: The graph of canonical dual function ⇧d(�) for n = 4 (see Example 3 for
details).

4.2.2 Global optimality condition

In order to identify global optimal solutions among all the critical points of ⇧d(�),
a subset of S

a

is needed:

S+

c

= {� 2 S
a

| � � 0, G(�) � 0} .

The problem canonically dual to (P
sqp

) can be proposed as the following

(Pd

sqp

) max
�
⇧d(�) | � 2 S+

c

 
. (4.7)

Theorem 15 (Global Optimality Condition [38, 51]) Suppose that �̄ is a critical
point of ⇧d(�). If �̄ 2 S+

c

, then �̄ is a global maximal solution of the problem (Pd

sqp

)
and x̄ = G(�̄)�1

f is a global minimal solution of the primal problem (P
sqp

), that is,

⇧(x̄) = min
x2X

⇧(x) = max
�2S+

c

⇧d(�) = ⇧d(�̄). (4.8)
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According to Triality Theorem, the global optimality condition (4.8) is called
canonical min-max duality. By the fact that ⇧d(�) is strictly concave on the convex
set S+

c

, this theorem guarantees that if there is a critical point in S+

c

, it must be
unique and the nonconvex minimization problem (P

sqp

) is equivalent to a concave
maximization problem (Pd

sqp

). Similar result is also discussed by Corollary 5.3 in
[122] and Theorem 1 in [104]. Moreover, for the case when n = 1, the double-min
duality statement in the weak-triality theory proven recently (see [56, 88, 89]) shows
that the problem (P

sqp

) has at most one local minimizer, which is corresponding to
a critical point �̄ 2 S�

c

= {� 2 S
a

| G(�) � 0}. All these previous results show that
the canonical duality-triality theory provides detailed information on a complete set
of solutions to the nonconvex problem (P

sqp

).
Duality theory for quadratic minimization problems with `

2

-norm constraints was
discussed extensively in plastic mechanics fifty years ago. It was shown by Gao in [34]
that for the quadratic `2

2

constraint, the canonical dual can be easily formulated and
a primal-dual finite element programming algorithm was first developed for solving
minimal potential variational problems in infinite dimensional space [35]. By the fact
that the geometrical measure ⇠(x) = x

T

x is quadratic, the first term in ⌅(x, �) is
the so-called (generalized) complementary gap function [41, 53] denoted by

G
ap

(x, �) = ⇠(x)� + x

T

Qx = x

T

G(�)x.

Clearly, G
ap

(x, �) � 0 8x 2 Rn if and only if � 2 S+

c

. Therefore, ⌅(x, �) is
a saddle function on Rn ⇥ R if G

ap

(x, �) � 0 8x 2 Rn. This result was first
discovered by Gao and Strang in nonconvex mechanics [58], where they proved that
this gap function recovers a broken symmetry in geometrically nonlinear systems and
provides a global optimality condition for general nonconvex variational problems in
mathematical physics. Particularly, the total complementary function ⌅(x, �) on
Rn ⇥ R

+

= {� 2 R | � � 0} has a simple form

⌅(x, �) = x

T

G(�)x � 2xT

f � r2� = ⇧(x) + �(xT

x � r2),

which can be viewed as a Lagrangian of (P
sqp

) for the `2
2

-norm constraint x

T

x  r2.
Indeed, the total complementary function ⌅(x, �) was also called nonlinear La-
grangian in [38] or extended Lagrangian in [37]. However, for nonconvex objective
function ⇧(x), the classical Lagrangian duality theory will produce a well-known
duality gap unless the global optimality condition G

ap

(x, �) � 0 8x 2 Rn is satis-
fied. Therefore, the Lagrangian duality theory is only a special case of the canonical
duality theory for certain problems. Also, by the fact that a large class of non-
convex/discrete global optimization problems can be equivalently reformulated as a
unified canonical dual form (4.7) (see [41, 46, 53]), which is equivalent to a convex
minimization problem over a convex feasible set, the so-called “hidden-convexity” is
indeed a special case of the canonical min-max duality theory.

For the hard case, the matrix G(�) is singular at the KKT point �̄, the canonical
dual ⇧d(�) should be replaced by (see [47])

⇧d(�) = �f

T

G(�)†f � r2�,
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where G(�)† stands for the pseudo-inverse of G(�). In [104, 122], the dual function is
also presented in discussions of the strong duality. Since this function is not strictly
concave on the closure of S+

c

, it may have multiple critical points located on the
boundary of S+

c

. In the following sections, we will first study the existence conditions
of these critical points, and then study an associated algorithm for computing these
solutions.

4.2.3 Existence conditions

As Q is symmetrical, there exist a diagonal matrix ⇤ and an orthogonal matrix U

such that Q = U⇤U

T . The diagonal entities of ⇤ are the eigenvalues of Q and are
arranged in a nondecreasing order,

�
1

= · · · = �
k

< �
k+1

 · · ·  �
n

.

The columns of U are corresponding eigenvectors.
Let f̂ = U

T

f . Because (Q + �I)�1 = U (⇤ + �I)�1

U

T , we can rewrite the
canonical dual function ⇧d(�) as

⇧d(�) = �
P

k

i=1

f̂ 2

i

�
1

+ �
�

nX

i=k+1

f̂ 2

i

�
i

+ �
� r2�, (4.9)

where f̂
i

, i = 1, . . . , n are elements of f̂ . It is now easy to see that as long as f 6= 0,
⇧d(�) has stationary points in S and thus the canonical dual problem (4.5) is well
defined. Whereas, for the case when f = 0, a perturbation should be introduced,
which will be discussed in the next section.

Theorem 16 (Existence Conditions) Suppose that for any given Q 2 Sn and
f 2 Rn, �

i

and f̂
i

are defined as above.
The canonical dual function ⇧d(�) has a critical point �̄ in (��

1

,+1) if and only

if either
P

k

i=1

f̂ 2

i

6= 0 or
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 > r2 holds true. Furthermore, if �

1

 0,

then x̄ = G(�̄)�1

f is the unique solution of the primal problem (P
sqp

).
If ⇧d(�) has no critical points in (��

1

,+1), the primal problem (P
sqp

) has ex-
actly two global solutions when the multiplicity of �

1

is k = 1 and has infinite number
of solutions when k > 1.

Proof: First, we prove that the existence of a critical point of ⇧d(�) in (��
1

,+1)

implies that either
P

k

i=1

f̂ 2

i

6= 0 or
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 > r2 holds true. It is equivalent

to prove that if
P

k

i=1

f̂ 2

i

= 0 and
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2  r2 the dual function ⇧d(�) will

have no critical points in (��
1

,+1). The first item in the expression (4.9) vanishes

when
P

k

i=1

f̂ 2

i

= 0. Then because
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2  r2, the first-order derivative of

the dual function

(⇧d(�))0 =
nX

i=k+1

f̂ 2

i

(�
i

+ �)2
� r2
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is always negative in (��
1

,+1). Therefore, the dual function ⇧d(�) will have no
critical points in (��

1

,+1).
Next we will give the proof of the su�ciency, which is divided into two parts:
1) If

P
k

i=1

f̂ 2

i

6= 0, then � = ��
1

is a pole of ⇧d(�), i.e., as � approaches ��
1

from the right side, ⇧d(�) approaches �1. The value of ⇧d(�) also approaches �1,
when � approaches +1. Thus, �⇧d(�) is coercive on (��

1

,+1). Since, for any
� 2 (��

1

,+1), G(�) is positive definite, ⇧d(�) is strictly concave on (��
1

,+1).
Thus there exists a unique critical point in (��

1

,+1).

2) If
P

k

i=1

f̂ 2

i

= 0 and
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 > r2, (⇧d(�))0 is positive at � = ��

1

.

Moreover, (⇧d(�))0 approaches �r2 as � approaches 1. Therefore, there exists at
least one root for the equation (⇧d(�))0 = 0 in (��

1

,+1), which means ⇧d(�) has
at least one critical point in (��

1

,+1). Similarly, because of the strict concavity of
⇧d(�) over (��

1

,+1), the critical point is unique.
Suppose �

1

 0. The uniqueness of global solution x̄ will be proved, if it can be
proved that (x̄, �̄) is the only pair that satisfies the KKT conditions (4.2-4.4). As
mentioned above, the dual function ⇧d(�) is strictly concave on (��

1

,+1), which,
plus the criticality of �̄, implies that (⇧d(�))0 = kxk2 � r2 > 0 for � 2 (��

1

, �̄) and
< 0 for � 2 (�̄,+1), where x = G(�)�1

f . Thus, for any � 6= �̄ in (��
1

,+1), there
is no x such that (x, �) satisfies the KKT conditions (4.2-4.4). Except for the interval
(��

1

,+1), � = ��
1

is the last candidate. However, if
P

k

i=1

f̂ 2

i

6= 0, the equation

G(��
1

)x = f has no solutions, and if
P

k

i=1

f̂ 2

i

= 0 and
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 > r2, the

feasibility of any solution of G(��
1

)x = f is violated by the fact that kxk2 � r2 =
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 � r2 > 0. Then, � = ��

1

can not make the KKT conditions hold

true. Therefore, (x̄, �̄) is the unique pair that satisfies the KKT conditions (4.2-4.4).
Finally, suppose that there are no critical points in (��

1

,+1), which, from the

above proof, is equivalent to
P

k

i=1

f̂ 2

i

= 0 and
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2  r2. Then, for any

global solution, we have �̄ = ��
1

. Let x̄ be a global solution and ȳ = U

T

x̄. Then
the canonical equilibrium equation G(�̄)x̄ = f can be equivalently transformed into
diag({�

i

+�̄})ȳ = f̂ . If k = 1, i.e., the multiplicity of �
1

is one, the equation uniquely
determines ȳ

i

, i = 2, . . . , n, but not ȳ
1

. By the fact that ȳ

T

ȳ = r2, ȳ
1

has exactly
two values, corresponding to the two global solutions of (P

sqp

). While, if k > 1, i.e.,
the matrix Q has at least two repeated eigenvalues �

1

= �
2

= · · · = �
k

 0, the
equations diag({�

i

+ �̄})ȳ = f̂ and ȳ

T

ȳ = r2 have infinite number of solutions. 2

The complementarity relations between the primal problem (P
sqp

) and its canon-
ical dual problem (Pd

sqp

) are significant. When �
1

> 0, i.e., Q is positive definite, if
(P

sqp

) has a global solution in the interior of X , which must be the stationary point
of ⇧(x) and can be easily calculated, its canonical dual (Pd

sqp

) has no critical point in
S+

c

= [0,+1) due to (⇧d(0))0 = kx̄k2�r2 < 0, where x̄ = G(0)�1

f is the stationary
point of ⇧(x). Dually, when �

1

 0, the primal function ⇧(x) is nonconvex and the
global minimizer of (P

sqp

) must be on the boundary of X . In this case, if the canon-
ical dual (Pd

sqp

) has a critical point in S+

c

= (��
1

,+1), the primal problem (P
sqp

)
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is then not in the hard case and has a unique solution, which can be easily obtained
by solving the canonical dual problem. Whereas if (Pd

sqp

) has no critical points in
S+

c

, i.e., ⇧d(��
1

) = sup{⇧d(�) | � 2 S+

c

}, the primal problem (P
sqp

) is in the hard
case, because, for any � 2 S+

c

and x = G(�)�1

f , we have (⇧d(�))0 = kxk2 � r2 < 0,
which destroys the complementary condition in (4.4), and only � = ��

1

can make
the KKT conditions (4.2-4.4) hold.

Therefore, combining with Theorem 16, we have the following result.

Corollary 17 If �
1

 0, the nonconvex problem (P
sqp

) is in the hard case if and

only if both conditions (i)
P

k

i=1

f̂ 2

i

= 0 and (ii)
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2  r2 hold true.

The condition (i) is well-known: the trust region subproblem could be in the hard case
only if the coe�cient f is perpendicular to the subspace generated by eigenvectors
of the smallest eigenvalue. The condition (ii) is new, which shows that the hard case
of (P

sqp

) depends not only on the direction of f , but also on its norm.
Theorem 16 and Corollary 17 show an important fact that the given vector f

plays an important role to the solutions of the problem (P
sqp

). From the point of
view of solid mechanics, if f is considered as an applied force, then the decision
variable x is the displacement and the spherical constraint kxk  r is corresponding
to the von Mises yield condition, which represents the capacity of the system. If
the norm of f is big enough, the deformation x should reach the limit kxk = r and
the problem (P

sqp

) has a solution on the boundary of X . By the canonical duality,
the problem (Pd

sqp

) must have a critical point in S+

c

. If the norm of f is too small,
the primal problem (P

sqp

) could have multiple solutions. In this case, (Pd

sqp

) has no
critical point in S+

c

and (P
sqp

) could be in the hard case.
To illustrate Theorem 16, let us consider a 3-dimensional problem with coe�cients

Q =

0

@
�1 0 0
0 �1 0
0 0 1

1

A , f =

0

@
0
0

�1.8

1

A , and r = 2.

In this case, the eigenvalues of Q are �
1

= �
2

= �1, and �
3

= 1. So we have k = 2
and the target function

⇧(x) = �1

2
(x2

1

+ x2

2

) +
1

2
x2

3

+ 1.8x
3

is nonconvex, whose minimizers are on the boundary of the feasible region. Replacing
x2

1

+x2

2

with r2�x2

3

, the objective function ⇧(x) can be reformulated as a univariate
function of x

3

,
g(x

3

) = x2

3

+ 1.8x
3

� 2,

which achieves the minimum at x
3

= �0.9. Then we obtain the following equation

x2

1

+ x2

2

= r2 � x2

3

= 22 � (�0.9)2 = 3.19.
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So all x̄ 2 R3 satisfying x̄2

1

+ x̄2

2

= 3.19 and x̄
3

= �0.9 are global minimizers of the
problem.

By the fact that
P

2

i=1

f̂ 2

i

= 0 and
P

3

i=2+1

ˆ

f

2
i

(�

i

��1)
2 = (�1.8)2/(1 + 1)2  r2 = 4,

Theorem 16 shows that ⇧d(�) has no critical point in S+

c

, and (P
sqp

) is indeed in the
hard case and has infinite number of global solutions. If we choose either a smaller

r or a vector f with a larger magnitude such that
P

3

i=2+1

ˆ

f

2
i

(�

i

��1)
2 > r2, the global

solution will be unique. For example, let r = 0.5. Then x
3

= �0.9 is no longer the
minimizer of g(x

3

) and the problem min{g(x
3

) | x2

3

 0.52} leads to x
3

= �0.5. From
x2

1

+ x2

2

= r2 � x2

3

= 0.52 � (�0.5)2 = 0, we know the unique global solution of (P
sqp

)
is x̄ = (0, 0,�0.5)T .

In [87], Martinez investigated the “local-nonglobal minimizers” of the problem
(P

sqp

), of which the main result (Theorem 3.1 in [87]) can be restated in the following
theorem.

Theorem 18 (i) If x̄ is a local-nonglobal minimizer of (P
sqp

), then there is a �̄ 2
(max{0,��

2

},��
1

) such that G(�̄)x̄ = f and (⇧d(�̄))00 � 0. (ii) There exists at
most one local-nonglobal minimizer of (P

sqp

). (iii) If kx̄k = r, G(�̄)x̄ = f for some
�̄ 2 (��

2

,��
1

), �̄ > 0 and (⇧d(�̄))00 > 0, then x̄ is a strict local minimizer of (P
sqp

).

From the point of view of the canonical duality theory, the �̄ in this theorem
is actually a critical point of ⇧d(�). The case of (P

sqp

) having no local-nonglobal
minimizers implies that all the local minimizers are global solutions. The situations
that leads to this case include i) the multiplicity of �

1

being larger than one; ii) no
critical point in (max{0,��

2

},��
1

), and iii) f being perpendicular to the eigenvector
of �

1

. The first situation results in (��
2

,��
1

) = ;. The last situation violates the
necessary condition (⇧d(�))00 � 0, which can be observed from the expression of
(⇧d(�))00,

(⇧d(�))00 = �2
nX

i=1

f̂ 2

i

(�
i

+ �)3
.

For any � 2 (��
2

,��
1

), the only nonnegative item in (⇧d(�))00 is the first term
�2f̂ 2

1

/(�
1

+ �)3. Thus (⇧d(�))00 will be negative if f̂ 2

1

= 0. As shown in Figure
4.1, there is a critical point �̄

2

2 (��
2

,��
1

) = (4.37, 10.51) and the corresponding
solution x̄

2

obtained from the equation (4.6) is a local minimizer.

4.2.4 A quartic polynomial minimization

A closely related problem is the following quartic polynomial minimization:

min
x2Rn

⇧
1

(x) =
1

2
x

TQx � p

T

x +
1

2

✓
1

2
x

T

x � x

T

b � c

◆
2

(4.10)

54



where Q 2 Sn, p, b 2 Rn and c 2 R. Here, in the fourth-order item, the coe�cient
matrix could be any positive definite matrix, which can be transformed into an
identity matrix without changing the problem. The canonical dual function is

⇧d

1

(�) = �1

2
f

TG�1

f � c� � 1

2
�2,

in which
G = G(�) = Q+ �I, and f = f(�) = p + �b.

Similarly, assume that Q has the eigendecomposition of Q = U⇤UT , with the
diagonal entities of ⇤ being in nondecreasing order,

�
1

= · · · = �
k

< �
k+1

 · · ·  �
n

.

Let p̂ = UT

p and b̂ = UT

b. The dual function can then be rewritten as

⇧d

1

(�) = �1

2

nX

i=1

(p̂
i

+ �b̂
i

)2

�
i

+ �
� 1

2
�2 � c�. (4.11)

The first- and second-order derivatives of the dual function ⇧d

1

(�) are

r⇧d

1

(�) =
1

2

nX

i=1

(p̂
i

� �
i

b̂
i

)2

(�
i

+ �)2
� � � 1

2

nX

i=1

b̂2
i

� c,

r2⇧d

1

(�) = �
nX

i=1

(p̂
i

� �
i

b̂
i

)2

(�
i

+ �)3
� 1.

Then we have the following result, which is similar to Theorem 16.

Theorem 19 Suppose that �
i

are defined as above. Then there exists a critical point
of ⇧d

1

(�) in S+

c

if and only if

kX

i=1

(p̂
i

� �
1

b̂
i

)2 6= 0 or
1

2

nX

i=k+1

(p̂
i

� �
i

b̂
i

)2

(�
i

+ �)2
� � � 1

2

nX

i=1

b̂2
i

� c > 0. (4.12)

If ⇧d

1

(�) has a critical point in S+

c

, the critical point is unique. Let �̄ denote the
critical point. Then x̄ = G(�̄)�1

f(�̄) is a global solution of the problem (4.10).

Notice that if �
1

� 1

2

P
n

i=1

b̂2
i

� c > 0, the second condition in (4.12) holds and
thus there must be a critical point in S+

c

.
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4.3 A perturbation method

This section is devoted to compute solutions for the problem when the canonical
dual problem (Pd

sqp

) has no critical point in (��
1

,+1). Since a necessary condition

for the hard case is
P

k

i=1

f̂ 2

i

= 0, a perturbation can be introduced such that this
condition does not hold true any more. Impressively, once we obtain the critical point
in S+

c

, all the global solutions can be determined. Our approach has been applied
successfully in the canonical duality theory for solving nonlinear algebraic equations
[119], chaotic dynamical systems [116], as well as a class of NP-hard problems in the
global optimization [47, 117, 128].

In order to establish the existence conditions, a perturbation
P

k

i=1

↵
i

U

i

with
parameters

↵ = {↵
i

}k
i=1

6= 0 (4.13)

is introduced to f . Let

p = f +
kX

i=1

↵
i

U

i

, p̂ = U

T

p, and ⇧
↵

(x) = x

T

Qx � 2pT

x.

It is true that the existence conditions hold for the perturbed problem

(P
↵

) min{⇧
↵

(x) | x 2 X
a

}, (4.14)

for
P

k

i=1

p̂2
i

6= 0 is guaranteed by (4.13).
The following theorem states that if the parameter ↵ is chosen appropriately, the

optimal solution of the perturbed problem approximates that of the primal problem
(P

sqp

).

Theorem 20 Suppose that �
1

 0, there is no critical point of ⇧d(�) in S+

c

, and x̄

⇤

is the optimal solution of the problem (P
↵

). Then, there is a global solution of the
problem (P

sqp

), denoted as x̄, which is on the boundary of X and, for any " > 0, if
the parameter ↵ satisfies

k↵k2  (�
2

� �
1

)2
 
r2 �

nX

i=k+1

f̂ 2

i

(�
i

� �
1

)2

!
(1/
p

2(1� cos("/r))� 1)�2, (4.15)

we have kx̄⇤ � x̄k  ".

Proof: For simplicity, the coordinate system is rotated and let y = U

T

x, y

k

=
{y

i

}k
i=1

and y

`

= {y
i

}n
i=k+1

. Since f̂
i

= 0 for i = 1, . . . , k, variables y
i

for i = 1, . . . , k
appear in the objective function only in the form of squares. On the boundary of X ,
the problem (P

sqp

) is then equivalent to the following problem in Rn�k:

min
ky

`

kr

⇧`(y
`

) =
nX

i=k+1

(�
i

� �
1

)y2
i

�
nX

i=k+1

2f̂
i

y
i

+ �
1

r2. (4.16)
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Since ⇧`(y
`

) is a strictly convex function, it has a unique stationary point,

ȳ

`

=

(
f̂
i

�
i

� �
1

)
n

i=k+1

.

Combining with the assumption of no critical point in S+

c

, we know that this sta-
tionary point is the global optimal solution of the problem (4.16). Then, all ȳ that
satisfies ȳ

T

k

ȳ

k

= r2 � ȳ

T

`

ȳ

`

are solutions of the problem (P
sqp

). Here we choose one
particular solution with

ȳ

k

= hȳ

⇤
k

, h =
1

kȳ⇤
k

k
q

r2 � ȳ

T

`

ȳ

`

,

where ȳ

⇤ = U x̄

⇤, and let x̄ = Uȳ.
By canceling variables y

i

, i = 1, . . . , k, the perturbed problem (4.14) with the
equality constraint is equivalent to

min
ky

`

kr

⇧`

↵

(y
`

) =
nX

i=k+1

(�
i

� �
1

)y2
i

�
nX

i=k+1

2f̂
i

y
i

+ �
1

r2 � 2k↵k
q

r2 � y

T

`

y

`

. (4.17)

The function ⇧`

↵

(y
`

) is also strictly convex. Moreover, for any ky
`

k < r, we have
⇧`

↵

(y
`

) < ⇧`(y
`

), while for any ky
`

k = r, we have ⇧`

↵

(y
`

) = ⇧`(y
`

). The fact
indicates that the unique stationary point of ⇧`

↵

(y
`

) is in the interior of ky
`

k  r.
Thus the global solution ȳ

⇤
`

is a stationary point of the problem (4.17) and then
satisfies

ȳ⇤
i

=
f̂
i

�
i

� �
1

+ k↵k(r2 � ȳ

⇤T
`

ȳ

⇤
`

)�
1
2

, i = k + 1, . . . , n.

and

|ȳ⇤
i

| < |ȳ
i

|, i = k + 1, . . . , n. (4.18)

We will prove that as k↵k approaches zero, ȳ

⇤ will approach ȳ. First, we have
the following relation

ȳ

⇤T
ȳ =

q
r2 � ȳ

⇤T
`

ȳ

⇤
`

q
r2 � ȳ

T

`

ȳ

`

+ ȳ

⇤T
`

ȳ

`

 1

2

�
r2 � ȳ

⇤T
`

ȳ

⇤
`

+ r2 � ȳ

T

`

ȳ

`

�
+ ȳ

⇤T
`

ȳ

`

= r2 � 1

2
kȳ⇤

`

� ȳ

`

k2,

where the first equality is derived from the definition of ȳ

k

and the fact that ȳ

⇤

locates on the surface of the sphere. Based on the relation

kȳ⇤ � ȳk  r arccos

✓
ȳ

⇤T
ȳ

r2

◆
 r arccos

✓
r2 � 1

2

kȳ⇤
`

� ȳ

`

k2
r2

◆
,
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we will have kȳ⇤ � ȳk  ", if kȳ⇤
`

� ȳ

`

k2  2r2(1 � cos "

r

). Then, it can be verified
that

kȳ⇤
`

� ȳ

`

k2  r2
⇣
(�

2

� �
1

)k↵k�1

p
r2 � ȳ

⇤T
`

ȳ

⇤
`

+ 1
⌘
2

. (4.19)

If let the right side of equation (4.19) be less than or equal to 2r2(1 � cos "

r

), we
obtain

k↵k2  (�
2

� �
1

)2(r2 � ȳ

⇤T
`

ȳ

⇤
`

)

(1/
p

2(1� cos "

r

)� 1)2
.

Combining with relations in (4.18), we can state that kȳ⇤ � ȳk  " if the following
inequality is true

k↵k2 
(�

2

� �
1

)2(r2 �Pn

i=k+1

ˆ

f

2
i

(�

i

��1)
2 )

(1/
p

2(1� cos "

r

)� 1)2
. (4.20)

Since kx̄⇤ � x̄k = kȳ⇤ � ȳk, the equation (4.20) implies that kx̄⇤ � x̄k  ". 2

Theorem 20 shows that with a proper parameter ↵, the existence condition is
guaranteed to hold true for the perturbed problem and the perturbation method
can be used to solve the hard case approximately. As the perturbation parameters
approach zero, the perturbed solutions will approach to one of the global solutions
of (P

sqp

). By the projection theorem, the nearest points to x̄ and x̄

⇤ in the subspace
spanned by {U

1

, . . . ,U
k

} arePk

i=1

(x̄T

U

i

)U
i

and
P

k

i=1

(x̄⇤T
U

i

)U
i

, respectively. Then
we have the following relation

kx̄⇤ �
kX

i=1

(x̄⇤T
U

i

)U
i

k2 < kx̄ �
kX

i=1

(x̄T

U

i

)U
i

k2, (4.21)

which means that the perturbed solution x̄

⇤ is closer to the subspace spanned by
{U

1

, . . . ,U
k

} than the solution x̄.
Furthermore, each solution of the problem (P

sqp

) can be approximated, if the
perturbation parameter ↵ is properly chosen. When the multiplicity of �

1

is equal
to one, as stated in Theorem 16, there are exactly two global solutions. In this case, ↵
becomes a scalar and has exactly two possible directions, which are mutual opposite
and respectively lead to the two global solutions (see Example 1). For general cases,
there may be infinite number of global solutions for the problem (P

sqp

), and we will
show that there is a one-to-one correspondence between solutions of the problem
(P

sqp

) and directions of ↵. In the problem (4.17), variables y
i

, i = 1, . . . , k are
removed by solving the following minimization problem

min{�2↵T

y

k

| y

T

k

y

k

= r2 � y

T

`

y

`

, y

k

2 Rk}. (4.22)
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Its solution is

y

k

= h↵, h =
1

k↵k
q
r2 � y

T

`

y

`

, (4.23)

i.e., the point falls on the boundary of the sphere in (4.22) and has the same direction
with ↵. If k↵k keeps unchanged, the problem (4.17) always has the same solution
and the scalar h also keeps unchanged. Thus, each direction of ↵ is corresponding
to a solution {y

i

}k
i=1

, and all the solutions comprise the surface of a sphere centered
at the original in Rk. On the other hand, from the problem (4.16), we have ȳ

T

k

ȳ

k

=
r2 � ȳ

T

`

ȳ

`

, which means all global solutions of the problem (P
sqp

) also comprise the
surface of a sphere. Combining Theorem 20, we then conclude that each solution of
the problem (P

sqp

) can be approached as the direction of ↵ is properly chosen and
k↵k approaches zero.

4.4 Canonical primal-dual algorithm

Based on the results obtained above, a canonical primal-dual algorithm is developed,
which is matrix inverse free and the essential cost of calculation is only the matrix-
vector multiplication.

The main step of this algorithm is to solve the following perturbed canonical dual
problem:

(Pd

↵

) max
�
⇧d

↵

(�) = �p

T

G(�)�1

p � r2� | � 2 S+

c

 
(4.24)

Let  (�) be its first-order derivative, i.e.,

 (�) = (⇧d

↵

(�))0 = p

T

G(�)�1

G(�)�1

p � r2.

Then the critical point of ⇧d

↵

(�) in S+

c

is corresponding to the solution of the equation
 (�) = 0 in S+

c

. The first- and second-order derivatives of  (�) are

 0(�) = �2pT

G(�)�1

G(�)�1

G(�)�1

p,

 00(�) = 6pT

G(�)�1

G(�)�1

G(�)�1

G(�)�1

p.

It is noticed that  (�) is strictly decreasing and strictly convex over S+

c

,  (�) will
approach �r2 as � approaches infinity and � = ��

1

is a pole of  (�).
We use the Lanczos method to compute an approximation for the smallest eigen-

value of Q and a corresponding eigenvector, denoted respectively by �̃
1

and Ũ

1

, where
the latter is a unit vector. For choosing an e↵ective perturbation, it is not necessary
to calculate all eigenvectors of the smallest eigenvalue, since any one of which will
be su�cient to divert the direction of f . Here we use ↵Ũ

1

as a perturbation to f .
Although the perturbed canonical dual problem (Pd

↵

) is strictly concave on S+

c

,
its derivative  (�) would become ill-conditioned when � approaches to the pole.
Therefore, instead of nonlinear optimization techniques, a bisection method is used
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to find the root in (��
1

,+1) for  (�). Each time, as a dual solution � > ��
1

is
obtained, the value of  (�) is calculated and checked to see whether it is equal to zero.
For moderate-size problems, it is not hard to calculate G(�)�1

p by computing the
inverse or decomposition of G(�), but it is not possible for very large-size problems,
especially when the memory is very limited. One alternative approach is to solve the
following strictly convex minimization problem,

min
x2Rn

x

T

G(�)x � 2pT

x, (4.25)

whose optimal solution is x = G(�)�1

p. Actually, during iterations, we do not need
to calculate  (�) every time, especially when � is on the left side of the root and
close to the pole. It is discovered that for a given �, the value of  (�) is equal to the
optimal value of the following unconstrained concave maximization problem

max
z2Rn

� z

T

G(�)G(�)z + 2pT

z � r2. (4.26)

By the fact that the value of the objective function will increase during the iterations,
we can stop solving the problem (4.26) if the target function is larger than a threshold,
and then we claim that � must be on the left side of the root. Thus, the ill-condition
in computing  (�) can be prevented as � approaches to the pole. Since the optimal
value is equal to zero when � is a root of  (�), any nonnegative value can be a
threshold.

An uncertainty interval should be initialized before the bisection method is ap-
plied, and it is used to safeguard that the root is always in intervals of the bisection
method. For the right end of the interval, any large enough number can be a can-
didate. An upper bound can be calculated and then be chosen to be the right end
of the uncertainty interval. Let �̄⇤ 2 (��

1

,+1) be the root of  (�). From the
definition of  (�), we have

1

(�
1

+ �̄⇤)2
p̂

T

p̂ � r2 � 0.

Hence,
p

p̂

T

p̂/r = kpk/r is an upper bound for the root �̄⇤. However, the bound
kpk/r may be not tight. A practical way is to let � = ��

1

as a starting point and
then to update � recursively by moving a certain step to its right each step. If the
first � that makes the value of  (�) be negative is smaller than the upper bound
kpk/r, it is a tighter right end for the uncertainty interval.

Algorithm 1 (Initialization)

Input: Coe�cients Q, f and r, and an error tolerance ".

The smallest eigenvalue: Use Lanczos method to obtain �̃
1

and Ũ

1

.
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Perturbation: If existence conditions do not hold, a perturbation is introduced
and let

p = f + ↵Ũ

1

;

otherwise, let p = f .

Uncertainty interval: set a step size s
t

and a threshold "
t

; let � = �
`

= ��̃
1

.

step 1: Solve the problem (4.26). If the value of the target function is
larger than the threshold "

t

, stop the iteration, let � = � + s
t

and go to
step 1; otherwise, go to step 2.

step 2: Calculate the value of  (�). If  (�) > 0, set �
`

= �, � = � + s
t

and go to step 2; otherwise, let �
u

= � and stop.

As the uncertainty interval [�
`

, �
u

] is obtained, the bisection method is applied
to find the next iterate for �, by setting � be the middle point of the uncertainty
interval. The main part of the algorithm is given as follows:

Algorithm 2 (Main)

Do

set � = (�
`

+ �
u

)/2 and calculate the value of  (�);

If | (�)| < ", then STOP and return � and x;

Else if  (�) > 0, update �
`

= �;

Else update �
u

= �;

End if

End do

4.5 Numerical experiments

First, three small-size examples are used to illustrate the application of the canonical
duality theory. Then, randomly generated examples are presented to demonstrate
the e�ciency of our method.

4.5.1 Small-size examples

Example 1

The given coe�cients are

Q =

✓�1 0
0 1

◆
, f =

✓
0

�1.8

◆
, and r = 1.
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The existence conditions do not hold true for this example. There are two global solu-
tions, x̄

1

= (0.437,�0.9)T and x̄

2

= (�0.437,�0.9)T , which are red points shown in
Figure 4.2. In order to show how the perturbation method works, a big perturbation
is firstly introduced to the linear coe�cient f and let

p = (0.5,�1.8)T .

A critical point appears in the interior of S+

c

, which is �̄ = 1.676 (see Figure
4.2(b)). The corresponding optimal solution for the perturbed problem is x̄

⇤
1

=
(0.74,�0.673)T , which is shown as a green point in Figure 4.2(a). As the perturba-
tion becomes smaller, the solution of the perturbed problem should approach to that
of the original problem. We then let

p = (0.01,�1.8)T .

The critial point now is �̄ = 1.022 and the corresponding solution is x̄

⇤
1

= (0.456,
�0.89)T (see Figure 4.2(d) and 4.2(c)).

As pointed out above, the other global solution, x̄

2

, can also be approximated by
just choosing a perturbation with the opposite direction. Let p = (�0.5,�1.8)T and
p = (�0.01,�1.8)T . The critical point will be the same as that for x̄

⇤
1

, �̄ = 1.676
and �̄ = 1.022, and their corresponding primal solutions are x̄

⇤
2

= (�0.74,�0.673)T

and x̄

⇤
2

= (�0.456,�0.89)T .
In Figure 4.2(b), we can see that there is no critical point between ��

2

= �1 and
��

1

= 1, which suggests that there will no local-nonglobal solution. While there is
a critical point between ��

2

= �1 and ��
1

= 1 in Figure 4.2(d), by Theorem 18
there must be a local-nonglobal solution and it should locate near one of the global
solutions, depending on the perturbation.

Example 2

The matrix Q and radius r are the same as that in Example 1 and f is changed to

f =

✓
0
�3

◆
,

which is in the same direction of that in Example 1 but has a larger length. We

notice that though
P

k

i=1

f̂ 2

i

6= 0 is violated, the condition
P

n

i=k+1

ˆ

f

2
i

(�

i

��1)
2 > r2 holds

true. Thus, the problem is not in the hard case. There is a critical point in the
interior of S+

c

, which is shown in Figure 4.3(b), and it is corresponding to the unique
global solution of the primal problem, which is the green point in Figure 4.3(a).

Example 3

We consider a 4-dimensional problem with Q, f and r being

Q =

0

BB@

�10 0 2 �2
0 �3 �4 2
2 �4 7 �4

�2 2 �4 1

1

CCA , f =

0

BB@

�10
6
10
9

1

CCA , and r = 5.

62



x2*
x2* x1*

x1*

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a)

s*s
*

-3 -2 -1 1 2 3

-15

-10

-5

5

10

15

(b)

x1*x1*x2*x2*

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(c)

s*
0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10

-2.80

-2.75

-2.65

-2.60

-2.55

-2.50

(d)

Figure 4.2: Example 1: (a) and (c) are contours of the primal function and the
boundary of the sphere; (b) and (d) are the graphs of the dual function.
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Figure 4.3: Example 2: (a) is the contour of the primal function and boundary of
the sphere; (b) is the graph of the dual function.
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Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

Dim LD QP LD QP LD QP LD QP
500 10 10 4.716e-09 5.245e-09 28.9 28.6 0.53 1.29
1000 10 10 4.261e-09 3.974e-09 27.1 27.5 1.67 6.25
2000 10 10 3.211e-09 3.822e-09 28.2 27.8 6.52 15.23
3000 10 10 5.674e-09 5.221e-09 26.1 26.4 20.90 72.43
5000 10 10 5.422e-09 3.873e-09 28.6 28.5 71.68 170.34

Table 4.1: General case and ↵ = 1e� 3.

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

Dim LD QP LD QP LD QP LD QP
500 10 10 4.532e-09 4.464e-09 28.9 28.9 0.43 1.16
1000 10 10 3.849e-09 5.931e-09 27.4 27.1 1.47 6.08
2000 10 10 2.648e-09 2.872e-09 27.9 28.5 6.26 15.82
3000 10 10 5.299e-09 5.137e-09 26.2 26.2 20.15 73.60
5000 10 10 3.188e-09 4.005e-09 28.7 28.5 65.71 171.92

Table 4.2: General case and ↵ = 1e� 4.

As shown in Figure 4.1, the canonical dual function ⇧d(�) has six critical points

�̄
6

= �11.1 < �̄
5

= �10.49 < �̄
4

= �1.84 < �̄
3

= 6.08 < �̄
2

= 8.23 < �̄
1

= 12.58.

It can be verified that �̄
1

belongs to S+

c

, i.e., G(�̄
1

) � 0, which can also be observed
from Figure 4.1 where all the vertical lines represent eigenvalues of matrix Q. Thus
the corresponding solution

x̄

1

= (�4.71, 1.11, 1.25, 0.18)T

is the global solution of the primal problem. While �̄
2

= 8.23 is a local minimizer of
⇧d(�) in (��

2

,��
1

) and thus the corresponding solution

x̄

2

= (4.33, 1.05, 0.91, 2.08)T

is the local-nonglobal minimizer.

4.5.2 Large-size examples

Examples with dimensions of 500, 1000, 2000, 3000 and 5000 are randomly generated,
including both general and hard cases. For each given dimension, both cases are
tested by ten examples, respectively. Thus, there are totally one hundred examples.
All elements of the coe�cients, Q, f and r, are integer numbers in [�100, 100]. For
each example of the hard case, in order to make f be easily chosen, we use a matrix
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Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

Dim LD QP LD QP LD QP LD QP
500 10 10 4.340e-09 6.297e-09 36.0 34.9 0.48 1.11
1000 10 10 4.253e-09 4.904e-09 34.6 34.9 1.54 3.54
2000 10 10 2.808e-09 4.255e-09 35.9 35.8 7.15 15.11
3000 9 10 5.479e-09 4.466e-09 34.0 35.0 19.41 36.01
5000 10 10 3.755e-09 4.705e-09 35.2 35.5 74.79 121.41

Table 4.3: Hard case and ↵ = 1e� 3.

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

Dim LD QP LD QP LD QP LD QP
500 7 9 2.503e-09 4.488e-09 39.6 40.6 0.51 1.36
1000 9 9 3.148e-09 4.482e-09 37.4 38.3 1.56 3.81
2000 5 9 8.668e-09 5.785e-09 38.6 42.6 7.36 17.95
3000 5 10 6.003e-09 3.997e-09 38.4 40.6 20.43 41.06
5000 8 10 4.748e-09 2.814e-09 37.8 38.8 72.72 131.51

Table 4.4: Hard case and ↵ = 1e� 4.

Q of whom the multiplicity of the smallest eigenvalue is equal to one. The vector
f is constructed such that it is perpendicular to the eigenvector of the smallest
eigenvalue, and then a proper radius r is selected such that the existence conditions
are violated.

Two approaches are used to calculate the value of  (�), one using decomposition
methods to calculate G(�)�1

p, for which we use the “left division” in Matlab, and
the other solving the problem (4.25), for which we use the function “quadprog” in
Matlab. The tolerance parameter “TolFun” of “quadprog” is set to 1e-12. The
Lanczos method is implemented by the function “eigs” of Matlab. The Matlab is of
version 7.13 and runned in the platform with Linux 64-bit system and quad CPUs.

The step size s
t

, the threshold "
t

and the termination tolerance " are set to
kpk/(200r), 0 and 1e-8, respectively. For the hard case, a perturbation ↵U

1

is added
to the vector f , and two values of ↵, 1e-3 and 1e-4, are tried.

Results are shown in Table 4.1, 4.2, 4.3 and 4.4, and they contain the number
of examples which are successfully solved (Succ.Solv.), the distance of the optimal
solution to the boundary of the sphere (Dist.Boun.), the number of iterations in
Algorithm 2 (Main) (Numb.Iter.) and the running time (in second) of the algorithm
(Runn.Time). The values in the columns of Dist.Boun., Numb.Iter. and Runn.Time
are averages of the examples successfully solved. We compare the results of the
algorithm adopting “left division” and that of the algorithm adopting “quadprog”
in the same table, where LD denotes “left division” and QP denotes “quadprog”.

We can see that the examples are solved very accurately with error allowance
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being less than 1e-09. The failure in solving some examples is due to “left division”
and “quadprog” being unable to handle very nearly singular matrices. For general
cases, all the examples can be solved within no more than 30 iterations, while for
hard cases, the number of iterations is around 40. From the running time, we notice
that our method is capable of handling very large problems in reasonable time. The
algorithms using “left division” and “quadprog” have similar performances in the
accuracy and the number of iterations, whereas the one using “left division” needs
much less time than that of the one using “quadprog”. However, the one using
“quadprog” is able to solve more examples successfully.
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Chapter 5

Unconstrained Binary Quadratic
Optimization

5.1 Introduction

In this chapter, the unconstrained binary quadratic optimization problem is dis-
cussed. The first application of the canonical duality to this problem appears in
[45], and then the problem is revisited in [32, 51]. The existence and uniqueness
conditions are then studied in [47], which helps in understanding the hardness and
constructing unified solution methods.

5.1.1 formulations

The unconstrained binary quadratic optimization problem discussed here is defined
as

(P
bqp

) min
x

⇧(x) =
1

2
x

TQx � x

T

f (5.1)

s.t. x 2 {�1,+1}n

where Q is a symmetric matrix in Rn⇥n, and f is a vector in Rn. In papers, the
unconstrained binary quadratic problem is also referred to 0-1 quadratic optimization
problem,

min
x

1

2
x

TQx � x

T

f (5.2)

s.t. x 2 {0, 1}n

which can be easily converted into the problem (P
bqp

).
Because of properties x2

i

= 1 for x
i

2 {�1, 1} and x2

i

� x
i

= 0 for x
i

2 {0, 1}, we
can make the diagonal entries ofQ in (P

bqp

) and (5.2) be any values, without changing
the shape of the objective function and hence the solutions. If the diagonal entries of
Q are zeros, the objective function belongs to the group of so called pseudo-Boolean
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functions and the problem (5.2) becomes a pseudo-Boolean optimization problem
[19].

The objective functions in (P
bqp

) and (5.2) can also be written in homogeneous
forms. For the problem (5.2), the linear item can be rewritten in the quadratic
form, x

T

f = x

Tdiag(f)x, because of the property x2

i

= x
i

. For the problem (P
bqp

),
an extra binary variable should be introduced, by which the linear item in ⇧(x)
is multiplied. The equivalence is obtained from the fact that the new variable will
always be one for optimal solutions. Conversely, any homogeneous quadratic function
can be converted into an equivalent one with a nonzero linear term. It is observed that
1

2

x

TQx = 1

2

(�x)TQ(�x). Thus we can just fix the value of an arbitrary component
of x and immediately get a nonhomogeneous quadratic function.

In principle, any linear or quadratic problem with linear constraints and bounded
integer variables can be reformulated as a binary quadratic problem [50, 77]. For
bounded integer constraints, for example x

i

2 {u
i1

, . . . , u
ik

i

}, variables y
ik

2 {0, 1}
can be introduced and then x

i

is replaced by
P

k

i

j=1

u
ij

y
ij

. For linear equality con-
straints, they can be removed by adding a quadratic infeasibility penalty function
into the objective function, while, for linear inequality constraints, slack variables
can be introduced, which have finite possible values (may not integer numbers) and
are then transformed into binary variables. For some simple linear constraints, ap-
propriate quadratic penalties are known in advance and can be used straight away
[77].

5.1.2 Combinatorial problems and complexity

Many practical combinatorial optimization problems can be transformed into uncon-
strained binary quadratic optimization problems, such as problems of determining
maximum cuts, maximum cliques, maximum vertex packing, minimum coverings,
maximum independent sets and maximum independent weighted sets, and max 2-
SAT problems [95, 97, 17, 78, 103, 79]. Here, we particularly present the relations
with max-cut and maximum clique problems.

Max-cut problems

Let G = (V,E) be an undirected graph with vertexes V = {1, 2, . . . , n} and edges
E = {(i, j) | i, j 2 V, i 6= j}. For each edge (i, j) 2 E, there is a weight w

ij

attached.
A cut of graph G is defined as an edge set E(S, T ) = {(i, j) 2 E | i 2 S, j 2 T},
where (S, T ) is a bipartition of the vertex set V , i.e., S \T = ; and V = S [T . The
total weight of the cut is defined by

w(S, T ) =
X

(i,j)2E(S,T )

w
ij

.

The max-cut problem is defined as finding a bipartition (S, T ) such that w(S, T ) is
maximized.
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If we let x
i

= 1 for i 2 S and x
i

= 0 for i 2 T , the total weight w(S, T ) can also
be expressed as

w(S, T ) =
X

(i,j)2E

w
ij

x
i

(1� x
j

).

On the other hand, for any vector x 2 {0, 1}n, a cut can correspondingly be defined
as S = {i 2 V | x

i

= 1} and T = {i 2 V | x
i

= 0}. Thus there is a one-to-one
correspondence between cuts of G and vectors in {0, 1}n. Let Q = {q

ij

}, where
q
ij

= �w
ij

if (i, j) 2 E and otherwise q
ij

= 0. Then the max-cut problem can be
equivalently formulated as a 0-1 quadratic problem

min x

TQx � x

TQe

s.t. x 2 {0, 1}n
Reversely, consider the problem (5.2). Without loss of generality, we assume that

all diagonal entries of matrix Q are zeros. Let

A = {a
ij

} =


0 f

T � 1

2

e

TQ
f � 1

2

Qe

1

2

Q

�
.

Then a graph G = (V,E), associated with the matrix A, can be constructed as
follows: V = {0, 1, 2, . . . , n}, E = {(i, j) | a

ij

6= 0} and weight w
ij

= �a
ij

for
(i, j) 2 E. If we fix vertex 0 in T for any cut (S, T ) and let x̄ = (0,x) being the
corresponding vector in {0, 1}n, the total weight for a cut will be

x̄

TA(x̄ � ē) = �1

2
x

TQx + x

T

f ,

where ē is an all-one vector. Thus minimizing a quadratic function over binary
constraints becomes solving a max-cut problem.

Maximum clique problems

Let G = (V,E) be an undirected graph with vertexes V = {1, 2, . . . , n} and edges
E = {(i, j) | i, j 2 V, i 6= j}. For each vertex i 2 V , a weight w

i

> 0 is associated with
it. Given a subset S ⇢ V , the subgraph induced by S is defined as G(S) = (S,E(S)),
where E(S) = {(i, j) | (i, j) 2 E, i, j 2 S}. A clique C is a subset of V such that the
subgraph G(C) = (S,E(C)) is complete, i.e., all vertexes of the subgraph G(C) are
pairwise adjacent. The maximum clique problem is to find a clique with maximal
weight.

The maximum clique problem has many formulations [97, 17]. Let Ḡ = (V, Ē)
be the complement graph of G, where Ē = {(i, j) | i, j 2 V, i 6= j, (i, j) /2 E}, and
A

¯

G

= {a
ij

} be the adjacency matrix of Ḡ, i.e., a
ij

= 1 if (i, j) 2 Ē and a
ij

= 0 if
(i, j) /2 Ē. The simplest formulation for the maximum clique problem is the following
edge formulation:

max w

T

x

s.t. x
i

+ x
j

 1, 8(i, j) 2 Ē

x 2 {0, 1}n
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As mentioned before, because of the properties x2

i

� x
i

= 0, constraints x
i

+ x
j

 1
are equivalent to x

i

x
j

= 0, which can be removed by using a penalty function. Then
the above formulation can be equivalently rewritten as a 0-1 quadratic problem

min � w

T

x + ↵
X

(i,j)2 ¯

E

x
i

x
j

= ↵x

TA
¯

G

x � w

T

x

s.t. x 2 {0, 1}n

where ↵ is a positive constant. Here, we notice that it is not necessary to make
the parameter ↵ approach to infinity, and any large enough positive number could
guarantee the equivalent relation between the two problems.

Complexity

Both max-cut and maximum clique problems are NP-complete [74]. Thus, the prob-
lem QP is NP-complete. Moreover, the hardness is further investigated in [96] and
it is proved that checking whether the problem has a unique solution, finding the
unique solution and even just finding a discrete local minimum are all NP-hard.

There are some cases which can be solved by algorithms with polynomial time
bounds. If Q is a diagonal matrix, then the objective function is separable and the
problem can be solved analytically. If the matrix Q is of rank one, it is polyno-
mial solvable since the solution can be found by inspection. For a matrix Q with
bounded rank, the problem is also polynomial solvable, if o↵-diagonal entries of Q are
nonpositive [14] or Q is positive semidefinite [4]. By reducing the binary quadratic
problem to a max-cut problem in an associated graph, many other polynomial solv-
able cases are derived, including planar graphs [64, 95], graphs without K

5

minors
[8], series-parallel graphs [11] and weakly bipartite graphs [62].

5.1.3 Algorithms

Numerous methods have been developed for solving the binary quadratic problem or
the associated combinatorial problems. The exact methods are categorized into five
groups: branch-and-bound methods, cutting plane methods, branch-and-cut meth-
ods, algebraic methods and continuous methods.

Branch and bound

The branch-and-bound method is based on the idea of implicitly and intelligently
enumerating all the feasible solutions. Given n being the dimension of the binary
quadratic problem, there are 2n feasible solutions. It is hopeless to examine each
solution to find the global solution even when n is moderate. The branch-and-
bound method breaks the problem into a series of smaller problems that can be
easily tackled, and then puts the information together again to obtain an optimal
solution for the original problem. The construction of smaller problems is based on
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successive partitioning of the solution set. The branch in branch-and-bound refers
to this partitioning process; the bound refers to lower and upper bounds that are
used to provide a proof of optimality.

There are many strategies in how a branch-and-bound algorithm is implemented.
At each branching step of determining which node to branch from, the usual al-
ternatives are least-lower-bound-next, depth-first and breadth-first. At each node,
the upper bound for the corresponding subproblem can be provided by any feasible
solutions, and the lower bound is normally obtained by relaxation, duality or some
other methods, which will be surveyed below.

A variety of branch-and-bound methods have been introduced in literatures for
the binary quadratic problem. They are equipped with di↵erent strategies of branch-
ing and lower bounding. The bounding techniques used in branch-and-bound meth-
ods are convex quadratic program relaxations [22, 16], linearization techniques [18,
63, 3], linear programming relaxations [9, 10], semidefinite programming relaxations
[68, 67, 31, 60, 101], Second order cone programming relaxations [76, 91], roof dual-
ity [66, 18, 19], DC programming [125], one row relaxations [126, 127] and geometric
property [84].

Cutting plane

For mixed-integer linear programming, the cutting plane methods work by first solv-
ing the linear relaxation, which is obtained by replacing the integer constraints with
box constraints. The theory of the linear programming guarantees that under mild
assumptions, one can always find an extreme point or a corner point that is an op-
timal solution. Then the obtained optimal solution is examined: if it satisfies the
integer constraints, an optimal solution for the original problem is already found; if it
not, a linear inequality can be constructed that separates the optimal solution from
the convex hull of the feasible region of the original problem. Such an inequality is
called a cut, which can then be added to the relaxation problem to cut o↵ the non-
integer optimal solution and tighten the feasible region. This process is repeated
until an optimal integer solution is found. The two most prominent cuts for the
mixed-integer linear programming are Gomory cut [6] and lift-and-project cut [5].

In [9, 132], cutting plane method are used to solve the binary quadratic problem,
which is firstly transformed into a mixed-integer linear programming problem by
linearization techniques (see [63] and references there). The most used linearization
technique is to replace x

i

x
j

with a new variable z
ij

. Here, the diagonal entries of
matrix Q are supposed to be zeros. Then the following problem is obtained:

min
x,z

X

i<j

q
ij

z
ij

�
nX

i=1

f
i

x
i

(5.3)

s.t. z
ij

 x
i

, z
ij

 x
j

, x
i

+ x
j

� 1  z
ij

z
ij

� 0, 1  i < j  n

x 2 {0, 1}n
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In fact, z
ij

can also be stated as 0-1 integer variables, since under other constraints
they can only be zero or one. Thus, the problem (5.3) becomes a constrained 0-1
linear programming problem.

The convex hull of the feasible region of the problem (5.3) is called the Boolean
quadric polytope [92], and three families of facets for this polytope is identified: the
clique-inequality, the cut-inequality and the generalized cut inequality, which can be
used to construct su�cient cuts.

Branch and cut

A combination of cutting planes and branch-and-bound search generates the so called
branch-and-cut methods. At each node on the search tree, cutting planes are added
to tighten the linear relaxations, and thus the lower bound is improved. Work in
[93, 6, 126, 127] gives more details on the implementation of branch-and-cut methods.

Algebraic methods

In [30, 19], the binary quadratic problem is transformed into pseudo-Boolean opti-
mization problems, where pseudo-Boolean functions are minimized over binary con-
straints x 2 {0, 1}n. A pseudo-boolean function is a real-valued function of 0-1
variables. Any pseudo-Boolean function can be written uniquely as a multi-linear
polynomial:

g(x) = a+
X

i

a
i

x
i

+
X

i<j

a
ij

x
i

x
j

+
X

i<j<k

a
ijk

x
i

x
j

x
k

+ · · · .

Because of the property x2

i

= x
i

, the function ⇧(x) can be written as a pseudo-
Boolean function. The basic algorithm for pseudo-Boolean optimization determines
the minimum of the pseudo-Boolean function by recursively eliminating variables,
following the dynamic programming principle. However, computationally, the pro-
cedure could be very expensive. Thus, a branch-and-bound scheme is proposed to
the variable elimination [30].

Continuous methods

In [94], a continuous approach is described for solving the problem (P
bqp

). Rather
than using relaxations and bounding information in a tree search scheme, the authors
employ Fischer-Burmeister nonlinear complementarity function to reformulate the
problem as a continuous problem with equilibrium constraints. The binary constraint
x
i

2 {�1, 1} is always equivalent to conditions:

�1  x
i

 1, (1 + x
i

)(1� x
i

) = 0,

where, by employing the Fischer-Burmeister function, the latter complementarity
condition is equivalent to the following equality

�
FB

(1 + x
i

, 1� x
i

) =
q

2 + 2x2

i

� 2 = 0.
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Then, the quadratic penalty function and logarithmic barrier function are used to
remove the equality and inequality constraints, and a global smoothing function is
constructed, which promises convexity in a large subset of its domain.

5.2 Lagrangian relaxations

The feasible region of the problem (5.1) can be written as

X = {x | x2

i

= 1, i = 1, . . . , n},
which is a canonical transformation [45, 46, 55, 117, 52, 48]. Then, the Lagrangian
is defined as

L(x,µ) =
1

2
x

TQx + f

T

x +
1

2

nX

i=1

µ
i

(x2

i

� 1)

=
1

2
x

T (Q+ diag(µ))x + f

T

x � 1

2
e

T

µ.

and the Lagrangian dual problem is

sup {D(µ) | µ 2 domh}, (5.4)

where D(µ) is the dual function

D(µ) = inf{L(x,µ) | x 2 Rn}, (5.5)

and domD = {µ 2 Rn | D(µ) > �1}.
The weak duality is always true

⇧(x) � D(µ) 8x 2 X , 8µ 2 domD.

Since the problem is nonconvex, the strong duality may not hold , i.e. ⇧(x⇤) > D(µ⇤)
with x

⇤ and µ

⇤ being optimal solutions for (5.1) and (5.4), respectively, and thus
there may exists a duality gap. If this happens, the optimal value of the dual problem
is only a lower bound for the primal problem, and the dual problem is then called
the Lagrangian relaxation for the original problem. Whereas, if there exist x̄ 2 X
and µ̄ 2 domD such that ⇧(x̄) = D(µ̄), then x̄ and µ̄ must be global solutions of
the primal and dual problems.

Before go to discuss the su�cient and necessary conditions for the global solutions,
we have a look at what µ will make the dual function D(µ) > �1. We have the
following result.

Lemma 21 Let G 2 Sn and f 2 Rn. Then, inf{1

2

x

TGx� f

T

x : x 2 Rn} > �1 if
and only if the following two conditions hold:

(i) G ⌫ 0,
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(ii) 9x 2 Rn such that Gx = f .

If G ⌫ 0 does not hold, there will be a negative eigenvalue of the matrix G, say �
i

.
Let x be on the same direction with an eigenvector of �

i

. The function will become
1

2

�
i

kxk2 � f

T

x, which is unbounded below. So the first condition is necessary. The
second condition can be easily understood if we apply the eigendecomposition to the
matrix G. Geometrically, the second condition requires that the vector f should be
perpendicular to the subspace generated by the eigenvectors of the zero eigenvalue
of G, if there is any.

The following theorem presents a global su�cient optimality condition, proposed
in [13], for the problem (P

bqp

).

Theorem 22 Consider the problem (P
bqp

), and let �
1

be the smallest eigenvalue of
Q. If x 2 X satisfies

�
1

e � diag(x)Qx � diag(x)f , (5.6)

then x is a global optimal solution.

From the Lemma 21, we have D(µ) = inf{L(x,µ) : x 2 Rn} > �1 if and only if
there exists x 2 Rn such that

(Q+ diag(µ))x = f , (5.7)

Q+ diag(µ) ⌫ 0. (5.8)

If x 2 X , the condition (5.7) is equivalent to

diag(x)(Q+ diag(µ))x � f) = 0,

from which we have

µ = �diag(x)Qx + diag(x)f . (5.9)

For a vector x 2 X , if µ defined by (5.9) satisfies the condition (5.8), we have

D(µ) = inf{1
2
x

T (Q+ diag(µ))x � f

T

x � 1

2
e

T

µ | x 2 Rn}

= �1

2
f

T

x � 1

2
e

T

µ

= �1

2
f

T

x � 1

2
e

T (�diag(x)Qx + diag(x)f)

=
1

2
x

TQx � f

T

x = ⇧(x)

From the Lagrangian duality, we know that x is a global optimal solution. Because of
Q+diag(µ) = Q+min{µ

i

}I+diag(µ�min{µ
i

}e), the condition (5.8) is guaranteed
if �

1

+ min{µ
i

} � 0, which is true when the inequality (5.6) holds. Thus, for a
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solution x 2 X satisfying the inequality (5.6), the vector µ satisfying (5.9) is an
optimal solution of the Lagrangian dual problem and there is no duality gap, which
implies that x is a global optimal solution.

If let x = (�x⇤
1

, x⇤
2

, . . . , x⇤
n

) 2 X , we have

1

2
x

⇤TQx

⇤ � f

T

x

⇤  1

2
x

⇤TQx

⇤ + 2q
11

� 2x⇤
1

e

T

1

Qx

⇤ + 2x⇤
1

f

T

e

1

� f

T

x

⇤,

which reduces to
x⇤
1

e

T

1

Qx

⇤ + x⇤
1

f

T

e

1

 q
11

,

where e

1

= (1, 0, . . . , 0). Similarly, it is shown that for i = 1, . . . , n,

x⇤
j

e

T

j

Qx

⇤ + x⇤
j

f

T

e

j

 q
jj

.

Thus, we have the following global necessary optimality condition, which is proposed
by [13].

Theorem 23 Consider the problem (P
bqp

). If x

⇤ 2 X is a global optimal solution,
then

diag(x⇤)Qx

⇤ � diag(x⇤)f  diag(Q), (5.10)

where diag(Q) = (q
11

, . . . , q
nn

).

In the rest of this section, we assume that the objective function ⇧(x) is homo-
geneous, and consider

p⇤ = min

⇢
1

2
x

TQx | x 2 X
�
. (5.11)

The assumption will not make any loss of generality since any nonhomogeneous
formulation can be equivalently transformed to a homogeneous one. Then the La-
grangian dual function can be explicitly written as

D(µ) = inf
x2Rn

1

2
x

T (Q+ diag(µ))x � 1

2
e

T

µ =

(
�1

2

e

T

µ Q+ diag(µ) ⌫ 0

�1 otherwise

and the Lagrangian dual problem becomes

d⇤ = sup
µ

� 1

2
e

T

µ (5.12)

s.t. Q+ diag(µ) ⌫ 0.

The problem (5.12) is an SDP problem. Moreover, it has a unique optimal solution.
The proof of the uniqueness can be found in [86].

Theorem 24 The SDP problem (5.12) has a unique optimal solution.
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The dual problem of (5.12) is also a convex problem and shares the same optimal
value with its primal problem. Formulating the Lagrangian for the problem (5.12)

L(µ, Z) = �1

2
e

T

µ +
1

2
(Q+ diag(µ)) · Z

=
1

2
(diag(Z)� e)Tµ +

1

2
Q · Z,

where diag(Z) denotes the column vector {z
ii

}, the dual function is then defined as

D(Z) =
1

2
Q · Z, domD = {Z | diag(Z) = e, Z ⌫ 0}.

The Lagrangian dual problem for (5.12) is formulated as

inf
Z

1

2
Q · Z (5.13)

s.t. diag(Z) = e,

Z ⌫ 0.

Obviously, the Slater’s condition hold for the problem (5.13), i.e., there exists Z
such that Z � 0 and diag(Z) = e. Thus, the solution µ and Z are optimal solutions
for (5.12) and (5.13), respectively, if and only if the KKT conditions hold:

Q+ diag(µ) ⌫ 0

Z ⌫ 0

diag(Z) = e

(Q+ diag(µ)) · Z = 0

The sup in (5.12) and inf in (5.13) can then respectively be replaced by max and
min.

Moreover, the optimal solution of the problem (5.12) is always on the boundary
of the feasible region, as stated in the following result.

Lemma 25 Let µ

⇤ be the optimal solution of the problem (5.12) and �̄
1

 �̄
2


· · ·  �̄

n

be eigenvalues of the matrix Q+ diag(µ⇤). Then

�̄
1

= 0.

If �̄
1

> 0 and the solution µ

⇤ is an interior of the feasible region, we can always
move a small distance towards the boundary such that the semidefinite constraint
still holds. Then the new point will still satisfy the semidefinite constraint and but
possess a larger function value, which contradicts the optimality of µ

⇤.
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SDP relaxation

The SDP relaxation method belongs to the lift-and-project convex relaxation. With
the homogeneous formulation, the problem is first lifted to an equivalent problem in
the space Sn. Let X = xx

T . Because of the equivalent relation

X = xx

T , X ⌫ 0 and rank(X) = 1,

the problem (P
bqp

) with f = 0 is equivalent to

min
X

1

2
Q ·X

s.t. diag(X) = e, X ⌫ 0, rank(X) = 1.

Then, by removing the rank-1 constraint, the problem is relaxed and an SDP problem
is obtained:

min
X

1

2
Q ·X

s.t. diag(X) = e, X ⌫ 0.

After the SDP problem is solved, the solution, which is in Sn, is projected back into
Rn, and the projection provides an approximation solution for the original problem.
Since the resulted SDP problem is an relaxation, its optimal value provides a lower
bound for the original problem. Obviously, the SDP relaxation is equivalent to the
Lagrangian relaxation.

The first SDP relaxation for the binary quadratic problem is given by [85], and
then interests are poured into investigating its theoretical properties and applications.
In [69], an interior-point method is proposed for the SDP. The most prominent result
of applications of the SDP is that the SDP relaxation normally provides approximate
solutions of very good quality. In [60], the Max Cut and Max 2SAT problems are
considered, and the randomized approximation algorithms, which use the SDP relax-
ation, always deliver solutions of expected value at least 0.87856 times of the optimal
value. The SDP is also employed to calculate lower bounds in brand-and-bound al-
gorithms [68, 103].

Convex quadratic programming relaxations

The problem (P
bqp

) with f = 0 can also be equivalently written as

min
x

1

2
x

T (Q+ diag(µ))x � 1

2
e

T

µ (5.14)

s.t. x2

i

= 1, i = 1, . . . , n

without changing the value of the objective function for each feasible solution.
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If choose parameters µ such that Q+diag(µ) is positive semidefinite and relax the
integer constraints into box constraints, we obtain a convex quadratic programming
relaxation

min
x

1

2
x

T (Q+ diag(µ))x � 1

2
e

T

µ (5.15)

s.t. x2

i

 1, i = 1, . . . , n

Obviously, its optimal value, which can be easily observed and is equal to �1

2

e

T

µ,
is a lower bound for the original problem. Naturally, we are interested in finding the
best parameter µ, under the constraint of positive semidefiniteness, such that the
lower bound is maximized. It results in the exact same problem (5.12).

Another convex quadratic programming relaxation is constructed by relaxing the
integer constraint into a sphere constraint x

T

x  n, on whose boundary the integer
solutions locate,

min
x

1

2
x

T (Q+ diag(µ))x � 1

2
e

T

µ (5.16)

s.t. x

T

x  n.

Similarly, choosing the best parameter µ is equivalent to solving the problem (5.12).

Improvements on the lower bound

Several improvements on the lower bound obtained from the SDP problem (5.12)
have been proposed [86, 14].

As stated in Lemma 25, zeros are the smallest eigenvalues of Q + diag(µ⇤) with
µ

⇤ being the optimal solution of the problem (5.12). Thus, the matrix Q+diag(µ⇤)
can be decomposed into the following form

Q+ diag(µ⇤) = V̄ ⇤̄V̄ T = V̄
+

⇤̄
+

V̄ T

+

(5.17)

with

V̄ = [V̄
0

V̄
+

], and ⇤̄ =


0
k

0
0 ⇤̄

+

�
.

where k is the multiplicity of the smallest eigenvalue.

Lemma 26 Let µ

⇤ be the optimal solution of the problem (5.12) and Q + diag(µ⇤)
have the eigendecomposition in (5.17). Then, the following statements are equivalent

1. p⇤ = d⇤;

2. V̄
0

z 2 {�1, 1}n for some z 2 Rk;

3. n = max{xT V̄
0

V̄ T

0

x | x 2 {�1, 1}n}.
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If there exists x 2 {�1, 1}n such that x = V̄
0

z for some z 2 Rk, we have x

T V̄
0

V̄ T

0

x =
z

T V̄ T

0

V̄
0

V̄ T

0

V̄
0

z = z

T V̄ T

0

V̄
0

z = kxk2 = n. While for any x{�1, 1}n, it is true that
x

T V̄
0

V̄ T

0

x = kV̄ T

0

xk2  kxk2 = n. Thus, x = V̄
0

z is an optimal solution of the
problem in the condition 3, with the optimal value of n. If there is a vector x 2
{�1, 1}n such that the maximization problem in the condition 3 achieves the optimal
value of n, we have n = kV̄ T

xk2 = kV̄ T

0

xk2+kV̄ T

+

xk2 = kV̄ T

0

xk2. Thus, kV̄ T

+

xk2 = 0
and V̄ T

+

x = 0, from which we have 1

2

x

TQx � (�1

2

e

T

µ

⇤) = 1

2

x

T V̄
+

⇤̄
+

V̄ T

+

x = 0. The
vector x is an optimal solution and we have p⇤ = d⇤. On the other hand, if p⇤ = d⇤,
we must have 1

2

x

T V̄
+

⇤̄
+

V̄ T

+

x = 0, which implies that V̄ T

+

x = 0. Thus there exists a
vector z 2 Rk such that x = V̄

0

z.
After obtain an optimal solution of the problem (5.12), we can check whether

there is a duality gap by solving the maximization problem

p̄ = max{xT V̄
0

V̄ T

0

x | x 2 {�1, 1}n}. (5.18)

By the convexity of the objective function in (5.18), we have

p̄ = max
x2[�1,1]

n

x

T V̄
0

V̄ T

0

x = max
z2Z

z

T

z,

where z = V̄ T

0

x and
Z = {V̄ T

0

x | x 2 [�1, 1]n}.
Thus, the maximization problem becomes a problem of enumerating extreme points
of the zonotope Z. It is shown in [4] that the enumeration problem can be solved in
O(nk�1) for k � 3 and O(nk) for k  2.

If p̄ < n, d⇤ only gives a lower bound. A method on how to construct a tighter
lower bound is proposed in [86]. For x 2 {�1, 1}n, we have the following inequality

1

2
x

TQx = d⇤ +
1

2
x

T V̄
+

⇤̄
+

V̄ T

+

x

� d⇤ + �̄
k+1

1

2
x

T V̄
+

V̄ T

+

x

= d⇤ +
1

2
�̄
k+1

(n� p̄).

Here, as it is defined, �̄
k+1

is the smallest positive eigenvalue. Thus, we have the
following result.

Theorem 27 Suppose p̄ < n. Then

p⇤ � d⇤ +
1

2
(n� p̄)�̄

k+1

> d⇤. (5.19)

A more complete analysis of the lower bound is then presented. Suppose that
the matrix Q has the eigendecomposition

Q = V ⇤V T , ⇤ = diag(�
1

, . . . ,�
n

), V = [v
1

, . . . , v
n

],
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with
�
1

 �
2

 · · ·  �
n

,

and v
i

being the corresponding eigenvectors of �
i

. For each j 2 {1, . . . , n}, we denote
the subspace spanned by a set of vectors v

1

, . . . , v
j

by L(v
1

, . . . , v
j

), the distance
between a vector x and the subspace L(v

1

, . . . , v
j

) by dist(x,L(v
1

, . . . , v
j

)), and the
distance between X = {�1, 1}n and L(v

1

, . . . , v
j

) by

d
j

= min{dist(x,L(v
1

, . . . , v
j

)) | x 2 X}.

In [14], a strengthened lower bound is proposed.

Theorem 28 The following inequality holds:

p⇤ � 1

2

 
n�

1

+
n�1X

j=1

(�
j+1

� �
j

)d2
j

!
. (5.20)

For any vector x 2 X , let x = V ↵ with ↵ = {↵
i

}. The following inequality holds:

d2
j

 dist(x,L(v
1

, . . . , v
j

)) =
nX

i=j+1

↵2

i

,

which implies ↵
j+1

� d2
j

�Pn

i=j+2

↵2

i

. Hence we have

x

TQx = n�
1

+
nX

i=2

(�
i

� �
1

)↵2

i

� n�
1

+ (�
2

� �
1

)d2
1

� (�
2

� �
1

)
nX

i=3

↵2

i

+
nX

i=3

(�
i

� �
1

)↵2

i

= n�
1

+ (�
2

� �
1

)d2
1

+
nX

i=3

(�
i

� �
2

)↵2

i

and, inductively, we get

x

TQx � n�
1

+
n�1X

j=1

(�
j+1

� �
j

)d2
j

.

Thus the inequality (5.20) is proved.
Let Q+diag(µ) replace Q and �̄

1

, . . . , �̄
n

be eigenvalues of Q+diag(µ), as defined
above. Similarly, it is true that

x

T (Q+ diag(µ))x � n�̄
1

+
n�1X

j=1

(�̄
j+1

� �̄
j

)d̄2
j

,
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where d̄
j

is the distance between X and L(v̄
1

, . . . , v̄
j

), from which we have

p⇤ � 1

2

 
n�̄

1

� e

T

µ +
n�1X

j=1

(�̄
j+1

� �̄
j

)d̄2
j

!
= d⇤ +

1

2

n�1X

j=k

(�̄
j+1

� �̄
j

)d̄2
j

. (5.21)

On the other hand, we have

d̄
j

= min{dist(x,L(v̄
1

, . . . , v̄
j

)) | x 2 X}

= min{n�
jX

i=1

↵2

i

| x = V ↵ 2 X}

= n�max{xT V̄
0

V̄ T

0

x | x 2 X}
Hence, if omit the items with j > k in the equation (5.21), we get

d⇤ +
1

2
�̄
k+1

d̄2
k

= d⇤ +
1

2
�̄
k+1

(n� p̄),

which is the lower bound provided in Theorem 27.
The following result o↵ers a necessary optimality condition.

Theorem 29 If the vector x

⇤ 2 X satisfies: dist(x⇤,L(v
1

, . . . , v
i

)) = d
i

for all
indices i 2 {1, . . . , n� 1} such that �

i+1

> �
i

, then x is an optimal solution.

Let d⇤
i

= dist(x⇤,L(v
1

, . . . , v
i

)) and s = {i | �
i+1

> �
i

, i = 1, . . . , n � 1}. For each
i 2 s, we have d

i

= d⇤
i

=
P

n

j=i+1

↵2

j

. Thus, in the proof of Theorem 28, all the
inequalities becomes equalities, and we have the equality holds in (5.20), i.e.,

p⇤ =
1

2

 
n�

1

+
X

j2s

(�
j+1

� �
j

)d2
j

!
=

1

2
x

TQx,

which shows that x is an optimal solution.
If there is only one entry in the set s, supposed s = {m}, the left side of the

equation (5.20) becomes 1

2

(n�
1

+ (�
m+1

� �
m

)d2
m

). We know there may not exists a
vector x such that d

i

= dist(x,L(v
1

, . . . , v
i

)) and d
j

= dist(x,L(v
1

, . . . , v
j

)), which
makes the equality in the equation (5.20) fail to hold. But, since only one such
distance, d

m

for s = {m}, appears in the expression, there is always a vector x

satisfying d
m

= dist(x,L(v
1

, . . . , v
m

)). This vector x is an optimal solution and the
equality in equation (5.20) holds.

5.3 Canonical duality for binary quadratic prob-
lems

5.3.1 Canonical dual problem

The integer constraints in the problem (P
bqp

) is treated as equality ones, x2

i

= 1, i =
1, . . . , n. Then follow the procedure of the canonical duality transformation discussed
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in Chapter 3, we can easily get the canonical dual problem. Let

G(�) = Q+ diag(�),

and
S
a

= {� 2 Rn | det(G(�)) 6= 0}.
The canonical dual function is formulated as

⇧d(�) = �1

2
f

TG(�)�1

f � 1

2
e

T

�, (5.22)

and the canonical dual problem is defined as

(Pd

bqp

) ext{⇧d(�) | � 2 S
a

}. (5.23)

Notice that if f = 0, the function ⇧d(�) is equal to the objective function in
the problem (5.12), which is thus same to the problem of maximizing ⇧d over the
positive semidefinite region defined by

S+

c

= {� 2 S
a

| G(�) ⌫ 0}.

5.3.2 Global optimality conditions

The following theorem characterizes the primal-dual relation.

Theorem 30 (Complementary-dual principle) If �̄ 2 S
a

is a critical point of
⇧d(�), the vector

x̄ = G(�̄)�1

f (5.24)

is a feasible solution of (P
bqp

).
Let x̄ 2 X and

�̄ = x̄ � f � x̄ � (Qx̄). (5.25)

If �̄ 2 S
a

, then �̄ is a critical point of ⇧d(�).
For both statements, we have

⇧(x̄) = ⇧d(�̄). (5.26)

Proof: From the assumption of �̄ being a critical point and the definition of x̄, we
have

r
�

⇧d(�̄) =

⇢
1

2
f

TG(�̄)�1I
i

G(�̄)�1

f

�
n

i=1

� 1

2
e

=
1

2
x̄ � x̄ � 1

2
e = 0,
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where I
i

denotes an all-zero matrix except for the entry (i, i), which is equal to one.
It is verified that x̄ is a feasible solution of the primal problem (P

bqp

). The definition
of x̄ in equation (5.24) also implies that x̄ and �̄ satisfy the equilibrium equation

G(�̄)x̄ � f = 0, (5.27)

from which we have

x̄ � �̄ = f �Qx̄. (5.28)

The equality (5.28) is further equivalent to

x̄ � x̄ � �̄ = x̄ � f � x̄ � (Qx̄).

Thus, we have

�̄ = x̄ � f � x̄ � (Qx̄) = diag(x̄)f � diag(x̄)Qx̄. (5.29)

Now we are ready to prove the equation (5.26):

⇧d(�̄) = �1

2
f

TG(�̄)�1

f � 1

2
e

T

�̄

= �1

2
f

T

x̄ � 1

2
e

T (diag(x̄)f � diag(x̄)Qx̄)

=
1

2
x̄

TQx̄ � f

T

x̄ = ⇧(x̄).

Let �̄ be defined by the equation (5.25). From the equivalence between (5.27)
and (5.29), it can be easily proved that �̄ is a critical point if �̄ 2 S

a

.
The theorem is proved. 2

Besides the positive semidefinite region S+

c

, we also introduce the negative semidef-
inite region:

S�
c

= {� 2 S
a

| G(�) � 0}.

First, S+

c

and S�
c

are convex sets. Second, from the expression of Hessian of the dual
function ⇧d(�), we notice that ⇧d(�̄) is concave on S+

c

and convex on S�
c

. Hence,
any critical point in S+

c

is a maximizer of ⇧d over S+

c

, and any critical point in S�
c

is a minimizer of ⇧d over S�
c

. We have the following result.

Theorem 31 For any given matrix Q 2 Sn and vector f 2 Rn, suppose �̄ is a
critical point of the dual function ⇧d(�) and x̄ = G(�̄)�1

f .

1. If �̄ 2 S+

c

, then x̄ is a global minimizer of ⇧(x) on X ; we have

⇧(x̄) = min
x2X

⇧(x) = max
�2S+

c

⇧d(�) = ⇧d(�̄). (5.30)
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2. If �̄ 2 S�
c

, then x̄ is a global maximizer of ⇧(x) on X ; we have

⇧(x̄) = max
x2X

⇧(x) = min
�2S�

c

⇧d(�) = ⇧d(�̄). (5.31)

Proof: The last equalities in (5.30) and (5.30) are obvious, since ⇧d(�) is concave
on S+

c

and convex on S�
c

. For the minimizer, the weak duality in (3.30) shows that
we always have

⇧d(�̄) = max
�2S+

c

⇧d(�)  min
x2X

⇧(x).

Thus, by Theorem 30, we have

⇧(x̄) = ⇧d(�̄) = min
x2X

⇧(x),

and it is proved that x̄ is a minimizer of ⇧(x) on X .
The second part of the theorem can be similarly proved by applying the fact that

the maximization of ⇧(x) is equivalent to the minimization of �⇧(x) since there are
finite feasible solutions in X . 2

The equation (5.30) shows that the critical point �̄ is the maximizer of the dual
function ⇧d(�̄) over S+

c

. On the other hand, if the maximizer is a critical point of
⇧d(�̄), we can claim that the corresponding x̄ defined by the equation (5.24) is a
global optimal solution of the primal problem. Follow the discussion in Section 3.3.4,
the maximizer can be found by solving the following SDP problem:

max
�,⌧

⌧ (5.32)

s.t.

✓
2G(�) f

f

T �1

2

e

T

� � ⌧

◆
⌫ 0

Let (�̄, ⌧̄) be a maximizer. Then, if G(�̄) � 0, �̄ must be a critical point of ⇧d and
x̄ must be a global solution. While if det(G(�̄)) = 0, �̄ may not be a critical point
and ⇧d(�̄) is only a lower bound for the primal problem. It shows that the integer
problem can be converted into a convex optimization problem, which can be solved
e�ciently by well-developed convex optimization methods.

Corollary 32 Suppose that �̄ is a maximizer of the problem (5.32) and x̄ = G(�̄)�1

f .
If G(�̄) � 0, then x̄ is a global optimal solution of the problem (P

bqp

).

5.3.3 Existence and uniqueness

The following result gives a criterion of existence and uniqueness of a critical point
in S+

c

.

Theorem 33 If, for any �

0

with det(G(�
0

)) = 0 and G(�
0

) ⌫ 0 and any � 2 S+

c

,
we have

lim
t!0

+
⇧d(�

0

+ t�) = �1, (5.33)

then the canonical dual problem (Pd

bqp

) has a unique critical point �̄ in S+

c

.
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Proof: The assumption in the equation (5.33), plus the fact that ⇧d(�) approaches
to minus infinity as any entry of � increases infinitely, implies that the function
⇧d(�) is coercive on the convex set S+

c

. Since ⇧d(�) is concave over S+

c

, it has at
least one maximizer, which must be a critical point. We use �̄ to denote one of
the maximizers. The uniqueness results from the fact that the Hessian of ⇧d(�) is
negative definite at the critical point �̄. 2

5.3.4 Examples

Example 1 Let

Q =

�2 �3
�3 �1

�
, and f =

✓
1
�2

◆
.

In this case, the dual function has four critical points,

�̄

1

= (4, 6), �̄

2

= (6, 2), �̄

3

= (0, 0), and �̄

4

= (�2,�4),

with function values

⇧d(�̄
1

) = �5.5 < ⇧d(�̄
2

) = �3.5 < ⇧d(�̄
3

) = �1.5 < ⇧d(�̄
4

) = 4.5.

The corresponding solutions of the primal problem are

x̄

1

= (�1,�1), x̄

2

= (1, 1), x̄

3

= (1,�1), and x̄

4

= (�1, 1).

By checking the eigenvalues of Q+diag(�), we find Q+diag(�
1

) ⌫ 0, Q+diag(�
4

) �
0, and Q+diag(�

2

) and Q+diag(�
3

) are indefinite. Thus, Theorem 30 and Theorem
31 are demonstrated.

Example 2 Let

Q =

2

4
�22 9 1
9 �140 6
1 6 �80

3

5 , and f =

0

@
�2
�6
�1

1

A .

The dual function has eight critical points:

�̄

1

= (12, 128, 73), �̄

2

= (10, 119, 72), �̄

3

= (11, 134, 7),

�̄

4

= (11, 125, 8), �̄

5

= (19, 21, 78), �̄

6

= (3, 12, 79),

�̄

7

= (20, 15, 2). �̄

8

= (2, 6, 1)

The corresponding primal solutions are

x̄

1

= (0, 1, 1), x̄

2

= (1, 1, 1), x̄

3

= (0, 1, 0),

x̄

4

= (1, 1, 0), x̄

5

= (1, 0, 1), x̄

6

= (0, 0, 1),

x̄

7

= (1, 0, 0). x̄

8

= (0, 0, 0)
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with function values

⇧(x̄
1

) = �97,⇧(x̄
2

) = �96,⇧(x̄
3

) = �64,⇧(x̄
4

) = �64,

⇧(x̄
5

) = �47,⇧(x̄
6

) = �39,⇧(x̄
7

) = �9,⇧(x̄
8

) = 0.

It can be verified that Q+ diag(�̄
1

) is positive definite, Q+ diag(�̄
8

) is negative
definite and all Q+diag(�̄

i

) for i = 2, . . . , 7 are indefinite. The function values show
that x̄

1

is the minimizer and x̄

8

is the maximizer. Thus, Theorem 30 and Theorem
31 are explained.

5.4 Perturbed problems

5.4.1 Canonical duality for perturbed problems

As mentioned in the previous section, the problem (P
bqp

) is equivalent to the following
perturbed problem

min
x

⇧
↵

(x) =
1

2
x

TQ
↵

x � f

T

x (5.34)

s.t. x 2 X ,

where Q
↵

= Q � diag(↵) and ↵ � 0. For any given indefinite matrix Q 2 Sn,
there exist vectors ↵ 2 Rn which can make Q

↵

be either positive definite or negative
definite. Here, we choose ↵ such that Q

↵

� 0. Then the function ⇧
↵

(x) is strictly
concave.

By Legendre-Fenchel transformation, the problem (5.34) is equivalent to

min{�x

T

z � 1

2
(z � f)TQ�1

↵

(z � f) | x 2 X , z 2 Rn}. (5.35)

Given x 2 X , the objective function is strictly convex with respect to z, where the
stationary point and the minimizer is z = �Q

↵

x+f and the function value is equal
to ⇧

↵

(x). Thus, if (x, z) is an optimal solution of the problem 5.35, the vector x

must be an optimal solution of the problem 5.34.
The total complementary function for the problem (5.35) is defined as

⌅(x, z,�) = �x

T

z � 1

2
(z � f)TQ�1

↵

(z � f) +
1

2
x

Tdiag(�)x � 1

2
e

T

�.

For any given z, let derivatives of ⌅(x, z,�) with respect to x and � be equal to
zero,

diag(�)x � z = 0 (5.36)

x � x = e (5.37)

We first notice in the problem (5.35) that if (x, z) is an optimal solution, x
i

=
sign(z

i

) for z
i

6= 0; otherwise, x
i

could be either positive or negative. Here, we can
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actually assume that the variable � is nonnegative, and the assumption will not
make optimal solutions of the problem (5.35) violate equations (5.36) and (5.37).
Under this assumption, the value of � satisfying (5.36) is equal to the absolute value
of the given z. The item �x

T

z + 1

2

x

Tdiag(�)x� 1

2

e

T

� in the function ⌅(x, z,�) is
then equal to �Pn

i=1

|z
i

| for any x and � satisfying (5.36) and (5.37) with a given
z. Then the following canonical dual problem can be defined

min ext

(
⇧d

↵

(z) = �1

2
(z � f)TQ�1

↵

(z � f)�
nX

i=1

|z
i

| | z 2 Rn

)
. (5.38)

Because of the negative definiteness of Q
↵

, the quadratic term in the function ⇧d

↵

(z)
is convex. While, the term �Pn

i=1

|z
i

| is concave and nonsmooth. Thus, ⇧d

↵

(z) is a
nonconvex and nonsmooth function. First, we have the following result, whose proof
can be found in [47].

Theorem 34 Given Q 2 Sn and f 2 Rn, the problem (5.38) is canonically dual to
the primal problem (P

bqp

) in the sense that if z̄ is a stationary point of the function
⇧d

↵

(z), then the vector x̄ defined by

x̄
i

= sign(z̄
i

), (5.39)

where x̄
i

can be either 1 or �1 if z̄
i

= 0, is a feasible solution of (P
bqp

), and ⇧(x̄) =
⇧d

↵

(z̄).

By fixing the sign of variable z, the symbol of absolute value can be removed,
and then ⇧d

↵

(z) becomes a convex function. There are 2n possible signs of z, each
of which is corresponding to confining the variable z in a hyperoctant. We can use
vectors x 2 X to label the corresponding hyperoctants. In the following, when we
say z is confined in the hyperoctant x, it means that sign(z

i

) = x
i

for i = 1, . . . , n. In
each hyperoctant, we can use the corresponding vector x 2 X to remove the symbol
of absolute value and write the function ⇧d

↵

(z) as

⇧d

↵

(z) = �1

2
(z � f)TQ�1

↵

(z � f)� x

T

z, (5.40)

which is a strictly convex function. If we ignore the confinement of the variable z,
the convex function ⇧d

↵

(z) in the equation (5.40) has a minimizer, which is also a
stationary point,

z = f �Q
↵

x. (5.41)

If the stationary point z is in the hyperoctant x, it is also a stationary point of the
function ⇧d

↵

(z) in (5.38). On the other hand, each stationary point in Theorem 34
must be the stationary point of the function ⇧d

↵

(z) in (5.40) in a certain hyperoc-
tant. Because the matrix Q

↵

is nonsingular, the equation (5.41) defines a one-to-one
relation between hyperoctants and stationary points of all such possible functions in
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(5.40). Some stationary points are in their corresponding hyperoctants, but others
not. Nevertheless, for each hyperoctant x and the stationary point z, we have

⇧(x) = ⇧
↵

(z). (5.42)

The following result claims that if a hyperoctant does not contain its stationary
point, it will not be an optimal solution of the primal problem (P

bqp

).

Lemma 35 Suppose Q 2 Sn and f 2 Rn are given, and ↵ � 0 is any vector such
that Q

↵

= Q � diag(↵) � 0. If x̄ 2 X is an optimal solution of the primal problem
(P

bqp

), then there exists a stationary point z̄ in the canonical dual problem (5.38)
such that x̄ and z̄ satisfy the equation (5.41).

Proof: As mentioned above, a vector z defined by the equation (5.41) for an x 2 X
is a stationary point of the problem (5.38) if and only if z is in the hyperoctant x.
If z̄ = f � Q

↵

x̄ is not a stationary point, the vector z̄ will be in a hyperoctant
x

1

, which must be di↵erent to x̄. Let z

1

= f � Q
↵

x

1

. Immediately, we have the
following inequalities

�1

2
(z̄ � f)TQ�1

↵

(z̄ � f)� x̄

T

z̄ � �1

2
(z̄ � f)TQ�1

↵

(z̄ � f)� x

T

1

z̄

> �1

2
(z

1

� f)TQ�1

↵

(z
1

� f)� x

T

1

z

1

.

The first inequality results from the fact that�x

T

1

z̄ = �Pn

i=1

|z̄
i

|  �x̄

T

z̄, while the
second one is because of the strictly convexity. Then, combining with the equation
(5.42), we have ⇧(x̄) > ⇧(x

1

), which contradicts x̄ being an optimal solution of the
primal problem (P

bqp

). 2

By Lemma 35, there always exist stationary points for ⇧d

↵

(z) in the problem
(5.38), and hence the problem (5.38) is always feasible. We can remove ext in the
problem (5.38) and redefine the dual problem as

min

(
⇧d

↵

(z) = �1

2
(z � f)TQ�1

↵

(z � f)�
nX

i=1

|z
i

| | z 2 Rn

)
. (5.43)

We then have the following results which illustrates the relation between optimal
solutions of the primal problem (P

bqp

) and the canonical dual problem (5.43).

Theorem 36 Suppose Q 2 Sn and f 2 Rn are given, and ↵ � 0 is any vector such
that Q

↵

= Q�diag(↵) � 0. If z̄ is an optimal solution of the canonical dual problem
(5.43), then x̄ that satisfies the equation (5.41) with z̄ is an optimal solution of the
primal problem (P

bqp

), and

⇧(x̄) = min
x2X

⇧(x) = min
z2Rn

⇧d

↵

(z) = ⇧d

↵

(z̄). (5.44)
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Proof: It must be true that the optimal solution z̄ is a stationary point of ⇧d

↵

(z).
Suppose that the optimal solution z̄ is in the hyperoctant x 2 X . If z̄ is not a
stationary point, then the vector z = f �Q

↵

x is a stationary point of the function
⇧d

↵

(z) in the equation (5.40), and z is not in the hyperoctant x since z̄ is a minimizer
of ⇧d

↵

(z) over the hyperoctant x. Thus, we have ⇧d

↵

(z) < ⇧d

↵

(z̄), and x will not be
an optimal solution. From Lemma 35, we know there must be a stationary point
of the function ⇧d

↵

(z) for each optimal solution, whose value is strictly less than
⇧(x) = ⇧d

↵

(z) and is thus less than ⇧d

↵

(z̄). It contradicts the assumption that z̄ is a
minimizer of the problem (5.43). Thus, z̄ must be a stationary point. Consequently,
the vector x̄ is a feasible solution of the problem (P

bqp

). Because z̄ is a minimizer,
its function value is less than or equal to all other stationary points. Therefore, x̄ is
an optimal solution of the primal problem (P

bqp

) and the equation (5.44) is proved
true. 2

From the proof of Lemma 35, it is shown that a vector x 2 X will not be
an optimal solution if the vector z defined by the equation (5.41) is not in the
hyperoctant x. We can use this conclusion to cut o↵ many solutions which are not
optimal ones. But if the parameter ↵ is not chosen properly, this conclusion will
become useless.

Lemma 37 Given Q 2 Sn and f 2 Rn, there exists a vector ↵̄ such that for any
↵ � ↵̄ the function ⇧d

↵

(z) in the problem (5.43) will have a stationary point in each
hyperoctant x 2 X .

Proof: The function ⇧d

↵

(z) has a stationary point in the hyperoctant x is equivalent
to

z � x = (�f �Qx) � x + ↵ � 0. (5.45)

If let ↵̄
i

= |� f
i

�Pn

j=1

q
ij

x
j

|, the equation (5.45) is always true for any ↵ � ↵̄ and
any x 2 X . Thus, the lemma is proved. 2

5.4.2 Analytically solvable cases

If Q is a diagonal matrix, i.e., Q = diag(q) with q = {q
i

} 2 Rn, the canonical dual
function ⇧d(�) has a simple form

⇧d(�) = �
nX

i=1

✓
f 2

i

2(q
i

+ �
i

)
+

1

2
�
i

◆
.

Obviously, the condition (5.33) holds for ⇧d(�) if f
i

6= 0. By the criticality condition
r⇧d(�) = 0, we have

|q
i

+ �
i

| = |f
i

|, i = 1, . . . , n,

and then have, for i = 1, . . . , n,

x
i

=
f
i

q
i

+ �
i

=

(
f

i

|f
i

| , if q
i

+ �
i

> 0,

� f

i

|f
i

| , if q
i

+ �
i

< 0.
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Therefore, by Theorem 31, we have the following result.

Corollary 38 Suppose f
i

6= 0 for i = 1, . . . , n and �̄ is a critical point of ⇧d(�).

1. If q
i

+ �
i

> 0, i = 1, . . . , n, then x̄ = { f

i

|f
i

|} is a global solution of the primal

problem (P
bqp

).

2. If q
i

+ �
i

< 0, i = 1, . . . , n, then x̄ = {� f

i

|f
i

|} is a global maximizer of ⇧(x)
over X .

Given any x̄ 2 X , a vector �̄ is defined by the equation (5.29), i.e.,

�̄
i

= x̄
i

f
i

�
nX

j=1

q
ij

x̄
i

x̄
j

, i = 1, . . . , n.

The inequality holds

|f
i

|�
nX

j=1

q
ij

x̄
i

x̄
j

� |f
i

|�
nX

j=1

|q
ij

|.

Then, if it is true that |f
i

| �Pn

j=1

|q
ij

| � ��
1

, i = 1, . . . , n, we always have �̄
i

�
��

1

, i = 1, . . . , n by choosing x̄
i

= sign(f
i

). By Theorem 30 and Theorem 31, we
know that �̄ is a critical point in S+

c

. Thus, such a chosen vector x̄ must be an
optimal solution of the problem (P

bqp

). We have proven the following result.

Theorem 39 Given Q 2 Sn and f 2 Rn, if the following condition holds

|f
i

|�
nX

j=1

|q
ij

| � ��
1

, (5.46)

where �
1

is the smallest eigenvalue of the matrix Q, the vector x̄ defined by

x̄
i

= sign(f
i

), i = 1, . . . , n, (5.47)

is an optimal solution of the primal problem (P
bqp

), and the vector �̄ defined by

�̄ = x̄ � (f �Qx̄) (5.48)

is the critical point of ⇧d(�) in S+

c

.

If start from the perturbed problem (5.34), we have G(�) = Q
↵

+ diag(�) in
the dual function. Let ↵ be a vector such that the matrix Q

↵

is positive definite.
Then, for a solution x 2 X , if � defined by the equation (5.29) is nonnegative, we
immediately have G(�) ⌫ 0 and thus x is an optimal solution. If the following
inequality holds

|f
i

| � (q
ii

� ↵
i

) +
X

j 6=i

|q
ij

|,
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we will have
(
f
i

� (q
ii

� ↵
i

) +
P

j 6=i

|q
ij

| � (q
ii

� ↵
i

)x
i

+
P

j 6=i

q
ij

x
j

, if f
i

� 0,

f
i

 �(q
ii

� ↵
i

)�P
j 6=i

|q
ij

|  (q
ii

� ↵
i

)x
i

+
P

j 6=i

q
ij

x
j

, if f
i

< 0.

The vector � will be nonnegative if the entries of x have values of

x
i

=

(
1, f

i

� (q
ii

� ↵
i

) +
P

j 6=i

|q
ij

|,
�1, f

i

 �(q
ii

� ↵
i

)�P
j 6=i

|q
ij

|. (5.49)

Then x will be an optimal solution for the problem (P
bqp

), and � will be a critical
point of the dual function ⇧d

↵

(�) in S+

c

.
A symmetric matrix is also guaranteed to be positive semidefinite if it is a diago-

nally dominant matrix with nonnegative diagonal entries [70]. Hence, for the matrix
G(�) = Q+diag(�), the positive semidefiniteness can be achieved if � makes G(�)
be diagonally dominant, i.e.,

q
ii

+ �
i

�
X

j 6=i

|q
ij

|.

By replacing �
i

with x
i

(f
i

�Pn

j=1

q
ij

x
j

), it becomes

x
i

(f
i

�
X

j 6=i

q
ij

x
j

) �
X

j 6=i

|q
ij

|,

which is always true if
|f

i

| � 2
X

j 6=i

|q
ij

|

and the vector x is accordingly chosen. Thus, we have the following result.

Theorem 40 Given a matrix Q 2 Sn and a vector f 2 Rn, if the following condition
holds

|f
i

| � 2
X

j 6=i

|q
ij

|, i = 1, . . . , n (5.50)

the vector x̄ determined by

x̄
i

=

(
1, f

i

� 2
P

j 6=i

|q
ij

|,
�1, f

i

 �2
P

j 6=i

|q
ij

|, (5.51)

is an optimal solution of the primal problem (P
bqp

), and the vector �̄ defined by

�̄ = x̄ � (f �Q
↵

x̄) (5.52)

is the critical point of ⇧d

↵

(�) in S+

c

.

It should be pointed out that the conditions (5.46) and (5.50) can not replace
each other in checking the analytical solvability, because the diagonal dominance is
only a su�cient condition for the positive semidefiniteness.
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Chapter 6

Nonconvex optimization of
log-sum-exp functions and quartic
polynomials

6.1 Introduction

In this chapter, we are interested in the following nonconvex global optimization
problem:

(P
lse

) min
x2Rn

⇧(x) = T (x) +W (x) +
1

2
x

TQx � p

T

x (6.1)

in which Q 2 Sn and p 2 Rn. The quartic (or 4th-order) polynomial function W (x)
and the log-sum-exp function T (x) are defined as

W (x) =
r1X

i=1

↵
i

2

✓
1

2
x

TA
i

x � g

T

i

x � c
i

◆
2

,

T (x) =
1

�
log

"
1 +

r2X

i=1

exp

✓
�

✓
1

2
x

TB
i

x � h

T

i

x � d
i

◆◆#
,

where A
i

, B
i

2 Sn, g

i

,h
i

2 Rn, c
i

, d
i

2 R, and ↵
i

, � 2 R
++

.
The quartic polynomialW (x) is the so-called double-well potential if A

i

⌫ 0, c
i

>
0 for i = 1, . . . , r

1

. This function has extensive applications in mathematical physics,
for example, in [39] it was used to model post-buckling of beams. While T (x) is one
of the fundamental functions in engineering sciences, which arises broadly in regions
including plasticity theory [123], nonsmooth variational problems [36], structural
optimization problems [7], information theory [27], network communication systems
[26, 20, 28], and robot manipulator designing [1, 2, 105]. In numerical analysis, the
function T (x) is often used to deal with minimax problems [98, 99, 100, 109].

The rest of this chapter is arranged as follows. We first show in Section 6.2
how a canonical dual problem can be constructed by the standard canonical duality
transformation. Then in Section 6.3, the triality theory is presented and proved. A
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special case of one-dimensional dual problem is discussed in Section 6.4, where we
present a necessary and su�cient condition for the existence of a critical point in the
positive semidefinite region. Finally, examples are provided in Section 6.5 to explain
the canonical duality theory.

6.2 Canonical dual problem

Following the standard procedure of the canonical duality transformation, we first
introduce a geometrical operator from Rn to E

a

✓ Rm:

(⇠(x),⌘(x)) =

✓⇢
1

2
x

TA
i

x � g

T

i

x

�
r1

i=1

,

⇢
1

2
x

TB
i

x � h

T

i

x

�
r2

i=1

◆

where m = r
1

+ r
2

. Generally speaking, for any given m and symmetrical matrices
A

i

and B
i

, the range E
a

may not be convex. But, the range E
a

is always convex
when m = 2: without loss of generality, we assume that g

1

= 0 and h

1

= 0; As
proved in [21], we will have E

a

= {(1
2

tr(A
1

X), 1
2

tr(B
1

X)) | X 2 Sn

+

}, where the right
side of the equation is the range of all positive semidefinite matrix under a linear
transformation, and thus it is a convex set. We assume here that E

a

is a convex set.
Therefore, a canonical function can be defined on E

a

:

V (⇠,⌘) = V
1

(⇠) + V
2

(⌘)

where

V
1

(⇠) =
rX

i=1

↵
i

2
(⇠

i

� c
i

)2,

V
2

(⌘) =
1

�
log

"
1 +

pX

i=1

exp (�(⌘
i

� d
i

))

#
.

Here ⇠
i

and ⌘
i

denote the ith entry of ⇠ and ⌘, respectively. Its conjugate function
is

V ⇤(�, ⌧ ) = V ⇤
1

(�) + V ⇤
2

(⌧ )

in which V ⇤
1

(�) and V ⇤
2

(⌧ ) are conjugate functions of V
1

(⇠) and V
2

(⌘), with expres-
sions

V ⇤
1

(�) =
1

2
�

Tdiag(↵)�1

� + �

T

c,

V ⇤
2

(⌧ ) =
1

�

"
pX

i=1

⌧
i

log(⌧
i

) + (1�
pX

i=1

⌧
i

) log(1�
pX

i=1

⌧
i

)

#
+ ⌧

T

d,

where d = {d
i

}p
i=1

, ↵ = {↵
i

}r
i=1

and c = {c
i

}r
i=1

. Obviously, V ⇤
1

and V ⇤
2

are twice
di↵erentiable in their domains. Let

E⇤
a

= {(�, ⌧ ) 2 Rm | ⌧ > 0, ⌧ T

e < 1}.
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By the Legendre-Fenchel transformation (see Section 2.1.3), we have the following
relation

(⇠,⌘) = (rV ⇤
1

(�),rV ⇤
2

(⌧ )) () (�, ⌧ ) = (rV
1

(⇠),rV
2

(⌘)), (6.2)

which is further equivalent to

V (⇠,⌘) + V ⇤(�, ⌧ ) = ⇠

T

� + ⌘

T

⌧ . (6.3)

Then the total complementary function ⌅ : Rn ⇥ E⇤
a

! R can be defined by

⌅(x,�, ⌧ ) =
1

2
x

TG(�, ⌧ )x � f(�, ⌧ )Tx � V ⇤
1

(�)� V ⇤
2

(⌧ ), (6.4)

where

G(�, ⌧ ) = Q+
rX

i=1

�
i

A
i

+
pX

i=1

⌧
i

B
i

and f(�, ⌧ ) = p +
rX

i=1

�
i

g

i

+
pX

i=1

⌧
i

h

i

.

In the following, we use G and f to abbreviate G(�, ⌧ ) and f(�, ⌧ ). From the total
complementary function, the canonical dual function ⇧d(�, ⌧ ) is defined by

⇧d(�, ⌧ ) = ext {⌅(x,�, ⌧ ) | x 2 Rn} . (6.5)

Notice that for any given (�, ⌧ ), the total complementary function ⌅(x,�, ⌧ ) is a
quadratic function of x and its stationary points are the solutions of the following
equation system

r
x

⌅(x,�, ⌧ ) = Gx � f = 0. (6.6)

If det(G) 6= 0 for a given (�, ⌧ ), x can be solved analytically and uniquely, and the
canonical dual function ⇧d(�, ⌧ ) is well defined and can be written as

⇧d(�, ⌧ ) =� 1

2
f

TG�1

f � V ⇤
1

(�)� V ⇤
2

(⌧ ). (6.7)

The dual function ⇧d(�, ⌧ ) is twice di↵erentiable.
Let

S
a

= {(�, ⌧ ) | (�, ⌧ ) 2 E⇤, det(G) 6= 0} .
The canonical dual problem is defined as

(Pd

lse

) ext
�
⇧d(�, ⌧ ) | (�, ⌧ ) 2 S

a

 
. (6.8)

Immediately, we have the following result about the relations between the prob-
lems (P

lse

) and (Pd

lse

) on extreme points. It shows that there is no duality gap
between the primal problem and the canonical dual problem.

Theorem 41 (Complementary-Dual Principle) The problem (Pd

lse

) is canoni-
cally dual to the problem (P

lse

) in the sense that:
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1. If x̄ is a critical point of ⇧(x) and

(�̄, ⌧̄ ) = (rV
1

(⇠̄),rV
2

(⌘̄)) 2 S
a

, (6.9)

where ⇠̄ = ⇠(x̄) and ⌘̄ = ⌘(x̄), then (�̄, ⌧̄ ) is a critical point of the dual
function ⇧d(�, ⌧ ).

2. If (�̄, ⌧̄ ) is a critical point of ⇧d(�, ⌧ ) in S
a

, then

x̄ = G�1

f (6.10)

is a critical point of ⇧(x).

Moreover, for both statements, (x̄, �̄, ⌧̄ ) is a critical point of ⌅(x,�, ⌧ ) and

⇧(x̄) = ⌅(x̄, �̄, ⌧̄ ) = ⇧d(�̄, ⌧̄ ). (6.11)

Proof: First, assume that x̄ is a critical point of ⇧(x) and (�̄, ⌧̄ ) 2 S
a

is defined
by (6.9). We have

0 = r⇧(x̄) = r⌘(x̄)rV
2

(⌘̄) +r⇠(x̄)rV
1

(⇠̄) +Qx � f̄

= r⌘(x̄)⌧̄ +r⇠(x̄)�̄ +Qx̄ � f̄

= Ḡx̄ � f̄ (6.12)

where Ḡ = G(�̄, ⌧̄ ) and f̄ = f(�̄, ⌧̄ ). From the assumption, it is true that det(Ḡ) 6=
0, hence x̄ is the unique point that satisfies the equation (6.12). By the relation
(6.2), the definition of (�̄, ⌧̄ ) implies that rV ⇤

1

(�̄) = ⇠̄ and rV ⇤
2

(⌧̄ ) = ⌘̄, where ⇠̄
i

and ⌘̄
i

are now equal to

⇠̄
i

=
1

2
f̄

T Ḡ�1A
i

Ḡ�1

f̄ , and ⌘̄
i

=
1

2
f̄

T Ḡ�1B
i

Ḡ�1

f̄ .

By the expression of the gradient of ⇧d,

r⇧d(�, ⌧ ) =

 �
1

2

f

TG�1A
i

G�1

f � g

T

i

G�1

f � @V ⇤
1

(�)/@�
i

 
r1

i=1�
1

2

f

TG�1B
i

G�1

f � h

T

i

G�1

f � @V ⇤
2

(⌧ )/@⌧
i

 
r2

i=1

!
, (6.13)

it shows that (�̄, ⌧̄ ) is a critical point of ⇧d(�, ⌧ ).
Conversely, we then assume that (�̄, ⌧̄ ) is a critical point of ⇧d(�, ⌧ ) in S

a

and
x̄ = Ḡ�1

f̄ . From (6.13) and the definition of x̄, we have ⇠̄ = @V ⇤
1

(�̄)/@�
i

and
⌘̄ = @V ⇤

2

(⌧̄ )/@⌧
i

, which, combining the relation (6.2), imply that �̄ = rV
1

(⇠̄) and
⌧̄ = rV

2

(⌘̄). Thus, the equation (6.12) is proved true and x̄ is a critical point.
The rest of the theorem is obvious. Therefore, the theorem is proved. 2
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6.3 Triality theory

In this section we will study the optimality conditions for global and local solutions
of the primal and dual problems. Let

S+

c

= {(�, ⌧ ) 2 S
a

| G ⌫ 0} , and S�
c

= {(�, ⌧ ) 2 S
a

| G � 0} .

It is easy to prove that both S+

c

and S�
c

are convex sets.
Now, we present the main result, which illustrates the relations between the

primal and canonical dual problems on global and local solutions.

Theorem 42 (Triality Theorem) Suppose that (�̄, ⌧̄ ) is a critical point of ⇧d(�, ⌧ ),
and x̄ = Ḡ�1

f̄ .

1. If (�̄, ⌧̄ ) 2 S+

c

, then the min-max duality holds in the form of

⇧(x̄) = min
x2Rn

⇧(x) = max
(�,⌧ )2S+

c

⇧d(�, ⌧ ) = ⇧d(�̄, ⌧̄ ). (6.14)

2. If (�̄, ⌧̄ ) 2 S�
c

, the double-max duality holds in the form that if x̄ is a local
maximizer of ⇧(x) or (�̄, ⌧̄ ) is a local maximizer of ⇧d(�, ⌧ ), we have

⇧(x̄) = max
x2X0

⇧(x) = max
(�,⌧ )2S0

⇧d(�, ⌧ ) = ⇧d(�̄, ⌧̄ ) (6.15)

for some neighborhood 1 X
0

⇥ S
0

⇢ Rn ⇥ S�
c

of (x̄, �̄, ⌧̄ ).

3. If (�̄, ⌧̄ ) 2 S�
c

, then the double-min duality holds conditionally as:

(a) If m = n, x̄ being a local minimizer of ⇧(x) is equivalent to (�̄, ⌧̄ ) being
a local minimizer of ⇧d(�, ⌧ ), and we have

⇧(x̄) = min
x2X0

⇧(x) = min
(�,⌧ )2S0

⇧d(�, ⌧ ) = ⇧d(�̄, ⌧̄ ) (6.16)

for some neighborhood X
0

⇥ S
0

⇢ Rn ⇥ S�
c

of (x̄, �̄, ⌧̄ ).

(b) If m < n, (�̄, ⌧̄ ) being a local minimizer or a saddle point of ⇧d(�, ⌧ ) is
equivalent to x̄ being a saddle point of ⇧(x).

(c) If m > n, x̄ being a local minimizer or a saddle point of ⇧(x) is equivalent
to (�̄, ⌧̄ ) being a saddle point of ⇧d(�, ⌧ ).

Proof:
1We use the same definition of the neighborhood as defined in [40] (Note 1 on page 306), i.e., a

subset X0 is said to be the neighborhood of the critical point x̄ if x̄ is the only critical point in X0.
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1. Since Ḡ � 0 when (�̄, ⌧̄ ) 2 S+

c

and D � 0, the Hessian of the dual function
is negative definite, r2⇧d(�, ⌧ ) � 0, which implies that ⇧d(�, ⌧ ) is strictly
concave over S+

c

. Hence, it is true that

⇧d(�̄, ⌧̄ ) = max
(�,⌧ )2S+

c

⇧d(�, ⌧ ).

The total complementary function ⌅(x, �̄, ⌧̄ ) is a convex function with respect
to x in Rn, which, plus the fact that x̄ is a critical point of ⌅(x, �̄, ⌧̄ ), means
that we have ⌅(x, �̄, ⌧̄ ) � ⌅(x̄, �̄, ⌧̄ ) for any x 2 Rn. Therefore, for any
x 2 Rn, we have

⇧(x) � ⌅(x, �̄, ⌧̄ ) � ⌅(x̄, �̄, ⌧̄ ) = ⇧(x̄),

in which the first inequality is due to the Fenchel-Young inequality. The equa-
tion (6.14) is proved.

2. Assume that (�̄, ⌧̄ ) is a critical point of ⇧d(�, ⌧ ) in S�
c

. From the equaion
(6.13), we have

0 = r⇧d(�̄, ⌧̄ ) =

✓
⇠(x̄)�rV ⇤

1

(�̄)
⌘(x̄)�rV ⇤

2

(⌧̄ )

◆
,

which is equivalent to

�̄ = rV
1

(⇠̄), and ⌧̄ = rV
2

(⌘̄).

Then, the Hessian matrices of ⇧(x) at x̄ and ⇧d(�, ⌧ ) at (�̄, ⌧̄ ) can be ex-
pressed as

r2⇧(x̄) = Ḡ+ F̄ M̄F̄ T , (6.17)

r2⇧d(�̄, ⌧̄ ) = �F̄ T Ḡ�1F̄ � M̄�1, (6.18)

where F̄ 2 Rn⇥m and M̄ 2 Rm⇥m are defined by

F̄ =
⇥
A

1

x̄ � g

1

, . . . , A
r1x̄ � g

r1 , B1

x̄ � h

1

, . . . , B
r2x̄ � h

r2

⇤
,

M̄ =


�(diag(⌧̄ )� ⌧̄ ⌧̄

T ) 0
0 diag(↵)

�
.

By Lemma 44, we have

r2⇧(x̄) � 0 () r2⇧d(�̄, ⌧̄ ) � 0.

Thus, x̄ being a local maximizer of ⇧(x) is equivalent to (�̄, ⌧̄ ) being a local
maximizer of ⇧d(�, ⌧ ).

If (�̄, ⌧̄ ) is a critical point, since Ḡ � 0 and M̄ � 0, we have r2⇧d(�̄, ⌧̄ ) � 0.
Hence, there exists a neighborhood S

0

⇢ S�
c

around (�̄, ⌧̄ ) such that for all
(�, ⌧ ) 2 S

0

, r2⇧d(�, ⌧ ) � 0. Since the map x = G�1

f is continuous over S
a

,
the image of the map over S

0

is a neighborhood of x̄, which we denote as X
0

.
It shows that x̄ and (�̄, ⌧̄ ) are local maximizers.
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3. We then prove the double-min duality.

(a) Assume that (�̄, ⌧̄ ) is a local minimizer of ⇧d(�, ⌧ ) in S�
c

. From

r2⇧d(�̄, ⌧̄ ) = �F̄ T Ḡ�1F̄ � M̄�1 � 0,

we have �F̄ T Ḡ�1F̄ � M̄�1 � 0, which implies that the matrix F is
invertible. Immediately, we have

�Ḡ�1 ⌫ (F̄ T )�1M̄�1F̄�1,

which is further equivalent to

�Ḡ � F̄ M̄F̄ T .

Thus, it is proved that r2⇧(x̄) = Ḡ + F̄ M̄F̄ T ⌫ 0 and x̄ is a local
minimizer of ⇧(x). The converse can be proved similarly.

(b) We claim that x̄ is not a local minimizer of ⇧(x). If x̄ is a local minimizer
of ⇧(x), we would have r2⇧(x̄) = Ḡ + F̄ M̄F̄ T ⌫ 0, which is equivalent
to F̄ M̄F̄ T ⌫ �Ḡ. Since �Ḡ � 0, it is true that matrix F̄ has full rank
and

n = rank(�Ḡ) = rank(F̄ M̄F̄ T )  min
�
rank(F̄ ), rank(D̄)

 
= m,

which is contradictory to the assumption that m < n. Therefore, if (�̄, ⌧̄ )
is a local minimizer or a saddle point, x̄ must be a saddle point. The
converse is also true.

(c) The proof is similar to that of case (b).

The theorem is proved. 2

6.4 One-dimensional dual problem

Here, we consider a special case of the problem (P
lse

):

min
x2Rn

⇧
1

(x) = T (x) +
1

2
x

TQx � p

T

x. (6.19)

where

T (x) =
1

�
log


1 + exp

✓
�

✓
1

2
x

TAx � b

T

x � c

◆◆�
.

We confine our discussion to the case where A is positive definite. Thus, without loss
of generality, we can let A = I. The canonical dual function is a univariate function,

⇧d

1

(⌧) = �1

2
f(⌧)TG(⌧)�1

f(⌧)� c⌧ � 1

�
(⌧ log(⌧) + (1� ⌧) log(1� ⌧)) (6.20)
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in which
G(⌧) = Q+ ⌧I, and f(⌧) = p + ⌧b.

Assume that the matrix Q has a eigendecomposition of Q = U⇤UT . The diagonal
entities of ⇤ are the eigenvalues of the matrix Q in nondecreasing order,

�
1

= · · · = �
k

< �
k+1

 · · ·  �
n

.

The columns of U are the corresponding eigenvectors. If we let p̂ = UT

p and
b̂ = UT

b, the dual function can be rewritten as

⇧d

1

(⌧) = �1

2

nX

i=1

(p̂
i

+ ⌧ b̂
i

)2

�
i

+ ⌧
� c⌧ � 1

�
(⌧ log(⌧) + (1� ⌧) log(1� ⌧)) . (6.21)

The first- and second-order derivatives of ⇧d

1

(⌧) are

r⇧d

1

(⌧) =
1

2

nX

i=1

(p̂
i

� �
i

b̂
i

)2

(�
i

+ ⌧)2
+

1

2

nX

i=1

b̂2
i

� c� 1

�
log(

⌧

1� ⌧
), (6.22)

r2⇧d

1

(⌧) =
nX

i=1

(p̂
i

� �
i

b̂
i

)2

(�
i

+ ⌧)3
� 1

�

1

⌧(1� ⌧)
, (6.23)

and the set S+

c

is
S+

c

= {⌧ | 0 < ⌧ < 1, ⌧ > ��
1

}.
Notice that if �

1

� 0, i.e., the matrix Q is positive semidefinite, the matrix G is
always positive definite for ⌧ 2 S+

c

= {⌧ | 0 < ⌧ < 1}. There exists a unique critical
point of the dual function in S+

c

. If �
1

 �1, the set S+

c

will be empty. It can
be proved that the minimization problem (6.19) is not lower bounded. For the case
where �1 < �

1

< 0, we have the following existence conditions for ⇧d

1

(⌧) having a
critical point in S+

c

.

Theorem 43 Suppose that �
i

, i = 1, . . . , n are defined as above and �1 < �
1

< 0.
Then there exists a critical point of ⇧d

1

(⌧) in S+

c

if and only if

kX

i=1

(p̂
i

� �
1

b̂
i

)2 6= 0, or (6.24)

1

2

nX

i=k+1

(p̂
i

� �
i

b̂
i

)2/(�
i

� �
1

)2 +
1

2

nX

i=1

b̂2
i

� c� 1

�
log(

��
1

1 + �
1

) > 0. (6.25)

If ⇧d

1

(⌧) has a critical point in S+

c

, the critical point is unique. Let ⌧̄ denote the
critical point. Then x̄ = G(⌧̄)�1

f(⌧̄) is a global solution of the problem (6.19).

From the expression in (6.25), it shows clearly that the condition in (6.25) always
holds if it is true that

1

2

nX

i=1

b̂2
i

� c� 1

�
log(

��
1

1 + �
1

) > 0.

Because of the log item, this criteria can only be used when �1 < �
1

< 0.
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x ⇧(x) optimality (�, ⌧) ⇧d(�, ⌧) S
a

optimality

x̄
1

0.113 global minimizer (�̄
1

, ⌧̄
1

) 0.113 S+

c

local maximizer
x̄
2

1.688 local minimizer (�̄
2

, ⌧̄
2

) 1.688 S�
c

saddle point
x̄
3

5.661 local maximizer (�̄
3

, ⌧̄
3

) 5.661 S�
c

local maximizer

Table 6.1: Dualities for Example 2.

6.5 Examples

In this section, two examples are provided to illustrate the canonical duality theory.
By examining the critical points of the primal and dual functions, we show how the
dualities in Theorem 42 are verified.

Example 1

Consider the one-dimensional problem:

min
x2R

⇧(x) = log
⇥
1 + exp

�
0.5x2 � 0.1

�⇤
+ 5

�
x2 � 1

�
2 � 0.8x.

The corresponding canonical dual function is

⇧d(�, ⌧) = � 0.32

⌧ + 2�
� � � 0.05�2 � 0.1⌧ � [⌧ log(⌧) + (1� ⌧) log(1� ⌧)] .

The graph of function ⇧(x) and the contour of ⇧d(�, ⌧) are shown in Figure 6.1.
There are three critical points of the dual function ⇧d(⌧, �):

✓
�̄
1

⌧̄
1

◆
=

✓
0.098
0.6

◆
,

✓
�̄
2

⌧̄
2

◆
=

✓�0.71
0.59

◆✓
�̄
3

⌧̄
3

◆
=

✓�9.983
0.475

◆
,

which are corresponding to the solutions of the primal problem:

x̄
1

= 1.005, x̄
2

= �0.964, and x̄
3

= �0.041.

The duality relations are shown in Table 6.1. The min-max duality is validated by x
1

and (�
1

, ⌧
1

), and the double-max duality appears as both x
3

and (�
1

, ⌧
1

) being local
maximizers. Whereas, for the double-min duality, since n < m, a local minimizer of
the primal problem must be corresponding to a saddle point of the dual problem,
which is the case of x

3

and (�
1

, ⌧
1

).

Example 2

We consider a nonconvex and nonsmooth optimization problem:

min
x2R2

max
�
x2

1

+ x2

2

� x
2

, � x2

1

� x2

2

+ 3x
2

 
.
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Figure 6.1: Example 1: the graph of function ⇧(x) and the contour of function
⇧d(�, ⌧).

It’s easy to verify that the optimal solution is (0, 0) with function value of 0. Here,
we use the log-sum-exp function to approximate the function max {·, ·}. We then get
the following smooth optimization problem:

min
x2R2

⇧(x) =
1

�
log
⇥
1 + exp

�
�
�
2x2

1

+ 2x2

2

� 4x
2

��⇤� x2

1

� x2

2

+ 3x
2

.

Its canonical dual function is

⇧d(⌧) = �1

2

(4⌧ � 3)2

4⌧ � 2
� 1

�
[⌧ log ⌧ + (1� ⌧) log(1� ⌧)] .

First, we let � be a small value,

� = 2.5.

The primal function ⇧(x) has three critical points:

x̄

1

= (0,�0.094), x̄

2

= (0, 1.856), and x̄

3

= (0, 1.528),

which are corresponding to the three critical points of ⇧d(⌧),

⌧̄
1

= 0.728, ⌧̄
2

= 0.208, and ⌧̄ = 0.026.

Then, we increase the value of � and let

� = 100.

The primal function ⇧(x) still has three critical points, which are

x̄

1

= (0,�0.0027), x̄

2

= (0, 1.997), and x̄

3

= (0, 1.5).

The first two solutions are corresponding to

⌧̄
1

= 0.749, and ⌧̄
2

= 0.249.
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Figure 6.2: Example 2: the contour of ⇧(x) and the graph of ⇧d(⌧); The two above
are for the case of � = 2.5, and the two below are for the case of � = 100.

Whereas, for the third solution, it is clear that, from the formula (see the definition
of (6.9) in Theorem 41)

⌧̄
3

= rV
2

(⇠(x̄
3

)) =
exp(�1.5�)

1 + exp(�1.5�)
,

the value of ⌧̄
3

will approach 0, as � increases unboundedly. This feature is also
shown in the graphs (see Figure 6.2). Here, the duality relation is mentioned only
for the case of � = 100. It is clear, as shown in Figure 6.2, that ⌧̄

1

2 S+

c

and ⌧̄
2

2 S�
c

.
The min-max duality is true by the fact that x̄

1

is the global solution. The double-
min duality is also verified, because of the fact that n > m and x

2

is a saddle point.
Moreover, we have

⇧(x̄
1

) = ⇧d(⌧̄
1

) = 0.006, and ⇧(x̄
2

) = ⇧d(⌧̄
2

) = 2.006.
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Chapter 7

Conclusions

In this thesis, the canonical duality theory is studied. Its three main parts, canonical
dual transformation, complementary-dual principle and triality theory, are developed
for a general optimization problem, which is required to satisfy only certain decompo-
sition conditions. This general problem covers a wide range of optimization problems
arising in the real world. It is shown, in the new result on the complementary-dual
principle, that there is a one-to-one correspondence between all the KKT points of
the canonical dual problem and of the primal problem; moreover, each pair of corre-
sponding KKT points share the same function value. Then, the case where all the
operators are quadratic is specifically studied. The triality theory reveals insightful
information about global and local solutions. It is shown that as long as the global
optimality condition holds true, the primal problem is equivalent to a convex problem
in the dual space, which can be solved e�ciently by existing convex methods; even if
the condition does not hold, the convex problem still provides a lower bound that is
at least as good as that by the Lagrangian relaxation method. It is also shown that
through examining the canonical dual problem, the hidden convexity of the primal
problem is easily observable, which is demonstrated using three examples.

For the spherically constrained quadratic minimization problem, a detailed study
has been presented. It is shown that by the canonical duality, this nonconvex opti-
mization is equivalent to a unified concave maximization problem over the positive
semidefinite region in the dual space. Based on this canonical dual problem, su�cient
and necessary conditions are obtained that separate problems into hard case and easy
case. A perturbation method and an associated polynomial algorithm are proposed.
Numerical results demonstrate that the proposed approach is able to solve large-size
problems e�ciently, including hard-case problems. Combining with the trust region
method, this approach should be able to e↵ectively solve general global optimization
problems.

The lower bounds and analytically solvable cases are comprehensively studied
for the binary quadratic problem, a fundamental problem in discrete optimization.
The canonical duality is able to provide relaxations and lower bounds which are
at least as good as that by Lagrangian relaxations. Combining with methods for
finding critical points, the relaxations can be used to equip enumeration methods.
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The perturbation technique plays a key role in exploring the analytically solvable
cases; it is also e↵ective in computing critical points in the dual space, especially
when a critical point falls on the boundary of an interested region.

The third application studied here involves a very general nonlinear global op-
timization problem with 4th-order polynomials and log-sum-exp functions. By the
canonical duality, it is concluded that if there is a critical point in the positive
semidefinite region, the primal problem is equivalent to a concave maximization
problem and its global solution can be calculated analytically from this critical point.
Then two special cases are discussed: a fourth-order polynomial minimization prob-
lem and a minimax problem. For these two special cases, the min-max duality in the
triality theory is reinforced and su�cient and necessary conditions for the existence
of a critical point in the positive semidefinite region are discovered. The examples
clearly demonstrate the perfect duality relations between the primal problem and the
canonical dual problem. The study shows that some optimization problems, even if
they are nonconvex and nonsmooth, can still be e�ciently solved via the canonical
duality approach.

The contributions of the canonical duality theory to mathematical optimization
are manifested: insightful relations have been revealed, which might not otherwise be
observable, and unified e�cient solution methods can be developed for a wide range
of problems. The relations revealed by the triality theory are also true for many other
global optimization problems under certain conditions (see [41, 43, 44, 45, 52, 49, 55]).
They lead to construction of unified solution methods, which start from computing
a solution for the dual problem in the positive semidefinite region in the dual space.
For any nonconvex problem, if the positive semidefinite region is not empty, the
corresponding convex problem in the dual space always has a solution. Then if
the solution is a critical point, it will correspond to a global solution of the primal
problem; otherwise, its function value provides a lower bound for the primal problem.
If the latter happens, by the new results on the complementary-dual principle, there
must be a critical point outside of the positive semidefinite region which provides
a global solution to the primal problem. Approximation and heuristic methods can
then be employed to search for desired critical points.
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Appendix A

Linear algebra

A brief review of some basic concepts from linear algebra and matrix calculus is given
in this appendix. They form a part of preliminary knowledge for the discussion in
the previous chapters.

A.1 Column space, nullspace and rank

Let A 2 Rm⇥n. The column space of A, defined as

C(A) = {Ax |x 2 Rn},
consists of all linear combinations of the columns. The nullspace of A, defined as

N (A) = {x |Ax = 0},
consists of all solutions to the system of linear equations Ax = 0. The column space
is a subspace of Rm, while the nullspace is a subspace of Rn.

The dimension of the column space is equal to the rank of A, which is denoted by
rank(A). It is true that rank(A) = rank(AT ) and the rank can never be greater than
the minimum of m and n. If rank(A) = k, there exist k linearly independent columns
of A, which form a basis of the subspace C(A), and k linearly independent rows of A,
which indicate that the dimension ofN (A) is equal to n�k. If rank(A) = min{m,n},
the matrix A is said to have full rank. For a square matrix, i.e., m = n, it is also said
to be nonsingular if it has full rank; otherwise, it is singular. A nonsingular matrix
is invertible.

A.2 Orthogonality

A set of vectors {x
1

, . . . ,x
k

} in Rn is orthogonal if x

T

i

x

j

= 0 whenever i 6= j. A
collection of subspaces S

1

, . . . , S
k

in Rn is mutually orthogonal if x

T

y = 0 whenever
x 2 S

i

and y 2 S
j

for i 6= j. For a subspace S ✓ Rn, the set

S? = {y 2 Rn |yT

x = 0 for all x 2 S}
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is called the orthogonal complement of S. It can be shown that C(A)? = N (AT ).
A matrix Q 2 Rm⇥m is said to be orthogonal if QTQ = I, i.e., columns of A are

unit vectors and form an orthogonal set of vectors. The 2-norm is invariant under
orthogonal transformation, for kQxk2

2

= x

TQTQx = x

T

x = kxk2
2

if Q is orthogonal.

A.3 Eigenvalues and eigenvectors

Let A 2 Rn⇥n. If a scalar � and a nonzero vector x 2 Rn happen to satisfy the
equation

Ax = �x,

then � is called an eigenvalue of A and x is called an eigenvector of A associated with
�. Notice that any vector of the form ↵x with ↵ 2 R and ↵ 6= 0 satisfy the equation
with � and is an eigenvector of A associated with �. Thus, for each eigenvalue, there
are infinite number of associated eigenvectors.

The set of all eigenvalues of A is called the spectrum of A, and it consists of all
roots of the so called characteristic polynomial det(tI � A). From the fundamen-
tal theorem of algebra, the matrix A has n eigenvalues, but not necessary all real
numbers.

The determinant and trace can be expressed in terms of the eigenvalues,

tr(A) =
nX

i=1

�
i

, and det(A) =
nY

i=1

�
i

.

It is clear that A is nonsingular if and only if all eigenvalues are nonzero.

A.4 Symmetric matrices and eigenvalue decompo-
sition

A matrix A 2 Rn⇥n is said to be symmetric if A = AT . We use Sn to denote the set
of all symmetric matrices in Rn⇥n. A very important property about symmetric ma-
trices is that all the n eigenvalues are real numbers and the eigenvalue decomposition
always exists. If A 2 Sn, then A can be factored as

A = U⇤UT ,

where U 2 Rn⇥n is orthogonal and ⇤ = diag(�
1

, . . . ,�
n

). The real values �
1

, . . . ,�
n

are the eigenvalues of A, and the columns of U are the corresponding eigenvectors.
The eigenvalue decomposition is also referred to as spectral decomposition. The
decomposition can also be expressed as

A =
nX

i=1

�
i

u

i

u

T

i
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where u

i

are columns of U .
A matrix A 2 Sn is positive definite, denoted as A � 0, if x

TAx > 0 for all
nonzero x 2 Rn. By the eigenvalue decomposition, we have

x

TAx =
nX

i=1

�
i

(uT

i

x)2.

Thus, A is positive definite if and only if all its eigenvalues are positive. If �A is
positive definite, we say A is negative definite, denoted as A � 0. We use Sn

++

to
denote the set of all positive definite matrices in Sn.

If the strict inequality is weakened to x

TAx � 0, then A is said to be positive
semidefinite, denoted as A ⌫ 0. If �A is positive semidefinite, A is called nega-
tive semidefinite, denoted as A � 0. We use Sn

+

to denote the set of all positive
semidefinite matrices in Sn.

If A 2 Rn⇥n is symmetric and positive definite, then it can be factored as

A = LLT

where L is lower triangular and nonsingular with positive diagonal entries. This is
called the Cholesky factorization of A, and the matrix L is called the Cholesky factor,
which is uniquely determined by A.

A.5 Singular value decomposition

Suppose A 2 Rm⇥n has rank k. Then A may be written in the form

A = U⌃V T (A.1)

where U 2 Rm⇥m and V 2 Rn⇥n are orthogonal matrices, i.e., UTU = I and V TV =
I. The matrix ⌃ = {�

ij

} 2 Rm⇥n has �
ij

= 0 for i 6= j and

�
11

� �
22

� · · · � �
kk

> �
k+1,k+1

= · · · = �
qq

= 0,

where q = min{m,n}. The entries �
ii

, i = 1, . . . , q , simply denoted as �
i

, are known
as the singular values of A, the columns of U are the left singular vectors, and the
columns of V are the right singular vectors. The factorization is called the singular
value decomposition (SVD) of A. The equation (A.1) can also be written

A =
kX

i=1

�
i

u

i

v

T

i

from which we see clearly that �
i

, i = 1, . . . , q can always be nonnegative for arbitrary
matrices.
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Notice that the singular value decomposition could be seen as a generalization to
arbitirary matrices of the eigenvalue decomposition of symmetric matrices. Actually,
it is closely related to the eigenvalue decomposition. We have

AAT = U⇤
1

UT (A.2)

ATA = V ⇤
2

V T , (A.3)

with ⇤
1

= ⌃⌃T 2 Rm⇥m and ⇤
2

= ⌃T⌃ 2 Rn⇥n. It is obvious that equations (A.2)
and (A.3) are eigenvalue decompositions: both AAT and ATA are positive semidef-
inite and have nonzero eigenvalues �2

1

, . . . , �2

k

; the columns of U are eigenvectors of
AAT and the columns of V are eigenvectors of ATA. So positive singular values of
A are positive square roots of eigenvalues of AAT or ATA. If A is symmetric, the
singular values are the absolute values of its eigenvalues.

A.6 Moore-Penrose pseudo-inverse

For A 2 Rm⇥n, the Moore-Penrose pseudo-inverse or simply pseudo-inverse of A is
defined as a matrix A† 2 Rn⇥m satisfying all of the following equations:

1. (AA†)T = AA†

2. (A†A)T = A†A

3. A†AA† = A†

4. AA†A = A

If A has singular value decomposition A = U⌃V , its pseudo-inverse can be expressed
as

A† = V ⌃†UT ,

where ⌃† is the transpose of ⌃ with all positive singular values being replaced by
their reciprocals. The pseudo-inverse exists for any matrix, even for a singular square
matrix and for a nonsquare matrix.

The pseudo-inverse comes up in many problems. Here, we discuss the application
in solving a system of linear equations,

Ax = b

with arbitrary A and b. The system may have no solution, unique solution, or infinite
solutions. If there is no solution, the vector x

⇤ = A†
b gives a least-squares solution,

i.e., x

⇤ is a solution of the least-squares problem

min kAx � bk2.
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It is also the projection of the vector b in the column space of A. If there are infinite
solutions, all the solutions can be expressed by

x = A†
b + (I � A†A)w

with w 2 Rn, and thus x

⇤ = A†
b is a solution with the minimal norm to the linear

system.

A.7 Schur lemma

Let X 2 Sn be in the block form

X =


A B
BT C

�
,

and assume det(A) 6= 0. The matrix

S = C � BTA�1B

is called the Schur complement of A in X. Schur complement is a key tool in matrix
analysis.

The determinant of X can be written in the formula

det(X) = det(A)det(S),

which generalizes the familiar formula for the determinant of a 2 ⇥ 2 matrix. This
formula can be verified by the fact that X can be expressed as

X =


I 0

�BTA�1 I

� 
A 0
0 C � BTA�1B

� 
I �A�1B
0 I

�
. (A.4)

From this fact, we also have the following conditions for positive definiteness of X.

• X � 0 if and only if A � 0 and S � 0.

• If A � 0, then X ⌫ 0 if and only if S ⌫ 0.

These results can be generalized into the situation when A is singular. Replacing the
inverse with the pseudo-inverse of A, we still have the equation (A.4) if (I�AA†)B =
0. Thus, we have

• X ⌫ 0 if and only if A ⌫ 0, (I � AA†)B = 0 and C � BTA�1B ⌫ 0.

• If A ⌫ 0, then X ⌫ 0 if and only if (I � AA†)B = 0 and C � BTA�1B ⌫ 0.

The following lemma, which generalizes the Lemma 6 in [56], plays a key role in
the proof of Triality Theorem.
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Lemma 44 Assume that P 2 Sn

++

, U 2 Sm

++

and D 2 Rn⇥m. Then, we have

� P �DUDT ⌫ 0 () U�1 +DTP�1D ⌫ 0. (A.5)

Proof: From the assumption, we know that �P � 0 and U�1 � 0. By the results
above, the statement �P �DUDT ⌫ 0 is equivalent to


U�1 DT

D �P

�
⌫ 0,

which is also equivalent to U�1 � DT (�P )�1D = U�1 + DTP�1D ⌫ 0. Thus, the
lemma is proved. 2

A.8 Inverse of the sum of matrices and inverse of
block matrix

The two identities are first presented,

(I + P )�1 = I � (I + P )�1P, and (I + PQ)�1P = P (I +QP )�1,

where I + P and I + PQ are nonsingular, and they will play key roles in deriving
formulas for the inverse of the sum of matrices. Suppose that A+BCD is invertible
with A being nonsingular and B, C and D being general matrices. By repeatedly
using the two identities, we then have

(A+BCD)�1 = (A(I + A�1BCD))�1

= A�1 � (I + A�1BCD)�1A�1BCDA�1

= A�1 � A�1(I +BCDA�1)�1BCDA�1

= A�1 � A�1B(I + CDA�1B)�1CDA�1

= A�1 � A�1BC(I +DA�1BC)�1DA�1

= A�1 � A�1BCD(I + A�1BCD)�1A�1

= A�1 � A�1BCDA�1(I +BCDA�1)�1

Suppose that X is nonsingular and is partitioned into the block form

X =


A B
C D

�

in which A and D are square matrices. Obviously, A and D are also nonsingular.
Then we have the following formulas

X�1 =


(A� BD�1C)�1 �A�1B(D � CA�1B)�1

�D�1C(A� BD�1C)�1 (D � CA�1B)�1

�

=


(A� BD�1C)�1 �(A� BD�1C)�1BD�1

�(D � CA�1B)�1CA�1 (D � CA�1B)�1

�
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If X is symmetric, i.e., AT = A, DT = D and C = BT , then the inverse formula can
be written as

X�1 =


A�1 + A�1BS�1BTA�1 �A�1BS�1

�S�1BTA�1 S�1

�
,

where S is the Schur complement of A in X.
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Appendix B

Matrix di↵erentiation

In this section, we list some useful formulas of matrix di↵erentiation that appear in
the previous chapters.

B.1 Derivatives with vectors

Let x = {x
i

} 2 Rn, and let

f(x) = {f
i

(x)} : Rn ! Rm,

where each component f
i

(x) is a scalar function of x. We then present definitions
and notations of di↵erentiation with vectors.

Derivatives

If m = 1, f(x) reduces to a scalar, which is denoted by f(x). We are familar with
its derivative, which is also referred to as the gradient,

rf(x) =
@f(x)

@x
=

0

B@

@f(x)

@x1
...

@f(x)

x

n

1

CA .

While if n = 1, the derivative is written in the row form:

rf(x) =
@f

@x
= (f 0

1

(x), · · · , f 0
n

(x)).

For general cases, the derivative of f(x) with respect to x is the n⇥m matrix:

rf(x) =
@f(x)

@x
=

2

64

@f1(x)

@x1
· · · @f

n

(x)

@x1
...

...
@f1(x)

@x

n

· · · @f

n

(x)

@x

n

3

75 .
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If the function f(x) is twice di↵erentiable, we can further take derivative of
rf(x). Here we only give the notation for the case when m = 1. The second
derivative of f(x) is also called the Hessian matrix, defined by

r2f(x) =
@2f(x)

@x2

=
@

@x

✓
@f(x)

@x

◆
.

Jacobian matrix

The matrix rf(x) is called the Jacobian matrix of the vector function f(x). In the
case the Jacobian matrix is square, i.e., n = m, its determinant,

J = det(rf(x)) =

�������

@f1(x)

@x1
· · · @f

n

(x)

@x1
...

...
@f1(x)

@x

n

· · · @f

n

(x)

@x

n

�������

is called the Jacobian determinant (or simply, the Jacobian) of the function.

The chain rule

Let y = y(x) : Rn ! Rm and z = z(y) : Rm ! Rl. By the chain rule for scalar
functions, each entry of the matrix @z

@x

may be expanded as

@z
i

@x
j

=
mX

k=1

@z
i

@y
k

@y
k

@x
j

=
@y

@x
j

@z
i

@y
.

Then, we have the identity

@z

@x
=
@y

@x

@z

@y
, (B.1)

which is the chain rule for vector functions. Furthermore, if w is a vector function of
z, thus a function of x, then the derivative of w with respect to x can be expressed
as

@w

@x
=
@y

@x

@z

@y

@w

@z
.

Notice that we build the product of matrices to the left, in comparison with the
conventional chain rule of calculus where one builds the chain to the right. For
example, if here all vectors reduce to scalars, the identity (B.1) becomes

@z

@x
=
@y

@x

@z

@y
=
@z

@y

@y

@x
,

which is the conventional chain rule of calculus.
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Implicit function theorem

The implicit function theorem is fundamentally important to the discussion in Chap-
ter 3. For a proof, see [129].

Let the functions F
i

(y
1

, . . . , y
m

, x
1

, . . . , x
n

), i = 1, . . . ,m all be defined in a neigh-
borhood of the point P

0

: (y0
1

, . . . , y0
m

, x0

1

, . . . , x0

n

) and have continuous first partial
derivatives in this neighborhood. Let the equations

F
i

(y
1

, . . . , y
m

, x
1

, . . . , x
n

) = 0, i = 1, . . . ,m,

be satisfied at P
0

. If at P
0

the Jacobian is not equal to zero, i.e.,

@(F
1

, . . . , F
m

)

@(y
1

, . . . , y
m

)
6= 0,

then in an appropriate neighborhood of (x0

1

, . . . , x0

n

), there is a unique set of contin-
uous functions

y
i

= f
i

(x
1

, . . . , x
n

), i = 1, . . . ,m,

such that y0
i

= f
i

(x0

1

, . . . , x0

n

) for i = 1, . . . ,m and for all i

F
i

(f
1

(x
1

, . . . , x
n

), . . . , f
m

(x
1

, . . . , x
n

), x
1

, . . . , x
n

) = 0

in the neighborhood. Furthermore, the f
i

have continuous partial derivatives satis-
fying

@y
i

@x
j

=

@(F1,...,Fm

)

@(y1,...,y
i�1,xj

,y

i+1,...,ym)

@(F1,...,Fm

)

@(y1,...,ym)

, i = 1, . . . ,m, j = 1, . . . , n.

B.2 Derivatives with matrices

Let X = {x
ij

} 2 Rm⇥n, and let

Y = F (X) : Rm⇥n ! Rp⇥q,

where Y = y
ij

and each entry y
ij

is a function of X. If X is a scalar, denoted by x,
the derivative of the matrix function Y of x is given by

@Y

@x
=

2

64

@y11

@x

· · · @y1q

@x

...
...

@y

p1

@x

· · · @y

pq

@x

3

75 ,

which is known as the tangent matrix. While if Y is a scalar, denoted by y, the
derivative is given by

@y

@X
=

2

64

@y

@x11
· · · @y

@x1n
...

...
@y

@x

m1
· · · @y

@x

mn

3

75 .
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Derivatives of matrix trace, determinant and inverse

Let

y = tr(X) =
nX

i=1

x
ii

.

Obviously, all non-diagonal entries of the derivative vanish whereas the diagonal
entries equal one, thus

@y

@X
= I.

Let Y = F (X) be a matrix-valued function of the matrix X. We want to find
the derivative of the determinant of Y with respect to X, i.e.,

@det(Y )

@X
.

The chain rule gives
@det(Y )

@x
ij

=
X

k

X

l

@det(Y )

@y
kl

@y
kl

@x
ij

.

From the expression of the determinant

det(Y ) =
X

l

y
kl

C
kl

,

where C
kl

is the cofactor of the entry y
kl

, we have

@det(Y )

@y
kl

= C
kl

.

It then follows that

@det(Y )

@x
ij

=
X

k

X

l

C
kl

@y
kl

@x
ij

= det(Y )tr(Y �1

@Y

@x
ij

).

We then want to find the derivative of the inverse of Y with respect to X, i.e.,

@Y �1

@X
.

By the aid of the identity Y �1Y = I, we have

@Y �1

@x
ij

Y + Y �1

@Y

@x
ij

= 0,

from which the derivative @Y �1/@x
ij

is expressed as

@Y �1

@x
ij

= Y �1

@Y

@x
ij

Y �1.
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[6] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Oper.
Res. Lett., 19(1):1–9, 1996.

[7] N. V. Banichuk. Minimax approach to structural optimization problems. J.
Optimiz. Theory App., 20(1):111–127, 1976.

[8] F. Barahona. The max-cut problem on graphs not contractible to K5. Oper.
Res. Lett., 2(3):107–111, 1983.
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[79] G. A. Kochenberger, J.-K. Hao, Z. Lü, H. Wang, and F. Glover. Solving large
scale max cut problems via tabu search. J. Heuristics, 19(4):565–571, 2013.

[80] L. D. Landau and E. M. Lifshitz. Course of theoretical physics Vol 1: Mechan-
ics. Higher Education Press, Beijing China, 2007.

[81] V. Latorre and D. Y. Gao. Canonical duality for radial basis neural networks.
In Proceedings of The Eighth International Conference on Bio-Inspired Com-
puting: Theories and Applications (BIC-TA), 2013, pages 1189–1197. Springer,
2013.

121



[82] V. Latorre and D. Y. Gao. Canonical dual solutions to nonconvex radial basis
neural network optimization problem. Neurocomputing, 134:189–197, 2014.

[83] V. Latorre and D. Y. Gao. Canonical duality for solving general nonconvex
constrained problems. Optim. Lett., pages 1–17, 2015.

[84] D. Li, X. Sun, and C. L. Liu. An exact solution method for uncon-
strained quadratic 0–1 programming: a geometric approach. J. Global Optim.,
52(4):797–829, 2012.

[85] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 opti-
mization. SIAM J. Optimiz., 1(2):166–190, 1991.

[86] U. Malik, I. M. Jaimoukha, G. D. Halikias, and S. K. Gungah. On the gap
between the quadratic integer programming problem and its semidefinite re-
laxation. Math. Program., 107(3):505–515, 2006.

[87] J. M. Mart́ınez. Local minimizers of quadratic functions on euclidean balls and
spheres. SIAM J. Optimiz., 4(1):159–176, 1994.

[88] D. M. Morales Silva and D. Y. Gao. Canonical duality theory and triality for
solving general nonconstrained global optimization problems. arXiv preprint
arXiv:1210.0180, 2012.

[89] D. M. Morales Silva and D. Y. Gao. Complete solutions and triality theory to
a nonconvex optimization problem with double-well potential in Rn. Numer.
Algebra Contr. Optim., 3(2):271–282, 2013.
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