
Nonsmooth and Derivative-Free
Optimization Based Hybrid
Methods and Applications

Qiang Long

This thesis is submitted in total
fulfilment of the

requirement for the degree of Doctor of
Philosophy

School of Science, Information Technology
and Engineering

Faculty of Science
Federation University Australia

PO Box 663
University Drive, Mount Helen
Ballarat, VIC 3353, Australia.

March 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213006083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Nonsmooth and global optimization are among the most difficult subjects in optimiza-

tion. Nonsmooth optimization problems appear in practical applications where the objective

functions to be minimized/maximized or the constraint functions are not necessarily dif-

ferentiable. There also exists the so-called “stiff problems” which are smooth analytically

but nonsmooth numerically. Because gradients of the objective and constraint functions are

discontinuous in nonsmooth optimization, smooth optimization methods, which require gra-

dient information of the objective function and constraints, cannot be applied to solve such

problems. Various methods have been developed to solve nonsmooth optimization problems,

such as the subgradient and bundle-type methods. These methods are efficient for solving

nonsmooth convex problems; however, they are not always efficient for solving nonsmooth

nonconvex problems because they are based upon local convex models of functions.

In this thesis, we develop hybrid methods for solving global and in particular, nonsmooth

optimization problems. Hybrid methods are becoming more popular in global optimization

since they allow to apply powerful smooth optimization techniques to solve global optimiza-

tion problems. Such methods are able to efficiently solve global optimization problems with

large number of variables. To date global search algorithms have been mainly applied to im-

prove global search properties of the local search methods (including smooth optimization

algorithms). In this thesis we apply rather different strategy to design hybrid methods. We

use local search algorithms to improve the efficiency of global search methods. The thesis

consists of two parts. In the first part we describe hybrid algorithms and in the second part

i

we consider their various applications.

Our first hybrid method is based on the quasisecant method of nonsmooth optimization.

The quasisecant method is similar to the bundle-type methods; however, instead of using

subgradients, the quasisecant method uses quasisecants to approximate subdifferential. The

hybrid algorithm combines the quasisecant method and a special procedure for identifying

“promising” basins of the objective function in the search space. This procedure is designed

using the quasisecant method. It is proved that this algorithm converges to the global op-

timal solution if the number of local minimizers of the objective function is finite and they

are isolated. Numerical results are presented to demonstrate the efficiency of the proposed

algorithm.

Our second hybrid method is based on the combination of the genetic algorithm and the

derivative-free Hooke Jeeves method. More specifically, an acceleration operator designed

using the Hooke Jeeves method is embedded into the general procedure of the genetic algo-

rithm. This acceleration operator improves the convergent rate and accuracy of the genetic

algorithm. This method is applied to solve constrained global optimization problems.

In the second part of the thesis we apply the quasisecant method and the first hybrid

method to solve some problems from applications. First, we develop new algorithm for solv-

ing the system of nonsmooth equations by modifying the quasisecant method. The system

of nonsmooth equations is transformed into a nonsmooth optimization problem with a zero

minimal objective function value. The quasisecant method is then applied to solve the nons-

mooth optimization problem. Two different nonsmooth optimization models are studied and

the convergent properties of the algorithm is presented. The numerical performance of the

proposed algorithm is included.

Finally, the proposed hybrid method is applied to solve the molecular conformation and

sensor localization problems. Numerical results show that this method is efficient and robust

for such problems.

ii

Acknowledgement

First, I would like to express my great thanks to my principal supervisor Prof. Adil Bagirov.

The appreciation I have toward him is beyond words. It is a big honour for me to be his

student and work with him during my candidature. I can never achieve this point without

his constant patience and encouragement. What I have learned from him is far more than

research, but how to be a good person and how to respect different ideas. I sincerely hope

that I will still have a chance to work with him in my future academic career. Also, I would

like to appreciate the efforts of my associate supervisor Dr. Alex Kruger. I have learned a lot

from him at the early stage of my PhD study.

I would also like to give my sincere appreciation to Prof. Zhiyou Wu and Dr. Fusheng Bai.

It was Prof. Zhiyou Wu who introduced me to Prof. Adil Bagirov and encouraged me to grip

the chance of doing PhD at the University of Ballarat. Thanks for all the help and guidance

from Prof. Zhiyou Wu and Dr. Fusheng Bai over the past four years of my study, which

made my life so wonderful in Ballarat. I feel so lucky that I have some excellent mentors

like them in my life. In addition, I would like to express my gratitude to all the colleagues

and friends I have made in Ballarat; it was them who shared so much colorful time with me.

My project would not have been completed without the financial support of the School of

SITE. I would like to express my thanks to the Dean of SITE, Prof. John Yearwood, the staff

of SITE and Research Services for their extraordinary support.

Finally, my heartfelt appreciation goes to my families for their loving support and under-

standing.

iv

Dedication

To my wife Jing Wen and daughter Emma

v

List of publication

Journal papers

1. Adil M. Bagirov, Qiang Long. A Heuristic Method for Global Optimization with

Special Procedure for Exploring Basins. (Submitted)

2. Qiang Long, Junjian Huang. A New Hybrid Method Combining Genetic Algorithm

and Coordinate Search Method. 2012 IEEE the fifth international conference on ad-

vanced computational intelligence (ICACI). October 18-20, Nanjing, Jiangsu, China,

PP.1072-1077.

3. Qiang Long. The Application of Genetic Algorithm in Solving Nonsmooth Optimiza-

tion Problems, Journal of Chongqing Normal University (Natural Science Edition),

2013 (01), 12-15.

4. Qiang Long, Jueyou Li. Numerical Performance of Subgradient Methods in Solving

Nonsmooth Optimization Problems. Journal of Chongqiang Normal University (Nat-

ural Science Edition), 2013 (06), 25-30.

5. Qiang Long, Changzhi Wu. A Quasisecant Method for Solving a System of Nons-

mooth Equations. Computers and Mathematics with Applications, Volume 66, 2013,

419-431.

vi

6. Qiang Long, Changzhi Wu. A Hybrid Method Combining Genetic Algorithm and

Hooke-Jeeves Method for Constrained Global Optimization. Journal of Industrial and

Management Optimization, Volume 10, Number 4, October 2014, 1279-1296

7. Changzhi Wu, Chaojie Li, Qiang Long. A DC Programming Approach for Sensor

Network Localization with Uncertainties in Anchor Positions. Journal of Industrial

and Management Optimization, Volume 10, Number 3, July 2014, 817-826.

8. Qiang Long. A Constraint Handling Technique for Constrained Multi-objective Ge-

netic Algorithm. Swarm and Evolutionary Computation. Volume 15, 2014, 66-79

9. Jueyou Li, Changzhi Wu, Zhiyou Wu, Qiang Long. Gradient-free Method for Nons-

mooth Distributed Optimization. Journal of Global Optimization. DOI: 10.1007/s10898-

014-0174-2. (Accepted)

10. Jueyou Li, Zhiyou Wu, Qiang Long. An Objective Penalty Function Approach for

Solving Constrained Minimax Problems. Journal of the Operations Research Society

of China. DOI: 10.1007/s40305-014-0041-3. (Accepted)

11. Changzhi Wu, Qiang Long. Distributed Mirror Descent Algorithm and Applications

in Distributed Estimation. (Submitted)

12. Qiang Long, Changzhi Wu. A System of Nonsmooth Equations Solver Based upon

Subgradient Method. (Submitted)

Conference and workshop presentations

1. 01/2011 -Nonsmooth Numerical Shape Optimization, the 2011 Winter School of Aus-

tralian Mathematical Sciences Institute (AMSI) held in the University of Queensland.

vii

2. 01/2012 -Numerical Methods in Nonsmooth Optimization, Chongqing Normal Univer-

sity, Chongqing, China.

3. 11/2012 -An Improved Genetic Algorithm for Global Optimization, the Annual Con-

ference of Federation University Australia.

4. 07/2013 -A Hybrid Method for Global Optimization, the 26th European Conference

on Operational Research.

5. 11/2013 -A Constraint Handling Technique for Constrained Multi-objective Optimiza-

tion, the Annual Conference of Federation University Australia.

viii

Contents

Introduction 4

1. Literature review 11

1.1. Nonsmooth analysis . 11

1.1.1. Notations and basic definitons . 12

1.1.2. Convex analysis . 15

1.1.3. Nonsmooth differential theory . 17

1.1.4. Nonsmooth optimization theory 21

1.2. Nonsmooth optimization methods . 22

1.2.1. Subgradient methods . 24

1.2.2. Bundle methods . 26

1.3. Global optimization . 45

1.3.1. Deterministic methods . 47

1.3.2. Metaheuristic methods . 47

1.3.3. Hybrid methods . 54

2. A quasisecant method 57

2.1. Introduction . 57

2.2. Secants and quasisecants . 58

2.3. Computation of a descent direction . 61

ix

2.4. A quasisecant method . 64

2.5. Numerical experiments . 66

2.6. Conclusion . 71

3. A hybrid quasisecant method for global optimization 73

3.1. Introduction . 73

3.2. The hybrid method . 75

3.2.1. Approximations using quasisecants 75

3.2.2. Quasisecant method for local search 77

3.2.3. Quasisecant method for global search 78

3.2.4. Hybrid method for global optimization 80

3.2.5. Convergence of Algorithm 3.2.3 82

3.3. Results of numerical experiments . 86

3.3.1. Results with academic test problems 86

3.4. Conclusions . 90

4. A hybrid method for constrained global optimization 96

4.1. Introduction . 96

4.2. Constraints handling technique by penalty function method 100

4.3. A hybrid method for constrained optimization 103

4.3.1. The genetic algorithm . 103

4.3.2. Acceleration operator . 108

4.3.3. Algorithm: GAHJ . 110

4.3.4. Parameters . 111

4.4. Numerical experiments . 112

4.5. Conclusions . 119

x

5. A method for nonsmooth equation system 121

5.1. Introduction . 121

5.2. An algorithm for the system of nonsmooth equations 123

5.2.1. Algorithms . 124

5.2.2. Convergence analysis . 127

5.3. Numerical examples . 129

5.4. Conclusion . 137

6. Applications 139

6.1. Molecular conformation problem . 139

6.1.1. Problem formulation . 139

6.1.2. Numerical results . 142

6.2. Sensor localization problem . 143

6.2.1. Problem formulation . 143

6.2.2. Numerical results . 146

6.3. Conclusion . 149

7. Conclusions and future work 152

7.1. Conclusions . 152

7.2. Future work . 154

7.2.1. Application of global optimization 154

7.2.2. Development of new hybrid methods 155

7.2.3. Parallel computation . 156

Bibliography 157

Appendix 172

A. Test problems for minimax optimization 172

xi

B. Test problems for global optimization 185

C. Test problems for constrained optimization 193

xii

List of Tables

2.1. Description of test problems . 67

2.2. Results of numercial experiments with given starting points 69

2.3. Results of numercial experiments with randomly generated starting points. . 70

2.4. Results of numercial experiments with randomly generated starting points. . 72

3.1. Description of test problems . 87

3.2. Success rates by different algorithms (in %) 88

3.3. Average function values and standard deviations 93

3.4. The number of function evaluations and standard deviations 94

3.5. Results of Shubert problem with different value of M 95

3.6. Results of Schwefel problem with different values of M 95

4.1. Main characteristics of 13 benchmark test functions 113

4.2. Success rate of GAHJ . 114

4.3. Numerical results of Problem 1-13 solved by GAHJ 115

4.4. Comparison between GAHJ and FSA . 117

4.5. Statistic comparison between GAHJ and FSA 118

5.1. Known solution for equation system (5.8) 132

5.2. Numerical results for equation system (5.8) 132

5.3. Numerical results for equation system (5.9) 134

1

5.4. Numerical results for equation system (5.11) 136

5.5. Numerical results for equation system (5.13) 138

6.1. Numerical results for Problem 6.4. 144

6.2. Numerical results for sensor localization problem. 148

2

List of Figures

0.1. Timeline of various original metaheuristic methods 6

1.1. The tilted cutting plane model . 44

1.2. Crossover mechanism for 8−dimension candidate solutions 52

2.1. Secant and quasisecant for a univariate function 61

3.1. φm(u) is some approximation of f(u). 76

3.2. Graph of Shubert function. 91

3.3. Graph of Schwefel function with 2 variables 91

4.1. The first two phases of Hooke-Jeeves method. 108

4.2. The Objective function value versus iteration time. 120

6.1. Graph of strength versus distance for the 12-6 Lennard-Jones Potential. . . 141

6.2. An example of sensor network with 50 sensors and 4 anchors. 147

6.3. Results of sensor network with 50 sensors and 4 anchors. 149

6.4. Results of sensor network with 400 sensors and 4 anchors. 150

6.5. Decrease of the objective function value 151

3

Introduction

Nonsmooth optimization is one of the most attractive subjects in optimization. In nonsmooth

optimization problems, objective and/or constraint functions are assumed to be (locally Lipc-

shitz) continuous while their gradients can be discontinuous. The theory of nonsmooth op-

timization is based upon nonsmooth analysis which generalizes the definitions of gradient

and other related concepts from smooth analysis. The necessary and sufficient optimality

conditions for nonsmooth optimization problems are studied in nonsmooth analysis.

Over the last five decades, various deterministic methods have been developed for solving

nonsmooth optimization problems. In most of these methods the sequence of approximate

solutions {xk} is constructed as follows:

xk+1 = xk − αkHkgk,

where xk is the current iteration point, αk is the step length, Hk is a symmetric matrix and

gk is the gradient or subgradient of the objective function at xk. Let dk = −Hkgk, then

dk is called a search direction. There are two main phases in most algorithms for solving

nonsmooth optimization problems: (i) finding the search direction and (ii) calculating the

step length along the search direction.

Among all the deterministic methods for solving nonsmooth optimization problems, the

subgradient method and bundle method (and its variations) are the most popular ones. The

subgradient method is a simple extension of the gradient method from smooth optimization.

4

It takes the directions of opposite subgradients as search directions and uses the pre-fixed

step length in each iteration. The subgradient method is easy to implement, but it converges

slowly. In contrast, the bundle-type method is a more efficient method; however in the same

time, it is more complicated. In each iteration, the search direction is found by solving a

quadratic programming problem and the step length is calculated by the line search.

The quasisecant method is one of the typical deterministic methods for solving nonsmooth

optimization problems. The main idea of this method is similar to that of the bundle-type

method. However, instead of using subgradients, the quasisecant method uses quasisecants

to approximate the subdifferential. In the quasisecant method, an overestimation of the ob-

jective function is constructed instead of the lower piecewise linear approximation as in the

bundle method.

The subgradient and bundle-type methods are efficient and robust for nonsmooth convex

optimization problems, but they are inefficient in finding global optimal solutions for nons-

mooth nonconvex optimization problems, because they can be easily trapped in a stationary

point of the objective function.

Metaheuristic methods, which are the counterpart of deterministic methods, are designed

for global optimization. They are also called stochastic methods since they may use a spe-

cial stochastic procedure to generate points in the search process. The development of meta-

heuristic methods began in the 1960s and many algorithms have been developed thereafter.

Figure 0.1 illustrates the timeline of various original metaheuristic methods. One can see

from the figure that evolutionary algorithms were mainly introduced in 1960s; however, the

research was limited to theoretical considerations, have not been applied to solve practical

problems. From the early of 1990s to date, thanks to the dramatic development of computer

technologies, metaheuristic methods can now be extensively applied to solve engineering

problems.

Metaheuristic methods can be classified based upon background. Some methods simu-

5

Figure 0.1.: Timeline of various original metaheuristic methods

late the evolutionary process of the biological world. The crossover, mutation and selection

of biological evolution processes are simulated by binary code or real-number code. Meta-

heuristic methods of this type are called evolutionary algorithms, which include the evolution

strategy, evolutionary programming, genetic algorithm and differential evolution. Some al-

gorithms simulate the behavior of insects and birds. Metaheuristic methods of this type

includes the artificial bee colony algorithm which simulates honey process of bees, the an-

t colony algorithm which simulates the foraging process of ant colony, the particle swarm

optimization which simulates the behaviors of birds swarm. Another type of metaheuristic

methods simulate physical processes, such as the simulated annealing.

Unlike most deterministic methods, which are good at local search but inefficient at global

search, metaheuristic methods are good at global exploration but inefficient at local exploita-

tion. Therefore, it is natural to yield the idea of combining both the advantages of determin-

istic and metaheuristic methods, but avoid the disadvantages of them. This idea gives rise

to a new type of method for global optimization: the hybrid method. Actually, a number of

hybrid methods have already been developed over the last three decades, but most of them

are designed to solve global optimization problems with smooth objective functions.

In this thesis, we design two hybrid optimization methods for global optimization prob-

lems with nonsmooth nonconvex objective functions and apply them to solve some problems

from applications. The thesis consists of two parts. In the first part we present hybrid meth-

6

ods for solving (nonsmooth) nonconvex optimization problems. In the second part we apply

these methods to solve the system of nonsmooth equations, the molecular conformation and

sensor localization problems.

First, we design a hybrid method based upon the quasisecant method. This method con-

sists of two main phases: local search and global search. The local search phase is designed

based upon the quasisecant method. It is applied to calculate local minimizers of nons-

mooth nonconvex optimization problems. The global search phase is an implementation of

a metaheuristic strategy. This strategy intends to find the boundary of local basins, which in

return, enables the search to escape from local minimizers. More specifically, in a certain

local minimizer, the objective function is approximated on spheres with different radii and

an approximate local minimizer on each sphere is found. Some points are then selected from

those approximate local minimizers by a special procedure. These points are located in dif-

ferent basins of the objective function. After this, the quasisecant method is applied starting

from these points to find a set of local minimizers. The best local minimizer among all local

minimizers is accepted as a new approximation to a global minimizer and so on. It is proved

that this algorithm converges to the global optimal solution if the number of local minimizers

of the objective function is finite and they are isolated. Numerical results are presented to

demonstrate the efficiency of the proposed algorithm.

Our second hybrid method is based on the combination of the genetic algorithm and the

derivative-free Hooke Jeeves method. The genetic algorithm, as a typical metaheuristic

method, is good at globally searching a space, but it requires a huge computational effort

since it is population-based and converges slowly. Furthermore, the accuracy of the genetic

algorithm is not high. Therefore, we design an acceleration operator based upon the Hooke

Jeeves method. This operator can pick some suitable points from the generations of the ge-

netic algorithm and do local search starting from these points. In this way, the acceleration

operator improves the convergent rate and the accuracy of the genetic algorithm. We ap-

7

ply this hybrid method to solve constrained optimization problems. The constraints in these

problems are handled by the penalty function method. We consider two different penal-

ty function models, quadratic penalty function and exact penalty function. The numerical

performances of the proposed hybrid method on these two models are compared. We also

compare the proposed hybrid method with other constrained optimization methods using the

results of the numerical experiments.

In the second part of the thesis we first apply the quasisecant method to solve the system

of nonsmooth equation systems. Then the hybrid global optimization method is applied to

solve the molecular conformation and sensor localization problems.

First, an algorithm based upon the quasisecant mtehod for solving the system of nons-

mooth equations is proposed . The system of nonsmooth equations is transformed into a

nonsmooth optimization problem with a zero minimal objective function value. Then, the

quasisecant method is applied to solve the nonsmooth optimization problem. Two different

nonsmooth optimization models are studied and the convergent properties of the algorithm

are investigated. The numerical performance of the proposed algorithm is presented.

We then apply the proposed hybrid global optimization method to solve the molecular

conformation and sensor localization problems. The minimum-energy configuration of a

small cluster of atoms, molecules or ions is known as the molecular conformation problem.

It is a central problem in the study of cluster statics, or the topography of a potential energy

function in an internal configuration space. From a mathematical point of view, molecular

conformation problem is a difficult global optimization problem which does not yield easily

either to discrete or continuous optimization methods. We solve the molecular conformation

problems with number of atoms ranging from 2 to 23, i.e., the number of variables of the

molecular conformation problems are from 6 to 69 with a increment of 3. The optimal

solutions are achieved for all the problems, better optimal solutions are even obtained for

problems with 8 and 22 atoms.

8

The sensor localization problem is the core subject of the wireless sensor network. The

wireless sensor network is built of “nodes” from a few to several hundreds or even thousands,

where each node is connected to one or many other sensors. The wireless sensor network

presents novel tradeoffs in system design. On the one hand, the low cost of nodes facilitates

massive scale and highly parallel computation. On the other hand, each node is likely to

have limited power, limited reliability and only local communication with a modest number

of neighbors. These application contexts and potential massive scale make it unrealistic to

rely on careful placement or uniform arrangement of sensors. It is still impossible to localize

each sensor by GPS because of the expensive cost and the limited power and memory of

sensors. This leads to the area of the sensor localization problem which intends to localize

the position of each sensor in a network by giving measured distances between the connective

pairs of sensors. We solve the sensor localization problems with number of sensors from

10 to 50 (with a increment of 10), 100 to 500 (with a increment of 100), 1000 and 2000,

respectively. The number of variables for these problems is up to 4000. The proposed hybrid

global optimization method successfully solves all the sensor localization problems with

high accuracy (up to 10−8) of the results, which verifies the efficiency and reliability of this

method.

Outline of the thesis

The remainder of the thesis is organized as follows;

In Chapter 1, we briefly introduce some basic definitions and related theorems on nons-

mooth analysis and review some conventional methods for nonsmooth optimization.

In Chapter 2, we present a nonsmooth optimization method, i.e., the quasisecant method.

Some results of numerical experiments are presented and analyzed.

In Chapter 3, we present a hybrid method for nonsmooth global optimization problems.

Some academic benchmarks for global optimization are used to test this method and its

9

results are compared with some other global optimization methods.

In Chapter 4, we propose another hybrid method for solving constrained global optimiza-

tion problems. The numerical performance of this method for is evaluated using constrained

optimization problems.

In Chapter 5, we propose a solver for the system of nonsmooth equations. This solver is

applied to solve some systems of nonsmooth equations appearing in the bilevel programming

and nonlinear complementarity problems.

In Chapter 6, the hybrid method developed in Chapter 3 is applied to solve the molecular

conformation and sensor localization problems.

Chapter 7 contains some concluding remarks and recommendations for the future work.

10

Chapter 1.

Literature review

1.1. Nonsmooth analysis

Nonsmooth analysis studies the properties of nondifferentiable functions. Convexity is

an important concept in nonsmooth analysis. Convex set and convex function are all well-

defined and their geometrical interpretations are clear and apprehensible. In smooth opti-

mization, we always start the research by convex cases and then generate it to nonconvex

ones. This process is still applied to nonsmooth analysis and nonsmooth optimization. Thus,

our strategies to study nonsmooth analysis are pretty apparent, from smoothness to nons-

moothness (from known to unknown) and from convexity to nonconvexity (from simple to

hard). Actually, these are some general strategies in mathematical studying.

In optimization theory, the meaning of differentiation is to locally linearize the given dif-

ferentiable function in the sense of the hyperplane generated by the the gradient is a tangent

plane of the graph of the function. For convex function, these linearizations are always

lower approximations. We have a lower piecewise linear approximation by taking a maxi-

mum over the linearizations defined at several points and by taking the maximum over all

points we have the original convex differentiable function. These ideas are generalized for

11

nonsmooth convex functions by defining the concepts of subgradient and subdifferential. A

subgradient at a fixed point is a vector which is a lower approximation to the function; the

set of all subgradients at that point is called subdifferential. These new concepts made it

possible to obtain the same approximation properties for nonsmooth optimization as in the

smooth cases.

It was a long step in nonsmooth analysis to generalize the subgradient, which was devel-

oped in convex cases, to nonconvex cases. As we have discussed, a linear piecewise lower

approximation can be generated for convex function, but this is not the case for nonconvex

function. For nonconvex function, we can think of differentiation as convexification. In this

way, the basic ideas are the same as convex analysis, but the results are much more theo-

retical. In some researches, instead of subgradients, secants or quasisecants are considered.

This may approximate nonconvex function in some sense, but the approximation is rough.

Contents of this section are mainly based upon the works of Rockafellar [100] and Clarke

[25].

1.1.1. Notations and basic definitons

We discuss problems in Rn, where Rn is the n-dimensional real Euclidean space. All the

vectors are defined as column vectors. For vectors x and y, we denote by xTy (or ⟨x, y⟩) as

the usual inner product, i.e.,

xTy =
n∑

i=1

xiyi

(
or ⟨x, y⟩ =

n∑
i=1

xiyi

)
;

and denote by ∥ x ∥ the Euclidean norm, i.e.,

∥ x ∥=

(
n∑

i=1

x2i

)1/2

.

12

The open ball with center x and radius λ > 0 is denoted by B(x, λ), i.e.,

B(x, λ) = {z ∈ Rn∥ ∥ x− z ∥< λ}.

We denote by [x, y] the closed line segment joining x and y, i.e.,

[x, y] = {z ∈ Rn|z = λx+ (1− λ)y for 0 ≤ λ ≤ 1};

and by (x, y) the corresponding open line segment. A set C ⊂ Rn is called convex if

[x, y] ⊂ C for all x and y belonging to C. For a series of points x1, x2, · · · , xk in Rn, x is

called a linear combination of xis if

x =
k∑

i=1

λixi,

where λi ∈ R , i = 1, 2, · · · , k; if, furthermore, λi ≥ 0 i = 1, 2, · · · , k and
∑k

i=1 λi = 1,

then x is called a convex combination of xis. The convex hull of a set C ⊂ Rn, denoted

by convC, is the set of all convex combination of points in C. In other words, convC is the

smallest convex set containing C. C is convex if and only if C and convC coincide. The

closure of C is denoted by clC.

The set C is said to be a cone if it contains all positive multiples of its elements, i.e., x ∈ C

and λ > 0 imply that λx ∈ C.

A function f : Rn → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

where x and y are in Rn and λ ∈ [0, 1]. If strict inequality holds for x ̸= y and λ ∈ (0, 1),

then f is called strictly convex. A function f : Rn → R is locally Lipschitz with constant K

13

at x ∈ Rn if there exists some ε > 0 such that

|f(y)− f(z)| ≤ K ∥ y − z ∥ for all y, z ∈ B(x; , ε).

Furthermore, f is positively homogeneous if

f(λx) = λf(x)

for all λ ≥ 0 and subadditive if

f(x+ y) ≤ f(x) + f(y)

for all x and y in Rn. It is worth to note that positively homogeneous and subadditive imply

convexity.

A function f : Rn → R is said to be upper semicontinuous at x if for every sequence {xi}

converging to x, we have

lim sup
i→∞

f(xi) ≤ f(x);

and lower semicontinuous if

f(x) ≤ lim inf
i→∞

f(xi).

Note that an upper and lower semicontinuous function is continuous.

For a nonsmooth function f , we denote by Ωf the set of points where the function f is not

differentiable, i.e.,

Ωf = {x ∈ Rn|f is not differentiable at x}.

14

1.1.2. Convex analysis

The theory of nonsmooth analysis is based upon convex analysis. For this reason, we first

survey some basic definitions and theorems of convex analysis. Then we review the defi-

nition of subgradient and subdifferential of nonsmooth convex functions and present some

basic results. Contents of this subsection are mainly cited from Rockafellar [100], further

reading refers to Roberts and Varbery [116].

Definition 1.1.1 The directional derivative of f at x in the direction v ∈ Rn is defined by

f ′(x; v) = lim
t↓0

f(x+ tv)− f(x)
t

.

If f is differentiable at x, then the directional derivative, which exists in every direction

v ∈ Rn, is a linear function of v and we have the relation

f ′(x; v) = ∇f(x)Tv,

where∇f(x) ∈ Rn is the gradient vector of f at x.

Theorem 1.1.1 Let f : Rn → R be a convex function with a Lipschitz constant K at

x ∈ Rn. Then

(i) the directional derivative in each direction v ∈ Rn exists and satisfies

f ′(x; v) = inf
t>0

f(x+ tv)− f(x)
t

,

(ii) the function v 7−→ f ′(x; v) is positively homogeneous and subadditive on Rn with

|f ′(x; v)| ≤ K ∥ v ∥,

15

(iii) f ′(x; v) is upper semicontinuous as a function of (x; v) and Lipschitz with constant K

as a function of v on Rn,

(iv) −f ′(x; v) ≤ f ′(x; v).

Definition 1.1.2 The subdifferential of a convex function f : Rn → R at x ∈ Rn is the set

∂cf(x) = {ξ ∈ Rn| f(x′) ≥ f(x) + ξT (x′ − x) for all x′ ∈ Rn}.

Each element ξ ∈ ∂cf(x) is called a subgradient of f at x.

In the following we present the relationship between subdifferential and the ordinary di-

rectional derivative. As we shall see, it is enough to know either of the concepts, the other

can be computed from that.

Theorem 1.1.2 Let f : Rn → R be convex. Then at every x we have

(i) f ′(x; v) = max{ξTv| ξ ∈ ∂cf(x)} for all v ∈ Rn,

(ii) ∂cf(x) = {ξ ∈ Rn| f ′(x; v) ≥ ξTv for all v ∈ Rn},

(iii) ∂cf(x) is nonempty, convex and compact set such that ∂cf(x) ⊂ B(0;K), where K is

the Lipschitz constant of f at x.

(iv) the point-to-set mapping ∂cf(·) : Rn → P (Rn) is upper semicontinuous, i.e., if yi → x

and ξi ∈ ∂cf(yi) for each i, then each accumulation point ξ of {ξi}∞i=1 is in ∂cf(x).

In smooth case, the gradient at a certain point is unique. However, in nonsmooth case, the

subgradient at a nondifferentiable point is not unique . Thus, subgradient is a generalization

of gradient, while subdifferential is a generalization of classical derivative.

Theorem 1.1.3 If f : Rn → R is convex and differentiable at x ∈ Rn, then

∂cf(x) = {∇f(x)}.

16

Using subdifferential and subgradient, we can present a representation to a convex func-

tion.

Theorem 1.1.4 If f : Rn → R is convex then for all y ∈ Rn

f(y) = max{f(x) + ξT (y − x)| x ∈ Rn, ξ ∈ ∂cf(x)}.

Theorem 1.1.4 is important for nonsmooth optimization. We can use piecewise linear

function to approximate convex function. But directly applying Theorem 1.1.4 is not easy,

since we cannot calculate all the subdifferential. However, we can calculate some elements

of the subdifferential to construct an underestimation.

1.1.3. Nonsmooth differential theory

The definitions and results of subgradient and subdifferential in the previous subsection are

all given for convex functions. In this subsection we generalize those definitions to noncon-

vex Lipschitz continuous functions. According to Theorem 1.1.1 the directional derivative

f ′(x, v) always exists when the function f is convex. This derivative may not exist when f

is nonconvex. Moreover, for nonconvex functions this derivative needs not to be subadditive.

Therefore the notion of the directional derivative is generalized to preserve such properties.

According to Theorem 1.1.1, the directional derivative only exists when function f is

convex. That is why we have to generalize the directional derivative for nonconvex Lips-

chitz continuous function. After that, we can generalize other concepts analogously. The

generalization can be done in many ways, we review the approach of Clarke [25] in finite

dimensional case.

Generalization of derivative

Definition 1.1.3 (Clarke). Let f : Rn → R be locally Lipschitz at a point x ∈ Rn. The

17

generalized directional derivative of f at x in the direction of v ∈ Rn is defined by

f ◦(x; v) = lim sup
y → x

t ↓ 0

f(y + tv)− f(y)
t

.

The following summarizes some basic properties of the generalized directional derivative.

Theorem 1.1.5 Let f be locally Lipschitz at x with constant K. Then

(i) the function v 7−→ f ◦(x; v) is positively homogeneous and subadditive on Rn with

f ◦(x; v) ≤ K ∥ v ∥,

(ii) f ◦(x; v) is upper semicontinuous as a function of (x; v) and Lipschitz with constant K

as a function of v on Rn,

(iii) f ◦(x;−v) = (−f)◦(x; v).

Given the definition of generalized directional derivative, we are ready to generalize the

subdifferential to nonconvex Lipschitz functions.

Definition 1.1.4 (Clarke). Let f : Rn → R be locally Lipschitz at x ∈ Rn. Then the

generalized subdifferential of f at x is the set

∂f(x) = {ξ ∈ Rn| f ◦(x; v) ≥ ξTv for all v ∈ Rn}.

Each element ξ ∈ ∂f(x) is called a generalized subgradient of f at x.

Sometimes, we drop the word “generalized” if there is no confusion to do so. The following

are some basic properties of generalized subdifferential.

Theorem 1.1.6 Let f be locally Lipschitz at x with constant K. Then

18

(i) ∂f(x) is a nonempty, convex, compact set such that ∂f(x) ⊂ B(0;K),

(ii) f ◦(x; v) = max{ξTv| ξ ∈ ∂f(x)} for all v ∈ Rn,

(iii) the mapping ∂f(·) : Rn → P (Rn) is upper semicontinuous.

It can be proved that if f is locally Lipschitz continuous and differentiable at x, then we

have ∇f(x) ∈ ∂f(x). Furthermore, if f is continuously differentiable at x, then we have

∂f(x) = {∇f(x)}. This implies that the subdifferential is a generalization of the classical

derivative. The following theorem shows that the subdifferential for Lipschitz function is a

generalization of the subdifferential for convex function.

Theorem 1.1.7 If the function f : Rn → R is convex, then

(i) f ′(x; v) = f o(x; v) for all v ∈ Rn and

(ii) ∂cf(x) = ∂f(x).

Subdifferential calculus

In this subsection, we provide a chain rule for the calculation of generalized subdifferen-

tial. Note that this rule is a generalization of classical chain rule for differentiable function.

However, in this case we have to content with inclusions instead of equalities. If given the

property of regularity, we can sharpen our rules by turning the inclusions to equalities.

Theorem 1.1.8 (Chain Rule). Let h : Rn → Rm and g : Rm → R be functions such that

each component function hi : Rn → R, i = 1, . . . ,m is locally Lipschitz at x ∈ Rn and g

is locally Lipschitz at h(x) ∈ Rm. Then the composite function f = g ◦ h, f : Rn → R is

locally Lipschitz at x and

∂f(x) ⊂ conv{
m∑
i=1

αiξi| ξi ∈ ∂hi(x) and α ∈ ∂g(h(x))}. (1.1)

19

Addition, Products and Quotients rules can be concluded from Chain rule. For example,

by defining h = (h1, h2)
T : R2 → R2, where h(x1, x2) = x1, h2(x1, x2) = x2; g : R2 → R,

where g(h1, h2) = h1 ∗ h2 and f = g ◦ h, we can detect

∂f(x) ⊂ x2∂h1(x) + x1∂h2(x) = h2(x)∂h1(x) + h1(x)∂h2(x),

which is coincidence with the products rule.

Note that the Relationship (1.1) just gives a necessary condition of ∂f(x). We need regu-

larity property to sharpen the rule by turning the inclusion to equality.

Definition 1.1.5 The function f : Rn → R is said to be regular at x ∈ Rn if for all v ∈ Rn

the directional derivative f ′(x; v) exists and

f ′(x; v) = f ◦(x; v).

The following are some sufficient condition for f to be regular.

Theorem 1.1.9 Let f be Lipschitz at x. Then f is regular at x if

(i) f is continuously differentiable at x,

(ii) f is convex,

(iii) f =
∑m

i=1 λifi, where λi > 0 and fi is regular at x for each i = 1, . . . ,m.

Given the definition and sufficient condition of regular, we can have a compensation of

the chain rule.

Theorem 1.1.10 Equality holds in the Relationship (1.1) if any one of the following addi-

tional hypotheses is valid:

(i) The function g is regular at h(x), each hi is regular at x and αi ≥ 0 for all i = 1, . . . ,m.

Then also f is regular at x.

20

(ii) The function g is regular at h(x) and hi is continuously differentiable at x for all i =

1, . . . ,m.

(iii) The case m = 1 and g is continuously differentiable at h(x).

1.1.4. Nonsmooth optimization theory

In this subsection, we discuss optimality conditions for nonsmooth optimization. As ev-

eryone knows, in smooth optimization, the first order necessary condition for x∗ to be a

local minimizer is ∇f(x∗) = 0. In the following we generalize this necessary condition to

nonsmooth optimization. Contents of this subsection are cited from Studniarski [110] and

Schirotzek [104].

Theorem 1.1.11 If f : Rn → R is locally Lipschitz at x and attains its local minimum at x,

then

(i) 0 ∈ ∂f(x), and

(ii) f o(x; v) ≥ 0 for all v ∈ Rn.

In Theorem 1.1.11, the condtion (i) 0 ∈ ∂f(x) is a direct generalization of the first order

necessary condition in smooth optimization. But this condition is not easy to verify in prac-

tical numerical computation, since we cannot calculate the whole subdifferential. It is well

known that if f is a convex function, then local minimizer implies global minimizer, this

result is generalized in the following theorem.

Theorem 1.1.12 If f : Rn → R is convex, then the following conditions are equivalent:

(i) f attains its global minimum at x,

(ii) 0 ∈ ∂cf(x),

(iii) f ′(x; v) ≥ 0 for all v ∈ Rn.

21

1.2. Nonsmooth optimization methods

The subgradient and bundle methods are two of the most important methods for solving

nonsmooth optimization problems. Both of them are based on the assumption that only

the objective function value and one arbitrary subgradient at each point are available. These

assumptions have been proved to be quite natural in practice. Note that the objective function

of the nonsmooth optimization problem could be nonconvex.

Subgradient methods were mainly developed in the Soviet Union and an excellent overview

can be found in Shor[107]. The idea of the subgradient method is directly extended from s-

mooth optimization. It takes the opposite subgradient vector as the next search direction at

the current iteration point, and applys step sizes which are supplied in advance. This simple

idea generates two critical questions: i) how can we choose those step sizes and ii) is there

any implementable stopping criterion? Several different proposals have been given to answer

these questions, but the lack of an implementable stopping criterion is still the main hand-

icap of subgradient methods. Also, the subgradient method is not a descent method, since

the opposite direction of an arbitrary subgradient may not yield a decrease of the objective

function. Because of this inherent drawback of subgradient, the convergence of subgradient

method is hard to be achieved, even it is achieved, the convergent rate is only linear or even

less than that.

In recent years, the bundle method becomes the most promising approach to solve non-

smooth optimization problems. Because the subdifferential of a nonsmooth function is a

set and it is almost impossible to calculate numerically, it is difficult to compute a descent

direction from this set. Thus, approximating subdifferential using the previous subgradi-

ent information becomes a practical approach. ε-steepest descent methods, the pioneering

bundle method, was develop in [69] and it is based on the conjugate subgradient method pro-

vided in [68]. The handicap of ε-subgradient method is the priori choice of an approximation

22

tolerance which controls the radius of the ball in which the bundle model is thought to be a

good approximation to the objective function.

In [62], Kiwiel proposed a new bundle method basing on the classical cutting plane

method developed by [24] and [57]. The basic idea in this generalized cutting plane method

is to form a convex piecewise linear approximation to the objective function using the lin-

earizations generated by subgradients. Kiwiel also presented two strategies to bound the

number of stored subgradients: subgradient selection and subgradient aggregation. The dis-

advantage of this generalized cutting plane method is its sensitivity to the scaling of the

objective function. Also the uncertain line search operations may require massive times of

function evaluation.

The bundle trust region method [105, 135] and the Proximal Bundle method [63] are

developed to overcome the drawbacks caused in the ε-subgradient method and generalized

cutting plane method. It is a combination of the bundle idea and the classical trust region

philosophy.

Another method to solve nonsmooth optimization problems is the quasisecant method pro-

vided by Adil [2]. The difference of the quasisecant method comparing with the bundle-type

method is that the subgradient are replaced by the quasisecant in the approximation of subd-

ifferential. The quasisecant method still approximates the objective function by a piecewise

linear function, but this approximation may not be a lower approximation anymore. This

relaxation makes the quasisecant method more promising for solving nonconvex nonsmooth

problems.

In spite of different background of those methods provided above, from a practical point of

view, they all generate the search direction at each iteration by solving a quadratic problem,

only differing in technical details.

23

1.2.1. Subgradient methods

The history of the subgradient method starts from 1960s, The basic idea of the subgradient

method is generalized from smooth optimization methods through replacing gradients by

arbitrary subgradients. It is a simple method in the sense of its step sizes are set ahead and

it does not need any complex calculation to obtain search direction. So it gets extensive

applications since it was developed. Especially, it is one of the most favorite methods for

engineers.

The general process of the subgradient method are as follows.

Algorithm 1.2.1 Subgradient Method

Step 0: Initialization, set an initial point x0 and a set of step size {αi}∞i=1, set k := 0.

Step 1: Stop criterion, check the condition for terminating loops, if it is satisfied, then stop

and xk is the optimal solution; otherwise, go to Step 2.

Step 2: Iteration, compute an arbitrary subgradient gk ∈ ∂f(xk) and pick the step size αk

from step size set, then use iteration formula

xk+1 = xk − αk
gk
∥ gk ∥

(1.2)

to get the next point, let k := k + 1 and go to Step 1.

The Equation (1.2) is the iteration formulation for the subgradient method. The search

direction is dk = −gk/ ∥ gk ∥, where gk ∈ ∂f(xk) is an arbitrary subgradient at xk, αk is

the step size which is fixed ahead. In order to guarantee the convergence, αks have to satisfy

some conditions. The following are some typical step size rules.

• Constant step size: αk = α, where α is a small positive constant.

24

• Square summable but not summable: the step sizes satisfy

αk ≥ 0,
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞.

One typical example is αk = a/(b+ k), where a > 0 and b ≥ 0.

• If the optimal value f ∗ is known, then the step size rule is

αk = λ
f(xk)− f ∗

∥ gk ∥
,

where λ ∈ [0, 2].

We conclude this subsection by some analysis of advantages and disadvantages of the

subgradient method.

Advantages of subgradient method

+ The process of the subgradient method is simple. One just needs to calculate a subgradient

vector at each iteration.

+ Since the step size sequence is fixed ahead, no line search process is needed in the sub-

gradient method, which makes it easy to implement.

+ Because of the clear and simple process of the subgradient method, it is widely used in

engineering applications.

Disadvantages of subgradient method

- The subgradient method is not a descent method, since the search direction which is oppo-

site to a arbitrary subgradient vector may not yield a descent direction.

- Choosing step size rule is a big challenge for the subgradient method and an implementable

stopping criterion is still hard to obtain.

- The convergence rate for the subgradient method is not better than linear convergence rate.

25

1.2.2. Bundle methods

Bundle methods, which attract plenty of attention in recent years, is another category of

nonsmooth optimization methods. The history of bundle methods originates from the cutting

plane idea, which was developed independently in [24] and [57]. The basic idea of cutting

place method is to use a piecewise linear function to approximate the objective function. By

now, there are many kinds of bundle methods, such as the ε-subgradient method, generalized

cutting place method, proximate bundle method and bundle trust region method. In order

to investigate the relationship between those methods, we first present a general structure

of bundle method and then inspect the existing bundle methods one by one. To make the

discussion simple, we suppose that the objective function f(x) in this section is a convex

function.

A general structure of bundle methods

Suppose that we are now at the iteration k, what we have are the current point xk, objective

function value f(xk) and one subgradient ξk ∈ ∂f(xk). Suppose that we also stored a set of

points and their subgradients from previous iterations, these points are called trial points.

In numerical optimization, what we have to do in every iteration is to find a search direc-

tion dk which can decrease the objective function value. In other word, we need to solve the

following Descent Direction Finding(DDF) problem,

(DDF)

 Minimize f(xk + d)− f(xk)

Subject to ∥ d ∥≤ 1.
(1.3)

For smooth optimization problems, through the first order Taylor’s expansion and second

order Taylor’s expansion, we can solve the corresponding Problem (DDF1.3) and obtain the

steepest descent direction

dk = −∇f(xk)/ ∥ ∇f(xk) ∥

26

and the Newton’s direction

dk = −H(xk)
−1∇f(xk),

respectively. However, for nonsmooth optimization problems it becomes more complicated,

since the subgradient, which is the counterpart of the gradient, is not unique and hard to

calculate. We just know that the set of all subgradients, which is subdifferential, is a convex

compact set, but we have no idea about the shape of this set, let alone to calculate it. So it

is impossible to compute a descent direction directly from the subdifferential. Thus, instead

of the Taylor’s expansion, we use the subgradient linearization to approximate the objective

function.

Definition 1.2.1 We define the ξ-linearization of f at y by

f̄ξ(x; y) = f(y) + ξT (x− y) for all x ∈ Rn. (1.4)

where ξ ∈ ∂f(y); define linearization error for ξ ∈ ∂f(y) by

α(x, y) = f(x)− f̄ξ(x; y) for all x ∈ Rn. (1.5)

Note that due to the definition of subgradient for convex functions we have

α(x; y) ≥ 0 for all x, y ∈ Rn.

We then describe a general bundle method that produces a sequence {xk}∞k=1 ⊂ Rn con-

verging to the global minimum of f , if it exists. We suppose that, in addition to the current

iteration point xk, we have some trial point yj ∈ Rn (maybe from past iterations) and the

corresponding subgradients ξj ∈ ∂f(yj) for j ∈ Jk, where Jk is the index set of those trial

points.

The idea of bundle methods is to approximate f at the current point xk from below by

27

using a piecewise linear function, in other words, we replace f by a so-called cutting plane

model

f̂k(x) = max
j∈Jk
{f(yj) + ξTj (x− yj)}, (1.6)

which can be written in the equivalent form

f̂k(x) = max
j∈Jk
{f(xk) + ξTj (x− xk)− αk

j}, (1.7)

where αk
j are linearization errors

αk
j = α(xk, yj) = f(xk)− f(yj)− ξTj (xk − yj) for all j ∈ Jk. (1.8)

The following theorem can be proved easily.

Theorem 1.2.1 For all x ∈ Rn and j ∈ Jk we have

(i) f̂k(x) ≤ f(x),

(ii) f̂k(yj) = f(yj) and

(iii) f̂k(x) = max
j∈Jk
{−α(xk; yj) + ξTj (x− xk)}+ f(xk).

Replacing f(xk+d) by f̂k(xk+d) in (DDF1.3), we get the following Nonsmooth Descent

Direction Finding(NDDF) problem

(NDDF)

 Minimize f̂k(xk + d)− f(xk)

Subject to ∥ d ∥≤ 1.
(1.9)

In fact, in the Problem (NDDF1.9), it is not easy to check the constraint ∥ d ∥≤ 1. So we

deal with it by adding a penalty term 1/2dTMkd to objective function. this term can keep

the approximation local enough and thus guarantee the existence of the solution. The regular

28

and symmetric n× n matrix Mk intends to accumulate information about the curvature of f

in a local area around xk. It plays the role of the Hessian matrix in smooth optimization.

Furthermore, substitute (1.7) into (NDDF1.9), let d = x− xk, we get another form of the

Problem (NDDF 1.9),

(NDDF)′

Minimize max

j∈Jk
{ξTj d− αk

j}+ 1
2
dTMkd

Subject to d ∈ Rn.

(1.10)

Note that the Problem (NDDF 1.10)′ is still a nonsmooth optimization problem. Howev-

er, due to its piecewise linear nature, it can be rewritten as a (smooth) Quadratic Descent

Direction Finding (QDDF) subproblem

(QDDF)

 Minimize v + 1
2
dTMkd

Subject to −αk
j + ξkj d ≤ v for all j ∈ Jk.

(1.11)

By dualizing we get an equivalent problem to (QDDF 1.11). That is to find multipliers λkj

where j ∈ Jk solving the Dual Descent Direction Finding(DDDF) problem

(DDDF)

Minimize 1
2

[∑
j∈Jk

λjξj

]T
M−1

k

[∑
j∈Jk

λjξj

]
+
∑
j∈Jk

λjα
k
j

Subject to ∑
j∈Jk

λj = 1

λj ≥ 0.

(1.12)

Notice that in the Problem (DDDF 1.12) the sign has been changed and maximization

has been converted to minimization. For computational reasons it might in some cases be

more efficient to solve the Problem (QDDF 1.11) instead of the Problem (DDDF 1.12). The

following theorem establishes the relationship between these two problems.

Theorem 1.2.2 The Problems (QDDF 1.11) and (DDDF 1.12) are equivalent, and they have

29

unique solutions (dk, vk) and λkj for j ∈ Jk, respectively, such that

dk = −
∑
j∈Jk

λkjM
−1
k ξj, (1.13)

vk = −dTkMkdk −
∑
j∈Jk

λkjα
k
j . (1.14)

Based on the discussion presented above, we can design a general algorithm for bundle

methods.

Algorithm 1.2.2 The General Bundle Method

Step 0: Initialization. Choose a starting point x0, evaluate the objective function value

f(x0) and a subgradient ξ0 ∈ ∂f(x0). Let M0 = I, k = 1, J0 = ∅.

Step 1: Stopping criterion. Check the stopping criterion at point xk. If the stopping crite-

rion is satisfied, then stop iteration and xk is the optimal solution.

Step 2: Updating. Update Jk−1 and Mk−1 to Jk and Mk, respectively.

Step 3: Descent direction. Solve the descent direction finding problem (QDDF 1.11) or

the dual descent direction finding problem (DDDF 1.12) getting the next search direc-

tion dk.

Step 4: Line search. Apply a line search method to compute a step size αk and compute a

new point

xk+1 = xk + αkdk.

Let k := k + 1 and go to step1.

Note that there are many subproblems need to be solved in this general bundle method.

In fact, different methods to solve these subproblems yield different practical bundle meth-

ods. We list those subproblems as follows and the detailed discussion of how to solve those

subproblems in certain algorithm will be presented later.

30

1. What kind of stopping criterion should we use? A direct extension of smooth opti-

mization suggests that 0 ∈ ∂f(xk) should be used. But this condition is still not easy

to verify since the total calculation of the subdifferential is impossible. Thus some new

calculable stopping criterion need to be exploited.

2. How to choose trial points yj is a big problem in bundle method. The set of trial points

can decide the quality of approximation of the objective function at xk, which, as a

result, verifies the direction we obtained is a good descent direction or not. Unfortu-

nately, we do not know what kind of point can be a good trial point. And furthermore,

the number of trial points still influence the descent direction finding problem. If there

are too many trial points, the size of descent direction finding problem will become

very large which makes the cost of calculation very expensive. So our aim is to use a

smaller number of trial points to approximate objective function as accurate as possi-

ble. A simple approach to pick trial points is to directly consider the previous iteration

points xi, i = 1, 2, . . . , k − 1. Obviously, this strategy is rough since some of the

iteration points are far from the current point xk.

3. An efficient and executable line search method is essential in the bundle method. A

simple idea is to successively double the step size until we get a satisfying decrease.

A popular approach in many literatures is to expand the inexact line search method.

4. A null step is needed in the bundle method. We use a polytope to approximate the sub-

differential at the current point and the search direction is obtained by solving the cor-

responding quadratic problem. However, impacted by the accuracy of approximation,

the obtained search direction could not be a good descent direction, even not a descent

direction, which means that the approximation needs to be improved. A null step, in

this case, keeps the current point and accumulates more information around the current

point in order to build a more accurate descent direction finding model. Generally, a

31

trial point will be generated after every iteration. If it is a null step, then this trial point

is collected to build a better approximation of the subdifferential. Sometimes, large

number of null steps are applied before a good approximation is constructed.

We now introduce some typical bundle method and point out their advantages and disad-

vantages. And at the same time, we analyze the relationship between those methods.

Cutting plane methods and their variations

According to the definition 1.2.1, we have

min
d∈Rn

f(xk + d)− f(xk)

≈ min
d∈Rn

f̂k(xk + d)− f(xk)

= min
d∈Rn

max
j∈Jk

{−αk
j + ξkj d}. (1.15)

Then, due to the minmax construction, (1.15) can be transformed to find a solution (d, v) ∈

Rn+1 to a linearly constrained smooth Cutting Plane Model.

(CPM)

 Minimize v

Subject to −αk
j + ξkj d ≤ v for all j ∈ Jk.

(1.16)

There are two main drawbacks in the original cutting plane method. Firstly, the Problem

(CPM 1.16) does not necessarily have a solution and secondly, the method generally attains

rather poor convergence results in practice. To avoid these disadvantages, the following

generalization was proposed by Kiwiel in [62]. By adding a regularizing penalty term 1
2
∥

d ∥2 to the objective function of Problem (CPM 1.16),we have the Generalized Cutting Plane

32

Model (GCPM)

(GCPM)

 Minimize v + 1
2
∥ d ∥2

Subject to −αk
j + ξkj d ≤ v for all j ∈ Jk.

(1.17)

By duality, Problem (GCPM 1.17) is equivalent to find multipliers λkj (j ∈ Jk) solving the

quadratic problem

(DGCPM)

minimize 1
2
∥
∑
j∈Jk

λjξj ∥2 +
∑
j∈Jk

λjα
k
j

subject to ∑
j∈Jk

λj = 1

λj ≥ 0 for all j ∈ Jk.

(1.18)

If the multipliers λkj solve the Problem (DGCPM 1.18), then we obtain the search direction

dk = −
∑
j∈Jk

λkj ξj.

One advantage of the Problem (DGCPM 1.18) is that we do not need to choose the approx-

imation tolerance εk, but this subproblem is rather sensitive to the scaling of the objective

function (i.e. multiplication of f by a positive constant). It is also worth to note that the

Problem (QGCPM 1.18) is a special form of the Problem (QDDF 1.11) with the choice

Mk ≡ I.

The conjugate subgradient method

The conjugate subgradient method is generalized from the idea of conjugate gradient

method which constructs the next search direction based upon the previous search direc-

tions. This method was developed in [68] and [122].

33

We define a convex set as

Sk = conv{−ξj| j ∈ Jk}.

and calculate the search direction dk as the projection of original point onto the set. In other

words, we solve the following problem,

 Minimize ∥ g ∥

subject to g ∈ Sk.
(1.19)

It is no doubt that Sk can also be expressed as

Sk = {g ∈ Rn| g = −
∑
j∈Jk

λjξj, λj ≥ 0 for all j ∈ Jk,
∑
j∈Jk

λj = 1}.

Thus, Problem (1.19) is equivalent to

(CSM)

Minimize 1
2
∥
∑
j∈Jk

λjξj ∥2

Subject to ∑
j∈Jk

λj = 1

λj ≥ 0 for all j ∈ Jk.

(1.20)

This dual approach means that each of the previous subgradients ξj ∈ ∂f(yj) for j ∈ Jk

is treated as a subgradient at the current point xk, in other words, the linearization error

(1.8) was neglected. On the other hand, no curvature of the objective function was taken

into account, i.e., the search direction fining problem (QDDF1.11) and (DDDF1.12) were

applied with

Mk ≡ I and αk
j ≡ 0.

The neglect of αk
j has the effect that the cutting plane model f̂k is a usable approximation to

f only if the trial points yj are close enough to xk. For this reason, the choice of the index set

34

Jk ⊂ {1, . . . , k} is a crucial point of the algorithm. Several subgradient selection strategies

to choose Jk were proposed, for instance, in [68, 90, 122], to keep the approximation local

enough and limit the number of stored subgradients. In [68, 122] the authors, for the first

time, introduced the subgradient aggregation strategy, which requires only a limited num-

ber of subgradients. The convergence of conjugate subgradient method has been proved in

[36]. However, the numerical experiments have shown that the convergence of the conjugate

subgradient method is rather slow in practice (see [70]).

ε-subgradient methods

The ε-subgradient method could be the first method being claimed as “bundle method”.

It was introduced in [67], where the idea was to combine the cutting plane method with the

conjugate gradient method. The method was further developed in [71], where the subgradient

aggregation strategy was used to limit the number of stored subgradients. Other contributions

to the ε-subgradient method are [11], [12] and [109], etc.

Before the discussion of ε-subgradient method, we firstly recall some basic definitions and

theorems of ε-subgradient, since ε-subgradient method is based on them.

Definition 1.2.2 Let f be any convex function finite at x. A vector ξ is called an ε-subgradient

of f at x (where ε > 0) if

f(y) ≥ f(x) + ξT (y − x)− ε for all y ∈ Rn.

The set of all such ε-subgradient is called ε-subdifferential and denoted by ∂εf(x).

The following summarizes some basic properties of the ε-subdifferential.

Theorem 1.2.3 Let f : Rn → R be convex. Then

(i) ∂0f(x) = ∂cf(x).

35

(ii) If ε1 < ε2, then ∂ε1f(x) ⊂ ∂ε2f(x).

(iii) f ′
ε(x; v) = max{ξTv| ξ ∈ ∂εf(x)} for all v ∈ Rn.

(iv) ∂εf(x) = {ξ ∈ Rn|f ′
ε(x; v) ≥ ξTv for all v ∈ Rn}.

(v) ∂εf(x) is nonempty, convex and compact set such that ∥ ξ ∥≤ K for all ξ ∈ ∂εf(x).

(vi) The mapping ∂εf(·) : Rn → P(Rn) is upper semicontinuous.

Theorem 1.2.4 Let f : Rn → R be convex with Lipschitz constant K at x. If ε ≥ 0, then

∂cf(y) ⊂ ∂εf(x) for all y ∈ B(x; ε/2K).

From the Theorem1.2.4, we know that when y close enough to x, the ε-subdifferential at

y can be considered as an approximation of the subdifferential at x. And furthermore, we

can simply use the ε-subdifferential an approximation of the subdifferential at x. According

to this point of view, we can explore the following ε-subgradient method.

In smooth optimization, in order to find a descent search direction, we approximate the

objective function of Problem (DDF 1.3) by

f(xk + d)− f(xk) ≈ ∇f(xk)Td.

In this approximation point of view, the Problem (DDF 1.3) is equivalent to

 Minimize ∇f(xk)Td

Subject to ∥ d ∥≤ 1.
(1.21)

Solving Problem (1.21), we have the steepest descent direction −∇f(xk)/ ∥ ∇f(xk) ∥.

36

In nonsmooth case, we have a counterpart of problem (1.21)

 Minimize f ′(xk, d)

Subject to ∥ d ∥≤ 1.
(1.22)

Since directional derivative is a supporting function of subdifferential, Problem (1.22) is

equivalent to

min
∥d∥≤1

max
g∈∂f(xk)

gTd, (1.23)

and by the well-known Minmax Theorem, we can change the optimization order and have

max
g∈∂f(xk)

min
∥d∥≤1

gTd. (1.24)

If g ∈ ∂f(xk) and g ̸= 0, then the solution of the latter minimization problem is d = −g/ ∥

g ∥, so we have

max
g∈∂f(xk)

min
∥d∥≤1

gTd = max
g∈∂f(xk)

gT (−g/ ∥ g ∥) = − min
g∈∂f(xk)

∥ g ∥ .

Hence, for solving problem (1.22), we have to study the minimum-norm problem (which is

uniquely solvable since ∂f(xk) is a nonempty closed convex set)

 Minimize ∥ g ∥

Subject to g ∈ ∂f(xk)
. (1.25)

Replacing the subdifferential in problem (1.25) by the ε-subdifferential, we have problem

 Minimize ∥ g ∥

Subject to g ∈ ∂εf(xk).
(1.26)

Based on the previous discussion, we are ready to design the ε-subgradient method[12].

37

Algorithm 1.2.3 The ε-Subgradient Method

Step 0: Select a vector x0 such that f(x0) <∞, a scalar ε0 > 0 and a scalar a, 0 < a < 1.

Step 1: If 0 ∈ ∂εf(xk), then stop iteration, xk is the ε-optimal solution; otherwise, go to

Step 2.

Step 2: Given xk and εk > 0, set εk+1 = amεn, wherem is the smallest nonnegative integer

such that 0 ̸∈ ∂εm+1f(xk).

Step 3: Find a vector dk such that

max
g∈∂εm+1f(xk)

gTdk < 0.

Step 4: Set xk+1 = xk + αkdk, where αk > 0 is such that

f(xk)− f(xk+1) > εk+1.

Return to Step 2.

In fact, this algorithm is hard to realize in practical calculation since we do not know

how to compute ∂εkf(xk). So we have to approximate ∂ϵf(xk) by some set which we can

compute. We define an approximation of ∂εkf(xk) by

Gk(εk) = {ξ ∈ Rn| ξ =
∑
j∈Jk

λjξj,
∑
j∈Jk

λjα
k
j ≤ εk, λj ≥ 0,

∑
j∈Jk

λj = 1}.

It can be proved that set G(εk) is convex and compact and

G(εk) ⊂ ∂εkf(xk).

Now we replace ∂εkf(xk) by the set G(εk) and change the objective function into and

38

equivalent style 1
2
∥ g ∥2 in (1.26), we have

 Minimize 1
2
∥ g ∥2

Subject to g ∈ G(εk)
. (1.27)

Due to the definition of G(εk), this is equivalent to find the multipliers λj (j ∈ Jk) solving

the quadratic problem

(SGM)

Minimize 1
2
∥
∑
j∈Jk

λjξj ∥2

Subject to ∑
j∈Jk

λjα
k
j ≤ εk∑

j∈Jk
λj = 1

λj ≥ 0 for all j ∈ Jk.

. (1.28)

If the multiplies λkj solve the Problem (SGM 1.28), then we obtain the search direction by

dk = −
∑
j∈Jk

λkj ξj. (1.29)

Comparing with the construction of G(εk) and Sk, we can note that some attention to the

linearization error (the Equation 1.8) was paid. The constraint
∑

j∈Jk λjα
k
j ≤ εk guaranteed

that the trial points are not far from the current point xk, thus a good approximation of

subdifferential at xk can be approached. Still, no curvature of the objective function was

taken into account yet, in other words,

Mk ≡ I.

One drawback of this method is that the performance of the approximation is very sensitive

to the choice of εk. Unfortunately, we do not have any good approach to chose it. There

39

are still some other discussion of the ε-subgradient method, such as [12] where the author

presented an exact representation of the ε-subdifferential for some special convex functions,

but he did not present any numerical results.

Bundle trust region and proximal bundle methods

As discussed before, the penalty term 1
2
∥ d ∥2 in the Problem (GCPM 1.17) plays a rule

of restricting the radius of the bundle around xk, i.e., norm of the direction dk should not

be too large. In order to obtain this aim, the bundle trust region method was developed by

combining the bundle and trust region methods. It was first introduced in [105], and then

developed in [72, 80].

Instead of adding the regularizing penalty term 1
2
∥ d ∥2 to the objective function of

the Problem (DDF 1.3), the idea of classical trust region methods is used to construct a

restriction of the cutting plane model. Let σk > 0 and consider the following modification

of the Problem (DDF 1.3)

 Minimize f̂k(xk + d)− f(xk)

Subject to 1
2
∥ d ∥2≤ σk,

(1.30)

we can have the Bundle Trust Region Method

(BTRM)

Minimize v

Subject to

−αk
j + ξTj d ≤ v for all j ∈ Jk

1
2
∥ d ∥2≤ σk.

(1.31)

Another approach to consider the role of term 1
2
dTMkd is the so-called diagonal variable

metric idea. A weighting parameter was added to the quadratic term of the objective function

in Problem (QDDF 1.11) and Problem (DDF 1.3) in order to accumulate some second-order

40

information about the curvature of f around xk. Thus the variable metric matrix Mk took the

diagonal form

Mk = µkI,

where the weighting parameter µk > 0. This method, named Proximal Bundle Method, was

derived in [63] based upon the work of [99]. Proximal bundle method has a form

(PBM)

 Minimize v + µk

2
∥ d ∥2

subject to −αk
j + ξTj d ≤ v for all j ∈ Jk.

(1.32)

Although originate from different ideas, The Problem (BTRM 1.31) and (PBM 1.32) have

the following relationship:

(i) If (vk, dk) is an optimal solution of the Problem (BTRM 1.31) and u(σk) is the corre-

sponding Lagrange multiplier of the constraint

1

2
∥ d ∥2≤ σk,

then (vk, dk) is also an optimal solution of the Problem (PBM 1.32) for µk = µ(σk).

(ii) If (vk, dk) is an optimal solution of the Problem (PBM 1.32), then it is also an optimal

solution of the Problem (BTRM 1.31) for

σk =
1

2
∥ dk ∥2 .

The dual formulation of the Problem (PBM 1.32) is to find multipliers λj for j ∈ Jk which

41

solve the quadratic problem

(DPBM)

minimize 1
2
∥
∑
j∈Jk

λjξj ∥2 +µk

∑
j∈Jk

λjα
k
j

Subject to ∑
j∈Jk

λj = 1

λj ≥ 0 for all j ∈ Jk.

(1.33)

If the multipliers λkj solve the the Problem (DPBM 1.33), then we obtain the search direction

by

dk = −
1

µk

∑
j∈Jk

λkj ξj.

Remark 1.2.1 The connection between the Problem (SGM 1.28) and (DPBM 1.33) are

(i) If λk ia an optimal solution of the Problem (SGM 1.28) and µ(εk) the corresponding

Lagrange multiplier of the constraint

∑
j∈Jk

λjα
k
j ≤ εk,

then λk is also an optimal solution of the Problem (DPBM 1.33) for µk = µ(εk).

(ii) If λk is an optimal solution of the Problem (DPBM 1.33), then it is also an optimal

solution of the Problem (SGM 1.28) for

εk =
∑
j∈Jk

λkjα
k
j .

Remark 1.2.2 We list some relationship between those methods we discussed above.

(i) Generalized cutting plane method (DGCPM 1.18) is a special case of the Problem (DPB-

M 1.33) with µk = 1.

42

(ii) The main difference between PB-methods (PBM 1.32) and BTR-methods (BTRM 1.31)

consists in strategies for updating the weight µk.

(iii) PB-methods (PBM 1.32) and BTR-methods (BTRM 1.31) do not need potentially unre-

liable line searches, since the step size control is included in the control of the weight

µk.

Titled proximal bundle methods

The most recent step in the development of bundle method was made in [64] basing upon

the work of [113]. The main idea is to use the so-called titled cutting planes in order to get

some second-order information and to employ some features of interior point methods. The

matrix Mk was handled in the original diagonal form

Mk = µkI,

with the safeguarded quadratic interpolation technique for updating µk.

Let κ ∈ (0, 1], θ ∈ [0, 1− κ] and ξ ∈ ∂f(y), we define the titled linearization

f̄(x; y; θ) = f(y) + (1− θ)ξT (x− y) for all x ∈ Rn. (1.34)

Note that

f̄(x; y; 0) = f̄(x; y).

since f̄(x; y; θ) need no longer be a lower approximation and the original linearization error

may be negative, we define also a new linearization error by

α(x; y; θ) = max{f(x)− f̄(x; y; θ), κ α(x; y)}.

43

Figure 1.1.: The tilted cutting plane model

Evidently,

α(x; y; θ) ≥ 0 (1.35)

due to κ > 0. The following result gives a motivation to employ tilted approximations.

Lemma 1.2.1 If f is strictly convex and quadratic with the minimizer x∗, then

f̄(x∗; y; θ) ≤ f̄(x∗; y;
1

2
) = f(x∗) for all y ∈ Rn and θ ∈ [0,

1

2
].

Now let ξ ∈ ∂f(y) for j ∈ Jk and let θkj ∈ [0, 1 − κ] for j ∈ Jk be the corresponding

tilting coefficients. Then for all x ∈ Rn we define the following tilted approximation to f

f̂k(x, θk) = max
j∈Jk
{−α(xk; yj; θkj) + (1− θkj)ξTj (x− xk)}+ f(xk).

Due to Equality (1.34), f̂k(x; θk) is no longer a lower approximation of f . However,

Inequality 1.35 ensures that

f̂k(xk; θ
k) ≤ f(xk).

44

To exploit the proximal bundle idea we replace the Problem (PBM 1.32) with

(TPBM)

 Minimize v + µk

2
∥ d ∥2

Subject to −α(xk; yj; θkj) + (1− θkj)ξTj d ≤ v for all j ∈ Jk.
(1.36)

and the dual formulation of the Problem (TPBM 1.36) is to find multiplies λkj (j ∈ Jk) which

solve the problem

(DTPBM)

minimize 1
2
∥
∑
j∈Jk

λj(1− θkj)ξj ∥2 +µk

∑
j∈Jk

λjα(xk; yj; θ
k
j)

Subject to ∑
j∈Jk

λj = 1

λj ≥ 0 for all j ∈ Jk.

(1.37)

If the multiplies λkj solve the Problem (DTPBM1.37), then we obtain the search direction by

dk = −
1

µk

∑
j∈Jk

λkj (1− θkj)ξj.

Note that if κ = 1, then θkj = 0 for all j ∈ Jk and the method reduces to the proximal

bundle method described previously. The tilted cutting plane is a real ”cutting plane“, since

it cuts off a parts of the epigraph of f while the standard cutting plane cuts nothing. The

numerical tests in [64] appear rather promising, but the question of how to choose the tilting

parameters κ and θkj is still unsolved.

1.3. Global optimization

Global optimization is a branch of applied mathematics and numerical analysis that deals

with the optimization of a function or a set of functions according to some criteria, such as a

set of bound or more general constraints [45]. The objective of global optimization is to find

45

the globally best solution of models among a number of possible local optimal solutions.

Formally, global optimization seeks global solution(s) of a constrained optimization model.

It is now established that global optimization has ubiquitous applications in various areas,

such as chemical engineering [8, 55], applied sciences [89], biotechnology [119], data anal-

ysis [17, 51], environmental management [14], risk management [13], and so on. A general

model of global optimization problem can be formulated as follows.

Minimize f(x)

Subject to gi(x) ≤ 0, i = 1, 2, · · · , l

hj(x) = 0 j = 1, 2, · · · ,m

x ∈ X,

(1.38)

where f : Rn → R is objective function, gi : Rn → R, i = 1, 2, · · · , l are inequality

constraint functions, hj : Rn → R, j = 1, 2, · · · ,m are equality constraint functions, and

X = {x = (x1, x2, · · · , xn) | li ≤ xi ≤ ui i = 1, 2, · · · , n}

is a box set, l = (l1, l2, · · · , ln)T and u = (u1, u2, · · · , un)T are lower boundary and upper

boundary, respectively. We define the search space of Problem (4.1) as

S = {x ∈ Rn|x ∈ X},

furthermore, the feasible search space as

F = {x ∈ S | gi(x) ≤ 0, i = 1, 2, · · · , l, hj(x) = 0, j = 1, 2, · · · ,m}.

Any point x ∈ F is called a feasible point.

There are three different types of methods to solve global optimization problems, deter-

ministic methods, metaheuristic methods and hybrid methods. They will be briefly intro-

46

duced in the following subsections.

1.3.1. Deterministic methods

The main concept of deterministic global optimization methods is that in the generic pro-

cedure of solving global optimization problems, the next iteration does not depend on the

outcome of a pseudo random variable. Such a method gives a fixed sequence of steps when

the algorithm is repeated for the same problem. But there is not necessarily a guarantee to

reach the optimum solution. Some excellent introductions of deterministic methods refer to

[28, 46, 47].

The most important deterministic global optimization method is the branch-and-bound

method [34, 102, 103, 127]. It consists of two parts, branching and bounding. Branching

refers to successive partitioning (or subdivision) of the feasible domain, whereas bounding

refers to the computation of lower and upper bounds of global optimum. In each iteration

of the branch-and-bound method, the search region is divided into finitely many subregions,

then the maximum lower bound and minimum upper bound of optimal solutions of those

subregions are identified. If the maximal lower bound coincides with the minimal upper

bound, an optimal solution has been found; otherwise, the iteration is repeated.

1.3.2. Metaheuristic methods

The metaheuristic method is another type of methods for global optimization. In some

literatures, it is also called stochastic method since it more or less use randomly generated

numbers or points in its search process. The metaheuristic method originated from 1960s and

there were quite a lot of new algorithms have been developed thereafter. Some typical type-

s of metaheuristic methods include the evolutionary algorithms, simulated annealing, tabu

search, particle swarming optimization, ant colony algorithm, and so on. In the following,

we briefly introduce some of them.

47

Evolutionary algorithms

The evolutionary algorithm is one of the main types of metaheuristic methods. The genetic

algorithm [26, 38, 39, 121], evolution strategy [56, 77] , and evolutionary programming

[129, 130] are three typical types of evolutionary algorithms.

The main idea of the genetic algorithm is based upon the biologically natural selection

and genetic mechanism. The earliest structure of the genetic algorithm was provided by

Glodberg [37]. The genetic algorithm is population-based; it takes into account of a set of

candidate solutions instead of only one in each iteration. First, it randomly generates a set of

candidate solutions called the initial population. One single individual from the population

is called a chromosome. The number of chromosomes in a population is defined as popula-

tion size. In numerical computation, Chromosomes are coded as binary codes, Gray codes

or real-number codes. Then, the offspring is generated in two different ways: crossover

and mutation. Crossover operator randomly exchanges some genes (which constitute chro-

mosomes) between two selected individuals. Mutation operator changes some randomly

selected genes of an individual in a certain way. After that, a selection pool is constructed

by putting the current population and its offspring together. Then, the next population is

selected from the selection pool by a certain strategy. In practical computation, a number

of maximal generation is set beforehand, this number of maximal generation further plays a

role of stopping criterion.

Suppose that P (t) and O(t) represent parents and offspring of the tth generation, respec-

tively. Then, the general structure of genetic algorithm can be described in the following

pseudo code.

The General Structure of Genetic Algorithm

1 Initialization

1.1 Generate the initial population P (0),

48

1.2 Set crossover rate, mutation rate and maximal generation time,

1.3 Let t← 0.

2 While the maximal generation time is not reached, do

2.1 Crossover and mutation operator: generate O(t),

2.2 Evaluate P (t) and O(t): compute fitness function,

2.3 Selection operator: build the next population,

2.4 t← t+ 1, go to 2.1

end

end

From the pseudo code, we can see that there are three important operators in a genetic

algorithm: crossover, mutation and selection operators. Usually different encodings lead to

different implementations of operators.

Evolution strategy and evolutionary programming, although proposed for different aim-

s and in different time, are generated from more of less the same idea. The same as the

genetic algorithm, they are still population-based method, but evolution strategy and evolu-

tionary programming only use mutation to generate the next generation. The development

of evolution strategy went through the following stages: i) two membered evolution strat-

egy, ii) multimembered evolution strategy, iii) (µ + λ)−ES and (µ, λ)−ES. An excellent

survey of evolution strategy refers to [114]. The evolutionary programming is first proposed

as an approach to artificial intelligence [86], then applied successfully to many numerical

and combinatorial optimization problems [29, 30]. Optimization by evolutionary program-

ming can be summarized into two major steps [130]: i) mutate the solutions in the current

population; ii) select the next generation from the mutated and the current solutions.

49

The Differential evolution

Differential evolution is a metaheuristic method based on the difference of population. It

was introduced by Storn and Price [93, 108] in 1996 and 1997 when solving Chebyshew

polynomia. The differential evolution is originally developed to solve continuous problems,

so it used real-number encoding. The framework of differential evolution is almost the same

as the genetic algorithm, mainly including mutation, crossover and selection operators. But

the mechanism of those operators are different from those of the genetic algorithm.

Suppose that xi and xj are two candidate solutions, then the pair (xi, xj) defines a differ-

ence vector such that

di,j = xi − xj.

The difference vector is an essential ingredient of mutation mechanism in the differential

evolution. The mutation process begins by randomly selecting four population vectors x1,

x2, x3 and x4. Those four vectors are then combined to form the sum of two difference

vectors, i.e.,

d1,2,3,4 = d1,2 + d3,4 = (x1 − x2) + (x3 − x4).

The difference vectors, as well as the sum of two difference vectors, diminish as population

vectors converge. Consequently, difference vectors and the sum of two difference vectors

scaled to a size that is appropriate for the population as it evolves. Early versions of dif-

ferential evolution employed a single difference vector instead of the sum of two difference

vectors, but the latter one appeared to facilitate finding an effective scaling factor.

The mutation is operated only on the best solution so far. Suppose that x∗ is the best

solution so far, and d1,2,3,4 is a sum of two difference vectors, then a new candidate solution

can be generated by

u = x∗ + F ∗ d1,2,3,4,

where F is a scaling factor and satisfies 0 < F ≤ 1.2. In fact, this mutation generates some

50

new points which are noisy replica of the current best solution. At the early stage, the noise

is heavy since the difference between vectors is large. But as the population converges, the

difference vectors become tiny which cause minute destabilization to x∗. Actually, x∗ can be

replaced by a randomly selected solution, but using x∗ speeds convergence. F is determined

empirically.

Crossover of the differential evolution is introduced to increase the diversity of perturbed

candidate solutions obtained by mutation. Suppose that xk = (xk1, x
k
2, · · · , xkn) is a candidate

solution in the kth generation, uk = (uk1, u
k
2, · · · , ukn) is a candidate solution obtained by

mutation, then crossover between those two candidate solutions is operated as follows:

vk+1
i =

 uki if αi ≤ CR or i = β

xki if αi > CR and i ̸= β
i = 1, 2, · · · , n.

Here, αi is a random number between 0 and 1, CR∈ [0, 1] is the crossover constant which

plays the role of crossover rate in GA. β is a randomly chosen index among {1, 2, · · · , n}

which ensures that vk+1 at least gets one component from xk. Figure 1.2 depicts the mecha-

nism of crossover for 8−dimensional candidate solutions.

Comparing with the genetic algorithm, the aim of both crossover operators is to increase

the diversity of candidate solution. However, their targets are different, in the genetic algo-

rithm the crossover operator operates on two randomly selected current candidate solutions,

while in the differential evolution the operator crossover operator operates on one current

candidate solution and one mutation candidate solution.

To decide whether or not it should become a member of generation k + 1, the crossover

candidate solution vk is compared to the corresponding current candidate solution xk using

the greedy criterion.

xk+1 =

 xk if f(xk) ≤ f(vk)

vk if f(xk) > f(vk)

51

Figure 1.2.: Crossover mechanism for 8−dimension candidate solutions

The greedy strategy of selection may speed convergence, but it can still cause premature

convergence.

The Simulated Annealing

Idea of the simulated annealing method was introduced by N.Metropolis [81]. But it

was S.Kirkpatrick [61, 117] and V.Cerny [20] who respectively applied this idea to solve

combinatorial optimization and very large scale integration (VLSI) design. The first version

of the simulated annealing was applicable only for solving discrete optimization problems.

The simulated annealing for solving continuous global optimization problems was developed

in late 1980s [16]. C.Zhang and H.Wang [134] applied simulated annealing to solve mixed-

integer optimization in 1993.

Motivation of the simulated annealing comes from an analogy between the physical an-

nealing of solids and combinatorial optimization problems. Physical annealing refers to the

process of finding low energy states of a solid by initially melting the substance, and then

lowering the temperature slowly, spending a long time at temperatures close to the freezing

point. An example would be producing a crystal from the molten substance. In a liquid, the

52

particles are arranged randomly. But the ground state of the solid, which corresponds to the

minimum energy configuration, will have a particular structure, such as seen in a crystal. If

the cooling is not done slowly, the resulting solid will not attain the ground state, but will be

frozen into a metastable, locally optimal structure, such as a glass or a crystal with several

defects in the structure.

Let a solution x of combinatorial optimization problem equals to a state i of solid; the

corresponding objective function value f(x) equals to the energy Ei of state i. Set a param-

eter t for algorithm which plays the role of temperature T in annealing process. Obviously,

the parameter t gradually decrease in algorithm. Then, for every new value of parameter t,

the algorithm continuously plays a process of ”generate new candidate solution – check the

candidate solution – accept/reject”. This process actually corresponds to a solid converges a

thermal equilibrium in a certain temperature, which can be considered as one implementa-

tion of Metropolis algorithm [81]. Metropolis algorithm, starting with an initial state, intend

to obtain the final equilibrium state of a system through computing the time evolutionary

process. By simulating this process,simulated annealing, starting with an initial candidate

solution, can obtain a relatively optimal solution of combinatorial optimization through in-

vestigating a great deal of trial solutions. Then, the parameter t is decreased and Metropolis

algorithm is implemented again. This process is repeated until the parameter converge to

zero, and the approximate global solution of combinatorial optimization can be obtained at

last. In the physical annealing process, the temperature must decrease gradually to guarantee

the equilibrium state in each temperature, and consequently, converge to the ground state.

Therefore, in simulated annealing, the value of parameter t has to decrease gradually as well

to guarantee the approximate global optimal solution of combinatorial optimization.

simulated annealing generates a sequence of candidate solutions by Metropolis algorithm.

The Metropolis criteria is use to accept or reject a trial solution. In the kth iteration, suppose

the controlling parameter is tk, the current candidate solution is xk and a generated trial

53

solution x′, then the probability of Metropolis algorithm to accept x′ is

P (xk ⇒ x′) =

 1 if f(x′) ≤ f(xk)

exp
(

f(xk)−f(x′)
tk

)
otherwise.

(1.39)

Here tk ∈ R+ represents the controlling parameter. At the early stage, the value of t is

big (which corresponds to the solution temperature of solids), the probability of accepting a

uphill trial solution x′ is high. This is good for global exploration. On the other hand, after

some iterations of transfer, t gradually decrease (which is corresponding to the gradually

decrease of solid temperature in annealing), only a very few uphill trial solution can be

accepted. This is good for local exploitation. It is one of the key difference of simulated

annealing with local search methods that simulated annealing can, in some extent, accept

some uphill candidate solutions.

1.3.3. Hybrid methods

The hybrid method is a type of global optimization methods combining both advantages

of local search methods and global search methods. Local search methods for convex objec-

tive function is descent-oriented, they are efficient and can reach good accuracy of solutions.

But these methods only work for local areas or for convex functions, when they are ap-

plied to nonconvex functions, they are easily stuck in a local minimizer. Some typical local

search methods include the Newton-type method, quasi-Newton method, conjugate gradient

method, pattern search method, and so on. On the other hand, global search methods are

good at exploring new search areas which have not been visited previously. But it is difficult

for the global search methods to obtain solutions with high precision. Typical global search

methods include the metaheuristic methods introduced in the previous section. Therefore,

it is natural to combine the local exploitation of local search methods and the global explo-

ration of global search methods. Local search methods are applied to precisely search a local

54

minimizer and global search methods are applied to escape the search from a local basin to

some other new search areas. In this way, if the objective function has finite number of local

basins, the global minimizer can be found by the hybrid method in a high probability.

Hybrid methods are among the most powerful methods in global optimization. There are

different approaches to design hybrid methods [6, 7, 42, 132]. Without loss of generality, we

can classify these approaches into the following three groups.

1. The first group contains algorithms where global search methods are applied to im-

prove global search properties of local search methods. In [42], a hybrid of the simu-

lated annealing and Nelder-Mead simplex method [83] is developed. A hybrid of the

generalized Nelder-Mead method with controlled random search and simulated an-

nealing method is developed in [66]. The paper [92] presents another version of the

hybrid of the simulated annealing and simplex methods. A method based on a hybrid

of the genetic algorithm and simplex methods is developed in [131]. One can note

that all these algorithms use the simplex method as a local search algorithm. This

algorithm is efficient when the number of variables is small.

2. The second group contains algorithms where global search methods are applied to

escape from a stationary point computed by local search methods and to find a new

starting point for local search methods. In the paper [6] a method based on a combi-

nation of the discrete gradient and the cutting angle methods is proposed. The discrete

gradient method is applied to compute a local minimizer and the cutting angle method

is applied to escape from this local minimizer and to find a new starting point for the

discrete gradient method. A similar approach is used in the paper [132] to develop a

method based on a combination of the simulated annealing and Newton-like methods.

3. The third group contains algorithms where the global method is used to generate a set

of initial points for the local search method. Then the local search method is applied

starting from each initial point and the best solution is taken as an approximation to

55

a global solution (see e.g. [75]). Since the local search method is applied repeatedly,

algorithms based on such an approach are time-consuming.

One may notice that direct search and derivative-free methods have been more successful

than Newton-like methods to develop hybrid methods of global optimization. Results of

numerical experiments presented, for example, in [6] show that unlike Newton-like methods,

some direct search methods can overcome stationary points which are not local minimizers

and even sometimes shallow local minimizers. Therefore, the use of direct search methods

allows one to reduce the number of stationary points computed by a local search method and

to compute the global minimizer much faster.

Note that the well-known global optimization methods such as the tunneling [73] and filled

function methods [124, 125, 126] can also be considered as hybrid methods. These methods

also exploit local search method to find local solutions and special mechanisms to escape

from those local solutions.

56

Chapter 2.

A quasisecant method

2.1. Introduction

In this chapter, we consider the following unconstrained optimization problem

(NSO)

 Minimize f(x)

Subject to x ∈ Rn,
(2.1)

where f : Rn → R is a locally Lipschitz continuous function and not necessarily differen-

tiable. We call the Problem (2.1) unconstrained nonsmooth optimization problem, abbrevi-

ated as NSO.

Numerical methods for solving the Problem (NSO 2.1) have been studied extensively

over the last four decades. Given different assumptions on the objective function f , various

numerical methods have been presented, such as subgradient methods [107], bundle-type

methods [24, 57, 62, 63, 68, 69, 105, 135], the limited memory bundle method [40, 41, 78,

118], gradient sampling methods [18] and methods based on smoothing techniques [27, 84].

For most of the methods listed above, the convexity assumption of the objective function f

is needed. For example, in the subgradient method, convexity is necessary for proving con-

57

vergence; in the bundle-type method, a lower piecewise linear approximation only appears

when objective function is convex.

In this chapter, we propose an algorithm for solving Problem (NSO 2.1). The main idea of

this algorithm is similar to that of the bundle-type method. However, instead of using a set

of subgradients to approximate subdifferential, the new method uses secants or quasisecants.

This chapter is structured as follows. First we give definitions of secants and quasisecants,

describe an algorithm for finding search directions, then the quasisecant method and finally,

we present results of numerical experiments. The quasisecant method was introduced in [2]

and all theoretical results given in this chapter are adopted from this paper. However, the

implementation of this method is in Matlab and computational results are new and presented

first time in this chapter.

2.2. Secants and quasisecants

We first introduce the definitions of secants and quasisecant for locally Lipschitz functions,

starting with univariate function. Consider Lipschitz continuous function ϕ : R → R. A

secant is the line passing though at least two points on the graph of the function ϕ. For

instance, a line passing through point (x, ϕ(x)) and (x+ h, ϕ(x+ h)), where h > 0, is given

by

l(x) = cx+ d,

where

c =
ϕ(x+ h)− ϕ(x)

h
, d = ϕ(x)− cx.

The equation

ϕ(x+ h)− ϕ(x) = ch

58

is called the secant equation (see dashed line of Figure 2.1). For univariate smooth function,

c becomes derivative when h is infinitely small.

Now, let us consider a locally Lipschitz function f : Rn → R. For given x ∈ Rn and

g ∈ S1 = {x ∈ Rn| ∥ x ∥= 1}, consider function ϕ(t) = f(x + tg), t ∈ R, t ≥ 0.

Obviously, ϕ(t) is a locally Lipschitz continuous function. Therefore, for h > 0, we have

f(x+ hg)− f(x) = ϕ(h)− ϕ(0) = ch, (2.2)

where c = (f(x − hg) − f(x))/h. If there exists u ∈ Rn such that c = ⟨u, g⟩, then we can

generalize the definition of secant to function f .

Definition 2.2.1 A vector u ∈ Rn is called a secant of the function f at the point x in the

direction g ∈ S1 with the length h > 0 if

f(x+ hg)− f(x) = h⟨u, g⟩.

We use the notation u(x, g, h) for any secant of the function f at a point x in the direction

g ∈ S1 with the length h > 0. Apparently, the secant closely depends on direction g ∈ S1

and length h > 0. Actually, note the definition of directional derivative (Definition 1.1.1)

and the Equation (2.2), we can easily see that f ′(x; g) ≈ ⟨u, g⟩ when h is small. So we can

take ⟨u, g⟩ as an approximation of directional derivative.

For a given h > 0, consider a set-valued mapping x 7→ Sec(x, h)

Sec(x, h) = {w ∈ Rn|∃g ∈ S1, such that w = u(x, g, h)}.

Consider the following set at point x,

SL(x) = {w = Rn|∃g ∈ S1 and {xk}, hk ↓ 0 as k →∞, such that w = lim
k→∞

u(x, g, hk)}.

59

A mapping x 7→ Sec(x, h) is called a subgradient-related (SR)-secant mapping if the corre-

sponding set SL(x) ⊂ ∂f(x) for all x ∈ Rn.

The computation of secant is not always an easy task. For this reason, we relax the equality

to inequality in Equation (2.2) and present a new definition, say quasisecant.

Definition 2.2.2 A vector v ∈ Rn is called a quasisecant of the function f at the point x in

the direction g ∈ S1 with the length h > 0 if

f(x+ hg)− f(x) ≤ h⟨v, g⟩.

We use the notation v(x, g, h) for any quasisecant of the function f at the point x in the

direction g ∈ S1 with the length h > 0 (see Figure 2.1). So for a given h > 0, we can define

a set-valued mapping

QSec(x, h) = {w ∈ Rn| ∃g ∈ S1 such that w = v(x, g, h)}.

It is clear that any secant is also quasisecant. Therefore, the computation of quasisecants must

be easier than the computation of secants. Consider the set of limit points of quasisecant as

h ↓ 0,

QSL(x) = {w = Rn|∃g ∈ S1 and {xk}, hk ↓ 0 as k →∞, such that w = lim
k→∞

v(x, g, hk)}.

A mapping x 7→ Qsec(x, h) is called an SR-quasisecant mapping if the corresponding

set QSL(x) ⊂ ∂f(x) for all x ∈ Rn. In this case, elements of Qsec(x, h) are called SR-

quasisecants. In the quasisecant method, we consider quasisecants instead of secant.

60

Figure 2.1.: Secant and quasisecant for a univariate function

2.3. Computation of a descent direction

We assume that for any bound subset X ∈ Rn and any h0 > 0 there exists K > 0 such

that

∥ v ∥≤ K

for all v ∈ QSec(x, h), x ∈ X and h ∈ (0, h0]. Given x ∈ Rn and h > 0 we consider the

following set,

W (x, h) = c̄o QSec(x, h)

where c̄o is a closed convex hull of a set. If QSec(x, h) is the SR-quasisecant mapping,

then the set W (x, h) is an approximation to the subdifferential ∂f(x). In this case, the set

W (x, h) is the convex hull of a set of subgradients computed at points in some neighborhood

of x. It is no doubt that the set W (x, h) is compact and convex.

61

Theorem 2.3.1 Assume that 0n ̸∈ W (x, h), h > 0 and

∥ v0 ∥= min{∥ v ∥ | v ∈ W (x, h)} > 0.

Then

f(x+ hg0)− f(x) ≤ −h ∥ v0 ∥

where g0 = − ∥ v0 ∥−1 v0.

The proof of Theorem 2.3.1 refers to [2]. Theorem 2.3.1 implies that if 0 ̸∈ W (x, h), h >

0, then the nearest point of W (x, h), say v0, can be used to construct a descent direction.

However, totally computation of W (x, h) is not always possible. Therefore, we compute

only a few elements of W (x, h) and use their convex combination to approximate W (x, h).

This process is presented in the following algorithm.

Algorithm 2.3.1 Computation of the descent direction.

step 0: Data: set h > 0, c1 ∈ (0, 1) and a small enough number δ > 0.

step 1: Choose any g1 ∈ S1 and compute a quasisecant v1 = v(x, g1, h) in the direction

g1. Set V1(x) = {v1} and k = 1.

step 2: Compute ∥ v̄k ∥2= min{∥ v ∥2 | v ∈ co Vk(x)}. If

∥ v̄k ∥≤ δ,

then stop. Otherwise go to Step 3.

step 3: Compute the search direction by

gk+1 = − v̄k

∥ v̄k ∥
.

62

step 4: If

f(x+ hgk+1)− f(x) ≤ −c1h ∥ v̄k ∥,

then stop the loop, gk+1 is a descent direction. Otherwise go to Step 5.

step 5: Compute a quasisecant vk+1 = v(x, gk+1, h) in the direction gk+1, construct the set

Vk+1(x) = Vk(x) ∪ {vk+1}, set k = k + 1 and go to Step 2.

It should be note that Algorithm 2.3.1 is based upon, more or less, the same idea as the

descent direction finding algorithm in bundle-type methods. The difference is that we use

quasisecants in Algorithm 2.3.1 instead of subgradient in bundle-type methods. In Step 2,

we calculate the nearest point of a polytope by solving a quadratic problem. Actually,

v̄k =
k∑

i=1

λ∗i v
i,

where λ∗i , i = 1, 2, · · · , k is the solution of the quadratic problem

Minimize 1
2
∥ ξ ∥2

Subject to ξ =
k∑

i=1

λiv
i

k∑
i=1

λi = 1

λi ≥ 0, i = 1, 2, · · · , k.

(2.3)

This quasisecant programming problem can be solved by the algorithms proposed in [32] or

[123]. There are two stop criteria for Algorithm 2.3.1, in Step 2, if ∥ v̄k ∥≤ δ, we obtain the

so-called (h, δ)−stationary point; in Step 3, if the direction gk+1 is a descent direction, we

stop the Algorithm 2.3.1 and go to line search. If both of those stop criteria are dissatisfied,

in Step 5, we accumulate more information (vk+1) of the neighborhood of the current point

and add it to Vk(x). Then, the convex hull of Vk+1(x) is taken as a better approximation

of W (x, h). Step 5 plays a role of null step like in bundle-type method. Adil [2] proved

63

that, under some normal assumptions, Algorithm 2.3.1 can terminate in finite iterations, say

m > 0 times. However, in numerical computation, we may not afford m times of iteration.

Therefore, we set a smaller positive integer number, say b ≤ m to terminate the iteration.

This inherits the idea of bundle-type method.

2.4. A quasisecant method

With the help of Algorithm 2.3.1, we can describe a quasisecant method for solving non-

smooth optimization problems.

Algorithm 2.4.1 The inner loop

Step 0: Input: the step length h > 0, a tolerance parameter δ > 0, parameters c1 ∈

(0, 1), c2 ∈ (0, c1], the maximal iteration time b > 0, the current iteration point x0

and set k = 1. Let xk = x0

Step 1: Apply Algorithm 2.3.1 on xk, This algorithm terminates in three possible ways:

option 1 ∥ v̄k ∥≤ δ, where v̄k is calculated by solving the quadratic programming

problem (2.3);

option 2 the search direction gk = − ∥ v̄k ∥−1 v̄k satisfies condition

f(xk + hgk)− f(xk) ≤ −c1h ∥ v̄k ∥; (2.4)

option 3 the maximal iteration time researched.

Step 2: If it is terminated by option 1, we stop the inner loop.

Step 3: If it is terminated by option 2, we go to Step 5 to do the line search.

Step 4: If it is terminated by option 3, we stop the inner loop.

64

Step 5: Compute xk+1 = xk + σkg
k, where σk is defined as follows

σk = argmax{σ ≥ 0| f(xk + σgk)− f(xk) ≤ −c2σ ∥ v̄k ∥}.

Set k = k + 1 and go to Step 1.

The following are some explanation of Algorithm 2.4.1. In Step 2, an (h, δ)-stationary

point is found. The definiton of (h, δ)-stationary point based on quasisecant and W (x, h). It

is a relaxation of classical stationary point in the sense of v ∈ W (x, h) and ∥ v ∥≤ δ. In Step

3, Inequality (2.4) stands for the so-called wolf condition for inexact line search. In Step 4,

the terminal option 1 and terminal option 2 are not satisfied, but the fixed maximal iteration

time is reached, so we have to terminate the inner loop compulsorily. In Step 5, we do the

inexact line search, more specifically, we use a double step size strategy in line search. This

strategy starts from a small given step size (such as h), then at each iteration, if the current

step size decrease objective function value along the considered direction, we accept it and

further test its double. Otherwise, we stop line search and take the last accepted step size as

a solution.

Algorithm 2.4.1 can be terminated at Step 2 or Step 4. But achieving an (h, δ)-stationary

point or reaching the maximal iteration time do not necessarily mean a satisfactory stationary

point is obtained. In order to construct a more promising approximation of subdifferential,

we have to decrease the value of h. This process is implemented in the following outer loop.

Algorithm 2.4.2 The secant method (The outer loop)

Step 1: Choose any starting point x0 ∈ Rn, the initial step length h0 > 0, the tolerance

parameter δ > 0 and ε, parameter α ∈ [0, 1]. Set k = 0.

Step 2: If 0 ∈ ∂f(xk), then stop.

Step 3: Apply Algorithm 2.4.1 by starting from the point xk for h = hk and δ. This

65

algorithm either terminates by obtaining an (hk, δ)-stationary point or by reaching the

maximal iteration time.

Step 4: If hk < ε, then stop. Otherwise, let hk+1 = αhk and go back to Step 2.

The following are some explanation of Algorithm 2.4.2. Step 2 is the normal necessary

condition for nonsmooth optimization problem. This condition is not easy to testify. Like in

Step 1 of Algorithm 2.4.1, we can use a small tolerance parameter, i.e., ∥ ξk ∥≤ ε, where

ξk ∈ ∂f(xk) and ε > 0 small enough. Another stopping criterion of Algorithm 2.4.2 is

hk < ε in Step 4. hk can adjust the approximation of W (x, h), thereby, adjust the approxi-

mation of subdifferential, the smaller the value of hk is the more accurate the approximation

can get. However, we should not make hk very small at the first place, since a small hk

can just approximate objective function locally, whereas a large hk can approximate objec-

tive function in an extensive range, which is needed when solving nonconvex optimization

problems.

2.5. Numerical experiments

In this section, we investigate the numerical performance of quasisecant method by testing

some benchmarks with nonsmooth objective functions. We consider three types of problems:

(i) Problems with nonsmooth convex objective functions;

(ii) Problems with nonsmooth nonconvex regular objective functions;

(iii) Problems with nonsmooth nonconvex and nonregular objective functions.

Test problems are illustrated in Appendix A. The brief description of test problems are given

in the Table 3.1, where the following notations are used:

• n – the number of variables;

66

• No.f – the total number of functions under maximum and minimum (if a function

contains maximum and minimum functions); and

• fopt – the optimal value.

Table 2.1.: Description of test problems

Function type Problem n No.f fopt
Nonsmooth convex Problem 2.1 2 3 1.952245

Problem 2.2 2 3 0
Problem 2.3 2 2 0
Problem 2.4 3 6 3.5997173
Problem 2.5 4 4 -44
Problem 2.6 4 4 -44
Problem 2.7 3 21 0.0042021
Problem 2.8 4 11 0.0080844
Problem 2.9 10 2 54.598150
Problem 2.10 11 10 3.7034827173

Nonsmooth nonconvex regular Problem 2.11 4 20 115.70644
Problem 2.12 4 21 0.0026360
Problem 2.13 4 21 0.0020161
Problem 2.14 5 21 0.0001224
Problem 2.15 5 30 0.0223405
Problem 2.16 6 51 0.0349049
Problem 2.17 6 41 0.0061853
Problem 2.18 7 5 680.63006
Problem 2.19 10 9 24.306209
Problem 2.20 20 18 93.90525
Problem 2.21 20 31 0.0000000
Problem 2.22 11 65 0.047700

Nonsmooth nonconvex nonregular Problem 2.23 2 6 2
Problem 2.24 2 - 0
Problem 2.25 4 - 0

All numerical experiments are run in an environment of MATLAB 2010 installed on an

ACER ASPIRE 4730Z laptop with a 2G RAM and a 2.16GB CPU. We use the following

two methods for comparison:

• PMIN - a recursive quadratic programming variable metric algorithm for minimax

optimization

67

• PBUN - a proximal bundle algorithm.

For the parameters of the Algorithm 2.4.2, we set c1 = 0.2, c2 = 0.05, δ = 10−7, h0 = 1, α =

0.5 and ε = 10−7.

For the computation of subgradient of maximal function, we take the subgradient of the

active function. For example, f(x) = max{f1(x), f2(x), · · · , fk(x)}, where x ∈ Rn, if

fi0 , i0 ∈ {1, 2, · · · , k} is actively at x0, i.e.,

fi0(x0) = f(x0) = max{f1(x0), f2(x0), · · · , fk(x0)},

then, an arbitrary g ∈ ∂Tf(x0) is calculated by g = ∇f(x0). This strategy for calculation

of the subgradient is reasonable, since f(x) is actually differentiable almost everywhere and

one subgradient at a differentiable point is the gradient of active function at that point.

First we applied both PMIN and Algorithm 2.4.2 for solving Problems 2.1-2.22 using s-

tarting points from [79]. Results are illustrated in Table 2.2. In this table, we present the value

of the objective function at the final point (f), the number of function evaluation (nf) and

the number of subgradient evaluation (nsub), respectively. These results demonstrate that,

for convex problems (2.1-2.10), both quasisecant method and bundle method successfully

solve them with high accuracy. However, for nonconvex problems (2.11-2.22), quasisecant

method solves Problems 2.11 to 2.19 with high accuracy, but fails to solve Problems 2.20 and

2.21. This is not out of expectation since quasisecant method is still a local search method.

For the number of objective function and subgradient evaluation, bundle method is signifi-

cantly less than these of the quasisecant method, which implies that there is still some space

for improving quasisecant method.

In order to test the stability and statistical properties of the quasisecant method. we run

both methods for 100 times using randomly generated starting points. One execution is

68

Table 2.2.: Results of numercial experiments with given starting points

Problem
Quasisecant method Bundle method

f nf nsub f nf nsub
Problem 2.1 1.95222565 197 112 1.95222 8 8
Problem 2.2 0 222 138 0 8 8
Problem 2.3 0 1420 686 0 180 94
Problem 2.4 3.59971930 5603 3035 3.59972 15 14
Problem 2.5 -43.999999 3276 1911 -44 16 12
Problem 2.6 -43.283783 182 137 -44 21 13
Problem 2.7 0.00420240 427 237 0.00420 9 9
Problem 2.8 0.00808453 602 347 0.00808 12 11
Problem 2.9 54.5981500 115046 71909 54.59815 88 36
Problem 2.10 3.70348258 890 501 3.70348 18 17
Problem 2.11 115.706509 536 296 115.70644 11 11
Problem 2.12 0.00263605 7451 3960 0.00264 113 36
Problem 2.13 0.00201750 2026 956 0.00202 86 35
Problem 2.14 0.00012410 1072 589 0.00012 8 7
Problem 2.15 0.02234064 772 440 0.02234 57 17
Problem 2.16 0.03490492 706 560 0.03490 53 22
Problem 2.17 0.00619108 1001 777 0.00619 107 20
Problem 2.18 680.630057 71029 45149 680.63006 45 20
Problem 2.19 24.3062090 809 665 24.30621 19 14
Problem 2.20 124.825136 766 694 93.90525 30 21
Problem 2.21 0.52975672 360 353 0.00000 20 19
Problem 2.22 0.04802780 1175 911 0.04803 286 68

called a successful execution if the following condition is satisfied:

f ∗ − fopt
1 + |fopt|

≤ ε,

where f ∗ is the approximate optimal value obtained by the execution, fopt is the best-known

optimal value illustrated in Table 3.1, and ε is a tolerance which is set as 10−2. Then, the

successful rate (ns) over 100 simulation is calculated by the following rule:

ns =
number of successful runs

100
× 100%.

The following notation will be used in Table 2.3 and Table 2.4;

69

• fave – average of obtained approximate optimal function value;

• fstd – standard deviation of obtained approximate optimal function value;

• avef – average number of objective function evaluation;

• aveg – average number of subgradient evaluation;

• avet – average number of time consumption.

Table 2.3.: Results of numercial experiments with randomly generated starting points.

Problem
Quasisecant method Bundle method

fave fstd ns fave fstd ns

Problem 2.1 1.952225 0.000001 100% 1.95222 - 100%
Problem 2.2 1.573017 2.667096 74% 0.90750 - 85%
Problem 2.3 0.000000 0.000000 100% 0 - 100%
Problem 2.4 3.599722 0.000003 100% 3.59972 - 100%
Problem 2.5 -43.999995 0.000007 100% -44 - 100%
Problem 2.6 -41.237579 1.920560 100% -28.14011 - 60%
Problem 2.7 0.004202 0.000000 100% 0.03051 - 45%
Problem 2.8 0.028569 0.031030 46% 0.01520 - 10%
Problem 2.9 54.598166 0.000046 100% 54.59815 - 100%
Problem 2.10 3.703483 0.000000 100% 3.70348 - 100%
Problem 2.11 115.706455 0.000016 100% 115.70644 - 100%
Problem 2.12 0.002636 0.000000 100% 0.00264 - 100%
Problem 2.13 0.010519 0.025633 90% 0.02752 - 70%
Problem 2.14 0.544205 0.845076 19% 0.30582 - 15%
Problem 2.15 0.022341 0.000000 100% 0.32527 - 25%
Problem 2.16 0.040736 0.058315 100% 0.00572 - 60%
Problem 2.17 0.013525 0.023933 77% 0.39131 - 10%
Problem 2.18 680.630065 0.000011 100% 680.63006 - 100%
Problem 2.19 24.306209 0.000000 100% 24.30621 - 100%
Problem 2.20 125.763528 2.2081017 0% 93.90525 - 100%
Problem 2.21 0.5297567 0.000000 100% 0.00000 - 100%
Problem 2.22 0.1697883 0.082558 12% 0.22057 - 5%
Problem 2.23 - - - 2 - 100%
Problem 2.24 0.000082 0.000049 100% 0.07607 - 85%
Problem 2.25 4.812801 7.552082 16% 2.30008 - 10%

From Table 2.3, for convex problems, the quasisecant method performs better than the

bundle method on Problems 2.6 and 2.7 in the sense of better accuracy and higher successful

70

rate. For Problems 2.2 and 2.8, the accuracy obtained by the bundle method is better than

that obtained by the quasisecant method, but the successful rate of the quasisecant method on

Problem 2.8 is higher than the bundle method. Both of them share the same performance on

Problems 2.1, 2.3, 2.4, 2.5, 2.9 and 2.10. For nonconvex problems, the quasisecant method

performs better than the bundle method on Problems 2.13-2.17 and 2.22, while worse than

the bundle method on Problems 2.20 and 2.21. The numerical performance on Problem-

s 2.11, 2.12, 2.18 and 2.19 is the same for both methods. For nonconvex and nonregular

problems, the quasisecant method fails to solve the Problem 2.23, but obtained better perfor-

mance on the Problem 2.24. On the Problem 2.25, the quasisecant method performs worse

on accuracy of the solution but better on successful rate.

From Table 2.4, the quasisecant method needs more objective function and subgradient

evaluations than the bundle method for most of the test problems, but there are still some

exceptions, such as Problems 2.7, 2.8, 2.12, 2.16, 2.17 and 2.22. Actually, the time con-

sumption of the quasisecant method is not significantly more than that of the bundle method,

which implies that the quasisecant method is as efficient as the bundle method.

2.6. Conclusion

In this chapter, we altered the quasisecant method and tested its numerical performance

on some academic benchmarks. From the numerical comparison, we can observe that the

quasisecant method, although need more objective function and subgradient evaluation, per-

forms as good as the bundle method. Convex nonsmooth problems can be well solved by the

quasisecant mehtod. However, it needs to be improved in solving nonconvex nonsmooth and

nonconvex nonsmooth nonregular problems.

71

Table 2.4.: Results of numercial experiments with randomly generated starting points.

Problem
Quasisecant method Bundle method

avef aveg avet avef aveg avet
Problem 2.1 1338 679 0.00 10 10 0.00
Problem 2.2 314 207 0.00 22 9 0.00
Problem 2.3 2091 894 0.00 493 251 0.00
Problem 2.4 859 447 0.00 20 16 0.00
Problem 2.5 782 459 0.00 12 11 0.00
Problem 2.6 423 311 0.00 146 56 0.00
Problem 2.7 221 176 0.00 1626 171 0.01
Problem 2.8 972 500 0.00 57891 4843 0.19
Problem 2.9 2886 1773 0.01 66 35 0.00
Problem 2.10 719689 248592 5.29 65 55 0.00
Problem 2.11 649 376 0.00 29 15 0.00
Problem 2.12 1751 929 0.01 26081 1904 0.12
Problem 2.13 2119 1058 0.01 372 173 0.01
Problem 2.14 1533 885 0.01 61 26 0.00
Problem 2.15 1278 733 0.01 51 23 0.00
Problem 2.16 825 647 0.02 4985 445 0.11
Problem 2.17 2740 2127 0.00 60331 4761 1.10
Problem 2.18 828 483 0.00 58 33 0.00
Problem 2.19 1014 665 0.00 18 15 0.00
Problem 2.20 963 805 0.01 35 26 0.00
Problem 2.21 360 353 0.08 160 52 0.03
Problem 2.22 2033 1533 0.01 66280 4974 2.97
Problem 2.23 - - - 32 32 0.00
Problem 2.24 342 172 0.00 22 22 0.00
Problem 2.25 549 370 0.00 37 37 0.00

72

Chapter 3.

A hybrid quasisecant method for

global optimization

3.1. Introduction

In this chapter, we develop a hybrid method for solving the following global optimization

problem: minimize f(x)

subject to x ∈ [a, b]
(3.1)

where the objective function f is locally Lipschitz continuous and

[a, b] = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}.

Over the last three decades hybrid methods have become very popular in global optimiza-

tion. Such methods allows one to take advantages of local and global search methods. Local

search methods are fast and more accurate than global search methods. But local search

methods are easily trapped in stationary points that are even not local minimizers. On the

other hand, global search methods are good at exploring new search areas which have not

73

been visited previously. But global search methods are more time-consuming than local

search methods and it is difficult for global search methods to obtain solutions with high

accuracy. Hybrid methods combine both the local exploitation of local search methods and

global exploration of global search methods. Hybrid methods usually consist of two phases,

local search and global search.

Depending on how to combine local and global search methods, we can classify hybrid

methods into three groups: i) global search methods are applied to improve global search

properties of local search methods [42, 83, 66, 92, 131]; ii)global search methods are ap-

plied to escape from a stationary point computed by the local search methods and to find a

new starting point for local search methods [6, 132]; iii) global search methods are used to

generate a set of starting points for local search methods [75].

One may notice that direct search and derivative-free methods have been more successful

than Newton-type methods for developing hybrid methods of global optimization. Results of

numerical experiments presented, for example, in [6] show that unlike Newton-type methods,

some direct search methods can overcome stationary points which are not local minimizers

and even sometimes shallow local minimizers. Therefore, the use of direct search methods

allows one to reduce the number of stationary points computed by local search methods and

to compute the global minimizer much faster.

Bundle methods are known to be among the most efficient methods in nonsmooth opti-

mization. These methods are based on the use of piecewise linear underestimations of the

objective function. The use of (sub)gradients from some neighborhood of the current itera-

tion point brings some elements of global search in these methods. Therefore, this type of

methods (including also the cutting plane method which were designed mainly for solving

convex problems) are other good candidates to be used as local search methods in hybrid

methods of global optimization.

In this chapter, we design a hybrid global optimization method based on the combination

74

of the quasisecant method and a special procedure for escaping local minimizers. More

specifically, this procedure is applied to generate starting points from the search space and

identify “promising” basins. Then the quasisecant method is applied from points located

in these basins to find a set of local minimizers of the objective function. The best local

minimizer is accepted as a new approximation to a global minimizer and so on. Numerical

results on a number of academic test problems are presented to demonstrate the efficiency

of the proposed algorithm. This algorithm is also compared with other hybrid algorithms for

global optimization using numerical results.

3.2. The hybrid method

In this section, the quasisecant methods for local search as well as for global search are

presented. First, we demonstrate how quasisecants can be used to approximate the objective

function in the whole search space.

3.2.1. Approximations using quasisecants

Assume that v1, . . . , vm,m > 0 are quasisecants of the function f with the length h > 0

computed at a point x ∈ Rn. Then we can consider the following piecewise linear function:

φm(u) = f(x) + max
i=1,...,m

⟨vi, u− x⟩.

It is clear that φ is an over approximation of f , i.e., f(u) ≤ φm(u) where ∥u− x∥ = h (See

Figure 3.1). Consider the following minimization problem:

 minimize f(u)

subject to ∥u− x∥2 = h.
(3.2)

75

Figure 3.1.: φm(u) is some approximation of f(u).

Adding box constraints and solving this problem for each h one can solve the Problem (3.1).

However, solving the Problem (3.2) is not an easy task. Therefore, we replace it by the

following problem minimize φm(u)

subject to ∥u− x∥2 = h.
(3.3)

Problem (3.3) is a good approximation to the Problem (3.2) if h is sufficiently small, however

it is not a good approximation as h increases. However, solving the Problem (3.3) one can

find good starting points for solving the Problem (3.2) and consequently for solving the

Problem (3.1).

By applying the duality theory, the Problem (3.3) can be reduced to the following problem:

minimize 1
2

∥∥∥∥ m∑
i=1

αiv
i

∥∥∥∥2
subject to

m∑
i=1

αi = 1

αi ≥ 0, i = 1, 2, · · ·m.

76

This problem can be solved using quadratic programming algorithms, such as the Wolfe

algorithm [122] which is applied in this chapter.

3.2.2. Quasisecant method for local search

Next we give the description of the quasisecant method for local search.

Algorithm 3.2.1 Quasisecant method for local search

Step 0: Select the tolerance ε > 0, sufficiently small number λmin > 0, numbers c1 ∈

(0, 1), c2 ∈ (0, c1], the starting point x0 ∈ Rn and compute

λmax = max{|x0i − ai|, |x0i − bi| : i = 1, . . . , n}.

Select a number α ∈ (0, 1), the size of the bundle nb and set k := 0.

Step 1: Compute λk = αkλmax. If λk < λmin then stop. Otherwise set z := xk.

Step 2: Select d0 ∈ S1 and set m := 0.

Step 3: Compute ym = z + λkd
m, a subgradient vm ∈ ∂f(ym) and the set

Qm(z) =
{
v0, . . . , vm

}
.

Step 4: Solve the following quadratic programming problem:

minimize
1

2
∥v∥2 subject to v ∈ conv Qm(z). (3.4)

Denote by v̄ the solution to this problem.

Step 5: (Stopping criterion for inner loop) If

∥v̄∥ ≤ ε (3.5)

77

then go to Step 8.

Step 6: Compute the search direction dm+1 = −∥v̄∥−1v̄. If

f(z + λkd
m+1)− f(z) ≤ −c1λk∥v̄∥ (3.6)

then go to Step 7. Otherwise set m := m+ 1. If m > nb then go to Step 8. If m ≤ nb

then go to Step 3.

Step 7: (Line search.) Compute

h̄ = argmax
{
h > 0 : f(z + hdm+1)− f(z) ≤ −c2h∥v̄∥

}
.

Set z := z + h̄dm+1 and go to Step 2.

Step 8: Set xk+1 := z, k := k + 1 and go to Step 1.

Remark 3.2.1 One can see that Algorithm 3.2.1 consists of two loops: outer loop and inner

loop. In the outer loop only the parameter λk is updated (Step 2). The initial value of this

parameter depends on the box constraints. Furthermore, after each outer iteration the point

xk is updated (Step 8). The inner loop consists of Steps 3-7. In this loop one solves the

quadratic programming subproblem to find the search directions and carries out line search

to find a new point. The parameter λk is fixed for all inner loop iterations. The inner loop

has two stopping criteria. It stops if the distance between the polytope of quasisecants and

the origin is less than a given tolerance or the number of calculated quasisecants reach the

maximum number (nb) allowed.

3.2.3. Quasisecant method for global search

The quasisecant method for global search proceeds as follows.

78

Algorithm 3.2.2 Quasi-secant method for global search

Step 0: Select the tolerance ε > 0, the base point x ∈ Rn and compute

λmax = max{|xi − ai|, |xi − bi| : i = 1, . . . , n}.

Select number λmin ∈ (0, λmax) and an integer M > 0, the size of the bundle nb.

Compute β = (λmax − λmin)/M . Set F 0 = ∅, X0 = ∅ and k := 0.

Step 1: Compute λk = λmin + kβ. If λk > λmax then stop.

Step 2: Select d0 ∈ S1 and set m := 0.

Step 3: Compute ym = x+ λkd
m and f(ym).

Step 4: Compute a subgradient vm ∈ ∂f(ym) and the set

Qm(x) =
{
v0, . . . , vm

}
.

Step 5: Solve the following quadratic programming problem:

minimize
1

2
∥v∥2 subject to v ∈ conv Qm(x). (3.7)

Denote by v̄ the solution to this problem.

Step 6: (Stopping criterion for inner loop) If

∥v̄∥ ≤ ε (3.8)

then set X0 = X0
∪
{ym}, F 0 = F 0

∪
{f(ym)}, k := k + 1 and go to Step 1.

Otherwise compute the search direction dm+1 = −∥v̄∥−1v̄. Set m := m + 1. If

79

m > nb then set X0 = X0
∪
{ym}, F 0 = F 0

∪
{f(ym)}, k := k + 1 and go to Step

1, otherwise go to Step 3.

Algorithm 3.2.2 consists of outer and inner loops. In the outer loop the parameter λk is

updated and in the inner loop the bundle is updated adding one subgradient at each iteration

until either the maximum number of subgradients is calculated or the condition (3.5) is met.

Then sets X0 and F 0 are updated by adding the last point generated by the inner loop and

the value of the objective function at this point, respectively. The output of Algorithm 3.2.2

is the sets X0 and F 0.

3.2.4. Hybrid method for global optimization

In order to design a hybrid algorithm for global optimization we need to define the notion

of a basin for local minimizers. In many papers the basin is defined as follows (see [35, 115]):

Definition 3.2.1 A basin of f at an isolated minimizer x is a connected domain B which

contains x and in which starting from any point the steepest descent trajectory of f converges

to x, but outside which the steepest descent trajectory of f does not converge to x.

However, for the purpose of this hybrid algorithm we will use the following definition of

the basin. Let x be an isolated local minimizer of f . For each d ∈ S1 define the following

function: θ(α) = f(x + αd). It is obvious that there exists α0 > 0 such that θ(α) is an

increasing function over the segment [0, α0]. Denote by αmax(d) > 0 such that this function

increasing on the segment [0, αmax(d)] and it is not increasing on the segment [0, α] for any

α > αmax(d).

Definition 3.2.2 A set

D(x) =
∪
d∈S1

D(d),

where D(d) = {y ∈ Rn| y = x+ αd, α ∈ [0, αmax(d)]}, is called the basin of the function

f at the isolated local minimizer x.

80

It is obvious that if the set D is the basin in the sense of Definition 3.2.2 then it is also the

basin in the sense of Definition 3.2.1. The set

B(x) = {y ∈ Rn| ∃ d ∈ S1 such that y = x+ αmax(d)d}

is called the boundary of the basin D(x).

Next we describe an algorithm for solving the problem (3.1) which is the hybrid of local

and global search quasisecant methods.

Algorithm 3.2.3 Hybrid method for global optimization

Step 0: Select the tolerance ε > 0, the starting point x0 ∈ Rn, numbers α ∈ (0, 1), β >

1, c1 ∈ (0, 1], c2 ∈ (0, c1] and the size of bundle nb. Set z1 := x0, xbest = x0, fbest =

f(x0) and k := 1.

Step 1: Apply Algorithm 3.2.1 starting from the point zk using parameters α, c1, c2, nb to

find stationary point xk of the function f over the set [a, b]. If f(xk) < fbest then set

xbest := xk, fbest := f(xk).

Step 2: Apply Algorithm 3.2.2 using the base point x̄ = xk and the parameters β, nb. This

algorithm generates the set X0 = {y1, . . . , yM} of candidate starting points and the

set F 0 = {f(y1), . . . , f(yM)} of the values of the function f at these points. Here M

is the number of steps in the outer loop of Algorithm 3.2.2.

Step 3: Compute

fmin = min
{
f(ym) : ym ∈ X0,m = 1, . . . ,M

}
and

ȳ = argmin
{
f(ym) : ym ∈ X0,m = 1, . . . ,M

}
.

If fmin < fbest then set zk+1 := ȳ, k := k + 1 and go to Step 1. Otherwise go to Step

4.

81

Step 4: Set y0 := xk and find the maximum m = 0, . . . ,M with the property: f(yl) ≥

f(yl−1), l = 1, . . . ,m. Update the set X0 by removing all points y1, . . . , ym and the

set F 0 by removing values f(y1), . . . , f(ym), respectively.

Step 5: Take each point y ∈ X0 as a starting point and apply Algorithm 3.2.1. As a result

a set of stationary points will be generated. Denote by x̄ the point with the lowest

value of the objective function f among these points. If f(x̄) < fbest then set xk+1 =

x̄, xbest = x̄, fbest = f(x̄), k := k + 1 and go to Step 2. Otherwise the algorithm

terminates.

Some explanation on Algorithm 3.2.3 follows. In Step 1 the local search is applied to

minimize the objective function. Since the local search algorithm is a descent method in this

step the value of the objective function will be improved unless the starting point is already a

stationary. This means that if the starting point is not a stationary the new best solution will

be found in this step. In Step 2 the global search algorithm is applied to generate starting

points in the search space. If any of these points provides lower value than the current best

value of the objective function then the point with the lowest value of the objective function

is chosen at Step 3. The local search algorithm is applied starting from this point to minimize

the objective function. Otherwise in Step 4 all points lying in the basin of the last stationary

point are removed from the list of candidate starting points. Then the local search is applied

starting from the rest of points to minimize the objective function. The best stationary point

among new points is accepted as the next iteration to the global solution in Step 5.

3.2.5. Convergence of Algorithm 3.2.3

Next we prove that inner loops in Algorithms 3.2.1 and 3.2.2 are finite convergent. The in-

ner loop in Algorithm 3.2.1 starts at Step 2 and terminates at Step 5. This loop in Algorithms

3.2.2 consists of Step 2 to Step 6.

82

Theorem 3.2.1 Assume that there exists a number G > 0 such that

∥v∥ ≤ G ∀v ∈ ∂f(x) and x ∈ Rn. (3.9)

Inner loops in both Algorithms 3.2.1 and 3.2.2 terminates after finite number of steps and the

maximum possible number of such steps is:

m =

⌈
4

(1− c1)2

(
G

ε

)4
⌉
.

Here ⌈·⌉ is a ceiling of a number.

Proof: Notice that for each inner loop λk is fixed. We will prove this proposition only for

Algorithm 3.2.1. Such proof for Algorithm 3.2.2 is similar. It is obvious that the problem

(3.4) is convex. Since v̄ is the solution to this problem it follows from the necessary and

sufficient condition for a minimum that

⟨v, v̄⟩ ≥ ∥v̄∥2, ∀ v ∈ conv Qm(z). (3.10)

The inner loop in Algorithm 3.2.1 has two stopping criteria: conditions (3.5) and (3.6). We

will prove if the condition (3.6) never happens then the condition (3.5) must happen after

finite number of steps.

At each iteration of the inner loop, except the last iteration, none of conditions (3.5) and

(3.6) satisfies. This means that ∥v̄∥ > ε and

f(z + λkd
m+1)− f(z) > −c1λk∥v̄∥ (3.11)

for dm+1 = −∥v̄∥−1v̄. Then we prove that the subgradient vm+1 computed using the di-

rection dm+1 does not belong to the set conv Qm(z). Since the subgradient vm+1 is also

83

quasisecant at the point z we have

f(z + λkd
m+1)− f(z) ≤ λk⟨vm+1, dm+1⟩.

Then taking into account that dm+1 = −v̄−1v̄ and c1 ∈ (0, 1), from (3.11) we get

⟨vm+1, v̄⟩ < c1∥v̄∥2. (3.12)

This inequality and the inequality (3.10) imply that vm+1 ̸∈ conv Qm(z). This means that at

each iteration of the inner loop the approximation of the subdifferential is improved. Next

we prove the condition (3.6) must be satisfied after finite many iterations. Denote by v̄m the

solution to the problem (3.4) at the m-th iteration of the inner loop. It is clear that for any

t ∈ [0, 1]

∥v̄m+1∥2 ≤ ∥tvm+1 + (1− t)v̄m∥2.

Then

∥v̄m+1∥2 ≤ ∥v̄m∥2 + 2t⟨v̄m, vm+1 − v̄m⟩+ t2∥vm+1 − v̄m∥2.

Applying (3.12) and the condition (3.9) we get

∥v̄m+1∥2 ≤ ∥v̄m∥2 − 2t(1− c1)∥v̄m∥2 + 4t2G2. (3.13)

Select t as follows:

t =
(1− c1)∥v̄m∥2

4G2
.

According to the condition (3.9) t ∈ (0, 1). Putting this t in (3.13) we have

∥v̄m+1∥2 − ∥v̄m∥2 < −(1− c1)2∥v̄m∥4

4G2
. (3.14)

84

Since ∥v̄m∥ > ε it follows from (3.14) that

∥v̄m+1∥2 − ∥v̄m∥2 < −(1− c1)2ε4

4G2
.

This inequality is true for all m = 0, 1, Writing this inequality for l = 0, . . . ,m, sum-

ming up them and taking into account that v̄0 = v0 we get

∥v̄m+1∥2 < ∥v0∥2 − (m+ 1)
(1− c1)2ε4

4G2
. (3.15)

If the inner loop is not finite convergent then by tending m → ∞ from (3.15) we have that

∥v̄m∥ → −∞ which is the contradiction. This proves that the inner loop terminates after

finite number of steps. It is obvious that the largest value m for which ∥v̄m+1∥ ≤ ε is

m =

⌈
4G2(G2 − ε2)
(1− c1)2ε4

⌉
.

Removing ε from this numerator we get the following estimation for m:

m =

⌈
4

(1− c1)2

(
G

ε

)4
⌉
.

Remark 3.2.2 It follows from the proof of Proposition 3.2.1 that the value of the problem

(3.4) decreases sufficiently at each iteration of the inner loop.

Theorem 3.2.2 Assume that the objective function f in Problem (3.1) has finite number

of isolated local minimizers. Furthermore, assume that the global search Algorithm 3.2.2

always finds local minimizers over the given sphere. Then Algorithm 3.2.3 finds the global

solution to Problem (3.1) after finite number of iterations.

Proof: Since by assumption the global search Algorithm 3.2.2 finds local minimizers

over the given sphere at each iteration of Algorithm 3.2.3 the global search algorithm will

85

find new basin never visited so far by Algorithm 3.2.3. This means that at each iteration

Algorithm 3.2.3 finds new basin and then applying local search Algorithm 3.2.1 finds a new

local minimizer. Since the number of local minimizers is finite, Algorithm 3.2.3 will find the

basin of the global minimizer after finite number of steps and this minimizer will reached by

the local search algorithm.

3.3. Results of numerical experiments

The efficiency of the proposed algorithm was verified by applying it to some academic

test problems and problems from applications with nonconvex objective functions. The al-

gorithm was implemented in Fortran 95 using the gfortran compiler. Numerical experiments

were carried out in Intel(R) Core(TM) i5-3470S with CPU 2.90 GHz and RAM 8GB.

Parameters in the proposed algorithm were chosen as follows: c1 = 0.2, c2 = 0.05, ε =

10−7, nb = n + 3, α = 0.1. In the local search λmin = 10−8 and in the global search

λmin = 10−4λmax. We call the proposed algorithm Hybrid Quasisecant Method (HQSM).

3.3.1. Results with academic test problems

In this subsection we present results using 20 academic test problems for global optimiza-

tion. The brief description of test problems are given in Table 3.1.

We compare the proposed algorithm with the simulated annealing (SA) [76] and the hybrid

algorithm SAHPS from [42] using results of numerical experiments. Each algorithm is run

Nr = 100 times.

The following notation is used in tables of this subsection:

• n - number of variables;

• fopt - optimal value;

• SR - success rate of an algorithm;

86

• fav - average objective function value over Nr runs of algorithms;

• σf - standard deviation of the objective function value over Nr runs of algorithms;

• nfav - average number of objective function evaluations over Nr runs of algorithms;

• σnf - standard deviation of the number of objective function evaluations over Nr runs

of algorithms.

We say that an algorithm terminates successfully if

f̄ − fopt ≤ ε(|fopt|+ 1),

where f̄ is the best objective function value obtained by an algorithm. In our experiments

ε = 0.01. The success rate SR is computed as follows:

SR =
Sr

Nr

× 100%,

where Sr stands for the number of successful runs.

Table 3.1.: Description of test problems

Problem n fopt Problem n fopt
Ackley 2, 5, 10 0 2 −2
Camel 2 −0.0316 Trid 5 −30
Griewank 2, 5, 10 0 10 −210
Rastrigin 2, 5, 10 0 Zakharov 2, 5, 10 0

Rosenbrock 2, 5, 10 0 Beale 2 0

Schwefel 2, 5, 10 0 Bohachvsky1 2 0

Dixon 2, 5, 10 0 Bohachvsky2 2 0

Levy 2, 5, 10 0 Bohachvsky3 2 0

2 −1.8013 Branin 2 0.397887
Michalewicz 5 −4.687658 Colville 4 0

10 −9.66015 Matyas 2 0

Perm 2, 3 0 Shubert 2 −186.7309

87

Results for success rates of algorithms are given in Table 3.2. These results demonstrate

that the proposed algorithm can successfully find global solution for most of test problems.

Exceptions are Griewank test problem with n = 5, Schwefel test problem with n = 5, 10,

Dixon test problem with n = 10 and Michalewicz test problem with n = 5, 10. Comparison

with other two algorithms show that the proposed algorithm outperforms the SA in all cases

and SAHPS algorithm also in all cases except Dixon test problem with n = 10. These results

also demonstrate that the SAHPS algorithm outperforms the SA in all test problems except

Rastrigin problem with n = 5, 10 and Levy problem with n = 10. The proposed algorithm

performs better than other algorithms as the size of problems increase.

Table 3.2.: Success rates by different algorithms (in %)

Problem n SA SAHPS HQSM Problem n SA SAHPS HQSM

Ackley
2 3 95 100

Michalewicz
2 28 96 100

5 1 27 100 5 0 0 24
10 1 9 100 10 0 0 0

Camel 2 0 0 100
Perm

2 99 100 100

Griewank
2 0 2 80 3 1 42 89
5 0 0 42

Trid
2 95 100 100

10 0 0 100 5 3 100 100

Rastrigin
2 9 100 100 10 0 100 100
5 10 6 100

Zakharov
2 74 100 100

10 9 2 100 5 34 100 100

Rosenbrock
2 4 100 100 10 12 100 100
5 1 81 100 Beale 2 95 93 100
10 1 85 100 Bohachvsky1 2 0 76 100

Schwefel
2 0 20 75 Bohachvsky2 2 1 79 100
5 1 3 18 Bohachvsky3 2 1 91 100
10 0 0 3 Branin 2 37 100 100

Dixon
2 58 100 100 Colville 4 24 96 100
5 9 56 78 Matyas 2 40 100 100
10 9 36 2 Shubert 2 7 73 100

Levy
2 26 98 95
5 18 42 87
10 10 2 86

Table 3.3 presents the average and standard deviation of best function values obtained by

88

algorithms in each run. From the table, we can apparently observe that the HQSM outper-

forms the SA and SAHPS. For those problems where the successful rate is 100%, the average

objective function value coincides with the optimal values and the standard deviation of ob-

jective function value is small, which implies that the HQSM is robust method. For Griewank

problem with n = 2, 5, Dixon and Michalewicz problems with n = 5, 10, Levy problem

with n = 2, 5, 10 and Perm problem with n = 3 the average objective function is quite close

to the optimal value and standard deviation is not large for these problems. This means that

the proposed algorithm can find one of the lowest local minimizers where the value of the

objective function is close to the optimal value, however the algorithm cannot escape from

such minimizers. The proposed algorithm fails to find good solutions for Schwefel problem

with n = 5, 10 where the average objective function value is significantly larger than the

optimal objective function value and standard deviations are large. These results also demon-

strate that the SA is not very efficient in finding global solutions to these problems since in

most cases standard deviations are significantly away from 0 and the SAHPS algorithm is

not always robust.

The average number of function evaluations and their standard deviations are given in

Table 3.4. Comparing the HQSM with the SA one can see that in most of test problems

the former algorithm requires less number of function evaluations than the latter algorithm,

except Griewank problem with n = 2, 5, 10 and Schwefel, Dixon, Michalewicz problems

with n = 5, 10, Levy problem with n = 10. However, one should also take into account that

the success rate of the HQSM is much higher than that of the SA in all these problems. The

only exception is Dixon problem with n = 10. The comparison of the SAHPS and HQSM

algorithms shows that the HQSM requires larger number of function evaluations than the

SAHPS for most test problems, except Camel and Dixon problems with n = 2, Michalewicz

problem with n = 2, Trid, Zakharov and Matyas problems. Results for success rate and

the number of function evaluations show that there is some tradeoff between the number of

89

function evaluations and success rate of algorithms. Despite the fact that the HQSM requires

more computational effort than the SAHPS the former is more successful in finding global

solutions.

In order to demonstrate the impact of the number M of solved quadratic programming

subproblems to find better basins on the performance of the HQSM algorithm we choose

two test problems with large number of local solutions: Shubert and Schwefel test problems.

Results are presented in Tables 3.5 and 3.6. In these for each value of M we include the

success rate, the average number of function and subgradient evaluations and the average

CPU time. Graphs of Shubert and Schwefel functions are illustrated in Figures 3.2 and 3.3,

respectively.

From Table 3.5, we can obviously observe that when value of M increases, the success

rate increases too, which is reasonable according to the design of the HQSM. However, the

number of function and subgradient evaluations and CPU time increase as the number M

increases which is expected as the number of solved quadratic programming subproblems

increase. However, it is easy to see that all these numbers increase linearly depending on M .

Results for Schwefel test problem are different from those for Shubert problem. One can

see from Table 3.6 that for n = 2 the increase of M improves success rate of the algorithm,

however for m = 5 and 10 this is not the case. The increase of the M does not lead to any

improvement in the performance of the algorithm. This is due to the fact that the proposed

model does not always provide good approximation to the objective function. Again we can

see that the number of function and subgradient evaluations and CPU time increases linearly

depending on M .

3.4. Conclusions

In this chapter a new hybrid method is introduced to solve global optimization problems

with box-constraints. An important step in this method is the algorithm to generate starting

90

Figure 3.2.: Graph of Shubert function.

Figure 3.3.: Graph of Schwefel function with 2 variables

91

points for local search. The main idea is to minimize the objective function over spheres

with different radii. In order to do it we replace the objective function by its piecewise linear

approximations using quasisecants. The minimization of the piecewise linear functions over

sphere with given radius is reduced to a certain quadratic programming problem which can

be solved using existing techniques. The quasisecant method of nonsmooth optimization

is applied starting from those points to locally minimize the objective function subject to

box-constraints. The best solution found is accepted as an approximate global solution. It

is proved that the proposed method converges to the global minimizer if the objective func-

tion has finite number of local minimizers. Numerical results using 20 global optimization

academic test problems and molecular conformation problem demonstrate that the proposed

method is efficient for solving wide range of global optimization problems. Comparison of

the proposed method with the simulated annealing and one hybrid method of global opti-

mization shows that the proposed method outperforms other two methods.

92

Table 3.3.: Average function values and standard deviations

Problem n
SA SAHPS HQSM

fav σf fav σf fav σf

Ackley
2 16.0672 5.0856 0.1801 0.8381 0.0000 0.0000
5 16.7302 4.2031 7.4112 6.8959 0.0000 0.0000
10 16.5019 4.0660 14.6924 5.5004 0.0000 0.0000

Camel 2 39.1564 130.9001 0.0000 0.0000 -1.0316 0.0000

Griewank
2 57.6895 54.2706 1.1158 2.8769 0.0123 0.0123
5 187.5046 141.9986 2.1006 1.4176 0.0176 0.0148
10 326.4451 281.3132 1.3392 1.1203 0.0000 0.0000

Rastrigin
2 20.1179 17.1816 0.0000 0.0000 0.0000 0.0000
5 47.0612 41.0121 11.3524 7.9597 0.0000 0.0000
10 88.1926 71.4284 37.8182 15.7585 0.0000 0.0000

Rosenbrock
2 29.3877 94.7172 0.0000 0.0000 0.0000 0.0000
5 37269.7502 122892 0.6324 1.4470 0.0000 0.0000
10 564330 1046976 0.7574 1.5718 0.0000 0.0000

Schwefel
2 816.9584 432.0649 161.7460 119.5814 36.7159 68.7832
5 2141.6841 982.1579 594.1933 224.6391 245.1676 161.3249
10 3770.5268 2073.3792 1485.7170 349.9941 631.1999 255.6704

Dixon
2 53.0085 168.9965 0.0000 0.0000 0.0000 0.0000
5 25163.1046 41661 0.2868 0.3315 0.1466 0.2775
10 183710 266653 0.4266 0.3216 0.6533 0.0938

Levy
2 4.4282 6.5635 0.0690 0.4862 0.0580 0.2541
5 9.4886 11.2778 1.3248 1.7457 0.1546 0.5464
10 25.9554 24.9287 6.5857 4.4839 0.2717 0.8305

Michalewicz
2 -1.0458 0.6635 -1.7736 0.1406 -1.8013 0.0000
5 -0.8859 0.7185 -1.7542 0.1600 -4.4236 0.2680
10 -0.7319 0.5851 -1.7206 0.2114 -8.3856 0.6143

Perm
2 0.0002 0.0023 0.0000 0.0000 0.0000 0.0000
3 66.5102 184.5437 0.0072 0.0049 0.0020 0.0038

Trid
2 -1.9847 0.0715 -1.9999 0.0000 -2.0000 0.0000
5 146.5503 207.6424 -29.9999 0.0000 -30.0000 0.0000
10 3254.4697 3126.3721 -209.9999 0.0000 -209.9999 0.0000

Zakharov
2 50.2058 154.7960 0.0000 0.0000 0.0000 0.0000
5 1199630 2147537 0.0000 0.0000 0.0000 0.0000
10 469841326 747566805 0.0000 0.0000 0.0000 0.0000

Beale 2 0.0159 0.0899 0.0533 0.1954 0.0000 0.0000
Bohachevsky1 2 7928.8528 8181.2766 0.1113 0.2089 0.0000 0.0000
Bohachevsky2 2 8365.6463 7836.6911 0.0458 0.0893 0.0000 0.0000
Bohachevsky3 2 7993.9742 8120.3851 0.0203 0.0650 0.0000 0.0000
Brain 2 2.5801 2.9185 0.3978 0.0000 0.3978 0.0000
Colville 4 41344.1868 98024 0.1351 0.6954 0.0000 0.0000
Matyas 2 0.2979 0.3783 0.0000 0.0000 0.0000 0.0000
Shubert 2 -41.0453 53.4556 -166.6263 35.5949 -186.7309 0.0000

93

Table 3.4.: The number of function evaluations and standard deviations

Problem n
SA SAHPS HQSM

nfav σnf nfav σnf nfav σnf

Ackley
2 7863 689 305 62 4741 1538
5 7319 599 638 180 5453 1035
10 6209 1159 1137 382 6435 1276

Camel 2 4755 1109 216 27 199 47

Griewank
2 3907 388 260 39 29336 4806
5 2767 413 512 66 53701 4158
10 2560 87 1002 0 19084 5673

Rastrigin
2 9737 805 297 45 670 226
5 10156 814 584 147 1087 714
10 10658 1101 1066 262 1558 961

Rosenbrock
2 11353 3967 237 50 744 37
5 6295 4590 502 5 1670 140
10 5203 3703 1004 29 2329 423

Schwefel
2 2900 369 304 54 3840 704
5 2868 152 582 146 19251 3943
10 2852 119 1060 245 11254 2140

Dixon
2 4834 1423 221 37 182 22
5 3749 1218 502 6 6541 400
10 3724 1459 1002 0 11301 1537

Levy
2 5708 1660 256 46 2515 1447
5 5577 1802 520 62 4441 2520
10 4740 1979 1008 44 11440 6165

Michalewics
2 4451 2594 290 65 205 62
5 1885 237 584 169 3202 961
10 1704 72 1014 94 28756 7753

Perm
2 7161 2216 211 22 218 22
3 7539 4329 302 4 1546 587

Trid
2 4288 771 203 3 137 16
5 2961 226 502 0 260 22
10 2830 48 1002 0 433 62

Zakharov
2 4673 1100 219 34 130 16
5 4021 1284 502 3 191 32
10 3813 1791 1002 0 306 32

Beale 2 5462 1044 238 43 655 140
Bohachevsky1 2 3415 1173 220 18 1517 70
Bohachevsky2 2 3282 790 227 29 2914 65
Bohachevsky3 2 3482 1140 228 32 2974 107
Brain 2 3908 750 260 43 279 30
Colville 4 5328 3546 405 15 961 90
Matyas 2 2944 455 239 41 159 40
Shubert 2 10253 1218 312 48 10415 802

94

Table 3.5.: Results of Shubert problem with different value of M .

n M SR nfav ngav tav

2

10 42 363 266 0.002
50 78 1484 1117 0.007
100 89 2311 1819 0.010
200 96 5084 3902 0.024
300 99 6785 5326 0.031
500 100 10415 8397 0.051

Table 3.6.: Results of Schwefel problem with different values of M .

n M SR nfav ngav tav

2

10 19 428 276 0.002
50 67 1544 1074 0.007
100 76 2496 1813 0.012
200 75 3840 3027 0.022

5

10 3 600 449 0.008
50 13 2822 2203 0.053
100 8 5260 4251 0.104
200 22 9041 7754 0.249

10

10 0 626 488 0.004
50 1 3298 2650 0.056
100 4 6308 5293 0.185
200 3 11254 9775 0.417

95

Chapter 4.

A hybrid method for constrained

global optimization

4.1. Introduction

In the previous chapter, we discussed the global optimization problems with box con-

straints. However, most global optimization problems appearing in the practical and engi-

neering applications are with constraints. For example, a company intends to maximize its

profit, but the resources and investment are limited; a restaurant wants to minimize its cost,

but the customers’ requirements have to be satisfied, and so on. The optimization prob-

lems which model these problems are called constrained optimization problems. A general

formulation of constrained optimization problems is as follows:

Minimize f(x)

Subject to gi(x) ≤ 0, i = 1, 2, · · · , l

hj(x) = 0 j = 1, 2, · · · ,m

x ∈ X,

(4.1)

96

where f : Rn → R is the objective function, gi : Rn → R, i = 1, 2, · · · , l are inequality

constraint functions, hj : Rn → R, j = 1, 2, · · · ,m are equality constraint functions, and

X = {x = (x1, x2, · · · , xn)| li ≤ xi ≤ ui i = 1, 2, · · · , n}

is a box set, l = (l1, l2, · · · , ln)T and u = (u1, u2, · · · , un)T are the lower bound and upper

bound, respectively.

Definition 4.1.1 The search space of the Problem (4.1) is defined as

S = {x ∈ Rn|x ∈ X}.

Furthermore, the feasible search space is defined as

F = {x ∈ S|gi(x) ≤ 0, i = 1, 2, · · · , l hj(x) = 0, j = 1, 2, · · · ,m}.

Any point x ∈ F is called a feasible point.

Definition 4.1.2 A point x∗ ∈ Rn is called a local minimizer of the Problem (4.1), if

i) x∗ is a feasible point, i.e., x ∈ F ,

ii) there exist a feasible ε−neighborhood of x∗, say B = B(x∗, ε)
∩
F , such that, for any

x ∈ B, we have

f(x∗) ≤ f(x).

The objective function value f ∗ = f(x∗) is called a local minimum of the Problem (4.1).

Definition 4.1.3 A point x∗ ∈ Rn is called a global minimizer of the Problem (4.1), if

i) x∗ is a feasible point, i.e., x ∈ F ,

97

ii) for any x ∈ F , we have

f(x∗) ≤ f(x).

The objective function value f ∗ = f(x∗) is called the global minimum of the Problem (4.1).

Obviously, the local/global minimizer of a constrained optimization problem may be d-

ifferent from the same problem without constraints, because the local/global minimizer for

the problem without constraints may be excluded by the constraints in the problem with

constraints.

Methods for solving constrained optimization problems include auxiliary function meth-

ods and direct methods. Auxiliary function methods (which are still called indirect methods)

transform constrained optimization problems into unconstrained or box-constrained opti-

mization problems by applying auxiliary functions. Two typical auxiliary functions are the

penalty function and barrier function method. The core idea of penalty function method is

to replace the inequality and equality constraints by appending the violations of constraints

into the objective function. In other words, the auxiliary function is constructed by adding a

scalar of the violation of constraints to the objective function. Then, the original constrained

optimization problem is solved by minimizing the auxiliary function over a box constraints.

The numerical performance of the penalty function method closely depends on the penalty

parameter. However, choosing a suitable parameter is a difficult issue for the penalty function

method. On the one hand, a small penalty parameter makes the auxiliary function easy to be

minimized but cannot exclude all the infeasible points. On the other hand, a large penalty

parameter makes the global minimizer of the auxiliary function to be closer to the real global

minimizer of the original constrained optimization problem, but it may cause the so-called

ill-conditioning of the auxiliary function.

Similar to the penalty functions, the barrier functions are also used to transform a con-

strained problem into an unconstrained problem or a sequence of unconstrained problems.

These functions set a barrier against leaving the feasible region. If the optimal solution oc-

98

curs at the boundary of the feasible region, the procedure moves from the interior to the

boundary. The barrier function method can only apply for the optimization problems with

inequality constraints and box constraints. The barrier function is nonnegative and continu-

ous over the region {x ∈ Rn|gi(x) < 0, i = 1, 2, · · · , l} and approaches∞ as the boundary

of the region {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, · · · , l} is approached from the interior.

One drawback of the barrier function method is that the search process has to be started

from the inside of the feasible search space. But for some constrained optimization problems,

finding a feasible point is a not an easy task.

Genetic and evolutionary algorithms are among direct methods for constrained global op-

timization. There are two approaches to handle the constraints when one applies metaheuris-

tics to solve constrained optimization problems:, i) absolutely exclude infeasible points,

which is still called the death penalty method, ii) methods based on the multi-objective op-

timization concepts. The first approach is simple and easy to implement, but without good

efficiency, because for some constrained optimization problems, it is very difficult to obtain

a feasible point, let alone to exclude it. The second approach transforms a constrained op-

timization problem into a multi-objective optimization problem with two objectives. One is

the original objective function, the another one is the feasibility violation function. In this

way, solving the original constrained optimization problem is equivalent to search a special

Pareto solution (the first objective value of this solution is the optimal value of the original

constrained optimization problem, the second objective value is the feasibility violation at

this solution which is less or equal to zero) of the multi-objective optimization problem.

In this chapter, we design a hybrid method for constrained global optimization. This

method combines the genetic algorithm and Hooke Jeeves method. The constraints are han-

dled by the penalty function method. We investigate two penalty functions: the quadratic

penalty function and exact penalty function. A hybrid method is developed to solve the

auxiliary functions constructed using penalty functions.

99

4.2. Constraints handling technique by penalty

function method

The penalty function method transforms a constrained optimization problem into a se-

quence of unconstrained optimization problems. The constraints are appended to the objec-

tive function via a penalty parameter and a penalty function. In general, a penalty function

admits a positive penalty for infeasible points and no penalty for feasible points. Taking the

Problem (4.1) for example, for the inequality constraints gi(x) ≤ 0, i = 1, . . . , l and equality

constraints hj(x) = 0, j = 1, . . . ,m, a feasible penalty function is in the form of

α(x) =
l∑

i=1

ϕ[gi(x)] +
m∑
j=1

ψ[hj(x)], (4.2)

where ϕ and ψ are continuous functions satisfying the following conditions,

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0;

ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

More specifically, ϕ and ψ are of the form

ϕ(y) = [max{0, y}]p,

ψ(y) = |y|p,

where p is a positive integer. For such case, the penalty function α can be written as

αp(x) =
m∑
i=1

[max{0, gi(x)}]p +
l∑

j=1

|hj(x)|p. (4.3)

100

Let g = (g1, g2, . . . , gl)
T and h = (h1, h2, . . . , hm)

T be vector functions on Rn andX = [l, u]

be a box set. Then, the Problem (4.1) can be rewritten in a vector form which is considered

as the primal problem,

Minimize f(x)

Subject to g(x) ≤ 0

h(x) = 0

x ∈ X.

(4.4)

Using the the penalty function supplied in (4.2), a Penalty Problem corresponding to (4.4)

can be stated as Maximize θ(µ)

Subject to µ ≥ 0,

where θ(µ) = inf{f(x) + µα(x)| x ∈ X} and µ is the penalty parameter. An important

relationship between the primal problem and penalty problem is [9]

inf{f(x)| x ∈ X, g(x) ≤ 0, h(x) = 0} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ).

From this relationship, it is clear that we can get arbitrarily close to the optimal objective

function value of the primal problem by solving θ(µ) for a sufficiently large µ.

Set p = 2 in (4.3), we obtain a quadratic penalty function

α2(x) =
m∑
i=1

[max{0, gi(x)}]2 +
l∑

j=1

|hj(x)|2,

and the corresponding auxiliary problem is

(Model 1):

 Minimize f(x) + µα2(x)

Subject to x ∈ X.
(4.5)

For each penalty parameter µk, let x∗k be an optimal solution of (4.5). Then, x∗k can be

101

considered as an approximate solution of the primal problem. From the relationship between

the primal problem and the penalty problem, we know that x∗k → x∗ when µk → ∞, where

x∗ is a solution of the primal problem. Thus, the better approximation the solution can

achieve, the larger penalty parameter µk is required. However, a large parameter µk makes

(4.5) encounter the so-called ill-condition which may cause serious computational difficulties

[9].

From the numerical point of view, initial point plays a key role in solving the Problem

(4.5), especially when the penalty parameter µ is large. Most algorithms use the penalty

functions with a sequence of increasing penalty parameters. During the penalty parameter

updating, the approximate optimal solution of the Problem (4.5) with the old parameter is

taken as an initial point for solving the Problem (4.5) with the new parameter.

To avoid the penalty parameter µ to be arbitrary large, exact penalty function method was

developed. In (4.3), let p = 1, then

α1(x) =
m∑
i=1

[max{0, gi(x)}] +
l∑

j=1

|hj(x)|

and the corresponding auxiliary problem is

(Model 2):

 Minimize f(x) + µα1(x)

Subject to x ∈ X.
. (4.6)

It can be proved that under certain regular assumptions, when µ exceeds a threshold, the

solution of the auxiliary problem (4.6) is exactly as the solution of the primal problem [133].

The advantage of the exact penalty function is that the penalty parameter does not need to be

infinite. However, the Problem (4.6) is nonsmooth because of the existence of maximum and

absolute functions. Thus, the gradient-based methods may not be fit for solving the Problem

(4.6).

102

4.3. A hybrid method for constrained optimization

In this section, we develop a new hybrid method for solving the Problem (4.5) and (4.6).

This method combines the genetic algorithm [26, 38, 39, 121] and Hooke Jeeves method

[44]. An acceleration operator is embedded into the general procedure of genetic algorithm.

This acceleration operator is based upon the the Hooke Jeeves method. In each generation

of the genetic algorithm, the acceleration operator choose some individuals as the starting

points for local search. The acceleration operator can improve the convergence rate and

accuracy of the genetic algorithm. Because the genetic algorithm and Hooke Jeeves method

are both derivative-free methods, the hybrid method is derivative-free. This property of the

hybrid method can overcome the computational difficulty caused by large penalty parameter

of the Problem (4.5) and nonsmoothness of the Problem (4.5).

4.3.1. The genetic algorithm

The main idea of the genetic algorithm is based upon the biologically natural selection and

genetic mechanism. The earliest structure of genetic algorithm was provided by Glodberg

[37]. It first randomly generates a series of solutions which is called the initial popula-

tion, and one single individual from the population is called a chromosome. The number of

chromosomes in a population is defined as the population size. In numerical computation,

Chromosomes are expressed as binary code, Gray code or real-number code. Those chro-

mosomes generate their offspring in two different ways: crossover and mutation. Crossover

randomly exchanges some genes (which constitute chromosomes) between two selected in-

dividuals. Mutation changes some randomly selected genes of an individual in a certain way.

Then a selection pool is constructed by putting the offspring generated from crossover and

mutation and the next population is selected from the selection pool. The criterion for se-

lecting the next generation is the performance of each chromosome according to a fitness

103

function which is normally the objection function. These chromosomes whose fitness value

are smaller are kept and whose fitness are larger are eliminated. In this way, as the generation

iteration goes on, the algorithm will converge to the best chromosome, which probably is the

optimal solution or suboptimal solution of the original optimization problem. In practical

computation, we set beforehand a maximal generation time, this maximal generation time

plays a role of stopping criterion.

Suppose that P (t) and O(t) represent parents and offsprings of the tth generation, respec-

tively. Then, the general structure of genetic algorithm can be described in the following

pseudo code.

General Structure of Genetic Algorithm

1 Initialization

1.1 Generate the initial population P (0),

1.2 Set crossover rate, mutation rate and maximal generation time,

1.3 Let t← 0.

2 While the maximal generation time is not reached, do

2.1 Crossover operator: generate Oc(t),

2.2 Mutation operator: generate Om(t),

2.3 Construct the selection pool by doing O(t) = Oc(t) ∪Om(t),

2.3 EvaluateO(t): compute the value of fitness function for each offspring,

2.4 Selection operator: select the next generation,

2.5 t← t+ 1, go to 2.1

end

end

104

From the pseudo code, we can see that there are three important operators in a general

genetic algorithm: crossover operator, mutation operator and selection operator. Usually

different encodings leads to different implementations of operators. In this method, we use

the arithmetic crossover operator, nonuniform mutation operator. There are briefly described

as follows.

Initial population generator

Note thatX = [l, u] is the box constraint in the Problem (4.4), where l, u ∈ Rn are vectors.

During the implementation of genetic algorithm, the initial population is randomly generated

from X , and the number of chromosomes in the initial population equals population size.

The process for generating initial population is illustrated as follows.

Step 1: Input population size: popu size, upper bound u and lower bound l, respectively.

Set k = 1.

Step 2: if k ≤ popu size, then generate the kth initial chromosome by

xi = li + αi(ui − li), i = 1, 2, . . . , n,

where αi, i = 1, 2, . . . , n are randomly chosen number in [0, 1].

Step 3: Set k = k + 1 and go back to Step2.

Arithmetic crossover operator

For the crossover operator, we use arithmetic crossover. Suppose that x1 and x2 are two

chromosomes randomly selected to crossover, then the following rule is used to generate

their offsprings

x′1 = βx1 + (1− β)x2

x′2 = βx2 + (1− β)x1,
(4.7)

105

where β ∈ [0, 1] is a random number. The process of arithmetic crossover operator is given

as follows.

Step 1: Input crossover rate: cross rate, and population size: popu size. Let counter

k = 1.

Step 2: When k ≤ popu size, generate a number α ∈ [0, 1], if α ≤ cross rate, then the

kth chromosome is marked as a candidate to crossover; otherwise, set k = k + 1 and

go back to Step 2

Step 3: Sequently choose two chromosomes which were marked as candidates for crossover,

and crossover them using the strategy (4.7). The chromosomes obtained are stored as

offspring.

Chromosomes generated by arithmetic crossover are actually convex combinations of x1

and x2. This crossover operator, on the one hand, sufficiently searches the local area, on the

other hand, guarantees some global exploration. Additionally, this strategy is simple, direct

and easy to implement. The drawback of this crossover is that only those points between x1

and x2 are considered, which reduces search area of crossover operator. To overcome it, we

enlarge the random number β from [0, 1] to [−1, 1].

Nonuniform mutation operator

Nonuniform mutation is applied in mutation operator. For a given parent x, if its compo-

nent xk (here, subscript represents the kth element of vector x) was chosen to mutate, then

the offspring should be

x′ = (x1, . . . , x
′
k, . . . , xn).

106

Here, x′k is randomly chosen from the following two options

xk?xk + d(t, xUk − xk) if γ ≤ 0.5

or

x′k = xk + d(t, xk − xLk) if γ > 0.5,

(4.8)

where γ ∈ [0, 1] is a randomly chosen number, xUk and xLk are upper bound and lower

bound of xk, respectively. The function d(t, y) is chosen to satisfy: d(t, y) ∈ [0, y] and

limt→∞ d(t, y) = 0. For example,

d(t, y) = yr(1− t

T
)b,

where r is a random number between 0 and 1, T is the maximal generation time, and b

is the parameter for nonuniform degree which is set to be 1 in our numerical tests. The

function d(t, y) allows a large mutation of the selected chromosome at the earlier generations

but a slight mutation when iteration achieves the maximum generation time. This trend is

reasonable since at the early generations global exploration is emphasized and at the later

generations local exploitation is emphasized. The process of nonuniform mutation operator

is described as follows.

Step 1: Input the mutation rate: mutate rate, population size: popu size, dimension of

the problem: n, upper bound u, lower bound l and the maximal generation time: T =

max gene. Set counter i = 1 for chromosomes, set counter k = 1 for elements of

each chromosome.

Step 2: For the ith chromosome (denoted as x), when k ≤ n, generate a number α ∈ [0, 1],

if α ≤ mutate rate, then the element xk mutates according to the strategies provided

in (4.8); otherwise, set k = k + 1 and go back to Step 2.

Step 3 If i < popu size, then, let i = i + 1 and k = 1, go back to Step 2; otherwise, stop

107

Figure 4.1.: The first two phases of Hooke-Jeeves method.

the loop.

4.3.2. Acceleration operator

The acceleration operator is based on the Hooke-Jeeves method which is a derivative-free

method. The Hooke-Jeeves method includes two types of search: exploratory search and

pattern search. The first two iterations of the procedure are illustrated in Figure 4.1. Given

x1, an initial exploratory search along the coordinate directions produces a point x2 (set as

y). A pattern search along direction x2 − x1 leads to a point x′1. Another exploratory search

from x′1 gives a point x′2 (set as y′). The next pattern search is conducted along the direction

y′ − y, yielding x′′1. The process is then repeated. An acceleration operator based on the

Hooke-Jeeves method is illustrated as follows.

Step 1: Input the starting point x0, an initial step length t0 and a tolerance parameter ϵ.

Step 2: Do initial exploratory search: starting from x1(= x0), run line search along the

coordinate axes with the initial step length t0, set the point obtained as xn and the

direction d = xn − x1. Let y = xn.

Step 3: Do pattern search: starting from y, run a line search along the direction d with an

initial step size t0, set the obtained point as x1.

108

Step 4: Exploratory search: starting from x1, using initial step length t0, run a line search

along the coordinate axes. Set point obtained as xn and denote the direction d = xn−y.

let y = xn.

Step 5: If |f(y)− f(xn)| < ϵ, then stop; otherwise, go back to Step 3.

Line search plays an extraordinarily important role in the Hooke-Jeeves method. It is

required both in pattern search and exploratory search. In general, an optimal line search

is applied in the Hooke-Jeeves method, but this may cause some technical issues for prob-

lems whose derivative is time consuming or impossible to achieve. Furthermore, optimal

line search is time consuming itself and not global convergence. So in our simulations, we

use discrete step length to simplify the computational process and avoid the computation of

derivative. More precisely, a double step size strategy is introduced instead of optimal line

search. This method starts from a small given step size, if the current step size decrease ob-

jective function value along the considered direction, we accept it and further test its double;

otherwise, we stop line search and take the last accepted step size as a solution.

The initial step size at each generation is chosen according to the following rule:

t0 = α min
xi,xj∈P

∥ xi − xj ∥,

where α ∈ [0, 1] is a parameter and P is the current generation. Clearly, the choice of

initial step size is self-adaptive in this strategy. At the early stage, the diversity of population

is large. So the step sizes should be bigger to guarantee enough decrease of the objective

function value. At the latter stage, the population gradually converges to an approximate

solution, the decrease of objective function becomes tiny vibration of individuals, which

needs the step size to be smaller.

109

4.3.3. Algorithm: GAHJ

By Embedding the acceleration operator to the general process of genetic algorithm, we

have an accelerated genetic algorithm. We call it GAHJ in abbreviation. The acceleration

operator can generates some outstanding points in the each generation. However, if the

acceleration operator is frequently called during the iterations, the process becomes time

consuming and a lot of calculations are actually needless although it can provide more better

chromosomes to the next generation. Thus, the acceleration operator should be applied as

less as possible. In GAHJ, we run acceleration operator when the current generation decreas-

es the objective function value, i.e., the best point of the current generation is smaller than

the current best point.

For the selection operator, we keep the better chromosomes to the next generation so as to

guarantee the local exploitation. On the other hand, it is still very important to maintain the

diversity of the next generation which guarantees the global exploration. Therefore, Instead

of keeping all the better points in the next generation or randomly choosing points to the

next generation, we build it by half choosing from the best chromosomes and half choosing

randomly. In the following, we present the pesudocode of the GAHJ method in which P (t)

and O(t) stand for parents and offspring in the tth generation, respectively.

Algorithm: GAHJ

1 Initialization

1.1 Generate the initial population P (0),

1.2 Set crossover rate, mutation rate, and maximal generation number,

1.3 Set t← 0.

2 While generation counter have not reach the maximal generation number , do

2.1 Arithmetic crossover operator: generate Oc(t),

110

2.2 Nonuniform mutation operator: generate Om(t),

2.3 Construct the selection pool by O(t) = Oc(t)∪Om(t) and the offspring: compute

their value of fitness function,

2.4 Selection operator: build the next generation by choosing half population size of

best chromosomes and half population size of random chromosomes from O(t),

respectively.

2.5 Acceleration operator: update the best point so far, if the best objective function

value decreases, then acceleration operator is activated with the updated best

point as s starting point.

2.6 Set t← t+ 1, go to 2.1

end

end

4.3.4. Parameters

The choice of parameters is important to numerical performance of the genetic algorithm

[23], which is the same in GAHJ. For GAHJ, because of the acceleration operator, generation

time and population size can be dramatically reduced. Especially for a convex optimization

problem, if acceleration operator is activated at a proper starting point, the optimal solution

can be obtained in just a few generations. In our simulations, the parameters of GAHJ are

various for different experimental tests. Empirically, if the dimension of the problem is n,

then, the population size is 2n ∼ 5n, maximal generation number is 20n ∼ 50n. Crossover

rate and mutation rate are 0.4 ∼ 0.5 and 0.1 ∼ 0.2, respectively.

111

4.4. Numerical experiments

In this section, we investigate the numerical performance of GAHJ by testing some con-

strained optimization benchmarks (see Appendix C). We first implement the GAHJ using

the two different penalty models, i.e., quadratic penalty function model (Model 1, the Equa-

tion 4.5) and exact penalty function model (Model 2, the Equation 4.6), respectively. Then,

numerical comparisons of GAHJ with other constrained global optimization methods are

presented.

All test problems are solved in an environment of MATLAB(2010a) installed on an ACER

ASPIRE4730Z laptop with a 2G RAM and a 2.16GB CPU.

The test problems are taken from [19]. The main characteristics of these test cases are

reported in Table 4.1. These problems include not only different types of objective functions

(e.g., linear, nonlinear and quadratic), but also a wide range of constraint functions (e.g.,

linear inequality (LI), nonlinear equality (NE), and nonlinear inequality (NI)). The feasible

ratio ρ is determined by calculating the percentage of feasible solutions among 1,000,000

randomly generated points in the box constraint, i.e.,

ρ = Ω/M,

whereM = 1, 000, 000 is the number of points randomly generated fromX , Ω is the number

of feasible points among them. It can be observed that the feasible ratio of Problem 4.3, 4.5,

4.11, 4.13 are all zero. This is because only equality constraints applied in these problems.

However, in Problem 4.2 almost all points are feasible (99.9962%).

In order to measure the success rate of all algorithms, we introduce the following criteria,

f ∗ − f ∗∗

|f ∗∗|+ 1
< ε, (4.9)

112

Table 4.1.: Main characteristics of 13 benchmark test functions

Problem Dim Type of f Feasible ratio LI NE NI f∗∗

Problem 4.1 13 Quadratic 0.0003% 9 0 0 -15.0000
Problem 4.2 20 Nonlinear 99.9962% 1 0 1 -0.803619
Problem 4.3 10 Nonlinear 0.0000% 0 1 0 -1.0000
Problem 4.4 5 Quadratic 26.9557% 0 0 6 -30665.539
Problem 4.5 4 Nonlinear 0.0000% 2 3 0 5126.498
Problem 4.6 2 Nonlinear 0.0053% 0 0 2 -6961.814
Problem 4.7 10 Quadratic 0.0002% 3 0 5 24.306
Problem 4.8 2 Nonlinear 0.8587% 0 0 2 -0.095825
Problem 4.9 7 Nonlinear 0.5182% 0 0 4 680.630
Problem 4.10 8 Linear 0.0005% 3 0 3 7049.248
Problem 4.11 2 Quadratic 0.0000% 0 1 0 0.750
Problem 4.12 3 Quadratic 0.0197% 0 0 93 -1.0000
Problem 4.13 5 Nonlinear 0.0000% 0 3 0 0.0539498

and
F ∗ − f ∗∗

|f ∗∗|+ 1
< ε, (4.10)

where f ∗ , F ∗ and f ∗∗ are the optimal value of objective function, optimal value of auxiliary

function and the current known best optimal solution, respectively. ε is a threshold number

which, in our test problems, is 10−2 ∼ 10−3. We use the criteria (4.9) and (4.10) together

because they guarantee the optimal solution of both the original problem and auxiliary prob-

lem. For each test case, 100 independent trials of GAHJ on both Model 1 and Model 2 are

simulated. In order to compare the numerical performance of GAHJ on Model 1 and Model

2, we use the same parameters for both models. More specifically, the maximal generation

time is set as 400n; population size is set as 20n; crossover rate and mutation rate are set as

0.7 and 0.1, respectively.

Comparisons between different penalty models

Table 4.2 shows the success rate of solving the test problems by GAHJ applying Models 1

and 2, respectively. In this table, µ and s are penalty parameter and success rate, respectively.

113

Table 4.2.: Success rate of GAHJ

Problem Dim.
Model 1 Model 2
µ s µ s

Problem 4.1 13 105 100% 105 100%
Problem 4.2 20 10 16% 104 0%
Problem 4.3 10 104 100% 104 100%
Problem 4.4 5 103 100% 105 36%
Problem 4.5 4 100 100% 100 32%
Problem 4.6 2 104 100% 104 100%
Problem 4.7 10 105 100% 100 24%
Problem 4.8 2 106 90% 106 79%
Problem 4.9 7 103 100% 106 100%
Problem 4.10 8 105 100% 106 12%
Problem 4.11 2 104 100% 106 39%
Problem 4.12 3 106 100% 105 100%
Problem 4.13 5 10 100% 103 100%

This table clearly shows that quadratic penalty transformation of constraints (Model 1) en-

joys a better success rate than that of obtained by exact penalty transformation of constraints

(Model 2). However, Problem 4.2 is an exception. The exterior penalty function model is

suffered a low success rate (16%). Furthermore, the exact penalty function model even failed

to obtain an optimal solution. This was also observed in other papers including [120]. The

success rate for Problem 4.8 using Model 2 is 90% which is less than others. One can see

that the penalty parameter in Model 1 is smaller than that for Model 2.

Table 4.3 shows statistical results for Problems 4.1-4.13 solved by GAHJ using Models

1 and 2, respectively. In this table, we list the best function values (f ∗), average function

values (f̄), and the worst function values (f̃) out of 100 independent runs. The correspond-

ing penalty function values (p∗, p̄, p̃) are also presented. The last column is the standard

deviation (S.D.) of function value out of 100 independent executions. Results from this table

show that GAHJ achieved good results for all problems except Problem 4.2. Among them,

Problems 4.1, 4.6, 4.10 and 4.13 are better solved by exact penalty transformation of con-

straints (Model 2); Problems 4.3, 4.4, 4.5, 4.7, 4.9 and 4.11 are better solved by quadratic

114

Table 4.3.: Numerical results of Problem 1-13 solved by GAHJ

Problem Model Best Mean Worst S.D.
f∗ p∗ f̄ p̄ f̃ p̃

Problem 4.1 Model 1 -15.000 1.4975e-11 -14.968331 1.5500e-11 -13.828132 3.3923e-11 2.8e-14
Model 2 -15.000 0 -15.000 0 -15.000 0 0

Problem 4.2 Model 1 -0.6114226 4.8896e-15 -0.5153114 5.7896e-16 -0.3924318 0 3.2e-2
Model 2 -0.6238671 3.8964e-15 -0.4936823 2.7368e-16 -0.3492111 -1.0225e-16 5.4e-2

Problem 4.3 Model 1 -1.0031596 1.5958e-9 -1.0031321 1.5673e-9 -1.0030899 1.5250e-9 9.5e-6
Model 2 -0.999823 9.6033e-14 -0.9939532 1.0173e-11 -0.9814305 5.6362e-12 5.4e-3

Problem 4.4 Model 1 -30665.547 8.8329e-11 -30605.395 1.3680e-11 -30369.105 0 19
Model 2 -30665.541 3.2513e-8 -30665.539 2.3496e-9 -30665.537 1.3853e-9 5.3e-4

Problem 4.5 Model 1 5126.1615 0.1704e-4 5127.8993 0.1674e-4 5160.0261 0.1915e-4 4.4
Model 2 5126.5028 7.5138e-4 5139.9054 3.1882e-3 5173.3279 1.1084e-3 13

Problem 4.6 Model 1 -6961.8121 0 -6961.6407 4.7569e-4 -6960.9237 0 1.5
Model 2 -6961.8134 0 -6961.6189 7.1054e-16 -6961.0593 0 0.16

Problem 4.7 Model 1 24.303714 1.4521e-6 24.308487 1.3796e-6 24.349013 1.2417e-6 9.4e-3
Model 2 24.318635 0 24.422653 0 24.556940 0 6.7e-2

Problem 4.8 Model 1 -0.0958250 0 -0.0958250 0 -0.0958250 0 2.1e-10
Model 2 -0.0958250 0 -0.0958250 0 -0.0958250 0 1.5e-10

Problem 4.9 Model 1 680.55806 3.6152e-3 680.55836 3.5841e-3 680.55860 3.5606e-3 1.1e-4
Model 2 680.66750 0 681.37301 0 686.35024 0 0.7

Problem 4.10 Model 1 7053.0718 6.5444e-10 7090.2136 1.1279e-9 7118.7250 0 19
Model 2 7052.8082 0 7085.3769 6.8148e-6 7113.0948 0 18

Problem 4.11 Model 1 0.7500150 1.8339e-9 0.7551281 5.4956e-9 0.7673083 2.3549e-9 4.8e-3
Model 2 0.7503593 1.7071e-11 0.7533152 2.3821e-9 0.7604427 3.5e-3 5.3e-4

Problem 4.12 Model 1 -1 0 -1 0 -1 0 0
Model 2 -1 0 -1 0 -1 0 0

Problem 4.13 Model 1 0.0540487 1.1889e-5 0.0562050 3.6475e-5 0.0639856 1.4242e-4 2.7e-3
Model 2 0.0539679 3.8797e-5 0.0561241 3.9393e-5 0.0629757 1.7103e-5 2.2e-3

penalty transformation (Model 1); and the same solutions are achieved for Problem 4.8 and

4.12. It is important to note that this comparison is done without taking into account the

penalty term. Technically, some of the solutions are corresponding to infeasible points, but

very close to feasible region (the degree of closeness can be seen from p∗, p̄ and p̃). Since we

use exterior penalty approach to handle the constraints, this difficulty cannot be removed in

general. With respect to the standard deviation, Model 2 is better than Model 1 for Problems

4.1, 4.4, 4.6, 4.8, 4.10, 4.11 and 4.13, which means that Model 2 is more robust than Model

1 for these problems. However, Model 1 is more stable than Model 2 for Problems 4.2, 4.3,

4.5, 4.7 and 4.9. For Problem 4.12, Model 1 and Model 2 share the same robustness.

Figure 4.2 illustrates the variation of the objective function values of Problems 4.1 and

4.12 when solved using both models. For Problem 4.1, the objective function values are

actually smaller than the real optimal function values at the early stage. This is because the

115

search starts from the outside of the feasible region. In this case, the value of the penalty

function multiplied by penalty parameter is very large, which enlarges the value of the auxil-

iary function. Whereas, for Problem 4.12, most of the search appears at the inside of feasible

region, which means that the penalty function term is zero. So, value of auxiliary function

equals the value of objective function. In both problems, the results obtained by solving

Model 1 are better than those obtained by Model 2.

Comparison with FSA method

The FSA [43] is a hybrid method to solve the constrained global optimization problems. In

the FSA, the simulated-annealing is used for the global search and a direct search method is

used for the local search. Thus, it is highly similar to our method. In [43], some benchmark-

s are tested by the FSA and the results show that the FSA is much better than some global

optimization methods, such as the Homomorphous Mappings method [65], Stochastic Rank-

ing method [101], Adaptive Segregational Constraint Handling EA method [10] and Simple

Multimembered Evolution Strategy method [82]. In view of its superiority and the similar

feature to our method, we will compare our proposed method with the FSA in this subsec-

tion. To apply the FSA, a constrained optimization problem in [43] is first reformulated as

a form of optimizing two functions, the objective function and the constraint violation func-

tion. Then, the FSA method is applied to solve the reformulated problem. Another common

ground for the GAHJ and FSA is that they are both derivative-free. More specifically, their

requirements for objective functions and constraint functions are only Lipschitz continuity.

The main difference between the GAHJ and FSA is that the GAHJ is a population-based

method since it is based upon genetic algorithm, while the FSA is a point-to-point method

since it is based upon the simulated annealing. Another difference is the reformulation of the

constrained optimization problem. Instead of using penalty function method, the constraints

in [43] are reformulated as a nonnegative objective function called constrained violation

function. If a point is feasible, the value of the constrained violation function equals to 0.

116

Table 4.4.: Comparison between GAHJ and FSA
Problem Optimal solution FSA GAHJ

Problem 4.1 Best -14.999 -15.000
Worst -14.980 -15.000

Problem 4.2 Best -0.7549125 -0.62386713
Worst -0.2713110 -0.3492111

Problem 4.3 Best -1.0000015 -1.0031596
Worst -0.9915186 -1.0030899

Problem 4.4 Best -30665.5380 -30665.541
Worst -30664.6880 -30665.537

Problem 4.5 Best 5126.4981 5126.1615
Worst 5126.4981 5160.0261

Problem 4.6 Best -6961.81388 -6961.8134
Worst -6961.81388 -6961.0593

Problem 4.7 Best 24.310571 24.303714
Worst 24.644397 24.349013

Problem 4.8 Best -0.095825 -0.095825041
Worst -0.095825 -0.095825040

Problem 4.9 Best 680.63008 680.55806
Worst 680.69832 680.55860

Problem 4.10 Best 7059.86350 7052.8082
Worst 9398.64920 7113.0948

Problem 4.11 Best 0.7499990 0.75001507
Worst 0.7499990 0.76730836

Problem 4.12 Best -1.0000 -1.0000
Worst -1.0000 -1.0000

Problem 4.13 Best 0.0539498 0.053967965
Worst 0.4388511 0.062975713

Otherwise, it is positive. Under this strategy, the original constrained global optimization

problem has been transformed into a multi-objective optimization problem.

The data of the FSA in Table (4.4) and (4.5) is taken from Table 2 of [43] and the data of

GAHJ is taken from the better one of Model 1 and Model 2.

Table 4.4 illustrated the best optimal solutions and the worst optimal solutions obtained by

FSA and GAHJ. From the data showed in the table, for Problem 4.8 and 4.12, FSA and GAHJ

obtained the same results, which are the best known optimal solutions. For Problems 4.1, 4.4,

4.5, 4.6 ,4.7 ,4.9 and 4.10, all of the best and the worst optimal solutions obtained by GAHJ

are better than those obtained by FSA. For Problem 4.3, the best optimal solution obtained

by GAHJ is −1.0031596 which is not as good as FSA (−1.0000015), but the worst optimal

solution obtained by GAHJ is −1.0030899 which is much better than FSA (−0.9915186).

For Problem 4.2, FSA performs better at the best optimal solution, but weaker at the worst

optimal solution. For Problem 4.13, there is a big gap between the best and worst optimal

117

Table 4.5.: Statistic comparison between GAHJ and FSA
Problem Statistic features FSA GAHJ

Problem 4.1 Mean -14.993316 -15.000
S.D. 0.004813 0.000000

Problem 4.2 Mean 0.3717081 -0.5153114
S.D. 0.098023 0.032000

Problem 4.3 Mean -0.9991874 -1.0031321
S.D. 0.001653 0.000009

Problem 4.4 Mean -30665.4665 -30665.539
S.D. 0.173218 0.0000530

Problem 4.5 Mean 5126.4981 5127.8993
S.D. 0.000000 4.4

Problem 4.6 Mean -6961.81388 -6961.6407
S.D. 0.000000 1.5

Problem 4.7 Mean 24.3795271 24.308487
S.D. 0.071635 0.009400

Problem 4.8 Mean -0.095825 -0.0958250
S.D. 0.000000 0.000000

Problem 4.9 Mean 680.63642 680.55836
S.D. 0.014517 0.000110

Problem 4.10 Mean 7509.32104 7085.3769
S.D. 542.3421 18

Problem 4.11 Mean 0.7499990 0.7533152
S.D. 0.000000 0.00053

Problem 4.12 Mean -1.0000 -1.0000
S.D. 0.000000 0.000000

Problem 4.13 Mean 0.2977204 0.0561241
S.D. 0.188652 0.002200

solution obtained by FSA. The worst optimal solution obtained by GAHJ is much more

better than that obtained by FSA.

In order to investigate the robustness of GAHJ, we compare its statistical performances

with those of FSA. Table 4.5 reports mean value (Mean) and standard deviation (S.D.) of

optimal solutions for both GAHJ and FSA. Table 4.5 shows that GAHJ achieves better mean

values for Problems 4.1, 4.2, 4.3, 4.4, 4.7, 4.9, 4.10, 4.11 and 4.13. For Problem 4.10, the

mean value of FSA is 7509.32104, while that of GAHJ is 7085.3769 which is much smaller

than that of FSA. For Problem 4.13, the mean value of FSA is 0.2415963, while that of GAHJ

is 0.0539498. FSA achieves a better mean value than GAHJ only for Problems 4.5, 4.6 and

11. On the other hand, from data of standard deviation, the optimal solutions obtained by

GAHJ are more robust than those obtained by FSA. Except Problems 4.5, 4.6 and 4.11,

solutions obtained by GAHJ have smaller standard deviation than those obtained by FSA,

which means that GAHJ is more robust than FSA. GAHJ and FSA share the same statistical

118

performances for Problems 4.8 and 4.12. The above analysis clearly shows that as a global

optimization solver, GAHJ is much more superior than FSA.

4.5. Conclusions

In this chapter, we developed a new hybrid method for solving constrained global opti-

mization problems. This method is based upon the combination of the genetic algorithm and

Hooke Jeeves method. The Hooke Jeeves method was embedded into the genetic algorithm

as an acceleration operator during the iterations. The numerical experiments show that the

proposed hybrid method achieves better performances than the FSA. However, since we use

exterior penalty function method to handle the constraints, some of the optimal solutions ob-

tained by the proposed method may be infeasible. Therefore, our future work for this subject

is to improve the constraint handling technique to ensure the feasibility of the obtained so-

lution. A possible strategy is to introduce the greedy selection (death penalty). This strategy

excludes all the infeasible candidate solutions gradually.

119

0 10 20 30 40 50 60 70 80 90 100

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

Iteration time

A
ux

ili
ar

y
fu

nc
tio

n
va

lu
e

Model 1
Model 2

(a) Problem 1

0 50 100 150 200 250 300 350 400 450 500
−40

−35

−30

−25

−20

−15

−10

−5

0

Iteration time

A
ux

ili
ar

y
fu

nc
tio

n
va

lu
e

Model 1
Model 2

(b) Problem 12

Figure 4.2.: The Objective function value versus iteration time.

120

Chapter 5.

A method for nonsmooth equation

system

In this chapter, we consider the following system of equations

H(x) =

H1(x)

H2(x)

...

Hm(x)

= 0, (5.1)

where H1, H2, · · · , Hm : Rn → R are locally Lipschitz continuous but not necessarily

differentiable. We call Problem 5.1 the system of nonsmooth equations.

5.1. Introduction

The system of nonsmooth equations appears in many applications, such as nonlinear com-

plementarity, variational inequality and bilevel programming problems. Among the different

methods for solving the system of nonsmooth equations, Newton’s method is one of the most

121

widely used ones. (see [49, 50, 88, 97, 98]). Newton’s method originally developed for solv-

ing the continuously differentiable system of equations. In nodifferentiable case the main

obstacle is the choice of the generalized Jacobian. Because for the nonsmooth functions

the generalized Jacobian is not unique and it is not easy to compute it. To overcome this

difficulty, smooth approximations of the generalized Jacobian have been used by many au-

thors. Then a system of nonsmooth equations was solved by semismooth Newton’s method

or smoothing Newton’s method [96]. Some typical semismooth Newton’s methods refer to

[54, 87, 106] and some smoothing Newton methods can be found in [22, 21, 33, 52, 53, 95].

Another numerical approach for solving the system of nonsmooth equations is the quasi-

Newton method. In [112], the authors presented a unified realization of quasi-Newton meth-

ods for solving several standard problems including the complementarity problem, varia-

tional inequality and KKT system. The algorithm proposed in [112] solves only a system of

linear equations at each iteration. In [74], the BFGS method is adopted to solve the KKT

system. The KKT system is first reformulated into a system of nonsmooth equations, then

the system of nonsmooth equations is split successively into subproblems such that each of

them has a particular structure, and finally the BFGS algorithm is applied to solve those sub-

problems. Some other discussions about solving the system of nonsmooth equations refer to

[31, 91, 94].

Actually, a system of equations, whether smooth or nonsmooth, is equivalent to an uncon-

strained optimization problem and if the system is consistent then the optimization problem

has a zero global minimum value. So, solving the system of nonsmooth is equivalent to (5.1)

equals to solve the unconstrained optimization problem

 Minimize ∥ H(x) ∥

Subject to x ∈ Rn
(5.2)

122

or Minimize 1
2
∥ H(x) ∥2

Subject to x ∈ Rn
. (5.3)

Here ∥ · ∥ stands for the Euclidian norm. This strategy is applied in [125] where a filled

function method is used to solve Problem (5.3). If Hi(x) is nonsmooth, the nonsmoothness

may still appear in solving Problem (5.2) and (5.3). In this case, the gradient-based meth-

ods cannot be applied. To overcome this difficulty, we apply the nonsmooth optimization

method, such as the quasisecant method, to solve Problem (5.2) or (5.3).

5.2. An algorithm for the system of nonsmooth

equations

As discussed before, solving the system of nonsmooth equations H(x) = 0 is equivalent

to solve an optimization problem whose optimal solution is zero if this system is consistent,

i.e., Problem (5.2) or (5.3). In this section, we use the quasisecant method to solve the

optimization problem 5.3. Denote

f(x) =
1

2
∥ H(x) ∥2= 1

2

m∑
i=1

H2
i (x).

Then, the optimization problem (5.3) can be rewritten as

 Minimize f(x)

Subject to x ∈ Rn
. (5.4)

First, we discuss how to compute the quasisecant v(x, g, h) of the function f at the point x

along the direction of g with length h > 0.

123

5.2.1. Algorithms

Theorem 5.2.1 Suppose that f is convex function, if v ∈ ∂cf(x+ hg), then v = v(x, g, h),

i.e., v is a quasisecant of f along direction g with length h > 0.

Proof: From v ∈ ∂cf(x+ hg), we have, for any x′ ∈ Rn,

f(x′) ≥ f(x+ hg) + ⟨v, x′ − x− hg⟩.

Let x′ = x, then

f(x) ≥ f(x+ hg) + ⟨v,−hg⟩

which means that v = v(x, g, h). �

Theorem 5.2.1 gives a sufficient condition to compute quasisecant of function f . A qua-

sisecant of f at x along direction g with length h > 0 can be computed as a subgradient of f

at the point y = x+ hg. More specifically, if f(x) is continuously differentiable, we have

v(x, g, h) = ∇f(x+ hg) = ∇f(y)

= H1(y)∇H1(y) +H2(y)∇H2(y)+, . . . , Hm(y)∇Hm(y)

,

(H1(y), H2(y), . . . , Hm(y))

∇HT
1 (y)

∇HT
2 (y)

...

∇HT
m(y)

T

.

The continuous differentiability requirement of f(x) is strict, since it needs continuous

differentiability of each Hi(x). If some of the Hi(x) are nonsmooth convex functions,

maximum functions or D.C. functions, their subgradient can be calculated by using algo-

rithms proposed in [3, 5]. Furthermore, if f(x) can be represented as a D.C. function, i.e.,

f(x) = g1(x)−g2(x), where g1(x) and g2(x) are both convex functions, then the quasisecant

124

of f(x) can be implicitly computed by subgradients of g1(x) and g2(x) [2, 4].

The algorithm of the quasisecant method for the system of nonsmooth equations is com-

posed by two steps: inner iteration and outer iteration. For given h > 0, the inner iteration

is to find a descent direction in the form of x+ hg, where g ∈ S1. The length h > 0 in inner

iteration controls accuracy of approximation of W (x, h). In general, the smaller h is, the

better approximation of subdifferential it produces. The outer iteration is to adjust the length

h. When no descent direction is found or an approximate stationary point is obtained in inner

iteration, h is decreased by executing the outer iteration. This means when inner iteration

can not get any decrease, we decrease the length h in order to get a better approximation of

W (x, h).

Algorithm 5.2.1 Inner iteration

Step 0: Input data: the current point xk from outer iteration and set it as a starting point,

i.e., x := xk; the current length hk > 0 and tolerance δk > 0 from outer iteration,

respectively; set c1 ∈ (0, 1) and the maximum number of iterations m > 0.

Step 1: Initialization: choose any unit direction g1 ∈ S1 and compute a quasisecant v1 ∈

∂f(x+ hkg
1). Set V1(x) := {v1} and an inner iteration counter j := 1.

Step 2: Solve the subproblem min ∥ ξ ∥2

s.t. ξ ∈ coVj(x).
(5.5)

Let ξ∗ to be the solution of (5.5). ξ∗ is the nearest point of coVj(x) to the origin of Rn..

Step 3: If ∥ ξ∗ ∥≤ δk, then stop the inner loop; otherwise, reverse and normalize vector ξ∗,

i.e.,

gj+1 = − ξ∗

∥ ξ∗ ∥
.

125

Step 4: If

f(x+ hkg
j+1)− f(x) ≤ −c1hk ∥ ξ∗ ∥, (5.6)

then go to Step 6. Otherwise go to Step 5.

Step 5: If j > m, then stop the inner loop; otherwise compute a quasisecant in direction

gj+1, vj+1 ∈ ∂f(x + hkg
j+1) and construct set Vj+1(x) := Vj(x) ∪ {vj+1}. Set

j := j + 1 and go to Step2.

Step 6: Line search: run double step size line search along the direction gj+1 starting from

x. Let the result of line search to be x∗, then assign x∗ to x, i.e., x := x∗ and go to

Step 1.

Some explanations of Algorithm 5.2.1 are as follows. According to Theorem 5.2.1, the

quasisecant of f(x) can be explicitly calculated using the subdifferential. Thus all the qua-

sisecants are computed as subgradients of f(x) at x+hkgj . Note that hk is fixed in the inner

iteration, so these points are actually distributed on a circle centered at x with radius hk..

In Step4, as long as gj+1 is verified as a descent direction, i.e., condition (5.6) is satisfied,

an inexact line search runs along this direction in Step 6. We use double step size strategy

(see Page 66) which was presented in the quasisecant method in inexact line search. There

are two stopping criteria in the inner loop: in Step 3, if ∥ ξ∗ ∥≤ δk, an (hk, δk)−stationary

point is obtained; in Step 5, the maximum number of iterations is reached, which means that

a smaller h is needed to improve the approximation of the subdifferential.

Algorithm 5.2.2 Outer iteration

Step 0: Input data: a starting point x0, parameters h0 > 0, δ0 > 0, and set a counter k := 0.

Step 1: If f(xk) = 0, then stop the outer loop and xk is an optimal solution of Problem

(5.4), i.e., a solution of the system (5.1). Otherwise, if 0 ∈ ∂f(xk), then stop the outer

loop, the system is inconsistent and let xk as an approximate solution of the system.

126

Step 2: Let hk+1 =
1
2
hk and δk+1 =

1
2
δk.

Step 3: Run the inner iteration (Algorithm 5.2.1) by inputting the current point xk, length

hk and tolerance δk. Let xk+1 be the output of inner iteration.

Step 4: Set k := k + 1 and go to Step 1.

There are two stopping criteria for the outer iteration, i.e. 0 ∈ ∂f(xk) and f(xk) = 0. If

0 ∈ ∂f(xk), then xk is a Clarke stationary point which may not be a solution of (5.4). If

f(xk) = 0, then xk is a solution of (5.4).

5.2.2. Convergence analysis

Lemma 5.2.1 Suppose that fi(x), i = 1, · · · ,m are all Lipschitz functions and bounded by

M , i.e., |fi(x)| ≤M, i = 1, · · · ,m. Let

f(x) =
m∑
i=1

f 2
i (x),

then f(x) is a Lipschitz function.

Proof: Since fi(x), i = 1, · · · , n are all Lipschitz functions, there exists αi, i = 1, · · · ,m,

such that

|fi(x1)− fi(x2)| ≤ αi ∥ x1 − x2 ∥, i = 1, · · · ,m,

for all x1 and x2. Let α = max{αi|i = 1, · · · , n}. For any x1 and x2,

|f(x1)− f(x2)| = |
m∑
i=1

f 2
i (x1)−

m∑
i=1

f 2
i (x2)|

= |
m∑
i=1

(f 2
i (x1)− f 2

i (x2))|

≤
m∑
i=1

|(fi(x1) + fi(x2))(fi(x1)− fi(x2))|

≤ 2M
m∑
i=1

αi ∥ x1 − x2 ∥

≤ 2mMα ∥ x1 − x2 ∥ .

127

This proves that f(x) is Lipschitz continuous function.�

For the point x0 ∈ Rn, we consider the set L(x0) = {x ∈ Rn| f(x) ≤ f(x0)}.

Theorem 5.2.2 Suppose that the system of nonsmooth equations (5.1) is consistent and

functions Hi(x), i = 1, · · · , n are all bounded Lipschitz continuous. Suppose the set

W (x, h) is constructed using SR-quasisecants and the set L(x0) is bounded for starting point

x0 ∈ Rn. Assume that {xk}∞k=1 is a sequence obtained by applying Algorithm 5.2.2. Then

the accumulation point x∗ of sequence {xk} is either a solution of system (5.1) or a Clark

stationary point of ∥ H(x) ∥2.

Proof: It is obvious that xk ∈ L(x0) for all k. The boundedness of set L(x0) implies that

the sequence {xk} has at least one accumulation point. Without loss of generality, let x∗ be

an accumulation point and xk → x∗ when k → +∞.

Now, suppose that Algorithm 5.2.2 is not terminated by 0 ∈ ∂f(xk), because Algorithm

5.2.1 is a decreasing method, then we have

f(x1) ≥ f(x2) ≥ · · · ≥ f(xk) ≥ · · · ≥ 0.

This is to say, {f(xk)}∞k=1 is a decreasing sequence with a lower boundary 0. Therefore, there

exists a subsequence {f(xki)} such that f(xki) → 0 when i → +∞. Note that xki → x∗

when i→ +∞, according to the continuity of f , we have

f(x∗) = 0,

which means Algorithm 5.2.2 converges at a solution of equation system (5.1).

On the contrary, if Algorithm 5.2.2 does not terminate at f(xk) = 0, then note that

f(x) =
1

2
∥ H(x) ∥2= 1

2

m∑
i=1

H2
i (x),

128

according to Lemma 5.2.1, f(x) is a Lipschitz function and bounded below, i.e., f(x) ≥ 0.

Therefore, based on Theorem 4.5 in [2], every accumulation point of the sequence {xk}

belongs to the set X0 = {x ∈ Rn| 0 ∈ ∂f(x)}, i.e., x∗ is a Clark stationary point of

∥ H(x) ∥2. This completes the proof.�

5.3. Numerical examples

The system of nonsmooth equaitons usually appears in solving mathematical program-

ming problems, such as the bilevel programming and complementarity problems. During

the process of solving the bilevel programming problem, we need to transform the lower

level problem into the system of nonsmooth equations. Clearly, numerical results of solving

bilevel programming problems are heavily dependent on the solution of system of nons-

mooth equations. The complementarity problem can also be transformed into the system of

nonsmooth equations.

In order to investigate the accuracy of solutions, the following criterion is adopted. Sup-

pose that x∗ is a solution, the value of each function in the system of nonsmooth equation is

expressed as

H(x∗) = (H1(x
∗), H2(x

∗), · · · , Hm(x
∗))T .

Then, the average error of all the functions is defined as

e =

m∑
i=1

|Hi(x
∗)|

m
,

where | · | stands for absolute value. H(x∗) reflects the accuracy of a solution for each

function in the system of nonsmooth equation, while the average error e reveals the whole

accuracy of a solution.

The proposed algorithm is tested using some test problems with smooth and nonsmooth

129

system of equations. All test problems are run in an environment of MATLAB(2010a) in-

stalled on an ACER ASPIRE4730Z laptop with a 2G RAM and a 2.16GB CPU. To present

numerical results we use the following notation:

• k — index for different starting points;

• x̄ — parameter from the upper level problem;

• y0 and λ0 — starting point;

• y∗ and λ∗— solution for the test problems;

• H(x̄, y∗, λ∗) — value of equation systems at the solutions;

• e — the average error of function values for solution x∗.

The first three problems are bilevel programming problems which are from [85]. We first

illustrate the process of transforming the lower level problems into systems of nonsmooth

equations and then use the proposed method to solve the transformed systems of nonsmooth

equations. The results are presented in Table 5.2 and compared with the known solution

which is presented in Table 5.1.

Example 5.3.1 Consider the bilevel programming problem with the upper-level objective

function

f(x, y) =
1

2
(y1 − 3)2 +

1

2
(y2 − 4)2

130

and the lower-level optimization problem (in variable y)

Minimize 1
2
[(1 + 0.2x)y21 + (1 + 0.1x)y22]− (3 + 11

3
x)y1 − xy2

Subject to

−1
3
y1 + y2 − 1 + 0.1x ≤ 0

y21 + y22 − 9− 0.1x ≤ 0

−y1 ≤ 0

−y2 ≤ 0,

which is dependent on the parameter x ∈ R.

Assume that the admissible set Uad = [1, 10]. For x ∈ Uad, the lower-level problem can

be transformed into the form of Generalized equation

0 ∈

(1 + 0.2x)y1 − (3 + 11
3
x)− 1

3
λ1 + 2y1λ2 − λ3

(1 + 0.1x)y2 − x+ λ1 + 2y2λ2 − λ4
1
3
y1 − y2 + 1− 0.1x

−y21 − y22 + 9 + 0.1x

y1

y2

+NR2+R4

+(y,λ), (5.7)

which is equivalent to

(1 + 0.2x)y1 − (3 + 11
3
x)− 1

3
λ1 + 2y1λ2 − λ3

(1 + 0.1x)y2 − x+ λ1 + 2y2λ2 − λ4
1
3
y1 − y2 + 1− 0.1x

−y21 − y22 + 9 + 0.1x

min{y1, λ3}

min{y2, λ4}

= 0. (5.8)

131

Table 5.1.: Known solution for equation system (5.8)

k x̄ y1 y2 λ1 λ2 λ3 λ4
1 4.0604 2.6822 1.4871 0 0.6621 0 0

Table 5.2.: Numerical results for equation system (5.8)

k (x̄, y, λ) (x̄, y∗, λ∗) H(x̄, y∗, λ∗) e

1

4.0604
0.3111
0.9234
0.4302
0.1848
0.9049
0.9797

4.0604
2.6818
1.4879
−0.0030
0.6625
0.0000
0.0000

0.1121
−0.4816
−0.3940
−0.1561
0.4723
0.4112

× 10−7 3.3788× 10−8

2

4.0604
0.4389
0.1111
0.2581
0.4087
0.5949
0.2622

4.0604
2.6818
1.4879
−0.0030
0.6625
−0.0000
0.0000

−0.0410
0.0117
0.2347
−0.0397
−0.0193
0.0645

× 10−6 6.8469× 10−8

3

4.0604
0.6028
0.7112
0.2217
0.1174
0.2967
0.3188

4.0604
2.6818
1.4879
−0.0030
0.6625
0.0000
0.0000

−0.3134
−0.1598
0.9717
0.0403
0.2099
0.1666

× 10−7 3.1028× 10−8

It is clear that the equation system (5.8) is a system of nonsmooth equations since there

are two minimum functions. When parameter from the upper level problem x̄ = 4.0604,

the solution of the system (5.8) is presented in Table 5.1. For this solution, H(x∗) =

(−0.0017,−0.0003, 0.0009, 0.0004, 0, 0) and the average error e = 5.4999 × 10−4. Ta-

ble 5.2 presents the numerical solutions obtained by our proposed method. From Table 5.2,

the proposed method can achieve the same solution from different starting points generated

randomly. By direct comparison, we can see that our solutions are much better than the

solutions given in [85].

Example 5.3.2 Consider the bilevel programming problem with the upper-level objective

function

f(x, y) = x21 − 2x1 − x22 + y21 + y22

132

and the lower-level optimization problem (in terms of variable y)

Minimize (y1 − x1)2 + (y2 − x2)2

Subject to

(y1 − 1)2 ≤ 0.25

(y2 − 1)2 ≤ 0.25

which is dependent on the parameter x ∈ R2.

Assume that the admissible set Uad = [0, 2]× [0, 2]. For x ∈ Uad, the lower-level problem

can be transformed to the form of Generalized equation

0 ∈

2(y1 − x1) + 2λ1(y1 − 1)

2(y2 − x2) + 2λ2(y2 − 1)

−(y1 − 1)2 + 0.25

−(y2 − 1)2 + 0.25

+NR2+R2

+(y,λ), (5.9)

which is equivalent to

2(y1 − x1) + 2λ1(y1 − 1)

2(y2 − x2) + 2λ2(y2 − 1)

min{−(y1 − 1)2 + 0.25, λ1}

min{−(y2 − 1)2 + 0.25, λ2}

= 0. (5.10)

We solve this system of nonsmooth equations with different starting points x̄ (which are

generated randomly). The numerical results are presented in Table 5.3. From this table, we

can see that for different x̄ and randomly generated starting points, our proposed method can

solve this system of nonsmooth equations efficiently.

Example 5.3.3 Consider the bilevel programming problem with the upper-level objective

133

Table 5.3.: Numerical results for equation system (5.9)

k (x̄, y, λ) (x̄, y∗, λ∗) H(x̄, y∗, λ∗) e

1

0.4324
0.8253
0.0835
0.1332
0.1734
0.3909

0.4324
0.8253
0.5000
0.8253
0.1352
−0.0000

−0.0879
−0.0131
0.1484
−0.0090

× 10−6 6.4601× 10−8

2

0.8314
0.8034
0.0605
0.3993
0.5269
0.4168

0.8314
0.8034
0.8314
0.8034
−0.0000
−0.0000

−0.1821
−0.1895
−0.0350
−0.0596

× 10−7 1.1656× 10−8

3

0.6569
0.6280
0.2920
0.4317
0.0155
0.9841

0.6569
0.6280
0.6569
0.6280
0.0000
0.0000

−0.3011
−0.0193
0.3880
0.3182

× 10−7 2.5666× 10−8

function

f(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60 + r[max{0, x1 + x2 + y1 − 2y2 − 40}]2,

where r = 100 is the penalty parameter. The lower-level optimization problem (in terms of

variable y)

Minimize (y1 − x1)2 + (y2 − x2)2 + 40(y1 + y2)

Subject to

−y1 − 10 ≤ 0

−y2 − 10 ≤ 0

2y1 − x1 + 10 ≤ 0

2y2 − x2 + 10 ≤ 0

which is dependent on the parameter x ∈ R2.

Assume that the admissible set Uad = [0, 50] × [0, 50]. For x ∈ Uad, the lower-level

134

problem can be transformed into the form of Generalized equation

0 ∈

2(y1 − x1)− λ1 + 2λ3 + 40

2(y2 − x2)− λ2 + 2λ4 + 40

y1 + 10

y2 + 10

−2y1 + x1 − 10

−2y2 + x2 − 10

+NR2+R4

+(y,λ), (5.11)

which can be rewritten as

2(y1 − x1)− λ1 + 2λ3 + 40

2(y2 − x2)− λ2 + 2λ4 + 40

min{y1 + 10, λ1}

min{y2 + 10, λ2}

min{−2y1 + x1 − 10, λ3}

min{−2y2 + x2 − 10, λ4}

= 0. (5.12)

Table 5.4 presents the corresponding numerical results by our method. Among them, the

first two results are obtained with x̄ = (0, 0). The others are obtained with x̄ generated

randomly. For all of them, the starting points are generated randomly.

The last problem is a nonlinear complementarity problem from [128]. The strategy for

solving the nonlinear complementarity problem is to transform it first into the system of

nonsmooth equations (5.1) and then to the nonsmooth optimization problem (5.4).

Example 5.3.4 Consider the following nonlinear complementarity problem: Find x ∈ R4

such that

x ≥ 0, f(x) ≥ 0, xTf(x) = 0

135

Table 5.4.: Numerical results for equation system (5.11)

k (x̄, y, λ) (x̄, y∗, λ∗) H(x̄, y∗, λ∗) c

1

0
0

0.8178
0.2607
0.5944
0.0225
0.4253
0.3127

0
0

−10.0000
−10.0000
20.0000
20.0000
0.0000
−0.0000

−0.4732
−0.1762
0.2913
−0.0082
0.5937
−0.3465

× 10−7 3.1488× 10−8

2

0
0

0.1615
0.1788
0.4229
0.0942
0.5985
0.4709

0
0

−10.0000
−10.0000
20.0000
20.0000
−0.0000
−0.0000

−0.1392
0.1849
−0.3808
−0.3426
−0.4025
−0.3579

× 10−7 3.0134× 10−8

3

34.7975
34.9944
0.6385
0.0336
0.0688
0.3196
0.5309
0.6544

34.7975
34.9944
12.3987
12.4972
0.0000
0.0000
2.3987
2.4972

−0.3010
−0.2619
0.0413
0.4902
−0.1188
−0.1032

× 10−7 2.1941× 10−8

4

20.3810
40.9991
0.7184
0.9686
0.5313
0.3251
0.1056
0.6110

20.3810
40.9991
0.3810
15.4995
0.0000
−0.0000
−0.0000
5.4995

0.1841
−0.0711
0.0203
−0.2368
−0.7016
0.0609

× 10−7 2.1248× 10−8

136

where f : R4 → R4 is given by

f1(x) = 3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6,

f2(x) = 2x21 + x1 + x22 + 10x3 + 2x4 − 2,

f3(x) = 3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9,

f4(x) = x21 + 3x22 + 2x3 + 3x4 − 3.

This problem is equivalent to solving the nonsmooth equation system

F (x) = 0, where F (x) = min[f(x), x], (5.13)

and min denotes the componentwise minimum. This problem has two solutions

x∗1 = (1, 0, 3, 0)T , x∗2 = (
√
6/2, 0, 0, 0.5)T .

Clearly, F (x) is differentiable at x∗1 but nondifferentiable at x∗2.

In [128], the Newton’s method was used to solve the system of nonsmooth equations

(5.13). We solve the same problem by the proposed method and the numerical results are

given in Table 5.5. Compared with the numerical results presented in Table 2 and Table 3 in

[128], our method obtained more exact results than those by the Newton’s method.

5.4. Conclusion

This chapter presented a new method for solving the system of nonsmooth equations based

upon the quasisecant method. Given the equivalence between the system of nonsmooth equa-

tions and the nonsmooth optimization problem, the original system of nonsmooth equations

is handled by solving a nonsmooth optimization problem using the quasisecant method. Sev-

eral numerical experiments are presented to test the proposed method. The numerical results

137

Table 5.5.: Numerical results for equation system (5.13)

k (x̄, y, λ) (x̄, y∗, λ∗) H(x̄, y∗, λ∗) e

1

0.6160
0.4733
0.3517
0.8308

1.2247
−0.0000
−0.0000
0.5000

0.0188
−0.1921
−0.0932
−0.0428

× 10−6 0.0867× 10−6

2

0.5853
0.5497
0.9172
0.2858

1.2247
−0.0000
−0.0000
0.5000

0.0162
−0.2152
−0.0565
−0.0057

× 10−6 0.0734× 10−6

3

0.7572
0.7537
0.3804
0.5678

1.2247
−0.0000
−0.0000
0.5000

0.0536
−0.2432
−0.1238
−0.0186

× 10−6 0.1098× 10−6

4

1
0
0
1

1.2247
−0.0000
−0.0000
0.5000

0.0725
−0.1937
−0.0964
−0.035

× 10−6 0.0994× 10−6

5

0
0
0
1

−0.8769
−0.2307
−0.0516
0.7855

−0.8769
−0.2307
−0.0516
0.1820

 0.3353

6

1
1
2
0

1.0000
0.0000
3.0003
−0.0001

−7.0171
9.5776
11.2059
−52.3444

× 10−6 20.0362× 10−6

7

1
0
2
0

1.0000
−0.0000
3.0000
−0.0000

−0.0886
−0.1858
0.0402
−0.7409

× 10−6 0.4831× 10−6

show that the proposed method is efficient and robust for solving the system nonsmooth

equations.

138

Chapter 6.

Applications

In this chapter, we investigate some applications of the hybrid method proposed in Chapter

4.

6.1. Molecular conformation problem

6.1.1. Problem formulation

The minimum-energy configuration of a small cluster of atoms, molecules or ions is

known as the molecular conformation problem [15]. It is a central problem in the study

of cluster statics, or the topography of a potential energy function in an internal configura-

tion space. From mathematical point of view, molecular conformation problem is a difficult

global optimization problem which does not yield easily either to discrete or continuous

optimization methods.

Suppose the cluster configuration of n atoms is given by the cartesian coordinates

X = {Xi = (x1i , x
2
i , x

3
i)|i = 1, 2, · · · , n}.

139

The simplest assumption about interaction energy is that of two-body forces between com-

ponent atoms, leading to the general two-body, n-atom potential

Vn(X) =
n−1∑
i=1

n∑
j=i+1

v(∥ Xi −Xj ∥), (6.1)

where ∥ Xi −Xj ∥ is the Euclidean distance between atoms Xi and Xj , i.e.,

∥ Xi −Xj ∥=

(
3∑

k=1

(xki − xkj)2
) 1

2

;

v : R+ → R is a pair potential function satisfying the conditions:

• v(r)→ 0− as r →∞,

• v(r)→∞ for r < rmin where rmin ≥ 0,

• v′(r0) = 0 for some rmin ≤ r0 <∞

• v′′(r0) > 0 and v(r0) < 0.

There are several different kinds of potential functions. However, we exclusively focus on

the Lennard-Jones potential function. The Lennard-Jones potential (also referred to as the

L-J potential, 6-12 potential or 12-6 potential) is a mathematically simple model that approx-

imates the interaction between a pair of neutral atoms or molecules. It was first proposed in

1924 by John Lennard-Jones [48]. The most common expression of the L-J potential is

Vlj = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (6.2)

where ε is the depth of the potential well, σ is the finite distance of which the inter-particle

potential is zero and r is the distance between the particles. Another common expression of

L-J potential is

Vlj = ε

[(rm
r

)12
− 2

(rm
r

)6]
, (6.3)

140

where rm = 21/6σ is the distance at which the potential reaches its minimum which is

−ε. Parameters ε and σ can be fitted to reproduce experimental data or accurate quantum

chemistry calculations. Due to its computational simplicity, the Lennard-Jones potential is

used extensively in computer simulation even though more accurate potentials exist.

0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1

2

3

4

5

r

V/r

Lennard−Jones Potential

σ rm

σ = 0.5
rm = 2

1/6σ

Figure 6.1.: Graph of strength versus distance for the 12-6 Lennard-Jones Potential.

Let ε = 1 and rm = 1, and substitute v(r) in Equation (6.1) by potential expression (6.3),

the molecular conformation problem can be written as the following global optimization

problem:

Minimize
n−1∑
i=1

n∑
j=i+1

(
(1
rij
)12 − (1

rij
)6
)

Subject to

rij =

(
3∑

k=1

(xki − xkj)2
)1/2

xkmin ≤ xki ≤ xkmax k = 1, 2, 3, i = 1, 2, · · · , n,

(6.4)

where xkmin and xkmax, k = 1, 2, 3, are lower and upper bounds for the position of atoms.

141

6.1.2. Numerical results

In order to solve Problem (6.4), we use a single starting point X0 = {X1, . . . , Xn} with

Xi = (x1i , x
2
i , x

3
i), x

k
i = 0.1(k + 3(i − 1)), k = 1, 2, 3, i = 1, . . . , n. The numerical results

obtained by the hybrid quasisecant method solving molecular conformation problem (6.4)

are reported in Table 6.1. We present the results for the number of atoms from 2 to 23, i.e.,

the number of variables of Problem (6.4) is from 6 to 69 with a increment 3. From the table,

we can see that all of the solutions obtained by the Algorithm HQSM are the same as the

best known solutions. Better solutions are obtained for the number of atoms 18 and 22, new

global minimizers of those two are as follows.

• 18 atoms: xmin =

(4.1517070 2.9404659 3.0691997 1.0125778 2.5982435 2.6209299

1.6916219 3.2731873 1.9065144 2.7212357 2.8127015 1.9021200

3.7016128 2.3271159 2.2109051 1.8090926 2.1470918 1.9511862

2.7105479 1.9015668 2.5670481 3.5874697 1.9657620 3.2860929

1.5002408 2.6673152 3.7092588 1.6952687 1.7867533 3.0233570

2.5376094 2.2313789 3.6318135 3.4224619 2.8764679 3.9511865

2.0547634 2.7896049 2.7958845 2.4420476 3.3602198 3.6456437

3.0913141 2.8524167 2.9270360 3.4296522 3.8073075 3.2838784

2.5585499 3.7290439 2.5482281 3.6077177 3.4629524 2.2061370)

• 22 atoms: xmin =

142

(3.4951985 3.2748810 2.23156159 3.3009373 2.1936139 2.5717184

2.7840535 4.8189627 3.1583095 1.7440650 3.1533782 2.8795260

2.4569639 2.7860292 2.0432467 2.7969867 3.0235071 3.0225957

2.2315421 2.1186534 2.9840040 3.1187181 2.2304580 3.7072315

2.1670589 2.8171277 3.8953857 3.5281650 3.6044023 4.9095298

2.3209326 3.8752850 3.5365904 3.1507374 3.2966110 3.9602726

2.5091747 3.8827355 2.4265106 2.8989621 2.6319472 4.7592460

3.3660739 3.9175613 3.1132804 3.9498275 4.7629169 3.4299800

3.9611480 2.7040054 4.3350213 2.4085875 3.6611121 4.6419862

3.1592928 4.3620844 4.1241997 4.3999931 3.8227839 2.8388174

4.1185993 3.7707005 3.9345323 3.8750906 2.9171942 3.2293130)

These results confirm that the proposed algorithm is efficient for solving molecular con-

formation problems.

6.2. Sensor localization problem

6.2.1. Problem formulation

A wireless sensor network (WSN) consist of spatially distributed autonomous sensor to

monitor physical or environmental conditions, such as temperature, sound, pressure, etc.

and to cooperatively pass their data through the network to main location. The develop-

ment of wireless sensor network was motivated by military application such as battlefield

surveillance, now such networks are used in many industrial applications, such as industrial

process, monitoring and control, machine health monitoring.

The wireless sensor network is built of “nodes” from a few to several hundred or even

thousands, where each node is connected to one or several sensors. Wireless sensor network

presents novel tradeoffs in system design. On the one hand, the low cost of nodes facilitates

143

Table 6.1.: Numerical results for Problem 6.4.

Number of atoms Best known value Best obtained value
2 -1.000000 -1.000000
3 -3.000000 -3.000000
4 -6.000000 -6.000000
5 -9.103852 -9.103852
6 -12.712062 -12.712062
7 -16.505384 -16.505384
8 -19.821489 -19.821489
9 -24.113360 -24.113360

10 -28.422532 -28.422531
11 -32.765970 -32.765970
12 -37.967600 -37.967600
13 -44.326801 -44.326801
14 -47.845157 -47.845156
15 -52.322627 -52.322627
16 -56.815742 -56.815741
17 -61.317995 -61.317994
18 -65.842309 -66.284568
19 -72.659782 -72.659782
20 -77.177043 -77.177042
21 -81.684571 -81.684571
22 -86.573675 -86.809782
23 -92.844461 -92.844461

massive scale and highly parallel computation. On the other hand, each node is likely to have

limited power, limited reliability and only local communication with a modest number of

neighbors. These application contexts and potential massive scale make it unrealistic to rely

on careful placement or uniform arrangement of sensors. It is still impossible to localize each

sensor by GPS because of the expensive cost and the limited power and memory of sensors.

This leads to the area of sensor localization problem which intend to localize position of each

sensor in a network by giving measured distances between the connected pairs of sensors.

The distance information can be obtained by strategies like time of arrival (TOA), time-

difference of arrival (TDoA) and received signal strength (RSS). Generally, there is some

144

degree of error in the distance information because of the inaccuracy of measurement and

power (or memory) constraints. If without any sensor’s position beforehand, one can just

estimate the relative position information of sensor network by giving measured distance

of connected pairs of sensors. But for some networks, this is not good enough, such as

networking for tracking, network for monitoring environmental information (temperature,

sound levels, light, etc.). Thus, in order to obtain the absolute position of sensors, it should

be assumed that we already know the position of a few anchor nodes. Those anchor nodes

are called beacon.

For simplicity, let the sensors be placed on a plane. Suppose that we have m known points

(anchors) which belong to A = {ak ∈ R2|k = 1, 2, · · · ,m} and n unknown points (sensors)

which belong to S = {xi ∈ R2|i = 1, 2, · · · , n}. A collection of point-pair Ne is defined as

Ne = {{ak, xj}|ak ∈ A, xj ∈ S} ,

and a collection of point-pair Nu is defined as

Nu = {{xi, xj}|xi ∈ S, xj ∈ S} .

For a pair of points in Ne, we have a Euclidean distance measure dkj . For a pair of points in

Nu, we have a Euclidean distance measure dij . Then, the sensor localization problem is to

find position of sensors (xis), such that

∥ ak − xj ∥2= d2kj for any {ak, xj} ∈ Ne,

∥ xi − xj ∥2= d2ij for any {xi, xj} ∈ Nu.
(6.5)

For a small number of sensors, it might be possible to compute sensor locations by solving

the system of equations (6.5). Sturmfels [111] proposed a method for solving polynomial

equations. However, solving polynomial system can be very expensive when there are a lot

145

of sensors. Furthermore, this polynomial system may be inconsistent if the distances dkj or

dij have errors, which often occur in practice.

The polynomial system of equations (6.5) can also be convert into the following equivalent

global optimization problem,

min
{
e1 =

∑
{ak,xj}∈Ne

∣∣∥ ak − xj ∥2 −d2kj∣∣
+

∑
{xi,xj}∈Nu, i<j

∣∣∥ xi − xj ∥2 −d2ij∣∣ } (6.6)

or
min

{
e2 =

∑
{ak,xj}∈Ne

(
∥ ak − xj ∥2 −d2kj

)2
+

∑
{xi,xj}∈Nu, i<j

(
∥ xi − xj ∥2 −d2ij

)2 }
.

(6.7)

Obviously, x1, x2, · · · , xn are true sensor location if and only if the optimal value of problem

(6.6) or problem (6.7) is zero. Thus, the sensor localization problem is equivalent to find

the global minimizer of problem (6.6) or problem (6.7). Note that the problem (6.6) is

nonsmooth problem, while the problem (6.7) is quadratic smooth problem, but both of them

are nonconvex.

6.2.2. Numerical results

In this subsection, we solve some test sensor localization problems. The test problem gen-

erator is from SFSDP [59, 58, 60]. SFSDP is a MATLAB package for sensor localization

problem using semidefinite programming (SDP). In SFSDP, there are four m-files, SFSDP-

plus.m, SFSDP.m, generateProblem.m and test SFSDP.m. Among them, generateProblem.m

is used to generate test problems. It is called by

[xMatrix0, distanceMatrix0] = generateProblem(sDim, noisyFac, radiorange,...

noOfSensors, anchorType, noOfAnchors, randSeed).

The explanation of the input and output parameters can be found in the code. Figure 6.2.2

illustrates an example of sensor network generate by m-file “generateProblem.m” with 50

146

sensors and 4 anchors.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Location of sensors

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Connection of sensors

Figure 6.2.: An example of sensor network with 50 sensors and 4 anchors.

In order to evaluate the numerical performance of different solvers on sensor localization

problems, Kim [59] developed the root mean square distance,

RMSD =

(
1

N

N∑
i=1

∥x̂i − x∗i ∥22

)
,

where x̂i is the true sensor location (for test problems, the true sensor location is known), x∗i

is the approximate sensor location obtained by optimization solvers. The root mean square

distance reflects the average error between true sensor locations and obtained sensor loca-

tions. In order to evaluate the numerical performance of the hybrid quasisecant method for

solving the molecular conformation problem, we apply measures such as average error and

standard deviation of errors to investigate the statistical properties of the numerical results.

Following the notation of the root mean square distance, we consider x̂i(i = 1, 2, · · · , n)

as the true sensor locations, x∗i (i = 1, 2, · · · , n) as the approximation sensor locations ob-

tained by optimization solver, and

di =∥ x̂i − x∗i ∥, i = 1, 2, · · · , n

147

as the error between the corresponding sensors. Then the following notations are used in

evaluation of the algorithm.

• dave: the average error of corresponding sensors;

• dstd: the standard deviation of errors of corresponding sensors.

In the following, we solve some test problems of sensor localization by the hybrid qua-

sisecant method proposed in the Chapter 4. In order to see the whole picture, we test sensor

networks with the number of nodes 20-50 (with increment 10), 100-500 (with increment

100), 1000 and 2000 , respectively.

Table 6.2.: Numerical results for sensor localization problem.

No. f∗ RMSD dave dstd
20 3.8751710× 10−9 1.1409744× 10−11 3.0889847× 10−5 1.4022229× 10−5

30 2.0706732× 10−9 9.5128657× 10−11 3.0889847× 10−5 1.4022229× 10−5

40 2.3013408× 10−9 4.8699112× 10−10 1.7453671× 10−5 1.3676125× 10−5

50 1.8709465× 10−9 1.1781585× 10−09 1.7453671× 10−5 1.3676125× 10−5

100 5.8333877× 10−9 8.2989634× 10−10 1.7453671× 10−5 1.3676125× 10−5

200 2.4626913× 10−9 2.6716611× 10−10 1.7453671× 10−5 1.3676125× 10−5

300 1.3537058× 10−8 1.0683495× 10−10 1.7453671× 10−5 1.3676125× 10−5

400 1.3448554× 10−8 1.1369356× 10−10 9.8926555× 10−6 3.9835417× 10−6

500 4.4267586× 10−8 1.2075006× 10−09 3.4372143× 10−5 5.1096592× 10−6

1000 1.5312145× 10−6 2.2130698× 10−08 1.4392109× 10−4 3.7667449× 10−5

2000 1.3000758× 10−6 9.6764080× 10−09 9.6162666× 10−5 2.0721106× 10−5

The results are presented in Table 6.2. From the table, we can see that the hybrid qua-

sisecant method solves all problems with high accuracy, however as the number of nodes

increase the accuracy becomes slightly lower than that for small number of nodes. The root

mean square distance of each problem are still extremely small, which implies that the hy-

brid quasisecant method is promising in solving the sensor localization problem with large

number of nodes. The average and standard deviation of distance between obtained sensor

localization and true sensor localization are very small, which yields the robustness of the

hybrid quasisecant method.

148

Figures 6.3 and 6.4 demonstrate the results of sensor localization problems solved by the

hybrid quasisecant method with 50 and 400 sensors, respectively. From Figures 6.3(b) and

6.4(b), we can see that all the true sensor locations (represented by “*”) are well estimated

by obtained sensor locations (represented by “o”).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Connection of sensors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f∗
= 1.8709465 × 10

−9

(b) Approximation of obtained sensor localization
with the true sensor localization

Figure 6.3.: Results of sensor network with 50 sensors and 4 anchors.

Figure 6.5 depicts the decline of the objective function value when number of sensors

equals 1000 and 2000. From Figure 6.5(a), the optimal solution is obtained after 20 iterations

by the global search. From Figure 6.5(b), the optimal solution is obtained after 194 iterations

by the global search. These two figures show that the global search strategy used in the hybrid

quasisecant method is able to find good starting points (lower basins) for local search.

6.3. Conclusion

In this Chapter, we apply the hybrid quasisecant method proposed in Chapter 4 to solve

some practical problems, more specifically, molecular conformation and sensor localization

149

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Connection of sensors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f∗
= 1.3448554

−8

(b) Approximation of obtained sensor localization
with the true sensor localization

Figure 6.4.: Results of sensor network with 400 sensors and 4 anchors.

problems. For the molecular conformation problem, the hybrid quasisecant method success-

fully solved all the test problems with number of atoms from 2 to 23. Better solutions were

obtained for problems with number of atoms 18 and 22. For the sensor localization problem,

the hybrid quasisecant method successfully solved all problems. In these sensor localization

problems, the number of sensors is up to 2000, i.e., the number of variables is up to 4000.

From the numerical performance of the hybrid quasisecant method for solving molecular

conformation and sensor localization problems, we can conclude that the hybrid quasisecant

method is efficient and robust for practical applications.

150

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Index of global search

F
un

ct
io

n
va

lu
e

(a) Number os sensors is 1000

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Index of global search

F
un

ct
io

n
va

lu
e

(b) Number of sensors is 2000

Figure 6.5.: Decrease of the objective function value

151

Chapter 7.

Conclusions and future work

7.1. Conclusions

This thesis presented numerical methods for solving nonsmooth and global optimization

problems. The main contribution of this thesis are new numerical methods for solving global

optimization problems and the system of nonsmooth equations.

First, we described and implemented the quasisecant method for solving nonsmooth opti-

mization problem. The quasisecant method is similar to bundle-type methods and the main

difference between these methods is that unlike the bundle methods the quasisecant uses qua-

sisecants (which are approximate subgradients) to find search directions. The quasisecant

method consist of outer iteration and inner iteration. The outer iteration adjusts a parame-

ter which impacts the approximation of subdifferential. The inner iteration is employed to

calculate the search direction. In each loop of the inner iteration, a quadratic programming

problem is solved and the solution of quadratic programming problem either yield a descent

direction or a new quasisecant which is used to improve the approximation of subdifferential.

It was proved that the inner iteration can terminate in finite steps.

Using the quasisecant method, we developed a hybrid method for (nonsmooth) global op-

152

timization. This hybrid method consist of two phases: local search phase and global search

phase. The local search phase is based upon the quasisecant method. It works as a solver

for finding local minimizer. The global search phase is inspired by the inner iteration of the

quasisecant method. It solves a series of subproblems which minimize the objective function

over spheres with different radii to find better starting point for the local search. By solving

the subproblems, the objective function is approximated by a series of piecewise linear func-

tion, and then for each piecewise linear approximation, a quadratic programming problem

is considered. Thereafter, some points selected from the solutions of the subproblems are

taken as starting points of the local search phase. The numerical experiments show that the

proposed hybrid method is robust and efficient.

By combining the genetic algorithm and Hooke Jeeves method, we designed another hy-

brid method for solving constrained optimization problems. In order to overcome the slow

convergence and problem with not a good accuracy of the genetic algorithm, we designed

an acceleration operator based upon the Hooke Jeeves method. This operator can pick some

suitable points from the generations of the genetic algorithm and do local search starting

from these points. In this way, the acceleration operator improves the convergent rate and

the accuracy of the genetic algorithm. We applied the proposed hybrid method to solve con-

strained optimization problems. Constraints in these problems were handled by the penalty

function method. We considered two different penalty function models, quadratic penalty

function and exact penalty function. The numerical performances shows that the results ob-

tained by solving the exact penalty model is better than those obtained using the quadratic

model, which demonstrates that the proposed hybrid method is good at solving nonsmooth

optimization problems. We compared the numerical performance of the proposed hybrid

method with other constrained optimization methods. The results shows that the proposed

hybrid method is efficient and robust.

Based on the quasisecant method a numerical method is developed to solve the system

153

of nonsmooth equations. The system of nonsmooth equations is first transformed into a

nonsmooth optimization problem with a zero minimal objective function value. Then the

quasisecant method is applied to solve the reformulated nonsmooth optimization problem.

Numerical experiment show that this strategy allows one to solve the system of nonsmooth

equations efficiently and robustly. The proposed method is applied to solve the systems

of nonsmooth equations appeared in bilevel programming and nonlinear complementarity

problems.

We applied the proposed hybrid method to solve the molecular conformation and sensor

localization problems. For the molecular conformation problem, the hybrid method suc-

cessfully solved all the problems with number of atoms from 2 to 23. Better solutions than

those reported in the literature were obtained for problems with number of atoms 8 and 22.

For the sensor localization problem, the hybrid method successfully solved all the problems.

The number of sensors in these problems is up to 2000 resulting the number of variables up

to 4000. These results demonstrate that the hybrid method developed in this thesis is highly

accurate and efficient for solving the sensor locations problems with large number of sensors.

7.2. Future work

7.2.1. Application of global optimization

Nonsmooth and global optimization problems arise in many practical applications. In this

thesis, the proposed hybrid method has been applied to solve the molecular conformation

and sensor localization problems. Actually, there are many other areas about the applica-

tion of global optimization techniques, such as acoustics equipment design, cancer therapy

planning, chemical process modeling, data analysis, economic and financial forecasting, en-

vironment risk assessment and management, industrial product design, water management,

and so on. In the future, we are planing to apply the proposed hybrid method in some of

154

these areas.

7.2.2. Development of new hybrid methods

As we discussed in the literature review, there are three possible strategies to design a

hybrid method: i) apply local search methods to improve the local search ability of global

search methods; ii) apply global search methods to improve the global search ability of local

search methods; iii) combine the global exploration properties of global search methods and

the local exploitation properties of local search methods. The proposed hybrid methods in

this thesis can be classified into the first group. We are planning to design hybrid methods

based on the second and third strategies in the future.

Genetic algorithm is a widely accepted metaheuristic method for global optimization. But

the numerical performance of genetic algorithm is deeply impacted by the phenomenon of

premature convergence. For some problems, the population converge very fast but to a sub-

optimal approximate solution. In order to avoid premature convergence but maintain the fast

convergence rate, local search methods can be embedded into genetic algorithm to improve

the performance of genetic algorithm. We can divide individuals in the population into two

groups, global search group and local search group, with different properties. The individ-

uals in global search group are used to explore new search area by applying crossover and

mutation operators. The individuals in the local search group are employed as the starting

point of local search methods. Once an individual in the global search group identified a new

search area, it becomes an individual in local search group. On the other hand, if an individ-

ual in the local search group is exhausted to search a local area, it becomes an individual in

global search group. In this way, the local search over the local search group guarantees the

fast convergence, while the global search over the global search group maintains the diver-

sity of the population all over the process, which in return, avoid the premature convergence

phenomenon.

155

7.2.3. Parallel computation

Parallel computing is a form of computation in which many calculations are carried out

simultaneously, operating on the principle that large problems can often be divided into

smaller ones, which are then solved concurrently (in parallel). The primary objective of

parallel computation is to solve large-scale problems more quickly.

One difficulty of parallel computation in numerical optimization is to explore the paral-

lelism of algorithms. Some numerical optimization methods, like gradient-based methods,

is hard to be parallelized in their current form because the information for the next iteration

is supplied by the the previous iteration. These methods can only be partly parallelized (for

example, parallelizes the evaluation of gradient by separately calculating each element on

different processors) or fully parallelized (for example, implements the method on different

processors with different starting points). On the other hand, some optimization methods,

like metaheuristic methods, can be easily parallelized. For instance, in each iteration of ge-

netic algorithm, the new offspring generated by crossover and mutation operators need to be

evaluated by the fitness function, these jobs can be distributed among different processors.

Though the subject of parallel computation for optimization has been introduced for thirty

years, there are only few mature numerical implementations. But the increasing size of

optimization problems requires algorithms and implementations exclusively designed for

parallel computation. This is going to be one of the directions of our future work.

156

Bibliography

[1] A.M. Bagirov. A method for minimization of quasidifferentiable functions. Optimiza-

tion Methods and Software, 17(1):31–60, 2002.

[2] A.M. Bagirov and A.N. Ganjehlou. A quasisecant method for minimizing nonsmooth

functions. Optimization Methods & Software, 25(1):3–18, 2010.

[3] A.M. Bagirov, M. Ghosh, and D. Webb. A derivative-free method for linearly con-

strained nonsmooth optimization. Journal of Industrial and Management Optimiza-

tion, 2(3):319, 2006.

[4] A.M. Bagirov, L. Jin, N. Karmitsa, A.A. Nuaimat, and N. Sultanova. Subgradient

method for nonconvex nonsmooth optimization. Journal of Optimization Theory and

Applications, pages 1–20, 2012.

[5] A.M. Bagirov, B. Karasözen, and M. Sezer. Discrete gradient method: derivative-free

method for nonsmooth optimization. Journal of Optimization Theory and Applica-

tions, 137(2):317–334, 2008.

[6] A.M. Bagirov and A.M. Rubinov. Cutting angle method and a local search. Journal

of Global Optimization, 27:193–213, 2003.

[7] A.M. Bagirov and A.M. Rubinov. Local optimization method with global multidi-

mensional search. Journal of Global Optimization, 32(2):161–179, 2005.

157

[8] J.R. Banga and W.D. Seider. Global optimization of chemical processes using stochas-

tic algorithms. Nonconvex Optimization and Its Applications, 7:563–584, 1996.

[9] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear programming: theory and

algorithms. Wiley-interscience, 2006.

[10] S. Ben Hamida and M. Schoenauer. Aschea: New results using adaptive segregational

constraint handling. In Evolutionary Computation, 2002. CEC’02. Proceedings of the

2002 Congress on, volume 1, pages 884–889. IEEE, 2002.

[11] D.P. Bertsekas and S.K. Mitter. Steepest descent for optimization problems with non-

differentiable cost functionals. Technical report, DTIC Document, 1971.

[12] D.P. Bertsekas and S.K. Mitter. A descent numerical method for optimization prob-

lems with nondifferentiable cost functionals. SIAM Journal on Control, 11(4):637–

652, 1973.

[13] M. Better, F. Glover, G. Kochenberger, and H. Wang. Simulation optimization: Ap-

plications in risk management. International Journal of Information Technology &

Decision Making, 7(04):571–587, 2008.

[14] J.M. Bloemhof-Ruwaard, P. Van-Beek, L. Hordijk, and L.N. Van-Wassenhove. In-

teractions between operational research and environmental management. European

Journal of Operational Research, 85(2):229–243, 1995.

[15] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, S. Swaminathan, M. Karplus, et al. Char-

mm: A program for macromolecular energy, minimization, and dynamics calculation-

s. Journal of Computational Chemistry, 4(2):187–217, 1983.

[16] D.G. Brooks and W.A. Verdini. Computational experience with generalized simu-

lated annealing over continuous variables. American Journal of Mathematical and

Management Sciences, 8(3-4):425–449, 1988.

158

[17] O. Buchtala, M. Klimek, and B. Sick. Evolutionary optimization of radial basis func-

tion classifiers for data mining applications. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 35(5):928–947, 2005.

[18] J.V. Burke, A.S. Lewis, and M.L. Overton. A robust gradient sampling algorithm for

nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779,

2005.

[19] Z.X. Cai and Y. Wang. A multiobjective optimization-based evolutionary algorith-

m for constrained optimization. Evolutionary Computation, IEEE Transactions on,

10(6):658–675, 2006.

[20] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–51,

1985.

[21] B. Chen and P.T. Harker. Smooth approximations to nonlinear complementarity prob-

lems. SIAM Journal on Optimization, 7:403, 1997.

[22] C. Chen and O.L. Mangasarian. A class of smoothing functions for nonlinear and

mixed complementarity problems. Computational Optimization and Applications,

5(2):97–138, 1996.

[23] Z.W. Chen, S.Q. Qiu, and Y.J. Jiao. A penalty-free method for equality constrained

optimization. Journal of Industrial and Management Optimization, 9(2):391–409,

2013.

[24] E.W. Cheney and A.A. Goldstein. Newton’s method for convex programming and

tchebycheff approximation. Numerische Mathematik, 1(1):253–268, 1959.

[25] F.H. Clarke. Optimization and nonsmooth analysis, volume 5. Siam, 1990.

159

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on,

6(2):182–197, 2002.

[27] V.F. Deḿanov. Smoothness of nonsmooth functions. In Nonsmooth Optimization and

Related Topics, pages 79–88. Springer, 1989.

[28] C.A. Floudas. Deterministic global optimization: theory, methods and applications,

volume 37. Springer, 2000.

[29] D.B. Fogel. System identification through simulated evolution: A machine learning

approach to modeling. Ginn Press, 1991.

[30] D.B. Fogel. Artificial intelligence through simulated evolution. Wiley-IEEE Press,

2009.

[31] K.R. Fowler and C.T. Kelley. Pseudo-transient continuation for nonsmooth nonlinear

equations. SIAM Journal on Numerical Analysis, pages 1385–1406, 2006.

[32] A. Frangioni. Solving semidefinite quadratic problems within nonsmooth optimiza-

tion algorithms. Computers & operations research, 23(11):1099–1118, 1996.

[33] S.A. Gabriel and J.J. Moré. Smoothing of mixed complementarity problems. Com-

plementarity and Variational Problems: State of the Art, pages 105–116, 1997.

[34] Y.L. Gao, H.G. Xue, and P.P. Shen. A new rectangle branch-and-reduce approach

for solving nonconvex quadratic programming problems. Applied Mathematics and

Computation, 168(2):1409–1418, 2005.

[35] R.P. Ge and Y.F. Qin. The globally convexized filled functions for global optimization.

Applied Mathematics and Computation, 35(2):131–158, 1990.

160

[36] J.L. Goffin. On convergence rates of subgradient optimization methods. Mathematical

Programming, 13(1):329–347, 1977.

[37] D. Goldberg. Genetic algorithms in optimization, search and machine learning. Addi-

son Wesley, New York. Eiben AE, Smith JE (2003) Introduction to Evolutionary Com-

puting. Springer. Jacq J, Roux C (1995) Registration of non-segmented images using

a genetic algorithm. Lecture notes in computer science, 905:205–211, 1989.

[38] D.E. Goldberg and J.H. Holland. Genetic algorithms and machine learning. Machine

Learning, 3(2):95–99, 1988.

[39] D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,

and first results. Complex Systems, 3(5):493–530, 1989.

[40] M. Haarala, K. Miettinen, and M.M. Mäkelä. New limited memory bundle method for

large-scale nonsmooth optimization. Optimization Methods and Software, 19(6):673–

692, 2004.

[41] N. Haarala, K. Miettinen, and M.M. Mäkelä. Globally convergent limited memory

bundle method for large-scale nonsmooth optimization. Mathematical Programming,

109(1):181–205, 2007.

[42] A.R. Hedar and M. Fukushima. Hybrid simulated annealing and direct search method

for nonlinear unconstrained global optimization. Optimization Methods and Software,

17(5):891–912, 2002.

[43] A.R. Hedar and M. Fukushima. Derivative-free filter simulated annealing method

for constrained continuous global optimization. Journal of Global Optimization,

35(4):521–549, 2006.

[44] R. Hooke and T.A. Jeeves. “direct search”solution of numerical and statistical prob-

lems. Journal of the ACM (JACM), 8(2):212–229, 1961.

161

[45] R. Horst. Introduction to global optimization. Springer, 2000.

[46] R. Horst, P.M. Pardalos, and H.E. Romeijn. Handbook of global optimization, vol-

ume 2. Springer, 2002.

[47] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer, 1996.

[48] J.E. Jones. On the determination of molecular fields. ii. from the equation of state of

a gas. Proceedings of the Royal Society of London. Series A, Containing Papers of a

Mathematical and Physical Character, 106(738):463–477, 1924.

[49] N.H. Josephy. Newton’s method for generalized equations. Technical report, DTIC

Document, 1979.

[50] N.H. Josephy. Quasi-newton methods for generalized equations. Technical report,

DTIC Document, 1979.

[51] A.R. Kan and G.T. Timmer. Stochastic global optimization methods part i: Clustering

methods. Mathematical Programming, 39(1):27–56, 1987.

[52] C. Kanzow. Some noninterior continuation methods for linear complementarity prob-

lems. SIAM Journal on Matrix Analysis and Applications, 17:851, 1996.

[53] C. Kanzow and H. Jiang. A continuation method for (strongly) monotone variational

inequalities. Mathematical Programming, 81(1):103–125, 1998.

[54] C. Kanzow and H.D. Qi. A qp-free constrained newton-type method for variational

inequality problems. Mathematical Programming, 85(1):81–106, 1999.

[55] R. Karuppiah and I.E. Grossmann. Global optimization for the synthesis of inte-

grated water systems in chemical processes. Computers & Chemical Engineering,

30(4):650–673, 2006.

162

[56] M. Kasper. Shape optimization by evolution strategy. Magnetics, IEEE Transactions

on, 28(2):1556–1560, 1992.

[57] J.E. Kelley. The cutting-plane method for solving convex programs. Journal of the

Society for Industrial & Applied Mathematics, 8(4):703–712, 1960.

[58] S.Y. Kim and M. Kojima. Semidefinite programming relaxations for sensor network

localization. In Computer-Aided Control System Design (CACSD), 2010 IEEE Inter-

national Symposium on, pages 19–23. IEEE, 2010.

[59] S.Y. Kim, M. Kojima, H. Waki, and M. Yamashita. Sfsdp: a sparse version of full

semidefinite programming. 2009.

[60] S.Y. Kim, M. Kojima, H. Waki, and M. Yamashita. Algorithm 920: Sfsdp: A sparse

version of full semidefinite programming relaxation for sensor network localization

problems. ACM Transactions on Mathematical Software (TOMS), 38(4):27, 2012.

[61] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, 1983.

[62] K.C. Kiwiel. Methods of descent for nondifferentiable optimization, volume 1133.

Springer-Verlag Berlin, 1985.

[63] K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable mini-

mization. Mathematical Programming, 46(1-3):105–122, 1990.

[64] K.C. Kiwiel. A tilted cutting plane proximal bundle method for convex nondifferen-

tiable optimization. Operations research letters, 10(2):75–81, 1991.

[65] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings,

and constrained parameter optimization. Evolutionary Computation, 7(1):19–44,

1999.

163

[66] V. Kvasnic̆ka and J. Pospı́chal. A hybrid of simplex method and simulated annealing.

Chemometrics and Intelligent Laboratory Systems, 39(2):161–173, 1997.

[67] C. Lemaréchal. Abstracts of ix international symposium on mathematical program-

ming. In Budapest, Hungary.

[68] C. Lemaréchal. An extension of davidon methods to non-differentiable problems. In

Nondifferentiable optimization, pages 95–109. Springer, 1975.

[69] C. Lemaréchal. Nondifferentiable optimisation subgradient and ε-subgradient meth-

ods. In Optimization and Operations Research, pages 191–199. Springer, 1976.

[70] C. Lemaréchal. Numerical experiments in nonsmooth optimization. 1982.

[71] C. Lemaréchal, J.J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth

optimization. Nonlinear Programming, 4(0), 1981.

[72] K. Levenberg. A method for the solution of certain problems in least squares. Quar-

terly of Applied Mathematics, 2:164–168, 1944.

[73] A.V. Levy and A. Montalvo. The tunneling algorithm for the global minimization of

functions. SIAM Journal on Scientific and Statistical Computing, 6(1):15–29, 1985.

[74] D.H. Li, N. Yamashita, and M. Fukushima. Nonsmooth equation based bfgs method

for solving kkt systems in mathematical programming. Journal of Optimization The-

ory and Applications, 109(1):123–167, 2001.

[75] K.F. Lim, Beliakov G., and Batten L.M. Predicting molecular structures: Applica-

tion of the cutting angle method. Journal of Optimization Theory and Applications,

5:3884–3890, 2003.

164

[76] M. Locatelli. Simulated annealing algorithms for continuous global optimiza-

tion: convergence conditions. Journal of Optimization Theory and applications,

104(1):121–133, 2000.

[77] R. Lohmann. Application of evolution strategy in parallel populations. In Parallel

Problem Solving from Nature, pages 198–208. Springer, 1991.

[78] L. Lukšan and J. Vlček. Globally convergent variable metric method for convex non-

smooth unconstrained minimization1. Journal of Optimization Theory and Applica-

tions, 102(3):593–613, 1999.

[79] L. Lukšan and J. Vlcek. Test problems for nonsmooth unconstrained and linearly

constrained optimization. Technická zpráva, 798, 2000.

[80] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the Society for Industrial & Applied Mathematics, 11(2):431–441, 1963.

[81] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. E-

quation of state calculations by fast computing machines. The Journal of Chemical

Physics, 21:1087, 1953.

[82] E. Mezura-Montes and C.A.C. Coello. A simple multimembered evolution strategy

to solve constrained optimization problems. Evolutionary Computation, IEEE Trans-

actions on, 9(1):1–17, 2005.

[83] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7(4):308–313, 1965.

[84] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-

ming, 103(1):127–152, 2005.

165

[85] J.V. Outrata, M. Kočvara, and J. Zowe. Nonsmooth approach to optimization problems

with equilibrium constraints: Theory, applications, and numerical results, volume 28.

Springer, 1998.

[86] A.J. Owens, M.J. Walsh, and L.J. Fogel. Artificial intelligence through simulated

evolution. 1966.

[87] J.S. Pang. Newton’s method for b-differentiable equations. Mathematics of Opera-

tions Research, pages 311–341, 1990.

[88] J.S. Pang and D. Chan. Iterative methods for variational and complementarity prob-

lems. Mathematical Programming, 24(1):284–313, 1982.

[89] J.D. Pintér. Global optimization in action. continuous and lipschitz optimization: Al-

gorithms, implementation and applications, 1996.

[90] E. Polak, D.Q. Mayne, and Y. Wardi. On the extension of constrained optimization al-

gorithms from differentiable to nondifferentiable problems. SIAM Journal on Control

and Optimization, 21(2):179–203, 1983.

[91] F.A. Potra, L. Qi, and D. Sun. Secant methods for semismooth equations. Numerische

Mathematik, 80(2):305–324, 1998.

[92] W.H. Press and S.A. Teukolsky. Simulated annealing optimization over continuous

spaces. Computers in Physics, 5:426, 1991.

[93] K.V. Price. Differential evolution: a fast and simple numerical optimizer. In Fuzzy In-

formation Processing Society, 1996. NAFIPS., 1996 Biennial Conference of the North

American, pages 524–527. IEEE, 1996.

[94] L. Qi. Trust region algorithms for solving nonsmooth equations. SIAM Journal on

Optimization, 5:219, 1995.

166

[95] L. Qi and X. Chen. A globally convergent successive approximation method

for severely nonsmooth equations. SIAM Journal on Control and Optimization,

33(2):402–418, 1995.

[96] L. Qi and D. Sun. A survey of some nonsmooth equations and smoothing newton

methods. Progress in Optimization, 30:121–146, 1999.

[97] S.M. Robinson. Generalized equations and their solutions, part i: Basic theory. Point-

to-Set Maps and Mathematical Programming, pages 128–141, 1979.

[98] S.M. Robinson. Strongly regular generalized equations. Mathematics of Operations

Research, pages 43–62, 1980.

[99] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Jour-

nal on Control and Optimization, 14(5):877–898, 1976.

[100] R.T. Rockafellar. Convex analysis, volume 28. Princeton university press, 1997.

[101] T.P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimiza-

tion. Evolutionary Computation, IEEE Transactions on, 4(3):284–294, 2000.

[102] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global optimization.

Journal of Global Optimization, 8(2):107–138, 1996.

[103] N.V. Sahinidis. Global optimization and constraint satisfaction: The branch-and-

reduce approach. In Global Optimization and Constraint Satisfaction, pages 1–16.

Springer, 2003.

[104] W. Schirotzek. Nonasymptotic necessary conditions for nonsmooth infinite optimiza-

tion problems. Journal of Mathematical Analysis and Applications, 118(2):535–546,

1986.

167

[105] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth

function: Conceptual idea, convergence analysis, numerical results. SIAM Journal on

Optimization, 2(1):121–152, 1992.

[106] A. Shapiro. On concepts of directional differentiability. Journal of Optimization

Theory and Applications, 66(3):477–487, 1990.

[107] N.Z. Shor, K.C. Kiwiel, and A. Ruszcayṅski. Minimization methods for non-

differentiable functions. Springer-Verlag New York, Inc., 1985.

[108] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359,

1997.

[109] J.J. Strodiot, V.H. Nguyen, and N. Heukemes. ε-optimal solutions in nondifferen-

tiable convex programming and some related questions. Mathematical Programming,

25(3):307–328, 1983.

[110] M. Studniarski. Sufficient conditions for the stability of local minimum points in

nonsmooth optimization. Optimization, 20(1):27–35, 1989.

[111] B. Sturmfels. Solving systems of polynomial equations. Number 97. American Math-

ematical Soc., 2002.

[112] D. Sun and J. Han. Newton and quasi-newton methods for a class of nonsmooth

equations and related problems. SIAM Journal on Optimization, 7(2):463–480, 1997.

[113] V.N. Tarasov and N.K. Popova. A modification of the cutting-plane method with

accelerated convergence. In Nondifferentiable Optimization: Motivations and Appli-

cations, pages 284–290. Springer, 1985.

[114] B. Thomas, F. Hoffmeister, and H. Schwefel. A survey of evolution strategies. 1991.

168

[115] A. Torn and A. Zilinskas. Global optimization. Springer-Verlag New York, Inc., 1989.

[116] D.E. Varberg and A.W. Roberts. Convex functions. New York-London, 1973.

[117] M.P. Vecchi and S. Kirkpatrick. Global wiring by simulated annealing. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2(4):215–

222, 1983.

[118] J. Vlček and L. Lukšan. Globally convergent variable metric method for nonconvex

nondifferentiable unconstrained minimization. Journal of Optimization Theory and

Applications, 111(2):407–430, 2001.

[119] D.J. Wales and H.A. Scheraga. Global optimization of clusters, crystals, and

biomolecules. Science, 285(5432):1368–1372, 1999.

[120] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan. Constrained optimization based on hybrid

evolutionary algorithm and adaptive constraint-handling technique. Structural and

Multidisciplinary Optimization, 37(4):395–413, 2009.

[121] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.

[122] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable func-

tions. In Nondifferentiable Optimization, pages 145–173. Springer, 1975.

[123] P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming,

11(1):128–149, 1976.

[124] Z.Y. Wu, H.W.J. Lee, L.S. Zhang, and X.M. Yang. A novel filled function method and

quasi-filled function method for global optimization. Computational Optimization

and Applications, 34(2):249–272, 2006.

[125] Z.Y. Wu, M. Mammadov, F.S. Bai, and Y.J. Yang. A filled function method for non-

linear equations. Applied Mathematics and Computation, 189(2):1196–1204, 2007.

169

[126] Z.Y. Wu, L.S. Zhang, K.L. Teo, and F.S. Bai. New modified function method for

global optimization. Journal of Optimization Theory and Applications, 125(1):181–

203, 2005.

[127] W. Xie and N.V. Sahinidis. A branch-and-reduce algorithm for the contact map

overlap problem. In Research in Computational Molecular Biology, pages 516–529.

Springer, 2006.

[128] H. Xu and B.M. Glover. New version of the newton method for nonsmooth equations.

Journal of Optimization Theory and Applications, 93(2):395–415, 1997.

[129] X. Yao and Y. Liu. Fast evolutionary programming. In Evolutionary Programming,

pages 451–460. Citeseer, 1996.

[130] X. Yao, Y. Liu, and G.M. Lin. Evolutionary programming made faster. Evolutionary

Computation, IEEE Transactions on, 3(2):82–102, 1999.

[131] J. Yen, J.C. Liao, B. Lee, and R. David. A hybrid approach to modeling metabolic sys-

tems using a genetic algorithm and simplex method. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 28(2):173–191, 1998.

[132] K.F.C. Yiu, Y. Liu, and K.L. Teo. A hybrid descent method for global optimization.

Journal of Global Optimization, 28(2):229–238, 2004.

[133] C.J. Yu, K.L. Teo, L.S. Zhang, and Y.Q. Bai. A new exact penalty function method for

continuous inequality constrained optimization problems. Journal of Industrial and

Management Optimization, 6(4):895, 2010.

[134] C. Zhang and H.P. Wang. Mixed-discrete nonlinear optimization with simulated an-

nealing. Engineering Optimization, 21(4):277–291, 1993.

170

[135] J. Zowe and H. Schramm. Bundle trust methods: Fortran codes for nonsmooth opti-

mization. user’s guide. Preprint, 259, 2000.

171

Appendix A.

Test problems for minimax

optimization

Problem 2.1 (CB2 Problem 2.1 [79])

F (x) = max
1≤i≤3

fi(x),

f1(x) = x21 + x42,

f2(x) = (2− x1)2 + (2− x2)2,

f3(x) = 2 exp(x2 − x1),

x̄1 = 2, x̄2 = 2.

172

Problem 2.2 (WF Problem 2.2 [79])

F (x) = max
1≤i≤3

fi(x),

f1(x) =
1

2
(x1 +

10x1
x1 + 0.1

+ 2x22),

f2(x) =
1

2
(−x1 +

10x1
x1 + 0.1

+ 2x22),

f3(x) =
1

2
(x1 −

10x1
x1 + 0.1

+ 2x22),

x̄1 = 3, x̄2 = 1.

Problem 2.3 (SPIRAL Problem 2.3 [79])

F (x) = max(f1(x), f2(x)),

f1(x) =

(
x1 −

√
x21 + x22 cos

√
x21 + x22

)2

+ 0.005(x21 + x22),

f2(x) =

(
x2 −

√
x21 + x22 sin

√
x21 + x22

)2

+ 0.005(x21 + x22),

x̄1 = 1.41831, x̄2 = − 4.79462.

Problem 2.4 (EVD52 Problem 2.4 [79])

F (x) = max
1≤i≤6

fi(x),

f1(x) = x21 + x22 + x23 − 1,

f2(x) = x21 + x22 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 + 1,

f5(x) = 2x31 + 6x22 + 2(5x3 − x1 + 1)2,

f6(x) = x21 − 9x3,

x̄i = 1, i = 1, 2, 3.

173

Problem 2.5 (Rosen-Suzuki Problem 2.5 [79])

F (x) = max
1≤i≤4

fi(x),

f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10(x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8),

f3(x) = f1(x) + 10(x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10),

f4(x) = f1(x) + 10(2x21 + x22 + x23 + 2x1 − x2 − x4 − 5),

x̄i = 0, i = 1, 2, 3, 4.

Problem 2.6 (Polak 6 Problem 2.6 [79])

F (x) = max
1≤i≤4

fi(x),

f1(x) = (x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + 2x23

+x24 − 5(x1 − (x4 + 1)4)− 5(x2 − (x1 − (x4 + 1)4)4)− 21x3 + 7x4,

f2(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+x23 + x24 + (x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4) + x3 − x4 − 8),

f3(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + 2(x2 − (x1 − (x4 + 1)4)4)2

+x23 + 2x24 − (x1 − (x4 + 1)4)− x4 − 10),

f4(x) = f1(x) + 10((x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+x23 + 2(x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)− x4 − 5),

x̄i = 0, i = 1, 2, 3, 4.

174

Problem 2.7 (PBC3 Problem 2.7 [79])

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) =
x3
x2

exp(−tix1) sin(tix2)− yi,

yi =
3

20
e−ti +

1

52
e−5ti − 1

65
e−2ti(3 sin 2ti + 11 cos 2ti),

ti = 10(i− 1)/20, 1 ≤ i ≤ 21,

x̄i = 1, 1 ≤ i ≤ 3.

Problem 2.8 (Kowalik-Osborne Problem 2.9 [79])

F (x) = max
1≤i≤11

|fi(x)|,

fi(x) =
x1(u

2
i + x2ui)

u2i + x3ui + x4
− yi.

i yi ui i yi ui

1 0.1957 4.0000 7 0.0456 0.0125

2 0.1947 2.0000 8 0.0342 0.1000

3 0.1735 1.0000 9 0.0323 0.0833

4 0.1600 0.5000 10 0.0235 0.0714

5 0.0844 0.2500 11 0.0246 0.0625

6 0.0627 0.1670

x̄1 = 0.250, x̄2 = 0.390, x̄3 = 0.415, x̄4 = 0.390.

175

Problem 2.9 (Polak 2 Problem 2.22 [79])

F (x) = max{f(x+ 2e2), f(x− 2e2)},

f(x) = exp(10−8x21 + x22 + x23 + 4x24 + x25 + x26 + x27 + x28 + x29 + x210),

e2 = second column of the unit matrix,

x̄1 = 100, x̄i = 0.1, 2 ≤ i ≤ 10.

Problem 2.10 (Polak 3 Problem 2.23 [79])

F (x) = max
1≤i≤10

fi(x),

fi(x) =
10∑
j=0

1

i+ j
exp

(
(xj+1 − sin(i− 1 + 2j))2

)
,

x̄i = 1, 1 ≤ i ≤ 11.

Problem 2.11 (Davidson 2 Problem 2.10 [79])

F (x) = max
1≤i≤20

|fi(x)|,

fi(x) = (x1 + x2ti − exp(ti))
2 + (x3 + x4 sin(ti)− cos(ti))

2.

ti = 0.2i, 1 ≤ i ≤ 20,

x̄1 = 25, x̄2 = 5, x̄3 = −5, x̄4 = −1.

176

Problem 2.12 (OET5 Problem 2.11 [79])

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) = x4 − (x1t
2
i + x2ti + x3)

2 −
√
ti.

ti = 0.25 + 0.75(i− 1)/20, 1 ≤ i ≤ 21,

x̄i = 1.0, 1 ≤ i ≤ 4.

Problem 2.13 (OET6 Problem 2.12 [79])

F (x) = max
1≤i≤21

|fi(x)|,

fi(x) = x1e
x3ti + x2e

x4ti − 1

1 + ti
,

ti = −0.5 + (i− 1)/20, 1 ≤ i ≤ 21,

x̄1 = 1.0, x̄2 = 1.0, x̄3 = −3.0, x̄4 = −1.0.

Problem 2.14 (EXP Problem 2.14 [79])

F (x) = max
1≤i≤21

fi(x),

fi(x) =
x1 + x2ti

1 + x3ti + x4t2i + x5t3i
− exp(ti),

ti = −1 + (i− 1)/10, 1 ≤ i ≤ 21,

x̄1 = 0.5, x̄2 = 0, x̄3 = 0, x̄4 = 0, x̄5 = 0.

177

Problem 2.15 (PBC1 Problem 2.15 [79])

F (x) = max
1≤i≤30

|fi(x)|,

fi(x) =
x1 + x2ti + x3t

2
i

1 + x4ti + x5t2i
−
√
(8ti − 1)2 + 1arctan(8ti)

8ti
,

ti = −1 + 2(i− 1)/29, 1 ≤ i ≤ 30,

x̄1 = 0, x̄2 = −1, x̄3 = 10, x̄4 = 1, x̄5 = 10.

Problem 2.16 (EVD61 Problem 2.16 [79])

F (x) = max
1≤i≤51

|fi(x)|,

fi(x) = x1 exp(−x2ti) cos(x3ti + x4) + x5 exp(−x6ti)− yi,

yi = 0.5e−ti − e−2ti + 0.5e−3ti + 1.5e−1.5ti sin 7ti + e−2.5ti sin 5ti,

ti = 0.1(i− 1), 1 ≤ i ≤ 51,

x̄1 = 2, x̄2 = 2, x̄3 = 7,

x̄4 = 0, x̄5 = −2, x̄6 = 1

178

Problem 2.17 (Filter Problem 2.18 [79])

F (x) = max
1≤i≤41

|fi(x)|,

fi(x) =

(
(x1 + (1 + x2) cosϑi)

2 + ((1− x2) sinϑi)
2

(x3 + (1 + x4) cosϑi)2 + ((1− x4) sinϑi)2

) 1
2

·(
(x5 + (1 + x6) cosϑi)

2 + ((1− x6) sinϑi)
2

(x7 + (1 + x8) cosϑi)2 + ((1− x8) sinϑi)2

) 1
2

x9 − yi,

yi = |1− 2ti|, ϑi = πti

ti = 0.01(i− 1), 1 ≤ i ≤ 6,

ti = 0.07 + 0.03(i− 7), 7 ≤ i ≤ 20, t21 = 0.5,

ti = 0.54 + 0.03(i− 22), 22 ≤ i ≤ 35,

ti = 0.95 + 0.01(i− 36), 36 ≤ i ≤ 41,

x̄1 = 0.00, x̄2 = 1.00, x̄3 = 0.00, x̄4 = −0.15,

x̄5 = 0.00, x̄6 = −0.68, x̄7 = 0.00, x̄8 = −0.72,

x̄9 = 0.37.

Problem 2.18 (Wong 1 Problem 2.19 [79])

F (x) = max
1≤i≤5

fi(x),

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65 + 7x26 + x47

−4x6x7 − 10x6 − 8x7,

f2(x) = f1(x) + 10(2x21 + 3x42 + x3 + 4x24 + 5x5 − 127),

f3(x) = f1(x) + 10(7x1 + 3x2 + 10x23 + x4 − x5 − 282),

f4(x) = f1(x) + 10(23x1 + x22 + 6x26 − 8x7 − 196),

f5(x) = f1(x) + 10(4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7),

x̄1 = 1, x̄2 = 2, x̄3 = 0, x̄4 = 4, x̄5 = 0, x̄6 = 1, x̄7 = 1.

179

Problem 2.19 (Wong 2 Problem 2.20 [79])

F (x) = max
1≤i≤9

fi(x),

f1(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 +

2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120),

f3(x) = f1(x) + 10(5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30),

f5(x) = f1(x) + 10(x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(4x1 + 5x2 − 3x7 + 9x8 − 105),

f7(x) = f1(x) + 10(10x1 − 8x2 − 17x7 + 2x8),

f8(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f9(x) = f1(x) + 10(−8x1 + 2x2 + 5x9 − 2x10 − 12),

x̄1 = 2, x̄2 = 3, x̄3 = 5, x̄4 = 5, x̄5 = 1, x̄6 = 2,

x̄7 = 7, x̄8 = 3, x̄9 = 6, x̄10 = 10.

Problem 2.20 (Wong 3 Problem 2.21 [79])

F (x) = max
1≤i≤18

fi(x),

f1(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + (x11 − 9)2

+10(x12 − 1)2 + 5(x13 − 7)2 + 4(x14 − 14)2 + 27(x15 − 1)2 + x416 + (x17 − 2)2

+13(x18 − 2)2 + (x19 − 3)2 + x220 + 95,

180

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120),

f3(x) = f1(x) + 10(5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30),

f5(x) = f1(x) + 10(x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(4x1 + 5x2 − 3x7 + 9x8 − 105),

f7(x) = f1(x) + 10(10x1 − 8x2 − 17x7 + 2x8),

f8(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f9(x) = f1(x) + 10(−8x1 + 2x2 + 5x9 − 2x10 − 12),

f10(x) = f1(x) + 10(x1 + x2 + 4x11 − 21x12),

f11(x) = f1(x) + 10(x21 + 5x11 − 8x12 − 28),

f12(x) = f1(x) + 10(4x1 + 9x2 + 5x213 − 9x14 − 87),

f13(x) = f1(x) + 10(3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10),

f14(x) = f1(x) + 10(14x21 + 35x15 − 79x16 − 92),

f15(x) = f1(x) + 10(15x22 + 11x15 − 61x16 − 54),

f16(x) = f1(x) + 10(5x21 + 2x2 + 9x417 − x18 − 68),

f17(x) = f1(x) + 10(x21 − x2 + 19x19 − 20x20 + 19),

f18(x) = f1(x) + 10(7x21 + 5x22 + x219 − 30x20),

x̄1 = 2, x̄2 = 3, x̄3 = 5, x̄4 = 5, x̄5 = 1, x̄6 = 2, x̄7 = 7,

x̄8 = 3, x̄9 = 6, x̄10 = 10, x̄11 = 2, x̄12 = 2, x̄13 = 6, x̄14 = 15,

x̄15 = 1, x̄16 = 2, x̄17 = 1, x̄18 = 2, x̄19 = 1, x̄20 = 3.

181

Problem 2.21 (Watson Problem 2.24 [79])

F (x) = max
1≤i≤31

|fi(x)|,

f1(x) = x1,

f2(x) = x2 − x21 − 1,

fi(x) =
n∑

j=2

(j − 1)xj

(
i− 2

29

)j−2

−

[
n∑

j=1

xj

(
i− 2

29

)j−1
]2
, 3 ≤ j ≤ 31

x̄i = 0, 1 ≤ i ≤ 20.

Problem 2.22 (Osborne 2 Problem 2.25 [79])

F (x) = max
1≤i≤65

|fi(x)|,

fi(x) = yi − x1 exp(−x5ti)− x2 exp(−x6(ti − x9)2)− x3 exp(−x7(ti − x10)2)−

x4 exp(−x8(ti − x11)2),

ti = 0.1(i− 1), 1 ≤ i ≤ 65.

x̄1 = 1.30, x̄2 = 0.65, x̄3 = 0.65, x̄4 = 0.70, x̄5 = 0.60, x̄6 = 3.00,

x̄7 = 5.00, x̄8 = 7.00, x̄9 = 2.00, x̄10 = 4.50, x̄11 = 5.50.

182

i yi i yi i yi i yi i yi

1 1.366 14 0.655 27 0.612 40 0.429 53 0.597

2 1.191 15 0.616 28 0.558 41 0.523 54 0.625

3 1.112 16 0.606 29 0.533 42 0.562 55 0.739

4 1.013 17 0.602 30 0.495 43 0.607 56 0.710

5 0.991 18 0.626 31 0.500 44 0.653 57 0.729

6 0.885 19 0.651 32 0.423 45 0.672 58 0.720

7 0.831 20 0.724 33 0.395 46 0.708 59 0.636

8 0.847 21 0.649 34 0.375 47 0.633 60 0.581

9 0.786 22 0.649 35 0.372 48 0.668 61 0.428

10 0.725 23 0.694 36 0.391 49 0.645 62 0.292

11 0.746 24 0.644 37 0.396 50 0.632 63 0.162

12 0.679 25 0.624 38 0.405 51 0.591 64 0.098

13 0.608 26 0.661 39 0.428 52 0.559 65 0.054

Problem 2.23 (Problem 1 [1])

f(x) = max{fi(x) : i = 1, 2, 3}+min{fi(x) : i = 4, 5, 6},

f1(x) = x41 + x22,

f2(x) = (2− x1)2 + (2− x2)2,

f3(x) = 2e−x1+x2 ,

f4(x) = x21 − 2x1 + x22 − 4x2 + 4,

f5(x) = 2x21 − 5x1 + x22 − 2x2 + 4,

f6(x) = x21 + 2x22 − 4x2 + 1,

x ∈ R2, x0 = (2, 2), x∗ = (1, 1), f ∗ = 2.

183

Problem 2.24 (Problem 2 [1])

f(x) = |x1 − 1|+ 100|x2 − |x1||

x ∈ R2, x0 ∈ (−1.2, 1), x∗ = (1, 1), f ∗ = 0

The function f can be represented as the difference of two convex function:

f(x) = f1(x)− f2(x),

where

f1(x) = |x1 − 1|+ 200max{0, |x1| − x2}, f2(x) = 100(|x1| − x2).

Problem 2.25 (Problem 3 [1])

F (x) = |x1 − 1|+ 100|x2 − |x1||+ 90|x4 − |x3||+ |x3 − 1|

+10.1(|x2 − 1|+ |x4 − 1|) + 4.95(|x2 + x4 − 2| − |x2 − x4|),

x ∈ R4, x0 = (1, 3, 3, 1), x∗ = (1, 1, 1, 1), f ∗ = 0.

The function f can be represented as the difference of two convex functions:

f(x) = f1(x)− f2(x), where

f1(x) = |x1 − 1|+ 200max{0, |x1| − x2}+ 180max{0, |x3| − x4}

+|x3 − 1|+ 10.1(|x2 − 1|+ |x4 − 1|) + 4.95|x2 + x4 − 2|,

f2(x) = 100(|x1| − x2) + 90(|x3| − x4) + 4.95|x2 − x4|.

184

Appendix B.

Test problems for global optimization

Problem 3.1. Ackley function

• Numbers of variables: n variables.

• Definition:

f(x) = 20 + e− 20e−
1
5

√
1
n

∑n
i=1 x

2
i − e−

1
n

∑n
i=1 cos(2πxi).

• Box constraint: −1.5 ≤ xi ≤ 30, i = 1, 2, · · · , n.

• The global minimum: x∗ = (0, 0, · · · , 0) with f(x∗) = 0.

Problem 3.2. Hump function

• Numbers of variables: n = 2.

• Definition:

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42

• Box constraint: −5 ≤ xi ≤ 5, i = 1, 2.

• The global minimum: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126) with f(x∗) =

−1.0316285.

185

Problem 3.3. Griewank function

• Numbers of variables: n variables.

• Definition:

f(x) =
n∑

i=1

x2i
4000

−
n∏

i=1

cos(
xi√
i
) + 1

• Box constraint: −600 ≤ xi ≤ 600, i = 1, 2, · · · , n.

• The global minimum: x∗ = (0, 0, · · · , 0) with f(x∗) = 0.

Problem 3.4. Rastrigin function

• Numbers of variables: n variables.

• Definition:

f(x) = 10n+
n∑

i=1

(x2i − 10 cos(2πxi))

• Box constraint: −5.12 ≤ xi ≤ 5.12, i = 1, 2, · · · , n.

• The global minimum: x∗ = (0, 0, · · · , 0) with f(x∗) = 0.

Problem 3.5. Rosenbrock function

• Numbers of variables: n variables.

• Definition:

f(x) =
n−1∑
i=1

[
100(x2i − xi+1)

2 + (xi − 1)2
]
.

• Box constraint: −5 ≤ xi ≤ 10, i = 1, 2, · · · , n.

• The global minimum: x∗ = (1, 1, · · · , 1) with f(x∗) = 0.

Problem 3.6. Schwefel function

• Numbers of variables: n variables.

186

• Definition:

f(x) = 418.9829n−
n∑

n=1

(x sin
√
|xi|)

• Box constraint: −500 ≤ xi ≤ 500, i = 1, 2, · · · , n.

• The global minimum: x∗ = 420.96914× (1, 1, · · · , 1) with f(x∗) = 1× 10−5.

Problem 3.7. Dixon & Price function

• Numbers of variables: n variables.

• Definition:

f(x) = (x1 − 1)2 +
n∑

i=1

i(2x2i − xi−1)
2.

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2 · · · , n.

• The global minimum: f(x∗) = 0.

Problem 3.8. Levy function

• Numbers of variables: n variables.

• Definition:

f(x) = sin2(πy1) +
n−1∑
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+(yn − 1)2(1 + 10 sin2(2πyn)),

where yi = 1 + xi−1
4
, i = 1, 2, · · · , n.

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2, · · · , n.

• The global minimum: x∗ = (1, 1, · · · , 1) with f(x∗) = 0.

Problem 3.9. Michalewics function

• Numbers of variables: n variables.

187

• Definition:

f(x) = −
2∑

i=1

sin(xi)(sin(ix
2
i /π))

2m,

where m = 10.

• Box constraint: 0 ≤ xi ≤ π, i = 1, 2, · · · , n.

• The global minimum:

f(x∗) = −1.8013 when n = 2,

f(x∗) = −4.687658 when n = 5,

f(x∗) = −9.66015 when n = 10.

Problem 3.10. Perm function I

• Numbers of variables: n variables.

• Definition:

f(x) =
n∑

i=1

[
n∑

j=1

(ji + 0.5)((xj/j)
i − 1)

]2

• Box constraint: −n ≤ xi ≤ n, i = 1, 2, · · · , n.

• The global minimum: x∗ = (1, 2, · · · , n) with f(x∗) = 0.

Problem 3.11. Trid function

• Numbers of variables: n variables.

• Definition:

f(x) =
n∑

i=1

(xi − 1)2 −
n∑

i=2

xixi−1

• Box constraint: −n2 ≤ xi ≤ n2, i = 1, 2, · · · , n.

188

• The global minimum:

f(x∗) = −2 when n = 2,

f(x∗) = −30 when n = 5,

f(x∗) = −50 when n = 6,

f(x∗) = −210 when n = 10.

Problem 3.12. Zakharov function

• Numbers of variables: n variables.

• Definition:

f(x) =
n∑

i=1

x2i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

• Box constraint: −5 ≤ xi ≤ 10, i = 1, 2, · · · , n.

• The global minimum: x∗ = (0, 0, · · · , 0) with f(x∗) = 0.

Problem 3.13. Beale function

• Numbers of variables: n = 2.

• Definition:

f(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2.

• Box constraint: −4.5 ≤ xi ≤ 4.5, i = 1, 2.

• The global minimum: x∗ = (3, 0.5) with f(x∗) = 0.

Problem 3.14. Bohachevsky function I

• Numbers of variables: n = 2.

189

• Definition:

f(x) = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7.

• Box constraint: −100 ≤ xi ≤ 100, i = 1, 2.

• The global minimum: x∗ = (0, 0) with f(x∗) = 0.

Problem 3.15. Bohachevsky function II

• Numbers of variables: n = 2.

• Definition:

f(x) = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3.

• Box constraint: −100 ≤ xi ≤ 100, i = 1, 2.

• The global minimum: x∗ = (0, 0) with f(x∗) = 0.

Problem 3.16. Bohachevsky function III

• Numbers of variables: n = 2.

• Definition:

f(x) = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3.

• Box constraint: −100 ≤ xi ≤ 100, i = 1, 2.

• The global minimum: x∗ = (0, 0) with f(x∗) = 0.

Problem 3.17. Brainin function

• Numbers of variables: n = 2.

190

• Definition:

f(x) = (x2 −
5

4π2
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10.

• Box constraint: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

• The global minimum: x∗ = (−π, 12.275), (π, 2.275), (9.42748, 2.475) with

f(x∗) = 0.397887.

Problem 3.18. Colville function

• Numbers of variables: n = 4.

• Definition:

f(x) = 100(x21 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x23 − x4)2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.6(x2 − 1)(x4 − 1).

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.

• The global minimum: x∗ = (1, 1, 1, 1) with f(x∗) = 0.

Problem 3.19. Matyas function

• Numbers of variables: n = 2.

• Definition:

f(x) = 0.26(x21 + x22)− 0.48x1x2.

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2.

• The global minimum: x∗ = (0, 0) with f(x∗) = 0.

Problem 3.20. Shubert function

• Numbers of variables: n = 2.

191

• Definition:

f(x) =

(
5∑

i=1

i cos((i+ 1)xi + i)

)(
5∑

i=1

i cos((i+ 1)x2 + i)

)
.

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2.

• The global minimum: 18 global minima with f(x∗) = −186.7309.

192

Appendix C.

Test problems for constrained

optimization

Problem 4.1

• Numbers of variables: 13 variables.

• Definition:

Objective function

f(x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑
i=5

xi

193

Inequality constraints

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x112 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

• Box constraint: 0 ≤ xi ≤ ui, i = 1, 2, · · · , 13, and u = (1, 1, · · · , 1, 100, 100, 100, 1).

• The global minimum: x∗ = (1, 1, · · · , 1, 3, 3, 3, 1) with f(x∗) = −15.

Problem 4.2

• Numbers of variables: n variables.

• Definition:

Objective function

f(x) = −

∣∣∣∣∣∣∣∣
n∑

i=1

cos4(xi)− 2
n∏

i=1

cos2(xi)√
n∑

i=1

ix2i

∣∣∣∣∣∣∣∣
Inequality constraints

g1(x) = −
n∏

i=1

xi + 0.75 ≤ 0

g2(x) =
n∑

i=1

xi − 7.5n ≤ 0

194

• Box constraint: 0 ≤ xi ≤ 10, i = 1, 2, · · · , n.

• The global minimum: at n = 20, f(x∗) = −0.803619.

Problem 4.3

• Numbers of variables: n variables.

• Definition:

Objective function

f(x) = −(
√
n)n

n∏
i=1

xi

Equality constraints

h1(x) =
n∑

i=1

x2i − 1 = 0

• Box constraint: 0 ≤ xi ≤ 1, i = 1, 2, · · · , n.

• The global minimum: x∗ = (1/n0.5, 1/n0.5, · · · , 1/n0.5) with f(x∗) = −1.

Problem 4.4

• Numbers of variables: 5 variables.

• Definition:

Objective function

f(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

195

Inequality constraints

g1(x) = u(x)− 92 ≤ 0

g2(x) = −u(x) ≤ 0

g3(x) = v(x)− 110 ≤ 0

g4(x) = −v(x) + 90 ≤ 0

g5(x) = w(x)− 25 ≤ 0

g6(x) = −w(x) + 20 ≤ 0

where

u(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

v(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x23

w(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4.

• Box constraint: li ≤ xi ≤ ui, i = 1, 2, · · · , 5, where l = (78, 33, 27, 27, 27) and

u = (102, 45, 45, 45, 45).

• The global minimum: x∗ = (78, 33, 29.995, 45, 36.7758) with f(x∗) = −30655.539.

Problem 4.5

• Numbers of variables: 4 variables.

• Definition:

Objective function

f(x) = 3x3 + 10−6x31 + 2x2 +
2

3
× 10−6x32

Inequality constraints

g1(x) = x3 − x4 − 0.55 ≤ 0

g2(x) = x4 − x3 − 0.55 ≤ 0

196

Equality constraints

h1(x) = 1000[sin(−x3 − 0.25) + sin(−x4 − 0.25)] + 894.8− x1 = 0

h2(x) = 1000[sin(x3 − 0.25) + sin(x3 − x4 − 0.25)] + 894.8− x2 = 0

h3(x) = 1000[sin(x4 − 0.25) + sin(x4 − x3 − 0.25)] + 1294.8 = 0

• Box constraint: li ≤ xi ≤ ui, i = 1, 2, 3, 4, where l = (0, 0,−0.55,−0.55) and

u = (1200, 1200, 0.55, 0.55)

• The global minimum: x∗ = (679.9453, 1026, 0.118876,−0.3962336) with f(x∗) =

5126.4981.

Problem 4.6

• Numbers of variables: 2 variables.

• Definition:

Objective function

f(x) = (x1 − 10)3 + (x2 − 20)3

Inequality constraints

g1(x) = (x1 − 5)2 + (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 5)2 + (x2 − 5)2 − 82.81 ≤ 0

• Box constraint: l ≤ xi ≤ 100, i = 1, 2, where l = (13, 0)

• The global minimum: x∗ = (14.095, 0.84296) with f(x∗) = −6961.81388.

Problem 4.7

• Numbers of variables: 10 variables.

197

• Definition:

Objective function

f(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

Inequality constraints

g1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0

g7(x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2, · · · , 10.

• The global minimum:

x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,

9.828726, 8.280092, 8.375927) with f(x∗) = 24.3062091.

Problem 4.8

• Numbers of variables: 2 variables.

• Definition:

198

Objective function

f(x) = −sin3(2πx1) sin(2πx2)

x31(x1 + x2)

Inequality constraints

g1(x) = x21 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

• Box constraint: 0 ≤ xi ≤ 10, i = 1, 2.

• The global minimum: x∗ = (1.2279713, 4.2453733) with f(x∗) = −0.095825.

Problem 4.9

• Numbers of variables: 7 variables.

• Definition:

Objective function

f(x) = (x1−10)2+5(x2−12)2+x43+3(x4−11)2+10x65+7x26+x
4
7−4x6x7−10x6−8x7

Inequality constraints

g1(x) = 2x21 + 3x42 + x3 + 4x24 + 5x5 − 127 ≤ 0

g2(x) = 7x1 + 3x2 + 10x23 + x4 − x5 − 282 ≤ 0

g3(x) = 23x1 + x22 + 6x26 − 8x7 − 196 ≤ 0

g4(x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0

• Box constraint: −10 ≤ xi ≤ 10, i = 1, 2, · · · , 7.

199

• The global minimum: x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,

− 0.6244870, 1.038131, 1.594227) with f(x∗) = 680.6300573.

Problem 4.10

• Numbers of variables: 8 variables.

• Definition:

Objective function

f(x) = x1 + x2 + x3

Inequality constraints

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(−x4 + x5 + x7) ≤ 0

g3(x) = −1 + 0.01(−x5 + x8) ≤ 0

g4(x) = 100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0

g5(x) = x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

g6(x) = x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0

• Box constraint: li ≤ xi ≤ ui, i = 1, 2, · · · , 8,where l = 10∗(10, 100, 100, 1, 1, 1, 1, 1)

and u = 1000 ∗ (10, 10, 10, 1, 1, 1, 1, 1).

• The global minimum: x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,

217.9799, 286.4162, 395.5979) with f(x∗) = 7049.3307.

Problem 4.11

• Numbers of variables: 2 variables.

• Definition:

Objective function

f(x) = x21 + (x2 − 1)2

200

Equality constraints

h1(x) = x2 − x21 = 0

• Box constraint: −1 ≤ xi ≤ 1, i = 1, 2.

• The global minimum: x∗ = ±(1/20.5, 1/2) with f(x∗) = 0.75.

Problem 4.12

• Numbers of variables: 3 variables.

• Definition:

Objective function

f(x) = 1− 0.01[(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2]

Inequality constraints

gi,j,k(x) = (x1 − i)2 + (x2 − j)2 + (x3 − k)2 − 0.0625 ≤ 0

where i, j, k = 1, 2, · · · , 9.

• Box constraint: 0 ≤ xi ≤ 10, i = 1, 2, 3.

• The global minimum: x∗ = (5, 5, 5) with f(x∗) = 1.

Problem 4.13

• Numbers of variables: 5 variables.

• Definition:

Objective function

f(x) = ex1x2x3x4x5

201

Equality constraints

h1(x) = x21 + x22 + x23 + x24 + x25 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x31 + x32 + 1 = 0

• Box constraint: li ≤ xi ≤ ui, i = 1, 2, · · · , 5, where u = (2.3, 2.3, 3.2, 3.2, 3.2)

and l = −u.

• The global minimum: x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645)

with f(x∗) = 0.0539498.

202

